* p-typeprint.c (pascal_type_print_varspec_prefix): Update.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "bfd.h"
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "target.h"
34 #include "value.h"
35 #include "demangle.h"
36 #include "complaints.h"
37 #include "gdbcmd.h"
38 #include "wrapper.h"
39 #include "cp-abi.h"
40 #include "gdb_assert.h"
41 #include "hashtab.h"
42
43
44 /* Floatformat pairs. */
45 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
46 &floatformat_ieee_single_big,
47 &floatformat_ieee_single_little
48 };
49 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
50 &floatformat_ieee_double_big,
51 &floatformat_ieee_double_little
52 };
53 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
54 &floatformat_ieee_double_big,
55 &floatformat_ieee_double_littlebyte_bigword
56 };
57 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
58 &floatformat_i387_ext,
59 &floatformat_i387_ext
60 };
61 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
62 &floatformat_m68881_ext,
63 &floatformat_m68881_ext
64 };
65 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
66 &floatformat_arm_ext_big,
67 &floatformat_arm_ext_littlebyte_bigword
68 };
69 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ia64_spill_big,
71 &floatformat_ia64_spill_little
72 };
73 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ia64_quad_big,
75 &floatformat_ia64_quad_little
76 };
77 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_vax_f,
79 &floatformat_vax_f
80 };
81 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_vax_d,
83 &floatformat_vax_d
84 };
85 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_ibm_long_double,
87 &floatformat_ibm_long_double
88 };
89
90
91 int opaque_type_resolution = 1;
92 static void
93 show_opaque_type_resolution (struct ui_file *file, int from_tty,
94 struct cmd_list_element *c,
95 const char *value)
96 {
97 fprintf_filtered (file, _("\
98 Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
99 value);
100 }
101
102 int overload_debug = 0;
103 static void
104 show_overload_debug (struct ui_file *file, int from_tty,
105 struct cmd_list_element *c, const char *value)
106 {
107 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
108 value);
109 }
110
111 struct extra
112 {
113 char str[128];
114 int len;
115 }; /* Maximum extension is 128! FIXME */
116
117 static void print_bit_vector (B_TYPE *, int);
118 static void print_arg_types (struct field *, int, int);
119 static void dump_fn_fieldlists (struct type *, int);
120 static void print_cplus_stuff (struct type *, int);
121
122
123 /* Allocate a new OBJFILE-associated type structure and fill it
124 with some defaults. Space for the type structure is allocated
125 on the objfile's objfile_obstack. */
126
127 struct type *
128 alloc_type (struct objfile *objfile)
129 {
130 struct type *type;
131
132 gdb_assert (objfile != NULL);
133
134 /* Alloc the structure and start off with all fields zeroed. */
135 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
136 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
137 struct main_type);
138 OBJSTAT (objfile, n_types++);
139
140 TYPE_OBJFILE_OWNED (type) = 1;
141 TYPE_OWNER (type).objfile = objfile;
142
143 /* Initialize the fields that might not be zero. */
144
145 TYPE_CODE (type) = TYPE_CODE_UNDEF;
146 TYPE_VPTR_FIELDNO (type) = -1;
147 TYPE_CHAIN (type) = type; /* Chain back to itself. */
148
149 return type;
150 }
151
152 /* Allocate a new GDBARCH-associated type structure and fill it
153 with some defaults. Space for the type structure is allocated
154 on the heap. */
155
156 struct type *
157 alloc_type_arch (struct gdbarch *gdbarch)
158 {
159 struct type *type;
160
161 gdb_assert (gdbarch != NULL);
162
163 /* Alloc the structure and start off with all fields zeroed. */
164
165 type = XZALLOC (struct type);
166 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
167
168 TYPE_OBJFILE_OWNED (type) = 0;
169 TYPE_OWNER (type).gdbarch = gdbarch;
170
171 /* Initialize the fields that might not be zero. */
172
173 TYPE_CODE (type) = TYPE_CODE_UNDEF;
174 TYPE_VPTR_FIELDNO (type) = -1;
175 TYPE_CHAIN (type) = type; /* Chain back to itself. */
176
177 return type;
178 }
179
180 /* If TYPE is objfile-associated, allocate a new type structure
181 associated with the same objfile. If TYPE is gdbarch-associated,
182 allocate a new type structure associated with the same gdbarch. */
183
184 struct type *
185 alloc_type_copy (const struct type *type)
186 {
187 if (TYPE_OBJFILE_OWNED (type))
188 return alloc_type (TYPE_OWNER (type).objfile);
189 else
190 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
191 }
192
193 /* If TYPE is gdbarch-associated, return that architecture.
194 If TYPE is objfile-associated, return that objfile's architecture. */
195
196 struct gdbarch *
197 get_type_arch (const struct type *type)
198 {
199 if (TYPE_OBJFILE_OWNED (type))
200 return get_objfile_arch (TYPE_OWNER (type).objfile);
201 else
202 return TYPE_OWNER (type).gdbarch;
203 }
204
205
206 /* Alloc a new type instance structure, fill it with some defaults,
207 and point it at OLDTYPE. Allocate the new type instance from the
208 same place as OLDTYPE. */
209
210 static struct type *
211 alloc_type_instance (struct type *oldtype)
212 {
213 struct type *type;
214
215 /* Allocate the structure. */
216
217 if (! TYPE_OBJFILE_OWNED (oldtype))
218 type = XZALLOC (struct type);
219 else
220 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
221 struct type);
222
223 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
224
225 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
226
227 return type;
228 }
229
230 /* Clear all remnants of the previous type at TYPE, in preparation for
231 replacing it with something else. Preserve owner information. */
232 static void
233 smash_type (struct type *type)
234 {
235 int objfile_owned = TYPE_OBJFILE_OWNED (type);
236 union type_owner owner = TYPE_OWNER (type);
237
238 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
239
240 /* Restore owner information. */
241 TYPE_OBJFILE_OWNED (type) = objfile_owned;
242 TYPE_OWNER (type) = owner;
243
244 /* For now, delete the rings. */
245 TYPE_CHAIN (type) = type;
246
247 /* For now, leave the pointer/reference types alone. */
248 }
249
250 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
251 to a pointer to memory where the pointer type should be stored.
252 If *TYPEPTR is zero, update it to point to the pointer type we return.
253 We allocate new memory if needed. */
254
255 struct type *
256 make_pointer_type (struct type *type, struct type **typeptr)
257 {
258 struct type *ntype; /* New type */
259 struct type *chain;
260
261 ntype = TYPE_POINTER_TYPE (type);
262
263 if (ntype)
264 {
265 if (typeptr == 0)
266 return ntype; /* Don't care about alloc,
267 and have new type. */
268 else if (*typeptr == 0)
269 {
270 *typeptr = ntype; /* Tracking alloc, and have new type. */
271 return ntype;
272 }
273 }
274
275 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
276 {
277 ntype = alloc_type_copy (type);
278 if (typeptr)
279 *typeptr = ntype;
280 }
281 else /* We have storage, but need to reset it. */
282 {
283 ntype = *typeptr;
284 chain = TYPE_CHAIN (ntype);
285 smash_type (ntype);
286 TYPE_CHAIN (ntype) = chain;
287 }
288
289 TYPE_TARGET_TYPE (ntype) = type;
290 TYPE_POINTER_TYPE (type) = ntype;
291
292 /* FIXME! Assume the machine has only one representation for
293 pointers! */
294
295 TYPE_LENGTH (ntype)
296 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
297 TYPE_CODE (ntype) = TYPE_CODE_PTR;
298
299 /* Mark pointers as unsigned. The target converts between pointers
300 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
301 gdbarch_address_to_pointer. */
302 TYPE_UNSIGNED (ntype) = 1;
303
304 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
305 TYPE_POINTER_TYPE (type) = ntype;
306
307 /* Update the length of all the other variants of this type. */
308 chain = TYPE_CHAIN (ntype);
309 while (chain != ntype)
310 {
311 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
312 chain = TYPE_CHAIN (chain);
313 }
314
315 return ntype;
316 }
317
318 /* Given a type TYPE, return a type of pointers to that type.
319 May need to construct such a type if this is the first use. */
320
321 struct type *
322 lookup_pointer_type (struct type *type)
323 {
324 return make_pointer_type (type, (struct type **) 0);
325 }
326
327 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
328 points to a pointer to memory where the reference type should be
329 stored. If *TYPEPTR is zero, update it to point to the reference
330 type we return. We allocate new memory if needed. */
331
332 struct type *
333 make_reference_type (struct type *type, struct type **typeptr)
334 {
335 struct type *ntype; /* New type */
336 struct type *chain;
337
338 ntype = TYPE_REFERENCE_TYPE (type);
339
340 if (ntype)
341 {
342 if (typeptr == 0)
343 return ntype; /* Don't care about alloc,
344 and have new type. */
345 else if (*typeptr == 0)
346 {
347 *typeptr = ntype; /* Tracking alloc, and have new type. */
348 return ntype;
349 }
350 }
351
352 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
353 {
354 ntype = alloc_type_copy (type);
355 if (typeptr)
356 *typeptr = ntype;
357 }
358 else /* We have storage, but need to reset it. */
359 {
360 ntype = *typeptr;
361 chain = TYPE_CHAIN (ntype);
362 smash_type (ntype);
363 TYPE_CHAIN (ntype) = chain;
364 }
365
366 TYPE_TARGET_TYPE (ntype) = type;
367 TYPE_REFERENCE_TYPE (type) = ntype;
368
369 /* FIXME! Assume the machine has only one representation for
370 references, and that it matches the (only) representation for
371 pointers! */
372
373 TYPE_LENGTH (ntype) =
374 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
375 TYPE_CODE (ntype) = TYPE_CODE_REF;
376
377 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
378 TYPE_REFERENCE_TYPE (type) = ntype;
379
380 /* Update the length of all the other variants of this type. */
381 chain = TYPE_CHAIN (ntype);
382 while (chain != ntype)
383 {
384 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
385 chain = TYPE_CHAIN (chain);
386 }
387
388 return ntype;
389 }
390
391 /* Same as above, but caller doesn't care about memory allocation
392 details. */
393
394 struct type *
395 lookup_reference_type (struct type *type)
396 {
397 return make_reference_type (type, (struct type **) 0);
398 }
399
400 /* Lookup a function type that returns type TYPE. TYPEPTR, if
401 nonzero, points to a pointer to memory where the function type
402 should be stored. If *TYPEPTR is zero, update it to point to the
403 function type we return. We allocate new memory if needed. */
404
405 struct type *
406 make_function_type (struct type *type, struct type **typeptr)
407 {
408 struct type *ntype; /* New type */
409
410 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
411 {
412 ntype = alloc_type_copy (type);
413 if (typeptr)
414 *typeptr = ntype;
415 }
416 else /* We have storage, but need to reset it. */
417 {
418 ntype = *typeptr;
419 smash_type (ntype);
420 }
421
422 TYPE_TARGET_TYPE (ntype) = type;
423
424 TYPE_LENGTH (ntype) = 1;
425 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
426
427 return ntype;
428 }
429
430
431 /* Given a type TYPE, return a type of functions that return that type.
432 May need to construct such a type if this is the first use. */
433
434 struct type *
435 lookup_function_type (struct type *type)
436 {
437 return make_function_type (type, (struct type **) 0);
438 }
439
440 /* Identify address space identifier by name --
441 return the integer flag defined in gdbtypes.h. */
442 extern int
443 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
444 {
445 int type_flags;
446 /* Check for known address space delimiters. */
447 if (!strcmp (space_identifier, "code"))
448 return TYPE_INSTANCE_FLAG_CODE_SPACE;
449 else if (!strcmp (space_identifier, "data"))
450 return TYPE_INSTANCE_FLAG_DATA_SPACE;
451 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
452 && gdbarch_address_class_name_to_type_flags (gdbarch,
453 space_identifier,
454 &type_flags))
455 return type_flags;
456 else
457 error (_("Unknown address space specifier: \"%s\""), space_identifier);
458 }
459
460 /* Identify address space identifier by integer flag as defined in
461 gdbtypes.h -- return the string version of the adress space name. */
462
463 const char *
464 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
465 {
466 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
467 return "code";
468 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
469 return "data";
470 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
471 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
472 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
473 else
474 return NULL;
475 }
476
477 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
478
479 If STORAGE is non-NULL, create the new type instance there.
480 STORAGE must be in the same obstack as TYPE. */
481
482 static struct type *
483 make_qualified_type (struct type *type, int new_flags,
484 struct type *storage)
485 {
486 struct type *ntype;
487
488 ntype = type;
489 do
490 {
491 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
492 return ntype;
493 ntype = TYPE_CHAIN (ntype);
494 }
495 while (ntype != type);
496
497 /* Create a new type instance. */
498 if (storage == NULL)
499 ntype = alloc_type_instance (type);
500 else
501 {
502 /* If STORAGE was provided, it had better be in the same objfile
503 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
504 if one objfile is freed and the other kept, we'd have
505 dangling pointers. */
506 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
507
508 ntype = storage;
509 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
510 TYPE_CHAIN (ntype) = ntype;
511 }
512
513 /* Pointers or references to the original type are not relevant to
514 the new type. */
515 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
516 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
517
518 /* Chain the new qualified type to the old type. */
519 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
520 TYPE_CHAIN (type) = ntype;
521
522 /* Now set the instance flags and return the new type. */
523 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
524
525 /* Set length of new type to that of the original type. */
526 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
527
528 return ntype;
529 }
530
531 /* Make an address-space-delimited variant of a type -- a type that
532 is identical to the one supplied except that it has an address
533 space attribute attached to it (such as "code" or "data").
534
535 The space attributes "code" and "data" are for Harvard
536 architectures. The address space attributes are for architectures
537 which have alternately sized pointers or pointers with alternate
538 representations. */
539
540 struct type *
541 make_type_with_address_space (struct type *type, int space_flag)
542 {
543 struct type *ntype;
544 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
545 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
546 | TYPE_INSTANCE_FLAG_DATA_SPACE
547 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
548 | space_flag);
549
550 return make_qualified_type (type, new_flags, NULL);
551 }
552
553 /* Make a "c-v" variant of a type -- a type that is identical to the
554 one supplied except that it may have const or volatile attributes
555 CNST is a flag for setting the const attribute
556 VOLTL is a flag for setting the volatile attribute
557 TYPE is the base type whose variant we are creating.
558
559 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
560 storage to hold the new qualified type; *TYPEPTR and TYPE must be
561 in the same objfile. Otherwise, allocate fresh memory for the new
562 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
563 new type we construct. */
564 struct type *
565 make_cv_type (int cnst, int voltl,
566 struct type *type,
567 struct type **typeptr)
568 {
569 struct type *ntype; /* New type */
570 struct type *tmp_type = type; /* tmp type */
571 struct objfile *objfile;
572
573 int new_flags = (TYPE_INSTANCE_FLAGS (type)
574 & ~(TYPE_INSTANCE_FLAG_CONST | TYPE_INSTANCE_FLAG_VOLATILE));
575
576 if (cnst)
577 new_flags |= TYPE_INSTANCE_FLAG_CONST;
578
579 if (voltl)
580 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
581
582 if (typeptr && *typeptr != NULL)
583 {
584 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
585 a C-V variant chain that threads across objfiles: if one
586 objfile gets freed, then the other has a broken C-V chain.
587
588 This code used to try to copy over the main type from TYPE to
589 *TYPEPTR if they were in different objfiles, but that's
590 wrong, too: TYPE may have a field list or member function
591 lists, which refer to types of their own, etc. etc. The
592 whole shebang would need to be copied over recursively; you
593 can't have inter-objfile pointers. The only thing to do is
594 to leave stub types as stub types, and look them up afresh by
595 name each time you encounter them. */
596 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
597 }
598
599 ntype = make_qualified_type (type, new_flags,
600 typeptr ? *typeptr : NULL);
601
602 if (typeptr != NULL)
603 *typeptr = ntype;
604
605 return ntype;
606 }
607
608 /* Replace the contents of ntype with the type *type. This changes the
609 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
610 the changes are propogated to all types in the TYPE_CHAIN.
611
612 In order to build recursive types, it's inevitable that we'll need
613 to update types in place --- but this sort of indiscriminate
614 smashing is ugly, and needs to be replaced with something more
615 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
616 clear if more steps are needed. */
617 void
618 replace_type (struct type *ntype, struct type *type)
619 {
620 struct type *chain;
621
622 /* These two types had better be in the same objfile. Otherwise,
623 the assignment of one type's main type structure to the other
624 will produce a type with references to objects (names; field
625 lists; etc.) allocated on an objfile other than its own. */
626 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
627
628 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
629
630 /* The type length is not a part of the main type. Update it for
631 each type on the variant chain. */
632 chain = ntype;
633 do
634 {
635 /* Assert that this element of the chain has no address-class bits
636 set in its flags. Such type variants might have type lengths
637 which are supposed to be different from the non-address-class
638 variants. This assertion shouldn't ever be triggered because
639 symbol readers which do construct address-class variants don't
640 call replace_type(). */
641 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
642
643 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
644 chain = TYPE_CHAIN (chain);
645 }
646 while (ntype != chain);
647
648 /* Assert that the two types have equivalent instance qualifiers.
649 This should be true for at least all of our debug readers. */
650 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
651 }
652
653 /* Implement direct support for MEMBER_TYPE in GNU C++.
654 May need to construct such a type if this is the first use.
655 The TYPE is the type of the member. The DOMAIN is the type
656 of the aggregate that the member belongs to. */
657
658 struct type *
659 lookup_memberptr_type (struct type *type, struct type *domain)
660 {
661 struct type *mtype;
662
663 mtype = alloc_type_copy (type);
664 smash_to_memberptr_type (mtype, domain, type);
665 return mtype;
666 }
667
668 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
669
670 struct type *
671 lookup_methodptr_type (struct type *to_type)
672 {
673 struct type *mtype;
674
675 mtype = alloc_type_copy (to_type);
676 smash_to_methodptr_type (mtype, to_type);
677 return mtype;
678 }
679
680 /* Allocate a stub method whose return type is TYPE. This apparently
681 happens for speed of symbol reading, since parsing out the
682 arguments to the method is cpu-intensive, the way we are doing it.
683 So, we will fill in arguments later. This always returns a fresh
684 type. */
685
686 struct type *
687 allocate_stub_method (struct type *type)
688 {
689 struct type *mtype;
690
691 mtype = alloc_type_copy (type);
692 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
693 TYPE_LENGTH (mtype) = 1;
694 TYPE_STUB (mtype) = 1;
695 TYPE_TARGET_TYPE (mtype) = type;
696 /* _DOMAIN_TYPE (mtype) = unknown yet */
697 return mtype;
698 }
699
700 /* Create a range type using either a blank type supplied in
701 RESULT_TYPE, or creating a new type, inheriting the objfile from
702 INDEX_TYPE.
703
704 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
705 to HIGH_BOUND, inclusive.
706
707 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
708 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
709
710 struct type *
711 create_range_type (struct type *result_type, struct type *index_type,
712 LONGEST low_bound, LONGEST high_bound)
713 {
714 if (result_type == NULL)
715 result_type = alloc_type_copy (index_type);
716 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
717 TYPE_TARGET_TYPE (result_type) = index_type;
718 if (TYPE_STUB (index_type))
719 TYPE_TARGET_STUB (result_type) = 1;
720 else
721 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
722 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
723 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
724 TYPE_LOW_BOUND (result_type) = low_bound;
725 TYPE_HIGH_BOUND (result_type) = high_bound;
726
727 if (low_bound >= 0)
728 TYPE_UNSIGNED (result_type) = 1;
729
730 return result_type;
731 }
732
733 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
734 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
735 bounds will fit in LONGEST), or -1 otherwise. */
736
737 int
738 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
739 {
740 CHECK_TYPEDEF (type);
741 switch (TYPE_CODE (type))
742 {
743 case TYPE_CODE_RANGE:
744 *lowp = TYPE_LOW_BOUND (type);
745 *highp = TYPE_HIGH_BOUND (type);
746 return 1;
747 case TYPE_CODE_ENUM:
748 if (TYPE_NFIELDS (type) > 0)
749 {
750 /* The enums may not be sorted by value, so search all
751 entries */
752 int i;
753
754 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
755 for (i = 0; i < TYPE_NFIELDS (type); i++)
756 {
757 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
758 *lowp = TYPE_FIELD_BITPOS (type, i);
759 if (TYPE_FIELD_BITPOS (type, i) > *highp)
760 *highp = TYPE_FIELD_BITPOS (type, i);
761 }
762
763 /* Set unsigned indicator if warranted. */
764 if (*lowp >= 0)
765 {
766 TYPE_UNSIGNED (type) = 1;
767 }
768 }
769 else
770 {
771 *lowp = 0;
772 *highp = -1;
773 }
774 return 0;
775 case TYPE_CODE_BOOL:
776 *lowp = 0;
777 *highp = 1;
778 return 0;
779 case TYPE_CODE_INT:
780 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
781 return -1;
782 if (!TYPE_UNSIGNED (type))
783 {
784 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
785 *highp = -*lowp - 1;
786 return 0;
787 }
788 /* ... fall through for unsigned ints ... */
789 case TYPE_CODE_CHAR:
790 *lowp = 0;
791 /* This round-about calculation is to avoid shifting by
792 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
793 if TYPE_LENGTH (type) == sizeof (LONGEST). */
794 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
795 *highp = (*highp - 1) | *highp;
796 return 0;
797 default:
798 return -1;
799 }
800 }
801
802 /* Create an array type using either a blank type supplied in
803 RESULT_TYPE, or creating a new type, inheriting the objfile from
804 RANGE_TYPE.
805
806 Elements will be of type ELEMENT_TYPE, the indices will be of type
807 RANGE_TYPE.
808
809 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
810 sure it is TYPE_CODE_UNDEF before we bash it into an array
811 type? */
812
813 struct type *
814 create_array_type (struct type *result_type,
815 struct type *element_type,
816 struct type *range_type)
817 {
818 LONGEST low_bound, high_bound;
819
820 if (result_type == NULL)
821 result_type = alloc_type_copy (range_type);
822
823 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
824 TYPE_TARGET_TYPE (result_type) = element_type;
825 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
826 low_bound = high_bound = 0;
827 CHECK_TYPEDEF (element_type);
828 /* Be careful when setting the array length. Ada arrays can be
829 empty arrays with the high_bound being smaller than the low_bound.
830 In such cases, the array length should be zero. */
831 if (high_bound < low_bound)
832 TYPE_LENGTH (result_type) = 0;
833 else
834 TYPE_LENGTH (result_type) =
835 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
836 TYPE_NFIELDS (result_type) = 1;
837 TYPE_FIELDS (result_type) =
838 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
839 TYPE_INDEX_TYPE (result_type) = range_type;
840 TYPE_VPTR_FIELDNO (result_type) = -1;
841
842 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
843 if (TYPE_LENGTH (result_type) == 0)
844 TYPE_TARGET_STUB (result_type) = 1;
845
846 return result_type;
847 }
848
849 struct type *
850 lookup_array_range_type (struct type *element_type,
851 int low_bound, int high_bound)
852 {
853 struct gdbarch *gdbarch = get_type_arch (element_type);
854 struct type *index_type = builtin_type (gdbarch)->builtin_int;
855 struct type *range_type
856 = create_range_type (NULL, index_type, low_bound, high_bound);
857 return create_array_type (NULL, element_type, range_type);
858 }
859
860 /* Create a string type using either a blank type supplied in
861 RESULT_TYPE, or creating a new type. String types are similar
862 enough to array of char types that we can use create_array_type to
863 build the basic type and then bash it into a string type.
864
865 For fixed length strings, the range type contains 0 as the lower
866 bound and the length of the string minus one as the upper bound.
867
868 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
869 sure it is TYPE_CODE_UNDEF before we bash it into a string
870 type? */
871
872 struct type *
873 create_string_type (struct type *result_type,
874 struct type *string_char_type,
875 struct type *range_type)
876 {
877 result_type = create_array_type (result_type,
878 string_char_type,
879 range_type);
880 TYPE_CODE (result_type) = TYPE_CODE_STRING;
881 return result_type;
882 }
883
884 struct type *
885 lookup_string_range_type (struct type *string_char_type,
886 int low_bound, int high_bound)
887 {
888 struct type *result_type;
889 result_type = lookup_array_range_type (string_char_type,
890 low_bound, high_bound);
891 TYPE_CODE (result_type) = TYPE_CODE_STRING;
892 return result_type;
893 }
894
895 struct type *
896 create_set_type (struct type *result_type, struct type *domain_type)
897 {
898 if (result_type == NULL)
899 result_type = alloc_type_copy (domain_type);
900
901 TYPE_CODE (result_type) = TYPE_CODE_SET;
902 TYPE_NFIELDS (result_type) = 1;
903 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
904
905 if (!TYPE_STUB (domain_type))
906 {
907 LONGEST low_bound, high_bound, bit_length;
908 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
909 low_bound = high_bound = 0;
910 bit_length = high_bound - low_bound + 1;
911 TYPE_LENGTH (result_type)
912 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
913 if (low_bound >= 0)
914 TYPE_UNSIGNED (result_type) = 1;
915 }
916 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
917
918 return result_type;
919 }
920
921 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
922 and any array types nested inside it. */
923
924 void
925 make_vector_type (struct type *array_type)
926 {
927 struct type *inner_array, *elt_type;
928 int flags;
929
930 /* Find the innermost array type, in case the array is
931 multi-dimensional. */
932 inner_array = array_type;
933 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
934 inner_array = TYPE_TARGET_TYPE (inner_array);
935
936 elt_type = TYPE_TARGET_TYPE (inner_array);
937 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
938 {
939 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
940 elt_type = make_qualified_type (elt_type, flags, NULL);
941 TYPE_TARGET_TYPE (inner_array) = elt_type;
942 }
943
944 TYPE_VECTOR (array_type) = 1;
945 }
946
947 struct type *
948 init_vector_type (struct type *elt_type, int n)
949 {
950 struct type *array_type;
951 array_type = lookup_array_range_type (elt_type, 0, n - 1);
952 make_vector_type (array_type);
953 return array_type;
954 }
955
956 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
957 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
958 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
959 TYPE doesn't include the offset (that's the value of the MEMBER
960 itself), but does include the structure type into which it points
961 (for some reason).
962
963 When "smashing" the type, we preserve the objfile that the old type
964 pointed to, since we aren't changing where the type is actually
965 allocated. */
966
967 void
968 smash_to_memberptr_type (struct type *type, struct type *domain,
969 struct type *to_type)
970 {
971 smash_type (type);
972 TYPE_TARGET_TYPE (type) = to_type;
973 TYPE_DOMAIN_TYPE (type) = domain;
974 /* Assume that a data member pointer is the same size as a normal
975 pointer. */
976 TYPE_LENGTH (type)
977 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
978 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
979 }
980
981 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
982
983 When "smashing" the type, we preserve the objfile that the old type
984 pointed to, since we aren't changing where the type is actually
985 allocated. */
986
987 void
988 smash_to_methodptr_type (struct type *type, struct type *to_type)
989 {
990 smash_type (type);
991 TYPE_TARGET_TYPE (type) = to_type;
992 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
993 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
994 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
995 }
996
997 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
998 METHOD just means `function that gets an extra "this" argument'.
999
1000 When "smashing" the type, we preserve the objfile that the old type
1001 pointed to, since we aren't changing where the type is actually
1002 allocated. */
1003
1004 void
1005 smash_to_method_type (struct type *type, struct type *domain,
1006 struct type *to_type, struct field *args,
1007 int nargs, int varargs)
1008 {
1009 smash_type (type);
1010 TYPE_TARGET_TYPE (type) = to_type;
1011 TYPE_DOMAIN_TYPE (type) = domain;
1012 TYPE_FIELDS (type) = args;
1013 TYPE_NFIELDS (type) = nargs;
1014 if (varargs)
1015 TYPE_VARARGS (type) = 1;
1016 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1017 TYPE_CODE (type) = TYPE_CODE_METHOD;
1018 }
1019
1020 /* Return a typename for a struct/union/enum type without "struct ",
1021 "union ", or "enum ". If the type has a NULL name, return NULL. */
1022
1023 char *
1024 type_name_no_tag (const struct type *type)
1025 {
1026 if (TYPE_TAG_NAME (type) != NULL)
1027 return TYPE_TAG_NAME (type);
1028
1029 /* Is there code which expects this to return the name if there is
1030 no tag name? My guess is that this is mainly used for C++ in
1031 cases where the two will always be the same. */
1032 return TYPE_NAME (type);
1033 }
1034
1035 /* Lookup a typedef or primitive type named NAME, visible in lexical
1036 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1037 suitably defined. */
1038
1039 struct type *
1040 lookup_typename (const struct language_defn *language,
1041 struct gdbarch *gdbarch, char *name,
1042 struct block *block, int noerr)
1043 {
1044 struct symbol *sym;
1045 struct type *tmp;
1046
1047 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1048 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1049 {
1050 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
1051 if (tmp)
1052 {
1053 return tmp;
1054 }
1055 else if (!tmp && noerr)
1056 {
1057 return NULL;
1058 }
1059 else
1060 {
1061 error (_("No type named %s."), name);
1062 }
1063 }
1064 return (SYMBOL_TYPE (sym));
1065 }
1066
1067 struct type *
1068 lookup_unsigned_typename (const struct language_defn *language,
1069 struct gdbarch *gdbarch, char *name)
1070 {
1071 char *uns = alloca (strlen (name) + 10);
1072
1073 strcpy (uns, "unsigned ");
1074 strcpy (uns + 9, name);
1075 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1076 }
1077
1078 struct type *
1079 lookup_signed_typename (const struct language_defn *language,
1080 struct gdbarch *gdbarch, char *name)
1081 {
1082 struct type *t;
1083 char *uns = alloca (strlen (name) + 8);
1084
1085 strcpy (uns, "signed ");
1086 strcpy (uns + 7, name);
1087 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1088 /* If we don't find "signed FOO" just try again with plain "FOO". */
1089 if (t != NULL)
1090 return t;
1091 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1092 }
1093
1094 /* Lookup a structure type named "struct NAME",
1095 visible in lexical block BLOCK. */
1096
1097 struct type *
1098 lookup_struct (char *name, struct block *block)
1099 {
1100 struct symbol *sym;
1101
1102 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1103
1104 if (sym == NULL)
1105 {
1106 error (_("No struct type named %s."), name);
1107 }
1108 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1109 {
1110 error (_("This context has class, union or enum %s, not a struct."),
1111 name);
1112 }
1113 return (SYMBOL_TYPE (sym));
1114 }
1115
1116 /* Lookup a union type named "union NAME",
1117 visible in lexical block BLOCK. */
1118
1119 struct type *
1120 lookup_union (char *name, struct block *block)
1121 {
1122 struct symbol *sym;
1123 struct type *t;
1124
1125 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1126
1127 if (sym == NULL)
1128 error (_("No union type named %s."), name);
1129
1130 t = SYMBOL_TYPE (sym);
1131
1132 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1133 return t;
1134
1135 /* If we get here, it's not a union. */
1136 error (_("This context has class, struct or enum %s, not a union."),
1137 name);
1138 }
1139
1140
1141 /* Lookup an enum type named "enum NAME",
1142 visible in lexical block BLOCK. */
1143
1144 struct type *
1145 lookup_enum (char *name, struct block *block)
1146 {
1147 struct symbol *sym;
1148
1149 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1150 if (sym == NULL)
1151 {
1152 error (_("No enum type named %s."), name);
1153 }
1154 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1155 {
1156 error (_("This context has class, struct or union %s, not an enum."),
1157 name);
1158 }
1159 return (SYMBOL_TYPE (sym));
1160 }
1161
1162 /* Lookup a template type named "template NAME<TYPE>",
1163 visible in lexical block BLOCK. */
1164
1165 struct type *
1166 lookup_template_type (char *name, struct type *type,
1167 struct block *block)
1168 {
1169 struct symbol *sym;
1170 char *nam = (char *)
1171 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1172 strcpy (nam, name);
1173 strcat (nam, "<");
1174 strcat (nam, TYPE_NAME (type));
1175 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1176
1177 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1178
1179 if (sym == NULL)
1180 {
1181 error (_("No template type named %s."), name);
1182 }
1183 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1184 {
1185 error (_("This context has class, union or enum %s, not a struct."),
1186 name);
1187 }
1188 return (SYMBOL_TYPE (sym));
1189 }
1190
1191 /* Given a type TYPE, lookup the type of the component of type named
1192 NAME.
1193
1194 TYPE can be either a struct or union, or a pointer or reference to
1195 a struct or union. If it is a pointer or reference, its target
1196 type is automatically used. Thus '.' and '->' are interchangable,
1197 as specified for the definitions of the expression element types
1198 STRUCTOP_STRUCT and STRUCTOP_PTR.
1199
1200 If NOERR is nonzero, return zero if NAME is not suitably defined.
1201 If NAME is the name of a baseclass type, return that type. */
1202
1203 struct type *
1204 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1205 {
1206 int i;
1207
1208 for (;;)
1209 {
1210 CHECK_TYPEDEF (type);
1211 if (TYPE_CODE (type) != TYPE_CODE_PTR
1212 && TYPE_CODE (type) != TYPE_CODE_REF)
1213 break;
1214 type = TYPE_TARGET_TYPE (type);
1215 }
1216
1217 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1218 && TYPE_CODE (type) != TYPE_CODE_UNION)
1219 {
1220 target_terminal_ours ();
1221 gdb_flush (gdb_stdout);
1222 fprintf_unfiltered (gdb_stderr, "Type ");
1223 type_print (type, "", gdb_stderr, -1);
1224 error (_(" is not a structure or union type."));
1225 }
1226
1227 #if 0
1228 /* FIXME: This change put in by Michael seems incorrect for the case
1229 where the structure tag name is the same as the member name.
1230 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1231 foo; } bell;" Disabled by fnf. */
1232 {
1233 char *typename;
1234
1235 typename = type_name_no_tag (type);
1236 if (typename != NULL && strcmp (typename, name) == 0)
1237 return type;
1238 }
1239 #endif
1240
1241 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1242 {
1243 char *t_field_name = TYPE_FIELD_NAME (type, i);
1244
1245 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1246 {
1247 return TYPE_FIELD_TYPE (type, i);
1248 }
1249 }
1250
1251 /* OK, it's not in this class. Recursively check the baseclasses. */
1252 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1253 {
1254 struct type *t;
1255
1256 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1257 if (t != NULL)
1258 {
1259 return t;
1260 }
1261 }
1262
1263 if (noerr)
1264 {
1265 return NULL;
1266 }
1267
1268 target_terminal_ours ();
1269 gdb_flush (gdb_stdout);
1270 fprintf_unfiltered (gdb_stderr, "Type ");
1271 type_print (type, "", gdb_stderr, -1);
1272 fprintf_unfiltered (gdb_stderr, " has no component named ");
1273 fputs_filtered (name, gdb_stderr);
1274 error (("."));
1275 return (struct type *) -1; /* For lint */
1276 }
1277
1278 /* Lookup the vptr basetype/fieldno values for TYPE.
1279 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1280 vptr_fieldno. Also, if found and basetype is from the same objfile,
1281 cache the results.
1282 If not found, return -1 and ignore BASETYPEP.
1283 Callers should be aware that in some cases (for example,
1284 the type or one of its baseclasses is a stub type and we are
1285 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1286 this function will not be able to find the
1287 virtual function table pointer, and vptr_fieldno will remain -1 and
1288 vptr_basetype will remain NULL or incomplete. */
1289
1290 int
1291 get_vptr_fieldno (struct type *type, struct type **basetypep)
1292 {
1293 CHECK_TYPEDEF (type);
1294
1295 if (TYPE_VPTR_FIELDNO (type) < 0)
1296 {
1297 int i;
1298
1299 /* We must start at zero in case the first (and only) baseclass
1300 is virtual (and hence we cannot share the table pointer). */
1301 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1302 {
1303 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1304 int fieldno;
1305 struct type *basetype;
1306
1307 fieldno = get_vptr_fieldno (baseclass, &basetype);
1308 if (fieldno >= 0)
1309 {
1310 /* If the type comes from a different objfile we can't cache
1311 it, it may have a different lifetime. PR 2384 */
1312 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1313 {
1314 TYPE_VPTR_FIELDNO (type) = fieldno;
1315 TYPE_VPTR_BASETYPE (type) = basetype;
1316 }
1317 if (basetypep)
1318 *basetypep = basetype;
1319 return fieldno;
1320 }
1321 }
1322
1323 /* Not found. */
1324 return -1;
1325 }
1326 else
1327 {
1328 if (basetypep)
1329 *basetypep = TYPE_VPTR_BASETYPE (type);
1330 return TYPE_VPTR_FIELDNO (type);
1331 }
1332 }
1333
1334 static void
1335 stub_noname_complaint (void)
1336 {
1337 complaint (&symfile_complaints, _("stub type has NULL name"));
1338 }
1339
1340 /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1341
1342 If this is a stubbed struct (i.e. declared as struct foo *), see if
1343 we can find a full definition in some other file. If so, copy this
1344 definition, so we can use it in future. There used to be a comment
1345 (but not any code) that if we don't find a full definition, we'd
1346 set a flag so we don't spend time in the future checking the same
1347 type. That would be a mistake, though--we might load in more
1348 symbols which contain a full definition for the type.
1349
1350 This used to be coded as a macro, but I don't think it is called
1351 often enough to merit such treatment.
1352
1353 Find the real type of TYPE. This function returns the real type,
1354 after removing all layers of typedefs and completing opaque or stub
1355 types. Completion changes the TYPE argument, but stripping of
1356 typedefs does not.
1357
1358 If TYPE is a TYPE_CODE_TYPEDEF, its length is (also) set to the length of
1359 the target type instead of zero. However, in the case of TYPE_CODE_TYPEDEF
1360 check_typedef can still return different type than the original TYPE
1361 pointer. */
1362
1363 struct type *
1364 check_typedef (struct type *type)
1365 {
1366 struct type *orig_type = type;
1367 int is_const, is_volatile;
1368
1369 gdb_assert (type);
1370
1371 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1372 {
1373 if (!TYPE_TARGET_TYPE (type))
1374 {
1375 char *name;
1376 struct symbol *sym;
1377
1378 /* It is dangerous to call lookup_symbol if we are currently
1379 reading a symtab. Infinite recursion is one danger. */
1380 if (currently_reading_symtab)
1381 return type;
1382
1383 name = type_name_no_tag (type);
1384 /* FIXME: shouldn't we separately check the TYPE_NAME and
1385 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1386 VAR_DOMAIN as appropriate? (this code was written before
1387 TYPE_NAME and TYPE_TAG_NAME were separate). */
1388 if (name == NULL)
1389 {
1390 stub_noname_complaint ();
1391 return type;
1392 }
1393 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1394 if (sym)
1395 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1396 else /* TYPE_CODE_UNDEF */
1397 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1398 }
1399 type = TYPE_TARGET_TYPE (type);
1400 }
1401
1402 is_const = TYPE_CONST (type);
1403 is_volatile = TYPE_VOLATILE (type);
1404
1405 /* If this is a struct/class/union with no fields, then check
1406 whether a full definition exists somewhere else. This is for
1407 systems where a type definition with no fields is issued for such
1408 types, instead of identifying them as stub types in the first
1409 place. */
1410
1411 if (TYPE_IS_OPAQUE (type)
1412 && opaque_type_resolution
1413 && !currently_reading_symtab)
1414 {
1415 char *name = type_name_no_tag (type);
1416 struct type *newtype;
1417 if (name == NULL)
1418 {
1419 stub_noname_complaint ();
1420 return type;
1421 }
1422 newtype = lookup_transparent_type (name);
1423
1424 if (newtype)
1425 {
1426 /* If the resolved type and the stub are in the same
1427 objfile, then replace the stub type with the real deal.
1428 But if they're in separate objfiles, leave the stub
1429 alone; we'll just look up the transparent type every time
1430 we call check_typedef. We can't create pointers between
1431 types allocated to different objfiles, since they may
1432 have different lifetimes. Trying to copy NEWTYPE over to
1433 TYPE's objfile is pointless, too, since you'll have to
1434 move over any other types NEWTYPE refers to, which could
1435 be an unbounded amount of stuff. */
1436 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1437 make_cv_type (is_const, is_volatile, newtype, &type);
1438 else
1439 type = newtype;
1440 }
1441 }
1442 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1443 types. */
1444 else if (TYPE_STUB (type) && !currently_reading_symtab)
1445 {
1446 char *name = type_name_no_tag (type);
1447 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1448 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1449 as appropriate? (this code was written before TYPE_NAME and
1450 TYPE_TAG_NAME were separate). */
1451 struct symbol *sym;
1452 if (name == NULL)
1453 {
1454 stub_noname_complaint ();
1455 return type;
1456 }
1457 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1458 if (sym)
1459 {
1460 /* Same as above for opaque types, we can replace the stub
1461 with the complete type only if they are int the same
1462 objfile. */
1463 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1464 make_cv_type (is_const, is_volatile,
1465 SYMBOL_TYPE (sym), &type);
1466 else
1467 type = SYMBOL_TYPE (sym);
1468 }
1469 }
1470
1471 if (TYPE_TARGET_STUB (type))
1472 {
1473 struct type *range_type;
1474 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1475
1476 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1477 {
1478 /* Empty. */
1479 }
1480 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1481 && TYPE_NFIELDS (type) == 1
1482 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1483 == TYPE_CODE_RANGE))
1484 {
1485 /* Now recompute the length of the array type, based on its
1486 number of elements and the target type's length.
1487 Watch out for Ada null Ada arrays where the high bound
1488 is smaller than the low bound. */
1489 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1490 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1491 ULONGEST len;
1492
1493 if (high_bound < low_bound)
1494 len = 0;
1495 else {
1496 /* For now, we conservatively take the array length to be 0
1497 if its length exceeds UINT_MAX. The code below assumes
1498 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1499 which is technically not guaranteed by C, but is usually true
1500 (because it would be true if x were unsigned with its
1501 high-order bit on). It uses the fact that
1502 high_bound-low_bound is always representable in
1503 ULONGEST and that if high_bound-low_bound+1 overflows,
1504 it overflows to 0. We must change these tests if we
1505 decide to increase the representation of TYPE_LENGTH
1506 from unsigned int to ULONGEST. */
1507 ULONGEST ulow = low_bound, uhigh = high_bound;
1508 ULONGEST tlen = TYPE_LENGTH (target_type);
1509
1510 len = tlen * (uhigh - ulow + 1);
1511 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1512 || len > UINT_MAX)
1513 len = 0;
1514 }
1515 TYPE_LENGTH (type) = len;
1516 TYPE_TARGET_STUB (type) = 0;
1517 }
1518 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1519 {
1520 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1521 TYPE_TARGET_STUB (type) = 0;
1522 }
1523 }
1524 /* Cache TYPE_LENGTH for future use. */
1525 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1526 return type;
1527 }
1528
1529 /* Parse a type expression in the string [P..P+LENGTH). If an error
1530 occurs, silently return a void type. */
1531
1532 static struct type *
1533 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1534 {
1535 struct ui_file *saved_gdb_stderr;
1536 struct type *type;
1537
1538 /* Suppress error messages. */
1539 saved_gdb_stderr = gdb_stderr;
1540 gdb_stderr = ui_file_new ();
1541
1542 /* Call parse_and_eval_type() without fear of longjmp()s. */
1543 if (!gdb_parse_and_eval_type (p, length, &type))
1544 type = builtin_type (gdbarch)->builtin_void;
1545
1546 /* Stop suppressing error messages. */
1547 ui_file_delete (gdb_stderr);
1548 gdb_stderr = saved_gdb_stderr;
1549
1550 return type;
1551 }
1552
1553 /* Ugly hack to convert method stubs into method types.
1554
1555 He ain't kiddin'. This demangles the name of the method into a
1556 string including argument types, parses out each argument type,
1557 generates a string casting a zero to that type, evaluates the
1558 string, and stuffs the resulting type into an argtype vector!!!
1559 Then it knows the type of the whole function (including argument
1560 types for overloading), which info used to be in the stab's but was
1561 removed to hack back the space required for them. */
1562
1563 static void
1564 check_stub_method (struct type *type, int method_id, int signature_id)
1565 {
1566 struct gdbarch *gdbarch = get_type_arch (type);
1567 struct fn_field *f;
1568 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1569 char *demangled_name = cplus_demangle (mangled_name,
1570 DMGL_PARAMS | DMGL_ANSI);
1571 char *argtypetext, *p;
1572 int depth = 0, argcount = 1;
1573 struct field *argtypes;
1574 struct type *mtype;
1575
1576 /* Make sure we got back a function string that we can use. */
1577 if (demangled_name)
1578 p = strchr (demangled_name, '(');
1579 else
1580 p = NULL;
1581
1582 if (demangled_name == NULL || p == NULL)
1583 error (_("Internal: Cannot demangle mangled name `%s'."),
1584 mangled_name);
1585
1586 /* Now, read in the parameters that define this type. */
1587 p += 1;
1588 argtypetext = p;
1589 while (*p)
1590 {
1591 if (*p == '(' || *p == '<')
1592 {
1593 depth += 1;
1594 }
1595 else if (*p == ')' || *p == '>')
1596 {
1597 depth -= 1;
1598 }
1599 else if (*p == ',' && depth == 0)
1600 {
1601 argcount += 1;
1602 }
1603
1604 p += 1;
1605 }
1606
1607 /* If we read one argument and it was ``void'', don't count it. */
1608 if (strncmp (argtypetext, "(void)", 6) == 0)
1609 argcount -= 1;
1610
1611 /* We need one extra slot, for the THIS pointer. */
1612
1613 argtypes = (struct field *)
1614 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1615 p = argtypetext;
1616
1617 /* Add THIS pointer for non-static methods. */
1618 f = TYPE_FN_FIELDLIST1 (type, method_id);
1619 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1620 argcount = 0;
1621 else
1622 {
1623 argtypes[0].type = lookup_pointer_type (type);
1624 argcount = 1;
1625 }
1626
1627 if (*p != ')') /* () means no args, skip while */
1628 {
1629 depth = 0;
1630 while (*p)
1631 {
1632 if (depth <= 0 && (*p == ',' || *p == ')'))
1633 {
1634 /* Avoid parsing of ellipsis, they will be handled below.
1635 Also avoid ``void'' as above. */
1636 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1637 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1638 {
1639 argtypes[argcount].type =
1640 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1641 argcount += 1;
1642 }
1643 argtypetext = p + 1;
1644 }
1645
1646 if (*p == '(' || *p == '<')
1647 {
1648 depth += 1;
1649 }
1650 else if (*p == ')' || *p == '>')
1651 {
1652 depth -= 1;
1653 }
1654
1655 p += 1;
1656 }
1657 }
1658
1659 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1660
1661 /* Now update the old "stub" type into a real type. */
1662 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1663 TYPE_DOMAIN_TYPE (mtype) = type;
1664 TYPE_FIELDS (mtype) = argtypes;
1665 TYPE_NFIELDS (mtype) = argcount;
1666 TYPE_STUB (mtype) = 0;
1667 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1668 if (p[-2] == '.')
1669 TYPE_VARARGS (mtype) = 1;
1670
1671 xfree (demangled_name);
1672 }
1673
1674 /* This is the external interface to check_stub_method, above. This
1675 function unstubs all of the signatures for TYPE's METHOD_ID method
1676 name. After calling this function TYPE_FN_FIELD_STUB will be
1677 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1678 correct.
1679
1680 This function unfortunately can not die until stabs do. */
1681
1682 void
1683 check_stub_method_group (struct type *type, int method_id)
1684 {
1685 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1686 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1687 int j, found_stub = 0;
1688
1689 for (j = 0; j < len; j++)
1690 if (TYPE_FN_FIELD_STUB (f, j))
1691 {
1692 found_stub = 1;
1693 check_stub_method (type, method_id, j);
1694 }
1695
1696 /* GNU v3 methods with incorrect names were corrected when we read
1697 in type information, because it was cheaper to do it then. The
1698 only GNU v2 methods with incorrect method names are operators and
1699 destructors; destructors were also corrected when we read in type
1700 information.
1701
1702 Therefore the only thing we need to handle here are v2 operator
1703 names. */
1704 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1705 {
1706 int ret;
1707 char dem_opname[256];
1708
1709 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1710 method_id),
1711 dem_opname, DMGL_ANSI);
1712 if (!ret)
1713 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1714 method_id),
1715 dem_opname, 0);
1716 if (ret)
1717 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1718 }
1719 }
1720
1721 const struct cplus_struct_type cplus_struct_default;
1722
1723 void
1724 allocate_cplus_struct_type (struct type *type)
1725 {
1726 if (HAVE_CPLUS_STRUCT (type))
1727 /* Structure was already allocated. Nothing more to do. */
1728 return;
1729
1730 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1731 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1732 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1733 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1734 }
1735
1736 const struct gnat_aux_type gnat_aux_default =
1737 { NULL };
1738
1739 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1740 and allocate the associated gnat-specific data. The gnat-specific
1741 data is also initialized to gnat_aux_default. */
1742 void
1743 allocate_gnat_aux_type (struct type *type)
1744 {
1745 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1746 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1747 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1748 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1749 }
1750
1751
1752 /* Helper function to initialize the standard scalar types.
1753
1754 If NAME is non-NULL, then we make a copy of the string pointed
1755 to by name in the objfile_obstack for that objfile, and initialize
1756 the type name to that copy. There are places (mipsread.c in particular),
1757 where init_type is called with a NULL value for NAME). */
1758
1759 struct type *
1760 init_type (enum type_code code, int length, int flags,
1761 char *name, struct objfile *objfile)
1762 {
1763 struct type *type;
1764
1765 type = alloc_type (objfile);
1766 TYPE_CODE (type) = code;
1767 TYPE_LENGTH (type) = length;
1768
1769 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1770 if (flags & TYPE_FLAG_UNSIGNED)
1771 TYPE_UNSIGNED (type) = 1;
1772 if (flags & TYPE_FLAG_NOSIGN)
1773 TYPE_NOSIGN (type) = 1;
1774 if (flags & TYPE_FLAG_STUB)
1775 TYPE_STUB (type) = 1;
1776 if (flags & TYPE_FLAG_TARGET_STUB)
1777 TYPE_TARGET_STUB (type) = 1;
1778 if (flags & TYPE_FLAG_STATIC)
1779 TYPE_STATIC (type) = 1;
1780 if (flags & TYPE_FLAG_PROTOTYPED)
1781 TYPE_PROTOTYPED (type) = 1;
1782 if (flags & TYPE_FLAG_INCOMPLETE)
1783 TYPE_INCOMPLETE (type) = 1;
1784 if (flags & TYPE_FLAG_VARARGS)
1785 TYPE_VARARGS (type) = 1;
1786 if (flags & TYPE_FLAG_VECTOR)
1787 TYPE_VECTOR (type) = 1;
1788 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1789 TYPE_STUB_SUPPORTED (type) = 1;
1790 if (flags & TYPE_FLAG_NOTTEXT)
1791 TYPE_NOTTEXT (type) = 1;
1792 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1793 TYPE_FIXED_INSTANCE (type) = 1;
1794
1795 if (name)
1796 TYPE_NAME (type) = obsavestring (name, strlen (name),
1797 &objfile->objfile_obstack);
1798
1799 /* C++ fancies. */
1800
1801 if (name && strcmp (name, "char") == 0)
1802 TYPE_NOSIGN (type) = 1;
1803
1804 switch (code)
1805 {
1806 case TYPE_CODE_STRUCT:
1807 case TYPE_CODE_UNION:
1808 case TYPE_CODE_NAMESPACE:
1809 INIT_CPLUS_SPECIFIC (type);
1810 break;
1811 case TYPE_CODE_FLT:
1812 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1813 break;
1814 case TYPE_CODE_FUNC:
1815 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CALLING_CONVENTION;
1816 break;
1817 }
1818 return type;
1819 }
1820
1821 int
1822 can_dereference (struct type *t)
1823 {
1824 /* FIXME: Should we return true for references as well as
1825 pointers? */
1826 CHECK_TYPEDEF (t);
1827 return
1828 (t != NULL
1829 && TYPE_CODE (t) == TYPE_CODE_PTR
1830 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1831 }
1832
1833 int
1834 is_integral_type (struct type *t)
1835 {
1836 CHECK_TYPEDEF (t);
1837 return
1838 ((t != NULL)
1839 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1840 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1841 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1842 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1843 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1844 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1845 }
1846
1847 /* A helper function which returns true if types A and B represent the
1848 "same" class type. This is true if the types have the same main
1849 type, or the same name. */
1850
1851 int
1852 class_types_same_p (const struct type *a, const struct type *b)
1853 {
1854 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
1855 || (TYPE_NAME (a) && TYPE_NAME (b)
1856 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
1857 }
1858
1859 /* Check whether BASE is an ancestor or base class or DCLASS
1860 Return 1 if so, and 0 if not.
1861 Note: callers may want to check for identity of the types before
1862 calling this function -- identical types are considered to satisfy
1863 the ancestor relationship even if they're identical. */
1864
1865 int
1866 is_ancestor (struct type *base, struct type *dclass)
1867 {
1868 int i;
1869
1870 CHECK_TYPEDEF (base);
1871 CHECK_TYPEDEF (dclass);
1872
1873 if (class_types_same_p (base, dclass))
1874 return 1;
1875
1876 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1877 {
1878 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1879 return 1;
1880 }
1881
1882 return 0;
1883 }
1884
1885 /* Like is_ancestor, but only returns true when BASE is a public
1886 ancestor of DCLASS. */
1887
1888 int
1889 is_public_ancestor (struct type *base, struct type *dclass)
1890 {
1891 int i;
1892
1893 CHECK_TYPEDEF (base);
1894 CHECK_TYPEDEF (dclass);
1895
1896 if (class_types_same_p (base, dclass))
1897 return 1;
1898
1899 for (i = 0; i < TYPE_N_BASECLASSES (dclass); ++i)
1900 {
1901 if (! BASETYPE_VIA_PUBLIC (dclass, i))
1902 continue;
1903 if (is_public_ancestor (base, TYPE_BASECLASS (dclass, i)))
1904 return 1;
1905 }
1906
1907 return 0;
1908 }
1909
1910 /* A helper function for is_unique_ancestor. */
1911
1912 static int
1913 is_unique_ancestor_worker (struct type *base, struct type *dclass,
1914 int *offset,
1915 const bfd_byte *contents, CORE_ADDR address)
1916 {
1917 int i, count = 0;
1918
1919 CHECK_TYPEDEF (base);
1920 CHECK_TYPEDEF (dclass);
1921
1922 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
1923 {
1924 struct type *iter = check_typedef (TYPE_BASECLASS (dclass, i));
1925 int this_offset = baseclass_offset (dclass, i, contents, address);
1926
1927 if (this_offset == -1)
1928 error (_("virtual baseclass botch"));
1929
1930 if (class_types_same_p (base, iter))
1931 {
1932 /* If this is the first subclass, set *OFFSET and set count
1933 to 1. Otherwise, if this is at the same offset as
1934 previous instances, do nothing. Otherwise, increment
1935 count. */
1936 if (*offset == -1)
1937 {
1938 *offset = this_offset;
1939 count = 1;
1940 }
1941 else if (this_offset == *offset)
1942 {
1943 /* Nothing. */
1944 }
1945 else
1946 ++count;
1947 }
1948 else
1949 count += is_unique_ancestor_worker (base, iter, offset,
1950 contents + this_offset,
1951 address + this_offset);
1952 }
1953
1954 return count;
1955 }
1956
1957 /* Like is_ancestor, but only returns true if BASE is a unique base
1958 class of the type of VAL. */
1959
1960 int
1961 is_unique_ancestor (struct type *base, struct value *val)
1962 {
1963 int offset = -1;
1964
1965 return is_unique_ancestor_worker (base, value_type (val), &offset,
1966 value_contents (val),
1967 value_address (val)) == 1;
1968 }
1969
1970 \f
1971
1972
1973 /* Functions for overload resolution begin here */
1974
1975 /* Compare two badness vectors A and B and return the result.
1976 0 => A and B are identical
1977 1 => A and B are incomparable
1978 2 => A is better than B
1979 3 => A is worse than B */
1980
1981 int
1982 compare_badness (struct badness_vector *a, struct badness_vector *b)
1983 {
1984 int i;
1985 int tmp;
1986 short found_pos = 0; /* any positives in c? */
1987 short found_neg = 0; /* any negatives in c? */
1988
1989 /* differing lengths => incomparable */
1990 if (a->length != b->length)
1991 return 1;
1992
1993 /* Subtract b from a */
1994 for (i = 0; i < a->length; i++)
1995 {
1996 tmp = a->rank[i] - b->rank[i];
1997 if (tmp > 0)
1998 found_pos = 1;
1999 else if (tmp < 0)
2000 found_neg = 1;
2001 }
2002
2003 if (found_pos)
2004 {
2005 if (found_neg)
2006 return 1; /* incomparable */
2007 else
2008 return 3; /* A > B */
2009 }
2010 else
2011 /* no positives */
2012 {
2013 if (found_neg)
2014 return 2; /* A < B */
2015 else
2016 return 0; /* A == B */
2017 }
2018 }
2019
2020 /* Rank a function by comparing its parameter types (PARMS, length
2021 NPARMS), to the types of an argument list (ARGS, length NARGS).
2022 Return a pointer to a badness vector. This has NARGS + 1
2023 entries. */
2024
2025 struct badness_vector *
2026 rank_function (struct type **parms, int nparms,
2027 struct type **args, int nargs)
2028 {
2029 int i;
2030 struct badness_vector *bv;
2031 int min_len = nparms < nargs ? nparms : nargs;
2032
2033 bv = xmalloc (sizeof (struct badness_vector));
2034 bv->length = nargs + 1; /* add 1 for the length-match rank */
2035 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2036
2037 /* First compare the lengths of the supplied lists.
2038 If there is a mismatch, set it to a high value. */
2039
2040 /* pai/1997-06-03 FIXME: when we have debug info about default
2041 arguments and ellipsis parameter lists, we should consider those
2042 and rank the length-match more finely. */
2043
2044 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
2045
2046 /* Now rank all the parameters of the candidate function */
2047 for (i = 1; i <= min_len; i++)
2048 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
2049
2050 /* If more arguments than parameters, add dummy entries */
2051 for (i = min_len + 1; i <= nargs; i++)
2052 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2053
2054 return bv;
2055 }
2056
2057 /* Compare the names of two integer types, assuming that any sign
2058 qualifiers have been checked already. We do it this way because
2059 there may be an "int" in the name of one of the types. */
2060
2061 static int
2062 integer_types_same_name_p (const char *first, const char *second)
2063 {
2064 int first_p, second_p;
2065
2066 /* If both are shorts, return 1; if neither is a short, keep
2067 checking. */
2068 first_p = (strstr (first, "short") != NULL);
2069 second_p = (strstr (second, "short") != NULL);
2070 if (first_p && second_p)
2071 return 1;
2072 if (first_p || second_p)
2073 return 0;
2074
2075 /* Likewise for long. */
2076 first_p = (strstr (first, "long") != NULL);
2077 second_p = (strstr (second, "long") != NULL);
2078 if (first_p && second_p)
2079 return 1;
2080 if (first_p || second_p)
2081 return 0;
2082
2083 /* Likewise for char. */
2084 first_p = (strstr (first, "char") != NULL);
2085 second_p = (strstr (second, "char") != NULL);
2086 if (first_p && second_p)
2087 return 1;
2088 if (first_p || second_p)
2089 return 0;
2090
2091 /* They must both be ints. */
2092 return 1;
2093 }
2094
2095 /* Compare one type (PARM) for compatibility with another (ARG).
2096 * PARM is intended to be the parameter type of a function; and
2097 * ARG is the supplied argument's type. This function tests if
2098 * the latter can be converted to the former.
2099 *
2100 * Return 0 if they are identical types;
2101 * Otherwise, return an integer which corresponds to how compatible
2102 * PARM is to ARG. The higher the return value, the worse the match.
2103 * Generally the "bad" conversions are all uniformly assigned a 100. */
2104
2105 int
2106 rank_one_type (struct type *parm, struct type *arg)
2107 {
2108 /* Identical type pointers. */
2109 /* However, this still doesn't catch all cases of same type for arg
2110 and param. The reason is that builtin types are different from
2111 the same ones constructed from the object. */
2112 if (parm == arg)
2113 return 0;
2114
2115 /* Resolve typedefs */
2116 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2117 parm = check_typedef (parm);
2118 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2119 arg = check_typedef (arg);
2120
2121 /*
2122 Well, damnit, if the names are exactly the same, I'll say they
2123 are exactly the same. This happens when we generate method
2124 stubs. The types won't point to the same address, but they
2125 really are the same.
2126 */
2127
2128 if (TYPE_NAME (parm) && TYPE_NAME (arg)
2129 && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
2130 return 0;
2131
2132 /* Check if identical after resolving typedefs. */
2133 if (parm == arg)
2134 return 0;
2135
2136 /* See through references, since we can almost make non-references
2137 references. */
2138 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2139 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
2140 + REFERENCE_CONVERSION_BADNESS);
2141 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2142 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
2143 + REFERENCE_CONVERSION_BADNESS);
2144 if (overload_debug)
2145 /* Debugging only. */
2146 fprintf_filtered (gdb_stderr,
2147 "------ Arg is %s [%d], parm is %s [%d]\n",
2148 TYPE_NAME (arg), TYPE_CODE (arg),
2149 TYPE_NAME (parm), TYPE_CODE (parm));
2150
2151 /* x -> y means arg of type x being supplied for parameter of type y */
2152
2153 switch (TYPE_CODE (parm))
2154 {
2155 case TYPE_CODE_PTR:
2156 switch (TYPE_CODE (arg))
2157 {
2158 case TYPE_CODE_PTR:
2159 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID
2160 && TYPE_CODE (TYPE_TARGET_TYPE (arg)) != TYPE_CODE_VOID)
2161 return VOID_PTR_CONVERSION_BADNESS;
2162 else
2163 return rank_one_type (TYPE_TARGET_TYPE (parm),
2164 TYPE_TARGET_TYPE (arg));
2165 case TYPE_CODE_ARRAY:
2166 return rank_one_type (TYPE_TARGET_TYPE (parm),
2167 TYPE_TARGET_TYPE (arg));
2168 case TYPE_CODE_FUNC:
2169 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2170 case TYPE_CODE_INT:
2171 case TYPE_CODE_ENUM:
2172 case TYPE_CODE_FLAGS:
2173 case TYPE_CODE_CHAR:
2174 case TYPE_CODE_RANGE:
2175 case TYPE_CODE_BOOL:
2176 return POINTER_CONVERSION_BADNESS;
2177 default:
2178 return INCOMPATIBLE_TYPE_BADNESS;
2179 }
2180 case TYPE_CODE_ARRAY:
2181 switch (TYPE_CODE (arg))
2182 {
2183 case TYPE_CODE_PTR:
2184 case TYPE_CODE_ARRAY:
2185 return rank_one_type (TYPE_TARGET_TYPE (parm),
2186 TYPE_TARGET_TYPE (arg));
2187 default:
2188 return INCOMPATIBLE_TYPE_BADNESS;
2189 }
2190 case TYPE_CODE_FUNC:
2191 switch (TYPE_CODE (arg))
2192 {
2193 case TYPE_CODE_PTR: /* funcptr -> func */
2194 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2195 default:
2196 return INCOMPATIBLE_TYPE_BADNESS;
2197 }
2198 case TYPE_CODE_INT:
2199 switch (TYPE_CODE (arg))
2200 {
2201 case TYPE_CODE_INT:
2202 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2203 {
2204 /* Deal with signed, unsigned, and plain chars and
2205 signed and unsigned ints. */
2206 if (TYPE_NOSIGN (parm))
2207 {
2208 /* This case only for character types */
2209 if (TYPE_NOSIGN (arg))
2210 return 0; /* plain char -> plain char */
2211 else /* signed/unsigned char -> plain char */
2212 return INTEGER_CONVERSION_BADNESS;
2213 }
2214 else if (TYPE_UNSIGNED (parm))
2215 {
2216 if (TYPE_UNSIGNED (arg))
2217 {
2218 /* unsigned int -> unsigned int, or
2219 unsigned long -> unsigned long */
2220 if (integer_types_same_name_p (TYPE_NAME (parm),
2221 TYPE_NAME (arg)))
2222 return 0;
2223 else if (integer_types_same_name_p (TYPE_NAME (arg),
2224 "int")
2225 && integer_types_same_name_p (TYPE_NAME (parm),
2226 "long"))
2227 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2228 else
2229 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
2230 }
2231 else
2232 {
2233 if (integer_types_same_name_p (TYPE_NAME (arg),
2234 "long")
2235 && integer_types_same_name_p (TYPE_NAME (parm),
2236 "int"))
2237 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
2238 else
2239 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2240 }
2241 }
2242 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2243 {
2244 if (integer_types_same_name_p (TYPE_NAME (parm),
2245 TYPE_NAME (arg)))
2246 return 0;
2247 else if (integer_types_same_name_p (TYPE_NAME (arg),
2248 "int")
2249 && integer_types_same_name_p (TYPE_NAME (parm),
2250 "long"))
2251 return INTEGER_PROMOTION_BADNESS;
2252 else
2253 return INTEGER_CONVERSION_BADNESS;
2254 }
2255 else
2256 return INTEGER_CONVERSION_BADNESS;
2257 }
2258 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2259 return INTEGER_PROMOTION_BADNESS;
2260 else
2261 return INTEGER_CONVERSION_BADNESS;
2262 case TYPE_CODE_ENUM:
2263 case TYPE_CODE_FLAGS:
2264 case TYPE_CODE_CHAR:
2265 case TYPE_CODE_RANGE:
2266 case TYPE_CODE_BOOL:
2267 return INTEGER_PROMOTION_BADNESS;
2268 case TYPE_CODE_FLT:
2269 return INT_FLOAT_CONVERSION_BADNESS;
2270 case TYPE_CODE_PTR:
2271 return NS_POINTER_CONVERSION_BADNESS;
2272 default:
2273 return INCOMPATIBLE_TYPE_BADNESS;
2274 }
2275 break;
2276 case TYPE_CODE_ENUM:
2277 switch (TYPE_CODE (arg))
2278 {
2279 case TYPE_CODE_INT:
2280 case TYPE_CODE_CHAR:
2281 case TYPE_CODE_RANGE:
2282 case TYPE_CODE_BOOL:
2283 case TYPE_CODE_ENUM:
2284 return INTEGER_CONVERSION_BADNESS;
2285 case TYPE_CODE_FLT:
2286 return INT_FLOAT_CONVERSION_BADNESS;
2287 default:
2288 return INCOMPATIBLE_TYPE_BADNESS;
2289 }
2290 break;
2291 case TYPE_CODE_CHAR:
2292 switch (TYPE_CODE (arg))
2293 {
2294 case TYPE_CODE_RANGE:
2295 case TYPE_CODE_BOOL:
2296 case TYPE_CODE_ENUM:
2297 return INTEGER_CONVERSION_BADNESS;
2298 case TYPE_CODE_FLT:
2299 return INT_FLOAT_CONVERSION_BADNESS;
2300 case TYPE_CODE_INT:
2301 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2302 return INTEGER_CONVERSION_BADNESS;
2303 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2304 return INTEGER_PROMOTION_BADNESS;
2305 /* >>> !! else fall through !! <<< */
2306 case TYPE_CODE_CHAR:
2307 /* Deal with signed, unsigned, and plain chars for C++ and
2308 with int cases falling through from previous case. */
2309 if (TYPE_NOSIGN (parm))
2310 {
2311 if (TYPE_NOSIGN (arg))
2312 return 0;
2313 else
2314 return INTEGER_CONVERSION_BADNESS;
2315 }
2316 else if (TYPE_UNSIGNED (parm))
2317 {
2318 if (TYPE_UNSIGNED (arg))
2319 return 0;
2320 else
2321 return INTEGER_PROMOTION_BADNESS;
2322 }
2323 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2324 return 0;
2325 else
2326 return INTEGER_CONVERSION_BADNESS;
2327 default:
2328 return INCOMPATIBLE_TYPE_BADNESS;
2329 }
2330 break;
2331 case TYPE_CODE_RANGE:
2332 switch (TYPE_CODE (arg))
2333 {
2334 case TYPE_CODE_INT:
2335 case TYPE_CODE_CHAR:
2336 case TYPE_CODE_RANGE:
2337 case TYPE_CODE_BOOL:
2338 case TYPE_CODE_ENUM:
2339 return INTEGER_CONVERSION_BADNESS;
2340 case TYPE_CODE_FLT:
2341 return INT_FLOAT_CONVERSION_BADNESS;
2342 default:
2343 return INCOMPATIBLE_TYPE_BADNESS;
2344 }
2345 break;
2346 case TYPE_CODE_BOOL:
2347 switch (TYPE_CODE (arg))
2348 {
2349 case TYPE_CODE_INT:
2350 case TYPE_CODE_CHAR:
2351 case TYPE_CODE_RANGE:
2352 case TYPE_CODE_ENUM:
2353 case TYPE_CODE_FLT:
2354 case TYPE_CODE_PTR:
2355 return BOOLEAN_CONVERSION_BADNESS;
2356 case TYPE_CODE_BOOL:
2357 return 0;
2358 default:
2359 return INCOMPATIBLE_TYPE_BADNESS;
2360 }
2361 break;
2362 case TYPE_CODE_FLT:
2363 switch (TYPE_CODE (arg))
2364 {
2365 case TYPE_CODE_FLT:
2366 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2367 return FLOAT_PROMOTION_BADNESS;
2368 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2369 return 0;
2370 else
2371 return FLOAT_CONVERSION_BADNESS;
2372 case TYPE_CODE_INT:
2373 case TYPE_CODE_BOOL:
2374 case TYPE_CODE_ENUM:
2375 case TYPE_CODE_RANGE:
2376 case TYPE_CODE_CHAR:
2377 return INT_FLOAT_CONVERSION_BADNESS;
2378 default:
2379 return INCOMPATIBLE_TYPE_BADNESS;
2380 }
2381 break;
2382 case TYPE_CODE_COMPLEX:
2383 switch (TYPE_CODE (arg))
2384 { /* Strictly not needed for C++, but... */
2385 case TYPE_CODE_FLT:
2386 return FLOAT_PROMOTION_BADNESS;
2387 case TYPE_CODE_COMPLEX:
2388 return 0;
2389 default:
2390 return INCOMPATIBLE_TYPE_BADNESS;
2391 }
2392 break;
2393 case TYPE_CODE_STRUCT:
2394 /* currently same as TYPE_CODE_CLASS */
2395 switch (TYPE_CODE (arg))
2396 {
2397 case TYPE_CODE_STRUCT:
2398 /* Check for derivation */
2399 if (is_ancestor (parm, arg))
2400 return BASE_CONVERSION_BADNESS;
2401 /* else fall through */
2402 default:
2403 return INCOMPATIBLE_TYPE_BADNESS;
2404 }
2405 break;
2406 case TYPE_CODE_UNION:
2407 switch (TYPE_CODE (arg))
2408 {
2409 case TYPE_CODE_UNION:
2410 default:
2411 return INCOMPATIBLE_TYPE_BADNESS;
2412 }
2413 break;
2414 case TYPE_CODE_MEMBERPTR:
2415 switch (TYPE_CODE (arg))
2416 {
2417 default:
2418 return INCOMPATIBLE_TYPE_BADNESS;
2419 }
2420 break;
2421 case TYPE_CODE_METHOD:
2422 switch (TYPE_CODE (arg))
2423 {
2424
2425 default:
2426 return INCOMPATIBLE_TYPE_BADNESS;
2427 }
2428 break;
2429 case TYPE_CODE_REF:
2430 switch (TYPE_CODE (arg))
2431 {
2432
2433 default:
2434 return INCOMPATIBLE_TYPE_BADNESS;
2435 }
2436
2437 break;
2438 case TYPE_CODE_SET:
2439 switch (TYPE_CODE (arg))
2440 {
2441 /* Not in C++ */
2442 case TYPE_CODE_SET:
2443 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2444 TYPE_FIELD_TYPE (arg, 0));
2445 default:
2446 return INCOMPATIBLE_TYPE_BADNESS;
2447 }
2448 break;
2449 case TYPE_CODE_VOID:
2450 default:
2451 return INCOMPATIBLE_TYPE_BADNESS;
2452 } /* switch (TYPE_CODE (arg)) */
2453 }
2454
2455
2456 /* End of functions for overload resolution */
2457
2458 static void
2459 print_bit_vector (B_TYPE *bits, int nbits)
2460 {
2461 int bitno;
2462
2463 for (bitno = 0; bitno < nbits; bitno++)
2464 {
2465 if ((bitno % 8) == 0)
2466 {
2467 puts_filtered (" ");
2468 }
2469 if (B_TST (bits, bitno))
2470 printf_filtered (("1"));
2471 else
2472 printf_filtered (("0"));
2473 }
2474 }
2475
2476 /* Note the first arg should be the "this" pointer, we may not want to
2477 include it since we may get into a infinitely recursive
2478 situation. */
2479
2480 static void
2481 print_arg_types (struct field *args, int nargs, int spaces)
2482 {
2483 if (args != NULL)
2484 {
2485 int i;
2486
2487 for (i = 0; i < nargs; i++)
2488 recursive_dump_type (args[i].type, spaces + 2);
2489 }
2490 }
2491
2492 int
2493 field_is_static (struct field *f)
2494 {
2495 /* "static" fields are the fields whose location is not relative
2496 to the address of the enclosing struct. It would be nice to
2497 have a dedicated flag that would be set for static fields when
2498 the type is being created. But in practice, checking the field
2499 loc_kind should give us an accurate answer (at least as long as
2500 we assume that DWARF block locations are not going to be used
2501 for static fields). FIXME? */
2502 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2503 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2504 }
2505
2506 static void
2507 dump_fn_fieldlists (struct type *type, int spaces)
2508 {
2509 int method_idx;
2510 int overload_idx;
2511 struct fn_field *f;
2512
2513 printfi_filtered (spaces, "fn_fieldlists ");
2514 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2515 printf_filtered ("\n");
2516 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2517 {
2518 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2519 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2520 method_idx,
2521 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2522 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2523 gdb_stdout);
2524 printf_filtered (_(") length %d\n"),
2525 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2526 for (overload_idx = 0;
2527 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2528 overload_idx++)
2529 {
2530 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2531 overload_idx,
2532 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2533 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2534 gdb_stdout);
2535 printf_filtered (")\n");
2536 printfi_filtered (spaces + 8, "type ");
2537 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2538 gdb_stdout);
2539 printf_filtered ("\n");
2540
2541 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2542 spaces + 8 + 2);
2543
2544 printfi_filtered (spaces + 8, "args ");
2545 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2546 gdb_stdout);
2547 printf_filtered ("\n");
2548
2549 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2550 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2551 overload_idx)),
2552 spaces);
2553 printfi_filtered (spaces + 8, "fcontext ");
2554 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2555 gdb_stdout);
2556 printf_filtered ("\n");
2557
2558 printfi_filtered (spaces + 8, "is_const %d\n",
2559 TYPE_FN_FIELD_CONST (f, overload_idx));
2560 printfi_filtered (spaces + 8, "is_volatile %d\n",
2561 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2562 printfi_filtered (spaces + 8, "is_private %d\n",
2563 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2564 printfi_filtered (spaces + 8, "is_protected %d\n",
2565 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2566 printfi_filtered (spaces + 8, "is_stub %d\n",
2567 TYPE_FN_FIELD_STUB (f, overload_idx));
2568 printfi_filtered (spaces + 8, "voffset %u\n",
2569 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2570 }
2571 }
2572 }
2573
2574 static void
2575 print_cplus_stuff (struct type *type, int spaces)
2576 {
2577 printfi_filtered (spaces, "n_baseclasses %d\n",
2578 TYPE_N_BASECLASSES (type));
2579 printfi_filtered (spaces, "nfn_fields %d\n",
2580 TYPE_NFN_FIELDS (type));
2581 printfi_filtered (spaces, "nfn_fields_total %d\n",
2582 TYPE_NFN_FIELDS_TOTAL (type));
2583 if (TYPE_N_BASECLASSES (type) > 0)
2584 {
2585 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2586 TYPE_N_BASECLASSES (type));
2587 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2588 gdb_stdout);
2589 printf_filtered (")");
2590
2591 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2592 TYPE_N_BASECLASSES (type));
2593 puts_filtered ("\n");
2594 }
2595 if (TYPE_NFIELDS (type) > 0)
2596 {
2597 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2598 {
2599 printfi_filtered (spaces,
2600 "private_field_bits (%d bits at *",
2601 TYPE_NFIELDS (type));
2602 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2603 gdb_stdout);
2604 printf_filtered (")");
2605 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2606 TYPE_NFIELDS (type));
2607 puts_filtered ("\n");
2608 }
2609 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2610 {
2611 printfi_filtered (spaces,
2612 "protected_field_bits (%d bits at *",
2613 TYPE_NFIELDS (type));
2614 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2615 gdb_stdout);
2616 printf_filtered (")");
2617 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2618 TYPE_NFIELDS (type));
2619 puts_filtered ("\n");
2620 }
2621 }
2622 if (TYPE_NFN_FIELDS (type) > 0)
2623 {
2624 dump_fn_fieldlists (type, spaces);
2625 }
2626 }
2627
2628 /* Print the contents of the TYPE's type_specific union, assuming that
2629 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2630
2631 static void
2632 print_gnat_stuff (struct type *type, int spaces)
2633 {
2634 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2635
2636 recursive_dump_type (descriptive_type, spaces + 2);
2637 }
2638
2639 static struct obstack dont_print_type_obstack;
2640
2641 void
2642 recursive_dump_type (struct type *type, int spaces)
2643 {
2644 int idx;
2645
2646 if (spaces == 0)
2647 obstack_begin (&dont_print_type_obstack, 0);
2648
2649 if (TYPE_NFIELDS (type) > 0
2650 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
2651 {
2652 struct type **first_dont_print
2653 = (struct type **) obstack_base (&dont_print_type_obstack);
2654
2655 int i = (struct type **)
2656 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2657
2658 while (--i >= 0)
2659 {
2660 if (type == first_dont_print[i])
2661 {
2662 printfi_filtered (spaces, "type node ");
2663 gdb_print_host_address (type, gdb_stdout);
2664 printf_filtered (_(" <same as already seen type>\n"));
2665 return;
2666 }
2667 }
2668
2669 obstack_ptr_grow (&dont_print_type_obstack, type);
2670 }
2671
2672 printfi_filtered (spaces, "type node ");
2673 gdb_print_host_address (type, gdb_stdout);
2674 printf_filtered ("\n");
2675 printfi_filtered (spaces, "name '%s' (",
2676 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2677 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2678 printf_filtered (")\n");
2679 printfi_filtered (spaces, "tagname '%s' (",
2680 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2681 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2682 printf_filtered (")\n");
2683 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2684 switch (TYPE_CODE (type))
2685 {
2686 case TYPE_CODE_UNDEF:
2687 printf_filtered ("(TYPE_CODE_UNDEF)");
2688 break;
2689 case TYPE_CODE_PTR:
2690 printf_filtered ("(TYPE_CODE_PTR)");
2691 break;
2692 case TYPE_CODE_ARRAY:
2693 printf_filtered ("(TYPE_CODE_ARRAY)");
2694 break;
2695 case TYPE_CODE_STRUCT:
2696 printf_filtered ("(TYPE_CODE_STRUCT)");
2697 break;
2698 case TYPE_CODE_UNION:
2699 printf_filtered ("(TYPE_CODE_UNION)");
2700 break;
2701 case TYPE_CODE_ENUM:
2702 printf_filtered ("(TYPE_CODE_ENUM)");
2703 break;
2704 case TYPE_CODE_FLAGS:
2705 printf_filtered ("(TYPE_CODE_FLAGS)");
2706 break;
2707 case TYPE_CODE_FUNC:
2708 printf_filtered ("(TYPE_CODE_FUNC)");
2709 break;
2710 case TYPE_CODE_INT:
2711 printf_filtered ("(TYPE_CODE_INT)");
2712 break;
2713 case TYPE_CODE_FLT:
2714 printf_filtered ("(TYPE_CODE_FLT)");
2715 break;
2716 case TYPE_CODE_VOID:
2717 printf_filtered ("(TYPE_CODE_VOID)");
2718 break;
2719 case TYPE_CODE_SET:
2720 printf_filtered ("(TYPE_CODE_SET)");
2721 break;
2722 case TYPE_CODE_RANGE:
2723 printf_filtered ("(TYPE_CODE_RANGE)");
2724 break;
2725 case TYPE_CODE_STRING:
2726 printf_filtered ("(TYPE_CODE_STRING)");
2727 break;
2728 case TYPE_CODE_BITSTRING:
2729 printf_filtered ("(TYPE_CODE_BITSTRING)");
2730 break;
2731 case TYPE_CODE_ERROR:
2732 printf_filtered ("(TYPE_CODE_ERROR)");
2733 break;
2734 case TYPE_CODE_MEMBERPTR:
2735 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2736 break;
2737 case TYPE_CODE_METHODPTR:
2738 printf_filtered ("(TYPE_CODE_METHODPTR)");
2739 break;
2740 case TYPE_CODE_METHOD:
2741 printf_filtered ("(TYPE_CODE_METHOD)");
2742 break;
2743 case TYPE_CODE_REF:
2744 printf_filtered ("(TYPE_CODE_REF)");
2745 break;
2746 case TYPE_CODE_CHAR:
2747 printf_filtered ("(TYPE_CODE_CHAR)");
2748 break;
2749 case TYPE_CODE_BOOL:
2750 printf_filtered ("(TYPE_CODE_BOOL)");
2751 break;
2752 case TYPE_CODE_COMPLEX:
2753 printf_filtered ("(TYPE_CODE_COMPLEX)");
2754 break;
2755 case TYPE_CODE_TYPEDEF:
2756 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2757 break;
2758 case TYPE_CODE_NAMESPACE:
2759 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2760 break;
2761 default:
2762 printf_filtered ("(UNKNOWN TYPE CODE)");
2763 break;
2764 }
2765 puts_filtered ("\n");
2766 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
2767 if (TYPE_OBJFILE_OWNED (type))
2768 {
2769 printfi_filtered (spaces, "objfile ");
2770 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
2771 }
2772 else
2773 {
2774 printfi_filtered (spaces, "gdbarch ");
2775 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
2776 }
2777 printf_filtered ("\n");
2778 printfi_filtered (spaces, "target_type ");
2779 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
2780 printf_filtered ("\n");
2781 if (TYPE_TARGET_TYPE (type) != NULL)
2782 {
2783 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2784 }
2785 printfi_filtered (spaces, "pointer_type ");
2786 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
2787 printf_filtered ("\n");
2788 printfi_filtered (spaces, "reference_type ");
2789 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
2790 printf_filtered ("\n");
2791 printfi_filtered (spaces, "type_chain ");
2792 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
2793 printf_filtered ("\n");
2794 printfi_filtered (spaces, "instance_flags 0x%x",
2795 TYPE_INSTANCE_FLAGS (type));
2796 if (TYPE_CONST (type))
2797 {
2798 puts_filtered (" TYPE_FLAG_CONST");
2799 }
2800 if (TYPE_VOLATILE (type))
2801 {
2802 puts_filtered (" TYPE_FLAG_VOLATILE");
2803 }
2804 if (TYPE_CODE_SPACE (type))
2805 {
2806 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2807 }
2808 if (TYPE_DATA_SPACE (type))
2809 {
2810 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2811 }
2812 if (TYPE_ADDRESS_CLASS_1 (type))
2813 {
2814 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2815 }
2816 if (TYPE_ADDRESS_CLASS_2 (type))
2817 {
2818 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2819 }
2820 puts_filtered ("\n");
2821
2822 printfi_filtered (spaces, "flags");
2823 if (TYPE_UNSIGNED (type))
2824 {
2825 puts_filtered (" TYPE_FLAG_UNSIGNED");
2826 }
2827 if (TYPE_NOSIGN (type))
2828 {
2829 puts_filtered (" TYPE_FLAG_NOSIGN");
2830 }
2831 if (TYPE_STUB (type))
2832 {
2833 puts_filtered (" TYPE_FLAG_STUB");
2834 }
2835 if (TYPE_TARGET_STUB (type))
2836 {
2837 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2838 }
2839 if (TYPE_STATIC (type))
2840 {
2841 puts_filtered (" TYPE_FLAG_STATIC");
2842 }
2843 if (TYPE_PROTOTYPED (type))
2844 {
2845 puts_filtered (" TYPE_FLAG_PROTOTYPED");
2846 }
2847 if (TYPE_INCOMPLETE (type))
2848 {
2849 puts_filtered (" TYPE_FLAG_INCOMPLETE");
2850 }
2851 if (TYPE_VARARGS (type))
2852 {
2853 puts_filtered (" TYPE_FLAG_VARARGS");
2854 }
2855 /* This is used for things like AltiVec registers on ppc. Gcc emits
2856 an attribute for the array type, which tells whether or not we
2857 have a vector, instead of a regular array. */
2858 if (TYPE_VECTOR (type))
2859 {
2860 puts_filtered (" TYPE_FLAG_VECTOR");
2861 }
2862 if (TYPE_FIXED_INSTANCE (type))
2863 {
2864 puts_filtered (" TYPE_FIXED_INSTANCE");
2865 }
2866 if (TYPE_STUB_SUPPORTED (type))
2867 {
2868 puts_filtered (" TYPE_STUB_SUPPORTED");
2869 }
2870 if (TYPE_NOTTEXT (type))
2871 {
2872 puts_filtered (" TYPE_NOTTEXT");
2873 }
2874 puts_filtered ("\n");
2875 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
2876 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
2877 puts_filtered ("\n");
2878 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2879 {
2880 printfi_filtered (spaces + 2,
2881 "[%d] bitpos %d bitsize %d type ",
2882 idx, TYPE_FIELD_BITPOS (type, idx),
2883 TYPE_FIELD_BITSIZE (type, idx));
2884 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
2885 printf_filtered (" name '%s' (",
2886 TYPE_FIELD_NAME (type, idx) != NULL
2887 ? TYPE_FIELD_NAME (type, idx)
2888 : "<NULL>");
2889 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
2890 printf_filtered (")\n");
2891 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2892 {
2893 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2894 }
2895 }
2896 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2897 {
2898 printfi_filtered (spaces, "low %s%s high %s%s\n",
2899 plongest (TYPE_LOW_BOUND (type)),
2900 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
2901 plongest (TYPE_HIGH_BOUND (type)),
2902 TYPE_HIGH_BOUND_UNDEFINED (type) ? " (undefined)" : "");
2903 }
2904 printfi_filtered (spaces, "vptr_basetype ");
2905 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
2906 puts_filtered ("\n");
2907 if (TYPE_VPTR_BASETYPE (type) != NULL)
2908 {
2909 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2910 }
2911 printfi_filtered (spaces, "vptr_fieldno %d\n",
2912 TYPE_VPTR_FIELDNO (type));
2913
2914 switch (TYPE_SPECIFIC_FIELD (type))
2915 {
2916 case TYPE_SPECIFIC_CPLUS_STUFF:
2917 printfi_filtered (spaces, "cplus_stuff ");
2918 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
2919 gdb_stdout);
2920 puts_filtered ("\n");
2921 print_cplus_stuff (type, spaces);
2922 break;
2923
2924 case TYPE_SPECIFIC_GNAT_STUFF:
2925 printfi_filtered (spaces, "gnat_stuff ");
2926 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
2927 puts_filtered ("\n");
2928 print_gnat_stuff (type, spaces);
2929 break;
2930
2931 case TYPE_SPECIFIC_FLOATFORMAT:
2932 printfi_filtered (spaces, "floatformat ");
2933 if (TYPE_FLOATFORMAT (type) == NULL)
2934 puts_filtered ("(null)");
2935 else
2936 {
2937 puts_filtered ("{ ");
2938 if (TYPE_FLOATFORMAT (type)[0] == NULL
2939 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
2940 puts_filtered ("(null)");
2941 else
2942 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
2943
2944 puts_filtered (", ");
2945 if (TYPE_FLOATFORMAT (type)[1] == NULL
2946 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
2947 puts_filtered ("(null)");
2948 else
2949 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
2950
2951 puts_filtered (" }");
2952 }
2953 puts_filtered ("\n");
2954 break;
2955
2956 case TYPE_SPECIFIC_CALLING_CONVENTION:
2957 printfi_filtered (spaces, "calling_convention %d\n",
2958 TYPE_CALLING_CONVENTION (type));
2959 break;
2960 }
2961
2962 if (spaces == 0)
2963 obstack_free (&dont_print_type_obstack, NULL);
2964 }
2965
2966 /* Trivial helpers for the libiberty hash table, for mapping one
2967 type to another. */
2968
2969 struct type_pair
2970 {
2971 struct type *old, *new;
2972 };
2973
2974 static hashval_t
2975 type_pair_hash (const void *item)
2976 {
2977 const struct type_pair *pair = item;
2978 return htab_hash_pointer (pair->old);
2979 }
2980
2981 static int
2982 type_pair_eq (const void *item_lhs, const void *item_rhs)
2983 {
2984 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
2985 return lhs->old == rhs->old;
2986 }
2987
2988 /* Allocate the hash table used by copy_type_recursive to walk
2989 types without duplicates. We use OBJFILE's obstack, because
2990 OBJFILE is about to be deleted. */
2991
2992 htab_t
2993 create_copied_types_hash (struct objfile *objfile)
2994 {
2995 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
2996 NULL, &objfile->objfile_obstack,
2997 hashtab_obstack_allocate,
2998 dummy_obstack_deallocate);
2999 }
3000
3001 /* Recursively copy (deep copy) TYPE, if it is associated with
3002 OBJFILE. Return a new type allocated using malloc, a saved type if
3003 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3004 not associated with OBJFILE. */
3005
3006 struct type *
3007 copy_type_recursive (struct objfile *objfile,
3008 struct type *type,
3009 htab_t copied_types)
3010 {
3011 struct type_pair *stored, pair;
3012 void **slot;
3013 struct type *new_type;
3014
3015 if (! TYPE_OBJFILE_OWNED (type))
3016 return type;
3017
3018 /* This type shouldn't be pointing to any types in other objfiles;
3019 if it did, the type might disappear unexpectedly. */
3020 gdb_assert (TYPE_OBJFILE (type) == objfile);
3021
3022 pair.old = type;
3023 slot = htab_find_slot (copied_types, &pair, INSERT);
3024 if (*slot != NULL)
3025 return ((struct type_pair *) *slot)->new;
3026
3027 new_type = alloc_type_arch (get_type_arch (type));
3028
3029 /* We must add the new type to the hash table immediately, in case
3030 we encounter this type again during a recursive call below. */
3031 stored = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3032 stored->old = type;
3033 stored->new = new_type;
3034 *slot = stored;
3035
3036 /* Copy the common fields of types. For the main type, we simply
3037 copy the entire thing and then update specific fields as needed. */
3038 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3039 TYPE_OBJFILE_OWNED (new_type) = 0;
3040 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3041
3042 if (TYPE_NAME (type))
3043 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3044 if (TYPE_TAG_NAME (type))
3045 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3046
3047 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3048 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3049
3050 /* Copy the fields. */
3051 if (TYPE_NFIELDS (type))
3052 {
3053 int i, nfields;
3054
3055 nfields = TYPE_NFIELDS (type);
3056 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3057 for (i = 0; i < nfields; i++)
3058 {
3059 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3060 TYPE_FIELD_ARTIFICIAL (type, i);
3061 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3062 if (TYPE_FIELD_TYPE (type, i))
3063 TYPE_FIELD_TYPE (new_type, i)
3064 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3065 copied_types);
3066 if (TYPE_FIELD_NAME (type, i))
3067 TYPE_FIELD_NAME (new_type, i) =
3068 xstrdup (TYPE_FIELD_NAME (type, i));
3069 switch (TYPE_FIELD_LOC_KIND (type, i))
3070 {
3071 case FIELD_LOC_KIND_BITPOS:
3072 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3073 TYPE_FIELD_BITPOS (type, i));
3074 break;
3075 case FIELD_LOC_KIND_PHYSADDR:
3076 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3077 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3078 break;
3079 case FIELD_LOC_KIND_PHYSNAME:
3080 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3081 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3082 i)));
3083 break;
3084 default:
3085 internal_error (__FILE__, __LINE__,
3086 _("Unexpected type field location kind: %d"),
3087 TYPE_FIELD_LOC_KIND (type, i));
3088 }
3089 }
3090 }
3091
3092 /* For range types, copy the bounds information. */
3093 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3094 {
3095 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3096 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3097 }
3098
3099 /* Copy pointers to other types. */
3100 if (TYPE_TARGET_TYPE (type))
3101 TYPE_TARGET_TYPE (new_type) =
3102 copy_type_recursive (objfile,
3103 TYPE_TARGET_TYPE (type),
3104 copied_types);
3105 if (TYPE_VPTR_BASETYPE (type))
3106 TYPE_VPTR_BASETYPE (new_type) =
3107 copy_type_recursive (objfile,
3108 TYPE_VPTR_BASETYPE (type),
3109 copied_types);
3110 /* Maybe copy the type_specific bits.
3111
3112 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3113 base classes and methods. There's no fundamental reason why we
3114 can't, but at the moment it is not needed. */
3115
3116 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3117 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3118 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3119 || TYPE_CODE (type) == TYPE_CODE_UNION
3120 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3121 INIT_CPLUS_SPECIFIC (new_type);
3122
3123 return new_type;
3124 }
3125
3126 /* Make a copy of the given TYPE, except that the pointer & reference
3127 types are not preserved.
3128
3129 This function assumes that the given type has an associated objfile.
3130 This objfile is used to allocate the new type. */
3131
3132 struct type *
3133 copy_type (const struct type *type)
3134 {
3135 struct type *new_type;
3136
3137 gdb_assert (TYPE_OBJFILE_OWNED (type));
3138
3139 new_type = alloc_type_copy (type);
3140 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3141 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3142 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3143 sizeof (struct main_type));
3144
3145 return new_type;
3146 }
3147
3148
3149 /* Helper functions to initialize architecture-specific types. */
3150
3151 /* Allocate a type structure associated with GDBARCH and set its
3152 CODE, LENGTH, and NAME fields. */
3153 struct type *
3154 arch_type (struct gdbarch *gdbarch,
3155 enum type_code code, int length, char *name)
3156 {
3157 struct type *type;
3158
3159 type = alloc_type_arch (gdbarch);
3160 TYPE_CODE (type) = code;
3161 TYPE_LENGTH (type) = length;
3162
3163 if (name)
3164 TYPE_NAME (type) = xstrdup (name);
3165
3166 return type;
3167 }
3168
3169 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3170 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3171 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3172 struct type *
3173 arch_integer_type (struct gdbarch *gdbarch,
3174 int bit, int unsigned_p, char *name)
3175 {
3176 struct type *t;
3177
3178 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3179 if (unsigned_p)
3180 TYPE_UNSIGNED (t) = 1;
3181 if (name && strcmp (name, "char") == 0)
3182 TYPE_NOSIGN (t) = 1;
3183
3184 return t;
3185 }
3186
3187 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3188 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3189 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3190 struct type *
3191 arch_character_type (struct gdbarch *gdbarch,
3192 int bit, int unsigned_p, char *name)
3193 {
3194 struct type *t;
3195
3196 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3197 if (unsigned_p)
3198 TYPE_UNSIGNED (t) = 1;
3199
3200 return t;
3201 }
3202
3203 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3204 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3205 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3206 struct type *
3207 arch_boolean_type (struct gdbarch *gdbarch,
3208 int bit, int unsigned_p, char *name)
3209 {
3210 struct type *t;
3211
3212 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3213 if (unsigned_p)
3214 TYPE_UNSIGNED (t) = 1;
3215
3216 return t;
3217 }
3218
3219 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3220 BIT is the type size in bits; if BIT equals -1, the size is
3221 determined by the floatformat. NAME is the type name. Set the
3222 TYPE_FLOATFORMAT from FLOATFORMATS. */
3223 struct type *
3224 arch_float_type (struct gdbarch *gdbarch,
3225 int bit, char *name, const struct floatformat **floatformats)
3226 {
3227 struct type *t;
3228
3229 if (bit == -1)
3230 {
3231 gdb_assert (floatformats != NULL);
3232 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3233 bit = floatformats[0]->totalsize;
3234 }
3235 gdb_assert (bit >= 0);
3236
3237 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3238 TYPE_FLOATFORMAT (t) = floatformats;
3239 return t;
3240 }
3241
3242 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3243 NAME is the type name. TARGET_TYPE is the component float type. */
3244 struct type *
3245 arch_complex_type (struct gdbarch *gdbarch,
3246 char *name, struct type *target_type)
3247 {
3248 struct type *t;
3249 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3250 2 * TYPE_LENGTH (target_type), name);
3251 TYPE_TARGET_TYPE (t) = target_type;
3252 return t;
3253 }
3254
3255 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3256 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3257 struct type *
3258 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3259 {
3260 int nfields = length * TARGET_CHAR_BIT;
3261 struct type *type;
3262
3263 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3264 TYPE_UNSIGNED (type) = 1;
3265 TYPE_NFIELDS (type) = nfields;
3266 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3267
3268 return type;
3269 }
3270
3271 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3272 position BITPOS is called NAME. */
3273 void
3274 append_flags_type_flag (struct type *type, int bitpos, char *name)
3275 {
3276 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3277 gdb_assert (bitpos < TYPE_NFIELDS (type));
3278 gdb_assert (bitpos >= 0);
3279
3280 if (name)
3281 {
3282 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3283 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3284 }
3285 else
3286 {
3287 /* Don't show this field to the user. */
3288 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3289 }
3290 }
3291
3292 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3293 specified by CODE) associated with GDBARCH. NAME is the type name. */
3294 struct type *
3295 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3296 {
3297 struct type *t;
3298 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3299 t = arch_type (gdbarch, code, 0, NULL);
3300 TYPE_TAG_NAME (t) = name;
3301 INIT_CPLUS_SPECIFIC (t);
3302 return t;
3303 }
3304
3305 /* Add new field with name NAME and type FIELD to composite type T.
3306 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3307 void
3308 append_composite_type_field_aligned (struct type *t, char *name,
3309 struct type *field, int alignment)
3310 {
3311 struct field *f;
3312 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3313 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3314 sizeof (struct field) * TYPE_NFIELDS (t));
3315 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3316 memset (f, 0, sizeof f[0]);
3317 FIELD_TYPE (f[0]) = field;
3318 FIELD_NAME (f[0]) = name;
3319 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3320 {
3321 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3322 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3323 }
3324 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3325 {
3326 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3327 if (TYPE_NFIELDS (t) > 1)
3328 {
3329 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3330 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3331 * TARGET_CHAR_BIT));
3332
3333 if (alignment)
3334 {
3335 int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
3336 if (left)
3337 {
3338 FIELD_BITPOS (f[0]) += left;
3339 TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
3340 }
3341 }
3342 }
3343 }
3344 }
3345
3346 /* Add new field with name NAME and type FIELD to composite type T. */
3347 void
3348 append_composite_type_field (struct type *t, char *name,
3349 struct type *field)
3350 {
3351 append_composite_type_field_aligned (t, name, field, 0);
3352 }
3353
3354
3355 static struct gdbarch_data *gdbtypes_data;
3356
3357 const struct builtin_type *
3358 builtin_type (struct gdbarch *gdbarch)
3359 {
3360 return gdbarch_data (gdbarch, gdbtypes_data);
3361 }
3362
3363 static void *
3364 gdbtypes_post_init (struct gdbarch *gdbarch)
3365 {
3366 struct builtin_type *builtin_type
3367 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3368
3369 /* Basic types. */
3370 builtin_type->builtin_void
3371 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3372 builtin_type->builtin_char
3373 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3374 !gdbarch_char_signed (gdbarch), "char");
3375 builtin_type->builtin_signed_char
3376 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3377 0, "signed char");
3378 builtin_type->builtin_unsigned_char
3379 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3380 1, "unsigned char");
3381 builtin_type->builtin_short
3382 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3383 0, "short");
3384 builtin_type->builtin_unsigned_short
3385 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3386 1, "unsigned short");
3387 builtin_type->builtin_int
3388 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3389 0, "int");
3390 builtin_type->builtin_unsigned_int
3391 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3392 1, "unsigned int");
3393 builtin_type->builtin_long
3394 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3395 0, "long");
3396 builtin_type->builtin_unsigned_long
3397 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3398 1, "unsigned long");
3399 builtin_type->builtin_long_long
3400 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3401 0, "long long");
3402 builtin_type->builtin_unsigned_long_long
3403 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3404 1, "unsigned long long");
3405 builtin_type->builtin_float
3406 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3407 "float", gdbarch_float_format (gdbarch));
3408 builtin_type->builtin_double
3409 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3410 "double", gdbarch_double_format (gdbarch));
3411 builtin_type->builtin_long_double
3412 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3413 "long double", gdbarch_long_double_format (gdbarch));
3414 builtin_type->builtin_complex
3415 = arch_complex_type (gdbarch, "complex",
3416 builtin_type->builtin_float);
3417 builtin_type->builtin_double_complex
3418 = arch_complex_type (gdbarch, "double complex",
3419 builtin_type->builtin_double);
3420 builtin_type->builtin_string
3421 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3422 builtin_type->builtin_bool
3423 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3424
3425 /* The following three are about decimal floating point types, which
3426 are 32-bits, 64-bits and 128-bits respectively. */
3427 builtin_type->builtin_decfloat
3428 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3429 builtin_type->builtin_decdouble
3430 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3431 builtin_type->builtin_declong
3432 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3433
3434 /* "True" character types. */
3435 builtin_type->builtin_true_char
3436 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3437 builtin_type->builtin_true_unsigned_char
3438 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3439
3440 /* Fixed-size integer types. */
3441 builtin_type->builtin_int0
3442 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3443 builtin_type->builtin_int8
3444 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3445 builtin_type->builtin_uint8
3446 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3447 builtin_type->builtin_int16
3448 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3449 builtin_type->builtin_uint16
3450 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3451 builtin_type->builtin_int32
3452 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3453 builtin_type->builtin_uint32
3454 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3455 builtin_type->builtin_int64
3456 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3457 builtin_type->builtin_uint64
3458 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3459 builtin_type->builtin_int128
3460 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3461 builtin_type->builtin_uint128
3462 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3463 TYPE_NOTTEXT (builtin_type->builtin_int8) = 1;
3464 TYPE_NOTTEXT (builtin_type->builtin_uint8) = 1;
3465
3466 /* Default data/code pointer types. */
3467 builtin_type->builtin_data_ptr
3468 = lookup_pointer_type (builtin_type->builtin_void);
3469 builtin_type->builtin_func_ptr
3470 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3471
3472 /* This type represents a GDB internal function. */
3473 builtin_type->internal_fn
3474 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3475 "<internal function>");
3476
3477 return builtin_type;
3478 }
3479
3480
3481 /* This set of objfile-based types is intended to be used by symbol
3482 readers as basic types. */
3483
3484 static const struct objfile_data *objfile_type_data;
3485
3486 const struct objfile_type *
3487 objfile_type (struct objfile *objfile)
3488 {
3489 struct gdbarch *gdbarch;
3490 struct objfile_type *objfile_type
3491 = objfile_data (objfile, objfile_type_data);
3492
3493 if (objfile_type)
3494 return objfile_type;
3495
3496 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3497 1, struct objfile_type);
3498
3499 /* Use the objfile architecture to determine basic type properties. */
3500 gdbarch = get_objfile_arch (objfile);
3501
3502 /* Basic types. */
3503 objfile_type->builtin_void
3504 = init_type (TYPE_CODE_VOID, 1,
3505 0,
3506 "void", objfile);
3507
3508 objfile_type->builtin_char
3509 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3510 (TYPE_FLAG_NOSIGN
3511 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3512 "char", objfile);
3513 objfile_type->builtin_signed_char
3514 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3515 0,
3516 "signed char", objfile);
3517 objfile_type->builtin_unsigned_char
3518 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3519 TYPE_FLAG_UNSIGNED,
3520 "unsigned char", objfile);
3521 objfile_type->builtin_short
3522 = init_type (TYPE_CODE_INT,
3523 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3524 0, "short", objfile);
3525 objfile_type->builtin_unsigned_short
3526 = init_type (TYPE_CODE_INT,
3527 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3528 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3529 objfile_type->builtin_int
3530 = init_type (TYPE_CODE_INT,
3531 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3532 0, "int", objfile);
3533 objfile_type->builtin_unsigned_int
3534 = init_type (TYPE_CODE_INT,
3535 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3536 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3537 objfile_type->builtin_long
3538 = init_type (TYPE_CODE_INT,
3539 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3540 0, "long", objfile);
3541 objfile_type->builtin_unsigned_long
3542 = init_type (TYPE_CODE_INT,
3543 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3544 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3545 objfile_type->builtin_long_long
3546 = init_type (TYPE_CODE_INT,
3547 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3548 0, "long long", objfile);
3549 objfile_type->builtin_unsigned_long_long
3550 = init_type (TYPE_CODE_INT,
3551 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3552 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3553
3554 objfile_type->builtin_float
3555 = init_type (TYPE_CODE_FLT,
3556 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3557 0, "float", objfile);
3558 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3559 = gdbarch_float_format (gdbarch);
3560 objfile_type->builtin_double
3561 = init_type (TYPE_CODE_FLT,
3562 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3563 0, "double", objfile);
3564 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3565 = gdbarch_double_format (gdbarch);
3566 objfile_type->builtin_long_double
3567 = init_type (TYPE_CODE_FLT,
3568 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3569 0, "long double", objfile);
3570 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3571 = gdbarch_long_double_format (gdbarch);
3572
3573 /* This type represents a type that was unrecognized in symbol read-in. */
3574 objfile_type->builtin_error
3575 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3576
3577 /* The following set of types is used for symbols with no
3578 debug information. */
3579 objfile_type->nodebug_text_symbol
3580 = init_type (TYPE_CODE_FUNC, 1, 0,
3581 "<text variable, no debug info>", objfile);
3582 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3583 = objfile_type->builtin_int;
3584 objfile_type->nodebug_data_symbol
3585 = init_type (TYPE_CODE_INT,
3586 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3587 "<data variable, no debug info>", objfile);
3588 objfile_type->nodebug_unknown_symbol
3589 = init_type (TYPE_CODE_INT, 1, 0,
3590 "<variable (not text or data), no debug info>", objfile);
3591 objfile_type->nodebug_tls_symbol
3592 = init_type (TYPE_CODE_INT,
3593 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3594 "<thread local variable, no debug info>", objfile);
3595
3596 /* NOTE: on some targets, addresses and pointers are not necessarily
3597 the same --- for example, on the D10V, pointers are 16 bits long,
3598 but addresses are 32 bits long. See doc/gdbint.texinfo,
3599 ``Pointers Are Not Always Addresses''.
3600
3601 The upshot is:
3602 - gdb's `struct type' always describes the target's
3603 representation.
3604 - gdb's `struct value' objects should always hold values in
3605 target form.
3606 - gdb's CORE_ADDR values are addresses in the unified virtual
3607 address space that the assembler and linker work with. Thus,
3608 since target_read_memory takes a CORE_ADDR as an argument, it
3609 can access any memory on the target, even if the processor has
3610 separate code and data address spaces.
3611
3612 So, for example:
3613 - If v is a value holding a D10V code pointer, its contents are
3614 in target form: a big-endian address left-shifted two bits.
3615 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3616 sizeof (void *) == 2 on the target.
3617
3618 In this context, objfile_type->builtin_core_addr is a bit odd:
3619 it's a target type for a value the target will never see. It's
3620 only used to hold the values of (typeless) linker symbols, which
3621 are indeed in the unified virtual address space. */
3622
3623 objfile_type->builtin_core_addr
3624 = init_type (TYPE_CODE_INT,
3625 gdbarch_addr_bit (gdbarch) / 8,
3626 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
3627
3628 set_objfile_data (objfile, objfile_type_data, objfile_type);
3629 return objfile_type;
3630 }
3631
3632
3633 extern void _initialize_gdbtypes (void);
3634 void
3635 _initialize_gdbtypes (void)
3636 {
3637 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3638 objfile_type_data = register_objfile_data ();
3639
3640 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3641 Set debugging of C++ overloading."), _("\
3642 Show debugging of C++ overloading."), _("\
3643 When enabled, ranking of the functions is displayed."),
3644 NULL,
3645 show_overload_debug,
3646 &setdebuglist, &showdebuglist);
3647
3648 /* Add user knob for controlling resolution of opaque types. */
3649 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3650 &opaque_type_resolution, _("\
3651 Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3652 Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3653 NULL,
3654 show_opaque_type_resolution,
3655 &setlist, &showlist);
3656 }
This page took 0.107531 seconds and 5 git commands to generate.