import gdb-1999-12-06 snapshot
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2 Copyright (C) 1992, 93, 94, 95, 96, 1998 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "bfd.h"
25 #include "symtab.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "language.h"
31 #include "target.h"
32 #include "value.h"
33 #include "demangle.h"
34 #include "complaints.h"
35 #include "gdbcmd.h"
36
37 /* These variables point to the objects
38 representing the predefined C data types. */
39
40 struct type *builtin_type_void;
41 struct type *builtin_type_char;
42 struct type *builtin_type_true_char;
43 struct type *builtin_type_short;
44 struct type *builtin_type_int;
45 struct type *builtin_type_long;
46 struct type *builtin_type_long_long;
47 struct type *builtin_type_signed_char;
48 struct type *builtin_type_unsigned_char;
49 struct type *builtin_type_unsigned_short;
50 struct type *builtin_type_unsigned_int;
51 struct type *builtin_type_unsigned_long;
52 struct type *builtin_type_unsigned_long_long;
53 struct type *builtin_type_float;
54 struct type *builtin_type_double;
55 struct type *builtin_type_long_double;
56 struct type *builtin_type_complex;
57 struct type *builtin_type_double_complex;
58 struct type *builtin_type_string;
59 struct type *builtin_type_int8;
60 struct type *builtin_type_uint8;
61 struct type *builtin_type_int16;
62 struct type *builtin_type_uint16;
63 struct type *builtin_type_int32;
64 struct type *builtin_type_uint32;
65 struct type *builtin_type_int64;
66 struct type *builtin_type_uint64;
67 struct type *builtin_type_bool;
68 struct type *builtin_type_v4sf;
69
70 int opaque_type_resolution = 1;
71
72
73 struct extra
74 {
75 char str[128];
76 int len;
77 }; /* maximum extention is 128! FIXME */
78
79 static void add_name PARAMS ((struct extra *, char *));
80 static void add_mangled_type PARAMS ((struct extra *, struct type *));
81 #if 0
82 static void cfront_mangle_name PARAMS ((struct type *, int, int));
83 #endif
84 static void print_bit_vector PARAMS ((B_TYPE *, int));
85 static void print_arg_types PARAMS ((struct type **, int));
86 static void dump_fn_fieldlists PARAMS ((struct type *, int));
87 static void print_cplus_stuff PARAMS ((struct type *, int));
88 static void virtual_base_list_aux PARAMS ((struct type * dclass));
89
90
91 /* Alloc a new type structure and fill it with some defaults. If
92 OBJFILE is non-NULL, then allocate the space for the type structure
93 in that objfile's type_obstack. */
94
95 struct type *
96 alloc_type (objfile)
97 struct objfile *objfile;
98 {
99 register struct type *type;
100
101 /* Alloc the structure and start off with all fields zeroed. */
102
103 if (objfile == NULL)
104 {
105 type = (struct type *) xmalloc (sizeof (struct type));
106 }
107 else
108 {
109 type = (struct type *) obstack_alloc (&objfile->type_obstack,
110 sizeof (struct type));
111 OBJSTAT (objfile, n_types++);
112 }
113 memset ((char *) type, 0, sizeof (struct type));
114
115 /* Initialize the fields that might not be zero. */
116
117 TYPE_CODE (type) = TYPE_CODE_UNDEF;
118 TYPE_OBJFILE (type) = objfile;
119 TYPE_VPTR_FIELDNO (type) = -1;
120 TYPE_CV_TYPE (type) = type; /* chain back to itself */
121
122 return (type);
123 }
124
125 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
126 to a pointer to memory where the pointer type should be stored.
127 If *TYPEPTR is zero, update it to point to the pointer type we return.
128 We allocate new memory if needed. */
129
130 struct type *
131 make_pointer_type (type, typeptr)
132 struct type *type;
133 struct type **typeptr;
134 {
135 register struct type *ntype; /* New type */
136 struct objfile *objfile;
137
138 ntype = TYPE_POINTER_TYPE (type);
139
140 if (ntype)
141 {
142 if (typeptr == 0)
143 return ntype; /* Don't care about alloc, and have new type. */
144 else if (*typeptr == 0)
145 {
146 *typeptr = ntype; /* Tracking alloc, and we have new type. */
147 return ntype;
148 }
149 }
150
151 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
152 {
153 ntype = alloc_type (TYPE_OBJFILE (type));
154 if (typeptr)
155 *typeptr = ntype;
156 }
157 else
158 /* We have storage, but need to reset it. */
159 {
160 ntype = *typeptr;
161 objfile = TYPE_OBJFILE (ntype);
162 memset ((char *) ntype, 0, sizeof (struct type));
163 TYPE_OBJFILE (ntype) = objfile;
164 }
165
166 TYPE_TARGET_TYPE (ntype) = type;
167 TYPE_POINTER_TYPE (type) = ntype;
168
169 /* FIXME! Assume the machine has only one representation for pointers! */
170
171 TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
172 TYPE_CODE (ntype) = TYPE_CODE_PTR;
173
174 /* pointers are unsigned */
175 TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED;
176
177 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
178 TYPE_POINTER_TYPE (type) = ntype;
179
180 return ntype;
181 }
182
183 /* Given a type TYPE, return a type of pointers to that type.
184 May need to construct such a type if this is the first use. */
185
186 struct type *
187 lookup_pointer_type (type)
188 struct type *type;
189 {
190 return make_pointer_type (type, (struct type **) 0);
191 }
192
193 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero, points
194 to a pointer to memory where the reference type should be stored.
195 If *TYPEPTR is zero, update it to point to the reference type we return.
196 We allocate new memory if needed. */
197
198 struct type *
199 make_reference_type (type, typeptr)
200 struct type *type;
201 struct type **typeptr;
202 {
203 register struct type *ntype; /* New type */
204 struct objfile *objfile;
205
206 ntype = TYPE_REFERENCE_TYPE (type);
207
208 if (ntype)
209 {
210 if (typeptr == 0)
211 return ntype; /* Don't care about alloc, and have new type. */
212 else if (*typeptr == 0)
213 {
214 *typeptr = ntype; /* Tracking alloc, and we have new type. */
215 return ntype;
216 }
217 }
218
219 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
220 {
221 ntype = alloc_type (TYPE_OBJFILE (type));
222 if (typeptr)
223 *typeptr = ntype;
224 }
225 else
226 /* We have storage, but need to reset it. */
227 {
228 ntype = *typeptr;
229 objfile = TYPE_OBJFILE (ntype);
230 memset ((char *) ntype, 0, sizeof (struct type));
231 TYPE_OBJFILE (ntype) = objfile;
232 }
233
234 TYPE_TARGET_TYPE (ntype) = type;
235 TYPE_REFERENCE_TYPE (type) = ntype;
236
237 /* FIXME! Assume the machine has only one representation for references,
238 and that it matches the (only) representation for pointers! */
239
240 TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
241 TYPE_CODE (ntype) = TYPE_CODE_REF;
242
243 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
244 TYPE_REFERENCE_TYPE (type) = ntype;
245
246 return ntype;
247 }
248
249 /* Same as above, but caller doesn't care about memory allocation details. */
250
251 struct type *
252 lookup_reference_type (type)
253 struct type *type;
254 {
255 return make_reference_type (type, (struct type **) 0);
256 }
257
258 /* Lookup a function type that returns type TYPE. TYPEPTR, if nonzero, points
259 to a pointer to memory where the function type should be stored.
260 If *TYPEPTR is zero, update it to point to the function type we return.
261 We allocate new memory if needed. */
262
263 struct type *
264 make_function_type (type, typeptr)
265 struct type *type;
266 struct type **typeptr;
267 {
268 register struct type *ntype; /* New type */
269 struct objfile *objfile;
270
271 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
272 {
273 ntype = alloc_type (TYPE_OBJFILE (type));
274 if (typeptr)
275 *typeptr = ntype;
276 }
277 else
278 /* We have storage, but need to reset it. */
279 {
280 ntype = *typeptr;
281 objfile = TYPE_OBJFILE (ntype);
282 memset ((char *) ntype, 0, sizeof (struct type));
283 TYPE_OBJFILE (ntype) = objfile;
284 }
285
286 TYPE_TARGET_TYPE (ntype) = type;
287
288 TYPE_LENGTH (ntype) = 1;
289 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
290
291 return ntype;
292 }
293
294
295 /* Given a type TYPE, return a type of functions that return that type.
296 May need to construct such a type if this is the first use. */
297
298 struct type *
299 lookup_function_type (type)
300 struct type *type;
301 {
302 return make_function_type (type, (struct type **) 0);
303 }
304
305
306 /* Make a "c-v" variant of a type -- a type that is identical to the
307 one supplied except that it may have const or volatile attributes
308 CNST is a flag for setting the const attribute
309 VOLTL is a flag for setting the volatile attribute
310 TYPE is the base type whose variant we are creating.
311 TYPEPTR, if nonzero, points
312 to a pointer to memory where the reference type should be stored.
313 If *TYPEPTR is zero, update it to point to the reference type we return.
314 We allocate new memory if needed. */
315
316 struct type *
317 make_cv_type (cnst, voltl, type, typeptr)
318 int cnst;
319 int voltl;
320 struct type *type;
321 struct type **typeptr;
322 {
323 register struct type *ntype; /* New type */
324 register struct type *tmp_type = type; /* tmp type */
325 struct objfile *objfile;
326
327 ntype = TYPE_CV_TYPE (type);
328
329 while (ntype != type)
330 {
331 if ((TYPE_CONST (ntype) == cnst) &&
332 (TYPE_VOLATILE (ntype) == voltl))
333 {
334 if (typeptr == 0)
335 return ntype;
336 else if (*typeptr == 0)
337 {
338 *typeptr = ntype; /* Tracking alloc, and we have new type. */
339 return ntype;
340 }
341 }
342 tmp_type = ntype;
343 ntype = TYPE_CV_TYPE (ntype);
344 }
345
346 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
347 {
348 ntype = alloc_type (TYPE_OBJFILE (type));
349 if (typeptr)
350 *typeptr = ntype;
351 }
352 else
353 /* We have storage, but need to reset it. */
354 {
355 ntype = *typeptr;
356 objfile = TYPE_OBJFILE (ntype);
357 /* memset ((char *) ntype, 0, sizeof (struct type)); */
358 TYPE_OBJFILE (ntype) = objfile;
359 }
360
361 /* Copy original type */
362 memcpy ((char *) ntype, (char *) type, sizeof (struct type));
363 /* But zero out fields that shouldn't be copied */
364 TYPE_POINTER_TYPE (ntype) = (struct type *) 0; /* Need new pointer kind */
365 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0; /* Need new referene kind */
366 /* Note: TYPE_TARGET_TYPE can be left as is */
367
368 /* Set flags appropriately */
369 if (cnst)
370 TYPE_FLAGS (ntype) |= TYPE_FLAG_CONST;
371 else
372 TYPE_FLAGS (ntype) &= ~TYPE_FLAG_CONST;
373
374 if (voltl)
375 TYPE_FLAGS (ntype) |= TYPE_FLAG_VOLATILE;
376 else
377 TYPE_FLAGS (ntype) &= ~TYPE_FLAG_VOLATILE;
378
379 /* Fix the chain of cv variants */
380 TYPE_CV_TYPE (ntype) = type;
381 TYPE_CV_TYPE (tmp_type) = ntype;
382
383 return ntype;
384 }
385
386
387
388
389 /* Implement direct support for MEMBER_TYPE in GNU C++.
390 May need to construct such a type if this is the first use.
391 The TYPE is the type of the member. The DOMAIN is the type
392 of the aggregate that the member belongs to. */
393
394 struct type *
395 lookup_member_type (type, domain)
396 struct type *type;
397 struct type *domain;
398 {
399 register struct type *mtype;
400
401 mtype = alloc_type (TYPE_OBJFILE (type));
402 smash_to_member_type (mtype, domain, type);
403 return (mtype);
404 }
405
406 /* Allocate a stub method whose return type is TYPE.
407 This apparently happens for speed of symbol reading, since parsing
408 out the arguments to the method is cpu-intensive, the way we are doing
409 it. So, we will fill in arguments later.
410 This always returns a fresh type. */
411
412 struct type *
413 allocate_stub_method (type)
414 struct type *type;
415 {
416 struct type *mtype;
417
418 mtype = alloc_type (TYPE_OBJFILE (type));
419 TYPE_TARGET_TYPE (mtype) = type;
420 /* _DOMAIN_TYPE (mtype) = unknown yet */
421 /* _ARG_TYPES (mtype) = unknown yet */
422 TYPE_FLAGS (mtype) = TYPE_FLAG_STUB;
423 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
424 TYPE_LENGTH (mtype) = 1;
425 return (mtype);
426 }
427
428 /* Create a range type using either a blank type supplied in RESULT_TYPE,
429 or creating a new type, inheriting the objfile from INDEX_TYPE.
430
431 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND to
432 HIGH_BOUND, inclusive.
433
434 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
435 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
436
437 struct type *
438 create_range_type (result_type, index_type, low_bound, high_bound)
439 struct type *result_type;
440 struct type *index_type;
441 int low_bound;
442 int high_bound;
443 {
444 if (result_type == NULL)
445 {
446 result_type = alloc_type (TYPE_OBJFILE (index_type));
447 }
448 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
449 TYPE_TARGET_TYPE (result_type) = index_type;
450 if (TYPE_FLAGS (index_type) & TYPE_FLAG_STUB)
451 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
452 else
453 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
454 TYPE_NFIELDS (result_type) = 2;
455 TYPE_FIELDS (result_type) = (struct field *)
456 TYPE_ALLOC (result_type, 2 * sizeof (struct field));
457 memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field));
458 TYPE_FIELD_BITPOS (result_type, 0) = low_bound;
459 TYPE_FIELD_BITPOS (result_type, 1) = high_bound;
460 TYPE_FIELD_TYPE (result_type, 0) = builtin_type_int; /* FIXME */
461 TYPE_FIELD_TYPE (result_type, 1) = builtin_type_int; /* FIXME */
462
463 if (low_bound >= 0)
464 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
465
466 return (result_type);
467 }
468
469 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type TYPE.
470 Return 1 of type is a range type, 0 if it is discrete (and bounds
471 will fit in LONGEST), or -1 otherwise. */
472
473 int
474 get_discrete_bounds (type, lowp, highp)
475 struct type *type;
476 LONGEST *lowp, *highp;
477 {
478 CHECK_TYPEDEF (type);
479 switch (TYPE_CODE (type))
480 {
481 case TYPE_CODE_RANGE:
482 *lowp = TYPE_LOW_BOUND (type);
483 *highp = TYPE_HIGH_BOUND (type);
484 return 1;
485 case TYPE_CODE_ENUM:
486 if (TYPE_NFIELDS (type) > 0)
487 {
488 /* The enums may not be sorted by value, so search all
489 entries */
490 int i;
491
492 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
493 for (i = 0; i < TYPE_NFIELDS (type); i++)
494 {
495 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
496 *lowp = TYPE_FIELD_BITPOS (type, i);
497 if (TYPE_FIELD_BITPOS (type, i) > *highp)
498 *highp = TYPE_FIELD_BITPOS (type, i);
499 }
500
501 /* Set unsigned indicator if warranted. */
502 if (*lowp >= 0)
503 {
504 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
505 }
506 }
507 else
508 {
509 *lowp = 0;
510 *highp = -1;
511 }
512 return 0;
513 case TYPE_CODE_BOOL:
514 *lowp = 0;
515 *highp = 1;
516 return 0;
517 case TYPE_CODE_INT:
518 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
519 return -1;
520 if (!TYPE_UNSIGNED (type))
521 {
522 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
523 *highp = -*lowp - 1;
524 return 0;
525 }
526 /* ... fall through for unsigned ints ... */
527 case TYPE_CODE_CHAR:
528 *lowp = 0;
529 /* This round-about calculation is to avoid shifting by
530 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
531 if TYPE_LENGTH (type) == sizeof (LONGEST). */
532 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
533 *highp = (*highp - 1) | *highp;
534 return 0;
535 default:
536 return -1;
537 }
538 }
539
540 /* Create an array type using either a blank type supplied in RESULT_TYPE,
541 or creating a new type, inheriting the objfile from RANGE_TYPE.
542
543 Elements will be of type ELEMENT_TYPE, the indices will be of type
544 RANGE_TYPE.
545
546 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
547 sure it is TYPE_CODE_UNDEF before we bash it into an array type? */
548
549 struct type *
550 create_array_type (result_type, element_type, range_type)
551 struct type *result_type;
552 struct type *element_type;
553 struct type *range_type;
554 {
555 LONGEST low_bound, high_bound;
556
557 if (result_type == NULL)
558 {
559 result_type = alloc_type (TYPE_OBJFILE (range_type));
560 }
561 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
562 TYPE_TARGET_TYPE (result_type) = element_type;
563 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
564 low_bound = high_bound = 0;
565 CHECK_TYPEDEF (element_type);
566 TYPE_LENGTH (result_type) =
567 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
568 TYPE_NFIELDS (result_type) = 1;
569 TYPE_FIELDS (result_type) =
570 (struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
571 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
572 TYPE_FIELD_TYPE (result_type, 0) = range_type;
573 TYPE_VPTR_FIELDNO (result_type) = -1;
574
575 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
576 if (TYPE_LENGTH (result_type) == 0)
577 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
578
579 return (result_type);
580 }
581
582 /* Create a string type using either a blank type supplied in RESULT_TYPE,
583 or creating a new type. String types are similar enough to array of
584 char types that we can use create_array_type to build the basic type
585 and then bash it into a string type.
586
587 For fixed length strings, the range type contains 0 as the lower
588 bound and the length of the string minus one as the upper bound.
589
590 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
591 sure it is TYPE_CODE_UNDEF before we bash it into a string type? */
592
593 struct type *
594 create_string_type (result_type, range_type)
595 struct type *result_type;
596 struct type *range_type;
597 {
598 result_type = create_array_type (result_type,
599 *current_language->string_char_type,
600 range_type);
601 TYPE_CODE (result_type) = TYPE_CODE_STRING;
602 return (result_type);
603 }
604
605 struct type *
606 create_set_type (result_type, domain_type)
607 struct type *result_type;
608 struct type *domain_type;
609 {
610 LONGEST low_bound, high_bound, bit_length;
611 if (result_type == NULL)
612 {
613 result_type = alloc_type (TYPE_OBJFILE (domain_type));
614 }
615 TYPE_CODE (result_type) = TYPE_CODE_SET;
616 TYPE_NFIELDS (result_type) = 1;
617 TYPE_FIELDS (result_type) = (struct field *)
618 TYPE_ALLOC (result_type, 1 * sizeof (struct field));
619 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
620
621 if (!(TYPE_FLAGS (domain_type) & TYPE_FLAG_STUB))
622 {
623 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
624 low_bound = high_bound = 0;
625 bit_length = high_bound - low_bound + 1;
626 TYPE_LENGTH (result_type)
627 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
628 }
629 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
630
631 if (low_bound >= 0)
632 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
633
634 return (result_type);
635 }
636
637
638 /* Construct and return a type of the form:
639 struct NAME { ELT_TYPE ELT_NAME[N]; }
640 We use these types for SIMD registers. For example, the type of
641 the SSE registers on the late x86-family processors is:
642 struct __builtin_v4sf { float f[4]; }
643 built by the function call:
644 init_simd_type ("__builtin_v4sf", builtin_type_float, "f", 4)
645 The type returned is a permanent type, allocated using malloc; it
646 doesn't live in any objfile's obstack. */
647 struct type *
648 init_simd_type (char *name,
649 struct type *elt_type,
650 char *elt_name,
651 int n)
652 {
653 struct type *t;
654 struct field *f;
655
656 /* Build the field structure. */
657 f = xmalloc (sizeof (*f));
658 memset (f, 0, sizeof (*f));
659 f->loc.bitpos = 0;
660 f->type = create_array_type (0, elt_type,
661 create_range_type (0, builtin_type_int,
662 0, n-1));
663 f->name = elt_name;
664
665 /* Build a struct type with that field. */
666 t = init_type (TYPE_CODE_STRUCT, n * TYPE_LENGTH (elt_type), 0, 0, 0);
667 t->nfields = 1;
668 t->fields = f;
669 t->tag_name = name;
670
671 return t;
672 }
673
674
675 /* Smash TYPE to be a type of members of DOMAIN with type TO_TYPE.
676 A MEMBER is a wierd thing -- it amounts to a typed offset into
677 a struct, e.g. "an int at offset 8". A MEMBER TYPE doesn't
678 include the offset (that's the value of the MEMBER itself), but does
679 include the structure type into which it points (for some reason).
680
681 When "smashing" the type, we preserve the objfile that the
682 old type pointed to, since we aren't changing where the type is actually
683 allocated. */
684
685 void
686 smash_to_member_type (type, domain, to_type)
687 struct type *type;
688 struct type *domain;
689 struct type *to_type;
690 {
691 struct objfile *objfile;
692
693 objfile = TYPE_OBJFILE (type);
694
695 memset ((char *) type, 0, sizeof (struct type));
696 TYPE_OBJFILE (type) = objfile;
697 TYPE_TARGET_TYPE (type) = to_type;
698 TYPE_DOMAIN_TYPE (type) = domain;
699 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
700 TYPE_CODE (type) = TYPE_CODE_MEMBER;
701 }
702
703 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
704 METHOD just means `function that gets an extra "this" argument'.
705
706 When "smashing" the type, we preserve the objfile that the
707 old type pointed to, since we aren't changing where the type is actually
708 allocated. */
709
710 void
711 smash_to_method_type (type, domain, to_type, args)
712 struct type *type;
713 struct type *domain;
714 struct type *to_type;
715 struct type **args;
716 {
717 struct objfile *objfile;
718
719 objfile = TYPE_OBJFILE (type);
720
721 memset ((char *) type, 0, sizeof (struct type));
722 TYPE_OBJFILE (type) = objfile;
723 TYPE_TARGET_TYPE (type) = to_type;
724 TYPE_DOMAIN_TYPE (type) = domain;
725 TYPE_ARG_TYPES (type) = args;
726 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
727 TYPE_CODE (type) = TYPE_CODE_METHOD;
728 }
729
730 /* Return a typename for a struct/union/enum type without "struct ",
731 "union ", or "enum ". If the type has a NULL name, return NULL. */
732
733 char *
734 type_name_no_tag (type)
735 register const struct type *type;
736 {
737 if (TYPE_TAG_NAME (type) != NULL)
738 return TYPE_TAG_NAME (type);
739
740 /* Is there code which expects this to return the name if there is no
741 tag name? My guess is that this is mainly used for C++ in cases where
742 the two will always be the same. */
743 return TYPE_NAME (type);
744 }
745
746 /* Lookup a primitive type named NAME.
747 Return zero if NAME is not a primitive type. */
748
749 struct type *
750 lookup_primitive_typename (name)
751 char *name;
752 {
753 struct type **const *p;
754
755 for (p = current_language->la_builtin_type_vector; *p != NULL; p++)
756 {
757 if (STREQ ((**p)->name, name))
758 {
759 return (**p);
760 }
761 }
762 return (NULL);
763 }
764
765 /* Lookup a typedef or primitive type named NAME,
766 visible in lexical block BLOCK.
767 If NOERR is nonzero, return zero if NAME is not suitably defined. */
768
769 struct type *
770 lookup_typename (name, block, noerr)
771 char *name;
772 struct block *block;
773 int noerr;
774 {
775 register struct symbol *sym;
776 register struct type *tmp;
777
778 sym = lookup_symbol (name, block, VAR_NAMESPACE, 0, (struct symtab **) NULL);
779 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
780 {
781 tmp = lookup_primitive_typename (name);
782 if (tmp)
783 {
784 return (tmp);
785 }
786 else if (!tmp && noerr)
787 {
788 return (NULL);
789 }
790 else
791 {
792 error ("No type named %s.", name);
793 }
794 }
795 return (SYMBOL_TYPE (sym));
796 }
797
798 struct type *
799 lookup_unsigned_typename (name)
800 char *name;
801 {
802 char *uns = alloca (strlen (name) + 10);
803
804 strcpy (uns, "unsigned ");
805 strcpy (uns + 9, name);
806 return (lookup_typename (uns, (struct block *) NULL, 0));
807 }
808
809 struct type *
810 lookup_signed_typename (name)
811 char *name;
812 {
813 struct type *t;
814 char *uns = alloca (strlen (name) + 8);
815
816 strcpy (uns, "signed ");
817 strcpy (uns + 7, name);
818 t = lookup_typename (uns, (struct block *) NULL, 1);
819 /* If we don't find "signed FOO" just try again with plain "FOO". */
820 if (t != NULL)
821 return t;
822 return lookup_typename (name, (struct block *) NULL, 0);
823 }
824
825 /* Lookup a structure type named "struct NAME",
826 visible in lexical block BLOCK. */
827
828 struct type *
829 lookup_struct (name, block)
830 char *name;
831 struct block *block;
832 {
833 register struct symbol *sym;
834
835 sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
836 (struct symtab **) NULL);
837
838 if (sym == NULL)
839 {
840 error ("No struct type named %s.", name);
841 }
842 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
843 {
844 error ("This context has class, union or enum %s, not a struct.", name);
845 }
846 return (SYMBOL_TYPE (sym));
847 }
848
849 /* Lookup a union type named "union NAME",
850 visible in lexical block BLOCK. */
851
852 struct type *
853 lookup_union (name, block)
854 char *name;
855 struct block *block;
856 {
857 register struct symbol *sym;
858 struct type *t;
859
860 sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
861 (struct symtab **) NULL);
862
863 if (sym == NULL)
864 error ("No union type named %s.", name);
865
866 t = SYMBOL_TYPE (sym);
867
868 if (TYPE_CODE (t) == TYPE_CODE_UNION)
869 return (t);
870
871 /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
872 * a further "declared_type" field to discover it is really a union.
873 */
874 if (HAVE_CPLUS_STRUCT (t))
875 if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
876 return (t);
877
878 /* If we get here, it's not a union */
879 error ("This context has class, struct or enum %s, not a union.", name);
880 }
881
882
883 /* Lookup an enum type named "enum NAME",
884 visible in lexical block BLOCK. */
885
886 struct type *
887 lookup_enum (name, block)
888 char *name;
889 struct block *block;
890 {
891 register struct symbol *sym;
892
893 sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
894 (struct symtab **) NULL);
895 if (sym == NULL)
896 {
897 error ("No enum type named %s.", name);
898 }
899 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
900 {
901 error ("This context has class, struct or union %s, not an enum.", name);
902 }
903 return (SYMBOL_TYPE (sym));
904 }
905
906 /* Lookup a template type named "template NAME<TYPE>",
907 visible in lexical block BLOCK. */
908
909 struct type *
910 lookup_template_type (name, type, block)
911 char *name;
912 struct type *type;
913 struct block *block;
914 {
915 struct symbol *sym;
916 char *nam = (char *) alloca (strlen (name) + strlen (type->name) + 4);
917 strcpy (nam, name);
918 strcat (nam, "<");
919 strcat (nam, type->name);
920 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
921
922 sym = lookup_symbol (nam, block, VAR_NAMESPACE, 0, (struct symtab **) NULL);
923
924 if (sym == NULL)
925 {
926 error ("No template type named %s.", name);
927 }
928 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
929 {
930 error ("This context has class, union or enum %s, not a struct.", name);
931 }
932 return (SYMBOL_TYPE (sym));
933 }
934
935 /* Given a type TYPE, lookup the type of the component of type named NAME.
936
937 TYPE can be either a struct or union, or a pointer or reference to a struct or
938 union. If it is a pointer or reference, its target type is automatically used.
939 Thus '.' and '->' are interchangable, as specified for the definitions of the
940 expression element types STRUCTOP_STRUCT and STRUCTOP_PTR.
941
942 If NOERR is nonzero, return zero if NAME is not suitably defined.
943 If NAME is the name of a baseclass type, return that type. */
944
945 struct type *
946 lookup_struct_elt_type (type, name, noerr)
947 struct type *type;
948 char *name;
949 int noerr;
950 {
951 int i;
952
953 for (;;)
954 {
955 CHECK_TYPEDEF (type);
956 if (TYPE_CODE (type) != TYPE_CODE_PTR
957 && TYPE_CODE (type) != TYPE_CODE_REF)
958 break;
959 type = TYPE_TARGET_TYPE (type);
960 }
961
962 if (TYPE_CODE (type) != TYPE_CODE_STRUCT &&
963 TYPE_CODE (type) != TYPE_CODE_UNION)
964 {
965 target_terminal_ours ();
966 gdb_flush (gdb_stdout);
967 fprintf_unfiltered (gdb_stderr, "Type ");
968 type_print (type, "", gdb_stderr, -1);
969 error (" is not a structure or union type.");
970 }
971
972 #if 0
973 /* FIXME: This change put in by Michael seems incorrect for the case where
974 the structure tag name is the same as the member name. I.E. when doing
975 "ptype bell->bar" for "struct foo { int bar; int foo; } bell;"
976 Disabled by fnf. */
977 {
978 char *typename;
979
980 typename = type_name_no_tag (type);
981 if (typename != NULL && STREQ (typename, name))
982 return type;
983 }
984 #endif
985
986 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
987 {
988 char *t_field_name = TYPE_FIELD_NAME (type, i);
989
990 if (t_field_name && STREQ (t_field_name, name))
991 {
992 return TYPE_FIELD_TYPE (type, i);
993 }
994 }
995
996 /* OK, it's not in this class. Recursively check the baseclasses. */
997 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
998 {
999 struct type *t;
1000
1001 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, noerr);
1002 if (t != NULL)
1003 {
1004 return t;
1005 }
1006 }
1007
1008 if (noerr)
1009 {
1010 return NULL;
1011 }
1012
1013 target_terminal_ours ();
1014 gdb_flush (gdb_stdout);
1015 fprintf_unfiltered (gdb_stderr, "Type ");
1016 type_print (type, "", gdb_stderr, -1);
1017 fprintf_unfiltered (gdb_stderr, " has no component named ");
1018 fputs_filtered (name, gdb_stderr);
1019 error (".");
1020 return (struct type *) -1; /* For lint */
1021 }
1022
1023 /* If possible, make the vptr_fieldno and vptr_basetype fields of TYPE
1024 valid. Callers should be aware that in some cases (for example,
1025 the type or one of its baseclasses is a stub type and we are
1026 debugging a .o file), this function will not be able to find the virtual
1027 function table pointer, and vptr_fieldno will remain -1 and vptr_basetype
1028 will remain NULL. */
1029
1030 void
1031 fill_in_vptr_fieldno (type)
1032 struct type *type;
1033 {
1034 CHECK_TYPEDEF (type);
1035
1036 if (TYPE_VPTR_FIELDNO (type) < 0)
1037 {
1038 int i;
1039
1040 /* We must start at zero in case the first (and only) baseclass is
1041 virtual (and hence we cannot share the table pointer). */
1042 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1043 {
1044 fill_in_vptr_fieldno (TYPE_BASECLASS (type, i));
1045 if (TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, i)) >= 0)
1046 {
1047 TYPE_VPTR_FIELDNO (type)
1048 = TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, i));
1049 TYPE_VPTR_BASETYPE (type)
1050 = TYPE_VPTR_BASETYPE (TYPE_BASECLASS (type, i));
1051 break;
1052 }
1053 }
1054 }
1055 }
1056
1057 /* Find the method and field indices for the destructor in class type T.
1058 Return 1 if the destructor was found, otherwise, return 0. */
1059
1060 int
1061 get_destructor_fn_field (t, method_indexp, field_indexp)
1062 struct type *t;
1063 int *method_indexp;
1064 int *field_indexp;
1065 {
1066 int i;
1067
1068 for (i = 0; i < TYPE_NFN_FIELDS (t); i++)
1069 {
1070 int j;
1071 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1072
1073 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (t, i); j++)
1074 {
1075 if (DESTRUCTOR_PREFIX_P (TYPE_FN_FIELD_PHYSNAME (f, j)))
1076 {
1077 *method_indexp = i;
1078 *field_indexp = j;
1079 return 1;
1080 }
1081 }
1082 }
1083 return 0;
1084 }
1085
1086 /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1087
1088 If this is a stubbed struct (i.e. declared as struct foo *), see if
1089 we can find a full definition in some other file. If so, copy this
1090 definition, so we can use it in future. There used to be a comment (but
1091 not any code) that if we don't find a full definition, we'd set a flag
1092 so we don't spend time in the future checking the same type. That would
1093 be a mistake, though--we might load in more symbols which contain a
1094 full definition for the type.
1095
1096 This used to be coded as a macro, but I don't think it is called
1097 often enough to merit such treatment. */
1098
1099 struct complaint stub_noname_complaint =
1100 {"stub type has NULL name", 0, 0};
1101
1102 struct type *
1103 check_typedef (type)
1104 register struct type *type;
1105 {
1106 struct type *orig_type = type;
1107 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1108 {
1109 if (!TYPE_TARGET_TYPE (type))
1110 {
1111 char *name;
1112 struct symbol *sym;
1113
1114 /* It is dangerous to call lookup_symbol if we are currently
1115 reading a symtab. Infinite recursion is one danger. */
1116 if (currently_reading_symtab)
1117 return type;
1118
1119 name = type_name_no_tag (type);
1120 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1121 TYPE_TAG_NAME, and look in STRUCT_NAMESPACE and/or VAR_NAMESPACE
1122 as appropriate? (this code was written before TYPE_NAME and
1123 TYPE_TAG_NAME were separate). */
1124 if (name == NULL)
1125 {
1126 complain (&stub_noname_complaint);
1127 return type;
1128 }
1129 sym = lookup_symbol (name, 0, STRUCT_NAMESPACE, 0,
1130 (struct symtab **) NULL);
1131 if (sym)
1132 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1133 else
1134 TYPE_TARGET_TYPE (type) = alloc_type (NULL); /* TYPE_CODE_UNDEF */
1135 }
1136 type = TYPE_TARGET_TYPE (type);
1137 }
1138
1139 /* If this is a struct/class/union with no fields, then check whether a
1140 full definition exists somewhere else. This is for systems where a
1141 type definition with no fields is issued for such types, instead of
1142 identifying them as stub types in the first place */
1143
1144 if (TYPE_IS_OPAQUE (type) && opaque_type_resolution && !currently_reading_symtab)
1145 {
1146 char *name = type_name_no_tag (type);
1147 struct type *newtype;
1148 if (name == NULL)
1149 {
1150 complain (&stub_noname_complaint);
1151 return type;
1152 }
1153 newtype = lookup_transparent_type (name);
1154 if (newtype)
1155 {
1156 memcpy ((char *) type, (char *) newtype, sizeof (struct type));
1157 }
1158 }
1159 /* Otherwise, rely on the stub flag being set for opaque/stubbed types */
1160 else if ((TYPE_FLAGS (type) & TYPE_FLAG_STUB) && !currently_reading_symtab)
1161 {
1162 char *name = type_name_no_tag (type);
1163 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1164 TYPE_TAG_NAME, and look in STRUCT_NAMESPACE and/or VAR_NAMESPACE
1165 as appropriate? (this code was written before TYPE_NAME and
1166 TYPE_TAG_NAME were separate). */
1167 struct symbol *sym;
1168 if (name == NULL)
1169 {
1170 complain (&stub_noname_complaint);
1171 return type;
1172 }
1173 sym = lookup_symbol (name, 0, STRUCT_NAMESPACE, 0, (struct symtab **) NULL);
1174 if (sym)
1175 {
1176 memcpy ((char *) type, (char *) SYMBOL_TYPE (sym), sizeof (struct type));
1177 }
1178 }
1179
1180 if (TYPE_FLAGS (type) & TYPE_FLAG_TARGET_STUB)
1181 {
1182 struct type *range_type;
1183 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1184
1185 if (TYPE_FLAGS (target_type) & (TYPE_FLAG_STUB | TYPE_FLAG_TARGET_STUB))
1186 {
1187 }
1188 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1189 && TYPE_NFIELDS (type) == 1
1190 && (TYPE_CODE (range_type = TYPE_FIELD_TYPE (type, 0))
1191 == TYPE_CODE_RANGE))
1192 {
1193 /* Now recompute the length of the array type, based on its
1194 number of elements and the target type's length. */
1195 TYPE_LENGTH (type) =
1196 ((TYPE_FIELD_BITPOS (range_type, 1)
1197 - TYPE_FIELD_BITPOS (range_type, 0)
1198 + 1)
1199 * TYPE_LENGTH (target_type));
1200 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1201 }
1202 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1203 {
1204 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1205 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1206 }
1207 }
1208 /* Cache TYPE_LENGTH for future use. */
1209 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1210 return type;
1211 }
1212
1213 /* New code added to support parsing of Cfront stabs strings */
1214 #include <ctype.h>
1215 #define INIT_EXTRA { pextras->len=0; pextras->str[0]='\0'; }
1216 #define ADD_EXTRA(c) { pextras->str[pextras->len++]=c; }
1217
1218 static void
1219 add_name (pextras, n)
1220 struct extra *pextras;
1221 char *n;
1222 {
1223 int nlen;
1224
1225 if ((nlen = (n ? strlen (n) : 0)) == 0)
1226 return;
1227 sprintf (pextras->str + pextras->len, "%d%s", nlen, n);
1228 pextras->len = strlen (pextras->str);
1229 }
1230
1231 static void
1232 add_mangled_type (pextras, t)
1233 struct extra *pextras;
1234 struct type *t;
1235 {
1236 enum type_code tcode;
1237 int tlen, tflags;
1238 char *tname;
1239
1240 tcode = TYPE_CODE (t);
1241 tlen = TYPE_LENGTH (t);
1242 tflags = TYPE_FLAGS (t);
1243 tname = TYPE_NAME (t);
1244 /* args of "..." seem to get mangled as "e" */
1245
1246 switch (tcode)
1247 {
1248 case TYPE_CODE_INT:
1249 if (tflags == 1)
1250 ADD_EXTRA ('U');
1251 switch (tlen)
1252 {
1253 case 1:
1254 ADD_EXTRA ('c');
1255 break;
1256 case 2:
1257 ADD_EXTRA ('s');
1258 break;
1259 case 4:
1260 {
1261 char *pname;
1262 if ((pname = strrchr (tname, 'l'), pname) && !strcmp (pname, "long"))
1263 {
1264 ADD_EXTRA ('l');
1265 }
1266 else
1267 {
1268 ADD_EXTRA ('i');
1269 }
1270 }
1271 break;
1272 default:
1273 {
1274
1275 static struct complaint msg =
1276 {"Bad int type code length x%x\n", 0, 0};
1277
1278 complain (&msg, tlen);
1279
1280 }
1281 }
1282 break;
1283 case TYPE_CODE_FLT:
1284 switch (tlen)
1285 {
1286 case 4:
1287 ADD_EXTRA ('f');
1288 break;
1289 case 8:
1290 ADD_EXTRA ('d');
1291 break;
1292 case 16:
1293 ADD_EXTRA ('r');
1294 break;
1295 default:
1296 {
1297 static struct complaint msg =
1298 {"Bad float type code length x%x\n", 0, 0};
1299 complain (&msg, tlen);
1300 }
1301 }
1302 break;
1303 case TYPE_CODE_REF:
1304 ADD_EXTRA ('R');
1305 /* followed by what it's a ref to */
1306 break;
1307 case TYPE_CODE_PTR:
1308 ADD_EXTRA ('P');
1309 /* followed by what it's a ptr to */
1310 break;
1311 case TYPE_CODE_TYPEDEF:
1312 {
1313 static struct complaint msg =
1314 {"Typedefs in overloaded functions not yet supported\n", 0, 0};
1315 complain (&msg);
1316 }
1317 /* followed by type bytes & name */
1318 break;
1319 case TYPE_CODE_FUNC:
1320 ADD_EXTRA ('F');
1321 /* followed by func's arg '_' & ret types */
1322 break;
1323 case TYPE_CODE_VOID:
1324 ADD_EXTRA ('v');
1325 break;
1326 case TYPE_CODE_METHOD:
1327 ADD_EXTRA ('M');
1328 /* followed by name of class and func's arg '_' & ret types */
1329 add_name (pextras, tname);
1330 ADD_EXTRA ('F'); /* then mangle function */
1331 break;
1332 case TYPE_CODE_STRUCT: /* C struct */
1333 case TYPE_CODE_UNION: /* C union */
1334 case TYPE_CODE_ENUM: /* Enumeration type */
1335 /* followed by name of type */
1336 add_name (pextras, tname);
1337 break;
1338
1339 /* errors possible types/not supported */
1340 case TYPE_CODE_CHAR:
1341 case TYPE_CODE_ARRAY: /* Array type */
1342 case TYPE_CODE_MEMBER: /* Member type */
1343 case TYPE_CODE_BOOL:
1344 case TYPE_CODE_COMPLEX: /* Complex float */
1345 case TYPE_CODE_UNDEF:
1346 case TYPE_CODE_SET: /* Pascal sets */
1347 case TYPE_CODE_RANGE:
1348 case TYPE_CODE_STRING:
1349 case TYPE_CODE_BITSTRING:
1350 case TYPE_CODE_ERROR:
1351 default:
1352 {
1353 static struct complaint msg =
1354 {"Unknown type code x%x\n", 0, 0};
1355 complain (&msg, tcode);
1356 }
1357 }
1358 if (t->target_type)
1359 add_mangled_type (pextras, t->target_type);
1360 }
1361
1362 #if 0
1363 void
1364 cfront_mangle_name (type, i, j)
1365 struct type *type;
1366 int i;
1367 int j;
1368 {
1369 struct fn_field *f;
1370 char *mangled_name = gdb_mangle_name (type, i, j);
1371
1372 f = TYPE_FN_FIELDLIST1 (type, i); /* moved from below */
1373
1374 /* kludge to support cfront methods - gdb expects to find "F" for
1375 ARM_mangled names, so when we mangle, we have to add it here */
1376 if (ARM_DEMANGLING)
1377 {
1378 int k;
1379 char *arm_mangled_name;
1380 struct fn_field *method = &f[j];
1381 char *field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1382 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1383 char *newname = type_name_no_tag (type);
1384
1385 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1386 int nargs = TYPE_NFIELDS (ftype); /* number of args */
1387 struct extra extras, *pextras = &extras;
1388 INIT_EXTRA
1389
1390 if (TYPE_FN_FIELD_STATIC_P (f, j)) /* j for sublist within this list */
1391 ADD_EXTRA ('S')
1392 ADD_EXTRA ('F')
1393 /* add args here! */
1394 if (nargs <= 1) /* no args besides this */
1395 ADD_EXTRA ('v')
1396 else
1397 {
1398 for (k = 1; k < nargs; k++)
1399 {
1400 struct type *t;
1401 t = TYPE_FIELD_TYPE (ftype, k);
1402 add_mangled_type (pextras, t);
1403 }
1404 }
1405 ADD_EXTRA ('\0')
1406 printf ("add_mangled_type: %s\n", extras.str); /* FIXME */
1407 arm_mangled_name = malloc (strlen (mangled_name) + extras.len);
1408 sprintf (arm_mangled_name, "%s%s", mangled_name, extras.str);
1409 free (mangled_name);
1410 mangled_name = arm_mangled_name;
1411 }
1412 }
1413 #endif /* 0 */
1414
1415 #undef ADD_EXTRA
1416 /* End of new code added to support parsing of Cfront stabs strings */
1417
1418 /* Ugly hack to convert method stubs into method types.
1419
1420 He ain't kiddin'. This demangles the name of the method into a string
1421 including argument types, parses out each argument type, generates
1422 a string casting a zero to that type, evaluates the string, and stuffs
1423 the resulting type into an argtype vector!!! Then it knows the type
1424 of the whole function (including argument types for overloading),
1425 which info used to be in the stab's but was removed to hack back
1426 the space required for them. */
1427
1428 void
1429 check_stub_method (type, method_id, signature_id)
1430 struct type *type;
1431 int method_id;
1432 int signature_id;
1433 {
1434 struct fn_field *f;
1435 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1436 char *demangled_name = cplus_demangle (mangled_name,
1437 DMGL_PARAMS | DMGL_ANSI);
1438 char *argtypetext, *p;
1439 int depth = 0, argcount = 1;
1440 struct type **argtypes;
1441 struct type *mtype;
1442
1443 /* Make sure we got back a function string that we can use. */
1444 if (demangled_name)
1445 p = strchr (demangled_name, '(');
1446
1447 if (demangled_name == NULL || p == NULL)
1448 error ("Internal: Cannot demangle mangled name `%s'.", mangled_name);
1449
1450 /* Now, read in the parameters that define this type. */
1451 p += 1;
1452 argtypetext = p;
1453 while (*p)
1454 {
1455 if (*p == '(')
1456 {
1457 depth += 1;
1458 }
1459 else if (*p == ')')
1460 {
1461 depth -= 1;
1462 }
1463 else if (*p == ',' && depth == 0)
1464 {
1465 argcount += 1;
1466 }
1467
1468 p += 1;
1469 }
1470
1471 /* We need two more slots: one for the THIS pointer, and one for the
1472 NULL [...] or void [end of arglist]. */
1473
1474 argtypes = (struct type **)
1475 TYPE_ALLOC (type, (argcount + 2) * sizeof (struct type *));
1476 p = argtypetext;
1477 /* FIXME: This is wrong for static member functions. */
1478 argtypes[0] = lookup_pointer_type (type);
1479 argcount = 1;
1480
1481 if (*p != ')') /* () means no args, skip while */
1482 {
1483 depth = 0;
1484 while (*p)
1485 {
1486 if (depth <= 0 && (*p == ',' || *p == ')'))
1487 {
1488 /* Avoid parsing of ellipsis, they will be handled below. */
1489 if (strncmp (argtypetext, "...", p - argtypetext) != 0)
1490 {
1491 argtypes[argcount] =
1492 parse_and_eval_type (argtypetext, p - argtypetext);
1493 argcount += 1;
1494 }
1495 argtypetext = p + 1;
1496 }
1497
1498 if (*p == '(')
1499 {
1500 depth += 1;
1501 }
1502 else if (*p == ')')
1503 {
1504 depth -= 1;
1505 }
1506
1507 p += 1;
1508 }
1509 }
1510
1511 if (p[-2] != '.') /* Not '...' */
1512 {
1513 argtypes[argcount] = builtin_type_void; /* List terminator */
1514 }
1515 else
1516 {
1517 argtypes[argcount] = NULL; /* Ellist terminator */
1518 }
1519
1520 free (demangled_name);
1521
1522 f = TYPE_FN_FIELDLIST1 (type, method_id);
1523
1524 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1525
1526 /* Now update the old "stub" type into a real type. */
1527 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1528 TYPE_DOMAIN_TYPE (mtype) = type;
1529 TYPE_ARG_TYPES (mtype) = argtypes;
1530 TYPE_FLAGS (mtype) &= ~TYPE_FLAG_STUB;
1531 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1532 }
1533
1534 const struct cplus_struct_type cplus_struct_default;
1535
1536 void
1537 allocate_cplus_struct_type (type)
1538 struct type *type;
1539 {
1540 if (!HAVE_CPLUS_STRUCT (type))
1541 {
1542 TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1543 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1544 *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1545 }
1546 }
1547
1548 /* Helper function to initialize the standard scalar types.
1549
1550 If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy
1551 of the string pointed to by name in the type_obstack for that objfile,
1552 and initialize the type name to that copy. There are places (mipsread.c
1553 in particular, where init_type is called with a NULL value for NAME). */
1554
1555 struct type *
1556 init_type (code, length, flags, name, objfile)
1557 enum type_code code;
1558 int length;
1559 int flags;
1560 char *name;
1561 struct objfile *objfile;
1562 {
1563 register struct type *type;
1564
1565 type = alloc_type (objfile);
1566 TYPE_CODE (type) = code;
1567 TYPE_LENGTH (type) = length;
1568 TYPE_FLAGS (type) |= flags;
1569 if ((name != NULL) && (objfile != NULL))
1570 {
1571 TYPE_NAME (type) =
1572 obsavestring (name, strlen (name), &objfile->type_obstack);
1573 }
1574 else
1575 {
1576 TYPE_NAME (type) = name;
1577 }
1578
1579 /* C++ fancies. */
1580
1581 if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1582 {
1583 INIT_CPLUS_SPECIFIC (type);
1584 }
1585 return (type);
1586 }
1587
1588 /* Look up a fundamental type for the specified objfile.
1589 May need to construct such a type if this is the first use.
1590
1591 Some object file formats (ELF, COFF, etc) do not define fundamental
1592 types such as "int" or "double". Others (stabs for example), do
1593 define fundamental types.
1594
1595 For the formats which don't provide fundamental types, gdb can create
1596 such types, using defaults reasonable for the current language and
1597 the current target machine.
1598
1599 NOTE: This routine is obsolescent. Each debugging format reader
1600 should manage it's own fundamental types, either creating them from
1601 suitable defaults or reading them from the debugging information,
1602 whichever is appropriate. The DWARF reader has already been
1603 fixed to do this. Once the other readers are fixed, this routine
1604 will go away. Also note that fundamental types should be managed
1605 on a compilation unit basis in a multi-language environment, not
1606 on a linkage unit basis as is done here. */
1607
1608
1609 struct type *
1610 lookup_fundamental_type (objfile, typeid)
1611 struct objfile *objfile;
1612 int typeid;
1613 {
1614 register struct type **typep;
1615 register int nbytes;
1616
1617 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
1618 {
1619 error ("internal error - invalid fundamental type id %d", typeid);
1620 }
1621
1622 /* If this is the first time we need a fundamental type for this objfile
1623 then we need to initialize the vector of type pointers. */
1624
1625 if (objfile->fundamental_types == NULL)
1626 {
1627 nbytes = FT_NUM_MEMBERS * sizeof (struct type *);
1628 objfile->fundamental_types = (struct type **)
1629 obstack_alloc (&objfile->type_obstack, nbytes);
1630 memset ((char *) objfile->fundamental_types, 0, nbytes);
1631 OBJSTAT (objfile, n_types += FT_NUM_MEMBERS);
1632 }
1633
1634 /* Look for this particular type in the fundamental type vector. If one is
1635 not found, create and install one appropriate for the current language. */
1636
1637 typep = objfile->fundamental_types + typeid;
1638 if (*typep == NULL)
1639 {
1640 *typep = create_fundamental_type (objfile, typeid);
1641 }
1642
1643 return (*typep);
1644 }
1645
1646 int
1647 can_dereference (t)
1648 struct type *t;
1649 {
1650 /* FIXME: Should we return true for references as well as pointers? */
1651 CHECK_TYPEDEF (t);
1652 return
1653 (t != NULL
1654 && TYPE_CODE (t) == TYPE_CODE_PTR
1655 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1656 }
1657
1658 int
1659 is_integral_type (t)
1660 struct type *t;
1661 {
1662 CHECK_TYPEDEF (t);
1663 return
1664 ((t != NULL)
1665 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1666 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1667 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1668 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1669 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1670 }
1671
1672 /* Chill varying string and arrays are represented as follows:
1673
1674 struct { int __var_length; ELEMENT_TYPE[MAX_SIZE] __var_data};
1675
1676 Return true if TYPE is such a Chill varying type. */
1677
1678 int
1679 chill_varying_type (type)
1680 struct type *type;
1681 {
1682 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1683 || TYPE_NFIELDS (type) != 2
1684 || strcmp (TYPE_FIELD_NAME (type, 0), "__var_length") != 0)
1685 return 0;
1686 return 1;
1687 }
1688
1689 /* Check whether BASE is an ancestor or base class or DCLASS
1690 Return 1 if so, and 0 if not.
1691 Note: callers may want to check for identity of the types before
1692 calling this function -- identical types are considered to satisfy
1693 the ancestor relationship even if they're identical */
1694
1695 int
1696 is_ancestor (base, dclass)
1697 struct type *base;
1698 struct type *dclass;
1699 {
1700 int i;
1701
1702 CHECK_TYPEDEF (base);
1703 CHECK_TYPEDEF (dclass);
1704
1705 if (base == dclass)
1706 return 1;
1707
1708 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1709 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1710 return 1;
1711
1712 return 0;
1713 }
1714
1715
1716
1717 /* See whether DCLASS has a virtual table. This routine is aimed at
1718 the HP/Taligent ANSI C++ runtime model, and may not work with other
1719 runtime models. Return 1 => Yes, 0 => No. */
1720
1721 int
1722 has_vtable (dclass)
1723 struct type *dclass;
1724 {
1725 /* In the HP ANSI C++ runtime model, a class has a vtable only if it
1726 has virtual functions or virtual bases. */
1727
1728 register int i;
1729
1730 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
1731 return 0;
1732
1733 /* First check for the presence of virtual bases */
1734 if (TYPE_FIELD_VIRTUAL_BITS (dclass))
1735 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1736 if (B_TST (TYPE_FIELD_VIRTUAL_BITS (dclass), i))
1737 return 1;
1738
1739 /* Next check for virtual functions */
1740 if (TYPE_FN_FIELDLISTS (dclass))
1741 for (i = 0; i < TYPE_NFN_FIELDS (dclass); i++)
1742 if (TYPE_FN_FIELD_VIRTUAL_P (TYPE_FN_FIELDLIST1 (dclass, i), 0))
1743 return 1;
1744
1745 /* Recurse on non-virtual bases to see if any of them needs a vtable */
1746 if (TYPE_FIELD_VIRTUAL_BITS (dclass))
1747 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1748 if ((!B_TST (TYPE_FIELD_VIRTUAL_BITS (dclass), i)) &&
1749 (has_vtable (TYPE_FIELD_TYPE (dclass, i))))
1750 return 1;
1751
1752 /* Well, maybe we don't need a virtual table */
1753 return 0;
1754 }
1755
1756 /* Return a pointer to the "primary base class" of DCLASS.
1757
1758 A NULL return indicates that DCLASS has no primary base, or that it
1759 couldn't be found (insufficient information).
1760
1761 This routine is aimed at the HP/Taligent ANSI C++ runtime model,
1762 and may not work with other runtime models. */
1763
1764 struct type *
1765 primary_base_class (dclass)
1766 struct type *dclass;
1767 {
1768 /* In HP ANSI C++'s runtime model, a "primary base class" of a class
1769 is the first directly inherited, non-virtual base class that
1770 requires a virtual table */
1771
1772 register int i;
1773
1774 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
1775 return NULL;
1776
1777 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1778 if (!TYPE_FIELD_VIRTUAL (dclass, i) &&
1779 has_vtable (TYPE_FIELD_TYPE (dclass, i)))
1780 return TYPE_FIELD_TYPE (dclass, i);
1781
1782 return NULL;
1783 }
1784
1785 /* Global manipulated by virtual_base_list[_aux]() */
1786
1787 static struct vbase *current_vbase_list = NULL;
1788
1789 /* Return a pointer to a null-terminated list of struct vbase
1790 items. The vbasetype pointer of each item in the list points to the
1791 type information for a virtual base of the argument DCLASS.
1792
1793 Helper function for virtual_base_list().
1794 Note: the list goes backward, right-to-left. virtual_base_list()
1795 copies the items out in reverse order. */
1796
1797 static void
1798 virtual_base_list_aux (dclass)
1799 struct type *dclass;
1800 {
1801 struct vbase *tmp_vbase;
1802 register int i;
1803
1804 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
1805 return;
1806
1807 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1808 {
1809 /* Recurse on this ancestor, first */
1810 virtual_base_list_aux (TYPE_FIELD_TYPE (dclass, i));
1811
1812 /* If this current base is itself virtual, add it to the list */
1813 if (BASETYPE_VIA_VIRTUAL (dclass, i))
1814 {
1815 struct type *basetype = TYPE_FIELD_TYPE (dclass, i);
1816
1817 /* Check if base already recorded */
1818 tmp_vbase = current_vbase_list;
1819 while (tmp_vbase)
1820 {
1821 if (tmp_vbase->vbasetype == basetype)
1822 break; /* found it */
1823 tmp_vbase = tmp_vbase->next;
1824 }
1825
1826 if (!tmp_vbase) /* normal exit from loop */
1827 {
1828 /* Allocate new item for this virtual base */
1829 tmp_vbase = (struct vbase *) xmalloc (sizeof (struct vbase));
1830
1831 /* Stick it on at the end of the list */
1832 tmp_vbase->vbasetype = basetype;
1833 tmp_vbase->next = current_vbase_list;
1834 current_vbase_list = tmp_vbase;
1835 }
1836 } /* if virtual */
1837 } /* for loop over bases */
1838 }
1839
1840
1841 /* Compute the list of virtual bases in the right order. Virtual
1842 bases are laid out in the object's memory area in order of their
1843 occurrence in a depth-first, left-to-right search through the
1844 ancestors.
1845
1846 Argument DCLASS is the type whose virtual bases are required.
1847 Return value is the address of a null-terminated array of pointers
1848 to struct type items.
1849
1850 This routine is aimed at the HP/Taligent ANSI C++ runtime model,
1851 and may not work with other runtime models.
1852
1853 This routine merely hands off the argument to virtual_base_list_aux()
1854 and then copies the result into an array to save space. */
1855
1856 struct type **
1857 virtual_base_list (dclass)
1858 struct type *dclass;
1859 {
1860 register struct vbase *tmp_vbase;
1861 register struct vbase *tmp_vbase_2;
1862 register int i;
1863 int count;
1864 struct type **vbase_array;
1865
1866 current_vbase_list = NULL;
1867 virtual_base_list_aux (dclass);
1868
1869 for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; i++, tmp_vbase = tmp_vbase->next)
1870 /* no body */ ;
1871
1872 count = i;
1873
1874 vbase_array = (struct type **) xmalloc ((count + 1) * sizeof (struct type *));
1875
1876 for (i = count - 1, tmp_vbase = current_vbase_list; i >= 0; i--, tmp_vbase = tmp_vbase->next)
1877 vbase_array[i] = tmp_vbase->vbasetype;
1878
1879 /* Get rid of constructed chain */
1880 tmp_vbase_2 = tmp_vbase = current_vbase_list;
1881 while (tmp_vbase)
1882 {
1883 tmp_vbase = tmp_vbase->next;
1884 free (tmp_vbase_2);
1885 tmp_vbase_2 = tmp_vbase;
1886 }
1887
1888 vbase_array[count] = NULL;
1889 return vbase_array;
1890 }
1891
1892 /* Return the length of the virtual base list of the type DCLASS. */
1893
1894 int
1895 virtual_base_list_length (dclass)
1896 struct type *dclass;
1897 {
1898 register int i;
1899 register struct vbase *tmp_vbase;
1900
1901 current_vbase_list = NULL;
1902 virtual_base_list_aux (dclass);
1903
1904 for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; i++, tmp_vbase = tmp_vbase->next)
1905 /* no body */ ;
1906 return i;
1907 }
1908
1909 /* Return the number of elements of the virtual base list of the type
1910 DCLASS, ignoring those appearing in the primary base (and its
1911 primary base, recursively). */
1912
1913 int
1914 virtual_base_list_length_skip_primaries (dclass)
1915 struct type *dclass;
1916 {
1917 register int i;
1918 register struct vbase *tmp_vbase;
1919 struct type *primary;
1920
1921 primary = TYPE_RUNTIME_PTR (dclass) ? TYPE_PRIMARY_BASE (dclass) : NULL;
1922
1923 if (!primary)
1924 return virtual_base_list_length (dclass);
1925
1926 current_vbase_list = NULL;
1927 virtual_base_list_aux (dclass);
1928
1929 for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; tmp_vbase = tmp_vbase->next)
1930 {
1931 if (virtual_base_index (tmp_vbase->vbasetype, primary) >= 0)
1932 continue;
1933 i++;
1934 }
1935 return i;
1936 }
1937
1938
1939 /* Return the index (position) of type BASE, which is a virtual base
1940 class of DCLASS, in the latter's virtual base list. A return of -1
1941 indicates "not found" or a problem. */
1942
1943 int
1944 virtual_base_index (base, dclass)
1945 struct type *base;
1946 struct type *dclass;
1947 {
1948 register struct type *vbase;
1949 register int i;
1950
1951 if ((TYPE_CODE (dclass) != TYPE_CODE_CLASS) ||
1952 (TYPE_CODE (base) != TYPE_CODE_CLASS))
1953 return -1;
1954
1955 i = 0;
1956 vbase = TYPE_VIRTUAL_BASE_LIST (dclass)[0];
1957 while (vbase)
1958 {
1959 if (vbase == base)
1960 break;
1961 vbase = TYPE_VIRTUAL_BASE_LIST (dclass)[++i];
1962 }
1963
1964 return vbase ? i : -1;
1965 }
1966
1967
1968
1969 /* Return the index (position) of type BASE, which is a virtual base
1970 class of DCLASS, in the latter's virtual base list. Skip over all
1971 bases that may appear in the virtual base list of the primary base
1972 class of DCLASS (recursively). A return of -1 indicates "not
1973 found" or a problem. */
1974
1975 int
1976 virtual_base_index_skip_primaries (base, dclass)
1977 struct type *base;
1978 struct type *dclass;
1979 {
1980 register struct type *vbase;
1981 register int i, j;
1982 struct type *primary;
1983
1984 if ((TYPE_CODE (dclass) != TYPE_CODE_CLASS) ||
1985 (TYPE_CODE (base) != TYPE_CODE_CLASS))
1986 return -1;
1987
1988 primary = TYPE_RUNTIME_PTR (dclass) ? TYPE_PRIMARY_BASE (dclass) : NULL;
1989
1990 j = -1;
1991 i = 0;
1992 vbase = TYPE_VIRTUAL_BASE_LIST (dclass)[0];
1993 while (vbase)
1994 {
1995 if (!primary || (virtual_base_index_skip_primaries (vbase, primary) < 0))
1996 j++;
1997 if (vbase == base)
1998 break;
1999 vbase = TYPE_VIRTUAL_BASE_LIST (dclass)[++i];
2000 }
2001
2002 return vbase ? j : -1;
2003 }
2004
2005 /* Return position of a derived class DCLASS in the list of
2006 * primary bases starting with the remotest ancestor.
2007 * Position returned is 0-based. */
2008
2009 int
2010 class_index_in_primary_list (dclass)
2011 struct type *dclass;
2012 {
2013 struct type *pbc; /* primary base class */
2014
2015 /* Simply recurse on primary base */
2016 pbc = TYPE_PRIMARY_BASE (dclass);
2017 if (pbc)
2018 return 1 + class_index_in_primary_list (pbc);
2019 else
2020 return 0;
2021 }
2022
2023 /* Return a count of the number of virtual functions a type has.
2024 * This includes all the virtual functions it inherits from its
2025 * base classes too.
2026 */
2027
2028 /* pai: FIXME This doesn't do the right thing: count redefined virtual
2029 * functions only once (latest redefinition)
2030 */
2031
2032 int
2033 count_virtual_fns (dclass)
2034 struct type *dclass;
2035 {
2036 int fn, oi; /* function and overloaded instance indices */
2037 int vfuncs; /* count to return */
2038
2039 /* recurse on bases that can share virtual table */
2040 struct type *pbc = primary_base_class (dclass);
2041 if (pbc)
2042 vfuncs = count_virtual_fns (pbc);
2043
2044 for (fn = 0; fn < TYPE_NFN_FIELDS (dclass); fn++)
2045 for (oi = 0; oi < TYPE_FN_FIELDLIST_LENGTH (dclass, fn); oi++)
2046 if (TYPE_FN_FIELD_VIRTUAL_P (TYPE_FN_FIELDLIST1 (dclass, fn), oi))
2047 vfuncs++;
2048
2049 return vfuncs;
2050 }
2051 \f
2052
2053
2054 /* Functions for overload resolution begin here */
2055
2056 /* Compare two badness vectors A and B and return the result.
2057 * 0 => A and B are identical
2058 * 1 => A and B are incomparable
2059 * 2 => A is better than B
2060 * 3 => A is worse than B */
2061
2062 int
2063 compare_badness (a, b)
2064 struct badness_vector *a;
2065 struct badness_vector *b;
2066 {
2067 int i;
2068 int tmp;
2069 short found_pos = 0; /* any positives in c? */
2070 short found_neg = 0; /* any negatives in c? */
2071
2072 /* differing lengths => incomparable */
2073 if (a->length != b->length)
2074 return 1;
2075
2076 /* Subtract b from a */
2077 for (i = 0; i < a->length; i++)
2078 {
2079 tmp = a->rank[i] - b->rank[i];
2080 if (tmp > 0)
2081 found_pos = 1;
2082 else if (tmp < 0)
2083 found_neg = 1;
2084 }
2085
2086 if (found_pos)
2087 {
2088 if (found_neg)
2089 return 1; /* incomparable */
2090 else
2091 return 3; /* A > B */
2092 }
2093 else
2094 /* no positives */
2095 {
2096 if (found_neg)
2097 return 2; /* A < B */
2098 else
2099 return 0; /* A == B */
2100 }
2101 }
2102
2103 /* Rank a function by comparing its parameter types (PARMS, length NPARMS),
2104 * to the types of an argument list (ARGS, length NARGS).
2105 * Return a pointer to a badness vector. This has NARGS + 1 entries. */
2106
2107 struct badness_vector *
2108 rank_function (parms, nparms, args, nargs)
2109 struct type **parms;
2110 int nparms;
2111 struct type **args;
2112 int nargs;
2113 {
2114 int i;
2115 struct badness_vector *bv;
2116 int min_len = nparms < nargs ? nparms : nargs;
2117
2118 bv = xmalloc (sizeof (struct badness_vector));
2119 bv->length = nargs + 1; /* add 1 for the length-match rank */
2120 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2121
2122 /* First compare the lengths of the supplied lists.
2123 * If there is a mismatch, set it to a high value. */
2124
2125 /* pai/1997-06-03 FIXME: when we have debug info about default
2126 * arguments and ellipsis parameter lists, we should consider those
2127 * and rank the length-match more finely. */
2128
2129 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
2130
2131 /* Now rank all the parameters of the candidate function */
2132 for (i = 1; i <= min_len; i++)
2133 bv->rank[i] = rank_one_type (parms[i - 1], args[i - 1]);
2134
2135 /* If more arguments than parameters, add dummy entries */
2136 for (i = min_len + 1; i <= nargs; i++)
2137 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2138
2139 return bv;
2140 }
2141
2142 /* Compare one type (PARM) for compatibility with another (ARG).
2143 * PARM is intended to be the parameter type of a function; and
2144 * ARG is the supplied argument's type. This function tests if
2145 * the latter can be converted to the former.
2146 *
2147 * Return 0 if they are identical types;
2148 * Otherwise, return an integer which corresponds to how compatible
2149 * PARM is to ARG. The higher the return value, the worse the match.
2150 * Generally the "bad" conversions are all uniformly assigned a 100 */
2151
2152 int
2153 rank_one_type (parm, arg)
2154 struct type *parm;
2155 struct type *arg;
2156 {
2157 /* Identical type pointers */
2158 /* However, this still doesn't catch all cases of same type for arg
2159 * and param. The reason is that builtin types are different from
2160 * the same ones constructed from the object. */
2161 if (parm == arg)
2162 return 0;
2163
2164 /* Resolve typedefs */
2165 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2166 parm = check_typedef (parm);
2167 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2168 arg = check_typedef (arg);
2169
2170 /* Check if identical after resolving typedefs */
2171 if (parm == arg)
2172 return 0;
2173
2174 #if 0
2175 /* Debugging only */
2176 printf ("------ Arg is %s [%d], parm is %s [%d]\n",
2177 TYPE_NAME (arg), TYPE_CODE (arg), TYPE_NAME (parm), TYPE_CODE (parm));
2178 #endif
2179
2180 /* x -> y means arg of type x being supplied for parameter of type y */
2181
2182 switch (TYPE_CODE (parm))
2183 {
2184 case TYPE_CODE_PTR:
2185 switch (TYPE_CODE (arg))
2186 {
2187 case TYPE_CODE_PTR:
2188 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2189 return VOID_PTR_CONVERSION_BADNESS;
2190 else
2191 return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2192 case TYPE_CODE_ARRAY:
2193 return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2194 case TYPE_CODE_FUNC:
2195 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2196 case TYPE_CODE_INT:
2197 case TYPE_CODE_ENUM:
2198 case TYPE_CODE_CHAR:
2199 case TYPE_CODE_RANGE:
2200 case TYPE_CODE_BOOL:
2201 return POINTER_CONVERSION_BADNESS;
2202 default:
2203 return INCOMPATIBLE_TYPE_BADNESS;
2204 }
2205 case TYPE_CODE_ARRAY:
2206 switch (TYPE_CODE (arg))
2207 {
2208 case TYPE_CODE_PTR:
2209 case TYPE_CODE_ARRAY:
2210 return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2211 default:
2212 return INCOMPATIBLE_TYPE_BADNESS;
2213 }
2214 case TYPE_CODE_FUNC:
2215 switch (TYPE_CODE (arg))
2216 {
2217 case TYPE_CODE_PTR: /* funcptr -> func */
2218 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2219 default:
2220 return INCOMPATIBLE_TYPE_BADNESS;
2221 }
2222 case TYPE_CODE_INT:
2223 switch (TYPE_CODE (arg))
2224 {
2225 case TYPE_CODE_INT:
2226 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2227 {
2228 /* Deal with signed, unsigned, and plain chars and
2229 signed and unsigned ints */
2230 if (TYPE_NOSIGN (parm))
2231 {
2232 /* This case only for character types */
2233 if (TYPE_NOSIGN (arg)) /* plain char -> plain char */
2234 return 0;
2235 else
2236 return INTEGER_COERCION_BADNESS; /* signed/unsigned char -> plain char */
2237 }
2238 else if (TYPE_UNSIGNED (parm))
2239 {
2240 if (TYPE_UNSIGNED (arg))
2241 {
2242 if (!strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
2243 return 0; /* unsigned int -> unsigned int, or unsigned long -> unsigned long */
2244 else if (!strcmp (TYPE_NAME (arg), "int") && !strcmp (TYPE_NAME (parm), "long"))
2245 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2246 else
2247 return INTEGER_COERCION_BADNESS; /* unsigned long -> unsigned int */
2248 }
2249 else
2250 {
2251 if (!strcmp (TYPE_NAME (arg), "long") && !strcmp (TYPE_NAME (parm), "int"))
2252 return INTEGER_COERCION_BADNESS; /* signed long -> unsigned int */
2253 else
2254 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2255 }
2256 }
2257 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2258 {
2259 if (!strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
2260 return 0;
2261 else if (!strcmp (TYPE_NAME (arg), "int") && !strcmp (TYPE_NAME (parm), "long"))
2262 return INTEGER_PROMOTION_BADNESS;
2263 else
2264 return INTEGER_COERCION_BADNESS;
2265 }
2266 else
2267 return INTEGER_COERCION_BADNESS;
2268 }
2269 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2270 return INTEGER_PROMOTION_BADNESS;
2271 else
2272 return INTEGER_COERCION_BADNESS;
2273 case TYPE_CODE_ENUM:
2274 case TYPE_CODE_CHAR:
2275 case TYPE_CODE_RANGE:
2276 case TYPE_CODE_BOOL:
2277 return INTEGER_PROMOTION_BADNESS;
2278 case TYPE_CODE_FLT:
2279 return INT_FLOAT_CONVERSION_BADNESS;
2280 case TYPE_CODE_PTR:
2281 return NS_POINTER_CONVERSION_BADNESS;
2282 default:
2283 return INCOMPATIBLE_TYPE_BADNESS;
2284 }
2285 break;
2286 case TYPE_CODE_ENUM:
2287 switch (TYPE_CODE (arg))
2288 {
2289 case TYPE_CODE_INT:
2290 case TYPE_CODE_CHAR:
2291 case TYPE_CODE_RANGE:
2292 case TYPE_CODE_BOOL:
2293 case TYPE_CODE_ENUM:
2294 return INTEGER_COERCION_BADNESS;
2295 case TYPE_CODE_FLT:
2296 return INT_FLOAT_CONVERSION_BADNESS;
2297 default:
2298 return INCOMPATIBLE_TYPE_BADNESS;
2299 }
2300 break;
2301 case TYPE_CODE_CHAR:
2302 switch (TYPE_CODE (arg))
2303 {
2304 case TYPE_CODE_RANGE:
2305 case TYPE_CODE_BOOL:
2306 case TYPE_CODE_ENUM:
2307 return INTEGER_COERCION_BADNESS;
2308 case TYPE_CODE_FLT:
2309 return INT_FLOAT_CONVERSION_BADNESS;
2310 case TYPE_CODE_INT:
2311 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2312 return INTEGER_COERCION_BADNESS;
2313 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2314 return INTEGER_PROMOTION_BADNESS;
2315 /* >>> !! else fall through !! <<< */
2316 case TYPE_CODE_CHAR:
2317 /* Deal with signed, unsigned, and plain chars for C++
2318 and with int cases falling through from previous case */
2319 if (TYPE_NOSIGN (parm))
2320 {
2321 if (TYPE_NOSIGN (arg))
2322 return 0;
2323 else
2324 return INTEGER_COERCION_BADNESS;
2325 }
2326 else if (TYPE_UNSIGNED (parm))
2327 {
2328 if (TYPE_UNSIGNED (arg))
2329 return 0;
2330 else
2331 return INTEGER_PROMOTION_BADNESS;
2332 }
2333 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2334 return 0;
2335 else
2336 return INTEGER_COERCION_BADNESS;
2337 default:
2338 return INCOMPATIBLE_TYPE_BADNESS;
2339 }
2340 break;
2341 case TYPE_CODE_RANGE:
2342 switch (TYPE_CODE (arg))
2343 {
2344 case TYPE_CODE_INT:
2345 case TYPE_CODE_CHAR:
2346 case TYPE_CODE_RANGE:
2347 case TYPE_CODE_BOOL:
2348 case TYPE_CODE_ENUM:
2349 return INTEGER_COERCION_BADNESS;
2350 case TYPE_CODE_FLT:
2351 return INT_FLOAT_CONVERSION_BADNESS;
2352 default:
2353 return INCOMPATIBLE_TYPE_BADNESS;
2354 }
2355 break;
2356 case TYPE_CODE_BOOL:
2357 switch (TYPE_CODE (arg))
2358 {
2359 case TYPE_CODE_INT:
2360 case TYPE_CODE_CHAR:
2361 case TYPE_CODE_RANGE:
2362 case TYPE_CODE_ENUM:
2363 case TYPE_CODE_FLT:
2364 case TYPE_CODE_PTR:
2365 return BOOLEAN_CONVERSION_BADNESS;
2366 case TYPE_CODE_BOOL:
2367 return 0;
2368 default:
2369 return INCOMPATIBLE_TYPE_BADNESS;
2370 }
2371 break;
2372 case TYPE_CODE_FLT:
2373 switch (TYPE_CODE (arg))
2374 {
2375 case TYPE_CODE_FLT:
2376 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2377 return FLOAT_PROMOTION_BADNESS;
2378 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2379 return 0;
2380 else
2381 return FLOAT_CONVERSION_BADNESS;
2382 case TYPE_CODE_INT:
2383 case TYPE_CODE_BOOL:
2384 case TYPE_CODE_ENUM:
2385 case TYPE_CODE_RANGE:
2386 case TYPE_CODE_CHAR:
2387 return INT_FLOAT_CONVERSION_BADNESS;
2388 default:
2389 return INCOMPATIBLE_TYPE_BADNESS;
2390 }
2391 break;
2392 case TYPE_CODE_COMPLEX:
2393 switch (TYPE_CODE (arg))
2394 { /* Strictly not needed for C++, but... */
2395 case TYPE_CODE_FLT:
2396 return FLOAT_PROMOTION_BADNESS;
2397 case TYPE_CODE_COMPLEX:
2398 return 0;
2399 default:
2400 return INCOMPATIBLE_TYPE_BADNESS;
2401 }
2402 break;
2403 case TYPE_CODE_STRUCT:
2404 /* currently same as TYPE_CODE_CLASS */
2405 switch (TYPE_CODE (arg))
2406 {
2407 case TYPE_CODE_STRUCT:
2408 /* Check for derivation */
2409 if (is_ancestor (parm, arg))
2410 return BASE_CONVERSION_BADNESS;
2411 /* else fall through */
2412 default:
2413 return INCOMPATIBLE_TYPE_BADNESS;
2414 }
2415 break;
2416 case TYPE_CODE_UNION:
2417 switch (TYPE_CODE (arg))
2418 {
2419 case TYPE_CODE_UNION:
2420 default:
2421 return INCOMPATIBLE_TYPE_BADNESS;
2422 }
2423 break;
2424 case TYPE_CODE_MEMBER:
2425 switch (TYPE_CODE (arg))
2426 {
2427 default:
2428 return INCOMPATIBLE_TYPE_BADNESS;
2429 }
2430 break;
2431 case TYPE_CODE_METHOD:
2432 switch (TYPE_CODE (arg))
2433 {
2434
2435 default:
2436 return INCOMPATIBLE_TYPE_BADNESS;
2437 }
2438 break;
2439 case TYPE_CODE_REF:
2440 switch (TYPE_CODE (arg))
2441 {
2442
2443 default:
2444 return INCOMPATIBLE_TYPE_BADNESS;
2445 }
2446
2447 break;
2448 case TYPE_CODE_SET:
2449 switch (TYPE_CODE (arg))
2450 {
2451 /* Not in C++ */
2452 case TYPE_CODE_SET:
2453 return rank_one_type (TYPE_FIELD_TYPE (parm, 0), TYPE_FIELD_TYPE (arg, 0));
2454 default:
2455 return INCOMPATIBLE_TYPE_BADNESS;
2456 }
2457 break;
2458 case TYPE_CODE_VOID:
2459 default:
2460 return INCOMPATIBLE_TYPE_BADNESS;
2461 } /* switch (TYPE_CODE (arg)) */
2462 }
2463
2464
2465 /* End of functions for overload resolution */
2466
2467 static void
2468 print_bit_vector (bits, nbits)
2469 B_TYPE *bits;
2470 int nbits;
2471 {
2472 int bitno;
2473
2474 for (bitno = 0; bitno < nbits; bitno++)
2475 {
2476 if ((bitno % 8) == 0)
2477 {
2478 puts_filtered (" ");
2479 }
2480 if (B_TST (bits, bitno))
2481 {
2482 printf_filtered ("1");
2483 }
2484 else
2485 {
2486 printf_filtered ("0");
2487 }
2488 }
2489 }
2490
2491 /* The args list is a strange beast. It is either terminated by a NULL
2492 pointer for varargs functions, or by a pointer to a TYPE_CODE_VOID
2493 type for normal fixed argcount functions. (FIXME someday)
2494 Also note the first arg should be the "this" pointer, we may not want to
2495 include it since we may get into a infinitely recursive situation. */
2496
2497 static void
2498 print_arg_types (args, spaces)
2499 struct type **args;
2500 int spaces;
2501 {
2502 if (args != NULL)
2503 {
2504 while (*args != NULL)
2505 {
2506 recursive_dump_type (*args, spaces + 2);
2507 if ((*args++)->code == TYPE_CODE_VOID)
2508 {
2509 break;
2510 }
2511 }
2512 }
2513 }
2514
2515 static void
2516 dump_fn_fieldlists (type, spaces)
2517 struct type *type;
2518 int spaces;
2519 {
2520 int method_idx;
2521 int overload_idx;
2522 struct fn_field *f;
2523
2524 printfi_filtered (spaces, "fn_fieldlists ");
2525 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2526 printf_filtered ("\n");
2527 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2528 {
2529 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2530 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2531 method_idx,
2532 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2533 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2534 gdb_stdout);
2535 printf_filtered (") length %d\n",
2536 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2537 for (overload_idx = 0;
2538 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2539 overload_idx++)
2540 {
2541 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2542 overload_idx,
2543 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2544 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2545 gdb_stdout);
2546 printf_filtered (")\n");
2547 printfi_filtered (spaces + 8, "type ");
2548 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx), gdb_stdout);
2549 printf_filtered ("\n");
2550
2551 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2552 spaces + 8 + 2);
2553
2554 printfi_filtered (spaces + 8, "args ");
2555 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx), gdb_stdout);
2556 printf_filtered ("\n");
2557
2558 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx), spaces);
2559 printfi_filtered (spaces + 8, "fcontext ");
2560 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2561 gdb_stdout);
2562 printf_filtered ("\n");
2563
2564 printfi_filtered (spaces + 8, "is_const %d\n",
2565 TYPE_FN_FIELD_CONST (f, overload_idx));
2566 printfi_filtered (spaces + 8, "is_volatile %d\n",
2567 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2568 printfi_filtered (spaces + 8, "is_private %d\n",
2569 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2570 printfi_filtered (spaces + 8, "is_protected %d\n",
2571 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2572 printfi_filtered (spaces + 8, "is_stub %d\n",
2573 TYPE_FN_FIELD_STUB (f, overload_idx));
2574 printfi_filtered (spaces + 8, "voffset %u\n",
2575 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2576 }
2577 }
2578 }
2579
2580 static void
2581 print_cplus_stuff (type, spaces)
2582 struct type *type;
2583 int spaces;
2584 {
2585 printfi_filtered (spaces, "n_baseclasses %d\n",
2586 TYPE_N_BASECLASSES (type));
2587 printfi_filtered (spaces, "nfn_fields %d\n",
2588 TYPE_NFN_FIELDS (type));
2589 printfi_filtered (spaces, "nfn_fields_total %d\n",
2590 TYPE_NFN_FIELDS_TOTAL (type));
2591 if (TYPE_N_BASECLASSES (type) > 0)
2592 {
2593 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2594 TYPE_N_BASECLASSES (type));
2595 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type), gdb_stdout);
2596 printf_filtered (")");
2597
2598 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2599 TYPE_N_BASECLASSES (type));
2600 puts_filtered ("\n");
2601 }
2602 if (TYPE_NFIELDS (type) > 0)
2603 {
2604 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2605 {
2606 printfi_filtered (spaces, "private_field_bits (%d bits at *",
2607 TYPE_NFIELDS (type));
2608 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type), gdb_stdout);
2609 printf_filtered (")");
2610 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2611 TYPE_NFIELDS (type));
2612 puts_filtered ("\n");
2613 }
2614 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2615 {
2616 printfi_filtered (spaces, "protected_field_bits (%d bits at *",
2617 TYPE_NFIELDS (type));
2618 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type), gdb_stdout);
2619 printf_filtered (")");
2620 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2621 TYPE_NFIELDS (type));
2622 puts_filtered ("\n");
2623 }
2624 }
2625 if (TYPE_NFN_FIELDS (type) > 0)
2626 {
2627 dump_fn_fieldlists (type, spaces);
2628 }
2629 }
2630
2631 static struct obstack dont_print_type_obstack;
2632
2633 void
2634 recursive_dump_type (type, spaces)
2635 struct type *type;
2636 int spaces;
2637 {
2638 int idx;
2639
2640 if (spaces == 0)
2641 obstack_begin (&dont_print_type_obstack, 0);
2642
2643 if (TYPE_NFIELDS (type) > 0
2644 || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
2645 {
2646 struct type **first_dont_print
2647 = (struct type **) obstack_base (&dont_print_type_obstack);
2648
2649 int i = (struct type **) obstack_next_free (&dont_print_type_obstack)
2650 - first_dont_print;
2651
2652 while (--i >= 0)
2653 {
2654 if (type == first_dont_print[i])
2655 {
2656 printfi_filtered (spaces, "type node ");
2657 gdb_print_host_address (type, gdb_stdout);
2658 printf_filtered (" <same as already seen type>\n");
2659 return;
2660 }
2661 }
2662
2663 obstack_ptr_grow (&dont_print_type_obstack, type);
2664 }
2665
2666 printfi_filtered (spaces, "type node ");
2667 gdb_print_host_address (type, gdb_stdout);
2668 printf_filtered ("\n");
2669 printfi_filtered (spaces, "name '%s' (",
2670 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2671 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2672 printf_filtered (")\n");
2673 if (TYPE_TAG_NAME (type) != NULL)
2674 {
2675 printfi_filtered (spaces, "tagname '%s' (",
2676 TYPE_TAG_NAME (type));
2677 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2678 printf_filtered (")\n");
2679 }
2680 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2681 switch (TYPE_CODE (type))
2682 {
2683 case TYPE_CODE_UNDEF:
2684 printf_filtered ("(TYPE_CODE_UNDEF)");
2685 break;
2686 case TYPE_CODE_PTR:
2687 printf_filtered ("(TYPE_CODE_PTR)");
2688 break;
2689 case TYPE_CODE_ARRAY:
2690 printf_filtered ("(TYPE_CODE_ARRAY)");
2691 break;
2692 case TYPE_CODE_STRUCT:
2693 printf_filtered ("(TYPE_CODE_STRUCT)");
2694 break;
2695 case TYPE_CODE_UNION:
2696 printf_filtered ("(TYPE_CODE_UNION)");
2697 break;
2698 case TYPE_CODE_ENUM:
2699 printf_filtered ("(TYPE_CODE_ENUM)");
2700 break;
2701 case TYPE_CODE_FUNC:
2702 printf_filtered ("(TYPE_CODE_FUNC)");
2703 break;
2704 case TYPE_CODE_INT:
2705 printf_filtered ("(TYPE_CODE_INT)");
2706 break;
2707 case TYPE_CODE_FLT:
2708 printf_filtered ("(TYPE_CODE_FLT)");
2709 break;
2710 case TYPE_CODE_VOID:
2711 printf_filtered ("(TYPE_CODE_VOID)");
2712 break;
2713 case TYPE_CODE_SET:
2714 printf_filtered ("(TYPE_CODE_SET)");
2715 break;
2716 case TYPE_CODE_RANGE:
2717 printf_filtered ("(TYPE_CODE_RANGE)");
2718 break;
2719 case TYPE_CODE_STRING:
2720 printf_filtered ("(TYPE_CODE_STRING)");
2721 break;
2722 case TYPE_CODE_ERROR:
2723 printf_filtered ("(TYPE_CODE_ERROR)");
2724 break;
2725 case TYPE_CODE_MEMBER:
2726 printf_filtered ("(TYPE_CODE_MEMBER)");
2727 break;
2728 case TYPE_CODE_METHOD:
2729 printf_filtered ("(TYPE_CODE_METHOD)");
2730 break;
2731 case TYPE_CODE_REF:
2732 printf_filtered ("(TYPE_CODE_REF)");
2733 break;
2734 case TYPE_CODE_CHAR:
2735 printf_filtered ("(TYPE_CODE_CHAR)");
2736 break;
2737 case TYPE_CODE_BOOL:
2738 printf_filtered ("(TYPE_CODE_BOOL)");
2739 break;
2740 case TYPE_CODE_TYPEDEF:
2741 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2742 break;
2743 default:
2744 printf_filtered ("(UNKNOWN TYPE CODE)");
2745 break;
2746 }
2747 puts_filtered ("\n");
2748 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
2749 printfi_filtered (spaces, "objfile ");
2750 gdb_print_host_address (TYPE_OBJFILE (type), gdb_stdout);
2751 printf_filtered ("\n");
2752 printfi_filtered (spaces, "target_type ");
2753 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
2754 printf_filtered ("\n");
2755 if (TYPE_TARGET_TYPE (type) != NULL)
2756 {
2757 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2758 }
2759 printfi_filtered (spaces, "pointer_type ");
2760 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
2761 printf_filtered ("\n");
2762 printfi_filtered (spaces, "reference_type ");
2763 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
2764 printf_filtered ("\n");
2765 printfi_filtered (spaces, "flags 0x%x", TYPE_FLAGS (type));
2766 if (TYPE_FLAGS (type) & TYPE_FLAG_UNSIGNED)
2767 {
2768 puts_filtered (" TYPE_FLAG_UNSIGNED");
2769 }
2770 if (TYPE_FLAGS (type) & TYPE_FLAG_STUB)
2771 {
2772 puts_filtered (" TYPE_FLAG_STUB");
2773 }
2774 puts_filtered ("\n");
2775 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
2776 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
2777 puts_filtered ("\n");
2778 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2779 {
2780 printfi_filtered (spaces + 2,
2781 "[%d] bitpos %d bitsize %d type ",
2782 idx, TYPE_FIELD_BITPOS (type, idx),
2783 TYPE_FIELD_BITSIZE (type, idx));
2784 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
2785 printf_filtered (" name '%s' (",
2786 TYPE_FIELD_NAME (type, idx) != NULL
2787 ? TYPE_FIELD_NAME (type, idx)
2788 : "<NULL>");
2789 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
2790 printf_filtered (")\n");
2791 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2792 {
2793 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2794 }
2795 }
2796 printfi_filtered (spaces, "vptr_basetype ");
2797 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
2798 puts_filtered ("\n");
2799 if (TYPE_VPTR_BASETYPE (type) != NULL)
2800 {
2801 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2802 }
2803 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
2804 switch (TYPE_CODE (type))
2805 {
2806 case TYPE_CODE_METHOD:
2807 case TYPE_CODE_FUNC:
2808 printfi_filtered (spaces, "arg_types ");
2809 gdb_print_host_address (TYPE_ARG_TYPES (type), gdb_stdout);
2810 puts_filtered ("\n");
2811 print_arg_types (TYPE_ARG_TYPES (type), spaces);
2812 break;
2813
2814 case TYPE_CODE_STRUCT:
2815 printfi_filtered (spaces, "cplus_stuff ");
2816 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
2817 puts_filtered ("\n");
2818 print_cplus_stuff (type, spaces);
2819 break;
2820
2821 default:
2822 /* We have to pick one of the union types to be able print and test
2823 the value. Pick cplus_struct_type, even though we know it isn't
2824 any particular one. */
2825 printfi_filtered (spaces, "type_specific ");
2826 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
2827 if (TYPE_CPLUS_SPECIFIC (type) != NULL)
2828 {
2829 printf_filtered (" (unknown data form)");
2830 }
2831 printf_filtered ("\n");
2832 break;
2833
2834 }
2835 if (spaces == 0)
2836 obstack_free (&dont_print_type_obstack, NULL);
2837 }
2838
2839 static void build_gdbtypes PARAMS ((void));
2840 static void
2841 build_gdbtypes ()
2842 {
2843 builtin_type_void =
2844 init_type (TYPE_CODE_VOID, 1,
2845 0,
2846 "void", (struct objfile *) NULL);
2847 builtin_type_char =
2848 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
2849 0,
2850 "char", (struct objfile *) NULL);
2851 TYPE_FLAGS (builtin_type_char) |= TYPE_FLAG_NOSIGN;
2852 builtin_type_true_char =
2853 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
2854 0,
2855 "true character", (struct objfile *) NULL);
2856 builtin_type_signed_char =
2857 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
2858 0,
2859 "signed char", (struct objfile *) NULL);
2860 builtin_type_unsigned_char =
2861 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
2862 TYPE_FLAG_UNSIGNED,
2863 "unsigned char", (struct objfile *) NULL);
2864 builtin_type_short =
2865 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
2866 0,
2867 "short", (struct objfile *) NULL);
2868 builtin_type_unsigned_short =
2869 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
2870 TYPE_FLAG_UNSIGNED,
2871 "unsigned short", (struct objfile *) NULL);
2872 builtin_type_int =
2873 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
2874 0,
2875 "int", (struct objfile *) NULL);
2876 builtin_type_unsigned_int =
2877 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
2878 TYPE_FLAG_UNSIGNED,
2879 "unsigned int", (struct objfile *) NULL);
2880 builtin_type_long =
2881 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
2882 0,
2883 "long", (struct objfile *) NULL);
2884 builtin_type_unsigned_long =
2885 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
2886 TYPE_FLAG_UNSIGNED,
2887 "unsigned long", (struct objfile *) NULL);
2888 builtin_type_long_long =
2889 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
2890 0,
2891 "long long", (struct objfile *) NULL);
2892 builtin_type_unsigned_long_long =
2893 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
2894 TYPE_FLAG_UNSIGNED,
2895 "unsigned long long", (struct objfile *) NULL);
2896 builtin_type_float =
2897 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
2898 0,
2899 "float", (struct objfile *) NULL);
2900 builtin_type_double =
2901 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
2902 0,
2903 "double", (struct objfile *) NULL);
2904 builtin_type_long_double =
2905 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
2906 0,
2907 "long double", (struct objfile *) NULL);
2908 builtin_type_complex =
2909 init_type (TYPE_CODE_COMPLEX, 2 * TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
2910 0,
2911 "complex", (struct objfile *) NULL);
2912 TYPE_TARGET_TYPE (builtin_type_complex) = builtin_type_float;
2913 builtin_type_double_complex =
2914 init_type (TYPE_CODE_COMPLEX, 2 * TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
2915 0,
2916 "double complex", (struct objfile *) NULL);
2917 TYPE_TARGET_TYPE (builtin_type_double_complex) = builtin_type_double;
2918 builtin_type_string =
2919 init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
2920 0,
2921 "string", (struct objfile *) NULL);
2922 builtin_type_int8 =
2923 init_type (TYPE_CODE_INT, 8 / 8,
2924 0,
2925 "int8_t", (struct objfile *) NULL);
2926 builtin_type_uint8 =
2927 init_type (TYPE_CODE_INT, 8 / 8,
2928 TYPE_FLAG_UNSIGNED,
2929 "uint8_t", (struct objfile *) NULL);
2930 builtin_type_int16 =
2931 init_type (TYPE_CODE_INT, 16 / 8,
2932 0,
2933 "int16_t", (struct objfile *) NULL);
2934 builtin_type_uint16 =
2935 init_type (TYPE_CODE_INT, 16 / 8,
2936 TYPE_FLAG_UNSIGNED,
2937 "uint16_t", (struct objfile *) NULL);
2938 builtin_type_int32 =
2939 init_type (TYPE_CODE_INT, 32 / 8,
2940 0,
2941 "int32_t", (struct objfile *) NULL);
2942 builtin_type_uint32 =
2943 init_type (TYPE_CODE_INT, 32 / 8,
2944 TYPE_FLAG_UNSIGNED,
2945 "uint32_t", (struct objfile *) NULL);
2946 builtin_type_int64 =
2947 init_type (TYPE_CODE_INT, 64 / 8,
2948 0,
2949 "int64_t", (struct objfile *) NULL);
2950 builtin_type_uint64 =
2951 init_type (TYPE_CODE_INT, 64 / 8,
2952 TYPE_FLAG_UNSIGNED,
2953 "uint64_t", (struct objfile *) NULL);
2954 builtin_type_bool =
2955 init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
2956 0,
2957 "bool", (struct objfile *) NULL);
2958
2959 /* Add user knob for controlling resolution of opaque types */
2960 add_show_from_set
2961 (add_set_cmd ("opaque-type-resolution", class_support, var_boolean, (char *) &opaque_type_resolution,
2962 "Set resolution of opaque struct/class/union types (if set before loading symbols).",
2963 &setlist),
2964 &showlist);
2965 opaque_type_resolution = 1;
2966
2967
2968 /* Build SIMD types. */
2969 builtin_type_v4sf
2970 = init_simd_type ("__builtin_v4sf", builtin_type_float, "f", 4);
2971 }
2972
2973
2974 extern void _initialize_gdbtypes PARAMS ((void));
2975 void
2976 _initialize_gdbtypes ()
2977 {
2978 build_gdbtypes ();
2979
2980 /* FIXME - For the moment, handle types by swapping them in and out.
2981 Should be using the per-architecture data-pointer and a large
2982 struct. */
2983 register_gdbarch_swap (&builtin_type_void, sizeof (struct type *), NULL);
2984 register_gdbarch_swap (&builtin_type_char, sizeof (struct type *), NULL);
2985 register_gdbarch_swap (&builtin_type_short, sizeof (struct type *), NULL);
2986 register_gdbarch_swap (&builtin_type_int, sizeof (struct type *), NULL);
2987 register_gdbarch_swap (&builtin_type_long, sizeof (struct type *), NULL);
2988 register_gdbarch_swap (&builtin_type_long_long, sizeof (struct type *), NULL);
2989 register_gdbarch_swap (&builtin_type_signed_char, sizeof (struct type *), NULL);
2990 register_gdbarch_swap (&builtin_type_unsigned_char, sizeof (struct type *), NULL);
2991 register_gdbarch_swap (&builtin_type_unsigned_short, sizeof (struct type *), NULL);
2992 register_gdbarch_swap (&builtin_type_unsigned_int, sizeof (struct type *), NULL);
2993 register_gdbarch_swap (&builtin_type_unsigned_long, sizeof (struct type *), NULL);
2994 register_gdbarch_swap (&builtin_type_unsigned_long_long, sizeof (struct type *), NULL);
2995 register_gdbarch_swap (&builtin_type_float, sizeof (struct type *), NULL);
2996 register_gdbarch_swap (&builtin_type_double, sizeof (struct type *), NULL);
2997 register_gdbarch_swap (&builtin_type_long_double, sizeof (struct type *), NULL);
2998 register_gdbarch_swap (&builtin_type_complex, sizeof (struct type *), NULL);
2999 register_gdbarch_swap (&builtin_type_double_complex, sizeof (struct type *), NULL);
3000 register_gdbarch_swap (&builtin_type_string, sizeof (struct type *), NULL);
3001 register_gdbarch_swap (&builtin_type_int8, sizeof (struct type *), NULL);
3002 register_gdbarch_swap (&builtin_type_uint8, sizeof (struct type *), NULL);
3003 register_gdbarch_swap (&builtin_type_int16, sizeof (struct type *), NULL);
3004 register_gdbarch_swap (&builtin_type_uint16, sizeof (struct type *), NULL);
3005 register_gdbarch_swap (&builtin_type_int32, sizeof (struct type *), NULL);
3006 register_gdbarch_swap (&builtin_type_uint32, sizeof (struct type *), NULL);
3007 register_gdbarch_swap (&builtin_type_int64, sizeof (struct type *), NULL);
3008 register_gdbarch_swap (&builtin_type_uint64, sizeof (struct type *), NULL);
3009 register_gdbarch_swap (&builtin_type_v4sf, sizeof (struct type *), NULL);
3010 register_gdbarch_swap (NULL, 0, build_gdbtypes);
3011 }
This page took 0.101587 seconds and 5 git commands to generate.