Correct shell compatibility issue detected with pkgsrc.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank CV_CONVERSION_BADNESS = {1, 0};
55 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
56 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
59 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
60 const struct rank BASE_CONVERSION_BADNESS = {2,0};
61 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
62 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
63 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
64 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
65
66 /* Floatformat pairs. */
67 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
68 &floatformat_ieee_half_big,
69 &floatformat_ieee_half_little
70 };
71 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
72 &floatformat_ieee_single_big,
73 &floatformat_ieee_single_little
74 };
75 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
76 &floatformat_ieee_double_big,
77 &floatformat_ieee_double_little
78 };
79 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
80 &floatformat_ieee_double_big,
81 &floatformat_ieee_double_littlebyte_bigword
82 };
83 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
84 &floatformat_i387_ext,
85 &floatformat_i387_ext
86 };
87 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
88 &floatformat_m68881_ext,
89 &floatformat_m68881_ext
90 };
91 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
92 &floatformat_arm_ext_big,
93 &floatformat_arm_ext_littlebyte_bigword
94 };
95 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
96 &floatformat_ia64_spill_big,
97 &floatformat_ia64_spill_little
98 };
99 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
100 &floatformat_ia64_quad_big,
101 &floatformat_ia64_quad_little
102 };
103 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
104 &floatformat_vax_f,
105 &floatformat_vax_f
106 };
107 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
108 &floatformat_vax_d,
109 &floatformat_vax_d
110 };
111 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
112 &floatformat_ibm_long_double_big,
113 &floatformat_ibm_long_double_little
114 };
115
116 /* Should opaque types be resolved? */
117
118 static int opaque_type_resolution = 1;
119
120 /* A flag to enable printing of debugging information of C++
121 overloading. */
122
123 unsigned int overload_debug = 0;
124
125 /* A flag to enable strict type checking. */
126
127 static int strict_type_checking = 1;
128
129 /* A function to show whether opaque types are resolved. */
130
131 static void
132 show_opaque_type_resolution (struct ui_file *file, int from_tty,
133 struct cmd_list_element *c,
134 const char *value)
135 {
136 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
137 "(if set before loading symbols) is %s.\n"),
138 value);
139 }
140
141 /* A function to show whether C++ overload debugging is enabled. */
142
143 static void
144 show_overload_debug (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
148 value);
149 }
150
151 /* A function to show the status of strict type checking. */
152
153 static void
154 show_strict_type_checking (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
158 }
159
160 \f
161 /* Allocate a new OBJFILE-associated type structure and fill it
162 with some defaults. Space for the type structure is allocated
163 on the objfile's objfile_obstack. */
164
165 struct type *
166 alloc_type (struct objfile *objfile)
167 {
168 struct type *type;
169
170 gdb_assert (objfile != NULL);
171
172 /* Alloc the structure and start off with all fields zeroed. */
173 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
174 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
175 struct main_type);
176 OBJSTAT (objfile, n_types++);
177
178 TYPE_OBJFILE_OWNED (type) = 1;
179 TYPE_OWNER (type).objfile = objfile;
180
181 /* Initialize the fields that might not be zero. */
182
183 TYPE_CODE (type) = TYPE_CODE_UNDEF;
184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
185
186 return type;
187 }
188
189 /* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
191 on the obstack associated with GDBARCH. */
192
193 struct type *
194 alloc_type_arch (struct gdbarch *gdbarch)
195 {
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
202 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
203 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_CHAIN (type) = type; /* Chain back to itself. */
212
213 return type;
214 }
215
216 /* If TYPE is objfile-associated, allocate a new type structure
217 associated with the same objfile. If TYPE is gdbarch-associated,
218 allocate a new type structure associated with the same gdbarch. */
219
220 struct type *
221 alloc_type_copy (const struct type *type)
222 {
223 if (TYPE_OBJFILE_OWNED (type))
224 return alloc_type (TYPE_OWNER (type).objfile);
225 else
226 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
227 }
228
229 /* If TYPE is gdbarch-associated, return that architecture.
230 If TYPE is objfile-associated, return that objfile's architecture. */
231
232 struct gdbarch *
233 get_type_arch (const struct type *type)
234 {
235 if (TYPE_OBJFILE_OWNED (type))
236 return get_objfile_arch (TYPE_OWNER (type).objfile);
237 else
238 return TYPE_OWNER (type).gdbarch;
239 }
240
241 /* See gdbtypes.h. */
242
243 struct type *
244 get_target_type (struct type *type)
245 {
246 if (type != NULL)
247 {
248 type = TYPE_TARGET_TYPE (type);
249 if (type != NULL)
250 type = check_typedef (type);
251 }
252
253 return type;
254 }
255
256 /* See gdbtypes.h. */
257
258 unsigned int
259 type_length_units (struct type *type)
260 {
261 struct gdbarch *arch = get_type_arch (type);
262 int unit_size = gdbarch_addressable_memory_unit_size (arch);
263
264 return TYPE_LENGTH (type) / unit_size;
265 }
266
267 /* Alloc a new type instance structure, fill it with some defaults,
268 and point it at OLDTYPE. Allocate the new type instance from the
269 same place as OLDTYPE. */
270
271 static struct type *
272 alloc_type_instance (struct type *oldtype)
273 {
274 struct type *type;
275
276 /* Allocate the structure. */
277
278 if (! TYPE_OBJFILE_OWNED (oldtype))
279 type = XCNEW (struct type);
280 else
281 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
282 struct type);
283
284 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
285
286 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
287
288 return type;
289 }
290
291 /* Clear all remnants of the previous type at TYPE, in preparation for
292 replacing it with something else. Preserve owner information. */
293
294 static void
295 smash_type (struct type *type)
296 {
297 int objfile_owned = TYPE_OBJFILE_OWNED (type);
298 union type_owner owner = TYPE_OWNER (type);
299
300 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
301
302 /* Restore owner information. */
303 TYPE_OBJFILE_OWNED (type) = objfile_owned;
304 TYPE_OWNER (type) = owner;
305
306 /* For now, delete the rings. */
307 TYPE_CHAIN (type) = type;
308
309 /* For now, leave the pointer/reference types alone. */
310 }
311
312 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
313 to a pointer to memory where the pointer type should be stored.
314 If *TYPEPTR is zero, update it to point to the pointer type we return.
315 We allocate new memory if needed. */
316
317 struct type *
318 make_pointer_type (struct type *type, struct type **typeptr)
319 {
320 struct type *ntype; /* New type */
321 struct type *chain;
322
323 ntype = TYPE_POINTER_TYPE (type);
324
325 if (ntype)
326 {
327 if (typeptr == 0)
328 return ntype; /* Don't care about alloc,
329 and have new type. */
330 else if (*typeptr == 0)
331 {
332 *typeptr = ntype; /* Tracking alloc, and have new type. */
333 return ntype;
334 }
335 }
336
337 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
338 {
339 ntype = alloc_type_copy (type);
340 if (typeptr)
341 *typeptr = ntype;
342 }
343 else /* We have storage, but need to reset it. */
344 {
345 ntype = *typeptr;
346 chain = TYPE_CHAIN (ntype);
347 smash_type (ntype);
348 TYPE_CHAIN (ntype) = chain;
349 }
350
351 TYPE_TARGET_TYPE (ntype) = type;
352 TYPE_POINTER_TYPE (type) = ntype;
353
354 /* FIXME! Assumes the machine has only one representation for pointers! */
355
356 TYPE_LENGTH (ntype)
357 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
358 TYPE_CODE (ntype) = TYPE_CODE_PTR;
359
360 /* Mark pointers as unsigned. The target converts between pointers
361 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
362 gdbarch_address_to_pointer. */
363 TYPE_UNSIGNED (ntype) = 1;
364
365 /* Update the length of all the other variants of this type. */
366 chain = TYPE_CHAIN (ntype);
367 while (chain != ntype)
368 {
369 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
370 chain = TYPE_CHAIN (chain);
371 }
372
373 return ntype;
374 }
375
376 /* Given a type TYPE, return a type of pointers to that type.
377 May need to construct such a type if this is the first use. */
378
379 struct type *
380 lookup_pointer_type (struct type *type)
381 {
382 return make_pointer_type (type, (struct type **) 0);
383 }
384
385 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
386 points to a pointer to memory where the reference type should be
387 stored. If *TYPEPTR is zero, update it to point to the reference
388 type we return. We allocate new memory if needed. REFCODE denotes
389 the kind of reference type to lookup (lvalue or rvalue reference). */
390
391 struct type *
392 make_reference_type (struct type *type, struct type **typeptr,
393 enum type_code refcode)
394 {
395 struct type *ntype; /* New type */
396 struct type **reftype;
397 struct type *chain;
398
399 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
400
401 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
402 : TYPE_RVALUE_REFERENCE_TYPE (type));
403
404 if (ntype)
405 {
406 if (typeptr == 0)
407 return ntype; /* Don't care about alloc,
408 and have new type. */
409 else if (*typeptr == 0)
410 {
411 *typeptr = ntype; /* Tracking alloc, and have new type. */
412 return ntype;
413 }
414 }
415
416 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
417 {
418 ntype = alloc_type_copy (type);
419 if (typeptr)
420 *typeptr = ntype;
421 }
422 else /* We have storage, but need to reset it. */
423 {
424 ntype = *typeptr;
425 chain = TYPE_CHAIN (ntype);
426 smash_type (ntype);
427 TYPE_CHAIN (ntype) = chain;
428 }
429
430 TYPE_TARGET_TYPE (ntype) = type;
431 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
432 : &TYPE_RVALUE_REFERENCE_TYPE (type));
433
434 *reftype = ntype;
435
436 /* FIXME! Assume the machine has only one representation for
437 references, and that it matches the (only) representation for
438 pointers! */
439
440 TYPE_LENGTH (ntype) =
441 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
442 TYPE_CODE (ntype) = refcode;
443
444 *reftype = ntype;
445
446 /* Update the length of all the other variants of this type. */
447 chain = TYPE_CHAIN (ntype);
448 while (chain != ntype)
449 {
450 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
451 chain = TYPE_CHAIN (chain);
452 }
453
454 return ntype;
455 }
456
457 /* Same as above, but caller doesn't care about memory allocation
458 details. */
459
460 struct type *
461 lookup_reference_type (struct type *type, enum type_code refcode)
462 {
463 return make_reference_type (type, (struct type **) 0, refcode);
464 }
465
466 /* Lookup the lvalue reference type for the type TYPE. */
467
468 struct type *
469 lookup_lvalue_reference_type (struct type *type)
470 {
471 return lookup_reference_type (type, TYPE_CODE_REF);
472 }
473
474 /* Lookup the rvalue reference type for the type TYPE. */
475
476 struct type *
477 lookup_rvalue_reference_type (struct type *type)
478 {
479 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
480 }
481
482 /* Lookup a function type that returns type TYPE. TYPEPTR, if
483 nonzero, points to a pointer to memory where the function type
484 should be stored. If *TYPEPTR is zero, update it to point to the
485 function type we return. We allocate new memory if needed. */
486
487 struct type *
488 make_function_type (struct type *type, struct type **typeptr)
489 {
490 struct type *ntype; /* New type */
491
492 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
493 {
494 ntype = alloc_type_copy (type);
495 if (typeptr)
496 *typeptr = ntype;
497 }
498 else /* We have storage, but need to reset it. */
499 {
500 ntype = *typeptr;
501 smash_type (ntype);
502 }
503
504 TYPE_TARGET_TYPE (ntype) = type;
505
506 TYPE_LENGTH (ntype) = 1;
507 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
508
509 INIT_FUNC_SPECIFIC (ntype);
510
511 return ntype;
512 }
513
514 /* Given a type TYPE, return a type of functions that return that type.
515 May need to construct such a type if this is the first use. */
516
517 struct type *
518 lookup_function_type (struct type *type)
519 {
520 return make_function_type (type, (struct type **) 0);
521 }
522
523 /* Given a type TYPE and argument types, return the appropriate
524 function type. If the final type in PARAM_TYPES is NULL, make a
525 varargs function. */
526
527 struct type *
528 lookup_function_type_with_arguments (struct type *type,
529 int nparams,
530 struct type **param_types)
531 {
532 struct type *fn = make_function_type (type, (struct type **) 0);
533 int i;
534
535 if (nparams > 0)
536 {
537 if (param_types[nparams - 1] == NULL)
538 {
539 --nparams;
540 TYPE_VARARGS (fn) = 1;
541 }
542 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
543 == TYPE_CODE_VOID)
544 {
545 --nparams;
546 /* Caller should have ensured this. */
547 gdb_assert (nparams == 0);
548 TYPE_PROTOTYPED (fn) = 1;
549 }
550 else
551 TYPE_PROTOTYPED (fn) = 1;
552 }
553
554 TYPE_NFIELDS (fn) = nparams;
555 TYPE_FIELDS (fn)
556 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
557 for (i = 0; i < nparams; ++i)
558 TYPE_FIELD_TYPE (fn, i) = param_types[i];
559
560 return fn;
561 }
562
563 /* Identify address space identifier by name --
564 return the integer flag defined in gdbtypes.h. */
565
566 int
567 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
568 {
569 int type_flags;
570
571 /* Check for known address space delimiters. */
572 if (!strcmp (space_identifier, "code"))
573 return TYPE_INSTANCE_FLAG_CODE_SPACE;
574 else if (!strcmp (space_identifier, "data"))
575 return TYPE_INSTANCE_FLAG_DATA_SPACE;
576 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
577 && gdbarch_address_class_name_to_type_flags (gdbarch,
578 space_identifier,
579 &type_flags))
580 return type_flags;
581 else
582 error (_("Unknown address space specifier: \"%s\""), space_identifier);
583 }
584
585 /* Identify address space identifier by integer flag as defined in
586 gdbtypes.h -- return the string version of the adress space name. */
587
588 const char *
589 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
590 {
591 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
592 return "code";
593 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
594 return "data";
595 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
596 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
597 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
598 else
599 return NULL;
600 }
601
602 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
603
604 If STORAGE is non-NULL, create the new type instance there.
605 STORAGE must be in the same obstack as TYPE. */
606
607 static struct type *
608 make_qualified_type (struct type *type, int new_flags,
609 struct type *storage)
610 {
611 struct type *ntype;
612
613 ntype = type;
614 do
615 {
616 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
617 return ntype;
618 ntype = TYPE_CHAIN (ntype);
619 }
620 while (ntype != type);
621
622 /* Create a new type instance. */
623 if (storage == NULL)
624 ntype = alloc_type_instance (type);
625 else
626 {
627 /* If STORAGE was provided, it had better be in the same objfile
628 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
629 if one objfile is freed and the other kept, we'd have
630 dangling pointers. */
631 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
632
633 ntype = storage;
634 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
635 TYPE_CHAIN (ntype) = ntype;
636 }
637
638 /* Pointers or references to the original type are not relevant to
639 the new type. */
640 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
641 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
642
643 /* Chain the new qualified type to the old type. */
644 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
645 TYPE_CHAIN (type) = ntype;
646
647 /* Now set the instance flags and return the new type. */
648 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
649
650 /* Set length of new type to that of the original type. */
651 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
652
653 return ntype;
654 }
655
656 /* Make an address-space-delimited variant of a type -- a type that
657 is identical to the one supplied except that it has an address
658 space attribute attached to it (such as "code" or "data").
659
660 The space attributes "code" and "data" are for Harvard
661 architectures. The address space attributes are for architectures
662 which have alternately sized pointers or pointers with alternate
663 representations. */
664
665 struct type *
666 make_type_with_address_space (struct type *type, int space_flag)
667 {
668 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
669 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
670 | TYPE_INSTANCE_FLAG_DATA_SPACE
671 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
672 | space_flag);
673
674 return make_qualified_type (type, new_flags, NULL);
675 }
676
677 /* Make a "c-v" variant of a type -- a type that is identical to the
678 one supplied except that it may have const or volatile attributes
679 CNST is a flag for setting the const attribute
680 VOLTL is a flag for setting the volatile attribute
681 TYPE is the base type whose variant we are creating.
682
683 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
684 storage to hold the new qualified type; *TYPEPTR and TYPE must be
685 in the same objfile. Otherwise, allocate fresh memory for the new
686 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
687 new type we construct. */
688
689 struct type *
690 make_cv_type (int cnst, int voltl,
691 struct type *type,
692 struct type **typeptr)
693 {
694 struct type *ntype; /* New type */
695
696 int new_flags = (TYPE_INSTANCE_FLAGS (type)
697 & ~(TYPE_INSTANCE_FLAG_CONST
698 | TYPE_INSTANCE_FLAG_VOLATILE));
699
700 if (cnst)
701 new_flags |= TYPE_INSTANCE_FLAG_CONST;
702
703 if (voltl)
704 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
705
706 if (typeptr && *typeptr != NULL)
707 {
708 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
709 a C-V variant chain that threads across objfiles: if one
710 objfile gets freed, then the other has a broken C-V chain.
711
712 This code used to try to copy over the main type from TYPE to
713 *TYPEPTR if they were in different objfiles, but that's
714 wrong, too: TYPE may have a field list or member function
715 lists, which refer to types of their own, etc. etc. The
716 whole shebang would need to be copied over recursively; you
717 can't have inter-objfile pointers. The only thing to do is
718 to leave stub types as stub types, and look them up afresh by
719 name each time you encounter them. */
720 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
721 }
722
723 ntype = make_qualified_type (type, new_flags,
724 typeptr ? *typeptr : NULL);
725
726 if (typeptr != NULL)
727 *typeptr = ntype;
728
729 return ntype;
730 }
731
732 /* Make a 'restrict'-qualified version of TYPE. */
733
734 struct type *
735 make_restrict_type (struct type *type)
736 {
737 return make_qualified_type (type,
738 (TYPE_INSTANCE_FLAGS (type)
739 | TYPE_INSTANCE_FLAG_RESTRICT),
740 NULL);
741 }
742
743 /* Make a type without const, volatile, or restrict. */
744
745 struct type *
746 make_unqualified_type (struct type *type)
747 {
748 return make_qualified_type (type,
749 (TYPE_INSTANCE_FLAGS (type)
750 & ~(TYPE_INSTANCE_FLAG_CONST
751 | TYPE_INSTANCE_FLAG_VOLATILE
752 | TYPE_INSTANCE_FLAG_RESTRICT)),
753 NULL);
754 }
755
756 /* Make a '_Atomic'-qualified version of TYPE. */
757
758 struct type *
759 make_atomic_type (struct type *type)
760 {
761 return make_qualified_type (type,
762 (TYPE_INSTANCE_FLAGS (type)
763 | TYPE_INSTANCE_FLAG_ATOMIC),
764 NULL);
765 }
766
767 /* Replace the contents of ntype with the type *type. This changes the
768 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
769 the changes are propogated to all types in the TYPE_CHAIN.
770
771 In order to build recursive types, it's inevitable that we'll need
772 to update types in place --- but this sort of indiscriminate
773 smashing is ugly, and needs to be replaced with something more
774 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
775 clear if more steps are needed. */
776
777 void
778 replace_type (struct type *ntype, struct type *type)
779 {
780 struct type *chain;
781
782 /* These two types had better be in the same objfile. Otherwise,
783 the assignment of one type's main type structure to the other
784 will produce a type with references to objects (names; field
785 lists; etc.) allocated on an objfile other than its own. */
786 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
787
788 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
789
790 /* The type length is not a part of the main type. Update it for
791 each type on the variant chain. */
792 chain = ntype;
793 do
794 {
795 /* Assert that this element of the chain has no address-class bits
796 set in its flags. Such type variants might have type lengths
797 which are supposed to be different from the non-address-class
798 variants. This assertion shouldn't ever be triggered because
799 symbol readers which do construct address-class variants don't
800 call replace_type(). */
801 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
802
803 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
804 chain = TYPE_CHAIN (chain);
805 }
806 while (ntype != chain);
807
808 /* Assert that the two types have equivalent instance qualifiers.
809 This should be true for at least all of our debug readers. */
810 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
811 }
812
813 /* Implement direct support for MEMBER_TYPE in GNU C++.
814 May need to construct such a type if this is the first use.
815 The TYPE is the type of the member. The DOMAIN is the type
816 of the aggregate that the member belongs to. */
817
818 struct type *
819 lookup_memberptr_type (struct type *type, struct type *domain)
820 {
821 struct type *mtype;
822
823 mtype = alloc_type_copy (type);
824 smash_to_memberptr_type (mtype, domain, type);
825 return mtype;
826 }
827
828 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
829
830 struct type *
831 lookup_methodptr_type (struct type *to_type)
832 {
833 struct type *mtype;
834
835 mtype = alloc_type_copy (to_type);
836 smash_to_methodptr_type (mtype, to_type);
837 return mtype;
838 }
839
840 /* Allocate a stub method whose return type is TYPE. This apparently
841 happens for speed of symbol reading, since parsing out the
842 arguments to the method is cpu-intensive, the way we are doing it.
843 So, we will fill in arguments later. This always returns a fresh
844 type. */
845
846 struct type *
847 allocate_stub_method (struct type *type)
848 {
849 struct type *mtype;
850
851 mtype = alloc_type_copy (type);
852 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
853 TYPE_LENGTH (mtype) = 1;
854 TYPE_STUB (mtype) = 1;
855 TYPE_TARGET_TYPE (mtype) = type;
856 /* TYPE_SELF_TYPE (mtype) = unknown yet */
857 return mtype;
858 }
859
860 /* Create a range type with a dynamic range from LOW_BOUND to
861 HIGH_BOUND, inclusive. See create_range_type for further details. */
862
863 struct type *
864 create_range_type (struct type *result_type, struct type *index_type,
865 const struct dynamic_prop *low_bound,
866 const struct dynamic_prop *high_bound)
867 {
868 if (result_type == NULL)
869 result_type = alloc_type_copy (index_type);
870 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
871 TYPE_TARGET_TYPE (result_type) = index_type;
872 if (TYPE_STUB (index_type))
873 TYPE_TARGET_STUB (result_type) = 1;
874 else
875 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
876
877 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
878 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
879 TYPE_RANGE_DATA (result_type)->low = *low_bound;
880 TYPE_RANGE_DATA (result_type)->high = *high_bound;
881
882 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
883 TYPE_UNSIGNED (result_type) = 1;
884
885 /* Ada allows the declaration of range types whose upper bound is
886 less than the lower bound, so checking the lower bound is not
887 enough. Make sure we do not mark a range type whose upper bound
888 is negative as unsigned. */
889 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
890 TYPE_UNSIGNED (result_type) = 0;
891
892 return result_type;
893 }
894
895 /* Create a range type using either a blank type supplied in
896 RESULT_TYPE, or creating a new type, inheriting the objfile from
897 INDEX_TYPE.
898
899 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
900 to HIGH_BOUND, inclusive.
901
902 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
903 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
904
905 struct type *
906 create_static_range_type (struct type *result_type, struct type *index_type,
907 LONGEST low_bound, LONGEST high_bound)
908 {
909 struct dynamic_prop low, high;
910
911 low.kind = PROP_CONST;
912 low.data.const_val = low_bound;
913
914 high.kind = PROP_CONST;
915 high.data.const_val = high_bound;
916
917 result_type = create_range_type (result_type, index_type, &low, &high);
918
919 return result_type;
920 }
921
922 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
923 are static, otherwise returns 0. */
924
925 static int
926 has_static_range (const struct range_bounds *bounds)
927 {
928 return (bounds->low.kind == PROP_CONST
929 && bounds->high.kind == PROP_CONST);
930 }
931
932
933 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
934 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
935 bounds will fit in LONGEST), or -1 otherwise. */
936
937 int
938 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
939 {
940 type = check_typedef (type);
941 switch (TYPE_CODE (type))
942 {
943 case TYPE_CODE_RANGE:
944 *lowp = TYPE_LOW_BOUND (type);
945 *highp = TYPE_HIGH_BOUND (type);
946 return 1;
947 case TYPE_CODE_ENUM:
948 if (TYPE_NFIELDS (type) > 0)
949 {
950 /* The enums may not be sorted by value, so search all
951 entries. */
952 int i;
953
954 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
955 for (i = 0; i < TYPE_NFIELDS (type); i++)
956 {
957 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
958 *lowp = TYPE_FIELD_ENUMVAL (type, i);
959 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
960 *highp = TYPE_FIELD_ENUMVAL (type, i);
961 }
962
963 /* Set unsigned indicator if warranted. */
964 if (*lowp >= 0)
965 {
966 TYPE_UNSIGNED (type) = 1;
967 }
968 }
969 else
970 {
971 *lowp = 0;
972 *highp = -1;
973 }
974 return 0;
975 case TYPE_CODE_BOOL:
976 *lowp = 0;
977 *highp = 1;
978 return 0;
979 case TYPE_CODE_INT:
980 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
981 return -1;
982 if (!TYPE_UNSIGNED (type))
983 {
984 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
985 *highp = -*lowp - 1;
986 return 0;
987 }
988 /* ... fall through for unsigned ints ... */
989 case TYPE_CODE_CHAR:
990 *lowp = 0;
991 /* This round-about calculation is to avoid shifting by
992 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
993 if TYPE_LENGTH (type) == sizeof (LONGEST). */
994 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
995 *highp = (*highp - 1) | *highp;
996 return 0;
997 default:
998 return -1;
999 }
1000 }
1001
1002 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1003 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1004 Save the high bound into HIGH_BOUND if not NULL.
1005
1006 Return 1 if the operation was successful. Return zero otherwise,
1007 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1008
1009 We now simply use get_discrete_bounds call to get the values
1010 of the low and high bounds.
1011 get_discrete_bounds can return three values:
1012 1, meaning that index is a range,
1013 0, meaning that index is a discrete type,
1014 or -1 for failure. */
1015
1016 int
1017 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1018 {
1019 struct type *index = TYPE_INDEX_TYPE (type);
1020 LONGEST low = 0;
1021 LONGEST high = 0;
1022 int res;
1023
1024 if (index == NULL)
1025 return 0;
1026
1027 res = get_discrete_bounds (index, &low, &high);
1028 if (res == -1)
1029 return 0;
1030
1031 /* Check if the array bounds are undefined. */
1032 if (res == 1
1033 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1034 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1035 return 0;
1036
1037 if (low_bound)
1038 *low_bound = low;
1039
1040 if (high_bound)
1041 *high_bound = high;
1042
1043 return 1;
1044 }
1045
1046 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1047 representation of a value of this type, save the corresponding
1048 position number in POS.
1049
1050 Its differs from VAL only in the case of enumeration types. In
1051 this case, the position number of the value of the first listed
1052 enumeration literal is zero; the position number of the value of
1053 each subsequent enumeration literal is one more than that of its
1054 predecessor in the list.
1055
1056 Return 1 if the operation was successful. Return zero otherwise,
1057 in which case the value of POS is unmodified.
1058 */
1059
1060 int
1061 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1062 {
1063 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1064 {
1065 int i;
1066
1067 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1068 {
1069 if (val == TYPE_FIELD_ENUMVAL (type, i))
1070 {
1071 *pos = i;
1072 return 1;
1073 }
1074 }
1075 /* Invalid enumeration value. */
1076 return 0;
1077 }
1078 else
1079 {
1080 *pos = val;
1081 return 1;
1082 }
1083 }
1084
1085 /* Create an array type using either a blank type supplied in
1086 RESULT_TYPE, or creating a new type, inheriting the objfile from
1087 RANGE_TYPE.
1088
1089 Elements will be of type ELEMENT_TYPE, the indices will be of type
1090 RANGE_TYPE.
1091
1092 If BIT_STRIDE is not zero, build a packed array type whose element
1093 size is BIT_STRIDE. Otherwise, ignore this parameter.
1094
1095 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1096 sure it is TYPE_CODE_UNDEF before we bash it into an array
1097 type? */
1098
1099 struct type *
1100 create_array_type_with_stride (struct type *result_type,
1101 struct type *element_type,
1102 struct type *range_type,
1103 unsigned int bit_stride)
1104 {
1105 if (result_type == NULL)
1106 result_type = alloc_type_copy (range_type);
1107
1108 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1109 TYPE_TARGET_TYPE (result_type) = element_type;
1110 if (has_static_range (TYPE_RANGE_DATA (range_type))
1111 && (!type_not_associated (result_type)
1112 && !type_not_allocated (result_type)))
1113 {
1114 LONGEST low_bound, high_bound;
1115
1116 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1117 low_bound = high_bound = 0;
1118 element_type = check_typedef (element_type);
1119 /* Be careful when setting the array length. Ada arrays can be
1120 empty arrays with the high_bound being smaller than the low_bound.
1121 In such cases, the array length should be zero. */
1122 if (high_bound < low_bound)
1123 TYPE_LENGTH (result_type) = 0;
1124 else if (bit_stride > 0)
1125 TYPE_LENGTH (result_type) =
1126 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1127 else
1128 TYPE_LENGTH (result_type) =
1129 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1130 }
1131 else
1132 {
1133 /* This type is dynamic and its length needs to be computed
1134 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1135 undefined by setting it to zero. Although we are not expected
1136 to trust TYPE_LENGTH in this case, setting the size to zero
1137 allows us to avoid allocating objects of random sizes in case
1138 we accidently do. */
1139 TYPE_LENGTH (result_type) = 0;
1140 }
1141
1142 TYPE_NFIELDS (result_type) = 1;
1143 TYPE_FIELDS (result_type) =
1144 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1145 TYPE_INDEX_TYPE (result_type) = range_type;
1146 if (bit_stride > 0)
1147 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1148
1149 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1150 if (TYPE_LENGTH (result_type) == 0)
1151 TYPE_TARGET_STUB (result_type) = 1;
1152
1153 return result_type;
1154 }
1155
1156 /* Same as create_array_type_with_stride but with no bit_stride
1157 (BIT_STRIDE = 0), thus building an unpacked array. */
1158
1159 struct type *
1160 create_array_type (struct type *result_type,
1161 struct type *element_type,
1162 struct type *range_type)
1163 {
1164 return create_array_type_with_stride (result_type, element_type,
1165 range_type, 0);
1166 }
1167
1168 struct type *
1169 lookup_array_range_type (struct type *element_type,
1170 LONGEST low_bound, LONGEST high_bound)
1171 {
1172 struct gdbarch *gdbarch = get_type_arch (element_type);
1173 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1174 struct type *range_type
1175 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1176
1177 return create_array_type (NULL, element_type, range_type);
1178 }
1179
1180 /* Create a string type using either a blank type supplied in
1181 RESULT_TYPE, or creating a new type. String types are similar
1182 enough to array of char types that we can use create_array_type to
1183 build the basic type and then bash it into a string type.
1184
1185 For fixed length strings, the range type contains 0 as the lower
1186 bound and the length of the string minus one as the upper bound.
1187
1188 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1189 sure it is TYPE_CODE_UNDEF before we bash it into a string
1190 type? */
1191
1192 struct type *
1193 create_string_type (struct type *result_type,
1194 struct type *string_char_type,
1195 struct type *range_type)
1196 {
1197 result_type = create_array_type (result_type,
1198 string_char_type,
1199 range_type);
1200 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1201 return result_type;
1202 }
1203
1204 struct type *
1205 lookup_string_range_type (struct type *string_char_type,
1206 LONGEST low_bound, LONGEST high_bound)
1207 {
1208 struct type *result_type;
1209
1210 result_type = lookup_array_range_type (string_char_type,
1211 low_bound, high_bound);
1212 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1213 return result_type;
1214 }
1215
1216 struct type *
1217 create_set_type (struct type *result_type, struct type *domain_type)
1218 {
1219 if (result_type == NULL)
1220 result_type = alloc_type_copy (domain_type);
1221
1222 TYPE_CODE (result_type) = TYPE_CODE_SET;
1223 TYPE_NFIELDS (result_type) = 1;
1224 TYPE_FIELDS (result_type)
1225 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1226
1227 if (!TYPE_STUB (domain_type))
1228 {
1229 LONGEST low_bound, high_bound, bit_length;
1230
1231 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1232 low_bound = high_bound = 0;
1233 bit_length = high_bound - low_bound + 1;
1234 TYPE_LENGTH (result_type)
1235 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1236 if (low_bound >= 0)
1237 TYPE_UNSIGNED (result_type) = 1;
1238 }
1239 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1240
1241 return result_type;
1242 }
1243
1244 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1245 and any array types nested inside it. */
1246
1247 void
1248 make_vector_type (struct type *array_type)
1249 {
1250 struct type *inner_array, *elt_type;
1251 int flags;
1252
1253 /* Find the innermost array type, in case the array is
1254 multi-dimensional. */
1255 inner_array = array_type;
1256 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1257 inner_array = TYPE_TARGET_TYPE (inner_array);
1258
1259 elt_type = TYPE_TARGET_TYPE (inner_array);
1260 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1261 {
1262 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1263 elt_type = make_qualified_type (elt_type, flags, NULL);
1264 TYPE_TARGET_TYPE (inner_array) = elt_type;
1265 }
1266
1267 TYPE_VECTOR (array_type) = 1;
1268 }
1269
1270 struct type *
1271 init_vector_type (struct type *elt_type, int n)
1272 {
1273 struct type *array_type;
1274
1275 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1276 make_vector_type (array_type);
1277 return array_type;
1278 }
1279
1280 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1281 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1282 confusing. "self" is a common enough replacement for "this".
1283 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1284 TYPE_CODE_METHOD. */
1285
1286 struct type *
1287 internal_type_self_type (struct type *type)
1288 {
1289 switch (TYPE_CODE (type))
1290 {
1291 case TYPE_CODE_METHODPTR:
1292 case TYPE_CODE_MEMBERPTR:
1293 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1294 return NULL;
1295 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1296 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1297 case TYPE_CODE_METHOD:
1298 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1299 return NULL;
1300 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1301 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1302 default:
1303 gdb_assert_not_reached ("bad type");
1304 }
1305 }
1306
1307 /* Set the type of the class that TYPE belongs to.
1308 In c++ this is the class of "this".
1309 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1310 TYPE_CODE_METHOD. */
1311
1312 void
1313 set_type_self_type (struct type *type, struct type *self_type)
1314 {
1315 switch (TYPE_CODE (type))
1316 {
1317 case TYPE_CODE_METHODPTR:
1318 case TYPE_CODE_MEMBERPTR:
1319 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1320 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1321 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1322 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1323 break;
1324 case TYPE_CODE_METHOD:
1325 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1326 INIT_FUNC_SPECIFIC (type);
1327 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1328 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1329 break;
1330 default:
1331 gdb_assert_not_reached ("bad type");
1332 }
1333 }
1334
1335 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1336 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1337 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1338 TYPE doesn't include the offset (that's the value of the MEMBER
1339 itself), but does include the structure type into which it points
1340 (for some reason).
1341
1342 When "smashing" the type, we preserve the objfile that the old type
1343 pointed to, since we aren't changing where the type is actually
1344 allocated. */
1345
1346 void
1347 smash_to_memberptr_type (struct type *type, struct type *self_type,
1348 struct type *to_type)
1349 {
1350 smash_type (type);
1351 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1352 TYPE_TARGET_TYPE (type) = to_type;
1353 set_type_self_type (type, self_type);
1354 /* Assume that a data member pointer is the same size as a normal
1355 pointer. */
1356 TYPE_LENGTH (type)
1357 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1358 }
1359
1360 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1361
1362 When "smashing" the type, we preserve the objfile that the old type
1363 pointed to, since we aren't changing where the type is actually
1364 allocated. */
1365
1366 void
1367 smash_to_methodptr_type (struct type *type, struct type *to_type)
1368 {
1369 smash_type (type);
1370 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1371 TYPE_TARGET_TYPE (type) = to_type;
1372 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1373 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1374 }
1375
1376 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1377 METHOD just means `function that gets an extra "this" argument'.
1378
1379 When "smashing" the type, we preserve the objfile that the old type
1380 pointed to, since we aren't changing where the type is actually
1381 allocated. */
1382
1383 void
1384 smash_to_method_type (struct type *type, struct type *self_type,
1385 struct type *to_type, struct field *args,
1386 int nargs, int varargs)
1387 {
1388 smash_type (type);
1389 TYPE_CODE (type) = TYPE_CODE_METHOD;
1390 TYPE_TARGET_TYPE (type) = to_type;
1391 set_type_self_type (type, self_type);
1392 TYPE_FIELDS (type) = args;
1393 TYPE_NFIELDS (type) = nargs;
1394 if (varargs)
1395 TYPE_VARARGS (type) = 1;
1396 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1397 }
1398
1399 /* Return a typename for a struct/union/enum type without "struct ",
1400 "union ", or "enum ". If the type has a NULL name, return NULL. */
1401
1402 const char *
1403 type_name_no_tag (const struct type *type)
1404 {
1405 if (TYPE_TAG_NAME (type) != NULL)
1406 return TYPE_TAG_NAME (type);
1407
1408 /* Is there code which expects this to return the name if there is
1409 no tag name? My guess is that this is mainly used for C++ in
1410 cases where the two will always be the same. */
1411 return TYPE_NAME (type);
1412 }
1413
1414 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1415 Since GCC PR debug/47510 DWARF provides associated information to detect the
1416 anonymous class linkage name from its typedef.
1417
1418 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1419 apply it itself. */
1420
1421 const char *
1422 type_name_no_tag_or_error (struct type *type)
1423 {
1424 struct type *saved_type = type;
1425 const char *name;
1426 struct objfile *objfile;
1427
1428 type = check_typedef (type);
1429
1430 name = type_name_no_tag (type);
1431 if (name != NULL)
1432 return name;
1433
1434 name = type_name_no_tag (saved_type);
1435 objfile = TYPE_OBJFILE (saved_type);
1436 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1437 name ? name : "<anonymous>",
1438 objfile ? objfile_name (objfile) : "<arch>");
1439 }
1440
1441 /* Lookup a typedef or primitive type named NAME, visible in lexical
1442 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1443 suitably defined. */
1444
1445 struct type *
1446 lookup_typename (const struct language_defn *language,
1447 struct gdbarch *gdbarch, const char *name,
1448 const struct block *block, int noerr)
1449 {
1450 struct symbol *sym;
1451
1452 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1453 language->la_language, NULL).symbol;
1454 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1455 return SYMBOL_TYPE (sym);
1456
1457 if (noerr)
1458 return NULL;
1459 error (_("No type named %s."), name);
1460 }
1461
1462 struct type *
1463 lookup_unsigned_typename (const struct language_defn *language,
1464 struct gdbarch *gdbarch, const char *name)
1465 {
1466 char *uns = (char *) alloca (strlen (name) + 10);
1467
1468 strcpy (uns, "unsigned ");
1469 strcpy (uns + 9, name);
1470 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1471 }
1472
1473 struct type *
1474 lookup_signed_typename (const struct language_defn *language,
1475 struct gdbarch *gdbarch, const char *name)
1476 {
1477 struct type *t;
1478 char *uns = (char *) alloca (strlen (name) + 8);
1479
1480 strcpy (uns, "signed ");
1481 strcpy (uns + 7, name);
1482 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1483 /* If we don't find "signed FOO" just try again with plain "FOO". */
1484 if (t != NULL)
1485 return t;
1486 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1487 }
1488
1489 /* Lookup a structure type named "struct NAME",
1490 visible in lexical block BLOCK. */
1491
1492 struct type *
1493 lookup_struct (const char *name, const struct block *block)
1494 {
1495 struct symbol *sym;
1496
1497 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1498
1499 if (sym == NULL)
1500 {
1501 error (_("No struct type named %s."), name);
1502 }
1503 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1504 {
1505 error (_("This context has class, union or enum %s, not a struct."),
1506 name);
1507 }
1508 return (SYMBOL_TYPE (sym));
1509 }
1510
1511 /* Lookup a union type named "union NAME",
1512 visible in lexical block BLOCK. */
1513
1514 struct type *
1515 lookup_union (const char *name, const struct block *block)
1516 {
1517 struct symbol *sym;
1518 struct type *t;
1519
1520 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1521
1522 if (sym == NULL)
1523 error (_("No union type named %s."), name);
1524
1525 t = SYMBOL_TYPE (sym);
1526
1527 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1528 return t;
1529
1530 /* If we get here, it's not a union. */
1531 error (_("This context has class, struct or enum %s, not a union."),
1532 name);
1533 }
1534
1535 /* Lookup an enum type named "enum NAME",
1536 visible in lexical block BLOCK. */
1537
1538 struct type *
1539 lookup_enum (const char *name, const struct block *block)
1540 {
1541 struct symbol *sym;
1542
1543 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1544 if (sym == NULL)
1545 {
1546 error (_("No enum type named %s."), name);
1547 }
1548 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1549 {
1550 error (_("This context has class, struct or union %s, not an enum."),
1551 name);
1552 }
1553 return (SYMBOL_TYPE (sym));
1554 }
1555
1556 /* Lookup a template type named "template NAME<TYPE>",
1557 visible in lexical block BLOCK. */
1558
1559 struct type *
1560 lookup_template_type (char *name, struct type *type,
1561 const struct block *block)
1562 {
1563 struct symbol *sym;
1564 char *nam = (char *)
1565 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1566
1567 strcpy (nam, name);
1568 strcat (nam, "<");
1569 strcat (nam, TYPE_NAME (type));
1570 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1571
1572 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1573
1574 if (sym == NULL)
1575 {
1576 error (_("No template type named %s."), name);
1577 }
1578 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1579 {
1580 error (_("This context has class, union or enum %s, not a struct."),
1581 name);
1582 }
1583 return (SYMBOL_TYPE (sym));
1584 }
1585
1586 /* Given a type TYPE, lookup the type of the component of type named
1587 NAME.
1588
1589 TYPE can be either a struct or union, or a pointer or reference to
1590 a struct or union. If it is a pointer or reference, its target
1591 type is automatically used. Thus '.' and '->' are interchangable,
1592 as specified for the definitions of the expression element types
1593 STRUCTOP_STRUCT and STRUCTOP_PTR.
1594
1595 If NOERR is nonzero, return zero if NAME is not suitably defined.
1596 If NAME is the name of a baseclass type, return that type. */
1597
1598 struct type *
1599 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1600 {
1601 int i;
1602
1603 for (;;)
1604 {
1605 type = check_typedef (type);
1606 if (TYPE_CODE (type) != TYPE_CODE_PTR
1607 && TYPE_CODE (type) != TYPE_CODE_REF)
1608 break;
1609 type = TYPE_TARGET_TYPE (type);
1610 }
1611
1612 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1613 && TYPE_CODE (type) != TYPE_CODE_UNION)
1614 {
1615 std::string type_name = type_to_string (type);
1616 error (_("Type %s is not a structure or union type."),
1617 type_name.c_str ());
1618 }
1619
1620 #if 0
1621 /* FIXME: This change put in by Michael seems incorrect for the case
1622 where the structure tag name is the same as the member name.
1623 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1624 foo; } bell;" Disabled by fnf. */
1625 {
1626 char *type_name;
1627
1628 type_name = type_name_no_tag (type);
1629 if (type_name != NULL && strcmp (type_name, name) == 0)
1630 return type;
1631 }
1632 #endif
1633
1634 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1635 {
1636 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1637
1638 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1639 {
1640 return TYPE_FIELD_TYPE (type, i);
1641 }
1642 else if (!t_field_name || *t_field_name == '\0')
1643 {
1644 struct type *subtype
1645 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1646
1647 if (subtype != NULL)
1648 return subtype;
1649 }
1650 }
1651
1652 /* OK, it's not in this class. Recursively check the baseclasses. */
1653 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1654 {
1655 struct type *t;
1656
1657 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1658 if (t != NULL)
1659 {
1660 return t;
1661 }
1662 }
1663
1664 if (noerr)
1665 {
1666 return NULL;
1667 }
1668
1669 std::string type_name = type_to_string (type);
1670 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1671 }
1672
1673 /* Store in *MAX the largest number representable by unsigned integer type
1674 TYPE. */
1675
1676 void
1677 get_unsigned_type_max (struct type *type, ULONGEST *max)
1678 {
1679 unsigned int n;
1680
1681 type = check_typedef (type);
1682 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1683 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1684
1685 /* Written this way to avoid overflow. */
1686 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1687 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1688 }
1689
1690 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1691 signed integer type TYPE. */
1692
1693 void
1694 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1695 {
1696 unsigned int n;
1697
1698 type = check_typedef (type);
1699 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1700 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1701
1702 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1703 *min = -((ULONGEST) 1 << (n - 1));
1704 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1705 }
1706
1707 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1708 cplus_stuff.vptr_fieldno.
1709
1710 cplus_stuff is initialized to cplus_struct_default which does not
1711 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1712 designated initializers). We cope with that here. */
1713
1714 int
1715 internal_type_vptr_fieldno (struct type *type)
1716 {
1717 type = check_typedef (type);
1718 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1719 || TYPE_CODE (type) == TYPE_CODE_UNION);
1720 if (!HAVE_CPLUS_STRUCT (type))
1721 return -1;
1722 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1723 }
1724
1725 /* Set the value of cplus_stuff.vptr_fieldno. */
1726
1727 void
1728 set_type_vptr_fieldno (struct type *type, int fieldno)
1729 {
1730 type = check_typedef (type);
1731 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1732 || TYPE_CODE (type) == TYPE_CODE_UNION);
1733 if (!HAVE_CPLUS_STRUCT (type))
1734 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1735 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1736 }
1737
1738 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1739 cplus_stuff.vptr_basetype. */
1740
1741 struct type *
1742 internal_type_vptr_basetype (struct type *type)
1743 {
1744 type = check_typedef (type);
1745 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1746 || TYPE_CODE (type) == TYPE_CODE_UNION);
1747 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1748 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1749 }
1750
1751 /* Set the value of cplus_stuff.vptr_basetype. */
1752
1753 void
1754 set_type_vptr_basetype (struct type *type, struct type *basetype)
1755 {
1756 type = check_typedef (type);
1757 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1758 || TYPE_CODE (type) == TYPE_CODE_UNION);
1759 if (!HAVE_CPLUS_STRUCT (type))
1760 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1761 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1762 }
1763
1764 /* Lookup the vptr basetype/fieldno values for TYPE.
1765 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1766 vptr_fieldno. Also, if found and basetype is from the same objfile,
1767 cache the results.
1768 If not found, return -1 and ignore BASETYPEP.
1769 Callers should be aware that in some cases (for example,
1770 the type or one of its baseclasses is a stub type and we are
1771 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1772 this function will not be able to find the
1773 virtual function table pointer, and vptr_fieldno will remain -1 and
1774 vptr_basetype will remain NULL or incomplete. */
1775
1776 int
1777 get_vptr_fieldno (struct type *type, struct type **basetypep)
1778 {
1779 type = check_typedef (type);
1780
1781 if (TYPE_VPTR_FIELDNO (type) < 0)
1782 {
1783 int i;
1784
1785 /* We must start at zero in case the first (and only) baseclass
1786 is virtual (and hence we cannot share the table pointer). */
1787 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1788 {
1789 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1790 int fieldno;
1791 struct type *basetype;
1792
1793 fieldno = get_vptr_fieldno (baseclass, &basetype);
1794 if (fieldno >= 0)
1795 {
1796 /* If the type comes from a different objfile we can't cache
1797 it, it may have a different lifetime. PR 2384 */
1798 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1799 {
1800 set_type_vptr_fieldno (type, fieldno);
1801 set_type_vptr_basetype (type, basetype);
1802 }
1803 if (basetypep)
1804 *basetypep = basetype;
1805 return fieldno;
1806 }
1807 }
1808
1809 /* Not found. */
1810 return -1;
1811 }
1812 else
1813 {
1814 if (basetypep)
1815 *basetypep = TYPE_VPTR_BASETYPE (type);
1816 return TYPE_VPTR_FIELDNO (type);
1817 }
1818 }
1819
1820 static void
1821 stub_noname_complaint (void)
1822 {
1823 complaint (&symfile_complaints, _("stub type has NULL name"));
1824 }
1825
1826 /* Worker for is_dynamic_type. */
1827
1828 static int
1829 is_dynamic_type_internal (struct type *type, int top_level)
1830 {
1831 type = check_typedef (type);
1832
1833 /* We only want to recognize references at the outermost level. */
1834 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1835 type = check_typedef (TYPE_TARGET_TYPE (type));
1836
1837 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1838 dynamic, even if the type itself is statically defined.
1839 From a user's point of view, this may appear counter-intuitive;
1840 but it makes sense in this context, because the point is to determine
1841 whether any part of the type needs to be resolved before it can
1842 be exploited. */
1843 if (TYPE_DATA_LOCATION (type) != NULL
1844 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1845 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1846 return 1;
1847
1848 if (TYPE_ASSOCIATED_PROP (type))
1849 return 1;
1850
1851 if (TYPE_ALLOCATED_PROP (type))
1852 return 1;
1853
1854 switch (TYPE_CODE (type))
1855 {
1856 case TYPE_CODE_RANGE:
1857 {
1858 /* A range type is obviously dynamic if it has at least one
1859 dynamic bound. But also consider the range type to be
1860 dynamic when its subtype is dynamic, even if the bounds
1861 of the range type are static. It allows us to assume that
1862 the subtype of a static range type is also static. */
1863 return (!has_static_range (TYPE_RANGE_DATA (type))
1864 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1865 }
1866
1867 case TYPE_CODE_ARRAY:
1868 {
1869 gdb_assert (TYPE_NFIELDS (type) == 1);
1870
1871 /* The array is dynamic if either the bounds are dynamic,
1872 or the elements it contains have a dynamic contents. */
1873 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1874 return 1;
1875 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1876 }
1877
1878 case TYPE_CODE_STRUCT:
1879 case TYPE_CODE_UNION:
1880 {
1881 int i;
1882
1883 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1884 if (!field_is_static (&TYPE_FIELD (type, i))
1885 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1886 return 1;
1887 }
1888 break;
1889 }
1890
1891 return 0;
1892 }
1893
1894 /* See gdbtypes.h. */
1895
1896 int
1897 is_dynamic_type (struct type *type)
1898 {
1899 return is_dynamic_type_internal (type, 1);
1900 }
1901
1902 static struct type *resolve_dynamic_type_internal
1903 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1904
1905 /* Given a dynamic range type (dyn_range_type) and a stack of
1906 struct property_addr_info elements, return a static version
1907 of that type. */
1908
1909 static struct type *
1910 resolve_dynamic_range (struct type *dyn_range_type,
1911 struct property_addr_info *addr_stack)
1912 {
1913 CORE_ADDR value;
1914 struct type *static_range_type, *static_target_type;
1915 const struct dynamic_prop *prop;
1916 struct dynamic_prop low_bound, high_bound;
1917
1918 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1919
1920 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1921 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1922 {
1923 low_bound.kind = PROP_CONST;
1924 low_bound.data.const_val = value;
1925 }
1926 else
1927 {
1928 low_bound.kind = PROP_UNDEFINED;
1929 low_bound.data.const_val = 0;
1930 }
1931
1932 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1933 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1934 {
1935 high_bound.kind = PROP_CONST;
1936 high_bound.data.const_val = value;
1937
1938 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1939 high_bound.data.const_val
1940 = low_bound.data.const_val + high_bound.data.const_val - 1;
1941 }
1942 else
1943 {
1944 high_bound.kind = PROP_UNDEFINED;
1945 high_bound.data.const_val = 0;
1946 }
1947
1948 static_target_type
1949 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1950 addr_stack, 0);
1951 static_range_type = create_range_type (copy_type (dyn_range_type),
1952 static_target_type,
1953 &low_bound, &high_bound);
1954 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1955 return static_range_type;
1956 }
1957
1958 /* Resolves dynamic bound values of an array type TYPE to static ones.
1959 ADDR_STACK is a stack of struct property_addr_info to be used
1960 if needed during the dynamic resolution. */
1961
1962 static struct type *
1963 resolve_dynamic_array (struct type *type,
1964 struct property_addr_info *addr_stack)
1965 {
1966 CORE_ADDR value;
1967 struct type *elt_type;
1968 struct type *range_type;
1969 struct type *ary_dim;
1970 struct dynamic_prop *prop;
1971
1972 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1973
1974 type = copy_type (type);
1975
1976 elt_type = type;
1977 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1978 range_type = resolve_dynamic_range (range_type, addr_stack);
1979
1980 /* Resolve allocated/associated here before creating a new array type, which
1981 will update the length of the array accordingly. */
1982 prop = TYPE_ALLOCATED_PROP (type);
1983 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1984 {
1985 TYPE_DYN_PROP_ADDR (prop) = value;
1986 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1987 }
1988 prop = TYPE_ASSOCIATED_PROP (type);
1989 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1990 {
1991 TYPE_DYN_PROP_ADDR (prop) = value;
1992 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1993 }
1994
1995 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1996
1997 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1998 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
1999 else
2000 elt_type = TYPE_TARGET_TYPE (type);
2001
2002 return create_array_type_with_stride (type, elt_type, range_type,
2003 TYPE_FIELD_BITSIZE (type, 0));
2004 }
2005
2006 /* Resolve dynamic bounds of members of the union TYPE to static
2007 bounds. ADDR_STACK is a stack of struct property_addr_info
2008 to be used if needed during the dynamic resolution. */
2009
2010 static struct type *
2011 resolve_dynamic_union (struct type *type,
2012 struct property_addr_info *addr_stack)
2013 {
2014 struct type *resolved_type;
2015 int i;
2016 unsigned int max_len = 0;
2017
2018 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2019
2020 resolved_type = copy_type (type);
2021 TYPE_FIELDS (resolved_type)
2022 = (struct field *) TYPE_ALLOC (resolved_type,
2023 TYPE_NFIELDS (resolved_type)
2024 * sizeof (struct field));
2025 memcpy (TYPE_FIELDS (resolved_type),
2026 TYPE_FIELDS (type),
2027 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2028 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2029 {
2030 struct type *t;
2031
2032 if (field_is_static (&TYPE_FIELD (type, i)))
2033 continue;
2034
2035 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2036 addr_stack, 0);
2037 TYPE_FIELD_TYPE (resolved_type, i) = t;
2038 if (TYPE_LENGTH (t) > max_len)
2039 max_len = TYPE_LENGTH (t);
2040 }
2041
2042 TYPE_LENGTH (resolved_type) = max_len;
2043 return resolved_type;
2044 }
2045
2046 /* Resolve dynamic bounds of members of the struct TYPE to static
2047 bounds. ADDR_STACK is a stack of struct property_addr_info to
2048 be used if needed during the dynamic resolution. */
2049
2050 static struct type *
2051 resolve_dynamic_struct (struct type *type,
2052 struct property_addr_info *addr_stack)
2053 {
2054 struct type *resolved_type;
2055 int i;
2056 unsigned resolved_type_bit_length = 0;
2057
2058 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2059 gdb_assert (TYPE_NFIELDS (type) > 0);
2060
2061 resolved_type = copy_type (type);
2062 TYPE_FIELDS (resolved_type)
2063 = (struct field *) TYPE_ALLOC (resolved_type,
2064 TYPE_NFIELDS (resolved_type)
2065 * sizeof (struct field));
2066 memcpy (TYPE_FIELDS (resolved_type),
2067 TYPE_FIELDS (type),
2068 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2069 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2070 {
2071 unsigned new_bit_length;
2072 struct property_addr_info pinfo;
2073
2074 if (field_is_static (&TYPE_FIELD (type, i)))
2075 continue;
2076
2077 /* As we know this field is not a static field, the field's
2078 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2079 this is the case, but only trigger a simple error rather
2080 than an internal error if that fails. While failing
2081 that verification indicates a bug in our code, the error
2082 is not severe enough to suggest to the user he stops
2083 his debugging session because of it. */
2084 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2085 error (_("Cannot determine struct field location"
2086 " (invalid location kind)"));
2087
2088 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2089 pinfo.valaddr = addr_stack->valaddr;
2090 pinfo.addr
2091 = (addr_stack->addr
2092 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2093 pinfo.next = addr_stack;
2094
2095 TYPE_FIELD_TYPE (resolved_type, i)
2096 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2097 &pinfo, 0);
2098 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2099 == FIELD_LOC_KIND_BITPOS);
2100
2101 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2102 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2103 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2104 else
2105 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2106 * TARGET_CHAR_BIT);
2107
2108 /* Normally, we would use the position and size of the last field
2109 to determine the size of the enclosing structure. But GCC seems
2110 to be encoding the position of some fields incorrectly when
2111 the struct contains a dynamic field that is not placed last.
2112 So we compute the struct size based on the field that has
2113 the highest position + size - probably the best we can do. */
2114 if (new_bit_length > resolved_type_bit_length)
2115 resolved_type_bit_length = new_bit_length;
2116 }
2117
2118 /* The length of a type won't change for fortran, but it does for C and Ada.
2119 For fortran the size of dynamic fields might change over time but not the
2120 type length of the structure. If we adapt it, we run into problems
2121 when calculating the element offset for arrays of structs. */
2122 if (current_language->la_language != language_fortran)
2123 TYPE_LENGTH (resolved_type)
2124 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2125
2126 /* The Ada language uses this field as a cache for static fixed types: reset
2127 it as RESOLVED_TYPE must have its own static fixed type. */
2128 TYPE_TARGET_TYPE (resolved_type) = NULL;
2129
2130 return resolved_type;
2131 }
2132
2133 /* Worker for resolved_dynamic_type. */
2134
2135 static struct type *
2136 resolve_dynamic_type_internal (struct type *type,
2137 struct property_addr_info *addr_stack,
2138 int top_level)
2139 {
2140 struct type *real_type = check_typedef (type);
2141 struct type *resolved_type = type;
2142 struct dynamic_prop *prop;
2143 CORE_ADDR value;
2144
2145 if (!is_dynamic_type_internal (real_type, top_level))
2146 return type;
2147
2148 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2149 {
2150 resolved_type = copy_type (type);
2151 TYPE_TARGET_TYPE (resolved_type)
2152 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2153 top_level);
2154 }
2155 else
2156 {
2157 /* Before trying to resolve TYPE, make sure it is not a stub. */
2158 type = real_type;
2159
2160 switch (TYPE_CODE (type))
2161 {
2162 case TYPE_CODE_REF:
2163 {
2164 struct property_addr_info pinfo;
2165
2166 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2167 pinfo.valaddr = NULL;
2168 if (addr_stack->valaddr != NULL)
2169 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2170 else
2171 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2172 pinfo.next = addr_stack;
2173
2174 resolved_type = copy_type (type);
2175 TYPE_TARGET_TYPE (resolved_type)
2176 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2177 &pinfo, top_level);
2178 break;
2179 }
2180
2181 case TYPE_CODE_ARRAY:
2182 resolved_type = resolve_dynamic_array (type, addr_stack);
2183 break;
2184
2185 case TYPE_CODE_RANGE:
2186 resolved_type = resolve_dynamic_range (type, addr_stack);
2187 break;
2188
2189 case TYPE_CODE_UNION:
2190 resolved_type = resolve_dynamic_union (type, addr_stack);
2191 break;
2192
2193 case TYPE_CODE_STRUCT:
2194 resolved_type = resolve_dynamic_struct (type, addr_stack);
2195 break;
2196 }
2197 }
2198
2199 /* Resolve data_location attribute. */
2200 prop = TYPE_DATA_LOCATION (resolved_type);
2201 if (prop != NULL
2202 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2203 {
2204 TYPE_DYN_PROP_ADDR (prop) = value;
2205 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2206 }
2207
2208 return resolved_type;
2209 }
2210
2211 /* See gdbtypes.h */
2212
2213 struct type *
2214 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2215 CORE_ADDR addr)
2216 {
2217 struct property_addr_info pinfo
2218 = {check_typedef (type), valaddr, addr, NULL};
2219
2220 return resolve_dynamic_type_internal (type, &pinfo, 1);
2221 }
2222
2223 /* See gdbtypes.h */
2224
2225 struct dynamic_prop *
2226 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2227 {
2228 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2229
2230 while (node != NULL)
2231 {
2232 if (node->prop_kind == prop_kind)
2233 return &node->prop;
2234 node = node->next;
2235 }
2236 return NULL;
2237 }
2238
2239 /* See gdbtypes.h */
2240
2241 void
2242 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2243 struct type *type, struct objfile *objfile)
2244 {
2245 struct dynamic_prop_list *temp;
2246
2247 gdb_assert (TYPE_OBJFILE_OWNED (type));
2248
2249 temp = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop_list);
2250 temp->prop_kind = prop_kind;
2251 temp->prop = prop;
2252 temp->next = TYPE_DYN_PROP_LIST (type);
2253
2254 TYPE_DYN_PROP_LIST (type) = temp;
2255 }
2256
2257 /* Remove dynamic property from TYPE in case it exists. */
2258
2259 void
2260 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2261 struct type *type)
2262 {
2263 struct dynamic_prop_list *prev_node, *curr_node;
2264
2265 curr_node = TYPE_DYN_PROP_LIST (type);
2266 prev_node = NULL;
2267
2268 while (NULL != curr_node)
2269 {
2270 if (curr_node->prop_kind == prop_kind)
2271 {
2272 /* Update the linked list but don't free anything.
2273 The property was allocated on objstack and it is not known
2274 if we are on top of it. Nevertheless, everything is released
2275 when the complete objstack is freed. */
2276 if (NULL == prev_node)
2277 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2278 else
2279 prev_node->next = curr_node->next;
2280
2281 return;
2282 }
2283
2284 prev_node = curr_node;
2285 curr_node = curr_node->next;
2286 }
2287 }
2288
2289 /* Find the real type of TYPE. This function returns the real type,
2290 after removing all layers of typedefs, and completing opaque or stub
2291 types. Completion changes the TYPE argument, but stripping of
2292 typedefs does not.
2293
2294 Instance flags (e.g. const/volatile) are preserved as typedefs are
2295 stripped. If necessary a new qualified form of the underlying type
2296 is created.
2297
2298 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2299 not been computed and we're either in the middle of reading symbols, or
2300 there was no name for the typedef in the debug info.
2301
2302 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2303 QUITs in the symbol reading code can also throw.
2304 Thus this function can throw an exception.
2305
2306 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2307 the target type.
2308
2309 If this is a stubbed struct (i.e. declared as struct foo *), see if
2310 we can find a full definition in some other file. If so, copy this
2311 definition, so we can use it in future. There used to be a comment
2312 (but not any code) that if we don't find a full definition, we'd
2313 set a flag so we don't spend time in the future checking the same
2314 type. That would be a mistake, though--we might load in more
2315 symbols which contain a full definition for the type. */
2316
2317 struct type *
2318 check_typedef (struct type *type)
2319 {
2320 struct type *orig_type = type;
2321 /* While we're removing typedefs, we don't want to lose qualifiers.
2322 E.g., const/volatile. */
2323 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2324
2325 gdb_assert (type);
2326
2327 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2328 {
2329 if (!TYPE_TARGET_TYPE (type))
2330 {
2331 const char *name;
2332 struct symbol *sym;
2333
2334 /* It is dangerous to call lookup_symbol if we are currently
2335 reading a symtab. Infinite recursion is one danger. */
2336 if (currently_reading_symtab)
2337 return make_qualified_type (type, instance_flags, NULL);
2338
2339 name = type_name_no_tag (type);
2340 /* FIXME: shouldn't we separately check the TYPE_NAME and
2341 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2342 VAR_DOMAIN as appropriate? (this code was written before
2343 TYPE_NAME and TYPE_TAG_NAME were separate). */
2344 if (name == NULL)
2345 {
2346 stub_noname_complaint ();
2347 return make_qualified_type (type, instance_flags, NULL);
2348 }
2349 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2350 if (sym)
2351 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2352 else /* TYPE_CODE_UNDEF */
2353 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2354 }
2355 type = TYPE_TARGET_TYPE (type);
2356
2357 /* Preserve the instance flags as we traverse down the typedef chain.
2358
2359 Handling address spaces/classes is nasty, what do we do if there's a
2360 conflict?
2361 E.g., what if an outer typedef marks the type as class_1 and an inner
2362 typedef marks the type as class_2?
2363 This is the wrong place to do such error checking. We leave it to
2364 the code that created the typedef in the first place to flag the
2365 error. We just pick the outer address space (akin to letting the
2366 outer cast in a chain of casting win), instead of assuming
2367 "it can't happen". */
2368 {
2369 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2370 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2371 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2372 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2373
2374 /* Treat code vs data spaces and address classes separately. */
2375 if ((instance_flags & ALL_SPACES) != 0)
2376 new_instance_flags &= ~ALL_SPACES;
2377 if ((instance_flags & ALL_CLASSES) != 0)
2378 new_instance_flags &= ~ALL_CLASSES;
2379
2380 instance_flags |= new_instance_flags;
2381 }
2382 }
2383
2384 /* If this is a struct/class/union with no fields, then check
2385 whether a full definition exists somewhere else. This is for
2386 systems where a type definition with no fields is issued for such
2387 types, instead of identifying them as stub types in the first
2388 place. */
2389
2390 if (TYPE_IS_OPAQUE (type)
2391 && opaque_type_resolution
2392 && !currently_reading_symtab)
2393 {
2394 const char *name = type_name_no_tag (type);
2395 struct type *newtype;
2396
2397 if (name == NULL)
2398 {
2399 stub_noname_complaint ();
2400 return make_qualified_type (type, instance_flags, NULL);
2401 }
2402 newtype = lookup_transparent_type (name);
2403
2404 if (newtype)
2405 {
2406 /* If the resolved type and the stub are in the same
2407 objfile, then replace the stub type with the real deal.
2408 But if they're in separate objfiles, leave the stub
2409 alone; we'll just look up the transparent type every time
2410 we call check_typedef. We can't create pointers between
2411 types allocated to different objfiles, since they may
2412 have different lifetimes. Trying to copy NEWTYPE over to
2413 TYPE's objfile is pointless, too, since you'll have to
2414 move over any other types NEWTYPE refers to, which could
2415 be an unbounded amount of stuff. */
2416 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2417 type = make_qualified_type (newtype,
2418 TYPE_INSTANCE_FLAGS (type),
2419 type);
2420 else
2421 type = newtype;
2422 }
2423 }
2424 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2425 types. */
2426 else if (TYPE_STUB (type) && !currently_reading_symtab)
2427 {
2428 const char *name = type_name_no_tag (type);
2429 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2430 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2431 as appropriate? (this code was written before TYPE_NAME and
2432 TYPE_TAG_NAME were separate). */
2433 struct symbol *sym;
2434
2435 if (name == NULL)
2436 {
2437 stub_noname_complaint ();
2438 return make_qualified_type (type, instance_flags, NULL);
2439 }
2440 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2441 if (sym)
2442 {
2443 /* Same as above for opaque types, we can replace the stub
2444 with the complete type only if they are in the same
2445 objfile. */
2446 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2447 type = make_qualified_type (SYMBOL_TYPE (sym),
2448 TYPE_INSTANCE_FLAGS (type),
2449 type);
2450 else
2451 type = SYMBOL_TYPE (sym);
2452 }
2453 }
2454
2455 if (TYPE_TARGET_STUB (type))
2456 {
2457 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2458
2459 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2460 {
2461 /* Nothing we can do. */
2462 }
2463 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2464 {
2465 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2466 TYPE_TARGET_STUB (type) = 0;
2467 }
2468 }
2469
2470 type = make_qualified_type (type, instance_flags, NULL);
2471
2472 /* Cache TYPE_LENGTH for future use. */
2473 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2474
2475 return type;
2476 }
2477
2478 /* Parse a type expression in the string [P..P+LENGTH). If an error
2479 occurs, silently return a void type. */
2480
2481 static struct type *
2482 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2483 {
2484 struct ui_file *saved_gdb_stderr;
2485 struct type *type = NULL; /* Initialize to keep gcc happy. */
2486
2487 /* Suppress error messages. */
2488 saved_gdb_stderr = gdb_stderr;
2489 gdb_stderr = &null_stream;
2490
2491 /* Call parse_and_eval_type() without fear of longjmp()s. */
2492 TRY
2493 {
2494 type = parse_and_eval_type (p, length);
2495 }
2496 CATCH (except, RETURN_MASK_ERROR)
2497 {
2498 type = builtin_type (gdbarch)->builtin_void;
2499 }
2500 END_CATCH
2501
2502 /* Stop suppressing error messages. */
2503 gdb_stderr = saved_gdb_stderr;
2504
2505 return type;
2506 }
2507
2508 /* Ugly hack to convert method stubs into method types.
2509
2510 He ain't kiddin'. This demangles the name of the method into a
2511 string including argument types, parses out each argument type,
2512 generates a string casting a zero to that type, evaluates the
2513 string, and stuffs the resulting type into an argtype vector!!!
2514 Then it knows the type of the whole function (including argument
2515 types for overloading), which info used to be in the stab's but was
2516 removed to hack back the space required for them. */
2517
2518 static void
2519 check_stub_method (struct type *type, int method_id, int signature_id)
2520 {
2521 struct gdbarch *gdbarch = get_type_arch (type);
2522 struct fn_field *f;
2523 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2524 char *demangled_name = gdb_demangle (mangled_name,
2525 DMGL_PARAMS | DMGL_ANSI);
2526 char *argtypetext, *p;
2527 int depth = 0, argcount = 1;
2528 struct field *argtypes;
2529 struct type *mtype;
2530
2531 /* Make sure we got back a function string that we can use. */
2532 if (demangled_name)
2533 p = strchr (demangled_name, '(');
2534 else
2535 p = NULL;
2536
2537 if (demangled_name == NULL || p == NULL)
2538 error (_("Internal: Cannot demangle mangled name `%s'."),
2539 mangled_name);
2540
2541 /* Now, read in the parameters that define this type. */
2542 p += 1;
2543 argtypetext = p;
2544 while (*p)
2545 {
2546 if (*p == '(' || *p == '<')
2547 {
2548 depth += 1;
2549 }
2550 else if (*p == ')' || *p == '>')
2551 {
2552 depth -= 1;
2553 }
2554 else if (*p == ',' && depth == 0)
2555 {
2556 argcount += 1;
2557 }
2558
2559 p += 1;
2560 }
2561
2562 /* If we read one argument and it was ``void'', don't count it. */
2563 if (startswith (argtypetext, "(void)"))
2564 argcount -= 1;
2565
2566 /* We need one extra slot, for the THIS pointer. */
2567
2568 argtypes = (struct field *)
2569 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2570 p = argtypetext;
2571
2572 /* Add THIS pointer for non-static methods. */
2573 f = TYPE_FN_FIELDLIST1 (type, method_id);
2574 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2575 argcount = 0;
2576 else
2577 {
2578 argtypes[0].type = lookup_pointer_type (type);
2579 argcount = 1;
2580 }
2581
2582 if (*p != ')') /* () means no args, skip while. */
2583 {
2584 depth = 0;
2585 while (*p)
2586 {
2587 if (depth <= 0 && (*p == ',' || *p == ')'))
2588 {
2589 /* Avoid parsing of ellipsis, they will be handled below.
2590 Also avoid ``void'' as above. */
2591 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2592 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2593 {
2594 argtypes[argcount].type =
2595 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2596 argcount += 1;
2597 }
2598 argtypetext = p + 1;
2599 }
2600
2601 if (*p == '(' || *p == '<')
2602 {
2603 depth += 1;
2604 }
2605 else if (*p == ')' || *p == '>')
2606 {
2607 depth -= 1;
2608 }
2609
2610 p += 1;
2611 }
2612 }
2613
2614 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2615
2616 /* Now update the old "stub" type into a real type. */
2617 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2618 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2619 We want a method (TYPE_CODE_METHOD). */
2620 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2621 argtypes, argcount, p[-2] == '.');
2622 TYPE_STUB (mtype) = 0;
2623 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2624
2625 xfree (demangled_name);
2626 }
2627
2628 /* This is the external interface to check_stub_method, above. This
2629 function unstubs all of the signatures for TYPE's METHOD_ID method
2630 name. After calling this function TYPE_FN_FIELD_STUB will be
2631 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2632 correct.
2633
2634 This function unfortunately can not die until stabs do. */
2635
2636 void
2637 check_stub_method_group (struct type *type, int method_id)
2638 {
2639 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2640 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2641 int j, found_stub = 0;
2642
2643 for (j = 0; j < len; j++)
2644 if (TYPE_FN_FIELD_STUB (f, j))
2645 {
2646 found_stub = 1;
2647 check_stub_method (type, method_id, j);
2648 }
2649
2650 /* GNU v3 methods with incorrect names were corrected when we read
2651 in type information, because it was cheaper to do it then. The
2652 only GNU v2 methods with incorrect method names are operators and
2653 destructors; destructors were also corrected when we read in type
2654 information.
2655
2656 Therefore the only thing we need to handle here are v2 operator
2657 names. */
2658 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2659 {
2660 int ret;
2661 char dem_opname[256];
2662
2663 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2664 method_id),
2665 dem_opname, DMGL_ANSI);
2666 if (!ret)
2667 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2668 method_id),
2669 dem_opname, 0);
2670 if (ret)
2671 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2672 }
2673 }
2674
2675 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2676 const struct cplus_struct_type cplus_struct_default = { };
2677
2678 void
2679 allocate_cplus_struct_type (struct type *type)
2680 {
2681 if (HAVE_CPLUS_STRUCT (type))
2682 /* Structure was already allocated. Nothing more to do. */
2683 return;
2684
2685 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2686 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2687 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2688 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2689 set_type_vptr_fieldno (type, -1);
2690 }
2691
2692 const struct gnat_aux_type gnat_aux_default =
2693 { NULL };
2694
2695 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2696 and allocate the associated gnat-specific data. The gnat-specific
2697 data is also initialized to gnat_aux_default. */
2698
2699 void
2700 allocate_gnat_aux_type (struct type *type)
2701 {
2702 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2703 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2704 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2705 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2706 }
2707
2708 /* Helper function to initialize a newly allocated type. Set type code
2709 to CODE and initialize the type-specific fields accordingly. */
2710
2711 static void
2712 set_type_code (struct type *type, enum type_code code)
2713 {
2714 TYPE_CODE (type) = code;
2715
2716 switch (code)
2717 {
2718 case TYPE_CODE_STRUCT:
2719 case TYPE_CODE_UNION:
2720 case TYPE_CODE_NAMESPACE:
2721 INIT_CPLUS_SPECIFIC (type);
2722 break;
2723 case TYPE_CODE_FLT:
2724 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2725 break;
2726 case TYPE_CODE_FUNC:
2727 INIT_FUNC_SPECIFIC (type);
2728 break;
2729 }
2730 }
2731
2732 /* Helper function to verify floating-point format and size.
2733 BIT is the type size in bits; if BIT equals -1, the size is
2734 determined by the floatformat. Returns size to be used. */
2735
2736 static int
2737 verify_floatformat (int bit, const struct floatformat **floatformats)
2738 {
2739 gdb_assert (floatformats != NULL);
2740 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
2741
2742 if (bit == -1)
2743 bit = floatformats[0]->totalsize;
2744 gdb_assert (bit >= 0);
2745
2746 size_t len = bit / TARGET_CHAR_BIT;
2747 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[0]));
2748 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[1]));
2749
2750 return bit;
2751 }
2752
2753 /* Helper function to initialize the standard scalar types.
2754
2755 If NAME is non-NULL, then it is used to initialize the type name.
2756 Note that NAME is not copied; it is required to have a lifetime at
2757 least as long as OBJFILE. */
2758
2759 struct type *
2760 init_type (struct objfile *objfile, enum type_code code, int length,
2761 const char *name)
2762 {
2763 struct type *type;
2764
2765 type = alloc_type (objfile);
2766 set_type_code (type, code);
2767 TYPE_LENGTH (type) = length;
2768 TYPE_NAME (type) = name;
2769
2770 return type;
2771 }
2772
2773 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2774 to use with variables that have no debug info. NAME is the type
2775 name. */
2776
2777 static struct type *
2778 init_nodebug_var_type (struct objfile *objfile, const char *name)
2779 {
2780 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2781 }
2782
2783 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2784 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2785 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2786
2787 struct type *
2788 init_integer_type (struct objfile *objfile,
2789 int bit, int unsigned_p, const char *name)
2790 {
2791 struct type *t;
2792
2793 t = init_type (objfile, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
2794 if (unsigned_p)
2795 TYPE_UNSIGNED (t) = 1;
2796
2797 return t;
2798 }
2799
2800 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2801 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2802 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2803
2804 struct type *
2805 init_character_type (struct objfile *objfile,
2806 int bit, int unsigned_p, const char *name)
2807 {
2808 struct type *t;
2809
2810 t = init_type (objfile, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
2811 if (unsigned_p)
2812 TYPE_UNSIGNED (t) = 1;
2813
2814 return t;
2815 }
2816
2817 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2818 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2819 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2820
2821 struct type *
2822 init_boolean_type (struct objfile *objfile,
2823 int bit, int unsigned_p, const char *name)
2824 {
2825 struct type *t;
2826
2827 t = init_type (objfile, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
2828 if (unsigned_p)
2829 TYPE_UNSIGNED (t) = 1;
2830
2831 return t;
2832 }
2833
2834 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2835 BIT is the type size in bits; if BIT equals -1, the size is
2836 determined by the floatformat. NAME is the type name. Set the
2837 TYPE_FLOATFORMAT from FLOATFORMATS. */
2838
2839 struct type *
2840 init_float_type (struct objfile *objfile,
2841 int bit, const char *name,
2842 const struct floatformat **floatformats)
2843 {
2844 struct type *t;
2845
2846 bit = verify_floatformat (bit, floatformats);
2847 t = init_type (objfile, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
2848 TYPE_FLOATFORMAT (t) = floatformats;
2849
2850 return t;
2851 }
2852
2853 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2854 BIT is the type size in bits. NAME is the type name. */
2855
2856 struct type *
2857 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2858 {
2859 struct type *t;
2860
2861 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
2862 return t;
2863 }
2864
2865 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2866 NAME is the type name. TARGET_TYPE is the component float type. */
2867
2868 struct type *
2869 init_complex_type (struct objfile *objfile,
2870 const char *name, struct type *target_type)
2871 {
2872 struct type *t;
2873
2874 t = init_type (objfile, TYPE_CODE_COMPLEX,
2875 2 * TYPE_LENGTH (target_type), name);
2876 TYPE_TARGET_TYPE (t) = target_type;
2877 return t;
2878 }
2879
2880 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2881 BIT is the pointer type size in bits. NAME is the type name.
2882 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2883 TYPE_UNSIGNED flag. */
2884
2885 struct type *
2886 init_pointer_type (struct objfile *objfile,
2887 int bit, const char *name, struct type *target_type)
2888 {
2889 struct type *t;
2890
2891 t = init_type (objfile, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
2892 TYPE_TARGET_TYPE (t) = target_type;
2893 TYPE_UNSIGNED (t) = 1;
2894 return t;
2895 }
2896
2897 \f
2898 /* Queries on types. */
2899
2900 int
2901 can_dereference (struct type *t)
2902 {
2903 /* FIXME: Should we return true for references as well as
2904 pointers? */
2905 t = check_typedef (t);
2906 return
2907 (t != NULL
2908 && TYPE_CODE (t) == TYPE_CODE_PTR
2909 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2910 }
2911
2912 int
2913 is_integral_type (struct type *t)
2914 {
2915 t = check_typedef (t);
2916 return
2917 ((t != NULL)
2918 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2919 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2920 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2921 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2922 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2923 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2924 }
2925
2926 /* Return true if TYPE is scalar. */
2927
2928 int
2929 is_scalar_type (struct type *type)
2930 {
2931 type = check_typedef (type);
2932
2933 switch (TYPE_CODE (type))
2934 {
2935 case TYPE_CODE_ARRAY:
2936 case TYPE_CODE_STRUCT:
2937 case TYPE_CODE_UNION:
2938 case TYPE_CODE_SET:
2939 case TYPE_CODE_STRING:
2940 return 0;
2941 default:
2942 return 1;
2943 }
2944 }
2945
2946 /* Return true if T is scalar, or a composite type which in practice has
2947 the memory layout of a scalar type. E.g., an array or struct with only
2948 one scalar element inside it, or a union with only scalar elements. */
2949
2950 int
2951 is_scalar_type_recursive (struct type *t)
2952 {
2953 t = check_typedef (t);
2954
2955 if (is_scalar_type (t))
2956 return 1;
2957 /* Are we dealing with an array or string of known dimensions? */
2958 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2959 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2960 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2961 {
2962 LONGEST low_bound, high_bound;
2963 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2964
2965 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2966
2967 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2968 }
2969 /* Are we dealing with a struct with one element? */
2970 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2971 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2972 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2973 {
2974 int i, n = TYPE_NFIELDS (t);
2975
2976 /* If all elements of the union are scalar, then the union is scalar. */
2977 for (i = 0; i < n; i++)
2978 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2979 return 0;
2980
2981 return 1;
2982 }
2983
2984 return 0;
2985 }
2986
2987 /* Return true is T is a class or a union. False otherwise. */
2988
2989 int
2990 class_or_union_p (const struct type *t)
2991 {
2992 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2993 || TYPE_CODE (t) == TYPE_CODE_UNION);
2994 }
2995
2996 /* A helper function which returns true if types A and B represent the
2997 "same" class type. This is true if the types have the same main
2998 type, or the same name. */
2999
3000 int
3001 class_types_same_p (const struct type *a, const struct type *b)
3002 {
3003 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3004 || (TYPE_NAME (a) && TYPE_NAME (b)
3005 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3006 }
3007
3008 /* If BASE is an ancestor of DCLASS return the distance between them.
3009 otherwise return -1;
3010 eg:
3011
3012 class A {};
3013 class B: public A {};
3014 class C: public B {};
3015 class D: C {};
3016
3017 distance_to_ancestor (A, A, 0) = 0
3018 distance_to_ancestor (A, B, 0) = 1
3019 distance_to_ancestor (A, C, 0) = 2
3020 distance_to_ancestor (A, D, 0) = 3
3021
3022 If PUBLIC is 1 then only public ancestors are considered,
3023 and the function returns the distance only if BASE is a public ancestor
3024 of DCLASS.
3025 Eg:
3026
3027 distance_to_ancestor (A, D, 1) = -1. */
3028
3029 static int
3030 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3031 {
3032 int i;
3033 int d;
3034
3035 base = check_typedef (base);
3036 dclass = check_typedef (dclass);
3037
3038 if (class_types_same_p (base, dclass))
3039 return 0;
3040
3041 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3042 {
3043 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3044 continue;
3045
3046 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3047 if (d >= 0)
3048 return 1 + d;
3049 }
3050
3051 return -1;
3052 }
3053
3054 /* Check whether BASE is an ancestor or base class or DCLASS
3055 Return 1 if so, and 0 if not.
3056 Note: If BASE and DCLASS are of the same type, this function
3057 will return 1. So for some class A, is_ancestor (A, A) will
3058 return 1. */
3059
3060 int
3061 is_ancestor (struct type *base, struct type *dclass)
3062 {
3063 return distance_to_ancestor (base, dclass, 0) >= 0;
3064 }
3065
3066 /* Like is_ancestor, but only returns true when BASE is a public
3067 ancestor of DCLASS. */
3068
3069 int
3070 is_public_ancestor (struct type *base, struct type *dclass)
3071 {
3072 return distance_to_ancestor (base, dclass, 1) >= 0;
3073 }
3074
3075 /* A helper function for is_unique_ancestor. */
3076
3077 static int
3078 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3079 int *offset,
3080 const gdb_byte *valaddr, int embedded_offset,
3081 CORE_ADDR address, struct value *val)
3082 {
3083 int i, count = 0;
3084
3085 base = check_typedef (base);
3086 dclass = check_typedef (dclass);
3087
3088 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3089 {
3090 struct type *iter;
3091 int this_offset;
3092
3093 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3094
3095 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3096 address, val);
3097
3098 if (class_types_same_p (base, iter))
3099 {
3100 /* If this is the first subclass, set *OFFSET and set count
3101 to 1. Otherwise, if this is at the same offset as
3102 previous instances, do nothing. Otherwise, increment
3103 count. */
3104 if (*offset == -1)
3105 {
3106 *offset = this_offset;
3107 count = 1;
3108 }
3109 else if (this_offset == *offset)
3110 {
3111 /* Nothing. */
3112 }
3113 else
3114 ++count;
3115 }
3116 else
3117 count += is_unique_ancestor_worker (base, iter, offset,
3118 valaddr,
3119 embedded_offset + this_offset,
3120 address, val);
3121 }
3122
3123 return count;
3124 }
3125
3126 /* Like is_ancestor, but only returns true if BASE is a unique base
3127 class of the type of VAL. */
3128
3129 int
3130 is_unique_ancestor (struct type *base, struct value *val)
3131 {
3132 int offset = -1;
3133
3134 return is_unique_ancestor_worker (base, value_type (val), &offset,
3135 value_contents_for_printing (val),
3136 value_embedded_offset (val),
3137 value_address (val), val) == 1;
3138 }
3139
3140 \f
3141 /* Overload resolution. */
3142
3143 /* Return the sum of the rank of A with the rank of B. */
3144
3145 struct rank
3146 sum_ranks (struct rank a, struct rank b)
3147 {
3148 struct rank c;
3149 c.rank = a.rank + b.rank;
3150 c.subrank = a.subrank + b.subrank;
3151 return c;
3152 }
3153
3154 /* Compare rank A and B and return:
3155 0 if a = b
3156 1 if a is better than b
3157 -1 if b is better than a. */
3158
3159 int
3160 compare_ranks (struct rank a, struct rank b)
3161 {
3162 if (a.rank == b.rank)
3163 {
3164 if (a.subrank == b.subrank)
3165 return 0;
3166 if (a.subrank < b.subrank)
3167 return 1;
3168 if (a.subrank > b.subrank)
3169 return -1;
3170 }
3171
3172 if (a.rank < b.rank)
3173 return 1;
3174
3175 /* a.rank > b.rank */
3176 return -1;
3177 }
3178
3179 /* Functions for overload resolution begin here. */
3180
3181 /* Compare two badness vectors A and B and return the result.
3182 0 => A and B are identical
3183 1 => A and B are incomparable
3184 2 => A is better than B
3185 3 => A is worse than B */
3186
3187 int
3188 compare_badness (struct badness_vector *a, struct badness_vector *b)
3189 {
3190 int i;
3191 int tmp;
3192 short found_pos = 0; /* any positives in c? */
3193 short found_neg = 0; /* any negatives in c? */
3194
3195 /* differing lengths => incomparable */
3196 if (a->length != b->length)
3197 return 1;
3198
3199 /* Subtract b from a */
3200 for (i = 0; i < a->length; i++)
3201 {
3202 tmp = compare_ranks (b->rank[i], a->rank[i]);
3203 if (tmp > 0)
3204 found_pos = 1;
3205 else if (tmp < 0)
3206 found_neg = 1;
3207 }
3208
3209 if (found_pos)
3210 {
3211 if (found_neg)
3212 return 1; /* incomparable */
3213 else
3214 return 3; /* A > B */
3215 }
3216 else
3217 /* no positives */
3218 {
3219 if (found_neg)
3220 return 2; /* A < B */
3221 else
3222 return 0; /* A == B */
3223 }
3224 }
3225
3226 /* Rank a function by comparing its parameter types (PARMS, length
3227 NPARMS), to the types of an argument list (ARGS, length NARGS).
3228 Return a pointer to a badness vector. This has NARGS + 1
3229 entries. */
3230
3231 struct badness_vector *
3232 rank_function (struct type **parms, int nparms,
3233 struct value **args, int nargs)
3234 {
3235 int i;
3236 struct badness_vector *bv = XNEW (struct badness_vector);
3237 int min_len = nparms < nargs ? nparms : nargs;
3238
3239 bv->length = nargs + 1; /* add 1 for the length-match rank. */
3240 bv->rank = XNEWVEC (struct rank, nargs + 1);
3241
3242 /* First compare the lengths of the supplied lists.
3243 If there is a mismatch, set it to a high value. */
3244
3245 /* pai/1997-06-03 FIXME: when we have debug info about default
3246 arguments and ellipsis parameter lists, we should consider those
3247 and rank the length-match more finely. */
3248
3249 LENGTH_MATCH (bv) = (nargs != nparms)
3250 ? LENGTH_MISMATCH_BADNESS
3251 : EXACT_MATCH_BADNESS;
3252
3253 /* Now rank all the parameters of the candidate function. */
3254 for (i = 1; i <= min_len; i++)
3255 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3256 args[i - 1]);
3257
3258 /* If more arguments than parameters, add dummy entries. */
3259 for (i = min_len + 1; i <= nargs; i++)
3260 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3261
3262 return bv;
3263 }
3264
3265 /* Compare the names of two integer types, assuming that any sign
3266 qualifiers have been checked already. We do it this way because
3267 there may be an "int" in the name of one of the types. */
3268
3269 static int
3270 integer_types_same_name_p (const char *first, const char *second)
3271 {
3272 int first_p, second_p;
3273
3274 /* If both are shorts, return 1; if neither is a short, keep
3275 checking. */
3276 first_p = (strstr (first, "short") != NULL);
3277 second_p = (strstr (second, "short") != NULL);
3278 if (first_p && second_p)
3279 return 1;
3280 if (first_p || second_p)
3281 return 0;
3282
3283 /* Likewise for long. */
3284 first_p = (strstr (first, "long") != NULL);
3285 second_p = (strstr (second, "long") != NULL);
3286 if (first_p && second_p)
3287 return 1;
3288 if (first_p || second_p)
3289 return 0;
3290
3291 /* Likewise for char. */
3292 first_p = (strstr (first, "char") != NULL);
3293 second_p = (strstr (second, "char") != NULL);
3294 if (first_p && second_p)
3295 return 1;
3296 if (first_p || second_p)
3297 return 0;
3298
3299 /* They must both be ints. */
3300 return 1;
3301 }
3302
3303 /* Compares type A to type B returns 1 if the represent the same type
3304 0 otherwise. */
3305
3306 int
3307 types_equal (struct type *a, struct type *b)
3308 {
3309 /* Identical type pointers. */
3310 /* However, this still doesn't catch all cases of same type for b
3311 and a. The reason is that builtin types are different from
3312 the same ones constructed from the object. */
3313 if (a == b)
3314 return 1;
3315
3316 /* Resolve typedefs */
3317 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3318 a = check_typedef (a);
3319 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3320 b = check_typedef (b);
3321
3322 /* If after resolving typedefs a and b are not of the same type
3323 code then they are not equal. */
3324 if (TYPE_CODE (a) != TYPE_CODE (b))
3325 return 0;
3326
3327 /* If a and b are both pointers types or both reference types then
3328 they are equal of the same type iff the objects they refer to are
3329 of the same type. */
3330 if (TYPE_CODE (a) == TYPE_CODE_PTR
3331 || TYPE_CODE (a) == TYPE_CODE_REF)
3332 return types_equal (TYPE_TARGET_TYPE (a),
3333 TYPE_TARGET_TYPE (b));
3334
3335 /* Well, damnit, if the names are exactly the same, I'll say they
3336 are exactly the same. This happens when we generate method
3337 stubs. The types won't point to the same address, but they
3338 really are the same. */
3339
3340 if (TYPE_NAME (a) && TYPE_NAME (b)
3341 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3342 return 1;
3343
3344 /* Check if identical after resolving typedefs. */
3345 if (a == b)
3346 return 1;
3347
3348 /* Two function types are equal if their argument and return types
3349 are equal. */
3350 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3351 {
3352 int i;
3353
3354 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3355 return 0;
3356
3357 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3358 return 0;
3359
3360 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3361 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3362 return 0;
3363
3364 return 1;
3365 }
3366
3367 return 0;
3368 }
3369 \f
3370 /* Deep comparison of types. */
3371
3372 /* An entry in the type-equality bcache. */
3373
3374 typedef struct type_equality_entry
3375 {
3376 struct type *type1, *type2;
3377 } type_equality_entry_d;
3378
3379 DEF_VEC_O (type_equality_entry_d);
3380
3381 /* A helper function to compare two strings. Returns 1 if they are
3382 the same, 0 otherwise. Handles NULLs properly. */
3383
3384 static int
3385 compare_maybe_null_strings (const char *s, const char *t)
3386 {
3387 if (s == NULL && t != NULL)
3388 return 0;
3389 else if (s != NULL && t == NULL)
3390 return 0;
3391 else if (s == NULL && t== NULL)
3392 return 1;
3393 return strcmp (s, t) == 0;
3394 }
3395
3396 /* A helper function for check_types_worklist that checks two types for
3397 "deep" equality. Returns non-zero if the types are considered the
3398 same, zero otherwise. */
3399
3400 static int
3401 check_types_equal (struct type *type1, struct type *type2,
3402 VEC (type_equality_entry_d) **worklist)
3403 {
3404 type1 = check_typedef (type1);
3405 type2 = check_typedef (type2);
3406
3407 if (type1 == type2)
3408 return 1;
3409
3410 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3411 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3412 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3413 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3414 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3415 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3416 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3417 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3418 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3419 return 0;
3420
3421 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3422 TYPE_TAG_NAME (type2)))
3423 return 0;
3424 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3425 return 0;
3426
3427 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3428 {
3429 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3430 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3431 return 0;
3432 }
3433 else
3434 {
3435 int i;
3436
3437 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3438 {
3439 const struct field *field1 = &TYPE_FIELD (type1, i);
3440 const struct field *field2 = &TYPE_FIELD (type2, i);
3441 struct type_equality_entry entry;
3442
3443 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3444 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3445 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3446 return 0;
3447 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3448 FIELD_NAME (*field2)))
3449 return 0;
3450 switch (FIELD_LOC_KIND (*field1))
3451 {
3452 case FIELD_LOC_KIND_BITPOS:
3453 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3454 return 0;
3455 break;
3456 case FIELD_LOC_KIND_ENUMVAL:
3457 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3458 return 0;
3459 break;
3460 case FIELD_LOC_KIND_PHYSADDR:
3461 if (FIELD_STATIC_PHYSADDR (*field1)
3462 != FIELD_STATIC_PHYSADDR (*field2))
3463 return 0;
3464 break;
3465 case FIELD_LOC_KIND_PHYSNAME:
3466 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3467 FIELD_STATIC_PHYSNAME (*field2)))
3468 return 0;
3469 break;
3470 case FIELD_LOC_KIND_DWARF_BLOCK:
3471 {
3472 struct dwarf2_locexpr_baton *block1, *block2;
3473
3474 block1 = FIELD_DWARF_BLOCK (*field1);
3475 block2 = FIELD_DWARF_BLOCK (*field2);
3476 if (block1->per_cu != block2->per_cu
3477 || block1->size != block2->size
3478 || memcmp (block1->data, block2->data, block1->size) != 0)
3479 return 0;
3480 }
3481 break;
3482 default:
3483 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3484 "%d by check_types_equal"),
3485 FIELD_LOC_KIND (*field1));
3486 }
3487
3488 entry.type1 = FIELD_TYPE (*field1);
3489 entry.type2 = FIELD_TYPE (*field2);
3490 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3491 }
3492 }
3493
3494 if (TYPE_TARGET_TYPE (type1) != NULL)
3495 {
3496 struct type_equality_entry entry;
3497
3498 if (TYPE_TARGET_TYPE (type2) == NULL)
3499 return 0;
3500
3501 entry.type1 = TYPE_TARGET_TYPE (type1);
3502 entry.type2 = TYPE_TARGET_TYPE (type2);
3503 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3504 }
3505 else if (TYPE_TARGET_TYPE (type2) != NULL)
3506 return 0;
3507
3508 return 1;
3509 }
3510
3511 /* Check types on a worklist for equality. Returns zero if any pair
3512 is not equal, non-zero if they are all considered equal. */
3513
3514 static int
3515 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3516 struct bcache *cache)
3517 {
3518 while (!VEC_empty (type_equality_entry_d, *worklist))
3519 {
3520 struct type_equality_entry entry;
3521 int added;
3522
3523 entry = *VEC_last (type_equality_entry_d, *worklist);
3524 VEC_pop (type_equality_entry_d, *worklist);
3525
3526 /* If the type pair has already been visited, we know it is
3527 ok. */
3528 bcache_full (&entry, sizeof (entry), cache, &added);
3529 if (!added)
3530 continue;
3531
3532 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3533 return 0;
3534 }
3535
3536 return 1;
3537 }
3538
3539 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3540 "deep comparison". Otherwise return zero. */
3541
3542 int
3543 types_deeply_equal (struct type *type1, struct type *type2)
3544 {
3545 struct gdb_exception except = exception_none;
3546 int result = 0;
3547 struct bcache *cache;
3548 VEC (type_equality_entry_d) *worklist = NULL;
3549 struct type_equality_entry entry;
3550
3551 gdb_assert (type1 != NULL && type2 != NULL);
3552
3553 /* Early exit for the simple case. */
3554 if (type1 == type2)
3555 return 1;
3556
3557 cache = bcache_xmalloc (NULL, NULL);
3558
3559 entry.type1 = type1;
3560 entry.type2 = type2;
3561 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3562
3563 /* check_types_worklist calls several nested helper functions, some
3564 of which can raise a GDB exception, so we just check and rethrow
3565 here. If there is a GDB exception, a comparison is not capable
3566 (or trusted), so exit. */
3567 TRY
3568 {
3569 result = check_types_worklist (&worklist, cache);
3570 }
3571 CATCH (ex, RETURN_MASK_ALL)
3572 {
3573 except = ex;
3574 }
3575 END_CATCH
3576
3577 bcache_xfree (cache);
3578 VEC_free (type_equality_entry_d, worklist);
3579
3580 /* Rethrow if there was a problem. */
3581 if (except.reason < 0)
3582 throw_exception (except);
3583
3584 return result;
3585 }
3586
3587 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3588 Otherwise return one. */
3589
3590 int
3591 type_not_allocated (const struct type *type)
3592 {
3593 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3594
3595 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3596 && !TYPE_DYN_PROP_ADDR (prop));
3597 }
3598
3599 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3600 Otherwise return one. */
3601
3602 int
3603 type_not_associated (const struct type *type)
3604 {
3605 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3606
3607 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3608 && !TYPE_DYN_PROP_ADDR (prop));
3609 }
3610 \f
3611 /* Compare one type (PARM) for compatibility with another (ARG).
3612 * PARM is intended to be the parameter type of a function; and
3613 * ARG is the supplied argument's type. This function tests if
3614 * the latter can be converted to the former.
3615 * VALUE is the argument's value or NULL if none (or called recursively)
3616 *
3617 * Return 0 if they are identical types;
3618 * Otherwise, return an integer which corresponds to how compatible
3619 * PARM is to ARG. The higher the return value, the worse the match.
3620 * Generally the "bad" conversions are all uniformly assigned a 100. */
3621
3622 struct rank
3623 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3624 {
3625 struct rank rank = {0,0};
3626
3627 /* Resolve typedefs */
3628 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3629 parm = check_typedef (parm);
3630 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3631 arg = check_typedef (arg);
3632
3633 if (TYPE_IS_REFERENCE (parm) && value != NULL)
3634 {
3635 if (VALUE_LVAL (value) == not_lval)
3636 {
3637 /* Rvalues should preferably bind to rvalue references or const
3638 lvalue references. */
3639 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3640 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3641 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
3642 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
3643 else
3644 return INCOMPATIBLE_TYPE_BADNESS;
3645 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3646 }
3647 else
3648 {
3649 /* Lvalues should prefer lvalue overloads. */
3650 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3651 {
3652 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3653 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3654 }
3655 }
3656 }
3657
3658 if (types_equal (parm, arg))
3659 {
3660 struct type *t1 = parm;
3661 struct type *t2 = arg;
3662
3663 /* For pointers and references, compare target type. */
3664 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
3665 {
3666 t1 = TYPE_TARGET_TYPE (parm);
3667 t2 = TYPE_TARGET_TYPE (arg);
3668 }
3669
3670 /* Make sure they are CV equal, too. */
3671 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3672 rank.subrank |= CV_CONVERSION_CONST;
3673 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3674 rank.subrank |= CV_CONVERSION_VOLATILE;
3675 if (rank.subrank != 0)
3676 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3677 return EXACT_MATCH_BADNESS;
3678 }
3679
3680 /* See through references, since we can almost make non-references
3681 references. */
3682
3683 if (TYPE_IS_REFERENCE (arg))
3684 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3685 REFERENCE_CONVERSION_BADNESS));
3686 if (TYPE_IS_REFERENCE (parm))
3687 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3688 REFERENCE_CONVERSION_BADNESS));
3689 if (overload_debug)
3690 /* Debugging only. */
3691 fprintf_filtered (gdb_stderr,
3692 "------ Arg is %s [%d], parm is %s [%d]\n",
3693 TYPE_NAME (arg), TYPE_CODE (arg),
3694 TYPE_NAME (parm), TYPE_CODE (parm));
3695
3696 /* x -> y means arg of type x being supplied for parameter of type y. */
3697
3698 switch (TYPE_CODE (parm))
3699 {
3700 case TYPE_CODE_PTR:
3701 switch (TYPE_CODE (arg))
3702 {
3703 case TYPE_CODE_PTR:
3704
3705 /* Allowed pointer conversions are:
3706 (a) pointer to void-pointer conversion. */
3707 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3708 return VOID_PTR_CONVERSION_BADNESS;
3709
3710 /* (b) pointer to ancestor-pointer conversion. */
3711 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3712 TYPE_TARGET_TYPE (arg),
3713 0);
3714 if (rank.subrank >= 0)
3715 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3716
3717 return INCOMPATIBLE_TYPE_BADNESS;
3718 case TYPE_CODE_ARRAY:
3719 {
3720 struct type *t1 = TYPE_TARGET_TYPE (parm);
3721 struct type *t2 = TYPE_TARGET_TYPE (arg);
3722
3723 if (types_equal (t1, t2))
3724 {
3725 /* Make sure they are CV equal. */
3726 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3727 rank.subrank |= CV_CONVERSION_CONST;
3728 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3729 rank.subrank |= CV_CONVERSION_VOLATILE;
3730 if (rank.subrank != 0)
3731 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3732 return EXACT_MATCH_BADNESS;
3733 }
3734 return INCOMPATIBLE_TYPE_BADNESS;
3735 }
3736 case TYPE_CODE_FUNC:
3737 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3738 case TYPE_CODE_INT:
3739 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3740 {
3741 if (value_as_long (value) == 0)
3742 {
3743 /* Null pointer conversion: allow it to be cast to a pointer.
3744 [4.10.1 of C++ standard draft n3290] */
3745 return NULL_POINTER_CONVERSION_BADNESS;
3746 }
3747 else
3748 {
3749 /* If type checking is disabled, allow the conversion. */
3750 if (!strict_type_checking)
3751 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3752 }
3753 }
3754 /* fall through */
3755 case TYPE_CODE_ENUM:
3756 case TYPE_CODE_FLAGS:
3757 case TYPE_CODE_CHAR:
3758 case TYPE_CODE_RANGE:
3759 case TYPE_CODE_BOOL:
3760 default:
3761 return INCOMPATIBLE_TYPE_BADNESS;
3762 }
3763 case TYPE_CODE_ARRAY:
3764 switch (TYPE_CODE (arg))
3765 {
3766 case TYPE_CODE_PTR:
3767 case TYPE_CODE_ARRAY:
3768 return rank_one_type (TYPE_TARGET_TYPE (parm),
3769 TYPE_TARGET_TYPE (arg), NULL);
3770 default:
3771 return INCOMPATIBLE_TYPE_BADNESS;
3772 }
3773 case TYPE_CODE_FUNC:
3774 switch (TYPE_CODE (arg))
3775 {
3776 case TYPE_CODE_PTR: /* funcptr -> func */
3777 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3778 default:
3779 return INCOMPATIBLE_TYPE_BADNESS;
3780 }
3781 case TYPE_CODE_INT:
3782 switch (TYPE_CODE (arg))
3783 {
3784 case TYPE_CODE_INT:
3785 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3786 {
3787 /* Deal with signed, unsigned, and plain chars and
3788 signed and unsigned ints. */
3789 if (TYPE_NOSIGN (parm))
3790 {
3791 /* This case only for character types. */
3792 if (TYPE_NOSIGN (arg))
3793 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3794 else /* signed/unsigned char -> plain char */
3795 return INTEGER_CONVERSION_BADNESS;
3796 }
3797 else if (TYPE_UNSIGNED (parm))
3798 {
3799 if (TYPE_UNSIGNED (arg))
3800 {
3801 /* unsigned int -> unsigned int, or
3802 unsigned long -> unsigned long */
3803 if (integer_types_same_name_p (TYPE_NAME (parm),
3804 TYPE_NAME (arg)))
3805 return EXACT_MATCH_BADNESS;
3806 else if (integer_types_same_name_p (TYPE_NAME (arg),
3807 "int")
3808 && integer_types_same_name_p (TYPE_NAME (parm),
3809 "long"))
3810 /* unsigned int -> unsigned long */
3811 return INTEGER_PROMOTION_BADNESS;
3812 else
3813 /* unsigned long -> unsigned int */
3814 return INTEGER_CONVERSION_BADNESS;
3815 }
3816 else
3817 {
3818 if (integer_types_same_name_p (TYPE_NAME (arg),
3819 "long")
3820 && integer_types_same_name_p (TYPE_NAME (parm),
3821 "int"))
3822 /* signed long -> unsigned int */
3823 return INTEGER_CONVERSION_BADNESS;
3824 else
3825 /* signed int/long -> unsigned int/long */
3826 return INTEGER_CONVERSION_BADNESS;
3827 }
3828 }
3829 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3830 {
3831 if (integer_types_same_name_p (TYPE_NAME (parm),
3832 TYPE_NAME (arg)))
3833 return EXACT_MATCH_BADNESS;
3834 else if (integer_types_same_name_p (TYPE_NAME (arg),
3835 "int")
3836 && integer_types_same_name_p (TYPE_NAME (parm),
3837 "long"))
3838 return INTEGER_PROMOTION_BADNESS;
3839 else
3840 return INTEGER_CONVERSION_BADNESS;
3841 }
3842 else
3843 return INTEGER_CONVERSION_BADNESS;
3844 }
3845 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3846 return INTEGER_PROMOTION_BADNESS;
3847 else
3848 return INTEGER_CONVERSION_BADNESS;
3849 case TYPE_CODE_ENUM:
3850 case TYPE_CODE_FLAGS:
3851 case TYPE_CODE_CHAR:
3852 case TYPE_CODE_RANGE:
3853 case TYPE_CODE_BOOL:
3854 if (TYPE_DECLARED_CLASS (arg))
3855 return INCOMPATIBLE_TYPE_BADNESS;
3856 return INTEGER_PROMOTION_BADNESS;
3857 case TYPE_CODE_FLT:
3858 return INT_FLOAT_CONVERSION_BADNESS;
3859 case TYPE_CODE_PTR:
3860 return NS_POINTER_CONVERSION_BADNESS;
3861 default:
3862 return INCOMPATIBLE_TYPE_BADNESS;
3863 }
3864 break;
3865 case TYPE_CODE_ENUM:
3866 switch (TYPE_CODE (arg))
3867 {
3868 case TYPE_CODE_INT:
3869 case TYPE_CODE_CHAR:
3870 case TYPE_CODE_RANGE:
3871 case TYPE_CODE_BOOL:
3872 case TYPE_CODE_ENUM:
3873 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3874 return INCOMPATIBLE_TYPE_BADNESS;
3875 return INTEGER_CONVERSION_BADNESS;
3876 case TYPE_CODE_FLT:
3877 return INT_FLOAT_CONVERSION_BADNESS;
3878 default:
3879 return INCOMPATIBLE_TYPE_BADNESS;
3880 }
3881 break;
3882 case TYPE_CODE_CHAR:
3883 switch (TYPE_CODE (arg))
3884 {
3885 case TYPE_CODE_RANGE:
3886 case TYPE_CODE_BOOL:
3887 case TYPE_CODE_ENUM:
3888 if (TYPE_DECLARED_CLASS (arg))
3889 return INCOMPATIBLE_TYPE_BADNESS;
3890 return INTEGER_CONVERSION_BADNESS;
3891 case TYPE_CODE_FLT:
3892 return INT_FLOAT_CONVERSION_BADNESS;
3893 case TYPE_CODE_INT:
3894 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3895 return INTEGER_CONVERSION_BADNESS;
3896 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3897 return INTEGER_PROMOTION_BADNESS;
3898 /* >>> !! else fall through !! <<< */
3899 case TYPE_CODE_CHAR:
3900 /* Deal with signed, unsigned, and plain chars for C++ and
3901 with int cases falling through from previous case. */
3902 if (TYPE_NOSIGN (parm))
3903 {
3904 if (TYPE_NOSIGN (arg))
3905 return EXACT_MATCH_BADNESS;
3906 else
3907 return INTEGER_CONVERSION_BADNESS;
3908 }
3909 else if (TYPE_UNSIGNED (parm))
3910 {
3911 if (TYPE_UNSIGNED (arg))
3912 return EXACT_MATCH_BADNESS;
3913 else
3914 return INTEGER_PROMOTION_BADNESS;
3915 }
3916 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3917 return EXACT_MATCH_BADNESS;
3918 else
3919 return INTEGER_CONVERSION_BADNESS;
3920 default:
3921 return INCOMPATIBLE_TYPE_BADNESS;
3922 }
3923 break;
3924 case TYPE_CODE_RANGE:
3925 switch (TYPE_CODE (arg))
3926 {
3927 case TYPE_CODE_INT:
3928 case TYPE_CODE_CHAR:
3929 case TYPE_CODE_RANGE:
3930 case TYPE_CODE_BOOL:
3931 case TYPE_CODE_ENUM:
3932 return INTEGER_CONVERSION_BADNESS;
3933 case TYPE_CODE_FLT:
3934 return INT_FLOAT_CONVERSION_BADNESS;
3935 default:
3936 return INCOMPATIBLE_TYPE_BADNESS;
3937 }
3938 break;
3939 case TYPE_CODE_BOOL:
3940 switch (TYPE_CODE (arg))
3941 {
3942 /* n3290 draft, section 4.12.1 (conv.bool):
3943
3944 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3945 pointer to member type can be converted to a prvalue of type
3946 bool. A zero value, null pointer value, or null member pointer
3947 value is converted to false; any other value is converted to
3948 true. A prvalue of type std::nullptr_t can be converted to a
3949 prvalue of type bool; the resulting value is false." */
3950 case TYPE_CODE_INT:
3951 case TYPE_CODE_CHAR:
3952 case TYPE_CODE_ENUM:
3953 case TYPE_CODE_FLT:
3954 case TYPE_CODE_MEMBERPTR:
3955 case TYPE_CODE_PTR:
3956 return BOOL_CONVERSION_BADNESS;
3957 case TYPE_CODE_RANGE:
3958 return INCOMPATIBLE_TYPE_BADNESS;
3959 case TYPE_CODE_BOOL:
3960 return EXACT_MATCH_BADNESS;
3961 default:
3962 return INCOMPATIBLE_TYPE_BADNESS;
3963 }
3964 break;
3965 case TYPE_CODE_FLT:
3966 switch (TYPE_CODE (arg))
3967 {
3968 case TYPE_CODE_FLT:
3969 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3970 return FLOAT_PROMOTION_BADNESS;
3971 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3972 return EXACT_MATCH_BADNESS;
3973 else
3974 return FLOAT_CONVERSION_BADNESS;
3975 case TYPE_CODE_INT:
3976 case TYPE_CODE_BOOL:
3977 case TYPE_CODE_ENUM:
3978 case TYPE_CODE_RANGE:
3979 case TYPE_CODE_CHAR:
3980 return INT_FLOAT_CONVERSION_BADNESS;
3981 default:
3982 return INCOMPATIBLE_TYPE_BADNESS;
3983 }
3984 break;
3985 case TYPE_CODE_COMPLEX:
3986 switch (TYPE_CODE (arg))
3987 { /* Strictly not needed for C++, but... */
3988 case TYPE_CODE_FLT:
3989 return FLOAT_PROMOTION_BADNESS;
3990 case TYPE_CODE_COMPLEX:
3991 return EXACT_MATCH_BADNESS;
3992 default:
3993 return INCOMPATIBLE_TYPE_BADNESS;
3994 }
3995 break;
3996 case TYPE_CODE_STRUCT:
3997 switch (TYPE_CODE (arg))
3998 {
3999 case TYPE_CODE_STRUCT:
4000 /* Check for derivation */
4001 rank.subrank = distance_to_ancestor (parm, arg, 0);
4002 if (rank.subrank >= 0)
4003 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4004 /* else fall through */
4005 default:
4006 return INCOMPATIBLE_TYPE_BADNESS;
4007 }
4008 break;
4009 case TYPE_CODE_UNION:
4010 switch (TYPE_CODE (arg))
4011 {
4012 case TYPE_CODE_UNION:
4013 default:
4014 return INCOMPATIBLE_TYPE_BADNESS;
4015 }
4016 break;
4017 case TYPE_CODE_MEMBERPTR:
4018 switch (TYPE_CODE (arg))
4019 {
4020 default:
4021 return INCOMPATIBLE_TYPE_BADNESS;
4022 }
4023 break;
4024 case TYPE_CODE_METHOD:
4025 switch (TYPE_CODE (arg))
4026 {
4027
4028 default:
4029 return INCOMPATIBLE_TYPE_BADNESS;
4030 }
4031 break;
4032 case TYPE_CODE_REF:
4033 switch (TYPE_CODE (arg))
4034 {
4035
4036 default:
4037 return INCOMPATIBLE_TYPE_BADNESS;
4038 }
4039
4040 break;
4041 case TYPE_CODE_SET:
4042 switch (TYPE_CODE (arg))
4043 {
4044 /* Not in C++ */
4045 case TYPE_CODE_SET:
4046 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4047 TYPE_FIELD_TYPE (arg, 0), NULL);
4048 default:
4049 return INCOMPATIBLE_TYPE_BADNESS;
4050 }
4051 break;
4052 case TYPE_CODE_VOID:
4053 default:
4054 return INCOMPATIBLE_TYPE_BADNESS;
4055 } /* switch (TYPE_CODE (arg)) */
4056 }
4057
4058 /* End of functions for overload resolution. */
4059 \f
4060 /* Routines to pretty-print types. */
4061
4062 static void
4063 print_bit_vector (B_TYPE *bits, int nbits)
4064 {
4065 int bitno;
4066
4067 for (bitno = 0; bitno < nbits; bitno++)
4068 {
4069 if ((bitno % 8) == 0)
4070 {
4071 puts_filtered (" ");
4072 }
4073 if (B_TST (bits, bitno))
4074 printf_filtered (("1"));
4075 else
4076 printf_filtered (("0"));
4077 }
4078 }
4079
4080 /* Note the first arg should be the "this" pointer, we may not want to
4081 include it since we may get into a infinitely recursive
4082 situation. */
4083
4084 static void
4085 print_args (struct field *args, int nargs, int spaces)
4086 {
4087 if (args != NULL)
4088 {
4089 int i;
4090
4091 for (i = 0; i < nargs; i++)
4092 {
4093 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4094 args[i].name != NULL ? args[i].name : "<NULL>");
4095 recursive_dump_type (args[i].type, spaces + 2);
4096 }
4097 }
4098 }
4099
4100 int
4101 field_is_static (struct field *f)
4102 {
4103 /* "static" fields are the fields whose location is not relative
4104 to the address of the enclosing struct. It would be nice to
4105 have a dedicated flag that would be set for static fields when
4106 the type is being created. But in practice, checking the field
4107 loc_kind should give us an accurate answer. */
4108 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4109 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4110 }
4111
4112 static void
4113 dump_fn_fieldlists (struct type *type, int spaces)
4114 {
4115 int method_idx;
4116 int overload_idx;
4117 struct fn_field *f;
4118
4119 printfi_filtered (spaces, "fn_fieldlists ");
4120 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4121 printf_filtered ("\n");
4122 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4123 {
4124 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4125 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4126 method_idx,
4127 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4128 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4129 gdb_stdout);
4130 printf_filtered (_(") length %d\n"),
4131 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4132 for (overload_idx = 0;
4133 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4134 overload_idx++)
4135 {
4136 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4137 overload_idx,
4138 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4139 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4140 gdb_stdout);
4141 printf_filtered (")\n");
4142 printfi_filtered (spaces + 8, "type ");
4143 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4144 gdb_stdout);
4145 printf_filtered ("\n");
4146
4147 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4148 spaces + 8 + 2);
4149
4150 printfi_filtered (spaces + 8, "args ");
4151 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4152 gdb_stdout);
4153 printf_filtered ("\n");
4154 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4155 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4156 spaces + 8 + 2);
4157 printfi_filtered (spaces + 8, "fcontext ");
4158 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4159 gdb_stdout);
4160 printf_filtered ("\n");
4161
4162 printfi_filtered (spaces + 8, "is_const %d\n",
4163 TYPE_FN_FIELD_CONST (f, overload_idx));
4164 printfi_filtered (spaces + 8, "is_volatile %d\n",
4165 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4166 printfi_filtered (spaces + 8, "is_private %d\n",
4167 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4168 printfi_filtered (spaces + 8, "is_protected %d\n",
4169 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4170 printfi_filtered (spaces + 8, "is_stub %d\n",
4171 TYPE_FN_FIELD_STUB (f, overload_idx));
4172 printfi_filtered (spaces + 8, "voffset %u\n",
4173 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4174 }
4175 }
4176 }
4177
4178 static void
4179 print_cplus_stuff (struct type *type, int spaces)
4180 {
4181 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4182 printfi_filtered (spaces, "vptr_basetype ");
4183 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4184 puts_filtered ("\n");
4185 if (TYPE_VPTR_BASETYPE (type) != NULL)
4186 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4187
4188 printfi_filtered (spaces, "n_baseclasses %d\n",
4189 TYPE_N_BASECLASSES (type));
4190 printfi_filtered (spaces, "nfn_fields %d\n",
4191 TYPE_NFN_FIELDS (type));
4192 if (TYPE_N_BASECLASSES (type) > 0)
4193 {
4194 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4195 TYPE_N_BASECLASSES (type));
4196 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4197 gdb_stdout);
4198 printf_filtered (")");
4199
4200 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4201 TYPE_N_BASECLASSES (type));
4202 puts_filtered ("\n");
4203 }
4204 if (TYPE_NFIELDS (type) > 0)
4205 {
4206 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4207 {
4208 printfi_filtered (spaces,
4209 "private_field_bits (%d bits at *",
4210 TYPE_NFIELDS (type));
4211 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4212 gdb_stdout);
4213 printf_filtered (")");
4214 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4215 TYPE_NFIELDS (type));
4216 puts_filtered ("\n");
4217 }
4218 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4219 {
4220 printfi_filtered (spaces,
4221 "protected_field_bits (%d bits at *",
4222 TYPE_NFIELDS (type));
4223 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4224 gdb_stdout);
4225 printf_filtered (")");
4226 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4227 TYPE_NFIELDS (type));
4228 puts_filtered ("\n");
4229 }
4230 }
4231 if (TYPE_NFN_FIELDS (type) > 0)
4232 {
4233 dump_fn_fieldlists (type, spaces);
4234 }
4235 }
4236
4237 /* Print the contents of the TYPE's type_specific union, assuming that
4238 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4239
4240 static void
4241 print_gnat_stuff (struct type *type, int spaces)
4242 {
4243 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4244
4245 if (descriptive_type == NULL)
4246 printfi_filtered (spaces + 2, "no descriptive type\n");
4247 else
4248 {
4249 printfi_filtered (spaces + 2, "descriptive type\n");
4250 recursive_dump_type (descriptive_type, spaces + 4);
4251 }
4252 }
4253
4254 static struct obstack dont_print_type_obstack;
4255
4256 void
4257 recursive_dump_type (struct type *type, int spaces)
4258 {
4259 int idx;
4260
4261 if (spaces == 0)
4262 obstack_begin (&dont_print_type_obstack, 0);
4263
4264 if (TYPE_NFIELDS (type) > 0
4265 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4266 {
4267 struct type **first_dont_print
4268 = (struct type **) obstack_base (&dont_print_type_obstack);
4269
4270 int i = (struct type **)
4271 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4272
4273 while (--i >= 0)
4274 {
4275 if (type == first_dont_print[i])
4276 {
4277 printfi_filtered (spaces, "type node ");
4278 gdb_print_host_address (type, gdb_stdout);
4279 printf_filtered (_(" <same as already seen type>\n"));
4280 return;
4281 }
4282 }
4283
4284 obstack_ptr_grow (&dont_print_type_obstack, type);
4285 }
4286
4287 printfi_filtered (spaces, "type node ");
4288 gdb_print_host_address (type, gdb_stdout);
4289 printf_filtered ("\n");
4290 printfi_filtered (spaces, "name '%s' (",
4291 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4292 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4293 printf_filtered (")\n");
4294 printfi_filtered (spaces, "tagname '%s' (",
4295 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4296 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4297 printf_filtered (")\n");
4298 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4299 switch (TYPE_CODE (type))
4300 {
4301 case TYPE_CODE_UNDEF:
4302 printf_filtered ("(TYPE_CODE_UNDEF)");
4303 break;
4304 case TYPE_CODE_PTR:
4305 printf_filtered ("(TYPE_CODE_PTR)");
4306 break;
4307 case TYPE_CODE_ARRAY:
4308 printf_filtered ("(TYPE_CODE_ARRAY)");
4309 break;
4310 case TYPE_CODE_STRUCT:
4311 printf_filtered ("(TYPE_CODE_STRUCT)");
4312 break;
4313 case TYPE_CODE_UNION:
4314 printf_filtered ("(TYPE_CODE_UNION)");
4315 break;
4316 case TYPE_CODE_ENUM:
4317 printf_filtered ("(TYPE_CODE_ENUM)");
4318 break;
4319 case TYPE_CODE_FLAGS:
4320 printf_filtered ("(TYPE_CODE_FLAGS)");
4321 break;
4322 case TYPE_CODE_FUNC:
4323 printf_filtered ("(TYPE_CODE_FUNC)");
4324 break;
4325 case TYPE_CODE_INT:
4326 printf_filtered ("(TYPE_CODE_INT)");
4327 break;
4328 case TYPE_CODE_FLT:
4329 printf_filtered ("(TYPE_CODE_FLT)");
4330 break;
4331 case TYPE_CODE_VOID:
4332 printf_filtered ("(TYPE_CODE_VOID)");
4333 break;
4334 case TYPE_CODE_SET:
4335 printf_filtered ("(TYPE_CODE_SET)");
4336 break;
4337 case TYPE_CODE_RANGE:
4338 printf_filtered ("(TYPE_CODE_RANGE)");
4339 break;
4340 case TYPE_CODE_STRING:
4341 printf_filtered ("(TYPE_CODE_STRING)");
4342 break;
4343 case TYPE_CODE_ERROR:
4344 printf_filtered ("(TYPE_CODE_ERROR)");
4345 break;
4346 case TYPE_CODE_MEMBERPTR:
4347 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4348 break;
4349 case TYPE_CODE_METHODPTR:
4350 printf_filtered ("(TYPE_CODE_METHODPTR)");
4351 break;
4352 case TYPE_CODE_METHOD:
4353 printf_filtered ("(TYPE_CODE_METHOD)");
4354 break;
4355 case TYPE_CODE_REF:
4356 printf_filtered ("(TYPE_CODE_REF)");
4357 break;
4358 case TYPE_CODE_CHAR:
4359 printf_filtered ("(TYPE_CODE_CHAR)");
4360 break;
4361 case TYPE_CODE_BOOL:
4362 printf_filtered ("(TYPE_CODE_BOOL)");
4363 break;
4364 case TYPE_CODE_COMPLEX:
4365 printf_filtered ("(TYPE_CODE_COMPLEX)");
4366 break;
4367 case TYPE_CODE_TYPEDEF:
4368 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4369 break;
4370 case TYPE_CODE_NAMESPACE:
4371 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4372 break;
4373 default:
4374 printf_filtered ("(UNKNOWN TYPE CODE)");
4375 break;
4376 }
4377 puts_filtered ("\n");
4378 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4379 if (TYPE_OBJFILE_OWNED (type))
4380 {
4381 printfi_filtered (spaces, "objfile ");
4382 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4383 }
4384 else
4385 {
4386 printfi_filtered (spaces, "gdbarch ");
4387 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4388 }
4389 printf_filtered ("\n");
4390 printfi_filtered (spaces, "target_type ");
4391 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4392 printf_filtered ("\n");
4393 if (TYPE_TARGET_TYPE (type) != NULL)
4394 {
4395 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4396 }
4397 printfi_filtered (spaces, "pointer_type ");
4398 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4399 printf_filtered ("\n");
4400 printfi_filtered (spaces, "reference_type ");
4401 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4402 printf_filtered ("\n");
4403 printfi_filtered (spaces, "type_chain ");
4404 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4405 printf_filtered ("\n");
4406 printfi_filtered (spaces, "instance_flags 0x%x",
4407 TYPE_INSTANCE_FLAGS (type));
4408 if (TYPE_CONST (type))
4409 {
4410 puts_filtered (" TYPE_CONST");
4411 }
4412 if (TYPE_VOLATILE (type))
4413 {
4414 puts_filtered (" TYPE_VOLATILE");
4415 }
4416 if (TYPE_CODE_SPACE (type))
4417 {
4418 puts_filtered (" TYPE_CODE_SPACE");
4419 }
4420 if (TYPE_DATA_SPACE (type))
4421 {
4422 puts_filtered (" TYPE_DATA_SPACE");
4423 }
4424 if (TYPE_ADDRESS_CLASS_1 (type))
4425 {
4426 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4427 }
4428 if (TYPE_ADDRESS_CLASS_2 (type))
4429 {
4430 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4431 }
4432 if (TYPE_RESTRICT (type))
4433 {
4434 puts_filtered (" TYPE_RESTRICT");
4435 }
4436 if (TYPE_ATOMIC (type))
4437 {
4438 puts_filtered (" TYPE_ATOMIC");
4439 }
4440 puts_filtered ("\n");
4441
4442 printfi_filtered (spaces, "flags");
4443 if (TYPE_UNSIGNED (type))
4444 {
4445 puts_filtered (" TYPE_UNSIGNED");
4446 }
4447 if (TYPE_NOSIGN (type))
4448 {
4449 puts_filtered (" TYPE_NOSIGN");
4450 }
4451 if (TYPE_STUB (type))
4452 {
4453 puts_filtered (" TYPE_STUB");
4454 }
4455 if (TYPE_TARGET_STUB (type))
4456 {
4457 puts_filtered (" TYPE_TARGET_STUB");
4458 }
4459 if (TYPE_PROTOTYPED (type))
4460 {
4461 puts_filtered (" TYPE_PROTOTYPED");
4462 }
4463 if (TYPE_INCOMPLETE (type))
4464 {
4465 puts_filtered (" TYPE_INCOMPLETE");
4466 }
4467 if (TYPE_VARARGS (type))
4468 {
4469 puts_filtered (" TYPE_VARARGS");
4470 }
4471 /* This is used for things like AltiVec registers on ppc. Gcc emits
4472 an attribute for the array type, which tells whether or not we
4473 have a vector, instead of a regular array. */
4474 if (TYPE_VECTOR (type))
4475 {
4476 puts_filtered (" TYPE_VECTOR");
4477 }
4478 if (TYPE_FIXED_INSTANCE (type))
4479 {
4480 puts_filtered (" TYPE_FIXED_INSTANCE");
4481 }
4482 if (TYPE_STUB_SUPPORTED (type))
4483 {
4484 puts_filtered (" TYPE_STUB_SUPPORTED");
4485 }
4486 if (TYPE_NOTTEXT (type))
4487 {
4488 puts_filtered (" TYPE_NOTTEXT");
4489 }
4490 puts_filtered ("\n");
4491 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4492 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4493 puts_filtered ("\n");
4494 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4495 {
4496 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4497 printfi_filtered (spaces + 2,
4498 "[%d] enumval %s type ",
4499 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4500 else
4501 printfi_filtered (spaces + 2,
4502 "[%d] bitpos %s bitsize %d type ",
4503 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4504 TYPE_FIELD_BITSIZE (type, idx));
4505 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4506 printf_filtered (" name '%s' (",
4507 TYPE_FIELD_NAME (type, idx) != NULL
4508 ? TYPE_FIELD_NAME (type, idx)
4509 : "<NULL>");
4510 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4511 printf_filtered (")\n");
4512 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4513 {
4514 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4515 }
4516 }
4517 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4518 {
4519 printfi_filtered (spaces, "low %s%s high %s%s\n",
4520 plongest (TYPE_LOW_BOUND (type)),
4521 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4522 plongest (TYPE_HIGH_BOUND (type)),
4523 TYPE_HIGH_BOUND_UNDEFINED (type)
4524 ? " (undefined)" : "");
4525 }
4526
4527 switch (TYPE_SPECIFIC_FIELD (type))
4528 {
4529 case TYPE_SPECIFIC_CPLUS_STUFF:
4530 printfi_filtered (spaces, "cplus_stuff ");
4531 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4532 gdb_stdout);
4533 puts_filtered ("\n");
4534 print_cplus_stuff (type, spaces);
4535 break;
4536
4537 case TYPE_SPECIFIC_GNAT_STUFF:
4538 printfi_filtered (spaces, "gnat_stuff ");
4539 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4540 puts_filtered ("\n");
4541 print_gnat_stuff (type, spaces);
4542 break;
4543
4544 case TYPE_SPECIFIC_FLOATFORMAT:
4545 printfi_filtered (spaces, "floatformat ");
4546 if (TYPE_FLOATFORMAT (type) == NULL)
4547 puts_filtered ("(null)");
4548 else
4549 {
4550 puts_filtered ("{ ");
4551 if (TYPE_FLOATFORMAT (type)[0] == NULL
4552 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4553 puts_filtered ("(null)");
4554 else
4555 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4556
4557 puts_filtered (", ");
4558 if (TYPE_FLOATFORMAT (type)[1] == NULL
4559 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4560 puts_filtered ("(null)");
4561 else
4562 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4563
4564 puts_filtered (" }");
4565 }
4566 puts_filtered ("\n");
4567 break;
4568
4569 case TYPE_SPECIFIC_FUNC:
4570 printfi_filtered (spaces, "calling_convention %d\n",
4571 TYPE_CALLING_CONVENTION (type));
4572 /* tail_call_list is not printed. */
4573 break;
4574
4575 case TYPE_SPECIFIC_SELF_TYPE:
4576 printfi_filtered (spaces, "self_type ");
4577 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4578 puts_filtered ("\n");
4579 break;
4580 }
4581
4582 if (spaces == 0)
4583 obstack_free (&dont_print_type_obstack, NULL);
4584 }
4585 \f
4586 /* Trivial helpers for the libiberty hash table, for mapping one
4587 type to another. */
4588
4589 struct type_pair
4590 {
4591 struct type *old, *newobj;
4592 };
4593
4594 static hashval_t
4595 type_pair_hash (const void *item)
4596 {
4597 const struct type_pair *pair = (const struct type_pair *) item;
4598
4599 return htab_hash_pointer (pair->old);
4600 }
4601
4602 static int
4603 type_pair_eq (const void *item_lhs, const void *item_rhs)
4604 {
4605 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4606 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4607
4608 return lhs->old == rhs->old;
4609 }
4610
4611 /* Allocate the hash table used by copy_type_recursive to walk
4612 types without duplicates. We use OBJFILE's obstack, because
4613 OBJFILE is about to be deleted. */
4614
4615 htab_t
4616 create_copied_types_hash (struct objfile *objfile)
4617 {
4618 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4619 NULL, &objfile->objfile_obstack,
4620 hashtab_obstack_allocate,
4621 dummy_obstack_deallocate);
4622 }
4623
4624 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4625
4626 static struct dynamic_prop_list *
4627 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4628 struct dynamic_prop_list *list)
4629 {
4630 struct dynamic_prop_list *copy = list;
4631 struct dynamic_prop_list **node_ptr = &copy;
4632
4633 while (*node_ptr != NULL)
4634 {
4635 struct dynamic_prop_list *node_copy;
4636
4637 node_copy = ((struct dynamic_prop_list *)
4638 obstack_copy (objfile_obstack, *node_ptr,
4639 sizeof (struct dynamic_prop_list)));
4640 node_copy->prop = (*node_ptr)->prop;
4641 *node_ptr = node_copy;
4642
4643 node_ptr = &node_copy->next;
4644 }
4645
4646 return copy;
4647 }
4648
4649 /* Recursively copy (deep copy) TYPE, if it is associated with
4650 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4651 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4652 it is not associated with OBJFILE. */
4653
4654 struct type *
4655 copy_type_recursive (struct objfile *objfile,
4656 struct type *type,
4657 htab_t copied_types)
4658 {
4659 struct type_pair *stored, pair;
4660 void **slot;
4661 struct type *new_type;
4662
4663 if (! TYPE_OBJFILE_OWNED (type))
4664 return type;
4665
4666 /* This type shouldn't be pointing to any types in other objfiles;
4667 if it did, the type might disappear unexpectedly. */
4668 gdb_assert (TYPE_OBJFILE (type) == objfile);
4669
4670 pair.old = type;
4671 slot = htab_find_slot (copied_types, &pair, INSERT);
4672 if (*slot != NULL)
4673 return ((struct type_pair *) *slot)->newobj;
4674
4675 new_type = alloc_type_arch (get_type_arch (type));
4676
4677 /* We must add the new type to the hash table immediately, in case
4678 we encounter this type again during a recursive call below. */
4679 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
4680 stored->old = type;
4681 stored->newobj = new_type;
4682 *slot = stored;
4683
4684 /* Copy the common fields of types. For the main type, we simply
4685 copy the entire thing and then update specific fields as needed. */
4686 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4687 TYPE_OBJFILE_OWNED (new_type) = 0;
4688 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4689
4690 if (TYPE_NAME (type))
4691 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4692 if (TYPE_TAG_NAME (type))
4693 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4694
4695 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4696 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4697
4698 /* Copy the fields. */
4699 if (TYPE_NFIELDS (type))
4700 {
4701 int i, nfields;
4702
4703 nfields = TYPE_NFIELDS (type);
4704 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4705 for (i = 0; i < nfields; i++)
4706 {
4707 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4708 TYPE_FIELD_ARTIFICIAL (type, i);
4709 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4710 if (TYPE_FIELD_TYPE (type, i))
4711 TYPE_FIELD_TYPE (new_type, i)
4712 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4713 copied_types);
4714 if (TYPE_FIELD_NAME (type, i))
4715 TYPE_FIELD_NAME (new_type, i) =
4716 xstrdup (TYPE_FIELD_NAME (type, i));
4717 switch (TYPE_FIELD_LOC_KIND (type, i))
4718 {
4719 case FIELD_LOC_KIND_BITPOS:
4720 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4721 TYPE_FIELD_BITPOS (type, i));
4722 break;
4723 case FIELD_LOC_KIND_ENUMVAL:
4724 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4725 TYPE_FIELD_ENUMVAL (type, i));
4726 break;
4727 case FIELD_LOC_KIND_PHYSADDR:
4728 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4729 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4730 break;
4731 case FIELD_LOC_KIND_PHYSNAME:
4732 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4733 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4734 i)));
4735 break;
4736 default:
4737 internal_error (__FILE__, __LINE__,
4738 _("Unexpected type field location kind: %d"),
4739 TYPE_FIELD_LOC_KIND (type, i));
4740 }
4741 }
4742 }
4743
4744 /* For range types, copy the bounds information. */
4745 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4746 {
4747 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
4748 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4749 }
4750
4751 if (TYPE_DYN_PROP_LIST (type) != NULL)
4752 TYPE_DYN_PROP_LIST (new_type)
4753 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4754 TYPE_DYN_PROP_LIST (type));
4755
4756
4757 /* Copy pointers to other types. */
4758 if (TYPE_TARGET_TYPE (type))
4759 TYPE_TARGET_TYPE (new_type) =
4760 copy_type_recursive (objfile,
4761 TYPE_TARGET_TYPE (type),
4762 copied_types);
4763
4764 /* Maybe copy the type_specific bits.
4765
4766 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4767 base classes and methods. There's no fundamental reason why we
4768 can't, but at the moment it is not needed. */
4769
4770 switch (TYPE_SPECIFIC_FIELD (type))
4771 {
4772 case TYPE_SPECIFIC_NONE:
4773 break;
4774 case TYPE_SPECIFIC_FUNC:
4775 INIT_FUNC_SPECIFIC (new_type);
4776 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4777 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4778 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4779 break;
4780 case TYPE_SPECIFIC_FLOATFORMAT:
4781 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4782 break;
4783 case TYPE_SPECIFIC_CPLUS_STUFF:
4784 INIT_CPLUS_SPECIFIC (new_type);
4785 break;
4786 case TYPE_SPECIFIC_GNAT_STUFF:
4787 INIT_GNAT_SPECIFIC (new_type);
4788 break;
4789 case TYPE_SPECIFIC_SELF_TYPE:
4790 set_type_self_type (new_type,
4791 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4792 copied_types));
4793 break;
4794 default:
4795 gdb_assert_not_reached ("bad type_specific_kind");
4796 }
4797
4798 return new_type;
4799 }
4800
4801 /* Make a copy of the given TYPE, except that the pointer & reference
4802 types are not preserved.
4803
4804 This function assumes that the given type has an associated objfile.
4805 This objfile is used to allocate the new type. */
4806
4807 struct type *
4808 copy_type (const struct type *type)
4809 {
4810 struct type *new_type;
4811
4812 gdb_assert (TYPE_OBJFILE_OWNED (type));
4813
4814 new_type = alloc_type_copy (type);
4815 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4816 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4817 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4818 sizeof (struct main_type));
4819 if (TYPE_DYN_PROP_LIST (type) != NULL)
4820 TYPE_DYN_PROP_LIST (new_type)
4821 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4822 TYPE_DYN_PROP_LIST (type));
4823
4824 return new_type;
4825 }
4826 \f
4827 /* Helper functions to initialize architecture-specific types. */
4828
4829 /* Allocate a type structure associated with GDBARCH and set its
4830 CODE, LENGTH, and NAME fields. */
4831
4832 struct type *
4833 arch_type (struct gdbarch *gdbarch,
4834 enum type_code code, int length, const char *name)
4835 {
4836 struct type *type;
4837
4838 type = alloc_type_arch (gdbarch);
4839 set_type_code (type, code);
4840 TYPE_LENGTH (type) = length;
4841
4842 if (name)
4843 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
4844
4845 return type;
4846 }
4847
4848 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4849 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4850 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4851
4852 struct type *
4853 arch_integer_type (struct gdbarch *gdbarch,
4854 int bit, int unsigned_p, const char *name)
4855 {
4856 struct type *t;
4857
4858 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4859 if (unsigned_p)
4860 TYPE_UNSIGNED (t) = 1;
4861
4862 return t;
4863 }
4864
4865 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4866 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4867 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4868
4869 struct type *
4870 arch_character_type (struct gdbarch *gdbarch,
4871 int bit, int unsigned_p, const char *name)
4872 {
4873 struct type *t;
4874
4875 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4876 if (unsigned_p)
4877 TYPE_UNSIGNED (t) = 1;
4878
4879 return t;
4880 }
4881
4882 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4883 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4884 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4885
4886 struct type *
4887 arch_boolean_type (struct gdbarch *gdbarch,
4888 int bit, int unsigned_p, const char *name)
4889 {
4890 struct type *t;
4891
4892 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4893 if (unsigned_p)
4894 TYPE_UNSIGNED (t) = 1;
4895
4896 return t;
4897 }
4898
4899 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4900 BIT is the type size in bits; if BIT equals -1, the size is
4901 determined by the floatformat. NAME is the type name. Set the
4902 TYPE_FLOATFORMAT from FLOATFORMATS. */
4903
4904 struct type *
4905 arch_float_type (struct gdbarch *gdbarch,
4906 int bit, const char *name,
4907 const struct floatformat **floatformats)
4908 {
4909 struct type *t;
4910
4911 bit = verify_floatformat (bit, floatformats);
4912 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4913 TYPE_FLOATFORMAT (t) = floatformats;
4914
4915 return t;
4916 }
4917
4918 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
4919 BIT is the type size in bits. NAME is the type name. */
4920
4921 struct type *
4922 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
4923 {
4924 struct type *t;
4925
4926 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
4927 return t;
4928 }
4929
4930 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4931 NAME is the type name. TARGET_TYPE is the component float type. */
4932
4933 struct type *
4934 arch_complex_type (struct gdbarch *gdbarch,
4935 const char *name, struct type *target_type)
4936 {
4937 struct type *t;
4938
4939 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4940 2 * TYPE_LENGTH (target_type), name);
4941 TYPE_TARGET_TYPE (t) = target_type;
4942 return t;
4943 }
4944
4945 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
4946 BIT is the pointer type size in bits. NAME is the type name.
4947 TARGET_TYPE is the pointer target type. Always sets the pointer type's
4948 TYPE_UNSIGNED flag. */
4949
4950 struct type *
4951 arch_pointer_type (struct gdbarch *gdbarch,
4952 int bit, const char *name, struct type *target_type)
4953 {
4954 struct type *t;
4955
4956 t = arch_type (gdbarch, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
4957 TYPE_TARGET_TYPE (t) = target_type;
4958 TYPE_UNSIGNED (t) = 1;
4959 return t;
4960 }
4961
4962 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4963 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4964
4965 struct type *
4966 arch_flags_type (struct gdbarch *gdbarch, const char *name, int length)
4967 {
4968 int max_nfields = length * TARGET_CHAR_BIT;
4969 struct type *type;
4970
4971 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4972 TYPE_UNSIGNED (type) = 1;
4973 TYPE_NFIELDS (type) = 0;
4974 /* Pre-allocate enough space assuming every field is one bit. */
4975 TYPE_FIELDS (type)
4976 = (struct field *) TYPE_ZALLOC (type, max_nfields * sizeof (struct field));
4977
4978 return type;
4979 }
4980
4981 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4982 position BITPOS is called NAME. Pass NAME as "" for fields that
4983 should not be printed. */
4984
4985 void
4986 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
4987 struct type *field_type, const char *name)
4988 {
4989 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
4990 int field_nr = TYPE_NFIELDS (type);
4991
4992 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4993 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
4994 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
4995 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
4996 gdb_assert (name != NULL);
4997
4998 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
4999 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5000 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5001 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5002 ++TYPE_NFIELDS (type);
5003 }
5004
5005 /* Special version of append_flags_type_field to add a flag field.
5006 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5007 position BITPOS is called NAME. */
5008
5009 void
5010 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5011 {
5012 struct gdbarch *gdbarch = get_type_arch (type);
5013
5014 append_flags_type_field (type, bitpos, 1,
5015 builtin_type (gdbarch)->builtin_bool,
5016 name);
5017 }
5018
5019 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5020 specified by CODE) associated with GDBARCH. NAME is the type name. */
5021
5022 struct type *
5023 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5024 enum type_code code)
5025 {
5026 struct type *t;
5027
5028 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5029 t = arch_type (gdbarch, code, 0, NULL);
5030 TYPE_TAG_NAME (t) = name;
5031 INIT_CPLUS_SPECIFIC (t);
5032 return t;
5033 }
5034
5035 /* Add new field with name NAME and type FIELD to composite type T.
5036 Do not set the field's position or adjust the type's length;
5037 the caller should do so. Return the new field. */
5038
5039 struct field *
5040 append_composite_type_field_raw (struct type *t, const char *name,
5041 struct type *field)
5042 {
5043 struct field *f;
5044
5045 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5046 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5047 TYPE_NFIELDS (t));
5048 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5049 memset (f, 0, sizeof f[0]);
5050 FIELD_TYPE (f[0]) = field;
5051 FIELD_NAME (f[0]) = name;
5052 return f;
5053 }
5054
5055 /* Add new field with name NAME and type FIELD to composite type T.
5056 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5057
5058 void
5059 append_composite_type_field_aligned (struct type *t, const char *name,
5060 struct type *field, int alignment)
5061 {
5062 struct field *f = append_composite_type_field_raw (t, name, field);
5063
5064 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5065 {
5066 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5067 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5068 }
5069 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5070 {
5071 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5072 if (TYPE_NFIELDS (t) > 1)
5073 {
5074 SET_FIELD_BITPOS (f[0],
5075 (FIELD_BITPOS (f[-1])
5076 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5077 * TARGET_CHAR_BIT)));
5078
5079 if (alignment)
5080 {
5081 int left;
5082
5083 alignment *= TARGET_CHAR_BIT;
5084 left = FIELD_BITPOS (f[0]) % alignment;
5085
5086 if (left)
5087 {
5088 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5089 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5090 }
5091 }
5092 }
5093 }
5094 }
5095
5096 /* Add new field with name NAME and type FIELD to composite type T. */
5097
5098 void
5099 append_composite_type_field (struct type *t, const char *name,
5100 struct type *field)
5101 {
5102 append_composite_type_field_aligned (t, name, field, 0);
5103 }
5104
5105 static struct gdbarch_data *gdbtypes_data;
5106
5107 const struct builtin_type *
5108 builtin_type (struct gdbarch *gdbarch)
5109 {
5110 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5111 }
5112
5113 static void *
5114 gdbtypes_post_init (struct gdbarch *gdbarch)
5115 {
5116 struct builtin_type *builtin_type
5117 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5118
5119 /* Basic types. */
5120 builtin_type->builtin_void
5121 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
5122 builtin_type->builtin_char
5123 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5124 !gdbarch_char_signed (gdbarch), "char");
5125 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5126 builtin_type->builtin_signed_char
5127 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5128 0, "signed char");
5129 builtin_type->builtin_unsigned_char
5130 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5131 1, "unsigned char");
5132 builtin_type->builtin_short
5133 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5134 0, "short");
5135 builtin_type->builtin_unsigned_short
5136 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5137 1, "unsigned short");
5138 builtin_type->builtin_int
5139 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5140 0, "int");
5141 builtin_type->builtin_unsigned_int
5142 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5143 1, "unsigned int");
5144 builtin_type->builtin_long
5145 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5146 0, "long");
5147 builtin_type->builtin_unsigned_long
5148 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5149 1, "unsigned long");
5150 builtin_type->builtin_long_long
5151 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5152 0, "long long");
5153 builtin_type->builtin_unsigned_long_long
5154 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5155 1, "unsigned long long");
5156 builtin_type->builtin_float
5157 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5158 "float", gdbarch_float_format (gdbarch));
5159 builtin_type->builtin_double
5160 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5161 "double", gdbarch_double_format (gdbarch));
5162 builtin_type->builtin_long_double
5163 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5164 "long double", gdbarch_long_double_format (gdbarch));
5165 builtin_type->builtin_complex
5166 = arch_complex_type (gdbarch, "complex",
5167 builtin_type->builtin_float);
5168 builtin_type->builtin_double_complex
5169 = arch_complex_type (gdbarch, "double complex",
5170 builtin_type->builtin_double);
5171 builtin_type->builtin_string
5172 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
5173 builtin_type->builtin_bool
5174 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
5175
5176 /* The following three are about decimal floating point types, which
5177 are 32-bits, 64-bits and 128-bits respectively. */
5178 builtin_type->builtin_decfloat
5179 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5180 builtin_type->builtin_decdouble
5181 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5182 builtin_type->builtin_declong
5183 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5184
5185 /* "True" character types. */
5186 builtin_type->builtin_true_char
5187 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5188 builtin_type->builtin_true_unsigned_char
5189 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5190
5191 /* Fixed-size integer types. */
5192 builtin_type->builtin_int0
5193 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5194 builtin_type->builtin_int8
5195 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5196 builtin_type->builtin_uint8
5197 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5198 builtin_type->builtin_int16
5199 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5200 builtin_type->builtin_uint16
5201 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5202 builtin_type->builtin_int32
5203 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5204 builtin_type->builtin_uint32
5205 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5206 builtin_type->builtin_int64
5207 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5208 builtin_type->builtin_uint64
5209 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5210 builtin_type->builtin_int128
5211 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5212 builtin_type->builtin_uint128
5213 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5214 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5215 TYPE_INSTANCE_FLAG_NOTTEXT;
5216 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5217 TYPE_INSTANCE_FLAG_NOTTEXT;
5218
5219 /* Wide character types. */
5220 builtin_type->builtin_char16
5221 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5222 builtin_type->builtin_char32
5223 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5224 builtin_type->builtin_wchar
5225 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5226 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5227
5228 /* Default data/code pointer types. */
5229 builtin_type->builtin_data_ptr
5230 = lookup_pointer_type (builtin_type->builtin_void);
5231 builtin_type->builtin_func_ptr
5232 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5233 builtin_type->builtin_func_func
5234 = lookup_function_type (builtin_type->builtin_func_ptr);
5235
5236 /* This type represents a GDB internal function. */
5237 builtin_type->internal_fn
5238 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5239 "<internal function>");
5240
5241 /* This type represents an xmethod. */
5242 builtin_type->xmethod
5243 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5244
5245 return builtin_type;
5246 }
5247
5248 /* This set of objfile-based types is intended to be used by symbol
5249 readers as basic types. */
5250
5251 static const struct objfile_data *objfile_type_data;
5252
5253 const struct objfile_type *
5254 objfile_type (struct objfile *objfile)
5255 {
5256 struct gdbarch *gdbarch;
5257 struct objfile_type *objfile_type
5258 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5259
5260 if (objfile_type)
5261 return objfile_type;
5262
5263 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5264 1, struct objfile_type);
5265
5266 /* Use the objfile architecture to determine basic type properties. */
5267 gdbarch = get_objfile_arch (objfile);
5268
5269 /* Basic types. */
5270 objfile_type->builtin_void
5271 = init_type (objfile, TYPE_CODE_VOID, 1, "void");
5272 objfile_type->builtin_char
5273 = init_integer_type (objfile, TARGET_CHAR_BIT,
5274 !gdbarch_char_signed (gdbarch), "char");
5275 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5276 objfile_type->builtin_signed_char
5277 = init_integer_type (objfile, TARGET_CHAR_BIT,
5278 0, "signed char");
5279 objfile_type->builtin_unsigned_char
5280 = init_integer_type (objfile, TARGET_CHAR_BIT,
5281 1, "unsigned char");
5282 objfile_type->builtin_short
5283 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5284 0, "short");
5285 objfile_type->builtin_unsigned_short
5286 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5287 1, "unsigned short");
5288 objfile_type->builtin_int
5289 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5290 0, "int");
5291 objfile_type->builtin_unsigned_int
5292 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5293 1, "unsigned int");
5294 objfile_type->builtin_long
5295 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5296 0, "long");
5297 objfile_type->builtin_unsigned_long
5298 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5299 1, "unsigned long");
5300 objfile_type->builtin_long_long
5301 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5302 0, "long long");
5303 objfile_type->builtin_unsigned_long_long
5304 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5305 1, "unsigned long long");
5306 objfile_type->builtin_float
5307 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5308 "float", gdbarch_float_format (gdbarch));
5309 objfile_type->builtin_double
5310 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5311 "double", gdbarch_double_format (gdbarch));
5312 objfile_type->builtin_long_double
5313 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5314 "long double", gdbarch_long_double_format (gdbarch));
5315
5316 /* This type represents a type that was unrecognized in symbol read-in. */
5317 objfile_type->builtin_error
5318 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5319
5320 /* The following set of types is used for symbols with no
5321 debug information. */
5322 objfile_type->nodebug_text_symbol
5323 = init_type (objfile, TYPE_CODE_FUNC, 1,
5324 "<text variable, no debug info>");
5325 objfile_type->nodebug_text_gnu_ifunc_symbol
5326 = init_type (objfile, TYPE_CODE_FUNC, 1,
5327 "<text gnu-indirect-function variable, no debug info>");
5328 /* Ifunc resolvers return a function address. */
5329 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5330 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5331 "__IFUNC_RESOLVER_RET");
5332 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5333 objfile_type->nodebug_got_plt_symbol
5334 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5335 "<text from jump slot in .got.plt, no debug info>",
5336 objfile_type->nodebug_text_symbol);
5337 objfile_type->nodebug_data_symbol
5338 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5339 objfile_type->nodebug_unknown_symbol
5340 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5341 objfile_type->nodebug_tls_symbol
5342 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5343
5344 /* NOTE: on some targets, addresses and pointers are not necessarily
5345 the same.
5346
5347 The upshot is:
5348 - gdb's `struct type' always describes the target's
5349 representation.
5350 - gdb's `struct value' objects should always hold values in
5351 target form.
5352 - gdb's CORE_ADDR values are addresses in the unified virtual
5353 address space that the assembler and linker work with. Thus,
5354 since target_read_memory takes a CORE_ADDR as an argument, it
5355 can access any memory on the target, even if the processor has
5356 separate code and data address spaces.
5357
5358 In this context, objfile_type->builtin_core_addr is a bit odd:
5359 it's a target type for a value the target will never see. It's
5360 only used to hold the values of (typeless) linker symbols, which
5361 are indeed in the unified virtual address space. */
5362
5363 objfile_type->builtin_core_addr
5364 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5365 "__CORE_ADDR");
5366
5367 set_objfile_data (objfile, objfile_type_data, objfile_type);
5368 return objfile_type;
5369 }
5370
5371 extern initialize_file_ftype _initialize_gdbtypes;
5372
5373 void
5374 _initialize_gdbtypes (void)
5375 {
5376 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5377 objfile_type_data = register_objfile_data ();
5378
5379 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5380 _("Set debugging of C++ overloading."),
5381 _("Show debugging of C++ overloading."),
5382 _("When enabled, ranking of the "
5383 "functions is displayed."),
5384 NULL,
5385 show_overload_debug,
5386 &setdebuglist, &showdebuglist);
5387
5388 /* Add user knob for controlling resolution of opaque types. */
5389 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5390 &opaque_type_resolution,
5391 _("Set resolution of opaque struct/class/union"
5392 " types (if set before loading symbols)."),
5393 _("Show resolution of opaque struct/class/union"
5394 " types (if set before loading symbols)."),
5395 NULL, NULL,
5396 show_opaque_type_resolution,
5397 &setlist, &showlist);
5398
5399 /* Add an option to permit non-strict type checking. */
5400 add_setshow_boolean_cmd ("type", class_support,
5401 &strict_type_checking,
5402 _("Set strict type checking."),
5403 _("Show strict type checking."),
5404 NULL, NULL,
5405 show_strict_type_checking,
5406 &setchecklist, &showchecklist);
5407 }
This page took 0.147548 seconds and 4 git commands to generate.