infcall: remove unused parameter in 'value_arg_coerce'
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static bool opaque_type_resolution = true;
120
121 /* See gdbtypes.h. */
122
123 unsigned int overload_debug = 0;
124
125 /* A flag to enable strict type checking. */
126
127 static bool strict_type_checking = true;
128
129 /* A function to show whether opaque types are resolved. */
130
131 static void
132 show_opaque_type_resolution (struct ui_file *file, int from_tty,
133 struct cmd_list_element *c,
134 const char *value)
135 {
136 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
137 "(if set before loading symbols) is %s.\n"),
138 value);
139 }
140
141 /* A function to show whether C++ overload debugging is enabled. */
142
143 static void
144 show_overload_debug (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
148 value);
149 }
150
151 /* A function to show the status of strict type checking. */
152
153 static void
154 show_strict_type_checking (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
158 }
159
160 \f
161 /* Allocate a new OBJFILE-associated type structure and fill it
162 with some defaults. Space for the type structure is allocated
163 on the objfile's objfile_obstack. */
164
165 struct type *
166 alloc_type (struct objfile *objfile)
167 {
168 struct type *type;
169
170 gdb_assert (objfile != NULL);
171
172 /* Alloc the structure and start off with all fields zeroed. */
173 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
174 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
175 struct main_type);
176 OBJSTAT (objfile, n_types++);
177
178 TYPE_OBJFILE_OWNED (type) = 1;
179 TYPE_OWNER (type).objfile = objfile;
180
181 /* Initialize the fields that might not be zero. */
182
183 TYPE_CODE (type) = TYPE_CODE_UNDEF;
184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
185
186 return type;
187 }
188
189 /* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
191 on the obstack associated with GDBARCH. */
192
193 struct type *
194 alloc_type_arch (struct gdbarch *gdbarch)
195 {
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
202 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
203 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_CHAIN (type) = type; /* Chain back to itself. */
212
213 return type;
214 }
215
216 /* If TYPE is objfile-associated, allocate a new type structure
217 associated with the same objfile. If TYPE is gdbarch-associated,
218 allocate a new type structure associated with the same gdbarch. */
219
220 struct type *
221 alloc_type_copy (const struct type *type)
222 {
223 if (TYPE_OBJFILE_OWNED (type))
224 return alloc_type (TYPE_OWNER (type).objfile);
225 else
226 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
227 }
228
229 /* If TYPE is gdbarch-associated, return that architecture.
230 If TYPE is objfile-associated, return that objfile's architecture. */
231
232 struct gdbarch *
233 get_type_arch (const struct type *type)
234 {
235 struct gdbarch *arch;
236
237 if (TYPE_OBJFILE_OWNED (type))
238 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
239 else
240 arch = TYPE_OWNER (type).gdbarch;
241
242 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
243 a gdbarch, however, this is very rare, and even then, in most cases
244 that get_type_arch is called, we assume that a non-NULL value is
245 returned. */
246 gdb_assert (arch != NULL);
247 return arch;
248 }
249
250 /* See gdbtypes.h. */
251
252 struct type *
253 get_target_type (struct type *type)
254 {
255 if (type != NULL)
256 {
257 type = TYPE_TARGET_TYPE (type);
258 if (type != NULL)
259 type = check_typedef (type);
260 }
261
262 return type;
263 }
264
265 /* See gdbtypes.h. */
266
267 unsigned int
268 type_length_units (struct type *type)
269 {
270 struct gdbarch *arch = get_type_arch (type);
271 int unit_size = gdbarch_addressable_memory_unit_size (arch);
272
273 return TYPE_LENGTH (type) / unit_size;
274 }
275
276 /* Alloc a new type instance structure, fill it with some defaults,
277 and point it at OLDTYPE. Allocate the new type instance from the
278 same place as OLDTYPE. */
279
280 static struct type *
281 alloc_type_instance (struct type *oldtype)
282 {
283 struct type *type;
284
285 /* Allocate the structure. */
286
287 if (! TYPE_OBJFILE_OWNED (oldtype))
288 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
289 else
290 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
291 struct type);
292
293 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
294
295 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
296
297 return type;
298 }
299
300 /* Clear all remnants of the previous type at TYPE, in preparation for
301 replacing it with something else. Preserve owner information. */
302
303 static void
304 smash_type (struct type *type)
305 {
306 int objfile_owned = TYPE_OBJFILE_OWNED (type);
307 union type_owner owner = TYPE_OWNER (type);
308
309 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
310
311 /* Restore owner information. */
312 TYPE_OBJFILE_OWNED (type) = objfile_owned;
313 TYPE_OWNER (type) = owner;
314
315 /* For now, delete the rings. */
316 TYPE_CHAIN (type) = type;
317
318 /* For now, leave the pointer/reference types alone. */
319 }
320
321 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
322 to a pointer to memory where the pointer type should be stored.
323 If *TYPEPTR is zero, update it to point to the pointer type we return.
324 We allocate new memory if needed. */
325
326 struct type *
327 make_pointer_type (struct type *type, struct type **typeptr)
328 {
329 struct type *ntype; /* New type */
330 struct type *chain;
331
332 ntype = TYPE_POINTER_TYPE (type);
333
334 if (ntype)
335 {
336 if (typeptr == 0)
337 return ntype; /* Don't care about alloc,
338 and have new type. */
339 else if (*typeptr == 0)
340 {
341 *typeptr = ntype; /* Tracking alloc, and have new type. */
342 return ntype;
343 }
344 }
345
346 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
347 {
348 ntype = alloc_type_copy (type);
349 if (typeptr)
350 *typeptr = ntype;
351 }
352 else /* We have storage, but need to reset it. */
353 {
354 ntype = *typeptr;
355 chain = TYPE_CHAIN (ntype);
356 smash_type (ntype);
357 TYPE_CHAIN (ntype) = chain;
358 }
359
360 TYPE_TARGET_TYPE (ntype) = type;
361 TYPE_POINTER_TYPE (type) = ntype;
362
363 /* FIXME! Assumes the machine has only one representation for pointers! */
364
365 TYPE_LENGTH (ntype)
366 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
367 TYPE_CODE (ntype) = TYPE_CODE_PTR;
368
369 /* Mark pointers as unsigned. The target converts between pointers
370 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
371 gdbarch_address_to_pointer. */
372 TYPE_UNSIGNED (ntype) = 1;
373
374 /* Update the length of all the other variants of this type. */
375 chain = TYPE_CHAIN (ntype);
376 while (chain != ntype)
377 {
378 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
379 chain = TYPE_CHAIN (chain);
380 }
381
382 return ntype;
383 }
384
385 /* Given a type TYPE, return a type of pointers to that type.
386 May need to construct such a type if this is the first use. */
387
388 struct type *
389 lookup_pointer_type (struct type *type)
390 {
391 return make_pointer_type (type, (struct type **) 0);
392 }
393
394 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
395 points to a pointer to memory where the reference type should be
396 stored. If *TYPEPTR is zero, update it to point to the reference
397 type we return. We allocate new memory if needed. REFCODE denotes
398 the kind of reference type to lookup (lvalue or rvalue reference). */
399
400 struct type *
401 make_reference_type (struct type *type, struct type **typeptr,
402 enum type_code refcode)
403 {
404 struct type *ntype; /* New type */
405 struct type **reftype;
406 struct type *chain;
407
408 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
409
410 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
411 : TYPE_RVALUE_REFERENCE_TYPE (type));
412
413 if (ntype)
414 {
415 if (typeptr == 0)
416 return ntype; /* Don't care about alloc,
417 and have new type. */
418 else if (*typeptr == 0)
419 {
420 *typeptr = ntype; /* Tracking alloc, and have new type. */
421 return ntype;
422 }
423 }
424
425 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
426 {
427 ntype = alloc_type_copy (type);
428 if (typeptr)
429 *typeptr = ntype;
430 }
431 else /* We have storage, but need to reset it. */
432 {
433 ntype = *typeptr;
434 chain = TYPE_CHAIN (ntype);
435 smash_type (ntype);
436 TYPE_CHAIN (ntype) = chain;
437 }
438
439 TYPE_TARGET_TYPE (ntype) = type;
440 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
441 : &TYPE_RVALUE_REFERENCE_TYPE (type));
442
443 *reftype = ntype;
444
445 /* FIXME! Assume the machine has only one representation for
446 references, and that it matches the (only) representation for
447 pointers! */
448
449 TYPE_LENGTH (ntype) =
450 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
451 TYPE_CODE (ntype) = refcode;
452
453 *reftype = ntype;
454
455 /* Update the length of all the other variants of this type. */
456 chain = TYPE_CHAIN (ntype);
457 while (chain != ntype)
458 {
459 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
460 chain = TYPE_CHAIN (chain);
461 }
462
463 return ntype;
464 }
465
466 /* Same as above, but caller doesn't care about memory allocation
467 details. */
468
469 struct type *
470 lookup_reference_type (struct type *type, enum type_code refcode)
471 {
472 return make_reference_type (type, (struct type **) 0, refcode);
473 }
474
475 /* Lookup the lvalue reference type for the type TYPE. */
476
477 struct type *
478 lookup_lvalue_reference_type (struct type *type)
479 {
480 return lookup_reference_type (type, TYPE_CODE_REF);
481 }
482
483 /* Lookup the rvalue reference type for the type TYPE. */
484
485 struct type *
486 lookup_rvalue_reference_type (struct type *type)
487 {
488 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
489 }
490
491 /* Lookup a function type that returns type TYPE. TYPEPTR, if
492 nonzero, points to a pointer to memory where the function type
493 should be stored. If *TYPEPTR is zero, update it to point to the
494 function type we return. We allocate new memory if needed. */
495
496 struct type *
497 make_function_type (struct type *type, struct type **typeptr)
498 {
499 struct type *ntype; /* New type */
500
501 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
502 {
503 ntype = alloc_type_copy (type);
504 if (typeptr)
505 *typeptr = ntype;
506 }
507 else /* We have storage, but need to reset it. */
508 {
509 ntype = *typeptr;
510 smash_type (ntype);
511 }
512
513 TYPE_TARGET_TYPE (ntype) = type;
514
515 TYPE_LENGTH (ntype) = 1;
516 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
517
518 INIT_FUNC_SPECIFIC (ntype);
519
520 return ntype;
521 }
522
523 /* Given a type TYPE, return a type of functions that return that type.
524 May need to construct such a type if this is the first use. */
525
526 struct type *
527 lookup_function_type (struct type *type)
528 {
529 return make_function_type (type, (struct type **) 0);
530 }
531
532 /* Given a type TYPE and argument types, return the appropriate
533 function type. If the final type in PARAM_TYPES is NULL, make a
534 varargs function. */
535
536 struct type *
537 lookup_function_type_with_arguments (struct type *type,
538 int nparams,
539 struct type **param_types)
540 {
541 struct type *fn = make_function_type (type, (struct type **) 0);
542 int i;
543
544 if (nparams > 0)
545 {
546 if (param_types[nparams - 1] == NULL)
547 {
548 --nparams;
549 TYPE_VARARGS (fn) = 1;
550 }
551 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
552 == TYPE_CODE_VOID)
553 {
554 --nparams;
555 /* Caller should have ensured this. */
556 gdb_assert (nparams == 0);
557 TYPE_PROTOTYPED (fn) = 1;
558 }
559 else
560 TYPE_PROTOTYPED (fn) = 1;
561 }
562
563 TYPE_NFIELDS (fn) = nparams;
564 TYPE_FIELDS (fn)
565 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
566 for (i = 0; i < nparams; ++i)
567 TYPE_FIELD_TYPE (fn, i) = param_types[i];
568
569 return fn;
570 }
571
572 /* Identify address space identifier by name --
573 return the integer flag defined in gdbtypes.h. */
574
575 int
576 address_space_name_to_int (struct gdbarch *gdbarch,
577 const char *space_identifier)
578 {
579 int type_flags;
580
581 /* Check for known address space delimiters. */
582 if (!strcmp (space_identifier, "code"))
583 return TYPE_INSTANCE_FLAG_CODE_SPACE;
584 else if (!strcmp (space_identifier, "data"))
585 return TYPE_INSTANCE_FLAG_DATA_SPACE;
586 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
587 && gdbarch_address_class_name_to_type_flags (gdbarch,
588 space_identifier,
589 &type_flags))
590 return type_flags;
591 else
592 error (_("Unknown address space specifier: \"%s\""), space_identifier);
593 }
594
595 /* Identify address space identifier by integer flag as defined in
596 gdbtypes.h -- return the string version of the adress space name. */
597
598 const char *
599 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
600 {
601 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
602 return "code";
603 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
604 return "data";
605 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
606 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
607 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
608 else
609 return NULL;
610 }
611
612 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
613
614 If STORAGE is non-NULL, create the new type instance there.
615 STORAGE must be in the same obstack as TYPE. */
616
617 static struct type *
618 make_qualified_type (struct type *type, int new_flags,
619 struct type *storage)
620 {
621 struct type *ntype;
622
623 ntype = type;
624 do
625 {
626 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
627 return ntype;
628 ntype = TYPE_CHAIN (ntype);
629 }
630 while (ntype != type);
631
632 /* Create a new type instance. */
633 if (storage == NULL)
634 ntype = alloc_type_instance (type);
635 else
636 {
637 /* If STORAGE was provided, it had better be in the same objfile
638 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
639 if one objfile is freed and the other kept, we'd have
640 dangling pointers. */
641 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
642
643 ntype = storage;
644 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
645 TYPE_CHAIN (ntype) = ntype;
646 }
647
648 /* Pointers or references to the original type are not relevant to
649 the new type. */
650 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
651 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
652
653 /* Chain the new qualified type to the old type. */
654 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
655 TYPE_CHAIN (type) = ntype;
656
657 /* Now set the instance flags and return the new type. */
658 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
659
660 /* Set length of new type to that of the original type. */
661 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
662
663 return ntype;
664 }
665
666 /* Make an address-space-delimited variant of a type -- a type that
667 is identical to the one supplied except that it has an address
668 space attribute attached to it (such as "code" or "data").
669
670 The space attributes "code" and "data" are for Harvard
671 architectures. The address space attributes are for architectures
672 which have alternately sized pointers or pointers with alternate
673 representations. */
674
675 struct type *
676 make_type_with_address_space (struct type *type, int space_flag)
677 {
678 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
679 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
680 | TYPE_INSTANCE_FLAG_DATA_SPACE
681 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
682 | space_flag);
683
684 return make_qualified_type (type, new_flags, NULL);
685 }
686
687 /* Make a "c-v" variant of a type -- a type that is identical to the
688 one supplied except that it may have const or volatile attributes
689 CNST is a flag for setting the const attribute
690 VOLTL is a flag for setting the volatile attribute
691 TYPE is the base type whose variant we are creating.
692
693 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
694 storage to hold the new qualified type; *TYPEPTR and TYPE must be
695 in the same objfile. Otherwise, allocate fresh memory for the new
696 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
697 new type we construct. */
698
699 struct type *
700 make_cv_type (int cnst, int voltl,
701 struct type *type,
702 struct type **typeptr)
703 {
704 struct type *ntype; /* New type */
705
706 int new_flags = (TYPE_INSTANCE_FLAGS (type)
707 & ~(TYPE_INSTANCE_FLAG_CONST
708 | TYPE_INSTANCE_FLAG_VOLATILE));
709
710 if (cnst)
711 new_flags |= TYPE_INSTANCE_FLAG_CONST;
712
713 if (voltl)
714 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
715
716 if (typeptr && *typeptr != NULL)
717 {
718 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
719 a C-V variant chain that threads across objfiles: if one
720 objfile gets freed, then the other has a broken C-V chain.
721
722 This code used to try to copy over the main type from TYPE to
723 *TYPEPTR if they were in different objfiles, but that's
724 wrong, too: TYPE may have a field list or member function
725 lists, which refer to types of their own, etc. etc. The
726 whole shebang would need to be copied over recursively; you
727 can't have inter-objfile pointers. The only thing to do is
728 to leave stub types as stub types, and look them up afresh by
729 name each time you encounter them. */
730 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
731 }
732
733 ntype = make_qualified_type (type, new_flags,
734 typeptr ? *typeptr : NULL);
735
736 if (typeptr != NULL)
737 *typeptr = ntype;
738
739 return ntype;
740 }
741
742 /* Make a 'restrict'-qualified version of TYPE. */
743
744 struct type *
745 make_restrict_type (struct type *type)
746 {
747 return make_qualified_type (type,
748 (TYPE_INSTANCE_FLAGS (type)
749 | TYPE_INSTANCE_FLAG_RESTRICT),
750 NULL);
751 }
752
753 /* Make a type without const, volatile, or restrict. */
754
755 struct type *
756 make_unqualified_type (struct type *type)
757 {
758 return make_qualified_type (type,
759 (TYPE_INSTANCE_FLAGS (type)
760 & ~(TYPE_INSTANCE_FLAG_CONST
761 | TYPE_INSTANCE_FLAG_VOLATILE
762 | TYPE_INSTANCE_FLAG_RESTRICT)),
763 NULL);
764 }
765
766 /* Make a '_Atomic'-qualified version of TYPE. */
767
768 struct type *
769 make_atomic_type (struct type *type)
770 {
771 return make_qualified_type (type,
772 (TYPE_INSTANCE_FLAGS (type)
773 | TYPE_INSTANCE_FLAG_ATOMIC),
774 NULL);
775 }
776
777 /* Replace the contents of ntype with the type *type. This changes the
778 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
779 the changes are propogated to all types in the TYPE_CHAIN.
780
781 In order to build recursive types, it's inevitable that we'll need
782 to update types in place --- but this sort of indiscriminate
783 smashing is ugly, and needs to be replaced with something more
784 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
785 clear if more steps are needed. */
786
787 void
788 replace_type (struct type *ntype, struct type *type)
789 {
790 struct type *chain;
791
792 /* These two types had better be in the same objfile. Otherwise,
793 the assignment of one type's main type structure to the other
794 will produce a type with references to objects (names; field
795 lists; etc.) allocated on an objfile other than its own. */
796 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
797
798 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
799
800 /* The type length is not a part of the main type. Update it for
801 each type on the variant chain. */
802 chain = ntype;
803 do
804 {
805 /* Assert that this element of the chain has no address-class bits
806 set in its flags. Such type variants might have type lengths
807 which are supposed to be different from the non-address-class
808 variants. This assertion shouldn't ever be triggered because
809 symbol readers which do construct address-class variants don't
810 call replace_type(). */
811 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
812
813 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
814 chain = TYPE_CHAIN (chain);
815 }
816 while (ntype != chain);
817
818 /* Assert that the two types have equivalent instance qualifiers.
819 This should be true for at least all of our debug readers. */
820 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
821 }
822
823 /* Implement direct support for MEMBER_TYPE in GNU C++.
824 May need to construct such a type if this is the first use.
825 The TYPE is the type of the member. The DOMAIN is the type
826 of the aggregate that the member belongs to. */
827
828 struct type *
829 lookup_memberptr_type (struct type *type, struct type *domain)
830 {
831 struct type *mtype;
832
833 mtype = alloc_type_copy (type);
834 smash_to_memberptr_type (mtype, domain, type);
835 return mtype;
836 }
837
838 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
839
840 struct type *
841 lookup_methodptr_type (struct type *to_type)
842 {
843 struct type *mtype;
844
845 mtype = alloc_type_copy (to_type);
846 smash_to_methodptr_type (mtype, to_type);
847 return mtype;
848 }
849
850 /* Allocate a stub method whose return type is TYPE. This apparently
851 happens for speed of symbol reading, since parsing out the
852 arguments to the method is cpu-intensive, the way we are doing it.
853 So, we will fill in arguments later. This always returns a fresh
854 type. */
855
856 struct type *
857 allocate_stub_method (struct type *type)
858 {
859 struct type *mtype;
860
861 mtype = alloc_type_copy (type);
862 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
863 TYPE_LENGTH (mtype) = 1;
864 TYPE_STUB (mtype) = 1;
865 TYPE_TARGET_TYPE (mtype) = type;
866 /* TYPE_SELF_TYPE (mtype) = unknown yet */
867 return mtype;
868 }
869
870 /* See gdbtypes.h. */
871
872 bool
873 operator== (const dynamic_prop &l, const dynamic_prop &r)
874 {
875 if (l.kind != r.kind)
876 return false;
877
878 switch (l.kind)
879 {
880 case PROP_UNDEFINED:
881 return true;
882 case PROP_CONST:
883 return l.data.const_val == r.data.const_val;
884 case PROP_ADDR_OFFSET:
885 case PROP_LOCEXPR:
886 case PROP_LOCLIST:
887 return l.data.baton == r.data.baton;
888 }
889
890 gdb_assert_not_reached ("unhandled dynamic_prop kind");
891 }
892
893 /* See gdbtypes.h. */
894
895 bool
896 operator== (const range_bounds &l, const range_bounds &r)
897 {
898 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
899
900 return (FIELD_EQ (low)
901 && FIELD_EQ (high)
902 && FIELD_EQ (flag_upper_bound_is_count)
903 && FIELD_EQ (flag_bound_evaluated)
904 && FIELD_EQ (bias));
905
906 #undef FIELD_EQ
907 }
908
909 /* Create a range type with a dynamic range from LOW_BOUND to
910 HIGH_BOUND, inclusive. See create_range_type for further details. */
911
912 struct type *
913 create_range_type (struct type *result_type, struct type *index_type,
914 const struct dynamic_prop *low_bound,
915 const struct dynamic_prop *high_bound,
916 LONGEST bias)
917 {
918 /* The INDEX_TYPE should be a type capable of holding the upper and lower
919 bounds, as such a zero sized, or void type makes no sense. */
920 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
921 gdb_assert (TYPE_LENGTH (index_type) > 0);
922
923 if (result_type == NULL)
924 result_type = alloc_type_copy (index_type);
925 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
926 TYPE_TARGET_TYPE (result_type) = index_type;
927 if (TYPE_STUB (index_type))
928 TYPE_TARGET_STUB (result_type) = 1;
929 else
930 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
931
932 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
933 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
934 TYPE_RANGE_DATA (result_type)->low = *low_bound;
935 TYPE_RANGE_DATA (result_type)->high = *high_bound;
936 TYPE_RANGE_DATA (result_type)->bias = bias;
937
938 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
939 TYPE_UNSIGNED (result_type) = 1;
940
941 /* Ada allows the declaration of range types whose upper bound is
942 less than the lower bound, so checking the lower bound is not
943 enough. Make sure we do not mark a range type whose upper bound
944 is negative as unsigned. */
945 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
946 TYPE_UNSIGNED (result_type) = 0;
947
948 return result_type;
949 }
950
951 /* Create a range type using either a blank type supplied in
952 RESULT_TYPE, or creating a new type, inheriting the objfile from
953 INDEX_TYPE.
954
955 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
956 to HIGH_BOUND, inclusive.
957
958 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
959 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
960
961 struct type *
962 create_static_range_type (struct type *result_type, struct type *index_type,
963 LONGEST low_bound, LONGEST high_bound)
964 {
965 struct dynamic_prop low, high;
966
967 low.kind = PROP_CONST;
968 low.data.const_val = low_bound;
969
970 high.kind = PROP_CONST;
971 high.data.const_val = high_bound;
972
973 result_type = create_range_type (result_type, index_type, &low, &high, 0);
974
975 return result_type;
976 }
977
978 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
979 are static, otherwise returns 0. */
980
981 static int
982 has_static_range (const struct range_bounds *bounds)
983 {
984 return (bounds->low.kind == PROP_CONST
985 && bounds->high.kind == PROP_CONST);
986 }
987
988
989 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
990 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
991 bounds will fit in LONGEST), or -1 otherwise. */
992
993 int
994 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
995 {
996 type = check_typedef (type);
997 switch (TYPE_CODE (type))
998 {
999 case TYPE_CODE_RANGE:
1000 *lowp = TYPE_LOW_BOUND (type);
1001 *highp = TYPE_HIGH_BOUND (type);
1002 return 1;
1003 case TYPE_CODE_ENUM:
1004 if (TYPE_NFIELDS (type) > 0)
1005 {
1006 /* The enums may not be sorted by value, so search all
1007 entries. */
1008 int i;
1009
1010 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1011 for (i = 0; i < TYPE_NFIELDS (type); i++)
1012 {
1013 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1014 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1015 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1016 *highp = TYPE_FIELD_ENUMVAL (type, i);
1017 }
1018
1019 /* Set unsigned indicator if warranted. */
1020 if (*lowp >= 0)
1021 {
1022 TYPE_UNSIGNED (type) = 1;
1023 }
1024 }
1025 else
1026 {
1027 *lowp = 0;
1028 *highp = -1;
1029 }
1030 return 0;
1031 case TYPE_CODE_BOOL:
1032 *lowp = 0;
1033 *highp = 1;
1034 return 0;
1035 case TYPE_CODE_INT:
1036 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1037 return -1;
1038 if (!TYPE_UNSIGNED (type))
1039 {
1040 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1041 *highp = -*lowp - 1;
1042 return 0;
1043 }
1044 /* fall through */
1045 case TYPE_CODE_CHAR:
1046 *lowp = 0;
1047 /* This round-about calculation is to avoid shifting by
1048 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1049 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1050 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1051 *highp = (*highp - 1) | *highp;
1052 return 0;
1053 default:
1054 return -1;
1055 }
1056 }
1057
1058 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1059 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1060 Save the high bound into HIGH_BOUND if not NULL.
1061
1062 Return 1 if the operation was successful. Return zero otherwise,
1063 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1064
1065 We now simply use get_discrete_bounds call to get the values
1066 of the low and high bounds.
1067 get_discrete_bounds can return three values:
1068 1, meaning that index is a range,
1069 0, meaning that index is a discrete type,
1070 or -1 for failure. */
1071
1072 int
1073 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1074 {
1075 struct type *index = TYPE_INDEX_TYPE (type);
1076 LONGEST low = 0;
1077 LONGEST high = 0;
1078 int res;
1079
1080 if (index == NULL)
1081 return 0;
1082
1083 res = get_discrete_bounds (index, &low, &high);
1084 if (res == -1)
1085 return 0;
1086
1087 /* Check if the array bounds are undefined. */
1088 if (res == 1
1089 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1090 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1091 return 0;
1092
1093 if (low_bound)
1094 *low_bound = low;
1095
1096 if (high_bound)
1097 *high_bound = high;
1098
1099 return 1;
1100 }
1101
1102 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1103 representation of a value of this type, save the corresponding
1104 position number in POS.
1105
1106 Its differs from VAL only in the case of enumeration types. In
1107 this case, the position number of the value of the first listed
1108 enumeration literal is zero; the position number of the value of
1109 each subsequent enumeration literal is one more than that of its
1110 predecessor in the list.
1111
1112 Return 1 if the operation was successful. Return zero otherwise,
1113 in which case the value of POS is unmodified.
1114 */
1115
1116 int
1117 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1118 {
1119 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1120 {
1121 int i;
1122
1123 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1124 {
1125 if (val == TYPE_FIELD_ENUMVAL (type, i))
1126 {
1127 *pos = i;
1128 return 1;
1129 }
1130 }
1131 /* Invalid enumeration value. */
1132 return 0;
1133 }
1134 else
1135 {
1136 *pos = val;
1137 return 1;
1138 }
1139 }
1140
1141 /* Create an array type using either a blank type supplied in
1142 RESULT_TYPE, or creating a new type, inheriting the objfile from
1143 RANGE_TYPE.
1144
1145 Elements will be of type ELEMENT_TYPE, the indices will be of type
1146 RANGE_TYPE.
1147
1148 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1149 This byte stride property is added to the resulting array type
1150 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1151 argument can only be used to create types that are objfile-owned
1152 (see add_dyn_prop), meaning that either this function must be called
1153 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1154
1155 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1156 If BIT_STRIDE is not zero, build a packed array type whose element
1157 size is BIT_STRIDE. Otherwise, ignore this parameter.
1158
1159 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1160 sure it is TYPE_CODE_UNDEF before we bash it into an array
1161 type? */
1162
1163 struct type *
1164 create_array_type_with_stride (struct type *result_type,
1165 struct type *element_type,
1166 struct type *range_type,
1167 struct dynamic_prop *byte_stride_prop,
1168 unsigned int bit_stride)
1169 {
1170 if (byte_stride_prop != NULL
1171 && byte_stride_prop->kind == PROP_CONST)
1172 {
1173 /* The byte stride is actually not dynamic. Pretend we were
1174 called with bit_stride set instead of byte_stride_prop.
1175 This will give us the same result type, while avoiding
1176 the need to handle this as a special case. */
1177 bit_stride = byte_stride_prop->data.const_val * 8;
1178 byte_stride_prop = NULL;
1179 }
1180
1181 if (result_type == NULL)
1182 result_type = alloc_type_copy (range_type);
1183
1184 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1185 TYPE_TARGET_TYPE (result_type) = element_type;
1186 if (byte_stride_prop == NULL
1187 && has_static_range (TYPE_RANGE_DATA (range_type))
1188 && (!type_not_associated (result_type)
1189 && !type_not_allocated (result_type)))
1190 {
1191 LONGEST low_bound, high_bound;
1192
1193 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1194 low_bound = high_bound = 0;
1195 element_type = check_typedef (element_type);
1196 /* Be careful when setting the array length. Ada arrays can be
1197 empty arrays with the high_bound being smaller than the low_bound.
1198 In such cases, the array length should be zero. */
1199 if (high_bound < low_bound)
1200 TYPE_LENGTH (result_type) = 0;
1201 else if (bit_stride > 0)
1202 TYPE_LENGTH (result_type) =
1203 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1204 else
1205 TYPE_LENGTH (result_type) =
1206 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1207 }
1208 else
1209 {
1210 /* This type is dynamic and its length needs to be computed
1211 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1212 undefined by setting it to zero. Although we are not expected
1213 to trust TYPE_LENGTH in this case, setting the size to zero
1214 allows us to avoid allocating objects of random sizes in case
1215 we accidently do. */
1216 TYPE_LENGTH (result_type) = 0;
1217 }
1218
1219 TYPE_NFIELDS (result_type) = 1;
1220 TYPE_FIELDS (result_type) =
1221 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1222 TYPE_INDEX_TYPE (result_type) = range_type;
1223 if (byte_stride_prop != NULL)
1224 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1225 else if (bit_stride > 0)
1226 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1227
1228 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1229 if (TYPE_LENGTH (result_type) == 0)
1230 TYPE_TARGET_STUB (result_type) = 1;
1231
1232 return result_type;
1233 }
1234
1235 /* Same as create_array_type_with_stride but with no bit_stride
1236 (BIT_STRIDE = 0), thus building an unpacked array. */
1237
1238 struct type *
1239 create_array_type (struct type *result_type,
1240 struct type *element_type,
1241 struct type *range_type)
1242 {
1243 return create_array_type_with_stride (result_type, element_type,
1244 range_type, NULL, 0);
1245 }
1246
1247 struct type *
1248 lookup_array_range_type (struct type *element_type,
1249 LONGEST low_bound, LONGEST high_bound)
1250 {
1251 struct type *index_type;
1252 struct type *range_type;
1253
1254 if (TYPE_OBJFILE_OWNED (element_type))
1255 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1256 else
1257 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1258 range_type = create_static_range_type (NULL, index_type,
1259 low_bound, high_bound);
1260
1261 return create_array_type (NULL, element_type, range_type);
1262 }
1263
1264 /* Create a string type using either a blank type supplied in
1265 RESULT_TYPE, or creating a new type. String types are similar
1266 enough to array of char types that we can use create_array_type to
1267 build the basic type and then bash it into a string type.
1268
1269 For fixed length strings, the range type contains 0 as the lower
1270 bound and the length of the string minus one as the upper bound.
1271
1272 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1273 sure it is TYPE_CODE_UNDEF before we bash it into a string
1274 type? */
1275
1276 struct type *
1277 create_string_type (struct type *result_type,
1278 struct type *string_char_type,
1279 struct type *range_type)
1280 {
1281 result_type = create_array_type (result_type,
1282 string_char_type,
1283 range_type);
1284 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1285 return result_type;
1286 }
1287
1288 struct type *
1289 lookup_string_range_type (struct type *string_char_type,
1290 LONGEST low_bound, LONGEST high_bound)
1291 {
1292 struct type *result_type;
1293
1294 result_type = lookup_array_range_type (string_char_type,
1295 low_bound, high_bound);
1296 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1297 return result_type;
1298 }
1299
1300 struct type *
1301 create_set_type (struct type *result_type, struct type *domain_type)
1302 {
1303 if (result_type == NULL)
1304 result_type = alloc_type_copy (domain_type);
1305
1306 TYPE_CODE (result_type) = TYPE_CODE_SET;
1307 TYPE_NFIELDS (result_type) = 1;
1308 TYPE_FIELDS (result_type)
1309 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1310
1311 if (!TYPE_STUB (domain_type))
1312 {
1313 LONGEST low_bound, high_bound, bit_length;
1314
1315 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1316 low_bound = high_bound = 0;
1317 bit_length = high_bound - low_bound + 1;
1318 TYPE_LENGTH (result_type)
1319 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1320 if (low_bound >= 0)
1321 TYPE_UNSIGNED (result_type) = 1;
1322 }
1323 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1324
1325 return result_type;
1326 }
1327
1328 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1329 and any array types nested inside it. */
1330
1331 void
1332 make_vector_type (struct type *array_type)
1333 {
1334 struct type *inner_array, *elt_type;
1335 int flags;
1336
1337 /* Find the innermost array type, in case the array is
1338 multi-dimensional. */
1339 inner_array = array_type;
1340 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1341 inner_array = TYPE_TARGET_TYPE (inner_array);
1342
1343 elt_type = TYPE_TARGET_TYPE (inner_array);
1344 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1345 {
1346 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1347 elt_type = make_qualified_type (elt_type, flags, NULL);
1348 TYPE_TARGET_TYPE (inner_array) = elt_type;
1349 }
1350
1351 TYPE_VECTOR (array_type) = 1;
1352 }
1353
1354 struct type *
1355 init_vector_type (struct type *elt_type, int n)
1356 {
1357 struct type *array_type;
1358
1359 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1360 make_vector_type (array_type);
1361 return array_type;
1362 }
1363
1364 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1365 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1366 confusing. "self" is a common enough replacement for "this".
1367 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1368 TYPE_CODE_METHOD. */
1369
1370 struct type *
1371 internal_type_self_type (struct type *type)
1372 {
1373 switch (TYPE_CODE (type))
1374 {
1375 case TYPE_CODE_METHODPTR:
1376 case TYPE_CODE_MEMBERPTR:
1377 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1378 return NULL;
1379 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1380 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1381 case TYPE_CODE_METHOD:
1382 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1383 return NULL;
1384 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1385 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1386 default:
1387 gdb_assert_not_reached ("bad type");
1388 }
1389 }
1390
1391 /* Set the type of the class that TYPE belongs to.
1392 In c++ this is the class of "this".
1393 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1394 TYPE_CODE_METHOD. */
1395
1396 void
1397 set_type_self_type (struct type *type, struct type *self_type)
1398 {
1399 switch (TYPE_CODE (type))
1400 {
1401 case TYPE_CODE_METHODPTR:
1402 case TYPE_CODE_MEMBERPTR:
1403 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1404 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1405 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1406 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1407 break;
1408 case TYPE_CODE_METHOD:
1409 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1410 INIT_FUNC_SPECIFIC (type);
1411 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1412 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1413 break;
1414 default:
1415 gdb_assert_not_reached ("bad type");
1416 }
1417 }
1418
1419 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1420 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1421 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1422 TYPE doesn't include the offset (that's the value of the MEMBER
1423 itself), but does include the structure type into which it points
1424 (for some reason).
1425
1426 When "smashing" the type, we preserve the objfile that the old type
1427 pointed to, since we aren't changing where the type is actually
1428 allocated. */
1429
1430 void
1431 smash_to_memberptr_type (struct type *type, struct type *self_type,
1432 struct type *to_type)
1433 {
1434 smash_type (type);
1435 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1436 TYPE_TARGET_TYPE (type) = to_type;
1437 set_type_self_type (type, self_type);
1438 /* Assume that a data member pointer is the same size as a normal
1439 pointer. */
1440 TYPE_LENGTH (type)
1441 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1442 }
1443
1444 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1445
1446 When "smashing" the type, we preserve the objfile that the old type
1447 pointed to, since we aren't changing where the type is actually
1448 allocated. */
1449
1450 void
1451 smash_to_methodptr_type (struct type *type, struct type *to_type)
1452 {
1453 smash_type (type);
1454 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1455 TYPE_TARGET_TYPE (type) = to_type;
1456 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1457 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1458 }
1459
1460 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1461 METHOD just means `function that gets an extra "this" argument'.
1462
1463 When "smashing" the type, we preserve the objfile that the old type
1464 pointed to, since we aren't changing where the type is actually
1465 allocated. */
1466
1467 void
1468 smash_to_method_type (struct type *type, struct type *self_type,
1469 struct type *to_type, struct field *args,
1470 int nargs, int varargs)
1471 {
1472 smash_type (type);
1473 TYPE_CODE (type) = TYPE_CODE_METHOD;
1474 TYPE_TARGET_TYPE (type) = to_type;
1475 set_type_self_type (type, self_type);
1476 TYPE_FIELDS (type) = args;
1477 TYPE_NFIELDS (type) = nargs;
1478 if (varargs)
1479 TYPE_VARARGS (type) = 1;
1480 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1481 }
1482
1483 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1484 Since GCC PR debug/47510 DWARF provides associated information to detect the
1485 anonymous class linkage name from its typedef.
1486
1487 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1488 apply it itself. */
1489
1490 const char *
1491 type_name_or_error (struct type *type)
1492 {
1493 struct type *saved_type = type;
1494 const char *name;
1495 struct objfile *objfile;
1496
1497 type = check_typedef (type);
1498
1499 name = TYPE_NAME (type);
1500 if (name != NULL)
1501 return name;
1502
1503 name = TYPE_NAME (saved_type);
1504 objfile = TYPE_OBJFILE (saved_type);
1505 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1506 name ? name : "<anonymous>",
1507 objfile ? objfile_name (objfile) : "<arch>");
1508 }
1509
1510 /* Lookup a typedef or primitive type named NAME, visible in lexical
1511 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1512 suitably defined. */
1513
1514 struct type *
1515 lookup_typename (const struct language_defn *language,
1516 struct gdbarch *gdbarch, const char *name,
1517 const struct block *block, int noerr)
1518 {
1519 struct symbol *sym;
1520
1521 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1522 language->la_language, NULL).symbol;
1523 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1524 return SYMBOL_TYPE (sym);
1525
1526 if (noerr)
1527 return NULL;
1528 error (_("No type named %s."), name);
1529 }
1530
1531 struct type *
1532 lookup_unsigned_typename (const struct language_defn *language,
1533 struct gdbarch *gdbarch, const char *name)
1534 {
1535 char *uns = (char *) alloca (strlen (name) + 10);
1536
1537 strcpy (uns, "unsigned ");
1538 strcpy (uns + 9, name);
1539 return lookup_typename (language, gdbarch, uns, NULL, 0);
1540 }
1541
1542 struct type *
1543 lookup_signed_typename (const struct language_defn *language,
1544 struct gdbarch *gdbarch, const char *name)
1545 {
1546 struct type *t;
1547 char *uns = (char *) alloca (strlen (name) + 8);
1548
1549 strcpy (uns, "signed ");
1550 strcpy (uns + 7, name);
1551 t = lookup_typename (language, gdbarch, uns, NULL, 1);
1552 /* If we don't find "signed FOO" just try again with plain "FOO". */
1553 if (t != NULL)
1554 return t;
1555 return lookup_typename (language, gdbarch, name, NULL, 0);
1556 }
1557
1558 /* Lookup a structure type named "struct NAME",
1559 visible in lexical block BLOCK. */
1560
1561 struct type *
1562 lookup_struct (const char *name, const struct block *block)
1563 {
1564 struct symbol *sym;
1565
1566 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1567
1568 if (sym == NULL)
1569 {
1570 error (_("No struct type named %s."), name);
1571 }
1572 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1573 {
1574 error (_("This context has class, union or enum %s, not a struct."),
1575 name);
1576 }
1577 return (SYMBOL_TYPE (sym));
1578 }
1579
1580 /* Lookup a union type named "union NAME",
1581 visible in lexical block BLOCK. */
1582
1583 struct type *
1584 lookup_union (const char *name, const struct block *block)
1585 {
1586 struct symbol *sym;
1587 struct type *t;
1588
1589 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1590
1591 if (sym == NULL)
1592 error (_("No union type named %s."), name);
1593
1594 t = SYMBOL_TYPE (sym);
1595
1596 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1597 return t;
1598
1599 /* If we get here, it's not a union. */
1600 error (_("This context has class, struct or enum %s, not a union."),
1601 name);
1602 }
1603
1604 /* Lookup an enum type named "enum NAME",
1605 visible in lexical block BLOCK. */
1606
1607 struct type *
1608 lookup_enum (const char *name, const struct block *block)
1609 {
1610 struct symbol *sym;
1611
1612 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1613 if (sym == NULL)
1614 {
1615 error (_("No enum type named %s."), name);
1616 }
1617 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1618 {
1619 error (_("This context has class, struct or union %s, not an enum."),
1620 name);
1621 }
1622 return (SYMBOL_TYPE (sym));
1623 }
1624
1625 /* Lookup a template type named "template NAME<TYPE>",
1626 visible in lexical block BLOCK. */
1627
1628 struct type *
1629 lookup_template_type (const char *name, struct type *type,
1630 const struct block *block)
1631 {
1632 struct symbol *sym;
1633 char *nam = (char *)
1634 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1635
1636 strcpy (nam, name);
1637 strcat (nam, "<");
1638 strcat (nam, TYPE_NAME (type));
1639 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1640
1641 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1642
1643 if (sym == NULL)
1644 {
1645 error (_("No template type named %s."), name);
1646 }
1647 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1648 {
1649 error (_("This context has class, union or enum %s, not a struct."),
1650 name);
1651 }
1652 return (SYMBOL_TYPE (sym));
1653 }
1654
1655 /* See gdbtypes.h. */
1656
1657 struct_elt
1658 lookup_struct_elt (struct type *type, const char *name, int noerr)
1659 {
1660 int i;
1661
1662 for (;;)
1663 {
1664 type = check_typedef (type);
1665 if (TYPE_CODE (type) != TYPE_CODE_PTR
1666 && TYPE_CODE (type) != TYPE_CODE_REF)
1667 break;
1668 type = TYPE_TARGET_TYPE (type);
1669 }
1670
1671 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1672 && TYPE_CODE (type) != TYPE_CODE_UNION)
1673 {
1674 std::string type_name = type_to_string (type);
1675 error (_("Type %s is not a structure or union type."),
1676 type_name.c_str ());
1677 }
1678
1679 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1680 {
1681 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1682
1683 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1684 {
1685 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
1686 }
1687 else if (!t_field_name || *t_field_name == '\0')
1688 {
1689 struct_elt elt
1690 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1691 if (elt.field != NULL)
1692 {
1693 elt.offset += TYPE_FIELD_BITPOS (type, i);
1694 return elt;
1695 }
1696 }
1697 }
1698
1699 /* OK, it's not in this class. Recursively check the baseclasses. */
1700 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1701 {
1702 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1703 if (elt.field != NULL)
1704 return elt;
1705 }
1706
1707 if (noerr)
1708 return {nullptr, 0};
1709
1710 std::string type_name = type_to_string (type);
1711 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1712 }
1713
1714 /* See gdbtypes.h. */
1715
1716 struct type *
1717 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1718 {
1719 struct_elt elt = lookup_struct_elt (type, name, noerr);
1720 if (elt.field != NULL)
1721 return FIELD_TYPE (*elt.field);
1722 else
1723 return NULL;
1724 }
1725
1726 /* Store in *MAX the largest number representable by unsigned integer type
1727 TYPE. */
1728
1729 void
1730 get_unsigned_type_max (struct type *type, ULONGEST *max)
1731 {
1732 unsigned int n;
1733
1734 type = check_typedef (type);
1735 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1736 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1737
1738 /* Written this way to avoid overflow. */
1739 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1740 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1741 }
1742
1743 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1744 signed integer type TYPE. */
1745
1746 void
1747 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1748 {
1749 unsigned int n;
1750
1751 type = check_typedef (type);
1752 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1753 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1754
1755 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1756 *min = -((ULONGEST) 1 << (n - 1));
1757 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1758 }
1759
1760 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1761 cplus_stuff.vptr_fieldno.
1762
1763 cplus_stuff is initialized to cplus_struct_default which does not
1764 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1765 designated initializers). We cope with that here. */
1766
1767 int
1768 internal_type_vptr_fieldno (struct type *type)
1769 {
1770 type = check_typedef (type);
1771 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1772 || TYPE_CODE (type) == TYPE_CODE_UNION);
1773 if (!HAVE_CPLUS_STRUCT (type))
1774 return -1;
1775 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1776 }
1777
1778 /* Set the value of cplus_stuff.vptr_fieldno. */
1779
1780 void
1781 set_type_vptr_fieldno (struct type *type, int fieldno)
1782 {
1783 type = check_typedef (type);
1784 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1785 || TYPE_CODE (type) == TYPE_CODE_UNION);
1786 if (!HAVE_CPLUS_STRUCT (type))
1787 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1788 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1789 }
1790
1791 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1792 cplus_stuff.vptr_basetype. */
1793
1794 struct type *
1795 internal_type_vptr_basetype (struct type *type)
1796 {
1797 type = check_typedef (type);
1798 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1799 || TYPE_CODE (type) == TYPE_CODE_UNION);
1800 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1801 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1802 }
1803
1804 /* Set the value of cplus_stuff.vptr_basetype. */
1805
1806 void
1807 set_type_vptr_basetype (struct type *type, struct type *basetype)
1808 {
1809 type = check_typedef (type);
1810 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1811 || TYPE_CODE (type) == TYPE_CODE_UNION);
1812 if (!HAVE_CPLUS_STRUCT (type))
1813 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1814 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1815 }
1816
1817 /* Lookup the vptr basetype/fieldno values for TYPE.
1818 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1819 vptr_fieldno. Also, if found and basetype is from the same objfile,
1820 cache the results.
1821 If not found, return -1 and ignore BASETYPEP.
1822 Callers should be aware that in some cases (for example,
1823 the type or one of its baseclasses is a stub type and we are
1824 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1825 this function will not be able to find the
1826 virtual function table pointer, and vptr_fieldno will remain -1 and
1827 vptr_basetype will remain NULL or incomplete. */
1828
1829 int
1830 get_vptr_fieldno (struct type *type, struct type **basetypep)
1831 {
1832 type = check_typedef (type);
1833
1834 if (TYPE_VPTR_FIELDNO (type) < 0)
1835 {
1836 int i;
1837
1838 /* We must start at zero in case the first (and only) baseclass
1839 is virtual (and hence we cannot share the table pointer). */
1840 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1841 {
1842 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1843 int fieldno;
1844 struct type *basetype;
1845
1846 fieldno = get_vptr_fieldno (baseclass, &basetype);
1847 if (fieldno >= 0)
1848 {
1849 /* If the type comes from a different objfile we can't cache
1850 it, it may have a different lifetime. PR 2384 */
1851 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1852 {
1853 set_type_vptr_fieldno (type, fieldno);
1854 set_type_vptr_basetype (type, basetype);
1855 }
1856 if (basetypep)
1857 *basetypep = basetype;
1858 return fieldno;
1859 }
1860 }
1861
1862 /* Not found. */
1863 return -1;
1864 }
1865 else
1866 {
1867 if (basetypep)
1868 *basetypep = TYPE_VPTR_BASETYPE (type);
1869 return TYPE_VPTR_FIELDNO (type);
1870 }
1871 }
1872
1873 static void
1874 stub_noname_complaint (void)
1875 {
1876 complaint (_("stub type has NULL name"));
1877 }
1878
1879 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1880 attached to it, and that property has a non-constant value. */
1881
1882 static int
1883 array_type_has_dynamic_stride (struct type *type)
1884 {
1885 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1886
1887 return (prop != NULL && prop->kind != PROP_CONST);
1888 }
1889
1890 /* Worker for is_dynamic_type. */
1891
1892 static int
1893 is_dynamic_type_internal (struct type *type, int top_level)
1894 {
1895 type = check_typedef (type);
1896
1897 /* We only want to recognize references at the outermost level. */
1898 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1899 type = check_typedef (TYPE_TARGET_TYPE (type));
1900
1901 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1902 dynamic, even if the type itself is statically defined.
1903 From a user's point of view, this may appear counter-intuitive;
1904 but it makes sense in this context, because the point is to determine
1905 whether any part of the type needs to be resolved before it can
1906 be exploited. */
1907 if (TYPE_DATA_LOCATION (type) != NULL
1908 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1909 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1910 return 1;
1911
1912 if (TYPE_ASSOCIATED_PROP (type))
1913 return 1;
1914
1915 if (TYPE_ALLOCATED_PROP (type))
1916 return 1;
1917
1918 switch (TYPE_CODE (type))
1919 {
1920 case TYPE_CODE_RANGE:
1921 {
1922 /* A range type is obviously dynamic if it has at least one
1923 dynamic bound. But also consider the range type to be
1924 dynamic when its subtype is dynamic, even if the bounds
1925 of the range type are static. It allows us to assume that
1926 the subtype of a static range type is also static. */
1927 return (!has_static_range (TYPE_RANGE_DATA (type))
1928 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1929 }
1930
1931 case TYPE_CODE_ARRAY:
1932 {
1933 gdb_assert (TYPE_NFIELDS (type) == 1);
1934
1935 /* The array is dynamic if either the bounds are dynamic... */
1936 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1937 return 1;
1938 /* ... or the elements it contains have a dynamic contents... */
1939 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1940 return 1;
1941 /* ... or if it has a dynamic stride... */
1942 if (array_type_has_dynamic_stride (type))
1943 return 1;
1944 return 0;
1945 }
1946
1947 case TYPE_CODE_STRUCT:
1948 case TYPE_CODE_UNION:
1949 {
1950 int i;
1951
1952 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1953 if (!field_is_static (&TYPE_FIELD (type, i))
1954 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1955 return 1;
1956 }
1957 break;
1958 }
1959
1960 return 0;
1961 }
1962
1963 /* See gdbtypes.h. */
1964
1965 int
1966 is_dynamic_type (struct type *type)
1967 {
1968 return is_dynamic_type_internal (type, 1);
1969 }
1970
1971 static struct type *resolve_dynamic_type_internal
1972 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1973
1974 /* Given a dynamic range type (dyn_range_type) and a stack of
1975 struct property_addr_info elements, return a static version
1976 of that type. */
1977
1978 static struct type *
1979 resolve_dynamic_range (struct type *dyn_range_type,
1980 struct property_addr_info *addr_stack)
1981 {
1982 CORE_ADDR value;
1983 struct type *static_range_type, *static_target_type;
1984 const struct dynamic_prop *prop;
1985 struct dynamic_prop low_bound, high_bound;
1986
1987 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1988
1989 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1990 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1991 {
1992 low_bound.kind = PROP_CONST;
1993 low_bound.data.const_val = value;
1994 }
1995 else
1996 {
1997 low_bound.kind = PROP_UNDEFINED;
1998 low_bound.data.const_val = 0;
1999 }
2000
2001 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2002 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2003 {
2004 high_bound.kind = PROP_CONST;
2005 high_bound.data.const_val = value;
2006
2007 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2008 high_bound.data.const_val
2009 = low_bound.data.const_val + high_bound.data.const_val - 1;
2010 }
2011 else
2012 {
2013 high_bound.kind = PROP_UNDEFINED;
2014 high_bound.data.const_val = 0;
2015 }
2016
2017 static_target_type
2018 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2019 addr_stack, 0);
2020 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
2021 static_range_type = create_range_type (copy_type (dyn_range_type),
2022 static_target_type,
2023 &low_bound, &high_bound, bias);
2024 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2025 return static_range_type;
2026 }
2027
2028 /* Resolves dynamic bound values of an array type TYPE to static ones.
2029 ADDR_STACK is a stack of struct property_addr_info to be used
2030 if needed during the dynamic resolution. */
2031
2032 static struct type *
2033 resolve_dynamic_array (struct type *type,
2034 struct property_addr_info *addr_stack)
2035 {
2036 CORE_ADDR value;
2037 struct type *elt_type;
2038 struct type *range_type;
2039 struct type *ary_dim;
2040 struct dynamic_prop *prop;
2041 unsigned int bit_stride = 0;
2042
2043 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2044
2045 type = copy_type (type);
2046
2047 elt_type = type;
2048 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2049 range_type = resolve_dynamic_range (range_type, addr_stack);
2050
2051 /* Resolve allocated/associated here before creating a new array type, which
2052 will update the length of the array accordingly. */
2053 prop = TYPE_ALLOCATED_PROP (type);
2054 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2055 {
2056 TYPE_DYN_PROP_ADDR (prop) = value;
2057 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2058 }
2059 prop = TYPE_ASSOCIATED_PROP (type);
2060 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2061 {
2062 TYPE_DYN_PROP_ADDR (prop) = value;
2063 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2064 }
2065
2066 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2067
2068 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2069 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
2070 else
2071 elt_type = TYPE_TARGET_TYPE (type);
2072
2073 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2074 if (prop != NULL)
2075 {
2076 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2077 {
2078 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2079 bit_stride = (unsigned int) (value * 8);
2080 }
2081 else
2082 {
2083 /* Could be a bug in our code, but it could also happen
2084 if the DWARF info is not correct. Issue a warning,
2085 and assume no byte/bit stride (leave bit_stride = 0). */
2086 warning (_("cannot determine array stride for type %s"),
2087 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2088 }
2089 }
2090 else
2091 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2092
2093 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2094 bit_stride);
2095 }
2096
2097 /* Resolve dynamic bounds of members of the union TYPE to static
2098 bounds. ADDR_STACK is a stack of struct property_addr_info
2099 to be used if needed during the dynamic resolution. */
2100
2101 static struct type *
2102 resolve_dynamic_union (struct type *type,
2103 struct property_addr_info *addr_stack)
2104 {
2105 struct type *resolved_type;
2106 int i;
2107 unsigned int max_len = 0;
2108
2109 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2110
2111 resolved_type = copy_type (type);
2112 TYPE_FIELDS (resolved_type)
2113 = (struct field *) TYPE_ALLOC (resolved_type,
2114 TYPE_NFIELDS (resolved_type)
2115 * sizeof (struct field));
2116 memcpy (TYPE_FIELDS (resolved_type),
2117 TYPE_FIELDS (type),
2118 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2119 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2120 {
2121 struct type *t;
2122
2123 if (field_is_static (&TYPE_FIELD (type, i)))
2124 continue;
2125
2126 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2127 addr_stack, 0);
2128 TYPE_FIELD_TYPE (resolved_type, i) = t;
2129 if (TYPE_LENGTH (t) > max_len)
2130 max_len = TYPE_LENGTH (t);
2131 }
2132
2133 TYPE_LENGTH (resolved_type) = max_len;
2134 return resolved_type;
2135 }
2136
2137 /* Resolve dynamic bounds of members of the struct TYPE to static
2138 bounds. ADDR_STACK is a stack of struct property_addr_info to
2139 be used if needed during the dynamic resolution. */
2140
2141 static struct type *
2142 resolve_dynamic_struct (struct type *type,
2143 struct property_addr_info *addr_stack)
2144 {
2145 struct type *resolved_type;
2146 int i;
2147 unsigned resolved_type_bit_length = 0;
2148
2149 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2150 gdb_assert (TYPE_NFIELDS (type) > 0);
2151
2152 resolved_type = copy_type (type);
2153 TYPE_FIELDS (resolved_type)
2154 = (struct field *) TYPE_ALLOC (resolved_type,
2155 TYPE_NFIELDS (resolved_type)
2156 * sizeof (struct field));
2157 memcpy (TYPE_FIELDS (resolved_type),
2158 TYPE_FIELDS (type),
2159 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2160 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2161 {
2162 unsigned new_bit_length;
2163 struct property_addr_info pinfo;
2164
2165 if (field_is_static (&TYPE_FIELD (type, i)))
2166 continue;
2167
2168 /* As we know this field is not a static field, the field's
2169 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2170 this is the case, but only trigger a simple error rather
2171 than an internal error if that fails. While failing
2172 that verification indicates a bug in our code, the error
2173 is not severe enough to suggest to the user he stops
2174 his debugging session because of it. */
2175 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2176 error (_("Cannot determine struct field location"
2177 " (invalid location kind)"));
2178
2179 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2180 pinfo.valaddr = addr_stack->valaddr;
2181 pinfo.addr
2182 = (addr_stack->addr
2183 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2184 pinfo.next = addr_stack;
2185
2186 TYPE_FIELD_TYPE (resolved_type, i)
2187 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2188 &pinfo, 0);
2189 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2190 == FIELD_LOC_KIND_BITPOS);
2191
2192 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2193 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2194 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2195 else
2196 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2197 * TARGET_CHAR_BIT);
2198
2199 /* Normally, we would use the position and size of the last field
2200 to determine the size of the enclosing structure. But GCC seems
2201 to be encoding the position of some fields incorrectly when
2202 the struct contains a dynamic field that is not placed last.
2203 So we compute the struct size based on the field that has
2204 the highest position + size - probably the best we can do. */
2205 if (new_bit_length > resolved_type_bit_length)
2206 resolved_type_bit_length = new_bit_length;
2207 }
2208
2209 /* The length of a type won't change for fortran, but it does for C and Ada.
2210 For fortran the size of dynamic fields might change over time but not the
2211 type length of the structure. If we adapt it, we run into problems
2212 when calculating the element offset for arrays of structs. */
2213 if (current_language->la_language != language_fortran)
2214 TYPE_LENGTH (resolved_type)
2215 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2216
2217 /* The Ada language uses this field as a cache for static fixed types: reset
2218 it as RESOLVED_TYPE must have its own static fixed type. */
2219 TYPE_TARGET_TYPE (resolved_type) = NULL;
2220
2221 return resolved_type;
2222 }
2223
2224 /* Worker for resolved_dynamic_type. */
2225
2226 static struct type *
2227 resolve_dynamic_type_internal (struct type *type,
2228 struct property_addr_info *addr_stack,
2229 int top_level)
2230 {
2231 struct type *real_type = check_typedef (type);
2232 struct type *resolved_type = type;
2233 struct dynamic_prop *prop;
2234 CORE_ADDR value;
2235
2236 if (!is_dynamic_type_internal (real_type, top_level))
2237 return type;
2238
2239 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2240 {
2241 resolved_type = copy_type (type);
2242 TYPE_TARGET_TYPE (resolved_type)
2243 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2244 top_level);
2245 }
2246 else
2247 {
2248 /* Before trying to resolve TYPE, make sure it is not a stub. */
2249 type = real_type;
2250
2251 switch (TYPE_CODE (type))
2252 {
2253 case TYPE_CODE_REF:
2254 {
2255 struct property_addr_info pinfo;
2256
2257 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2258 pinfo.valaddr = NULL;
2259 if (addr_stack->valaddr != NULL)
2260 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2261 else
2262 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2263 pinfo.next = addr_stack;
2264
2265 resolved_type = copy_type (type);
2266 TYPE_TARGET_TYPE (resolved_type)
2267 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2268 &pinfo, top_level);
2269 break;
2270 }
2271
2272 case TYPE_CODE_ARRAY:
2273 resolved_type = resolve_dynamic_array (type, addr_stack);
2274 break;
2275
2276 case TYPE_CODE_RANGE:
2277 resolved_type = resolve_dynamic_range (type, addr_stack);
2278 break;
2279
2280 case TYPE_CODE_UNION:
2281 resolved_type = resolve_dynamic_union (type, addr_stack);
2282 break;
2283
2284 case TYPE_CODE_STRUCT:
2285 resolved_type = resolve_dynamic_struct (type, addr_stack);
2286 break;
2287 }
2288 }
2289
2290 /* Resolve data_location attribute. */
2291 prop = TYPE_DATA_LOCATION (resolved_type);
2292 if (prop != NULL
2293 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2294 {
2295 TYPE_DYN_PROP_ADDR (prop) = value;
2296 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2297 }
2298
2299 return resolved_type;
2300 }
2301
2302 /* See gdbtypes.h */
2303
2304 struct type *
2305 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2306 CORE_ADDR addr)
2307 {
2308 struct property_addr_info pinfo
2309 = {check_typedef (type), valaddr, addr, NULL};
2310
2311 return resolve_dynamic_type_internal (type, &pinfo, 1);
2312 }
2313
2314 /* See gdbtypes.h */
2315
2316 struct dynamic_prop *
2317 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2318 {
2319 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2320
2321 while (node != NULL)
2322 {
2323 if (node->prop_kind == prop_kind)
2324 return &node->prop;
2325 node = node->next;
2326 }
2327 return NULL;
2328 }
2329
2330 /* See gdbtypes.h */
2331
2332 void
2333 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2334 struct type *type)
2335 {
2336 struct dynamic_prop_list *temp;
2337
2338 gdb_assert (TYPE_OBJFILE_OWNED (type));
2339
2340 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2341 struct dynamic_prop_list);
2342 temp->prop_kind = prop_kind;
2343 temp->prop = prop;
2344 temp->next = TYPE_DYN_PROP_LIST (type);
2345
2346 TYPE_DYN_PROP_LIST (type) = temp;
2347 }
2348
2349 /* Remove dynamic property from TYPE in case it exists. */
2350
2351 void
2352 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2353 struct type *type)
2354 {
2355 struct dynamic_prop_list *prev_node, *curr_node;
2356
2357 curr_node = TYPE_DYN_PROP_LIST (type);
2358 prev_node = NULL;
2359
2360 while (NULL != curr_node)
2361 {
2362 if (curr_node->prop_kind == prop_kind)
2363 {
2364 /* Update the linked list but don't free anything.
2365 The property was allocated on objstack and it is not known
2366 if we are on top of it. Nevertheless, everything is released
2367 when the complete objstack is freed. */
2368 if (NULL == prev_node)
2369 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2370 else
2371 prev_node->next = curr_node->next;
2372
2373 return;
2374 }
2375
2376 prev_node = curr_node;
2377 curr_node = curr_node->next;
2378 }
2379 }
2380
2381 /* Find the real type of TYPE. This function returns the real type,
2382 after removing all layers of typedefs, and completing opaque or stub
2383 types. Completion changes the TYPE argument, but stripping of
2384 typedefs does not.
2385
2386 Instance flags (e.g. const/volatile) are preserved as typedefs are
2387 stripped. If necessary a new qualified form of the underlying type
2388 is created.
2389
2390 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2391 not been computed and we're either in the middle of reading symbols, or
2392 there was no name for the typedef in the debug info.
2393
2394 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2395 QUITs in the symbol reading code can also throw.
2396 Thus this function can throw an exception.
2397
2398 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2399 the target type.
2400
2401 If this is a stubbed struct (i.e. declared as struct foo *), see if
2402 we can find a full definition in some other file. If so, copy this
2403 definition, so we can use it in future. There used to be a comment
2404 (but not any code) that if we don't find a full definition, we'd
2405 set a flag so we don't spend time in the future checking the same
2406 type. That would be a mistake, though--we might load in more
2407 symbols which contain a full definition for the type. */
2408
2409 struct type *
2410 check_typedef (struct type *type)
2411 {
2412 struct type *orig_type = type;
2413 /* While we're removing typedefs, we don't want to lose qualifiers.
2414 E.g., const/volatile. */
2415 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2416
2417 gdb_assert (type);
2418
2419 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2420 {
2421 if (!TYPE_TARGET_TYPE (type))
2422 {
2423 const char *name;
2424 struct symbol *sym;
2425
2426 /* It is dangerous to call lookup_symbol if we are currently
2427 reading a symtab. Infinite recursion is one danger. */
2428 if (currently_reading_symtab)
2429 return make_qualified_type (type, instance_flags, NULL);
2430
2431 name = TYPE_NAME (type);
2432 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2433 VAR_DOMAIN as appropriate? */
2434 if (name == NULL)
2435 {
2436 stub_noname_complaint ();
2437 return make_qualified_type (type, instance_flags, NULL);
2438 }
2439 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2440 if (sym)
2441 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2442 else /* TYPE_CODE_UNDEF */
2443 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2444 }
2445 type = TYPE_TARGET_TYPE (type);
2446
2447 /* Preserve the instance flags as we traverse down the typedef chain.
2448
2449 Handling address spaces/classes is nasty, what do we do if there's a
2450 conflict?
2451 E.g., what if an outer typedef marks the type as class_1 and an inner
2452 typedef marks the type as class_2?
2453 This is the wrong place to do such error checking. We leave it to
2454 the code that created the typedef in the first place to flag the
2455 error. We just pick the outer address space (akin to letting the
2456 outer cast in a chain of casting win), instead of assuming
2457 "it can't happen". */
2458 {
2459 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2460 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2461 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2462 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2463
2464 /* Treat code vs data spaces and address classes separately. */
2465 if ((instance_flags & ALL_SPACES) != 0)
2466 new_instance_flags &= ~ALL_SPACES;
2467 if ((instance_flags & ALL_CLASSES) != 0)
2468 new_instance_flags &= ~ALL_CLASSES;
2469
2470 instance_flags |= new_instance_flags;
2471 }
2472 }
2473
2474 /* If this is a struct/class/union with no fields, then check
2475 whether a full definition exists somewhere else. This is for
2476 systems where a type definition with no fields is issued for such
2477 types, instead of identifying them as stub types in the first
2478 place. */
2479
2480 if (TYPE_IS_OPAQUE (type)
2481 && opaque_type_resolution
2482 && !currently_reading_symtab)
2483 {
2484 const char *name = TYPE_NAME (type);
2485 struct type *newtype;
2486
2487 if (name == NULL)
2488 {
2489 stub_noname_complaint ();
2490 return make_qualified_type (type, instance_flags, NULL);
2491 }
2492 newtype = lookup_transparent_type (name);
2493
2494 if (newtype)
2495 {
2496 /* If the resolved type and the stub are in the same
2497 objfile, then replace the stub type with the real deal.
2498 But if they're in separate objfiles, leave the stub
2499 alone; we'll just look up the transparent type every time
2500 we call check_typedef. We can't create pointers between
2501 types allocated to different objfiles, since they may
2502 have different lifetimes. Trying to copy NEWTYPE over to
2503 TYPE's objfile is pointless, too, since you'll have to
2504 move over any other types NEWTYPE refers to, which could
2505 be an unbounded amount of stuff. */
2506 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2507 type = make_qualified_type (newtype,
2508 TYPE_INSTANCE_FLAGS (type),
2509 type);
2510 else
2511 type = newtype;
2512 }
2513 }
2514 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2515 types. */
2516 else if (TYPE_STUB (type) && !currently_reading_symtab)
2517 {
2518 const char *name = TYPE_NAME (type);
2519 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2520 as appropriate? */
2521 struct symbol *sym;
2522
2523 if (name == NULL)
2524 {
2525 stub_noname_complaint ();
2526 return make_qualified_type (type, instance_flags, NULL);
2527 }
2528 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2529 if (sym)
2530 {
2531 /* Same as above for opaque types, we can replace the stub
2532 with the complete type only if they are in the same
2533 objfile. */
2534 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2535 type = make_qualified_type (SYMBOL_TYPE (sym),
2536 TYPE_INSTANCE_FLAGS (type),
2537 type);
2538 else
2539 type = SYMBOL_TYPE (sym);
2540 }
2541 }
2542
2543 if (TYPE_TARGET_STUB (type))
2544 {
2545 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2546
2547 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2548 {
2549 /* Nothing we can do. */
2550 }
2551 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2552 {
2553 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2554 TYPE_TARGET_STUB (type) = 0;
2555 }
2556 }
2557
2558 type = make_qualified_type (type, instance_flags, NULL);
2559
2560 /* Cache TYPE_LENGTH for future use. */
2561 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2562
2563 return type;
2564 }
2565
2566 /* Parse a type expression in the string [P..P+LENGTH). If an error
2567 occurs, silently return a void type. */
2568
2569 static struct type *
2570 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2571 {
2572 struct ui_file *saved_gdb_stderr;
2573 struct type *type = NULL; /* Initialize to keep gcc happy. */
2574
2575 /* Suppress error messages. */
2576 saved_gdb_stderr = gdb_stderr;
2577 gdb_stderr = &null_stream;
2578
2579 /* Call parse_and_eval_type() without fear of longjmp()s. */
2580 try
2581 {
2582 type = parse_and_eval_type (p, length);
2583 }
2584 catch (const gdb_exception_error &except)
2585 {
2586 type = builtin_type (gdbarch)->builtin_void;
2587 }
2588
2589 /* Stop suppressing error messages. */
2590 gdb_stderr = saved_gdb_stderr;
2591
2592 return type;
2593 }
2594
2595 /* Ugly hack to convert method stubs into method types.
2596
2597 He ain't kiddin'. This demangles the name of the method into a
2598 string including argument types, parses out each argument type,
2599 generates a string casting a zero to that type, evaluates the
2600 string, and stuffs the resulting type into an argtype vector!!!
2601 Then it knows the type of the whole function (including argument
2602 types for overloading), which info used to be in the stab's but was
2603 removed to hack back the space required for them. */
2604
2605 static void
2606 check_stub_method (struct type *type, int method_id, int signature_id)
2607 {
2608 struct gdbarch *gdbarch = get_type_arch (type);
2609 struct fn_field *f;
2610 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2611 char *demangled_name = gdb_demangle (mangled_name,
2612 DMGL_PARAMS | DMGL_ANSI);
2613 char *argtypetext, *p;
2614 int depth = 0, argcount = 1;
2615 struct field *argtypes;
2616 struct type *mtype;
2617
2618 /* Make sure we got back a function string that we can use. */
2619 if (demangled_name)
2620 p = strchr (demangled_name, '(');
2621 else
2622 p = NULL;
2623
2624 if (demangled_name == NULL || p == NULL)
2625 error (_("Internal: Cannot demangle mangled name `%s'."),
2626 mangled_name);
2627
2628 /* Now, read in the parameters that define this type. */
2629 p += 1;
2630 argtypetext = p;
2631 while (*p)
2632 {
2633 if (*p == '(' || *p == '<')
2634 {
2635 depth += 1;
2636 }
2637 else if (*p == ')' || *p == '>')
2638 {
2639 depth -= 1;
2640 }
2641 else if (*p == ',' && depth == 0)
2642 {
2643 argcount += 1;
2644 }
2645
2646 p += 1;
2647 }
2648
2649 /* If we read one argument and it was ``void'', don't count it. */
2650 if (startswith (argtypetext, "(void)"))
2651 argcount -= 1;
2652
2653 /* We need one extra slot, for the THIS pointer. */
2654
2655 argtypes = (struct field *)
2656 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2657 p = argtypetext;
2658
2659 /* Add THIS pointer for non-static methods. */
2660 f = TYPE_FN_FIELDLIST1 (type, method_id);
2661 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2662 argcount = 0;
2663 else
2664 {
2665 argtypes[0].type = lookup_pointer_type (type);
2666 argcount = 1;
2667 }
2668
2669 if (*p != ')') /* () means no args, skip while. */
2670 {
2671 depth = 0;
2672 while (*p)
2673 {
2674 if (depth <= 0 && (*p == ',' || *p == ')'))
2675 {
2676 /* Avoid parsing of ellipsis, they will be handled below.
2677 Also avoid ``void'' as above. */
2678 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2679 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2680 {
2681 argtypes[argcount].type =
2682 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2683 argcount += 1;
2684 }
2685 argtypetext = p + 1;
2686 }
2687
2688 if (*p == '(' || *p == '<')
2689 {
2690 depth += 1;
2691 }
2692 else if (*p == ')' || *p == '>')
2693 {
2694 depth -= 1;
2695 }
2696
2697 p += 1;
2698 }
2699 }
2700
2701 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2702
2703 /* Now update the old "stub" type into a real type. */
2704 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2705 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2706 We want a method (TYPE_CODE_METHOD). */
2707 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2708 argtypes, argcount, p[-2] == '.');
2709 TYPE_STUB (mtype) = 0;
2710 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2711
2712 xfree (demangled_name);
2713 }
2714
2715 /* This is the external interface to check_stub_method, above. This
2716 function unstubs all of the signatures for TYPE's METHOD_ID method
2717 name. After calling this function TYPE_FN_FIELD_STUB will be
2718 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2719 correct.
2720
2721 This function unfortunately can not die until stabs do. */
2722
2723 void
2724 check_stub_method_group (struct type *type, int method_id)
2725 {
2726 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2727 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2728
2729 for (int j = 0; j < len; j++)
2730 {
2731 if (TYPE_FN_FIELD_STUB (f, j))
2732 check_stub_method (type, method_id, j);
2733 }
2734 }
2735
2736 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
2737 const struct cplus_struct_type cplus_struct_default = { };
2738
2739 void
2740 allocate_cplus_struct_type (struct type *type)
2741 {
2742 if (HAVE_CPLUS_STRUCT (type))
2743 /* Structure was already allocated. Nothing more to do. */
2744 return;
2745
2746 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2747 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2748 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2749 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2750 set_type_vptr_fieldno (type, -1);
2751 }
2752
2753 const struct gnat_aux_type gnat_aux_default =
2754 { NULL };
2755
2756 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2757 and allocate the associated gnat-specific data. The gnat-specific
2758 data is also initialized to gnat_aux_default. */
2759
2760 void
2761 allocate_gnat_aux_type (struct type *type)
2762 {
2763 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2764 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2765 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2766 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2767 }
2768
2769 /* Helper function to initialize a newly allocated type. Set type code
2770 to CODE and initialize the type-specific fields accordingly. */
2771
2772 static void
2773 set_type_code (struct type *type, enum type_code code)
2774 {
2775 TYPE_CODE (type) = code;
2776
2777 switch (code)
2778 {
2779 case TYPE_CODE_STRUCT:
2780 case TYPE_CODE_UNION:
2781 case TYPE_CODE_NAMESPACE:
2782 INIT_CPLUS_SPECIFIC (type);
2783 break;
2784 case TYPE_CODE_FLT:
2785 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2786 break;
2787 case TYPE_CODE_FUNC:
2788 INIT_FUNC_SPECIFIC (type);
2789 break;
2790 }
2791 }
2792
2793 /* Helper function to verify floating-point format and size.
2794 BIT is the type size in bits; if BIT equals -1, the size is
2795 determined by the floatformat. Returns size to be used. */
2796
2797 static int
2798 verify_floatformat (int bit, const struct floatformat *floatformat)
2799 {
2800 gdb_assert (floatformat != NULL);
2801
2802 if (bit == -1)
2803 bit = floatformat->totalsize;
2804
2805 gdb_assert (bit >= 0);
2806 gdb_assert (bit >= floatformat->totalsize);
2807
2808 return bit;
2809 }
2810
2811 /* Return the floating-point format for a floating-point variable of
2812 type TYPE. */
2813
2814 const struct floatformat *
2815 floatformat_from_type (const struct type *type)
2816 {
2817 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2818 gdb_assert (TYPE_FLOATFORMAT (type));
2819 return TYPE_FLOATFORMAT (type);
2820 }
2821
2822 /* Helper function to initialize the standard scalar types.
2823
2824 If NAME is non-NULL, then it is used to initialize the type name.
2825 Note that NAME is not copied; it is required to have a lifetime at
2826 least as long as OBJFILE. */
2827
2828 struct type *
2829 init_type (struct objfile *objfile, enum type_code code, int bit,
2830 const char *name)
2831 {
2832 struct type *type;
2833
2834 type = alloc_type (objfile);
2835 set_type_code (type, code);
2836 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2837 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2838 TYPE_NAME (type) = name;
2839
2840 return type;
2841 }
2842
2843 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2844 to use with variables that have no debug info. NAME is the type
2845 name. */
2846
2847 static struct type *
2848 init_nodebug_var_type (struct objfile *objfile, const char *name)
2849 {
2850 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2851 }
2852
2853 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2854 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2855 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2856
2857 struct type *
2858 init_integer_type (struct objfile *objfile,
2859 int bit, int unsigned_p, const char *name)
2860 {
2861 struct type *t;
2862
2863 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2864 if (unsigned_p)
2865 TYPE_UNSIGNED (t) = 1;
2866
2867 return t;
2868 }
2869
2870 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2871 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2872 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2873
2874 struct type *
2875 init_character_type (struct objfile *objfile,
2876 int bit, int unsigned_p, const char *name)
2877 {
2878 struct type *t;
2879
2880 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2881 if (unsigned_p)
2882 TYPE_UNSIGNED (t) = 1;
2883
2884 return t;
2885 }
2886
2887 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2888 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2889 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2890
2891 struct type *
2892 init_boolean_type (struct objfile *objfile,
2893 int bit, int unsigned_p, const char *name)
2894 {
2895 struct type *t;
2896
2897 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2898 if (unsigned_p)
2899 TYPE_UNSIGNED (t) = 1;
2900
2901 return t;
2902 }
2903
2904 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2905 BIT is the type size in bits; if BIT equals -1, the size is
2906 determined by the floatformat. NAME is the type name. Set the
2907 TYPE_FLOATFORMAT from FLOATFORMATS. */
2908
2909 struct type *
2910 init_float_type (struct objfile *objfile,
2911 int bit, const char *name,
2912 const struct floatformat **floatformats)
2913 {
2914 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2915 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
2916 struct type *t;
2917
2918 bit = verify_floatformat (bit, fmt);
2919 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
2920 TYPE_FLOATFORMAT (t) = fmt;
2921
2922 return t;
2923 }
2924
2925 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2926 BIT is the type size in bits. NAME is the type name. */
2927
2928 struct type *
2929 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2930 {
2931 struct type *t;
2932
2933 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
2934 return t;
2935 }
2936
2937 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2938 NAME is the type name. TARGET_TYPE is the component float type. */
2939
2940 struct type *
2941 init_complex_type (struct objfile *objfile,
2942 const char *name, struct type *target_type)
2943 {
2944 struct type *t;
2945
2946 t = init_type (objfile, TYPE_CODE_COMPLEX,
2947 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
2948 TYPE_TARGET_TYPE (t) = target_type;
2949 return t;
2950 }
2951
2952 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2953 BIT is the pointer type size in bits. NAME is the type name.
2954 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2955 TYPE_UNSIGNED flag. */
2956
2957 struct type *
2958 init_pointer_type (struct objfile *objfile,
2959 int bit, const char *name, struct type *target_type)
2960 {
2961 struct type *t;
2962
2963 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
2964 TYPE_TARGET_TYPE (t) = target_type;
2965 TYPE_UNSIGNED (t) = 1;
2966 return t;
2967 }
2968
2969 /* See gdbtypes.h. */
2970
2971 unsigned
2972 type_raw_align (struct type *type)
2973 {
2974 if (type->align_log2 != 0)
2975 return 1 << (type->align_log2 - 1);
2976 return 0;
2977 }
2978
2979 /* See gdbtypes.h. */
2980
2981 unsigned
2982 type_align (struct type *type)
2983 {
2984 /* Check alignment provided in the debug information. */
2985 unsigned raw_align = type_raw_align (type);
2986 if (raw_align != 0)
2987 return raw_align;
2988
2989 /* Allow the architecture to provide an alignment. */
2990 struct gdbarch *arch = get_type_arch (type);
2991 ULONGEST align = gdbarch_type_align (arch, type);
2992 if (align != 0)
2993 return align;
2994
2995 switch (TYPE_CODE (type))
2996 {
2997 case TYPE_CODE_PTR:
2998 case TYPE_CODE_FUNC:
2999 case TYPE_CODE_FLAGS:
3000 case TYPE_CODE_INT:
3001 case TYPE_CODE_RANGE:
3002 case TYPE_CODE_FLT:
3003 case TYPE_CODE_ENUM:
3004 case TYPE_CODE_REF:
3005 case TYPE_CODE_RVALUE_REF:
3006 case TYPE_CODE_CHAR:
3007 case TYPE_CODE_BOOL:
3008 case TYPE_CODE_DECFLOAT:
3009 case TYPE_CODE_METHODPTR:
3010 case TYPE_CODE_MEMBERPTR:
3011 align = type_length_units (check_typedef (type));
3012 break;
3013
3014 case TYPE_CODE_ARRAY:
3015 case TYPE_CODE_COMPLEX:
3016 case TYPE_CODE_TYPEDEF:
3017 align = type_align (TYPE_TARGET_TYPE (type));
3018 break;
3019
3020 case TYPE_CODE_STRUCT:
3021 case TYPE_CODE_UNION:
3022 {
3023 int number_of_non_static_fields = 0;
3024 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3025 {
3026 if (!field_is_static (&TYPE_FIELD (type, i)))
3027 {
3028 number_of_non_static_fields++;
3029 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3030 if (f_align == 0)
3031 {
3032 /* Don't pretend we know something we don't. */
3033 align = 0;
3034 break;
3035 }
3036 if (f_align > align)
3037 align = f_align;
3038 }
3039 }
3040 /* A struct with no fields, or with only static fields has an
3041 alignment of 1. */
3042 if (number_of_non_static_fields == 0)
3043 align = 1;
3044 }
3045 break;
3046
3047 case TYPE_CODE_SET:
3048 case TYPE_CODE_STRING:
3049 /* Not sure what to do here, and these can't appear in C or C++
3050 anyway. */
3051 break;
3052
3053 case TYPE_CODE_VOID:
3054 align = 1;
3055 break;
3056
3057 case TYPE_CODE_ERROR:
3058 case TYPE_CODE_METHOD:
3059 default:
3060 break;
3061 }
3062
3063 if ((align & (align - 1)) != 0)
3064 {
3065 /* Not a power of 2, so pass. */
3066 align = 0;
3067 }
3068
3069 return align;
3070 }
3071
3072 /* See gdbtypes.h. */
3073
3074 bool
3075 set_type_align (struct type *type, ULONGEST align)
3076 {
3077 /* Must be a power of 2. Zero is ok. */
3078 gdb_assert ((align & (align - 1)) == 0);
3079
3080 unsigned result = 0;
3081 while (align != 0)
3082 {
3083 ++result;
3084 align >>= 1;
3085 }
3086
3087 if (result >= (1 << TYPE_ALIGN_BITS))
3088 return false;
3089
3090 type->align_log2 = result;
3091 return true;
3092 }
3093
3094 \f
3095 /* Queries on types. */
3096
3097 int
3098 can_dereference (struct type *t)
3099 {
3100 /* FIXME: Should we return true for references as well as
3101 pointers? */
3102 t = check_typedef (t);
3103 return
3104 (t != NULL
3105 && TYPE_CODE (t) == TYPE_CODE_PTR
3106 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3107 }
3108
3109 int
3110 is_integral_type (struct type *t)
3111 {
3112 t = check_typedef (t);
3113 return
3114 ((t != NULL)
3115 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3116 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3117 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3118 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3119 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3120 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3121 }
3122
3123 int
3124 is_floating_type (struct type *t)
3125 {
3126 t = check_typedef (t);
3127 return
3128 ((t != NULL)
3129 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3130 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3131 }
3132
3133 /* Return true if TYPE is scalar. */
3134
3135 int
3136 is_scalar_type (struct type *type)
3137 {
3138 type = check_typedef (type);
3139
3140 switch (TYPE_CODE (type))
3141 {
3142 case TYPE_CODE_ARRAY:
3143 case TYPE_CODE_STRUCT:
3144 case TYPE_CODE_UNION:
3145 case TYPE_CODE_SET:
3146 case TYPE_CODE_STRING:
3147 return 0;
3148 default:
3149 return 1;
3150 }
3151 }
3152
3153 /* Return true if T is scalar, or a composite type which in practice has
3154 the memory layout of a scalar type. E.g., an array or struct with only
3155 one scalar element inside it, or a union with only scalar elements. */
3156
3157 int
3158 is_scalar_type_recursive (struct type *t)
3159 {
3160 t = check_typedef (t);
3161
3162 if (is_scalar_type (t))
3163 return 1;
3164 /* Are we dealing with an array or string of known dimensions? */
3165 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3166 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3167 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3168 {
3169 LONGEST low_bound, high_bound;
3170 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3171
3172 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3173
3174 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3175 }
3176 /* Are we dealing with a struct with one element? */
3177 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3178 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3179 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3180 {
3181 int i, n = TYPE_NFIELDS (t);
3182
3183 /* If all elements of the union are scalar, then the union is scalar. */
3184 for (i = 0; i < n; i++)
3185 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3186 return 0;
3187
3188 return 1;
3189 }
3190
3191 return 0;
3192 }
3193
3194 /* Return true is T is a class or a union. False otherwise. */
3195
3196 int
3197 class_or_union_p (const struct type *t)
3198 {
3199 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3200 || TYPE_CODE (t) == TYPE_CODE_UNION);
3201 }
3202
3203 /* A helper function which returns true if types A and B represent the
3204 "same" class type. This is true if the types have the same main
3205 type, or the same name. */
3206
3207 int
3208 class_types_same_p (const struct type *a, const struct type *b)
3209 {
3210 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3211 || (TYPE_NAME (a) && TYPE_NAME (b)
3212 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3213 }
3214
3215 /* If BASE is an ancestor of DCLASS return the distance between them.
3216 otherwise return -1;
3217 eg:
3218
3219 class A {};
3220 class B: public A {};
3221 class C: public B {};
3222 class D: C {};
3223
3224 distance_to_ancestor (A, A, 0) = 0
3225 distance_to_ancestor (A, B, 0) = 1
3226 distance_to_ancestor (A, C, 0) = 2
3227 distance_to_ancestor (A, D, 0) = 3
3228
3229 If PUBLIC is 1 then only public ancestors are considered,
3230 and the function returns the distance only if BASE is a public ancestor
3231 of DCLASS.
3232 Eg:
3233
3234 distance_to_ancestor (A, D, 1) = -1. */
3235
3236 static int
3237 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3238 {
3239 int i;
3240 int d;
3241
3242 base = check_typedef (base);
3243 dclass = check_typedef (dclass);
3244
3245 if (class_types_same_p (base, dclass))
3246 return 0;
3247
3248 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3249 {
3250 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3251 continue;
3252
3253 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3254 if (d >= 0)
3255 return 1 + d;
3256 }
3257
3258 return -1;
3259 }
3260
3261 /* Check whether BASE is an ancestor or base class or DCLASS
3262 Return 1 if so, and 0 if not.
3263 Note: If BASE and DCLASS are of the same type, this function
3264 will return 1. So for some class A, is_ancestor (A, A) will
3265 return 1. */
3266
3267 int
3268 is_ancestor (struct type *base, struct type *dclass)
3269 {
3270 return distance_to_ancestor (base, dclass, 0) >= 0;
3271 }
3272
3273 /* Like is_ancestor, but only returns true when BASE is a public
3274 ancestor of DCLASS. */
3275
3276 int
3277 is_public_ancestor (struct type *base, struct type *dclass)
3278 {
3279 return distance_to_ancestor (base, dclass, 1) >= 0;
3280 }
3281
3282 /* A helper function for is_unique_ancestor. */
3283
3284 static int
3285 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3286 int *offset,
3287 const gdb_byte *valaddr, int embedded_offset,
3288 CORE_ADDR address, struct value *val)
3289 {
3290 int i, count = 0;
3291
3292 base = check_typedef (base);
3293 dclass = check_typedef (dclass);
3294
3295 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3296 {
3297 struct type *iter;
3298 int this_offset;
3299
3300 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3301
3302 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3303 address, val);
3304
3305 if (class_types_same_p (base, iter))
3306 {
3307 /* If this is the first subclass, set *OFFSET and set count
3308 to 1. Otherwise, if this is at the same offset as
3309 previous instances, do nothing. Otherwise, increment
3310 count. */
3311 if (*offset == -1)
3312 {
3313 *offset = this_offset;
3314 count = 1;
3315 }
3316 else if (this_offset == *offset)
3317 {
3318 /* Nothing. */
3319 }
3320 else
3321 ++count;
3322 }
3323 else
3324 count += is_unique_ancestor_worker (base, iter, offset,
3325 valaddr,
3326 embedded_offset + this_offset,
3327 address, val);
3328 }
3329
3330 return count;
3331 }
3332
3333 /* Like is_ancestor, but only returns true if BASE is a unique base
3334 class of the type of VAL. */
3335
3336 int
3337 is_unique_ancestor (struct type *base, struct value *val)
3338 {
3339 int offset = -1;
3340
3341 return is_unique_ancestor_worker (base, value_type (val), &offset,
3342 value_contents_for_printing (val),
3343 value_embedded_offset (val),
3344 value_address (val), val) == 1;
3345 }
3346
3347 \f
3348 /* Overload resolution. */
3349
3350 /* Return the sum of the rank of A with the rank of B. */
3351
3352 struct rank
3353 sum_ranks (struct rank a, struct rank b)
3354 {
3355 struct rank c;
3356 c.rank = a.rank + b.rank;
3357 c.subrank = a.subrank + b.subrank;
3358 return c;
3359 }
3360
3361 /* Compare rank A and B and return:
3362 0 if a = b
3363 1 if a is better than b
3364 -1 if b is better than a. */
3365
3366 int
3367 compare_ranks (struct rank a, struct rank b)
3368 {
3369 if (a.rank == b.rank)
3370 {
3371 if (a.subrank == b.subrank)
3372 return 0;
3373 if (a.subrank < b.subrank)
3374 return 1;
3375 if (a.subrank > b.subrank)
3376 return -1;
3377 }
3378
3379 if (a.rank < b.rank)
3380 return 1;
3381
3382 /* a.rank > b.rank */
3383 return -1;
3384 }
3385
3386 /* Functions for overload resolution begin here. */
3387
3388 /* Compare two badness vectors A and B and return the result.
3389 0 => A and B are identical
3390 1 => A and B are incomparable
3391 2 => A is better than B
3392 3 => A is worse than B */
3393
3394 int
3395 compare_badness (const badness_vector &a, const badness_vector &b)
3396 {
3397 int i;
3398 int tmp;
3399 short found_pos = 0; /* any positives in c? */
3400 short found_neg = 0; /* any negatives in c? */
3401
3402 /* differing sizes => incomparable */
3403 if (a.size () != b.size ())
3404 return 1;
3405
3406 /* Subtract b from a */
3407 for (i = 0; i < a.size (); i++)
3408 {
3409 tmp = compare_ranks (b[i], a[i]);
3410 if (tmp > 0)
3411 found_pos = 1;
3412 else if (tmp < 0)
3413 found_neg = 1;
3414 }
3415
3416 if (found_pos)
3417 {
3418 if (found_neg)
3419 return 1; /* incomparable */
3420 else
3421 return 3; /* A > B */
3422 }
3423 else
3424 /* no positives */
3425 {
3426 if (found_neg)
3427 return 2; /* A < B */
3428 else
3429 return 0; /* A == B */
3430 }
3431 }
3432
3433 /* Rank a function by comparing its parameter types (PARMS), to the
3434 types of an argument list (ARGS). Return the badness vector. This
3435 has ARGS.size() + 1 entries. */
3436
3437 badness_vector
3438 rank_function (gdb::array_view<type *> parms,
3439 gdb::array_view<value *> args)
3440 {
3441 /* add 1 for the length-match rank. */
3442 badness_vector bv;
3443 bv.reserve (1 + args.size ());
3444
3445 /* First compare the lengths of the supplied lists.
3446 If there is a mismatch, set it to a high value. */
3447
3448 /* pai/1997-06-03 FIXME: when we have debug info about default
3449 arguments and ellipsis parameter lists, we should consider those
3450 and rank the length-match more finely. */
3451
3452 bv.push_back ((args.size () != parms.size ())
3453 ? LENGTH_MISMATCH_BADNESS
3454 : EXACT_MATCH_BADNESS);
3455
3456 /* Now rank all the parameters of the candidate function. */
3457 size_t min_len = std::min (parms.size (), args.size ());
3458
3459 for (size_t i = 0; i < min_len; i++)
3460 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3461 args[i]));
3462
3463 /* If more arguments than parameters, add dummy entries. */
3464 for (size_t i = min_len; i < args.size (); i++)
3465 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3466
3467 return bv;
3468 }
3469
3470 /* Compare the names of two integer types, assuming that any sign
3471 qualifiers have been checked already. We do it this way because
3472 there may be an "int" in the name of one of the types. */
3473
3474 static int
3475 integer_types_same_name_p (const char *first, const char *second)
3476 {
3477 int first_p, second_p;
3478
3479 /* If both are shorts, return 1; if neither is a short, keep
3480 checking. */
3481 first_p = (strstr (first, "short") != NULL);
3482 second_p = (strstr (second, "short") != NULL);
3483 if (first_p && second_p)
3484 return 1;
3485 if (first_p || second_p)
3486 return 0;
3487
3488 /* Likewise for long. */
3489 first_p = (strstr (first, "long") != NULL);
3490 second_p = (strstr (second, "long") != NULL);
3491 if (first_p && second_p)
3492 return 1;
3493 if (first_p || second_p)
3494 return 0;
3495
3496 /* Likewise for char. */
3497 first_p = (strstr (first, "char") != NULL);
3498 second_p = (strstr (second, "char") != NULL);
3499 if (first_p && second_p)
3500 return 1;
3501 if (first_p || second_p)
3502 return 0;
3503
3504 /* They must both be ints. */
3505 return 1;
3506 }
3507
3508 /* Compares type A to type B. Returns true if they represent the same
3509 type, false otherwise. */
3510
3511 bool
3512 types_equal (struct type *a, struct type *b)
3513 {
3514 /* Identical type pointers. */
3515 /* However, this still doesn't catch all cases of same type for b
3516 and a. The reason is that builtin types are different from
3517 the same ones constructed from the object. */
3518 if (a == b)
3519 return true;
3520
3521 /* Resolve typedefs */
3522 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3523 a = check_typedef (a);
3524 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3525 b = check_typedef (b);
3526
3527 /* If after resolving typedefs a and b are not of the same type
3528 code then they are not equal. */
3529 if (TYPE_CODE (a) != TYPE_CODE (b))
3530 return false;
3531
3532 /* If a and b are both pointers types or both reference types then
3533 they are equal of the same type iff the objects they refer to are
3534 of the same type. */
3535 if (TYPE_CODE (a) == TYPE_CODE_PTR
3536 || TYPE_CODE (a) == TYPE_CODE_REF)
3537 return types_equal (TYPE_TARGET_TYPE (a),
3538 TYPE_TARGET_TYPE (b));
3539
3540 /* Well, damnit, if the names are exactly the same, I'll say they
3541 are exactly the same. This happens when we generate method
3542 stubs. The types won't point to the same address, but they
3543 really are the same. */
3544
3545 if (TYPE_NAME (a) && TYPE_NAME (b)
3546 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3547 return true;
3548
3549 /* Check if identical after resolving typedefs. */
3550 if (a == b)
3551 return true;
3552
3553 /* Two function types are equal if their argument and return types
3554 are equal. */
3555 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3556 {
3557 int i;
3558
3559 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3560 return false;
3561
3562 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3563 return false;
3564
3565 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3566 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3567 return false;
3568
3569 return true;
3570 }
3571
3572 return false;
3573 }
3574 \f
3575 /* Deep comparison of types. */
3576
3577 /* An entry in the type-equality bcache. */
3578
3579 struct type_equality_entry
3580 {
3581 type_equality_entry (struct type *t1, struct type *t2)
3582 : type1 (t1),
3583 type2 (t2)
3584 {
3585 }
3586
3587 struct type *type1, *type2;
3588 };
3589
3590 /* A helper function to compare two strings. Returns true if they are
3591 the same, false otherwise. Handles NULLs properly. */
3592
3593 static bool
3594 compare_maybe_null_strings (const char *s, const char *t)
3595 {
3596 if (s == NULL || t == NULL)
3597 return s == t;
3598 return strcmp (s, t) == 0;
3599 }
3600
3601 /* A helper function for check_types_worklist that checks two types for
3602 "deep" equality. Returns true if the types are considered the
3603 same, false otherwise. */
3604
3605 static bool
3606 check_types_equal (struct type *type1, struct type *type2,
3607 std::vector<type_equality_entry> *worklist)
3608 {
3609 type1 = check_typedef (type1);
3610 type2 = check_typedef (type2);
3611
3612 if (type1 == type2)
3613 return true;
3614
3615 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3616 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3617 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3618 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3619 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3620 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3621 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3622 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3623 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3624 return false;
3625
3626 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3627 return false;
3628 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3629 return false;
3630
3631 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3632 {
3633 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3634 return false;
3635 }
3636 else
3637 {
3638 int i;
3639
3640 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3641 {
3642 const struct field *field1 = &TYPE_FIELD (type1, i);
3643 const struct field *field2 = &TYPE_FIELD (type2, i);
3644
3645 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3646 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3647 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3648 return false;
3649 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3650 FIELD_NAME (*field2)))
3651 return false;
3652 switch (FIELD_LOC_KIND (*field1))
3653 {
3654 case FIELD_LOC_KIND_BITPOS:
3655 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3656 return false;
3657 break;
3658 case FIELD_LOC_KIND_ENUMVAL:
3659 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3660 return false;
3661 break;
3662 case FIELD_LOC_KIND_PHYSADDR:
3663 if (FIELD_STATIC_PHYSADDR (*field1)
3664 != FIELD_STATIC_PHYSADDR (*field2))
3665 return false;
3666 break;
3667 case FIELD_LOC_KIND_PHYSNAME:
3668 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3669 FIELD_STATIC_PHYSNAME (*field2)))
3670 return false;
3671 break;
3672 case FIELD_LOC_KIND_DWARF_BLOCK:
3673 {
3674 struct dwarf2_locexpr_baton *block1, *block2;
3675
3676 block1 = FIELD_DWARF_BLOCK (*field1);
3677 block2 = FIELD_DWARF_BLOCK (*field2);
3678 if (block1->per_cu != block2->per_cu
3679 || block1->size != block2->size
3680 || memcmp (block1->data, block2->data, block1->size) != 0)
3681 return false;
3682 }
3683 break;
3684 default:
3685 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3686 "%d by check_types_equal"),
3687 FIELD_LOC_KIND (*field1));
3688 }
3689
3690 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
3691 }
3692 }
3693
3694 if (TYPE_TARGET_TYPE (type1) != NULL)
3695 {
3696 if (TYPE_TARGET_TYPE (type2) == NULL)
3697 return false;
3698
3699 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3700 TYPE_TARGET_TYPE (type2));
3701 }
3702 else if (TYPE_TARGET_TYPE (type2) != NULL)
3703 return false;
3704
3705 return true;
3706 }
3707
3708 /* Check types on a worklist for equality. Returns false if any pair
3709 is not equal, true if they are all considered equal. */
3710
3711 static bool
3712 check_types_worklist (std::vector<type_equality_entry> *worklist,
3713 struct bcache *cache)
3714 {
3715 while (!worklist->empty ())
3716 {
3717 int added;
3718
3719 struct type_equality_entry entry = std::move (worklist->back ());
3720 worklist->pop_back ();
3721
3722 /* If the type pair has already been visited, we know it is
3723 ok. */
3724 cache->insert (&entry, sizeof (entry), &added);
3725 if (!added)
3726 continue;
3727
3728 if (!check_types_equal (entry.type1, entry.type2, worklist))
3729 return false;
3730 }
3731
3732 return true;
3733 }
3734
3735 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3736 "deep comparison". Otherwise return false. */
3737
3738 bool
3739 types_deeply_equal (struct type *type1, struct type *type2)
3740 {
3741 std::vector<type_equality_entry> worklist;
3742
3743 gdb_assert (type1 != NULL && type2 != NULL);
3744
3745 /* Early exit for the simple case. */
3746 if (type1 == type2)
3747 return true;
3748
3749 struct bcache cache (nullptr, nullptr);
3750 worklist.emplace_back (type1, type2);
3751 return check_types_worklist (&worklist, &cache);
3752 }
3753
3754 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3755 Otherwise return one. */
3756
3757 int
3758 type_not_allocated (const struct type *type)
3759 {
3760 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3761
3762 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3763 && !TYPE_DYN_PROP_ADDR (prop));
3764 }
3765
3766 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3767 Otherwise return one. */
3768
3769 int
3770 type_not_associated (const struct type *type)
3771 {
3772 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3773
3774 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3775 && !TYPE_DYN_PROP_ADDR (prop));
3776 }
3777
3778 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3779
3780 static struct rank
3781 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3782 {
3783 struct rank rank = {0,0};
3784
3785 switch (TYPE_CODE (arg))
3786 {
3787 case TYPE_CODE_PTR:
3788
3789 /* Allowed pointer conversions are:
3790 (a) pointer to void-pointer conversion. */
3791 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3792 return VOID_PTR_CONVERSION_BADNESS;
3793
3794 /* (b) pointer to ancestor-pointer conversion. */
3795 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3796 TYPE_TARGET_TYPE (arg),
3797 0);
3798 if (rank.subrank >= 0)
3799 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3800
3801 return INCOMPATIBLE_TYPE_BADNESS;
3802 case TYPE_CODE_ARRAY:
3803 {
3804 struct type *t1 = TYPE_TARGET_TYPE (parm);
3805 struct type *t2 = TYPE_TARGET_TYPE (arg);
3806
3807 if (types_equal (t1, t2))
3808 {
3809 /* Make sure they are CV equal. */
3810 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3811 rank.subrank |= CV_CONVERSION_CONST;
3812 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3813 rank.subrank |= CV_CONVERSION_VOLATILE;
3814 if (rank.subrank != 0)
3815 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3816 return EXACT_MATCH_BADNESS;
3817 }
3818 return INCOMPATIBLE_TYPE_BADNESS;
3819 }
3820 case TYPE_CODE_FUNC:
3821 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3822 case TYPE_CODE_INT:
3823 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3824 {
3825 if (value_as_long (value) == 0)
3826 {
3827 /* Null pointer conversion: allow it to be cast to a pointer.
3828 [4.10.1 of C++ standard draft n3290] */
3829 return NULL_POINTER_CONVERSION_BADNESS;
3830 }
3831 else
3832 {
3833 /* If type checking is disabled, allow the conversion. */
3834 if (!strict_type_checking)
3835 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3836 }
3837 }
3838 /* fall through */
3839 case TYPE_CODE_ENUM:
3840 case TYPE_CODE_FLAGS:
3841 case TYPE_CODE_CHAR:
3842 case TYPE_CODE_RANGE:
3843 case TYPE_CODE_BOOL:
3844 default:
3845 return INCOMPATIBLE_TYPE_BADNESS;
3846 }
3847 }
3848
3849 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3850
3851 static struct rank
3852 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3853 {
3854 switch (TYPE_CODE (arg))
3855 {
3856 case TYPE_CODE_PTR:
3857 case TYPE_CODE_ARRAY:
3858 return rank_one_type (TYPE_TARGET_TYPE (parm),
3859 TYPE_TARGET_TYPE (arg), NULL);
3860 default:
3861 return INCOMPATIBLE_TYPE_BADNESS;
3862 }
3863 }
3864
3865 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3866
3867 static struct rank
3868 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3869 {
3870 switch (TYPE_CODE (arg))
3871 {
3872 case TYPE_CODE_PTR: /* funcptr -> func */
3873 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3874 default:
3875 return INCOMPATIBLE_TYPE_BADNESS;
3876 }
3877 }
3878
3879 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3880
3881 static struct rank
3882 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3883 {
3884 switch (TYPE_CODE (arg))
3885 {
3886 case TYPE_CODE_INT:
3887 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3888 {
3889 /* Deal with signed, unsigned, and plain chars and
3890 signed and unsigned ints. */
3891 if (TYPE_NOSIGN (parm))
3892 {
3893 /* This case only for character types. */
3894 if (TYPE_NOSIGN (arg))
3895 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3896 else /* signed/unsigned char -> plain char */
3897 return INTEGER_CONVERSION_BADNESS;
3898 }
3899 else if (TYPE_UNSIGNED (parm))
3900 {
3901 if (TYPE_UNSIGNED (arg))
3902 {
3903 /* unsigned int -> unsigned int, or
3904 unsigned long -> unsigned long */
3905 if (integer_types_same_name_p (TYPE_NAME (parm),
3906 TYPE_NAME (arg)))
3907 return EXACT_MATCH_BADNESS;
3908 else if (integer_types_same_name_p (TYPE_NAME (arg),
3909 "int")
3910 && integer_types_same_name_p (TYPE_NAME (parm),
3911 "long"))
3912 /* unsigned int -> unsigned long */
3913 return INTEGER_PROMOTION_BADNESS;
3914 else
3915 /* unsigned long -> unsigned int */
3916 return INTEGER_CONVERSION_BADNESS;
3917 }
3918 else
3919 {
3920 if (integer_types_same_name_p (TYPE_NAME (arg),
3921 "long")
3922 && integer_types_same_name_p (TYPE_NAME (parm),
3923 "int"))
3924 /* signed long -> unsigned int */
3925 return INTEGER_CONVERSION_BADNESS;
3926 else
3927 /* signed int/long -> unsigned int/long */
3928 return INTEGER_CONVERSION_BADNESS;
3929 }
3930 }
3931 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3932 {
3933 if (integer_types_same_name_p (TYPE_NAME (parm),
3934 TYPE_NAME (arg)))
3935 return EXACT_MATCH_BADNESS;
3936 else if (integer_types_same_name_p (TYPE_NAME (arg),
3937 "int")
3938 && integer_types_same_name_p (TYPE_NAME (parm),
3939 "long"))
3940 return INTEGER_PROMOTION_BADNESS;
3941 else
3942 return INTEGER_CONVERSION_BADNESS;
3943 }
3944 else
3945 return INTEGER_CONVERSION_BADNESS;
3946 }
3947 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3948 return INTEGER_PROMOTION_BADNESS;
3949 else
3950 return INTEGER_CONVERSION_BADNESS;
3951 case TYPE_CODE_ENUM:
3952 case TYPE_CODE_FLAGS:
3953 case TYPE_CODE_CHAR:
3954 case TYPE_CODE_RANGE:
3955 case TYPE_CODE_BOOL:
3956 if (TYPE_DECLARED_CLASS (arg))
3957 return INCOMPATIBLE_TYPE_BADNESS;
3958 return INTEGER_PROMOTION_BADNESS;
3959 case TYPE_CODE_FLT:
3960 return INT_FLOAT_CONVERSION_BADNESS;
3961 case TYPE_CODE_PTR:
3962 return NS_POINTER_CONVERSION_BADNESS;
3963 default:
3964 return INCOMPATIBLE_TYPE_BADNESS;
3965 }
3966 }
3967
3968 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
3969
3970 static struct rank
3971 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
3972 {
3973 switch (TYPE_CODE (arg))
3974 {
3975 case TYPE_CODE_INT:
3976 case TYPE_CODE_CHAR:
3977 case TYPE_CODE_RANGE:
3978 case TYPE_CODE_BOOL:
3979 case TYPE_CODE_ENUM:
3980 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3981 return INCOMPATIBLE_TYPE_BADNESS;
3982 return INTEGER_CONVERSION_BADNESS;
3983 case TYPE_CODE_FLT:
3984 return INT_FLOAT_CONVERSION_BADNESS;
3985 default:
3986 return INCOMPATIBLE_TYPE_BADNESS;
3987 }
3988 }
3989
3990 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
3991
3992 static struct rank
3993 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
3994 {
3995 switch (TYPE_CODE (arg))
3996 {
3997 case TYPE_CODE_RANGE:
3998 case TYPE_CODE_BOOL:
3999 case TYPE_CODE_ENUM:
4000 if (TYPE_DECLARED_CLASS (arg))
4001 return INCOMPATIBLE_TYPE_BADNESS;
4002 return INTEGER_CONVERSION_BADNESS;
4003 case TYPE_CODE_FLT:
4004 return INT_FLOAT_CONVERSION_BADNESS;
4005 case TYPE_CODE_INT:
4006 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4007 return INTEGER_CONVERSION_BADNESS;
4008 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4009 return INTEGER_PROMOTION_BADNESS;
4010 /* fall through */
4011 case TYPE_CODE_CHAR:
4012 /* Deal with signed, unsigned, and plain chars for C++ and
4013 with int cases falling through from previous case. */
4014 if (TYPE_NOSIGN (parm))
4015 {
4016 if (TYPE_NOSIGN (arg))
4017 return EXACT_MATCH_BADNESS;
4018 else
4019 return INTEGER_CONVERSION_BADNESS;
4020 }
4021 else if (TYPE_UNSIGNED (parm))
4022 {
4023 if (TYPE_UNSIGNED (arg))
4024 return EXACT_MATCH_BADNESS;
4025 else
4026 return INTEGER_PROMOTION_BADNESS;
4027 }
4028 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4029 return EXACT_MATCH_BADNESS;
4030 else
4031 return INTEGER_CONVERSION_BADNESS;
4032 default:
4033 return INCOMPATIBLE_TYPE_BADNESS;
4034 }
4035 }
4036
4037 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4038
4039 static struct rank
4040 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4041 {
4042 switch (TYPE_CODE (arg))
4043 {
4044 case TYPE_CODE_INT:
4045 case TYPE_CODE_CHAR:
4046 case TYPE_CODE_RANGE:
4047 case TYPE_CODE_BOOL:
4048 case TYPE_CODE_ENUM:
4049 return INTEGER_CONVERSION_BADNESS;
4050 case TYPE_CODE_FLT:
4051 return INT_FLOAT_CONVERSION_BADNESS;
4052 default:
4053 return INCOMPATIBLE_TYPE_BADNESS;
4054 }
4055 }
4056
4057 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4058
4059 static struct rank
4060 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4061 {
4062 switch (TYPE_CODE (arg))
4063 {
4064 /* n3290 draft, section 4.12.1 (conv.bool):
4065
4066 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4067 pointer to member type can be converted to a prvalue of type
4068 bool. A zero value, null pointer value, or null member pointer
4069 value is converted to false; any other value is converted to
4070 true. A prvalue of type std::nullptr_t can be converted to a
4071 prvalue of type bool; the resulting value is false." */
4072 case TYPE_CODE_INT:
4073 case TYPE_CODE_CHAR:
4074 case TYPE_CODE_ENUM:
4075 case TYPE_CODE_FLT:
4076 case TYPE_CODE_MEMBERPTR:
4077 case TYPE_CODE_PTR:
4078 return BOOL_CONVERSION_BADNESS;
4079 case TYPE_CODE_RANGE:
4080 return INCOMPATIBLE_TYPE_BADNESS;
4081 case TYPE_CODE_BOOL:
4082 return EXACT_MATCH_BADNESS;
4083 default:
4084 return INCOMPATIBLE_TYPE_BADNESS;
4085 }
4086 }
4087
4088 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4089
4090 static struct rank
4091 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4092 {
4093 switch (TYPE_CODE (arg))
4094 {
4095 case TYPE_CODE_FLT:
4096 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4097 return FLOAT_PROMOTION_BADNESS;
4098 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4099 return EXACT_MATCH_BADNESS;
4100 else
4101 return FLOAT_CONVERSION_BADNESS;
4102 case TYPE_CODE_INT:
4103 case TYPE_CODE_BOOL:
4104 case TYPE_CODE_ENUM:
4105 case TYPE_CODE_RANGE:
4106 case TYPE_CODE_CHAR:
4107 return INT_FLOAT_CONVERSION_BADNESS;
4108 default:
4109 return INCOMPATIBLE_TYPE_BADNESS;
4110 }
4111 }
4112
4113 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4114
4115 static struct rank
4116 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4117 {
4118 switch (TYPE_CODE (arg))
4119 { /* Strictly not needed for C++, but... */
4120 case TYPE_CODE_FLT:
4121 return FLOAT_PROMOTION_BADNESS;
4122 case TYPE_CODE_COMPLEX:
4123 return EXACT_MATCH_BADNESS;
4124 default:
4125 return INCOMPATIBLE_TYPE_BADNESS;
4126 }
4127 }
4128
4129 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4130
4131 static struct rank
4132 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4133 {
4134 struct rank rank = {0, 0};
4135
4136 switch (TYPE_CODE (arg))
4137 {
4138 case TYPE_CODE_STRUCT:
4139 /* Check for derivation */
4140 rank.subrank = distance_to_ancestor (parm, arg, 0);
4141 if (rank.subrank >= 0)
4142 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4143 /* fall through */
4144 default:
4145 return INCOMPATIBLE_TYPE_BADNESS;
4146 }
4147 }
4148
4149 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4150
4151 static struct rank
4152 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4153 {
4154 switch (TYPE_CODE (arg))
4155 {
4156 /* Not in C++ */
4157 case TYPE_CODE_SET:
4158 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4159 TYPE_FIELD_TYPE (arg, 0), NULL);
4160 default:
4161 return INCOMPATIBLE_TYPE_BADNESS;
4162 }
4163 }
4164
4165 /* Compare one type (PARM) for compatibility with another (ARG).
4166 * PARM is intended to be the parameter type of a function; and
4167 * ARG is the supplied argument's type. This function tests if
4168 * the latter can be converted to the former.
4169 * VALUE is the argument's value or NULL if none (or called recursively)
4170 *
4171 * Return 0 if they are identical types;
4172 * Otherwise, return an integer which corresponds to how compatible
4173 * PARM is to ARG. The higher the return value, the worse the match.
4174 * Generally the "bad" conversions are all uniformly assigned a 100. */
4175
4176 struct rank
4177 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4178 {
4179 struct rank rank = {0,0};
4180
4181 /* Resolve typedefs */
4182 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4183 parm = check_typedef (parm);
4184 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4185 arg = check_typedef (arg);
4186
4187 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4188 {
4189 if (VALUE_LVAL (value) == not_lval)
4190 {
4191 /* Rvalues should preferably bind to rvalue references or const
4192 lvalue references. */
4193 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4194 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4195 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4196 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4197 else
4198 return INCOMPATIBLE_TYPE_BADNESS;
4199 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4200 }
4201 else
4202 {
4203 /* Lvalues should prefer lvalue overloads. */
4204 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4205 {
4206 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4207 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4208 }
4209 }
4210 }
4211
4212 if (types_equal (parm, arg))
4213 {
4214 struct type *t1 = parm;
4215 struct type *t2 = arg;
4216
4217 /* For pointers and references, compare target type. */
4218 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4219 {
4220 t1 = TYPE_TARGET_TYPE (parm);
4221 t2 = TYPE_TARGET_TYPE (arg);
4222 }
4223
4224 /* Make sure they are CV equal, too. */
4225 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4226 rank.subrank |= CV_CONVERSION_CONST;
4227 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4228 rank.subrank |= CV_CONVERSION_VOLATILE;
4229 if (rank.subrank != 0)
4230 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4231 return EXACT_MATCH_BADNESS;
4232 }
4233
4234 /* See through references, since we can almost make non-references
4235 references. */
4236
4237 if (TYPE_IS_REFERENCE (arg))
4238 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4239 REFERENCE_CONVERSION_BADNESS));
4240 if (TYPE_IS_REFERENCE (parm))
4241 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4242 REFERENCE_CONVERSION_BADNESS));
4243 if (overload_debug)
4244 /* Debugging only. */
4245 fprintf_filtered (gdb_stderr,
4246 "------ Arg is %s [%d], parm is %s [%d]\n",
4247 TYPE_NAME (arg), TYPE_CODE (arg),
4248 TYPE_NAME (parm), TYPE_CODE (parm));
4249
4250 /* x -> y means arg of type x being supplied for parameter of type y. */
4251
4252 switch (TYPE_CODE (parm))
4253 {
4254 case TYPE_CODE_PTR:
4255 return rank_one_type_parm_ptr (parm, arg, value);
4256 case TYPE_CODE_ARRAY:
4257 return rank_one_type_parm_array (parm, arg, value);
4258 case TYPE_CODE_FUNC:
4259 return rank_one_type_parm_func (parm, arg, value);
4260 case TYPE_CODE_INT:
4261 return rank_one_type_parm_int (parm, arg, value);
4262 case TYPE_CODE_ENUM:
4263 return rank_one_type_parm_enum (parm, arg, value);
4264 case TYPE_CODE_CHAR:
4265 return rank_one_type_parm_char (parm, arg, value);
4266 case TYPE_CODE_RANGE:
4267 return rank_one_type_parm_range (parm, arg, value);
4268 case TYPE_CODE_BOOL:
4269 return rank_one_type_parm_bool (parm, arg, value);
4270 case TYPE_CODE_FLT:
4271 return rank_one_type_parm_float (parm, arg, value);
4272 case TYPE_CODE_COMPLEX:
4273 return rank_one_type_parm_complex (parm, arg, value);
4274 case TYPE_CODE_STRUCT:
4275 return rank_one_type_parm_struct (parm, arg, value);
4276 case TYPE_CODE_SET:
4277 return rank_one_type_parm_set (parm, arg, value);
4278 default:
4279 return INCOMPATIBLE_TYPE_BADNESS;
4280 } /* switch (TYPE_CODE (arg)) */
4281 }
4282
4283 /* End of functions for overload resolution. */
4284 \f
4285 /* Routines to pretty-print types. */
4286
4287 static void
4288 print_bit_vector (B_TYPE *bits, int nbits)
4289 {
4290 int bitno;
4291
4292 for (bitno = 0; bitno < nbits; bitno++)
4293 {
4294 if ((bitno % 8) == 0)
4295 {
4296 puts_filtered (" ");
4297 }
4298 if (B_TST (bits, bitno))
4299 printf_filtered (("1"));
4300 else
4301 printf_filtered (("0"));
4302 }
4303 }
4304
4305 /* Note the first arg should be the "this" pointer, we may not want to
4306 include it since we may get into a infinitely recursive
4307 situation. */
4308
4309 static void
4310 print_args (struct field *args, int nargs, int spaces)
4311 {
4312 if (args != NULL)
4313 {
4314 int i;
4315
4316 for (i = 0; i < nargs; i++)
4317 {
4318 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4319 args[i].name != NULL ? args[i].name : "<NULL>");
4320 recursive_dump_type (args[i].type, spaces + 2);
4321 }
4322 }
4323 }
4324
4325 int
4326 field_is_static (struct field *f)
4327 {
4328 /* "static" fields are the fields whose location is not relative
4329 to the address of the enclosing struct. It would be nice to
4330 have a dedicated flag that would be set for static fields when
4331 the type is being created. But in practice, checking the field
4332 loc_kind should give us an accurate answer. */
4333 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4334 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4335 }
4336
4337 static void
4338 dump_fn_fieldlists (struct type *type, int spaces)
4339 {
4340 int method_idx;
4341 int overload_idx;
4342 struct fn_field *f;
4343
4344 printfi_filtered (spaces, "fn_fieldlists ");
4345 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4346 printf_filtered ("\n");
4347 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4348 {
4349 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4350 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4351 method_idx,
4352 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4353 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4354 gdb_stdout);
4355 printf_filtered (_(") length %d\n"),
4356 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4357 for (overload_idx = 0;
4358 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4359 overload_idx++)
4360 {
4361 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4362 overload_idx,
4363 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4364 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4365 gdb_stdout);
4366 printf_filtered (")\n");
4367 printfi_filtered (spaces + 8, "type ");
4368 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4369 gdb_stdout);
4370 printf_filtered ("\n");
4371
4372 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4373 spaces + 8 + 2);
4374
4375 printfi_filtered (spaces + 8, "args ");
4376 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4377 gdb_stdout);
4378 printf_filtered ("\n");
4379 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4380 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4381 spaces + 8 + 2);
4382 printfi_filtered (spaces + 8, "fcontext ");
4383 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4384 gdb_stdout);
4385 printf_filtered ("\n");
4386
4387 printfi_filtered (spaces + 8, "is_const %d\n",
4388 TYPE_FN_FIELD_CONST (f, overload_idx));
4389 printfi_filtered (spaces + 8, "is_volatile %d\n",
4390 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4391 printfi_filtered (spaces + 8, "is_private %d\n",
4392 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4393 printfi_filtered (spaces + 8, "is_protected %d\n",
4394 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4395 printfi_filtered (spaces + 8, "is_stub %d\n",
4396 TYPE_FN_FIELD_STUB (f, overload_idx));
4397 printfi_filtered (spaces + 8, "voffset %u\n",
4398 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4399 }
4400 }
4401 }
4402
4403 static void
4404 print_cplus_stuff (struct type *type, int spaces)
4405 {
4406 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4407 printfi_filtered (spaces, "vptr_basetype ");
4408 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4409 puts_filtered ("\n");
4410 if (TYPE_VPTR_BASETYPE (type) != NULL)
4411 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4412
4413 printfi_filtered (spaces, "n_baseclasses %d\n",
4414 TYPE_N_BASECLASSES (type));
4415 printfi_filtered (spaces, "nfn_fields %d\n",
4416 TYPE_NFN_FIELDS (type));
4417 if (TYPE_N_BASECLASSES (type) > 0)
4418 {
4419 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4420 TYPE_N_BASECLASSES (type));
4421 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4422 gdb_stdout);
4423 printf_filtered (")");
4424
4425 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4426 TYPE_N_BASECLASSES (type));
4427 puts_filtered ("\n");
4428 }
4429 if (TYPE_NFIELDS (type) > 0)
4430 {
4431 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4432 {
4433 printfi_filtered (spaces,
4434 "private_field_bits (%d bits at *",
4435 TYPE_NFIELDS (type));
4436 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4437 gdb_stdout);
4438 printf_filtered (")");
4439 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4440 TYPE_NFIELDS (type));
4441 puts_filtered ("\n");
4442 }
4443 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4444 {
4445 printfi_filtered (spaces,
4446 "protected_field_bits (%d bits at *",
4447 TYPE_NFIELDS (type));
4448 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4449 gdb_stdout);
4450 printf_filtered (")");
4451 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4452 TYPE_NFIELDS (type));
4453 puts_filtered ("\n");
4454 }
4455 }
4456 if (TYPE_NFN_FIELDS (type) > 0)
4457 {
4458 dump_fn_fieldlists (type, spaces);
4459 }
4460 }
4461
4462 /* Print the contents of the TYPE's type_specific union, assuming that
4463 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4464
4465 static void
4466 print_gnat_stuff (struct type *type, int spaces)
4467 {
4468 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4469
4470 if (descriptive_type == NULL)
4471 printfi_filtered (spaces + 2, "no descriptive type\n");
4472 else
4473 {
4474 printfi_filtered (spaces + 2, "descriptive type\n");
4475 recursive_dump_type (descriptive_type, spaces + 4);
4476 }
4477 }
4478
4479 static struct obstack dont_print_type_obstack;
4480
4481 void
4482 recursive_dump_type (struct type *type, int spaces)
4483 {
4484 int idx;
4485
4486 if (spaces == 0)
4487 obstack_begin (&dont_print_type_obstack, 0);
4488
4489 if (TYPE_NFIELDS (type) > 0
4490 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4491 {
4492 struct type **first_dont_print
4493 = (struct type **) obstack_base (&dont_print_type_obstack);
4494
4495 int i = (struct type **)
4496 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4497
4498 while (--i >= 0)
4499 {
4500 if (type == first_dont_print[i])
4501 {
4502 printfi_filtered (spaces, "type node ");
4503 gdb_print_host_address (type, gdb_stdout);
4504 printf_filtered (_(" <same as already seen type>\n"));
4505 return;
4506 }
4507 }
4508
4509 obstack_ptr_grow (&dont_print_type_obstack, type);
4510 }
4511
4512 printfi_filtered (spaces, "type node ");
4513 gdb_print_host_address (type, gdb_stdout);
4514 printf_filtered ("\n");
4515 printfi_filtered (spaces, "name '%s' (",
4516 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4517 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4518 printf_filtered (")\n");
4519 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4520 switch (TYPE_CODE (type))
4521 {
4522 case TYPE_CODE_UNDEF:
4523 printf_filtered ("(TYPE_CODE_UNDEF)");
4524 break;
4525 case TYPE_CODE_PTR:
4526 printf_filtered ("(TYPE_CODE_PTR)");
4527 break;
4528 case TYPE_CODE_ARRAY:
4529 printf_filtered ("(TYPE_CODE_ARRAY)");
4530 break;
4531 case TYPE_CODE_STRUCT:
4532 printf_filtered ("(TYPE_CODE_STRUCT)");
4533 break;
4534 case TYPE_CODE_UNION:
4535 printf_filtered ("(TYPE_CODE_UNION)");
4536 break;
4537 case TYPE_CODE_ENUM:
4538 printf_filtered ("(TYPE_CODE_ENUM)");
4539 break;
4540 case TYPE_CODE_FLAGS:
4541 printf_filtered ("(TYPE_CODE_FLAGS)");
4542 break;
4543 case TYPE_CODE_FUNC:
4544 printf_filtered ("(TYPE_CODE_FUNC)");
4545 break;
4546 case TYPE_CODE_INT:
4547 printf_filtered ("(TYPE_CODE_INT)");
4548 break;
4549 case TYPE_CODE_FLT:
4550 printf_filtered ("(TYPE_CODE_FLT)");
4551 break;
4552 case TYPE_CODE_VOID:
4553 printf_filtered ("(TYPE_CODE_VOID)");
4554 break;
4555 case TYPE_CODE_SET:
4556 printf_filtered ("(TYPE_CODE_SET)");
4557 break;
4558 case TYPE_CODE_RANGE:
4559 printf_filtered ("(TYPE_CODE_RANGE)");
4560 break;
4561 case TYPE_CODE_STRING:
4562 printf_filtered ("(TYPE_CODE_STRING)");
4563 break;
4564 case TYPE_CODE_ERROR:
4565 printf_filtered ("(TYPE_CODE_ERROR)");
4566 break;
4567 case TYPE_CODE_MEMBERPTR:
4568 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4569 break;
4570 case TYPE_CODE_METHODPTR:
4571 printf_filtered ("(TYPE_CODE_METHODPTR)");
4572 break;
4573 case TYPE_CODE_METHOD:
4574 printf_filtered ("(TYPE_CODE_METHOD)");
4575 break;
4576 case TYPE_CODE_REF:
4577 printf_filtered ("(TYPE_CODE_REF)");
4578 break;
4579 case TYPE_CODE_CHAR:
4580 printf_filtered ("(TYPE_CODE_CHAR)");
4581 break;
4582 case TYPE_CODE_BOOL:
4583 printf_filtered ("(TYPE_CODE_BOOL)");
4584 break;
4585 case TYPE_CODE_COMPLEX:
4586 printf_filtered ("(TYPE_CODE_COMPLEX)");
4587 break;
4588 case TYPE_CODE_TYPEDEF:
4589 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4590 break;
4591 case TYPE_CODE_NAMESPACE:
4592 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4593 break;
4594 default:
4595 printf_filtered ("(UNKNOWN TYPE CODE)");
4596 break;
4597 }
4598 puts_filtered ("\n");
4599 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
4600 if (TYPE_OBJFILE_OWNED (type))
4601 {
4602 printfi_filtered (spaces, "objfile ");
4603 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4604 }
4605 else
4606 {
4607 printfi_filtered (spaces, "gdbarch ");
4608 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4609 }
4610 printf_filtered ("\n");
4611 printfi_filtered (spaces, "target_type ");
4612 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4613 printf_filtered ("\n");
4614 if (TYPE_TARGET_TYPE (type) != NULL)
4615 {
4616 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4617 }
4618 printfi_filtered (spaces, "pointer_type ");
4619 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4620 printf_filtered ("\n");
4621 printfi_filtered (spaces, "reference_type ");
4622 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4623 printf_filtered ("\n");
4624 printfi_filtered (spaces, "type_chain ");
4625 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4626 printf_filtered ("\n");
4627 printfi_filtered (spaces, "instance_flags 0x%x",
4628 TYPE_INSTANCE_FLAGS (type));
4629 if (TYPE_CONST (type))
4630 {
4631 puts_filtered (" TYPE_CONST");
4632 }
4633 if (TYPE_VOLATILE (type))
4634 {
4635 puts_filtered (" TYPE_VOLATILE");
4636 }
4637 if (TYPE_CODE_SPACE (type))
4638 {
4639 puts_filtered (" TYPE_CODE_SPACE");
4640 }
4641 if (TYPE_DATA_SPACE (type))
4642 {
4643 puts_filtered (" TYPE_DATA_SPACE");
4644 }
4645 if (TYPE_ADDRESS_CLASS_1 (type))
4646 {
4647 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4648 }
4649 if (TYPE_ADDRESS_CLASS_2 (type))
4650 {
4651 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4652 }
4653 if (TYPE_RESTRICT (type))
4654 {
4655 puts_filtered (" TYPE_RESTRICT");
4656 }
4657 if (TYPE_ATOMIC (type))
4658 {
4659 puts_filtered (" TYPE_ATOMIC");
4660 }
4661 puts_filtered ("\n");
4662
4663 printfi_filtered (spaces, "flags");
4664 if (TYPE_UNSIGNED (type))
4665 {
4666 puts_filtered (" TYPE_UNSIGNED");
4667 }
4668 if (TYPE_NOSIGN (type))
4669 {
4670 puts_filtered (" TYPE_NOSIGN");
4671 }
4672 if (TYPE_STUB (type))
4673 {
4674 puts_filtered (" TYPE_STUB");
4675 }
4676 if (TYPE_TARGET_STUB (type))
4677 {
4678 puts_filtered (" TYPE_TARGET_STUB");
4679 }
4680 if (TYPE_PROTOTYPED (type))
4681 {
4682 puts_filtered (" TYPE_PROTOTYPED");
4683 }
4684 if (TYPE_INCOMPLETE (type))
4685 {
4686 puts_filtered (" TYPE_INCOMPLETE");
4687 }
4688 if (TYPE_VARARGS (type))
4689 {
4690 puts_filtered (" TYPE_VARARGS");
4691 }
4692 /* This is used for things like AltiVec registers on ppc. Gcc emits
4693 an attribute for the array type, which tells whether or not we
4694 have a vector, instead of a regular array. */
4695 if (TYPE_VECTOR (type))
4696 {
4697 puts_filtered (" TYPE_VECTOR");
4698 }
4699 if (TYPE_FIXED_INSTANCE (type))
4700 {
4701 puts_filtered (" TYPE_FIXED_INSTANCE");
4702 }
4703 if (TYPE_STUB_SUPPORTED (type))
4704 {
4705 puts_filtered (" TYPE_STUB_SUPPORTED");
4706 }
4707 if (TYPE_NOTTEXT (type))
4708 {
4709 puts_filtered (" TYPE_NOTTEXT");
4710 }
4711 puts_filtered ("\n");
4712 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4713 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4714 puts_filtered ("\n");
4715 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4716 {
4717 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4718 printfi_filtered (spaces + 2,
4719 "[%d] enumval %s type ",
4720 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4721 else
4722 printfi_filtered (spaces + 2,
4723 "[%d] bitpos %s bitsize %d type ",
4724 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4725 TYPE_FIELD_BITSIZE (type, idx));
4726 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4727 printf_filtered (" name '%s' (",
4728 TYPE_FIELD_NAME (type, idx) != NULL
4729 ? TYPE_FIELD_NAME (type, idx)
4730 : "<NULL>");
4731 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4732 printf_filtered (")\n");
4733 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4734 {
4735 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4736 }
4737 }
4738 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4739 {
4740 printfi_filtered (spaces, "low %s%s high %s%s\n",
4741 plongest (TYPE_LOW_BOUND (type)),
4742 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4743 plongest (TYPE_HIGH_BOUND (type)),
4744 TYPE_HIGH_BOUND_UNDEFINED (type)
4745 ? " (undefined)" : "");
4746 }
4747
4748 switch (TYPE_SPECIFIC_FIELD (type))
4749 {
4750 case TYPE_SPECIFIC_CPLUS_STUFF:
4751 printfi_filtered (spaces, "cplus_stuff ");
4752 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4753 gdb_stdout);
4754 puts_filtered ("\n");
4755 print_cplus_stuff (type, spaces);
4756 break;
4757
4758 case TYPE_SPECIFIC_GNAT_STUFF:
4759 printfi_filtered (spaces, "gnat_stuff ");
4760 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4761 puts_filtered ("\n");
4762 print_gnat_stuff (type, spaces);
4763 break;
4764
4765 case TYPE_SPECIFIC_FLOATFORMAT:
4766 printfi_filtered (spaces, "floatformat ");
4767 if (TYPE_FLOATFORMAT (type) == NULL
4768 || TYPE_FLOATFORMAT (type)->name == NULL)
4769 puts_filtered ("(null)");
4770 else
4771 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4772 puts_filtered ("\n");
4773 break;
4774
4775 case TYPE_SPECIFIC_FUNC:
4776 printfi_filtered (spaces, "calling_convention %d\n",
4777 TYPE_CALLING_CONVENTION (type));
4778 /* tail_call_list is not printed. */
4779 break;
4780
4781 case TYPE_SPECIFIC_SELF_TYPE:
4782 printfi_filtered (spaces, "self_type ");
4783 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4784 puts_filtered ("\n");
4785 break;
4786 }
4787
4788 if (spaces == 0)
4789 obstack_free (&dont_print_type_obstack, NULL);
4790 }
4791 \f
4792 /* Trivial helpers for the libiberty hash table, for mapping one
4793 type to another. */
4794
4795 struct type_pair : public allocate_on_obstack
4796 {
4797 type_pair (struct type *old_, struct type *newobj_)
4798 : old (old_), newobj (newobj_)
4799 {}
4800
4801 struct type * const old, * const newobj;
4802 };
4803
4804 static hashval_t
4805 type_pair_hash (const void *item)
4806 {
4807 const struct type_pair *pair = (const struct type_pair *) item;
4808
4809 return htab_hash_pointer (pair->old);
4810 }
4811
4812 static int
4813 type_pair_eq (const void *item_lhs, const void *item_rhs)
4814 {
4815 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4816 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4817
4818 return lhs->old == rhs->old;
4819 }
4820
4821 /* Allocate the hash table used by copy_type_recursive to walk
4822 types without duplicates. We use OBJFILE's obstack, because
4823 OBJFILE is about to be deleted. */
4824
4825 htab_t
4826 create_copied_types_hash (struct objfile *objfile)
4827 {
4828 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4829 NULL, &objfile->objfile_obstack,
4830 hashtab_obstack_allocate,
4831 dummy_obstack_deallocate);
4832 }
4833
4834 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4835
4836 static struct dynamic_prop_list *
4837 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4838 struct dynamic_prop_list *list)
4839 {
4840 struct dynamic_prop_list *copy = list;
4841 struct dynamic_prop_list **node_ptr = &copy;
4842
4843 while (*node_ptr != NULL)
4844 {
4845 struct dynamic_prop_list *node_copy;
4846
4847 node_copy = ((struct dynamic_prop_list *)
4848 obstack_copy (objfile_obstack, *node_ptr,
4849 sizeof (struct dynamic_prop_list)));
4850 node_copy->prop = (*node_ptr)->prop;
4851 *node_ptr = node_copy;
4852
4853 node_ptr = &node_copy->next;
4854 }
4855
4856 return copy;
4857 }
4858
4859 /* Recursively copy (deep copy) TYPE, if it is associated with
4860 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4861 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4862 it is not associated with OBJFILE. */
4863
4864 struct type *
4865 copy_type_recursive (struct objfile *objfile,
4866 struct type *type,
4867 htab_t copied_types)
4868 {
4869 void **slot;
4870 struct type *new_type;
4871
4872 if (! TYPE_OBJFILE_OWNED (type))
4873 return type;
4874
4875 /* This type shouldn't be pointing to any types in other objfiles;
4876 if it did, the type might disappear unexpectedly. */
4877 gdb_assert (TYPE_OBJFILE (type) == objfile);
4878
4879 struct type_pair pair (type, nullptr);
4880
4881 slot = htab_find_slot (copied_types, &pair, INSERT);
4882 if (*slot != NULL)
4883 return ((struct type_pair *) *slot)->newobj;
4884
4885 new_type = alloc_type_arch (get_type_arch (type));
4886
4887 /* We must add the new type to the hash table immediately, in case
4888 we encounter this type again during a recursive call below. */
4889 struct type_pair *stored
4890 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4891
4892 *slot = stored;
4893
4894 /* Copy the common fields of types. For the main type, we simply
4895 copy the entire thing and then update specific fields as needed. */
4896 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4897 TYPE_OBJFILE_OWNED (new_type) = 0;
4898 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4899
4900 if (TYPE_NAME (type))
4901 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4902
4903 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4904 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4905
4906 /* Copy the fields. */
4907 if (TYPE_NFIELDS (type))
4908 {
4909 int i, nfields;
4910
4911 nfields = TYPE_NFIELDS (type);
4912 TYPE_FIELDS (new_type) = (struct field *)
4913 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
4914 for (i = 0; i < nfields; i++)
4915 {
4916 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4917 TYPE_FIELD_ARTIFICIAL (type, i);
4918 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4919 if (TYPE_FIELD_TYPE (type, i))
4920 TYPE_FIELD_TYPE (new_type, i)
4921 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4922 copied_types);
4923 if (TYPE_FIELD_NAME (type, i))
4924 TYPE_FIELD_NAME (new_type, i) =
4925 xstrdup (TYPE_FIELD_NAME (type, i));
4926 switch (TYPE_FIELD_LOC_KIND (type, i))
4927 {
4928 case FIELD_LOC_KIND_BITPOS:
4929 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4930 TYPE_FIELD_BITPOS (type, i));
4931 break;
4932 case FIELD_LOC_KIND_ENUMVAL:
4933 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4934 TYPE_FIELD_ENUMVAL (type, i));
4935 break;
4936 case FIELD_LOC_KIND_PHYSADDR:
4937 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4938 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4939 break;
4940 case FIELD_LOC_KIND_PHYSNAME:
4941 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4942 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4943 i)));
4944 break;
4945 default:
4946 internal_error (__FILE__, __LINE__,
4947 _("Unexpected type field location kind: %d"),
4948 TYPE_FIELD_LOC_KIND (type, i));
4949 }
4950 }
4951 }
4952
4953 /* For range types, copy the bounds information. */
4954 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4955 {
4956 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
4957 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
4958 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4959 }
4960
4961 if (TYPE_DYN_PROP_LIST (type) != NULL)
4962 TYPE_DYN_PROP_LIST (new_type)
4963 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4964 TYPE_DYN_PROP_LIST (type));
4965
4966
4967 /* Copy pointers to other types. */
4968 if (TYPE_TARGET_TYPE (type))
4969 TYPE_TARGET_TYPE (new_type) =
4970 copy_type_recursive (objfile,
4971 TYPE_TARGET_TYPE (type),
4972 copied_types);
4973
4974 /* Maybe copy the type_specific bits.
4975
4976 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4977 base classes and methods. There's no fundamental reason why we
4978 can't, but at the moment it is not needed. */
4979
4980 switch (TYPE_SPECIFIC_FIELD (type))
4981 {
4982 case TYPE_SPECIFIC_NONE:
4983 break;
4984 case TYPE_SPECIFIC_FUNC:
4985 INIT_FUNC_SPECIFIC (new_type);
4986 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4987 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4988 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4989 break;
4990 case TYPE_SPECIFIC_FLOATFORMAT:
4991 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4992 break;
4993 case TYPE_SPECIFIC_CPLUS_STUFF:
4994 INIT_CPLUS_SPECIFIC (new_type);
4995 break;
4996 case TYPE_SPECIFIC_GNAT_STUFF:
4997 INIT_GNAT_SPECIFIC (new_type);
4998 break;
4999 case TYPE_SPECIFIC_SELF_TYPE:
5000 set_type_self_type (new_type,
5001 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5002 copied_types));
5003 break;
5004 default:
5005 gdb_assert_not_reached ("bad type_specific_kind");
5006 }
5007
5008 return new_type;
5009 }
5010
5011 /* Make a copy of the given TYPE, except that the pointer & reference
5012 types are not preserved.
5013
5014 This function assumes that the given type has an associated objfile.
5015 This objfile is used to allocate the new type. */
5016
5017 struct type *
5018 copy_type (const struct type *type)
5019 {
5020 struct type *new_type;
5021
5022 gdb_assert (TYPE_OBJFILE_OWNED (type));
5023
5024 new_type = alloc_type_copy (type);
5025 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5026 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5027 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5028 sizeof (struct main_type));
5029 if (TYPE_DYN_PROP_LIST (type) != NULL)
5030 TYPE_DYN_PROP_LIST (new_type)
5031 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5032 TYPE_DYN_PROP_LIST (type));
5033
5034 return new_type;
5035 }
5036 \f
5037 /* Helper functions to initialize architecture-specific types. */
5038
5039 /* Allocate a type structure associated with GDBARCH and set its
5040 CODE, LENGTH, and NAME fields. */
5041
5042 struct type *
5043 arch_type (struct gdbarch *gdbarch,
5044 enum type_code code, int bit, const char *name)
5045 {
5046 struct type *type;
5047
5048 type = alloc_type_arch (gdbarch);
5049 set_type_code (type, code);
5050 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5051 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5052
5053 if (name)
5054 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5055
5056 return type;
5057 }
5058
5059 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5060 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5061 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5062
5063 struct type *
5064 arch_integer_type (struct gdbarch *gdbarch,
5065 int bit, int unsigned_p, const char *name)
5066 {
5067 struct type *t;
5068
5069 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5070 if (unsigned_p)
5071 TYPE_UNSIGNED (t) = 1;
5072
5073 return t;
5074 }
5075
5076 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5077 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5078 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5079
5080 struct type *
5081 arch_character_type (struct gdbarch *gdbarch,
5082 int bit, int unsigned_p, const char *name)
5083 {
5084 struct type *t;
5085
5086 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5087 if (unsigned_p)
5088 TYPE_UNSIGNED (t) = 1;
5089
5090 return t;
5091 }
5092
5093 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5094 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5095 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5096
5097 struct type *
5098 arch_boolean_type (struct gdbarch *gdbarch,
5099 int bit, int unsigned_p, const char *name)
5100 {
5101 struct type *t;
5102
5103 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5104 if (unsigned_p)
5105 TYPE_UNSIGNED (t) = 1;
5106
5107 return t;
5108 }
5109
5110 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5111 BIT is the type size in bits; if BIT equals -1, the size is
5112 determined by the floatformat. NAME is the type name. Set the
5113 TYPE_FLOATFORMAT from FLOATFORMATS. */
5114
5115 struct type *
5116 arch_float_type (struct gdbarch *gdbarch,
5117 int bit, const char *name,
5118 const struct floatformat **floatformats)
5119 {
5120 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5121 struct type *t;
5122
5123 bit = verify_floatformat (bit, fmt);
5124 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5125 TYPE_FLOATFORMAT (t) = fmt;
5126
5127 return t;
5128 }
5129
5130 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5131 BIT is the type size in bits. NAME is the type name. */
5132
5133 struct type *
5134 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5135 {
5136 struct type *t;
5137
5138 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5139 return t;
5140 }
5141
5142 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5143 NAME is the type name. TARGET_TYPE is the component float type. */
5144
5145 struct type *
5146 arch_complex_type (struct gdbarch *gdbarch,
5147 const char *name, struct type *target_type)
5148 {
5149 struct type *t;
5150
5151 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5152 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5153 TYPE_TARGET_TYPE (t) = target_type;
5154 return t;
5155 }
5156
5157 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5158 BIT is the pointer type size in bits. NAME is the type name.
5159 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5160 TYPE_UNSIGNED flag. */
5161
5162 struct type *
5163 arch_pointer_type (struct gdbarch *gdbarch,
5164 int bit, const char *name, struct type *target_type)
5165 {
5166 struct type *t;
5167
5168 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5169 TYPE_TARGET_TYPE (t) = target_type;
5170 TYPE_UNSIGNED (t) = 1;
5171 return t;
5172 }
5173
5174 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5175 NAME is the type name. BIT is the size of the flag word in bits. */
5176
5177 struct type *
5178 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5179 {
5180 struct type *type;
5181
5182 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5183 TYPE_UNSIGNED (type) = 1;
5184 TYPE_NFIELDS (type) = 0;
5185 /* Pre-allocate enough space assuming every field is one bit. */
5186 TYPE_FIELDS (type)
5187 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5188
5189 return type;
5190 }
5191
5192 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5193 position BITPOS is called NAME. Pass NAME as "" for fields that
5194 should not be printed. */
5195
5196 void
5197 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5198 struct type *field_type, const char *name)
5199 {
5200 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5201 int field_nr = TYPE_NFIELDS (type);
5202
5203 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5204 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5205 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5206 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5207 gdb_assert (name != NULL);
5208
5209 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5210 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5211 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5212 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5213 ++TYPE_NFIELDS (type);
5214 }
5215
5216 /* Special version of append_flags_type_field to add a flag field.
5217 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5218 position BITPOS is called NAME. */
5219
5220 void
5221 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5222 {
5223 struct gdbarch *gdbarch = get_type_arch (type);
5224
5225 append_flags_type_field (type, bitpos, 1,
5226 builtin_type (gdbarch)->builtin_bool,
5227 name);
5228 }
5229
5230 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5231 specified by CODE) associated with GDBARCH. NAME is the type name. */
5232
5233 struct type *
5234 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5235 enum type_code code)
5236 {
5237 struct type *t;
5238
5239 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5240 t = arch_type (gdbarch, code, 0, NULL);
5241 TYPE_NAME (t) = name;
5242 INIT_CPLUS_SPECIFIC (t);
5243 return t;
5244 }
5245
5246 /* Add new field with name NAME and type FIELD to composite type T.
5247 Do not set the field's position or adjust the type's length;
5248 the caller should do so. Return the new field. */
5249
5250 struct field *
5251 append_composite_type_field_raw (struct type *t, const char *name,
5252 struct type *field)
5253 {
5254 struct field *f;
5255
5256 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5257 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5258 TYPE_NFIELDS (t));
5259 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5260 memset (f, 0, sizeof f[0]);
5261 FIELD_TYPE (f[0]) = field;
5262 FIELD_NAME (f[0]) = name;
5263 return f;
5264 }
5265
5266 /* Add new field with name NAME and type FIELD to composite type T.
5267 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5268
5269 void
5270 append_composite_type_field_aligned (struct type *t, const char *name,
5271 struct type *field, int alignment)
5272 {
5273 struct field *f = append_composite_type_field_raw (t, name, field);
5274
5275 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5276 {
5277 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5278 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5279 }
5280 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5281 {
5282 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5283 if (TYPE_NFIELDS (t) > 1)
5284 {
5285 SET_FIELD_BITPOS (f[0],
5286 (FIELD_BITPOS (f[-1])
5287 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5288 * TARGET_CHAR_BIT)));
5289
5290 if (alignment)
5291 {
5292 int left;
5293
5294 alignment *= TARGET_CHAR_BIT;
5295 left = FIELD_BITPOS (f[0]) % alignment;
5296
5297 if (left)
5298 {
5299 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5300 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5301 }
5302 }
5303 }
5304 }
5305 }
5306
5307 /* Add new field with name NAME and type FIELD to composite type T. */
5308
5309 void
5310 append_composite_type_field (struct type *t, const char *name,
5311 struct type *field)
5312 {
5313 append_composite_type_field_aligned (t, name, field, 0);
5314 }
5315
5316 static struct gdbarch_data *gdbtypes_data;
5317
5318 const struct builtin_type *
5319 builtin_type (struct gdbarch *gdbarch)
5320 {
5321 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5322 }
5323
5324 static void *
5325 gdbtypes_post_init (struct gdbarch *gdbarch)
5326 {
5327 struct builtin_type *builtin_type
5328 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5329
5330 /* Basic types. */
5331 builtin_type->builtin_void
5332 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5333 builtin_type->builtin_char
5334 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5335 !gdbarch_char_signed (gdbarch), "char");
5336 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5337 builtin_type->builtin_signed_char
5338 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5339 0, "signed char");
5340 builtin_type->builtin_unsigned_char
5341 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5342 1, "unsigned char");
5343 builtin_type->builtin_short
5344 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5345 0, "short");
5346 builtin_type->builtin_unsigned_short
5347 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5348 1, "unsigned short");
5349 builtin_type->builtin_int
5350 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5351 0, "int");
5352 builtin_type->builtin_unsigned_int
5353 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5354 1, "unsigned int");
5355 builtin_type->builtin_long
5356 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5357 0, "long");
5358 builtin_type->builtin_unsigned_long
5359 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5360 1, "unsigned long");
5361 builtin_type->builtin_long_long
5362 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5363 0, "long long");
5364 builtin_type->builtin_unsigned_long_long
5365 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5366 1, "unsigned long long");
5367 builtin_type->builtin_half
5368 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5369 "half", gdbarch_half_format (gdbarch));
5370 builtin_type->builtin_float
5371 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5372 "float", gdbarch_float_format (gdbarch));
5373 builtin_type->builtin_double
5374 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5375 "double", gdbarch_double_format (gdbarch));
5376 builtin_type->builtin_long_double
5377 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5378 "long double", gdbarch_long_double_format (gdbarch));
5379 builtin_type->builtin_complex
5380 = arch_complex_type (gdbarch, "complex",
5381 builtin_type->builtin_float);
5382 builtin_type->builtin_double_complex
5383 = arch_complex_type (gdbarch, "double complex",
5384 builtin_type->builtin_double);
5385 builtin_type->builtin_string
5386 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5387 builtin_type->builtin_bool
5388 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5389
5390 /* The following three are about decimal floating point types, which
5391 are 32-bits, 64-bits and 128-bits respectively. */
5392 builtin_type->builtin_decfloat
5393 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5394 builtin_type->builtin_decdouble
5395 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5396 builtin_type->builtin_declong
5397 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5398
5399 /* "True" character types. */
5400 builtin_type->builtin_true_char
5401 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5402 builtin_type->builtin_true_unsigned_char
5403 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5404
5405 /* Fixed-size integer types. */
5406 builtin_type->builtin_int0
5407 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5408 builtin_type->builtin_int8
5409 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5410 builtin_type->builtin_uint8
5411 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5412 builtin_type->builtin_int16
5413 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5414 builtin_type->builtin_uint16
5415 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5416 builtin_type->builtin_int24
5417 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5418 builtin_type->builtin_uint24
5419 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5420 builtin_type->builtin_int32
5421 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5422 builtin_type->builtin_uint32
5423 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5424 builtin_type->builtin_int64
5425 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5426 builtin_type->builtin_uint64
5427 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5428 builtin_type->builtin_int128
5429 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5430 builtin_type->builtin_uint128
5431 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5432 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5433 TYPE_INSTANCE_FLAG_NOTTEXT;
5434 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5435 TYPE_INSTANCE_FLAG_NOTTEXT;
5436
5437 /* Wide character types. */
5438 builtin_type->builtin_char16
5439 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5440 builtin_type->builtin_char32
5441 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5442 builtin_type->builtin_wchar
5443 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5444 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5445
5446 /* Default data/code pointer types. */
5447 builtin_type->builtin_data_ptr
5448 = lookup_pointer_type (builtin_type->builtin_void);
5449 builtin_type->builtin_func_ptr
5450 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5451 builtin_type->builtin_func_func
5452 = lookup_function_type (builtin_type->builtin_func_ptr);
5453
5454 /* This type represents a GDB internal function. */
5455 builtin_type->internal_fn
5456 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5457 "<internal function>");
5458
5459 /* This type represents an xmethod. */
5460 builtin_type->xmethod
5461 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5462
5463 return builtin_type;
5464 }
5465
5466 /* This set of objfile-based types is intended to be used by symbol
5467 readers as basic types. */
5468
5469 static const struct objfile_key<struct objfile_type,
5470 gdb::noop_deleter<struct objfile_type>>
5471 objfile_type_data;
5472
5473 const struct objfile_type *
5474 objfile_type (struct objfile *objfile)
5475 {
5476 struct gdbarch *gdbarch;
5477 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5478
5479 if (objfile_type)
5480 return objfile_type;
5481
5482 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5483 1, struct objfile_type);
5484
5485 /* Use the objfile architecture to determine basic type properties. */
5486 gdbarch = get_objfile_arch (objfile);
5487
5488 /* Basic types. */
5489 objfile_type->builtin_void
5490 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5491 objfile_type->builtin_char
5492 = init_integer_type (objfile, TARGET_CHAR_BIT,
5493 !gdbarch_char_signed (gdbarch), "char");
5494 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5495 objfile_type->builtin_signed_char
5496 = init_integer_type (objfile, TARGET_CHAR_BIT,
5497 0, "signed char");
5498 objfile_type->builtin_unsigned_char
5499 = init_integer_type (objfile, TARGET_CHAR_BIT,
5500 1, "unsigned char");
5501 objfile_type->builtin_short
5502 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5503 0, "short");
5504 objfile_type->builtin_unsigned_short
5505 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5506 1, "unsigned short");
5507 objfile_type->builtin_int
5508 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5509 0, "int");
5510 objfile_type->builtin_unsigned_int
5511 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5512 1, "unsigned int");
5513 objfile_type->builtin_long
5514 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5515 0, "long");
5516 objfile_type->builtin_unsigned_long
5517 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5518 1, "unsigned long");
5519 objfile_type->builtin_long_long
5520 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5521 0, "long long");
5522 objfile_type->builtin_unsigned_long_long
5523 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5524 1, "unsigned long long");
5525 objfile_type->builtin_float
5526 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5527 "float", gdbarch_float_format (gdbarch));
5528 objfile_type->builtin_double
5529 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5530 "double", gdbarch_double_format (gdbarch));
5531 objfile_type->builtin_long_double
5532 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5533 "long double", gdbarch_long_double_format (gdbarch));
5534
5535 /* This type represents a type that was unrecognized in symbol read-in. */
5536 objfile_type->builtin_error
5537 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5538
5539 /* The following set of types is used for symbols with no
5540 debug information. */
5541 objfile_type->nodebug_text_symbol
5542 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5543 "<text variable, no debug info>");
5544 objfile_type->nodebug_text_gnu_ifunc_symbol
5545 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5546 "<text gnu-indirect-function variable, no debug info>");
5547 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5548 objfile_type->nodebug_got_plt_symbol
5549 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5550 "<text from jump slot in .got.plt, no debug info>",
5551 objfile_type->nodebug_text_symbol);
5552 objfile_type->nodebug_data_symbol
5553 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5554 objfile_type->nodebug_unknown_symbol
5555 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5556 objfile_type->nodebug_tls_symbol
5557 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5558
5559 /* NOTE: on some targets, addresses and pointers are not necessarily
5560 the same.
5561
5562 The upshot is:
5563 - gdb's `struct type' always describes the target's
5564 representation.
5565 - gdb's `struct value' objects should always hold values in
5566 target form.
5567 - gdb's CORE_ADDR values are addresses in the unified virtual
5568 address space that the assembler and linker work with. Thus,
5569 since target_read_memory takes a CORE_ADDR as an argument, it
5570 can access any memory on the target, even if the processor has
5571 separate code and data address spaces.
5572
5573 In this context, objfile_type->builtin_core_addr is a bit odd:
5574 it's a target type for a value the target will never see. It's
5575 only used to hold the values of (typeless) linker symbols, which
5576 are indeed in the unified virtual address space. */
5577
5578 objfile_type->builtin_core_addr
5579 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5580 "__CORE_ADDR");
5581
5582 objfile_type_data.set (objfile, objfile_type);
5583 return objfile_type;
5584 }
5585
5586 void
5587 _initialize_gdbtypes (void)
5588 {
5589 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5590
5591 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5592 _("Set debugging of C++ overloading."),
5593 _("Show debugging of C++ overloading."),
5594 _("When enabled, ranking of the "
5595 "functions is displayed."),
5596 NULL,
5597 show_overload_debug,
5598 &setdebuglist, &showdebuglist);
5599
5600 /* Add user knob for controlling resolution of opaque types. */
5601 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5602 &opaque_type_resolution,
5603 _("Set resolution of opaque struct/class/union"
5604 " types (if set before loading symbols)."),
5605 _("Show resolution of opaque struct/class/union"
5606 " types (if set before loading symbols)."),
5607 NULL, NULL,
5608 show_opaque_type_resolution,
5609 &setlist, &showlist);
5610
5611 /* Add an option to permit non-strict type checking. */
5612 add_setshow_boolean_cmd ("type", class_support,
5613 &strict_type_checking,
5614 _("Set strict type checking."),
5615 _("Show strict type checking."),
5616 NULL, NULL,
5617 show_strict_type_checking,
5618 &setchecklist, &showchecklist);
5619 }
This page took 0.168457 seconds and 4 git commands to generate.