[gdb] Fix prop->const_val uses in gdbtypes.c
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2/loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42 #include <algorithm>
43
44 /* Initialize BADNESS constants. */
45
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank CV_CONVERSION_BADNESS = {1, 0};
57 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62 const struct rank BASE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64 const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
65 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
66 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
67 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
68
69 /* Floatformat pairs. */
70 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_half_big,
72 &floatformat_ieee_half_little
73 };
74 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_single_big,
76 &floatformat_ieee_single_little
77 };
78 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_little
81 };
82 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ieee_double_big,
84 &floatformat_ieee_double_littlebyte_bigword
85 };
86 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_i387_ext,
88 &floatformat_i387_ext
89 };
90 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_m68881_ext,
92 &floatformat_m68881_ext
93 };
94 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_arm_ext_big,
96 &floatformat_arm_ext_littlebyte_bigword
97 };
98 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_spill_big,
100 &floatformat_ia64_spill_little
101 };
102 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_ia64_quad_big,
104 &floatformat_ia64_quad_little
105 };
106 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_f,
108 &floatformat_vax_f
109 };
110 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_vax_d,
112 &floatformat_vax_d
113 };
114 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
115 &floatformat_ibm_long_double_big,
116 &floatformat_ibm_long_double_little
117 };
118
119 /* Should opaque types be resolved? */
120
121 static bool opaque_type_resolution = true;
122
123 /* See gdbtypes.h. */
124
125 unsigned int overload_debug = 0;
126
127 /* A flag to enable strict type checking. */
128
129 static bool strict_type_checking = true;
130
131 /* A function to show whether opaque types are resolved. */
132
133 static void
134 show_opaque_type_resolution (struct ui_file *file, int from_tty,
135 struct cmd_list_element *c,
136 const char *value)
137 {
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
140 value);
141 }
142
143 /* A function to show whether C++ overload debugging is enabled. */
144
145 static void
146 show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148 {
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
151 }
152
153 /* A function to show the status of strict type checking. */
154
155 static void
156 show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160 }
161
162 \f
163 /* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
166
167 struct type *
168 alloc_type (struct objfile *objfile)
169 {
170 struct type *type;
171
172 gdb_assert (objfile != NULL);
173
174 /* Alloc the structure and start off with all fields zeroed. */
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
179
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
182
183 /* Initialize the fields that might not be zero. */
184
185 type->set_code (TYPE_CODE_UNDEF);
186 TYPE_CHAIN (type) = type; /* Chain back to itself. */
187
188 return type;
189 }
190
191 /* Allocate a new GDBARCH-associated type structure and fill it
192 with some defaults. Space for the type structure is allocated
193 on the obstack associated with GDBARCH. */
194
195 struct type *
196 alloc_type_arch (struct gdbarch *gdbarch)
197 {
198 struct type *type;
199
200 gdb_assert (gdbarch != NULL);
201
202 /* Alloc the structure and start off with all fields zeroed. */
203
204 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
205 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
206
207 TYPE_OBJFILE_OWNED (type) = 0;
208 TYPE_OWNER (type).gdbarch = gdbarch;
209
210 /* Initialize the fields that might not be zero. */
211
212 type->set_code (TYPE_CODE_UNDEF);
213 TYPE_CHAIN (type) = type; /* Chain back to itself. */
214
215 return type;
216 }
217
218 /* If TYPE is objfile-associated, allocate a new type structure
219 associated with the same objfile. If TYPE is gdbarch-associated,
220 allocate a new type structure associated with the same gdbarch. */
221
222 struct type *
223 alloc_type_copy (const struct type *type)
224 {
225 if (TYPE_OBJFILE_OWNED (type))
226 return alloc_type (TYPE_OWNER (type).objfile);
227 else
228 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
229 }
230
231 /* If TYPE is gdbarch-associated, return that architecture.
232 If TYPE is objfile-associated, return that objfile's architecture. */
233
234 struct gdbarch *
235 get_type_arch (const struct type *type)
236 {
237 struct gdbarch *arch;
238
239 if (TYPE_OBJFILE_OWNED (type))
240 arch = TYPE_OWNER (type).objfile->arch ();
241 else
242 arch = TYPE_OWNER (type).gdbarch;
243
244 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
245 a gdbarch, however, this is very rare, and even then, in most cases
246 that get_type_arch is called, we assume that a non-NULL value is
247 returned. */
248 gdb_assert (arch != NULL);
249 return arch;
250 }
251
252 /* See gdbtypes.h. */
253
254 struct type *
255 get_target_type (struct type *type)
256 {
257 if (type != NULL)
258 {
259 type = TYPE_TARGET_TYPE (type);
260 if (type != NULL)
261 type = check_typedef (type);
262 }
263
264 return type;
265 }
266
267 /* See gdbtypes.h. */
268
269 unsigned int
270 type_length_units (struct type *type)
271 {
272 struct gdbarch *arch = get_type_arch (type);
273 int unit_size = gdbarch_addressable_memory_unit_size (arch);
274
275 return TYPE_LENGTH (type) / unit_size;
276 }
277
278 /* Alloc a new type instance structure, fill it with some defaults,
279 and point it at OLDTYPE. Allocate the new type instance from the
280 same place as OLDTYPE. */
281
282 static struct type *
283 alloc_type_instance (struct type *oldtype)
284 {
285 struct type *type;
286
287 /* Allocate the structure. */
288
289 if (! TYPE_OBJFILE_OWNED (oldtype))
290 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
291 else
292 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
293 struct type);
294
295 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
296
297 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
298
299 return type;
300 }
301
302 /* Clear all remnants of the previous type at TYPE, in preparation for
303 replacing it with something else. Preserve owner information. */
304
305 static void
306 smash_type (struct type *type)
307 {
308 int objfile_owned = TYPE_OBJFILE_OWNED (type);
309 union type_owner owner = TYPE_OWNER (type);
310
311 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
312
313 /* Restore owner information. */
314 TYPE_OBJFILE_OWNED (type) = objfile_owned;
315 TYPE_OWNER (type) = owner;
316
317 /* For now, delete the rings. */
318 TYPE_CHAIN (type) = type;
319
320 /* For now, leave the pointer/reference types alone. */
321 }
322
323 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
324 to a pointer to memory where the pointer type should be stored.
325 If *TYPEPTR is zero, update it to point to the pointer type we return.
326 We allocate new memory if needed. */
327
328 struct type *
329 make_pointer_type (struct type *type, struct type **typeptr)
330 {
331 struct type *ntype; /* New type */
332 struct type *chain;
333
334 ntype = TYPE_POINTER_TYPE (type);
335
336 if (ntype)
337 {
338 if (typeptr == 0)
339 return ntype; /* Don't care about alloc,
340 and have new type. */
341 else if (*typeptr == 0)
342 {
343 *typeptr = ntype; /* Tracking alloc, and have new type. */
344 return ntype;
345 }
346 }
347
348 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
349 {
350 ntype = alloc_type_copy (type);
351 if (typeptr)
352 *typeptr = ntype;
353 }
354 else /* We have storage, but need to reset it. */
355 {
356 ntype = *typeptr;
357 chain = TYPE_CHAIN (ntype);
358 smash_type (ntype);
359 TYPE_CHAIN (ntype) = chain;
360 }
361
362 TYPE_TARGET_TYPE (ntype) = type;
363 TYPE_POINTER_TYPE (type) = ntype;
364
365 /* FIXME! Assumes the machine has only one representation for pointers! */
366
367 TYPE_LENGTH (ntype)
368 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
369 ntype->set_code (TYPE_CODE_PTR);
370
371 /* Mark pointers as unsigned. The target converts between pointers
372 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
373 gdbarch_address_to_pointer. */
374 TYPE_UNSIGNED (ntype) = 1;
375
376 /* Update the length of all the other variants of this type. */
377 chain = TYPE_CHAIN (ntype);
378 while (chain != ntype)
379 {
380 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
381 chain = TYPE_CHAIN (chain);
382 }
383
384 return ntype;
385 }
386
387 /* Given a type TYPE, return a type of pointers to that type.
388 May need to construct such a type if this is the first use. */
389
390 struct type *
391 lookup_pointer_type (struct type *type)
392 {
393 return make_pointer_type (type, (struct type **) 0);
394 }
395
396 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
397 points to a pointer to memory where the reference type should be
398 stored. If *TYPEPTR is zero, update it to point to the reference
399 type we return. We allocate new memory if needed. REFCODE denotes
400 the kind of reference type to lookup (lvalue or rvalue reference). */
401
402 struct type *
403 make_reference_type (struct type *type, struct type **typeptr,
404 enum type_code refcode)
405 {
406 struct type *ntype; /* New type */
407 struct type **reftype;
408 struct type *chain;
409
410 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
411
412 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
413 : TYPE_RVALUE_REFERENCE_TYPE (type));
414
415 if (ntype)
416 {
417 if (typeptr == 0)
418 return ntype; /* Don't care about alloc,
419 and have new type. */
420 else if (*typeptr == 0)
421 {
422 *typeptr = ntype; /* Tracking alloc, and have new type. */
423 return ntype;
424 }
425 }
426
427 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
428 {
429 ntype = alloc_type_copy (type);
430 if (typeptr)
431 *typeptr = ntype;
432 }
433 else /* We have storage, but need to reset it. */
434 {
435 ntype = *typeptr;
436 chain = TYPE_CHAIN (ntype);
437 smash_type (ntype);
438 TYPE_CHAIN (ntype) = chain;
439 }
440
441 TYPE_TARGET_TYPE (ntype) = type;
442 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
443 : &TYPE_RVALUE_REFERENCE_TYPE (type));
444
445 *reftype = ntype;
446
447 /* FIXME! Assume the machine has only one representation for
448 references, and that it matches the (only) representation for
449 pointers! */
450
451 TYPE_LENGTH (ntype) =
452 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
453 ntype->set_code (refcode);
454
455 *reftype = ntype;
456
457 /* Update the length of all the other variants of this type. */
458 chain = TYPE_CHAIN (ntype);
459 while (chain != ntype)
460 {
461 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
462 chain = TYPE_CHAIN (chain);
463 }
464
465 return ntype;
466 }
467
468 /* Same as above, but caller doesn't care about memory allocation
469 details. */
470
471 struct type *
472 lookup_reference_type (struct type *type, enum type_code refcode)
473 {
474 return make_reference_type (type, (struct type **) 0, refcode);
475 }
476
477 /* Lookup the lvalue reference type for the type TYPE. */
478
479 struct type *
480 lookup_lvalue_reference_type (struct type *type)
481 {
482 return lookup_reference_type (type, TYPE_CODE_REF);
483 }
484
485 /* Lookup the rvalue reference type for the type TYPE. */
486
487 struct type *
488 lookup_rvalue_reference_type (struct type *type)
489 {
490 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
491 }
492
493 /* Lookup a function type that returns type TYPE. TYPEPTR, if
494 nonzero, points to a pointer to memory where the function type
495 should be stored. If *TYPEPTR is zero, update it to point to the
496 function type we return. We allocate new memory if needed. */
497
498 struct type *
499 make_function_type (struct type *type, struct type **typeptr)
500 {
501 struct type *ntype; /* New type */
502
503 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
504 {
505 ntype = alloc_type_copy (type);
506 if (typeptr)
507 *typeptr = ntype;
508 }
509 else /* We have storage, but need to reset it. */
510 {
511 ntype = *typeptr;
512 smash_type (ntype);
513 }
514
515 TYPE_TARGET_TYPE (ntype) = type;
516
517 TYPE_LENGTH (ntype) = 1;
518 ntype->set_code (TYPE_CODE_FUNC);
519
520 INIT_FUNC_SPECIFIC (ntype);
521
522 return ntype;
523 }
524
525 /* Given a type TYPE, return a type of functions that return that type.
526 May need to construct such a type if this is the first use. */
527
528 struct type *
529 lookup_function_type (struct type *type)
530 {
531 return make_function_type (type, (struct type **) 0);
532 }
533
534 /* Given a type TYPE and argument types, return the appropriate
535 function type. If the final type in PARAM_TYPES is NULL, make a
536 varargs function. */
537
538 struct type *
539 lookup_function_type_with_arguments (struct type *type,
540 int nparams,
541 struct type **param_types)
542 {
543 struct type *fn = make_function_type (type, (struct type **) 0);
544 int i;
545
546 if (nparams > 0)
547 {
548 if (param_types[nparams - 1] == NULL)
549 {
550 --nparams;
551 TYPE_VARARGS (fn) = 1;
552 }
553 else if (check_typedef (param_types[nparams - 1])->code ()
554 == TYPE_CODE_VOID)
555 {
556 --nparams;
557 /* Caller should have ensured this. */
558 gdb_assert (nparams == 0);
559 TYPE_PROTOTYPED (fn) = 1;
560 }
561 else
562 TYPE_PROTOTYPED (fn) = 1;
563 }
564
565 fn->set_num_fields (nparams);
566 fn->set_fields
567 ((struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field)));
568 for (i = 0; i < nparams; ++i)
569 fn->field (i).set_type (param_types[i]);
570
571 return fn;
572 }
573
574 /* Identify address space identifier by name --
575 return the integer flag defined in gdbtypes.h. */
576
577 int
578 address_space_name_to_int (struct gdbarch *gdbarch,
579 const char *space_identifier)
580 {
581 int type_flags;
582
583 /* Check for known address space delimiters. */
584 if (!strcmp (space_identifier, "code"))
585 return TYPE_INSTANCE_FLAG_CODE_SPACE;
586 else if (!strcmp (space_identifier, "data"))
587 return TYPE_INSTANCE_FLAG_DATA_SPACE;
588 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
589 && gdbarch_address_class_name_to_type_flags (gdbarch,
590 space_identifier,
591 &type_flags))
592 return type_flags;
593 else
594 error (_("Unknown address space specifier: \"%s\""), space_identifier);
595 }
596
597 /* Identify address space identifier by integer flag as defined in
598 gdbtypes.h -- return the string version of the adress space name. */
599
600 const char *
601 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
602 {
603 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
604 return "code";
605 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
606 return "data";
607 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
608 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
609 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
610 else
611 return NULL;
612 }
613
614 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
615
616 If STORAGE is non-NULL, create the new type instance there.
617 STORAGE must be in the same obstack as TYPE. */
618
619 static struct type *
620 make_qualified_type (struct type *type, int new_flags,
621 struct type *storage)
622 {
623 struct type *ntype;
624
625 ntype = type;
626 do
627 {
628 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
629 return ntype;
630 ntype = TYPE_CHAIN (ntype);
631 }
632 while (ntype != type);
633
634 /* Create a new type instance. */
635 if (storage == NULL)
636 ntype = alloc_type_instance (type);
637 else
638 {
639 /* If STORAGE was provided, it had better be in the same objfile
640 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
641 if one objfile is freed and the other kept, we'd have
642 dangling pointers. */
643 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
644
645 ntype = storage;
646 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
647 TYPE_CHAIN (ntype) = ntype;
648 }
649
650 /* Pointers or references to the original type are not relevant to
651 the new type. */
652 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
653 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
654
655 /* Chain the new qualified type to the old type. */
656 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
657 TYPE_CHAIN (type) = ntype;
658
659 /* Now set the instance flags and return the new type. */
660 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
661
662 /* Set length of new type to that of the original type. */
663 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
664
665 return ntype;
666 }
667
668 /* Make an address-space-delimited variant of a type -- a type that
669 is identical to the one supplied except that it has an address
670 space attribute attached to it (such as "code" or "data").
671
672 The space attributes "code" and "data" are for Harvard
673 architectures. The address space attributes are for architectures
674 which have alternately sized pointers or pointers with alternate
675 representations. */
676
677 struct type *
678 make_type_with_address_space (struct type *type, int space_flag)
679 {
680 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
681 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
682 | TYPE_INSTANCE_FLAG_DATA_SPACE
683 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
684 | space_flag);
685
686 return make_qualified_type (type, new_flags, NULL);
687 }
688
689 /* Make a "c-v" variant of a type -- a type that is identical to the
690 one supplied except that it may have const or volatile attributes
691 CNST is a flag for setting the const attribute
692 VOLTL is a flag for setting the volatile attribute
693 TYPE is the base type whose variant we are creating.
694
695 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
696 storage to hold the new qualified type; *TYPEPTR and TYPE must be
697 in the same objfile. Otherwise, allocate fresh memory for the new
698 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
699 new type we construct. */
700
701 struct type *
702 make_cv_type (int cnst, int voltl,
703 struct type *type,
704 struct type **typeptr)
705 {
706 struct type *ntype; /* New type */
707
708 int new_flags = (TYPE_INSTANCE_FLAGS (type)
709 & ~(TYPE_INSTANCE_FLAG_CONST
710 | TYPE_INSTANCE_FLAG_VOLATILE));
711
712 if (cnst)
713 new_flags |= TYPE_INSTANCE_FLAG_CONST;
714
715 if (voltl)
716 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
717
718 if (typeptr && *typeptr != NULL)
719 {
720 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
721 a C-V variant chain that threads across objfiles: if one
722 objfile gets freed, then the other has a broken C-V chain.
723
724 This code used to try to copy over the main type from TYPE to
725 *TYPEPTR if they were in different objfiles, but that's
726 wrong, too: TYPE may have a field list or member function
727 lists, which refer to types of their own, etc. etc. The
728 whole shebang would need to be copied over recursively; you
729 can't have inter-objfile pointers. The only thing to do is
730 to leave stub types as stub types, and look them up afresh by
731 name each time you encounter them. */
732 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
733 }
734
735 ntype = make_qualified_type (type, new_flags,
736 typeptr ? *typeptr : NULL);
737
738 if (typeptr != NULL)
739 *typeptr = ntype;
740
741 return ntype;
742 }
743
744 /* Make a 'restrict'-qualified version of TYPE. */
745
746 struct type *
747 make_restrict_type (struct type *type)
748 {
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 | TYPE_INSTANCE_FLAG_RESTRICT),
752 NULL);
753 }
754
755 /* Make a type without const, volatile, or restrict. */
756
757 struct type *
758 make_unqualified_type (struct type *type)
759 {
760 return make_qualified_type (type,
761 (TYPE_INSTANCE_FLAGS (type)
762 & ~(TYPE_INSTANCE_FLAG_CONST
763 | TYPE_INSTANCE_FLAG_VOLATILE
764 | TYPE_INSTANCE_FLAG_RESTRICT)),
765 NULL);
766 }
767
768 /* Make a '_Atomic'-qualified version of TYPE. */
769
770 struct type *
771 make_atomic_type (struct type *type)
772 {
773 return make_qualified_type (type,
774 (TYPE_INSTANCE_FLAGS (type)
775 | TYPE_INSTANCE_FLAG_ATOMIC),
776 NULL);
777 }
778
779 /* Replace the contents of ntype with the type *type. This changes the
780 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
781 the changes are propogated to all types in the TYPE_CHAIN.
782
783 In order to build recursive types, it's inevitable that we'll need
784 to update types in place --- but this sort of indiscriminate
785 smashing is ugly, and needs to be replaced with something more
786 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
787 clear if more steps are needed. */
788
789 void
790 replace_type (struct type *ntype, struct type *type)
791 {
792 struct type *chain;
793
794 /* These two types had better be in the same objfile. Otherwise,
795 the assignment of one type's main type structure to the other
796 will produce a type with references to objects (names; field
797 lists; etc.) allocated on an objfile other than its own. */
798 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
799
800 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
801
802 /* The type length is not a part of the main type. Update it for
803 each type on the variant chain. */
804 chain = ntype;
805 do
806 {
807 /* Assert that this element of the chain has no address-class bits
808 set in its flags. Such type variants might have type lengths
809 which are supposed to be different from the non-address-class
810 variants. This assertion shouldn't ever be triggered because
811 symbol readers which do construct address-class variants don't
812 call replace_type(). */
813 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
814
815 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
816 chain = TYPE_CHAIN (chain);
817 }
818 while (ntype != chain);
819
820 /* Assert that the two types have equivalent instance qualifiers.
821 This should be true for at least all of our debug readers. */
822 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
823 }
824
825 /* Implement direct support for MEMBER_TYPE in GNU C++.
826 May need to construct such a type if this is the first use.
827 The TYPE is the type of the member. The DOMAIN is the type
828 of the aggregate that the member belongs to. */
829
830 struct type *
831 lookup_memberptr_type (struct type *type, struct type *domain)
832 {
833 struct type *mtype;
834
835 mtype = alloc_type_copy (type);
836 smash_to_memberptr_type (mtype, domain, type);
837 return mtype;
838 }
839
840 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
841
842 struct type *
843 lookup_methodptr_type (struct type *to_type)
844 {
845 struct type *mtype;
846
847 mtype = alloc_type_copy (to_type);
848 smash_to_methodptr_type (mtype, to_type);
849 return mtype;
850 }
851
852 /* Allocate a stub method whose return type is TYPE. This apparently
853 happens for speed of symbol reading, since parsing out the
854 arguments to the method is cpu-intensive, the way we are doing it.
855 So, we will fill in arguments later. This always returns a fresh
856 type. */
857
858 struct type *
859 allocate_stub_method (struct type *type)
860 {
861 struct type *mtype;
862
863 mtype = alloc_type_copy (type);
864 mtype->set_code (TYPE_CODE_METHOD);
865 TYPE_LENGTH (mtype) = 1;
866 TYPE_STUB (mtype) = 1;
867 TYPE_TARGET_TYPE (mtype) = type;
868 /* TYPE_SELF_TYPE (mtype) = unknown yet */
869 return mtype;
870 }
871
872 /* See gdbtypes.h. */
873
874 bool
875 operator== (const dynamic_prop &l, const dynamic_prop &r)
876 {
877 if (l.kind () != r.kind ())
878 return false;
879
880 switch (l.kind ())
881 {
882 case PROP_UNDEFINED:
883 return true;
884 case PROP_CONST:
885 return l.const_val () == r.const_val ();
886 case PROP_ADDR_OFFSET:
887 case PROP_LOCEXPR:
888 case PROP_LOCLIST:
889 return l.baton () == r.baton ();
890 case PROP_VARIANT_PARTS:
891 return l.variant_parts () == r.variant_parts ();
892 case PROP_TYPE:
893 return l.original_type () == r.original_type ();
894 }
895
896 gdb_assert_not_reached ("unhandled dynamic_prop kind");
897 }
898
899 /* See gdbtypes.h. */
900
901 bool
902 operator== (const range_bounds &l, const range_bounds &r)
903 {
904 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
905
906 return (FIELD_EQ (low)
907 && FIELD_EQ (high)
908 && FIELD_EQ (flag_upper_bound_is_count)
909 && FIELD_EQ (flag_bound_evaluated)
910 && FIELD_EQ (bias));
911
912 #undef FIELD_EQ
913 }
914
915 /* Create a range type with a dynamic range from LOW_BOUND to
916 HIGH_BOUND, inclusive. See create_range_type for further details. */
917
918 struct type *
919 create_range_type (struct type *result_type, struct type *index_type,
920 const struct dynamic_prop *low_bound,
921 const struct dynamic_prop *high_bound,
922 LONGEST bias)
923 {
924 /* The INDEX_TYPE should be a type capable of holding the upper and lower
925 bounds, as such a zero sized, or void type makes no sense. */
926 gdb_assert (index_type->code () != TYPE_CODE_VOID);
927 gdb_assert (TYPE_LENGTH (index_type) > 0);
928
929 if (result_type == NULL)
930 result_type = alloc_type_copy (index_type);
931 result_type->set_code (TYPE_CODE_RANGE);
932 TYPE_TARGET_TYPE (result_type) = index_type;
933 if (TYPE_STUB (index_type))
934 TYPE_TARGET_STUB (result_type) = 1;
935 else
936 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
937
938 range_bounds *bounds
939 = (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds));
940 bounds->low = *low_bound;
941 bounds->high = *high_bound;
942 bounds->bias = bias;
943 bounds->stride.set_const_val (0);
944
945 result_type->set_bounds (bounds);
946
947 if (low_bound->kind () == PROP_CONST && low_bound->const_val () >= 0)
948 TYPE_UNSIGNED (result_type) = 1;
949
950 /* Ada allows the declaration of range types whose upper bound is
951 less than the lower bound, so checking the lower bound is not
952 enough. Make sure we do not mark a range type whose upper bound
953 is negative as unsigned. */
954 if (high_bound->kind () == PROP_CONST && high_bound->const_val () < 0)
955 TYPE_UNSIGNED (result_type) = 0;
956
957 TYPE_ENDIANITY_NOT_DEFAULT (result_type)
958 = TYPE_ENDIANITY_NOT_DEFAULT (index_type);
959
960 return result_type;
961 }
962
963 /* See gdbtypes.h. */
964
965 struct type *
966 create_range_type_with_stride (struct type *result_type,
967 struct type *index_type,
968 const struct dynamic_prop *low_bound,
969 const struct dynamic_prop *high_bound,
970 LONGEST bias,
971 const struct dynamic_prop *stride,
972 bool byte_stride_p)
973 {
974 result_type = create_range_type (result_type, index_type, low_bound,
975 high_bound, bias);
976
977 gdb_assert (stride != nullptr);
978 result_type->bounds ()->stride = *stride;
979 result_type->bounds ()->flag_is_byte_stride = byte_stride_p;
980
981 return result_type;
982 }
983
984
985
986 /* Create a range type using either a blank type supplied in
987 RESULT_TYPE, or creating a new type, inheriting the objfile from
988 INDEX_TYPE.
989
990 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
991 to HIGH_BOUND, inclusive.
992
993 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
994 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
995
996 struct type *
997 create_static_range_type (struct type *result_type, struct type *index_type,
998 LONGEST low_bound, LONGEST high_bound)
999 {
1000 struct dynamic_prop low, high;
1001
1002 low.set_const_val (low_bound);
1003 high.set_const_val (high_bound);
1004
1005 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1006
1007 return result_type;
1008 }
1009
1010 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1011 are static, otherwise returns 0. */
1012
1013 static bool
1014 has_static_range (const struct range_bounds *bounds)
1015 {
1016 /* If the range doesn't have a defined stride then its stride field will
1017 be initialized to the constant 0. */
1018 return (bounds->low.kind () == PROP_CONST
1019 && bounds->high.kind () == PROP_CONST
1020 && bounds->stride.kind () == PROP_CONST);
1021 }
1022
1023
1024 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1025 TYPE.
1026
1027 Return 1 if type is a range type with two defined, constant bounds.
1028 Else, return 0 if it is discrete (and bounds will fit in LONGEST).
1029 Else, return -1. */
1030
1031 int
1032 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1033 {
1034 type = check_typedef (type);
1035 switch (type->code ())
1036 {
1037 case TYPE_CODE_RANGE:
1038 /* This function currently only works for ranges with two defined,
1039 constant bounds. */
1040 if (type->bounds ()->low.kind () != PROP_CONST
1041 || type->bounds ()->high.kind () != PROP_CONST)
1042 return -1;
1043
1044 *lowp = type->bounds ()->low.const_val ();
1045 *highp = type->bounds ()->high.const_val ();
1046
1047 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
1048 {
1049 if (!discrete_position (TYPE_TARGET_TYPE (type), *lowp, lowp)
1050 || ! discrete_position (TYPE_TARGET_TYPE (type), *highp, highp))
1051 return 0;
1052 }
1053 return 1;
1054 case TYPE_CODE_ENUM:
1055 if (type->num_fields () > 0)
1056 {
1057 /* The enums may not be sorted by value, so search all
1058 entries. */
1059 int i;
1060
1061 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1062 for (i = 0; i < type->num_fields (); i++)
1063 {
1064 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1065 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1066 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1067 *highp = TYPE_FIELD_ENUMVAL (type, i);
1068 }
1069
1070 /* Set unsigned indicator if warranted. */
1071 if (*lowp >= 0)
1072 {
1073 TYPE_UNSIGNED (type) = 1;
1074 }
1075 }
1076 else
1077 {
1078 *lowp = 0;
1079 *highp = -1;
1080 }
1081 return 0;
1082 case TYPE_CODE_BOOL:
1083 *lowp = 0;
1084 *highp = 1;
1085 return 0;
1086 case TYPE_CODE_INT:
1087 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1088 return -1;
1089 if (!TYPE_UNSIGNED (type))
1090 {
1091 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1092 *highp = -*lowp - 1;
1093 return 0;
1094 }
1095 /* fall through */
1096 case TYPE_CODE_CHAR:
1097 *lowp = 0;
1098 /* This round-about calculation is to avoid shifting by
1099 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1100 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1101 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1102 *highp = (*highp - 1) | *highp;
1103 return 0;
1104 default:
1105 return -1;
1106 }
1107 }
1108
1109 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1110 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1111 Save the high bound into HIGH_BOUND if not NULL.
1112
1113 Return 1 if the operation was successful. Return zero otherwise,
1114 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
1115
1116 int
1117 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1118 {
1119 struct type *index = type->index_type ();
1120 LONGEST low = 0;
1121 LONGEST high = 0;
1122 int res;
1123
1124 if (index == NULL)
1125 return 0;
1126
1127 res = get_discrete_bounds (index, &low, &high);
1128 if (res == -1)
1129 return 0;
1130
1131 if (low_bound)
1132 *low_bound = low;
1133
1134 if (high_bound)
1135 *high_bound = high;
1136
1137 return 1;
1138 }
1139
1140 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1141 representation of a value of this type, save the corresponding
1142 position number in POS.
1143
1144 Its differs from VAL only in the case of enumeration types. In
1145 this case, the position number of the value of the first listed
1146 enumeration literal is zero; the position number of the value of
1147 each subsequent enumeration literal is one more than that of its
1148 predecessor in the list.
1149
1150 Return 1 if the operation was successful. Return zero otherwise,
1151 in which case the value of POS is unmodified.
1152 */
1153
1154 int
1155 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1156 {
1157 if (type->code () == TYPE_CODE_RANGE)
1158 type = TYPE_TARGET_TYPE (type);
1159
1160 if (type->code () == TYPE_CODE_ENUM)
1161 {
1162 int i;
1163
1164 for (i = 0; i < type->num_fields (); i += 1)
1165 {
1166 if (val == TYPE_FIELD_ENUMVAL (type, i))
1167 {
1168 *pos = i;
1169 return 1;
1170 }
1171 }
1172 /* Invalid enumeration value. */
1173 return 0;
1174 }
1175 else
1176 {
1177 *pos = val;
1178 return 1;
1179 }
1180 }
1181
1182 /* If the array TYPE has static bounds calculate and update its
1183 size, then return true. Otherwise return false and leave TYPE
1184 unchanged. */
1185
1186 static bool
1187 update_static_array_size (struct type *type)
1188 {
1189 gdb_assert (type->code () == TYPE_CODE_ARRAY);
1190
1191 struct type *range_type = type->index_type ();
1192
1193 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
1194 && has_static_range (range_type->bounds ())
1195 && (!type_not_associated (type)
1196 && !type_not_allocated (type)))
1197 {
1198 LONGEST low_bound, high_bound;
1199 int stride;
1200 struct type *element_type;
1201
1202 /* If the array itself doesn't provide a stride value then take
1203 whatever stride the range provides. Don't update BIT_STRIDE as
1204 we don't want to place the stride value from the range into this
1205 arrays bit size field. */
1206 stride = TYPE_FIELD_BITSIZE (type, 0);
1207 if (stride == 0)
1208 stride = range_type->bit_stride ();
1209
1210 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1211 low_bound = high_bound = 0;
1212 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1213 /* Be careful when setting the array length. Ada arrays can be
1214 empty arrays with the high_bound being smaller than the low_bound.
1215 In such cases, the array length should be zero. */
1216 if (high_bound < low_bound)
1217 TYPE_LENGTH (type) = 0;
1218 else if (stride != 0)
1219 {
1220 /* Ensure that the type length is always positive, even in the
1221 case where (for example in Fortran) we have a negative
1222 stride. It is possible to have a single element array with a
1223 negative stride in Fortran (this doesn't mean anything
1224 special, it's still just a single element array) so do
1225 consider that case when touching this code. */
1226 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1227 TYPE_LENGTH (type)
1228 = ((std::abs (stride) * element_count) + 7) / 8;
1229 }
1230 else
1231 TYPE_LENGTH (type) =
1232 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1233
1234 return true;
1235 }
1236
1237 return false;
1238 }
1239
1240 /* Create an array type using either a blank type supplied in
1241 RESULT_TYPE, or creating a new type, inheriting the objfile from
1242 RANGE_TYPE.
1243
1244 Elements will be of type ELEMENT_TYPE, the indices will be of type
1245 RANGE_TYPE.
1246
1247 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1248 This byte stride property is added to the resulting array type
1249 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1250 argument can only be used to create types that are objfile-owned
1251 (see add_dyn_prop), meaning that either this function must be called
1252 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1253
1254 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1255 If BIT_STRIDE is not zero, build a packed array type whose element
1256 size is BIT_STRIDE. Otherwise, ignore this parameter.
1257
1258 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1259 sure it is TYPE_CODE_UNDEF before we bash it into an array
1260 type? */
1261
1262 struct type *
1263 create_array_type_with_stride (struct type *result_type,
1264 struct type *element_type,
1265 struct type *range_type,
1266 struct dynamic_prop *byte_stride_prop,
1267 unsigned int bit_stride)
1268 {
1269 if (byte_stride_prop != NULL
1270 && byte_stride_prop->kind () == PROP_CONST)
1271 {
1272 /* The byte stride is actually not dynamic. Pretend we were
1273 called with bit_stride set instead of byte_stride_prop.
1274 This will give us the same result type, while avoiding
1275 the need to handle this as a special case. */
1276 bit_stride = byte_stride_prop->const_val () * 8;
1277 byte_stride_prop = NULL;
1278 }
1279
1280 if (result_type == NULL)
1281 result_type = alloc_type_copy (range_type);
1282
1283 result_type->set_code (TYPE_CODE_ARRAY);
1284 TYPE_TARGET_TYPE (result_type) = element_type;
1285
1286 result_type->set_num_fields (1);
1287 result_type->set_fields
1288 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1289 result_type->set_index_type (range_type);
1290 if (byte_stride_prop != NULL)
1291 result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
1292 else if (bit_stride > 0)
1293 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1294
1295 if (!update_static_array_size (result_type))
1296 {
1297 /* This type is dynamic and its length needs to be computed
1298 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1299 undefined by setting it to zero. Although we are not expected
1300 to trust TYPE_LENGTH in this case, setting the size to zero
1301 allows us to avoid allocating objects of random sizes in case
1302 we accidently do. */
1303 TYPE_LENGTH (result_type) = 0;
1304 }
1305
1306 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1307 if (TYPE_LENGTH (result_type) == 0)
1308 TYPE_TARGET_STUB (result_type) = 1;
1309
1310 return result_type;
1311 }
1312
1313 /* Same as create_array_type_with_stride but with no bit_stride
1314 (BIT_STRIDE = 0), thus building an unpacked array. */
1315
1316 struct type *
1317 create_array_type (struct type *result_type,
1318 struct type *element_type,
1319 struct type *range_type)
1320 {
1321 return create_array_type_with_stride (result_type, element_type,
1322 range_type, NULL, 0);
1323 }
1324
1325 struct type *
1326 lookup_array_range_type (struct type *element_type,
1327 LONGEST low_bound, LONGEST high_bound)
1328 {
1329 struct type *index_type;
1330 struct type *range_type;
1331
1332 if (TYPE_OBJFILE_OWNED (element_type))
1333 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1334 else
1335 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1336 range_type = create_static_range_type (NULL, index_type,
1337 low_bound, high_bound);
1338
1339 return create_array_type (NULL, element_type, range_type);
1340 }
1341
1342 /* Create a string type using either a blank type supplied in
1343 RESULT_TYPE, or creating a new type. String types are similar
1344 enough to array of char types that we can use create_array_type to
1345 build the basic type and then bash it into a string type.
1346
1347 For fixed length strings, the range type contains 0 as the lower
1348 bound and the length of the string minus one as the upper bound.
1349
1350 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1351 sure it is TYPE_CODE_UNDEF before we bash it into a string
1352 type? */
1353
1354 struct type *
1355 create_string_type (struct type *result_type,
1356 struct type *string_char_type,
1357 struct type *range_type)
1358 {
1359 result_type = create_array_type (result_type,
1360 string_char_type,
1361 range_type);
1362 result_type->set_code (TYPE_CODE_STRING);
1363 return result_type;
1364 }
1365
1366 struct type *
1367 lookup_string_range_type (struct type *string_char_type,
1368 LONGEST low_bound, LONGEST high_bound)
1369 {
1370 struct type *result_type;
1371
1372 result_type = lookup_array_range_type (string_char_type,
1373 low_bound, high_bound);
1374 result_type->set_code (TYPE_CODE_STRING);
1375 return result_type;
1376 }
1377
1378 struct type *
1379 create_set_type (struct type *result_type, struct type *domain_type)
1380 {
1381 if (result_type == NULL)
1382 result_type = alloc_type_copy (domain_type);
1383
1384 result_type->set_code (TYPE_CODE_SET);
1385 result_type->set_num_fields (1);
1386 result_type->set_fields
1387 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1388
1389 if (!TYPE_STUB (domain_type))
1390 {
1391 LONGEST low_bound, high_bound, bit_length;
1392
1393 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1394 low_bound = high_bound = 0;
1395 bit_length = high_bound - low_bound + 1;
1396 TYPE_LENGTH (result_type)
1397 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1398 if (low_bound >= 0)
1399 TYPE_UNSIGNED (result_type) = 1;
1400 }
1401 result_type->field (0).set_type (domain_type);
1402
1403 return result_type;
1404 }
1405
1406 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1407 and any array types nested inside it. */
1408
1409 void
1410 make_vector_type (struct type *array_type)
1411 {
1412 struct type *inner_array, *elt_type;
1413 int flags;
1414
1415 /* Find the innermost array type, in case the array is
1416 multi-dimensional. */
1417 inner_array = array_type;
1418 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
1419 inner_array = TYPE_TARGET_TYPE (inner_array);
1420
1421 elt_type = TYPE_TARGET_TYPE (inner_array);
1422 if (elt_type->code () == TYPE_CODE_INT)
1423 {
1424 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1425 elt_type = make_qualified_type (elt_type, flags, NULL);
1426 TYPE_TARGET_TYPE (inner_array) = elt_type;
1427 }
1428
1429 TYPE_VECTOR (array_type) = 1;
1430 }
1431
1432 struct type *
1433 init_vector_type (struct type *elt_type, int n)
1434 {
1435 struct type *array_type;
1436
1437 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1438 make_vector_type (array_type);
1439 return array_type;
1440 }
1441
1442 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1443 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1444 confusing. "self" is a common enough replacement for "this".
1445 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1446 TYPE_CODE_METHOD. */
1447
1448 struct type *
1449 internal_type_self_type (struct type *type)
1450 {
1451 switch (type->code ())
1452 {
1453 case TYPE_CODE_METHODPTR:
1454 case TYPE_CODE_MEMBERPTR:
1455 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1456 return NULL;
1457 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1458 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1459 case TYPE_CODE_METHOD:
1460 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1461 return NULL;
1462 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1463 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1464 default:
1465 gdb_assert_not_reached ("bad type");
1466 }
1467 }
1468
1469 /* Set the type of the class that TYPE belongs to.
1470 In c++ this is the class of "this".
1471 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1472 TYPE_CODE_METHOD. */
1473
1474 void
1475 set_type_self_type (struct type *type, struct type *self_type)
1476 {
1477 switch (type->code ())
1478 {
1479 case TYPE_CODE_METHODPTR:
1480 case TYPE_CODE_MEMBERPTR:
1481 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1482 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1483 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1484 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1485 break;
1486 case TYPE_CODE_METHOD:
1487 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1488 INIT_FUNC_SPECIFIC (type);
1489 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1490 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1491 break;
1492 default:
1493 gdb_assert_not_reached ("bad type");
1494 }
1495 }
1496
1497 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1498 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1499 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1500 TYPE doesn't include the offset (that's the value of the MEMBER
1501 itself), but does include the structure type into which it points
1502 (for some reason).
1503
1504 When "smashing" the type, we preserve the objfile that the old type
1505 pointed to, since we aren't changing where the type is actually
1506 allocated. */
1507
1508 void
1509 smash_to_memberptr_type (struct type *type, struct type *self_type,
1510 struct type *to_type)
1511 {
1512 smash_type (type);
1513 type->set_code (TYPE_CODE_MEMBERPTR);
1514 TYPE_TARGET_TYPE (type) = to_type;
1515 set_type_self_type (type, self_type);
1516 /* Assume that a data member pointer is the same size as a normal
1517 pointer. */
1518 TYPE_LENGTH (type)
1519 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1520 }
1521
1522 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1523
1524 When "smashing" the type, we preserve the objfile that the old type
1525 pointed to, since we aren't changing where the type is actually
1526 allocated. */
1527
1528 void
1529 smash_to_methodptr_type (struct type *type, struct type *to_type)
1530 {
1531 smash_type (type);
1532 type->set_code (TYPE_CODE_METHODPTR);
1533 TYPE_TARGET_TYPE (type) = to_type;
1534 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1535 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1536 }
1537
1538 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1539 METHOD just means `function that gets an extra "this" argument'.
1540
1541 When "smashing" the type, we preserve the objfile that the old type
1542 pointed to, since we aren't changing where the type is actually
1543 allocated. */
1544
1545 void
1546 smash_to_method_type (struct type *type, struct type *self_type,
1547 struct type *to_type, struct field *args,
1548 int nargs, int varargs)
1549 {
1550 smash_type (type);
1551 type->set_code (TYPE_CODE_METHOD);
1552 TYPE_TARGET_TYPE (type) = to_type;
1553 set_type_self_type (type, self_type);
1554 type->set_fields (args);
1555 type->set_num_fields (nargs);
1556 if (varargs)
1557 TYPE_VARARGS (type) = 1;
1558 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1559 }
1560
1561 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1562 Since GCC PR debug/47510 DWARF provides associated information to detect the
1563 anonymous class linkage name from its typedef.
1564
1565 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1566 apply it itself. */
1567
1568 const char *
1569 type_name_or_error (struct type *type)
1570 {
1571 struct type *saved_type = type;
1572 const char *name;
1573 struct objfile *objfile;
1574
1575 type = check_typedef (type);
1576
1577 name = type->name ();
1578 if (name != NULL)
1579 return name;
1580
1581 name = saved_type->name ();
1582 objfile = TYPE_OBJFILE (saved_type);
1583 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1584 name ? name : "<anonymous>",
1585 objfile ? objfile_name (objfile) : "<arch>");
1586 }
1587
1588 /* Lookup a typedef or primitive type named NAME, visible in lexical
1589 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1590 suitably defined. */
1591
1592 struct type *
1593 lookup_typename (const struct language_defn *language,
1594 const char *name,
1595 const struct block *block, int noerr)
1596 {
1597 struct symbol *sym;
1598
1599 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1600 language->la_language, NULL).symbol;
1601 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1602 return SYMBOL_TYPE (sym);
1603
1604 if (noerr)
1605 return NULL;
1606 error (_("No type named %s."), name);
1607 }
1608
1609 struct type *
1610 lookup_unsigned_typename (const struct language_defn *language,
1611 const char *name)
1612 {
1613 char *uns = (char *) alloca (strlen (name) + 10);
1614
1615 strcpy (uns, "unsigned ");
1616 strcpy (uns + 9, name);
1617 return lookup_typename (language, uns, NULL, 0);
1618 }
1619
1620 struct type *
1621 lookup_signed_typename (const struct language_defn *language, const char *name)
1622 {
1623 struct type *t;
1624 char *uns = (char *) alloca (strlen (name) + 8);
1625
1626 strcpy (uns, "signed ");
1627 strcpy (uns + 7, name);
1628 t = lookup_typename (language, uns, NULL, 1);
1629 /* If we don't find "signed FOO" just try again with plain "FOO". */
1630 if (t != NULL)
1631 return t;
1632 return lookup_typename (language, name, NULL, 0);
1633 }
1634
1635 /* Lookup a structure type named "struct NAME",
1636 visible in lexical block BLOCK. */
1637
1638 struct type *
1639 lookup_struct (const char *name, const struct block *block)
1640 {
1641 struct symbol *sym;
1642
1643 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1644
1645 if (sym == NULL)
1646 {
1647 error (_("No struct type named %s."), name);
1648 }
1649 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1650 {
1651 error (_("This context has class, union or enum %s, not a struct."),
1652 name);
1653 }
1654 return (SYMBOL_TYPE (sym));
1655 }
1656
1657 /* Lookup a union type named "union NAME",
1658 visible in lexical block BLOCK. */
1659
1660 struct type *
1661 lookup_union (const char *name, const struct block *block)
1662 {
1663 struct symbol *sym;
1664 struct type *t;
1665
1666 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1667
1668 if (sym == NULL)
1669 error (_("No union type named %s."), name);
1670
1671 t = SYMBOL_TYPE (sym);
1672
1673 if (t->code () == TYPE_CODE_UNION)
1674 return t;
1675
1676 /* If we get here, it's not a union. */
1677 error (_("This context has class, struct or enum %s, not a union."),
1678 name);
1679 }
1680
1681 /* Lookup an enum type named "enum NAME",
1682 visible in lexical block BLOCK. */
1683
1684 struct type *
1685 lookup_enum (const char *name, const struct block *block)
1686 {
1687 struct symbol *sym;
1688
1689 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1690 if (sym == NULL)
1691 {
1692 error (_("No enum type named %s."), name);
1693 }
1694 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_ENUM)
1695 {
1696 error (_("This context has class, struct or union %s, not an enum."),
1697 name);
1698 }
1699 return (SYMBOL_TYPE (sym));
1700 }
1701
1702 /* Lookup a template type named "template NAME<TYPE>",
1703 visible in lexical block BLOCK. */
1704
1705 struct type *
1706 lookup_template_type (const char *name, struct type *type,
1707 const struct block *block)
1708 {
1709 struct symbol *sym;
1710 char *nam = (char *)
1711 alloca (strlen (name) + strlen (type->name ()) + 4);
1712
1713 strcpy (nam, name);
1714 strcat (nam, "<");
1715 strcat (nam, type->name ());
1716 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1717
1718 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1719
1720 if (sym == NULL)
1721 {
1722 error (_("No template type named %s."), name);
1723 }
1724 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1725 {
1726 error (_("This context has class, union or enum %s, not a struct."),
1727 name);
1728 }
1729 return (SYMBOL_TYPE (sym));
1730 }
1731
1732 /* See gdbtypes.h. */
1733
1734 struct_elt
1735 lookup_struct_elt (struct type *type, const char *name, int noerr)
1736 {
1737 int i;
1738
1739 for (;;)
1740 {
1741 type = check_typedef (type);
1742 if (type->code () != TYPE_CODE_PTR
1743 && type->code () != TYPE_CODE_REF)
1744 break;
1745 type = TYPE_TARGET_TYPE (type);
1746 }
1747
1748 if (type->code () != TYPE_CODE_STRUCT
1749 && type->code () != TYPE_CODE_UNION)
1750 {
1751 std::string type_name = type_to_string (type);
1752 error (_("Type %s is not a structure or union type."),
1753 type_name.c_str ());
1754 }
1755
1756 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1757 {
1758 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1759
1760 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1761 {
1762 return {&type->field (i), TYPE_FIELD_BITPOS (type, i)};
1763 }
1764 else if (!t_field_name || *t_field_name == '\0')
1765 {
1766 struct_elt elt
1767 = lookup_struct_elt (type->field (i).type (), name, 1);
1768 if (elt.field != NULL)
1769 {
1770 elt.offset += TYPE_FIELD_BITPOS (type, i);
1771 return elt;
1772 }
1773 }
1774 }
1775
1776 /* OK, it's not in this class. Recursively check the baseclasses. */
1777 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1778 {
1779 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1780 if (elt.field != NULL)
1781 return elt;
1782 }
1783
1784 if (noerr)
1785 return {nullptr, 0};
1786
1787 std::string type_name = type_to_string (type);
1788 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1789 }
1790
1791 /* See gdbtypes.h. */
1792
1793 struct type *
1794 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1795 {
1796 struct_elt elt = lookup_struct_elt (type, name, noerr);
1797 if (elt.field != NULL)
1798 return elt.field->type ();
1799 else
1800 return NULL;
1801 }
1802
1803 /* Store in *MAX the largest number representable by unsigned integer type
1804 TYPE. */
1805
1806 void
1807 get_unsigned_type_max (struct type *type, ULONGEST *max)
1808 {
1809 unsigned int n;
1810
1811 type = check_typedef (type);
1812 gdb_assert (type->code () == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1813 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1814
1815 /* Written this way to avoid overflow. */
1816 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1817 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1818 }
1819
1820 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1821 signed integer type TYPE. */
1822
1823 void
1824 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1825 {
1826 unsigned int n;
1827
1828 type = check_typedef (type);
1829 gdb_assert (type->code () == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1830 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1831
1832 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1833 *min = -((ULONGEST) 1 << (n - 1));
1834 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1835 }
1836
1837 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1838 cplus_stuff.vptr_fieldno.
1839
1840 cplus_stuff is initialized to cplus_struct_default which does not
1841 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1842 designated initializers). We cope with that here. */
1843
1844 int
1845 internal_type_vptr_fieldno (struct type *type)
1846 {
1847 type = check_typedef (type);
1848 gdb_assert (type->code () == TYPE_CODE_STRUCT
1849 || type->code () == TYPE_CODE_UNION);
1850 if (!HAVE_CPLUS_STRUCT (type))
1851 return -1;
1852 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1853 }
1854
1855 /* Set the value of cplus_stuff.vptr_fieldno. */
1856
1857 void
1858 set_type_vptr_fieldno (struct type *type, int fieldno)
1859 {
1860 type = check_typedef (type);
1861 gdb_assert (type->code () == TYPE_CODE_STRUCT
1862 || type->code () == TYPE_CODE_UNION);
1863 if (!HAVE_CPLUS_STRUCT (type))
1864 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1865 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1866 }
1867
1868 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1869 cplus_stuff.vptr_basetype. */
1870
1871 struct type *
1872 internal_type_vptr_basetype (struct type *type)
1873 {
1874 type = check_typedef (type);
1875 gdb_assert (type->code () == TYPE_CODE_STRUCT
1876 || type->code () == TYPE_CODE_UNION);
1877 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1878 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1879 }
1880
1881 /* Set the value of cplus_stuff.vptr_basetype. */
1882
1883 void
1884 set_type_vptr_basetype (struct type *type, struct type *basetype)
1885 {
1886 type = check_typedef (type);
1887 gdb_assert (type->code () == TYPE_CODE_STRUCT
1888 || type->code () == TYPE_CODE_UNION);
1889 if (!HAVE_CPLUS_STRUCT (type))
1890 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1891 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1892 }
1893
1894 /* Lookup the vptr basetype/fieldno values for TYPE.
1895 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1896 vptr_fieldno. Also, if found and basetype is from the same objfile,
1897 cache the results.
1898 If not found, return -1 and ignore BASETYPEP.
1899 Callers should be aware that in some cases (for example,
1900 the type or one of its baseclasses is a stub type and we are
1901 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1902 this function will not be able to find the
1903 virtual function table pointer, and vptr_fieldno will remain -1 and
1904 vptr_basetype will remain NULL or incomplete. */
1905
1906 int
1907 get_vptr_fieldno (struct type *type, struct type **basetypep)
1908 {
1909 type = check_typedef (type);
1910
1911 if (TYPE_VPTR_FIELDNO (type) < 0)
1912 {
1913 int i;
1914
1915 /* We must start at zero in case the first (and only) baseclass
1916 is virtual (and hence we cannot share the table pointer). */
1917 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1918 {
1919 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1920 int fieldno;
1921 struct type *basetype;
1922
1923 fieldno = get_vptr_fieldno (baseclass, &basetype);
1924 if (fieldno >= 0)
1925 {
1926 /* If the type comes from a different objfile we can't cache
1927 it, it may have a different lifetime. PR 2384 */
1928 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1929 {
1930 set_type_vptr_fieldno (type, fieldno);
1931 set_type_vptr_basetype (type, basetype);
1932 }
1933 if (basetypep)
1934 *basetypep = basetype;
1935 return fieldno;
1936 }
1937 }
1938
1939 /* Not found. */
1940 return -1;
1941 }
1942 else
1943 {
1944 if (basetypep)
1945 *basetypep = TYPE_VPTR_BASETYPE (type);
1946 return TYPE_VPTR_FIELDNO (type);
1947 }
1948 }
1949
1950 static void
1951 stub_noname_complaint (void)
1952 {
1953 complaint (_("stub type has NULL name"));
1954 }
1955
1956 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1957 attached to it, and that property has a non-constant value. */
1958
1959 static int
1960 array_type_has_dynamic_stride (struct type *type)
1961 {
1962 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
1963
1964 return (prop != NULL && prop->kind () != PROP_CONST);
1965 }
1966
1967 /* Worker for is_dynamic_type. */
1968
1969 static int
1970 is_dynamic_type_internal (struct type *type, int top_level)
1971 {
1972 type = check_typedef (type);
1973
1974 /* We only want to recognize references at the outermost level. */
1975 if (top_level && type->code () == TYPE_CODE_REF)
1976 type = check_typedef (TYPE_TARGET_TYPE (type));
1977
1978 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1979 dynamic, even if the type itself is statically defined.
1980 From a user's point of view, this may appear counter-intuitive;
1981 but it makes sense in this context, because the point is to determine
1982 whether any part of the type needs to be resolved before it can
1983 be exploited. */
1984 if (TYPE_DATA_LOCATION (type) != NULL
1985 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1986 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1987 return 1;
1988
1989 if (TYPE_ASSOCIATED_PROP (type))
1990 return 1;
1991
1992 if (TYPE_ALLOCATED_PROP (type))
1993 return 1;
1994
1995 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
1996 if (prop != nullptr && prop->kind () != PROP_TYPE)
1997 return 1;
1998
1999 if (TYPE_HAS_DYNAMIC_LENGTH (type))
2000 return 1;
2001
2002 switch (type->code ())
2003 {
2004 case TYPE_CODE_RANGE:
2005 {
2006 /* A range type is obviously dynamic if it has at least one
2007 dynamic bound. But also consider the range type to be
2008 dynamic when its subtype is dynamic, even if the bounds
2009 of the range type are static. It allows us to assume that
2010 the subtype of a static range type is also static. */
2011 return (!has_static_range (type->bounds ())
2012 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
2013 }
2014
2015 case TYPE_CODE_STRING:
2016 /* Strings are very much like an array of characters, and can be
2017 treated as one here. */
2018 case TYPE_CODE_ARRAY:
2019 {
2020 gdb_assert (type->num_fields () == 1);
2021
2022 /* The array is dynamic if either the bounds are dynamic... */
2023 if (is_dynamic_type_internal (type->index_type (), 0))
2024 return 1;
2025 /* ... or the elements it contains have a dynamic contents... */
2026 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2027 return 1;
2028 /* ... or if it has a dynamic stride... */
2029 if (array_type_has_dynamic_stride (type))
2030 return 1;
2031 return 0;
2032 }
2033
2034 case TYPE_CODE_STRUCT:
2035 case TYPE_CODE_UNION:
2036 {
2037 int i;
2038
2039 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2040
2041 for (i = 0; i < type->num_fields (); ++i)
2042 {
2043 /* Static fields can be ignored here. */
2044 if (field_is_static (&type->field (i)))
2045 continue;
2046 /* If the field has dynamic type, then so does TYPE. */
2047 if (is_dynamic_type_internal (type->field (i).type (), 0))
2048 return 1;
2049 /* If the field is at a fixed offset, then it is not
2050 dynamic. */
2051 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2052 continue;
2053 /* Do not consider C++ virtual base types to be dynamic
2054 due to the field's offset being dynamic; these are
2055 handled via other means. */
2056 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2057 continue;
2058 return 1;
2059 }
2060 }
2061 break;
2062 }
2063
2064 return 0;
2065 }
2066
2067 /* See gdbtypes.h. */
2068
2069 int
2070 is_dynamic_type (struct type *type)
2071 {
2072 return is_dynamic_type_internal (type, 1);
2073 }
2074
2075 static struct type *resolve_dynamic_type_internal
2076 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2077
2078 /* Given a dynamic range type (dyn_range_type) and a stack of
2079 struct property_addr_info elements, return a static version
2080 of that type. */
2081
2082 static struct type *
2083 resolve_dynamic_range (struct type *dyn_range_type,
2084 struct property_addr_info *addr_stack)
2085 {
2086 CORE_ADDR value;
2087 struct type *static_range_type, *static_target_type;
2088 struct dynamic_prop low_bound, high_bound, stride;
2089
2090 gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);
2091
2092 const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low;
2093 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2094 low_bound.set_const_val (value);
2095 else
2096 low_bound.set_undefined ();
2097
2098 prop = &dyn_range_type->bounds ()->high;
2099 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2100 {
2101 high_bound.set_const_val (value);
2102
2103 if (dyn_range_type->bounds ()->flag_upper_bound_is_count)
2104 high_bound.set_const_val
2105 (low_bound.const_val () + high_bound.const_val () - 1);
2106 }
2107 else
2108 high_bound.set_undefined ();
2109
2110 bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride;
2111 prop = &dyn_range_type->bounds ()->stride;
2112 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2113 {
2114 stride.set_const_val (value);
2115
2116 /* If we have a bit stride that is not an exact number of bytes then
2117 I really don't think this is going to work with current GDB, the
2118 array indexing code in GDB seems to be pretty heavily tied to byte
2119 offsets right now. Assuming 8 bits in a byte. */
2120 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2121 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2122 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2123 error (_("bit strides that are not a multiple of the byte size "
2124 "are currently not supported"));
2125 }
2126 else
2127 {
2128 stride.set_undefined ();
2129 byte_stride_p = true;
2130 }
2131
2132 static_target_type
2133 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2134 addr_stack, 0);
2135 LONGEST bias = dyn_range_type->bounds ()->bias;
2136 static_range_type = create_range_type_with_stride
2137 (copy_type (dyn_range_type), static_target_type,
2138 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2139 static_range_type->bounds ()->flag_bound_evaluated = 1;
2140 return static_range_type;
2141 }
2142
2143 /* Resolves dynamic bound values of an array or string type TYPE to static
2144 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2145 needed during the dynamic resolution. */
2146
2147 static struct type *
2148 resolve_dynamic_array_or_string (struct type *type,
2149 struct property_addr_info *addr_stack)
2150 {
2151 CORE_ADDR value;
2152 struct type *elt_type;
2153 struct type *range_type;
2154 struct type *ary_dim;
2155 struct dynamic_prop *prop;
2156 unsigned int bit_stride = 0;
2157
2158 /* For dynamic type resolution strings can be treated like arrays of
2159 characters. */
2160 gdb_assert (type->code () == TYPE_CODE_ARRAY
2161 || type->code () == TYPE_CODE_STRING);
2162
2163 type = copy_type (type);
2164
2165 elt_type = type;
2166 range_type = check_typedef (elt_type->index_type ());
2167 range_type = resolve_dynamic_range (range_type, addr_stack);
2168
2169 /* Resolve allocated/associated here before creating a new array type, which
2170 will update the length of the array accordingly. */
2171 prop = TYPE_ALLOCATED_PROP (type);
2172 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2173 prop->set_const_val (value);
2174
2175 prop = TYPE_ASSOCIATED_PROP (type);
2176 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2177 prop->set_const_val (value);
2178
2179 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2180
2181 if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
2182 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2183 else
2184 elt_type = TYPE_TARGET_TYPE (type);
2185
2186 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
2187 if (prop != NULL)
2188 {
2189 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2190 {
2191 type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
2192 bit_stride = (unsigned int) (value * 8);
2193 }
2194 else
2195 {
2196 /* Could be a bug in our code, but it could also happen
2197 if the DWARF info is not correct. Issue a warning,
2198 and assume no byte/bit stride (leave bit_stride = 0). */
2199 warning (_("cannot determine array stride for type %s"),
2200 type->name () ? type->name () : "<no name>");
2201 }
2202 }
2203 else
2204 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2205
2206 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2207 bit_stride);
2208 }
2209
2210 /* Resolve dynamic bounds of members of the union TYPE to static
2211 bounds. ADDR_STACK is a stack of struct property_addr_info
2212 to be used if needed during the dynamic resolution. */
2213
2214 static struct type *
2215 resolve_dynamic_union (struct type *type,
2216 struct property_addr_info *addr_stack)
2217 {
2218 struct type *resolved_type;
2219 int i;
2220 unsigned int max_len = 0;
2221
2222 gdb_assert (type->code () == TYPE_CODE_UNION);
2223
2224 resolved_type = copy_type (type);
2225 resolved_type->set_fields
2226 ((struct field *)
2227 TYPE_ALLOC (resolved_type,
2228 resolved_type->num_fields () * sizeof (struct field)));
2229 memcpy (resolved_type->fields (),
2230 type->fields (),
2231 resolved_type->num_fields () * sizeof (struct field));
2232 for (i = 0; i < resolved_type->num_fields (); ++i)
2233 {
2234 struct type *t;
2235
2236 if (field_is_static (&type->field (i)))
2237 continue;
2238
2239 t = resolve_dynamic_type_internal (resolved_type->field (i).type (),
2240 addr_stack, 0);
2241 resolved_type->field (i).set_type (t);
2242
2243 struct type *real_type = check_typedef (t);
2244 if (TYPE_LENGTH (real_type) > max_len)
2245 max_len = TYPE_LENGTH (real_type);
2246 }
2247
2248 TYPE_LENGTH (resolved_type) = max_len;
2249 return resolved_type;
2250 }
2251
2252 /* See gdbtypes.h. */
2253
2254 bool
2255 variant::matches (ULONGEST value, bool is_unsigned) const
2256 {
2257 for (const discriminant_range &range : discriminants)
2258 if (range.contains (value, is_unsigned))
2259 return true;
2260 return false;
2261 }
2262
2263 static void
2264 compute_variant_fields_inner (struct type *type,
2265 struct property_addr_info *addr_stack,
2266 const variant_part &part,
2267 std::vector<bool> &flags);
2268
2269 /* A helper function to determine which variant fields will be active.
2270 This handles both the variant's direct fields, and any variant
2271 parts embedded in this variant. TYPE is the type we're examining.
2272 ADDR_STACK holds information about the concrete object. VARIANT is
2273 the current variant to be handled. FLAGS is where the results are
2274 stored -- this function sets the Nth element in FLAGS if the
2275 corresponding field is enabled. ENABLED is whether this variant is
2276 enabled or not. */
2277
2278 static void
2279 compute_variant_fields_recurse (struct type *type,
2280 struct property_addr_info *addr_stack,
2281 const variant &variant,
2282 std::vector<bool> &flags,
2283 bool enabled)
2284 {
2285 for (int field = variant.first_field; field < variant.last_field; ++field)
2286 flags[field] = enabled;
2287
2288 for (const variant_part &new_part : variant.parts)
2289 {
2290 if (enabled)
2291 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2292 else
2293 {
2294 for (const auto &sub_variant : new_part.variants)
2295 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2296 flags, enabled);
2297 }
2298 }
2299 }
2300
2301 /* A helper function to determine which variant fields will be active.
2302 This evaluates the discriminant, decides which variant (if any) is
2303 active, and then updates FLAGS to reflect which fields should be
2304 available. TYPE is the type we're examining. ADDR_STACK holds
2305 information about the concrete object. VARIANT is the current
2306 variant to be handled. FLAGS is where the results are stored --
2307 this function sets the Nth element in FLAGS if the corresponding
2308 field is enabled. */
2309
2310 static void
2311 compute_variant_fields_inner (struct type *type,
2312 struct property_addr_info *addr_stack,
2313 const variant_part &part,
2314 std::vector<bool> &flags)
2315 {
2316 /* Evaluate the discriminant. */
2317 gdb::optional<ULONGEST> discr_value;
2318 if (part.discriminant_index != -1)
2319 {
2320 int idx = part.discriminant_index;
2321
2322 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2323 error (_("Cannot determine struct field location"
2324 " (invalid location kind)"));
2325
2326 if (addr_stack->valaddr.data () != NULL)
2327 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2328 idx);
2329 else
2330 {
2331 CORE_ADDR addr = (addr_stack->addr
2332 + (TYPE_FIELD_BITPOS (type, idx)
2333 / TARGET_CHAR_BIT));
2334
2335 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2336 LONGEST size = bitsize / 8;
2337 if (size == 0)
2338 size = TYPE_LENGTH (type->field (idx).type ());
2339
2340 gdb_byte bits[sizeof (ULONGEST)];
2341 read_memory (addr, bits, size);
2342
2343 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2344 % TARGET_CHAR_BIT);
2345
2346 discr_value = unpack_bits_as_long (type->field (idx).type (),
2347 bits, bitpos, bitsize);
2348 }
2349 }
2350
2351 /* Go through each variant and see which applies. */
2352 const variant *default_variant = nullptr;
2353 const variant *applied_variant = nullptr;
2354 for (const auto &variant : part.variants)
2355 {
2356 if (variant.is_default ())
2357 default_variant = &variant;
2358 else if (discr_value.has_value ()
2359 && variant.matches (*discr_value, part.is_unsigned))
2360 {
2361 applied_variant = &variant;
2362 break;
2363 }
2364 }
2365 if (applied_variant == nullptr)
2366 applied_variant = default_variant;
2367
2368 for (const auto &variant : part.variants)
2369 compute_variant_fields_recurse (type, addr_stack, variant,
2370 flags, applied_variant == &variant);
2371 }
2372
2373 /* Determine which variant fields are available in TYPE. The enabled
2374 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2375 about the concrete object. PARTS describes the top-level variant
2376 parts for this type. */
2377
2378 static void
2379 compute_variant_fields (struct type *type,
2380 struct type *resolved_type,
2381 struct property_addr_info *addr_stack,
2382 const gdb::array_view<variant_part> &parts)
2383 {
2384 /* Assume all fields are included by default. */
2385 std::vector<bool> flags (resolved_type->num_fields (), true);
2386
2387 /* Now disable fields based on the variants that control them. */
2388 for (const auto &part : parts)
2389 compute_variant_fields_inner (type, addr_stack, part, flags);
2390
2391 resolved_type->set_num_fields
2392 (std::count (flags.begin (), flags.end (), true));
2393 resolved_type->set_fields
2394 ((struct field *)
2395 TYPE_ALLOC (resolved_type,
2396 resolved_type->num_fields () * sizeof (struct field)));
2397
2398 int out = 0;
2399 for (int i = 0; i < type->num_fields (); ++i)
2400 {
2401 if (!flags[i])
2402 continue;
2403
2404 resolved_type->field (out) = type->field (i);
2405 ++out;
2406 }
2407 }
2408
2409 /* Resolve dynamic bounds of members of the struct TYPE to static
2410 bounds. ADDR_STACK is a stack of struct property_addr_info to
2411 be used if needed during the dynamic resolution. */
2412
2413 static struct type *
2414 resolve_dynamic_struct (struct type *type,
2415 struct property_addr_info *addr_stack)
2416 {
2417 struct type *resolved_type;
2418 int i;
2419 unsigned resolved_type_bit_length = 0;
2420
2421 gdb_assert (type->code () == TYPE_CODE_STRUCT);
2422 gdb_assert (type->num_fields () > 0);
2423
2424 resolved_type = copy_type (type);
2425
2426 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2427 if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS)
2428 {
2429 compute_variant_fields (type, resolved_type, addr_stack,
2430 *variant_prop->variant_parts ());
2431 /* We want to leave the property attached, so that the Rust code
2432 can tell whether the type was originally an enum. */
2433 variant_prop->set_original_type (type);
2434 }
2435 else
2436 {
2437 resolved_type->set_fields
2438 ((struct field *)
2439 TYPE_ALLOC (resolved_type,
2440 resolved_type->num_fields () * sizeof (struct field)));
2441 memcpy (resolved_type->fields (),
2442 type->fields (),
2443 resolved_type->num_fields () * sizeof (struct field));
2444 }
2445
2446 for (i = 0; i < resolved_type->num_fields (); ++i)
2447 {
2448 unsigned new_bit_length;
2449 struct property_addr_info pinfo;
2450
2451 if (field_is_static (&resolved_type->field (i)))
2452 continue;
2453
2454 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2455 {
2456 struct dwarf2_property_baton baton;
2457 baton.property_type
2458 = lookup_pointer_type (resolved_type->field (i).type ());
2459 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2460
2461 struct dynamic_prop prop;
2462 prop.set_locexpr (&baton);
2463
2464 CORE_ADDR addr;
2465 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2466 true))
2467 SET_FIELD_BITPOS (resolved_type->field (i),
2468 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2469 }
2470
2471 /* As we know this field is not a static field, the field's
2472 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2473 this is the case, but only trigger a simple error rather
2474 than an internal error if that fails. While failing
2475 that verification indicates a bug in our code, the error
2476 is not severe enough to suggest to the user he stops
2477 his debugging session because of it. */
2478 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
2479 error (_("Cannot determine struct field location"
2480 " (invalid location kind)"));
2481
2482 pinfo.type = check_typedef (resolved_type->field (i).type ());
2483 pinfo.valaddr = addr_stack->valaddr;
2484 pinfo.addr
2485 = (addr_stack->addr
2486 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2487 pinfo.next = addr_stack;
2488
2489 resolved_type->field (i).set_type
2490 (resolve_dynamic_type_internal (resolved_type->field (i).type (),
2491 &pinfo, 0));
2492 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2493 == FIELD_LOC_KIND_BITPOS);
2494
2495 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2496 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2497 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2498 else
2499 {
2500 struct type *real_type
2501 = check_typedef (resolved_type->field (i).type ());
2502
2503 new_bit_length += (TYPE_LENGTH (real_type) * TARGET_CHAR_BIT);
2504 }
2505
2506 /* Normally, we would use the position and size of the last field
2507 to determine the size of the enclosing structure. But GCC seems
2508 to be encoding the position of some fields incorrectly when
2509 the struct contains a dynamic field that is not placed last.
2510 So we compute the struct size based on the field that has
2511 the highest position + size - probably the best we can do. */
2512 if (new_bit_length > resolved_type_bit_length)
2513 resolved_type_bit_length = new_bit_length;
2514 }
2515
2516 /* The length of a type won't change for fortran, but it does for C and Ada.
2517 For fortran the size of dynamic fields might change over time but not the
2518 type length of the structure. If we adapt it, we run into problems
2519 when calculating the element offset for arrays of structs. */
2520 if (current_language->la_language != language_fortran)
2521 TYPE_LENGTH (resolved_type)
2522 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2523
2524 /* The Ada language uses this field as a cache for static fixed types: reset
2525 it as RESOLVED_TYPE must have its own static fixed type. */
2526 TYPE_TARGET_TYPE (resolved_type) = NULL;
2527
2528 return resolved_type;
2529 }
2530
2531 /* Worker for resolved_dynamic_type. */
2532
2533 static struct type *
2534 resolve_dynamic_type_internal (struct type *type,
2535 struct property_addr_info *addr_stack,
2536 int top_level)
2537 {
2538 struct type *real_type = check_typedef (type);
2539 struct type *resolved_type = nullptr;
2540 struct dynamic_prop *prop;
2541 CORE_ADDR value;
2542
2543 if (!is_dynamic_type_internal (real_type, top_level))
2544 return type;
2545
2546 gdb::optional<CORE_ADDR> type_length;
2547 prop = TYPE_DYNAMIC_LENGTH (type);
2548 if (prop != NULL
2549 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2550 type_length = value;
2551
2552 if (type->code () == TYPE_CODE_TYPEDEF)
2553 {
2554 resolved_type = copy_type (type);
2555 TYPE_TARGET_TYPE (resolved_type)
2556 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2557 top_level);
2558 }
2559 else
2560 {
2561 /* Before trying to resolve TYPE, make sure it is not a stub. */
2562 type = real_type;
2563
2564 switch (type->code ())
2565 {
2566 case TYPE_CODE_REF:
2567 {
2568 struct property_addr_info pinfo;
2569
2570 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2571 pinfo.valaddr = {};
2572 if (addr_stack->valaddr.data () != NULL)
2573 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2574 type);
2575 else
2576 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2577 pinfo.next = addr_stack;
2578
2579 resolved_type = copy_type (type);
2580 TYPE_TARGET_TYPE (resolved_type)
2581 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2582 &pinfo, top_level);
2583 break;
2584 }
2585
2586 case TYPE_CODE_STRING:
2587 /* Strings are very much like an array of characters, and can be
2588 treated as one here. */
2589 case TYPE_CODE_ARRAY:
2590 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2591 break;
2592
2593 case TYPE_CODE_RANGE:
2594 resolved_type = resolve_dynamic_range (type, addr_stack);
2595 break;
2596
2597 case TYPE_CODE_UNION:
2598 resolved_type = resolve_dynamic_union (type, addr_stack);
2599 break;
2600
2601 case TYPE_CODE_STRUCT:
2602 resolved_type = resolve_dynamic_struct (type, addr_stack);
2603 break;
2604 }
2605 }
2606
2607 if (resolved_type == nullptr)
2608 return type;
2609
2610 if (type_length.has_value ())
2611 {
2612 TYPE_LENGTH (resolved_type) = *type_length;
2613 resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
2614 }
2615
2616 /* Resolve data_location attribute. */
2617 prop = TYPE_DATA_LOCATION (resolved_type);
2618 if (prop != NULL
2619 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2620 prop->set_const_val (value);
2621
2622 return resolved_type;
2623 }
2624
2625 /* See gdbtypes.h */
2626
2627 struct type *
2628 resolve_dynamic_type (struct type *type,
2629 gdb::array_view<const gdb_byte> valaddr,
2630 CORE_ADDR addr)
2631 {
2632 struct property_addr_info pinfo
2633 = {check_typedef (type), valaddr, addr, NULL};
2634
2635 return resolve_dynamic_type_internal (type, &pinfo, 1);
2636 }
2637
2638 /* See gdbtypes.h */
2639
2640 dynamic_prop *
2641 type::dyn_prop (dynamic_prop_node_kind prop_kind) const
2642 {
2643 dynamic_prop_list *node = this->main_type->dyn_prop_list;
2644
2645 while (node != NULL)
2646 {
2647 if (node->prop_kind == prop_kind)
2648 return &node->prop;
2649 node = node->next;
2650 }
2651 return NULL;
2652 }
2653
2654 /* See gdbtypes.h */
2655
2656 void
2657 type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
2658 {
2659 struct dynamic_prop_list *temp;
2660
2661 gdb_assert (TYPE_OBJFILE_OWNED (this));
2662
2663 temp = XOBNEW (&TYPE_OBJFILE (this)->objfile_obstack,
2664 struct dynamic_prop_list);
2665 temp->prop_kind = prop_kind;
2666 temp->prop = prop;
2667 temp->next = this->main_type->dyn_prop_list;
2668
2669 this->main_type->dyn_prop_list = temp;
2670 }
2671
2672 /* See gdbtypes.h. */
2673
2674 void
2675 type::remove_dyn_prop (dynamic_prop_node_kind kind)
2676 {
2677 struct dynamic_prop_list *prev_node, *curr_node;
2678
2679 curr_node = this->main_type->dyn_prop_list;
2680 prev_node = NULL;
2681
2682 while (NULL != curr_node)
2683 {
2684 if (curr_node->prop_kind == kind)
2685 {
2686 /* Update the linked list but don't free anything.
2687 The property was allocated on objstack and it is not known
2688 if we are on top of it. Nevertheless, everything is released
2689 when the complete objstack is freed. */
2690 if (NULL == prev_node)
2691 this->main_type->dyn_prop_list = curr_node->next;
2692 else
2693 prev_node->next = curr_node->next;
2694
2695 return;
2696 }
2697
2698 prev_node = curr_node;
2699 curr_node = curr_node->next;
2700 }
2701 }
2702
2703 /* Find the real type of TYPE. This function returns the real type,
2704 after removing all layers of typedefs, and completing opaque or stub
2705 types. Completion changes the TYPE argument, but stripping of
2706 typedefs does not.
2707
2708 Instance flags (e.g. const/volatile) are preserved as typedefs are
2709 stripped. If necessary a new qualified form of the underlying type
2710 is created.
2711
2712 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2713 not been computed and we're either in the middle of reading symbols, or
2714 there was no name for the typedef in the debug info.
2715
2716 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2717 QUITs in the symbol reading code can also throw.
2718 Thus this function can throw an exception.
2719
2720 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2721 the target type.
2722
2723 If this is a stubbed struct (i.e. declared as struct foo *), see if
2724 we can find a full definition in some other file. If so, copy this
2725 definition, so we can use it in future. There used to be a comment
2726 (but not any code) that if we don't find a full definition, we'd
2727 set a flag so we don't spend time in the future checking the same
2728 type. That would be a mistake, though--we might load in more
2729 symbols which contain a full definition for the type. */
2730
2731 struct type *
2732 check_typedef (struct type *type)
2733 {
2734 struct type *orig_type = type;
2735 /* While we're removing typedefs, we don't want to lose qualifiers.
2736 E.g., const/volatile. */
2737 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2738
2739 gdb_assert (type);
2740
2741 while (type->code () == TYPE_CODE_TYPEDEF)
2742 {
2743 if (!TYPE_TARGET_TYPE (type))
2744 {
2745 const char *name;
2746 struct symbol *sym;
2747
2748 /* It is dangerous to call lookup_symbol if we are currently
2749 reading a symtab. Infinite recursion is one danger. */
2750 if (currently_reading_symtab)
2751 return make_qualified_type (type, instance_flags, NULL);
2752
2753 name = type->name ();
2754 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2755 VAR_DOMAIN as appropriate? */
2756 if (name == NULL)
2757 {
2758 stub_noname_complaint ();
2759 return make_qualified_type (type, instance_flags, NULL);
2760 }
2761 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2762 if (sym)
2763 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2764 else /* TYPE_CODE_UNDEF */
2765 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2766 }
2767 type = TYPE_TARGET_TYPE (type);
2768
2769 /* Preserve the instance flags as we traverse down the typedef chain.
2770
2771 Handling address spaces/classes is nasty, what do we do if there's a
2772 conflict?
2773 E.g., what if an outer typedef marks the type as class_1 and an inner
2774 typedef marks the type as class_2?
2775 This is the wrong place to do such error checking. We leave it to
2776 the code that created the typedef in the first place to flag the
2777 error. We just pick the outer address space (akin to letting the
2778 outer cast in a chain of casting win), instead of assuming
2779 "it can't happen". */
2780 {
2781 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2782 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2783 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2784 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2785
2786 /* Treat code vs data spaces and address classes separately. */
2787 if ((instance_flags & ALL_SPACES) != 0)
2788 new_instance_flags &= ~ALL_SPACES;
2789 if ((instance_flags & ALL_CLASSES) != 0)
2790 new_instance_flags &= ~ALL_CLASSES;
2791
2792 instance_flags |= new_instance_flags;
2793 }
2794 }
2795
2796 /* If this is a struct/class/union with no fields, then check
2797 whether a full definition exists somewhere else. This is for
2798 systems where a type definition with no fields is issued for such
2799 types, instead of identifying them as stub types in the first
2800 place. */
2801
2802 if (TYPE_IS_OPAQUE (type)
2803 && opaque_type_resolution
2804 && !currently_reading_symtab)
2805 {
2806 const char *name = type->name ();
2807 struct type *newtype;
2808
2809 if (name == NULL)
2810 {
2811 stub_noname_complaint ();
2812 return make_qualified_type (type, instance_flags, NULL);
2813 }
2814 newtype = lookup_transparent_type (name);
2815
2816 if (newtype)
2817 {
2818 /* If the resolved type and the stub are in the same
2819 objfile, then replace the stub type with the real deal.
2820 But if they're in separate objfiles, leave the stub
2821 alone; we'll just look up the transparent type every time
2822 we call check_typedef. We can't create pointers between
2823 types allocated to different objfiles, since they may
2824 have different lifetimes. Trying to copy NEWTYPE over to
2825 TYPE's objfile is pointless, too, since you'll have to
2826 move over any other types NEWTYPE refers to, which could
2827 be an unbounded amount of stuff. */
2828 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2829 type = make_qualified_type (newtype,
2830 TYPE_INSTANCE_FLAGS (type),
2831 type);
2832 else
2833 type = newtype;
2834 }
2835 }
2836 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2837 types. */
2838 else if (TYPE_STUB (type) && !currently_reading_symtab)
2839 {
2840 const char *name = type->name ();
2841 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2842 as appropriate? */
2843 struct symbol *sym;
2844
2845 if (name == NULL)
2846 {
2847 stub_noname_complaint ();
2848 return make_qualified_type (type, instance_flags, NULL);
2849 }
2850 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2851 if (sym)
2852 {
2853 /* Same as above for opaque types, we can replace the stub
2854 with the complete type only if they are in the same
2855 objfile. */
2856 if (TYPE_OBJFILE (SYMBOL_TYPE (sym)) == TYPE_OBJFILE (type))
2857 type = make_qualified_type (SYMBOL_TYPE (sym),
2858 TYPE_INSTANCE_FLAGS (type),
2859 type);
2860 else
2861 type = SYMBOL_TYPE (sym);
2862 }
2863 }
2864
2865 if (TYPE_TARGET_STUB (type))
2866 {
2867 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2868
2869 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2870 {
2871 /* Nothing we can do. */
2872 }
2873 else if (type->code () == TYPE_CODE_RANGE)
2874 {
2875 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2876 TYPE_TARGET_STUB (type) = 0;
2877 }
2878 else if (type->code () == TYPE_CODE_ARRAY
2879 && update_static_array_size (type))
2880 TYPE_TARGET_STUB (type) = 0;
2881 }
2882
2883 type = make_qualified_type (type, instance_flags, NULL);
2884
2885 /* Cache TYPE_LENGTH for future use. */
2886 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2887
2888 return type;
2889 }
2890
2891 /* Parse a type expression in the string [P..P+LENGTH). If an error
2892 occurs, silently return a void type. */
2893
2894 static struct type *
2895 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2896 {
2897 struct ui_file *saved_gdb_stderr;
2898 struct type *type = NULL; /* Initialize to keep gcc happy. */
2899
2900 /* Suppress error messages. */
2901 saved_gdb_stderr = gdb_stderr;
2902 gdb_stderr = &null_stream;
2903
2904 /* Call parse_and_eval_type() without fear of longjmp()s. */
2905 try
2906 {
2907 type = parse_and_eval_type (p, length);
2908 }
2909 catch (const gdb_exception_error &except)
2910 {
2911 type = builtin_type (gdbarch)->builtin_void;
2912 }
2913
2914 /* Stop suppressing error messages. */
2915 gdb_stderr = saved_gdb_stderr;
2916
2917 return type;
2918 }
2919
2920 /* Ugly hack to convert method stubs into method types.
2921
2922 He ain't kiddin'. This demangles the name of the method into a
2923 string including argument types, parses out each argument type,
2924 generates a string casting a zero to that type, evaluates the
2925 string, and stuffs the resulting type into an argtype vector!!!
2926 Then it knows the type of the whole function (including argument
2927 types for overloading), which info used to be in the stab's but was
2928 removed to hack back the space required for them. */
2929
2930 static void
2931 check_stub_method (struct type *type, int method_id, int signature_id)
2932 {
2933 struct gdbarch *gdbarch = get_type_arch (type);
2934 struct fn_field *f;
2935 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2936 char *demangled_name = gdb_demangle (mangled_name,
2937 DMGL_PARAMS | DMGL_ANSI);
2938 char *argtypetext, *p;
2939 int depth = 0, argcount = 1;
2940 struct field *argtypes;
2941 struct type *mtype;
2942
2943 /* Make sure we got back a function string that we can use. */
2944 if (demangled_name)
2945 p = strchr (demangled_name, '(');
2946 else
2947 p = NULL;
2948
2949 if (demangled_name == NULL || p == NULL)
2950 error (_("Internal: Cannot demangle mangled name `%s'."),
2951 mangled_name);
2952
2953 /* Now, read in the parameters that define this type. */
2954 p += 1;
2955 argtypetext = p;
2956 while (*p)
2957 {
2958 if (*p == '(' || *p == '<')
2959 {
2960 depth += 1;
2961 }
2962 else if (*p == ')' || *p == '>')
2963 {
2964 depth -= 1;
2965 }
2966 else if (*p == ',' && depth == 0)
2967 {
2968 argcount += 1;
2969 }
2970
2971 p += 1;
2972 }
2973
2974 /* If we read one argument and it was ``void'', don't count it. */
2975 if (startswith (argtypetext, "(void)"))
2976 argcount -= 1;
2977
2978 /* We need one extra slot, for the THIS pointer. */
2979
2980 argtypes = (struct field *)
2981 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2982 p = argtypetext;
2983
2984 /* Add THIS pointer for non-static methods. */
2985 f = TYPE_FN_FIELDLIST1 (type, method_id);
2986 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2987 argcount = 0;
2988 else
2989 {
2990 argtypes[0].set_type (lookup_pointer_type (type));
2991 argcount = 1;
2992 }
2993
2994 if (*p != ')') /* () means no args, skip while. */
2995 {
2996 depth = 0;
2997 while (*p)
2998 {
2999 if (depth <= 0 && (*p == ',' || *p == ')'))
3000 {
3001 /* Avoid parsing of ellipsis, they will be handled below.
3002 Also avoid ``void'' as above. */
3003 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3004 && strncmp (argtypetext, "void", p - argtypetext) != 0)
3005 {
3006 argtypes[argcount].set_type
3007 (safe_parse_type (gdbarch, argtypetext, p - argtypetext));
3008 argcount += 1;
3009 }
3010 argtypetext = p + 1;
3011 }
3012
3013 if (*p == '(' || *p == '<')
3014 {
3015 depth += 1;
3016 }
3017 else if (*p == ')' || *p == '>')
3018 {
3019 depth -= 1;
3020 }
3021
3022 p += 1;
3023 }
3024 }
3025
3026 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3027
3028 /* Now update the old "stub" type into a real type. */
3029 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
3030 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3031 We want a method (TYPE_CODE_METHOD). */
3032 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3033 argtypes, argcount, p[-2] == '.');
3034 TYPE_STUB (mtype) = 0;
3035 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
3036
3037 xfree (demangled_name);
3038 }
3039
3040 /* This is the external interface to check_stub_method, above. This
3041 function unstubs all of the signatures for TYPE's METHOD_ID method
3042 name. After calling this function TYPE_FN_FIELD_STUB will be
3043 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3044 correct.
3045
3046 This function unfortunately can not die until stabs do. */
3047
3048 void
3049 check_stub_method_group (struct type *type, int method_id)
3050 {
3051 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3052 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
3053
3054 for (int j = 0; j < len; j++)
3055 {
3056 if (TYPE_FN_FIELD_STUB (f, j))
3057 check_stub_method (type, method_id, j);
3058 }
3059 }
3060
3061 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
3062 const struct cplus_struct_type cplus_struct_default = { };
3063
3064 void
3065 allocate_cplus_struct_type (struct type *type)
3066 {
3067 if (HAVE_CPLUS_STRUCT (type))
3068 /* Structure was already allocated. Nothing more to do. */
3069 return;
3070
3071 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3072 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3073 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3074 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
3075 set_type_vptr_fieldno (type, -1);
3076 }
3077
3078 const struct gnat_aux_type gnat_aux_default =
3079 { NULL };
3080
3081 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3082 and allocate the associated gnat-specific data. The gnat-specific
3083 data is also initialized to gnat_aux_default. */
3084
3085 void
3086 allocate_gnat_aux_type (struct type *type)
3087 {
3088 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3089 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3090 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3091 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3092 }
3093
3094 /* Helper function to initialize a newly allocated type. Set type code
3095 to CODE and initialize the type-specific fields accordingly. */
3096
3097 static void
3098 set_type_code (struct type *type, enum type_code code)
3099 {
3100 type->set_code (code);
3101
3102 switch (code)
3103 {
3104 case TYPE_CODE_STRUCT:
3105 case TYPE_CODE_UNION:
3106 case TYPE_CODE_NAMESPACE:
3107 INIT_CPLUS_SPECIFIC (type);
3108 break;
3109 case TYPE_CODE_FLT:
3110 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3111 break;
3112 case TYPE_CODE_FUNC:
3113 INIT_FUNC_SPECIFIC (type);
3114 break;
3115 }
3116 }
3117
3118 /* Helper function to verify floating-point format and size.
3119 BIT is the type size in bits; if BIT equals -1, the size is
3120 determined by the floatformat. Returns size to be used. */
3121
3122 static int
3123 verify_floatformat (int bit, const struct floatformat *floatformat)
3124 {
3125 gdb_assert (floatformat != NULL);
3126
3127 if (bit == -1)
3128 bit = floatformat->totalsize;
3129
3130 gdb_assert (bit >= 0);
3131 gdb_assert (bit >= floatformat->totalsize);
3132
3133 return bit;
3134 }
3135
3136 /* Return the floating-point format for a floating-point variable of
3137 type TYPE. */
3138
3139 const struct floatformat *
3140 floatformat_from_type (const struct type *type)
3141 {
3142 gdb_assert (type->code () == TYPE_CODE_FLT);
3143 gdb_assert (TYPE_FLOATFORMAT (type));
3144 return TYPE_FLOATFORMAT (type);
3145 }
3146
3147 /* Helper function to initialize the standard scalar types.
3148
3149 If NAME is non-NULL, then it is used to initialize the type name.
3150 Note that NAME is not copied; it is required to have a lifetime at
3151 least as long as OBJFILE. */
3152
3153 struct type *
3154 init_type (struct objfile *objfile, enum type_code code, int bit,
3155 const char *name)
3156 {
3157 struct type *type;
3158
3159 type = alloc_type (objfile);
3160 set_type_code (type, code);
3161 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3162 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
3163 type->set_name (name);
3164
3165 return type;
3166 }
3167
3168 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3169 to use with variables that have no debug info. NAME is the type
3170 name. */
3171
3172 static struct type *
3173 init_nodebug_var_type (struct objfile *objfile, const char *name)
3174 {
3175 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3176 }
3177
3178 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3179 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3180 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3181
3182 struct type *
3183 init_integer_type (struct objfile *objfile,
3184 int bit, int unsigned_p, const char *name)
3185 {
3186 struct type *t;
3187
3188 t = init_type (objfile, TYPE_CODE_INT, bit, name);
3189 if (unsigned_p)
3190 TYPE_UNSIGNED (t) = 1;
3191
3192 return t;
3193 }
3194
3195 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3196 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3197 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3198
3199 struct type *
3200 init_character_type (struct objfile *objfile,
3201 int bit, int unsigned_p, const char *name)
3202 {
3203 struct type *t;
3204
3205 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
3206 if (unsigned_p)
3207 TYPE_UNSIGNED (t) = 1;
3208
3209 return t;
3210 }
3211
3212 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3213 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3214 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3215
3216 struct type *
3217 init_boolean_type (struct objfile *objfile,
3218 int bit, int unsigned_p, const char *name)
3219 {
3220 struct type *t;
3221
3222 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
3223 if (unsigned_p)
3224 TYPE_UNSIGNED (t) = 1;
3225
3226 return t;
3227 }
3228
3229 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3230 BIT is the type size in bits; if BIT equals -1, the size is
3231 determined by the floatformat. NAME is the type name. Set the
3232 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3233 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3234 order of the objfile's architecture is used. */
3235
3236 struct type *
3237 init_float_type (struct objfile *objfile,
3238 int bit, const char *name,
3239 const struct floatformat **floatformats,
3240 enum bfd_endian byte_order)
3241 {
3242 if (byte_order == BFD_ENDIAN_UNKNOWN)
3243 {
3244 struct gdbarch *gdbarch = objfile->arch ();
3245 byte_order = gdbarch_byte_order (gdbarch);
3246 }
3247 const struct floatformat *fmt = floatformats[byte_order];
3248 struct type *t;
3249
3250 bit = verify_floatformat (bit, fmt);
3251 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3252 TYPE_FLOATFORMAT (t) = fmt;
3253
3254 return t;
3255 }
3256
3257 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3258 BIT is the type size in bits. NAME is the type name. */
3259
3260 struct type *
3261 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3262 {
3263 struct type *t;
3264
3265 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3266 return t;
3267 }
3268
3269 /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3270 name. TARGET_TYPE is the component type. */
3271
3272 struct type *
3273 init_complex_type (const char *name, struct type *target_type)
3274 {
3275 struct type *t;
3276
3277 gdb_assert (target_type->code () == TYPE_CODE_INT
3278 || target_type->code () == TYPE_CODE_FLT);
3279
3280 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3281 {
3282 if (name == nullptr)
3283 {
3284 char *new_name
3285 = (char *) TYPE_ALLOC (target_type,
3286 strlen (target_type->name ())
3287 + strlen ("_Complex ") + 1);
3288 strcpy (new_name, "_Complex ");
3289 strcat (new_name, target_type->name ());
3290 name = new_name;
3291 }
3292
3293 t = alloc_type_copy (target_type);
3294 set_type_code (t, TYPE_CODE_COMPLEX);
3295 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3296 t->set_name (name);
3297
3298 TYPE_TARGET_TYPE (t) = target_type;
3299 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3300 }
3301
3302 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
3303 }
3304
3305 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3306 BIT is the pointer type size in bits. NAME is the type name.
3307 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3308 TYPE_UNSIGNED flag. */
3309
3310 struct type *
3311 init_pointer_type (struct objfile *objfile,
3312 int bit, const char *name, struct type *target_type)
3313 {
3314 struct type *t;
3315
3316 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3317 TYPE_TARGET_TYPE (t) = target_type;
3318 TYPE_UNSIGNED (t) = 1;
3319 return t;
3320 }
3321
3322 /* See gdbtypes.h. */
3323
3324 unsigned
3325 type_raw_align (struct type *type)
3326 {
3327 if (type->align_log2 != 0)
3328 return 1 << (type->align_log2 - 1);
3329 return 0;
3330 }
3331
3332 /* See gdbtypes.h. */
3333
3334 unsigned
3335 type_align (struct type *type)
3336 {
3337 /* Check alignment provided in the debug information. */
3338 unsigned raw_align = type_raw_align (type);
3339 if (raw_align != 0)
3340 return raw_align;
3341
3342 /* Allow the architecture to provide an alignment. */
3343 struct gdbarch *arch = get_type_arch (type);
3344 ULONGEST align = gdbarch_type_align (arch, type);
3345 if (align != 0)
3346 return align;
3347
3348 switch (type->code ())
3349 {
3350 case TYPE_CODE_PTR:
3351 case TYPE_CODE_FUNC:
3352 case TYPE_CODE_FLAGS:
3353 case TYPE_CODE_INT:
3354 case TYPE_CODE_RANGE:
3355 case TYPE_CODE_FLT:
3356 case TYPE_CODE_ENUM:
3357 case TYPE_CODE_REF:
3358 case TYPE_CODE_RVALUE_REF:
3359 case TYPE_CODE_CHAR:
3360 case TYPE_CODE_BOOL:
3361 case TYPE_CODE_DECFLOAT:
3362 case TYPE_CODE_METHODPTR:
3363 case TYPE_CODE_MEMBERPTR:
3364 align = type_length_units (check_typedef (type));
3365 break;
3366
3367 case TYPE_CODE_ARRAY:
3368 case TYPE_CODE_COMPLEX:
3369 case TYPE_CODE_TYPEDEF:
3370 align = type_align (TYPE_TARGET_TYPE (type));
3371 break;
3372
3373 case TYPE_CODE_STRUCT:
3374 case TYPE_CODE_UNION:
3375 {
3376 int number_of_non_static_fields = 0;
3377 for (unsigned i = 0; i < type->num_fields (); ++i)
3378 {
3379 if (!field_is_static (&type->field (i)))
3380 {
3381 number_of_non_static_fields++;
3382 ULONGEST f_align = type_align (type->field (i).type ());
3383 if (f_align == 0)
3384 {
3385 /* Don't pretend we know something we don't. */
3386 align = 0;
3387 break;
3388 }
3389 if (f_align > align)
3390 align = f_align;
3391 }
3392 }
3393 /* A struct with no fields, or with only static fields has an
3394 alignment of 1. */
3395 if (number_of_non_static_fields == 0)
3396 align = 1;
3397 }
3398 break;
3399
3400 case TYPE_CODE_SET:
3401 case TYPE_CODE_STRING:
3402 /* Not sure what to do here, and these can't appear in C or C++
3403 anyway. */
3404 break;
3405
3406 case TYPE_CODE_VOID:
3407 align = 1;
3408 break;
3409
3410 case TYPE_CODE_ERROR:
3411 case TYPE_CODE_METHOD:
3412 default:
3413 break;
3414 }
3415
3416 if ((align & (align - 1)) != 0)
3417 {
3418 /* Not a power of 2, so pass. */
3419 align = 0;
3420 }
3421
3422 return align;
3423 }
3424
3425 /* See gdbtypes.h. */
3426
3427 bool
3428 set_type_align (struct type *type, ULONGEST align)
3429 {
3430 /* Must be a power of 2. Zero is ok. */
3431 gdb_assert ((align & (align - 1)) == 0);
3432
3433 unsigned result = 0;
3434 while (align != 0)
3435 {
3436 ++result;
3437 align >>= 1;
3438 }
3439
3440 if (result >= (1 << TYPE_ALIGN_BITS))
3441 return false;
3442
3443 type->align_log2 = result;
3444 return true;
3445 }
3446
3447 \f
3448 /* Queries on types. */
3449
3450 int
3451 can_dereference (struct type *t)
3452 {
3453 /* FIXME: Should we return true for references as well as
3454 pointers? */
3455 t = check_typedef (t);
3456 return
3457 (t != NULL
3458 && t->code () == TYPE_CODE_PTR
3459 && TYPE_TARGET_TYPE (t)->code () != TYPE_CODE_VOID);
3460 }
3461
3462 int
3463 is_integral_type (struct type *t)
3464 {
3465 t = check_typedef (t);
3466 return
3467 ((t != NULL)
3468 && ((t->code () == TYPE_CODE_INT)
3469 || (t->code () == TYPE_CODE_ENUM)
3470 || (t->code () == TYPE_CODE_FLAGS)
3471 || (t->code () == TYPE_CODE_CHAR)
3472 || (t->code () == TYPE_CODE_RANGE)
3473 || (t->code () == TYPE_CODE_BOOL)));
3474 }
3475
3476 int
3477 is_floating_type (struct type *t)
3478 {
3479 t = check_typedef (t);
3480 return
3481 ((t != NULL)
3482 && ((t->code () == TYPE_CODE_FLT)
3483 || (t->code () == TYPE_CODE_DECFLOAT)));
3484 }
3485
3486 /* Return true if TYPE is scalar. */
3487
3488 int
3489 is_scalar_type (struct type *type)
3490 {
3491 type = check_typedef (type);
3492
3493 switch (type->code ())
3494 {
3495 case TYPE_CODE_ARRAY:
3496 case TYPE_CODE_STRUCT:
3497 case TYPE_CODE_UNION:
3498 case TYPE_CODE_SET:
3499 case TYPE_CODE_STRING:
3500 return 0;
3501 default:
3502 return 1;
3503 }
3504 }
3505
3506 /* Return true if T is scalar, or a composite type which in practice has
3507 the memory layout of a scalar type. E.g., an array or struct with only
3508 one scalar element inside it, or a union with only scalar elements. */
3509
3510 int
3511 is_scalar_type_recursive (struct type *t)
3512 {
3513 t = check_typedef (t);
3514
3515 if (is_scalar_type (t))
3516 return 1;
3517 /* Are we dealing with an array or string of known dimensions? */
3518 else if ((t->code () == TYPE_CODE_ARRAY
3519 || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1
3520 && t->index_type ()->code () == TYPE_CODE_RANGE)
3521 {
3522 LONGEST low_bound, high_bound;
3523 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3524
3525 get_discrete_bounds (t->index_type (), &low_bound, &high_bound);
3526
3527 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3528 }
3529 /* Are we dealing with a struct with one element? */
3530 else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1)
3531 return is_scalar_type_recursive (t->field (0).type ());
3532 else if (t->code () == TYPE_CODE_UNION)
3533 {
3534 int i, n = t->num_fields ();
3535
3536 /* If all elements of the union are scalar, then the union is scalar. */
3537 for (i = 0; i < n; i++)
3538 if (!is_scalar_type_recursive (t->field (i).type ()))
3539 return 0;
3540
3541 return 1;
3542 }
3543
3544 return 0;
3545 }
3546
3547 /* Return true is T is a class or a union. False otherwise. */
3548
3549 int
3550 class_or_union_p (const struct type *t)
3551 {
3552 return (t->code () == TYPE_CODE_STRUCT
3553 || t->code () == TYPE_CODE_UNION);
3554 }
3555
3556 /* A helper function which returns true if types A and B represent the
3557 "same" class type. This is true if the types have the same main
3558 type, or the same name. */
3559
3560 int
3561 class_types_same_p (const struct type *a, const struct type *b)
3562 {
3563 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3564 || (a->name () && b->name ()
3565 && !strcmp (a->name (), b->name ())));
3566 }
3567
3568 /* If BASE is an ancestor of DCLASS return the distance between them.
3569 otherwise return -1;
3570 eg:
3571
3572 class A {};
3573 class B: public A {};
3574 class C: public B {};
3575 class D: C {};
3576
3577 distance_to_ancestor (A, A, 0) = 0
3578 distance_to_ancestor (A, B, 0) = 1
3579 distance_to_ancestor (A, C, 0) = 2
3580 distance_to_ancestor (A, D, 0) = 3
3581
3582 If PUBLIC is 1 then only public ancestors are considered,
3583 and the function returns the distance only if BASE is a public ancestor
3584 of DCLASS.
3585 Eg:
3586
3587 distance_to_ancestor (A, D, 1) = -1. */
3588
3589 static int
3590 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3591 {
3592 int i;
3593 int d;
3594
3595 base = check_typedef (base);
3596 dclass = check_typedef (dclass);
3597
3598 if (class_types_same_p (base, dclass))
3599 return 0;
3600
3601 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3602 {
3603 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3604 continue;
3605
3606 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3607 if (d >= 0)
3608 return 1 + d;
3609 }
3610
3611 return -1;
3612 }
3613
3614 /* Check whether BASE is an ancestor or base class or DCLASS
3615 Return 1 if so, and 0 if not.
3616 Note: If BASE and DCLASS are of the same type, this function
3617 will return 1. So for some class A, is_ancestor (A, A) will
3618 return 1. */
3619
3620 int
3621 is_ancestor (struct type *base, struct type *dclass)
3622 {
3623 return distance_to_ancestor (base, dclass, 0) >= 0;
3624 }
3625
3626 /* Like is_ancestor, but only returns true when BASE is a public
3627 ancestor of DCLASS. */
3628
3629 int
3630 is_public_ancestor (struct type *base, struct type *dclass)
3631 {
3632 return distance_to_ancestor (base, dclass, 1) >= 0;
3633 }
3634
3635 /* A helper function for is_unique_ancestor. */
3636
3637 static int
3638 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3639 int *offset,
3640 const gdb_byte *valaddr, int embedded_offset,
3641 CORE_ADDR address, struct value *val)
3642 {
3643 int i, count = 0;
3644
3645 base = check_typedef (base);
3646 dclass = check_typedef (dclass);
3647
3648 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3649 {
3650 struct type *iter;
3651 int this_offset;
3652
3653 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3654
3655 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3656 address, val);
3657
3658 if (class_types_same_p (base, iter))
3659 {
3660 /* If this is the first subclass, set *OFFSET and set count
3661 to 1. Otherwise, if this is at the same offset as
3662 previous instances, do nothing. Otherwise, increment
3663 count. */
3664 if (*offset == -1)
3665 {
3666 *offset = this_offset;
3667 count = 1;
3668 }
3669 else if (this_offset == *offset)
3670 {
3671 /* Nothing. */
3672 }
3673 else
3674 ++count;
3675 }
3676 else
3677 count += is_unique_ancestor_worker (base, iter, offset,
3678 valaddr,
3679 embedded_offset + this_offset,
3680 address, val);
3681 }
3682
3683 return count;
3684 }
3685
3686 /* Like is_ancestor, but only returns true if BASE is a unique base
3687 class of the type of VAL. */
3688
3689 int
3690 is_unique_ancestor (struct type *base, struct value *val)
3691 {
3692 int offset = -1;
3693
3694 return is_unique_ancestor_worker (base, value_type (val), &offset,
3695 value_contents_for_printing (val),
3696 value_embedded_offset (val),
3697 value_address (val), val) == 1;
3698 }
3699
3700 /* See gdbtypes.h. */
3701
3702 enum bfd_endian
3703 type_byte_order (const struct type *type)
3704 {
3705 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3706 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3707 {
3708 if (byteorder == BFD_ENDIAN_BIG)
3709 return BFD_ENDIAN_LITTLE;
3710 else
3711 {
3712 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3713 return BFD_ENDIAN_BIG;
3714 }
3715 }
3716
3717 return byteorder;
3718 }
3719
3720 \f
3721 /* Overload resolution. */
3722
3723 /* Return the sum of the rank of A with the rank of B. */
3724
3725 struct rank
3726 sum_ranks (struct rank a, struct rank b)
3727 {
3728 struct rank c;
3729 c.rank = a.rank + b.rank;
3730 c.subrank = a.subrank + b.subrank;
3731 return c;
3732 }
3733
3734 /* Compare rank A and B and return:
3735 0 if a = b
3736 1 if a is better than b
3737 -1 if b is better than a. */
3738
3739 int
3740 compare_ranks (struct rank a, struct rank b)
3741 {
3742 if (a.rank == b.rank)
3743 {
3744 if (a.subrank == b.subrank)
3745 return 0;
3746 if (a.subrank < b.subrank)
3747 return 1;
3748 if (a.subrank > b.subrank)
3749 return -1;
3750 }
3751
3752 if (a.rank < b.rank)
3753 return 1;
3754
3755 /* a.rank > b.rank */
3756 return -1;
3757 }
3758
3759 /* Functions for overload resolution begin here. */
3760
3761 /* Compare two badness vectors A and B and return the result.
3762 0 => A and B are identical
3763 1 => A and B are incomparable
3764 2 => A is better than B
3765 3 => A is worse than B */
3766
3767 int
3768 compare_badness (const badness_vector &a, const badness_vector &b)
3769 {
3770 int i;
3771 int tmp;
3772 short found_pos = 0; /* any positives in c? */
3773 short found_neg = 0; /* any negatives in c? */
3774
3775 /* differing sizes => incomparable */
3776 if (a.size () != b.size ())
3777 return 1;
3778
3779 /* Subtract b from a */
3780 for (i = 0; i < a.size (); i++)
3781 {
3782 tmp = compare_ranks (b[i], a[i]);
3783 if (tmp > 0)
3784 found_pos = 1;
3785 else if (tmp < 0)
3786 found_neg = 1;
3787 }
3788
3789 if (found_pos)
3790 {
3791 if (found_neg)
3792 return 1; /* incomparable */
3793 else
3794 return 3; /* A > B */
3795 }
3796 else
3797 /* no positives */
3798 {
3799 if (found_neg)
3800 return 2; /* A < B */
3801 else
3802 return 0; /* A == B */
3803 }
3804 }
3805
3806 /* Rank a function by comparing its parameter types (PARMS), to the
3807 types of an argument list (ARGS). Return the badness vector. This
3808 has ARGS.size() + 1 entries. */
3809
3810 badness_vector
3811 rank_function (gdb::array_view<type *> parms,
3812 gdb::array_view<value *> args)
3813 {
3814 /* add 1 for the length-match rank. */
3815 badness_vector bv;
3816 bv.reserve (1 + args.size ());
3817
3818 /* First compare the lengths of the supplied lists.
3819 If there is a mismatch, set it to a high value. */
3820
3821 /* pai/1997-06-03 FIXME: when we have debug info about default
3822 arguments and ellipsis parameter lists, we should consider those
3823 and rank the length-match more finely. */
3824
3825 bv.push_back ((args.size () != parms.size ())
3826 ? LENGTH_MISMATCH_BADNESS
3827 : EXACT_MATCH_BADNESS);
3828
3829 /* Now rank all the parameters of the candidate function. */
3830 size_t min_len = std::min (parms.size (), args.size ());
3831
3832 for (size_t i = 0; i < min_len; i++)
3833 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3834 args[i]));
3835
3836 /* If more arguments than parameters, add dummy entries. */
3837 for (size_t i = min_len; i < args.size (); i++)
3838 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3839
3840 return bv;
3841 }
3842
3843 /* Compare the names of two integer types, assuming that any sign
3844 qualifiers have been checked already. We do it this way because
3845 there may be an "int" in the name of one of the types. */
3846
3847 static int
3848 integer_types_same_name_p (const char *first, const char *second)
3849 {
3850 int first_p, second_p;
3851
3852 /* If both are shorts, return 1; if neither is a short, keep
3853 checking. */
3854 first_p = (strstr (first, "short") != NULL);
3855 second_p = (strstr (second, "short") != NULL);
3856 if (first_p && second_p)
3857 return 1;
3858 if (first_p || second_p)
3859 return 0;
3860
3861 /* Likewise for long. */
3862 first_p = (strstr (first, "long") != NULL);
3863 second_p = (strstr (second, "long") != NULL);
3864 if (first_p && second_p)
3865 return 1;
3866 if (first_p || second_p)
3867 return 0;
3868
3869 /* Likewise for char. */
3870 first_p = (strstr (first, "char") != NULL);
3871 second_p = (strstr (second, "char") != NULL);
3872 if (first_p && second_p)
3873 return 1;
3874 if (first_p || second_p)
3875 return 0;
3876
3877 /* They must both be ints. */
3878 return 1;
3879 }
3880
3881 /* Compares type A to type B. Returns true if they represent the same
3882 type, false otherwise. */
3883
3884 bool
3885 types_equal (struct type *a, struct type *b)
3886 {
3887 /* Identical type pointers. */
3888 /* However, this still doesn't catch all cases of same type for b
3889 and a. The reason is that builtin types are different from
3890 the same ones constructed from the object. */
3891 if (a == b)
3892 return true;
3893
3894 /* Resolve typedefs */
3895 if (a->code () == TYPE_CODE_TYPEDEF)
3896 a = check_typedef (a);
3897 if (b->code () == TYPE_CODE_TYPEDEF)
3898 b = check_typedef (b);
3899
3900 /* If after resolving typedefs a and b are not of the same type
3901 code then they are not equal. */
3902 if (a->code () != b->code ())
3903 return false;
3904
3905 /* If a and b are both pointers types or both reference types then
3906 they are equal of the same type iff the objects they refer to are
3907 of the same type. */
3908 if (a->code () == TYPE_CODE_PTR
3909 || a->code () == TYPE_CODE_REF)
3910 return types_equal (TYPE_TARGET_TYPE (a),
3911 TYPE_TARGET_TYPE (b));
3912
3913 /* Well, damnit, if the names are exactly the same, I'll say they
3914 are exactly the same. This happens when we generate method
3915 stubs. The types won't point to the same address, but they
3916 really are the same. */
3917
3918 if (a->name () && b->name ()
3919 && strcmp (a->name (), b->name ()) == 0)
3920 return true;
3921
3922 /* Check if identical after resolving typedefs. */
3923 if (a == b)
3924 return true;
3925
3926 /* Two function types are equal if their argument and return types
3927 are equal. */
3928 if (a->code () == TYPE_CODE_FUNC)
3929 {
3930 int i;
3931
3932 if (a->num_fields () != b->num_fields ())
3933 return false;
3934
3935 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3936 return false;
3937
3938 for (i = 0; i < a->num_fields (); ++i)
3939 if (!types_equal (a->field (i).type (), b->field (i).type ()))
3940 return false;
3941
3942 return true;
3943 }
3944
3945 return false;
3946 }
3947 \f
3948 /* Deep comparison of types. */
3949
3950 /* An entry in the type-equality bcache. */
3951
3952 struct type_equality_entry
3953 {
3954 type_equality_entry (struct type *t1, struct type *t2)
3955 : type1 (t1),
3956 type2 (t2)
3957 {
3958 }
3959
3960 struct type *type1, *type2;
3961 };
3962
3963 /* A helper function to compare two strings. Returns true if they are
3964 the same, false otherwise. Handles NULLs properly. */
3965
3966 static bool
3967 compare_maybe_null_strings (const char *s, const char *t)
3968 {
3969 if (s == NULL || t == NULL)
3970 return s == t;
3971 return strcmp (s, t) == 0;
3972 }
3973
3974 /* A helper function for check_types_worklist that checks two types for
3975 "deep" equality. Returns true if the types are considered the
3976 same, false otherwise. */
3977
3978 static bool
3979 check_types_equal (struct type *type1, struct type *type2,
3980 std::vector<type_equality_entry> *worklist)
3981 {
3982 type1 = check_typedef (type1);
3983 type2 = check_typedef (type2);
3984
3985 if (type1 == type2)
3986 return true;
3987
3988 if (type1->code () != type2->code ()
3989 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3990 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3991 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3992 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
3993 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3994 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3995 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3996 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3997 || type1->num_fields () != type2->num_fields ())
3998 return false;
3999
4000 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4001 return false;
4002 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4003 return false;
4004
4005 if (type1->code () == TYPE_CODE_RANGE)
4006 {
4007 if (*type1->bounds () != *type2->bounds ())
4008 return false;
4009 }
4010 else
4011 {
4012 int i;
4013
4014 for (i = 0; i < type1->num_fields (); ++i)
4015 {
4016 const struct field *field1 = &type1->field (i);
4017 const struct field *field2 = &type2->field (i);
4018
4019 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4020 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4021 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
4022 return false;
4023 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4024 FIELD_NAME (*field2)))
4025 return false;
4026 switch (FIELD_LOC_KIND (*field1))
4027 {
4028 case FIELD_LOC_KIND_BITPOS:
4029 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
4030 return false;
4031 break;
4032 case FIELD_LOC_KIND_ENUMVAL:
4033 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
4034 return false;
4035 break;
4036 case FIELD_LOC_KIND_PHYSADDR:
4037 if (FIELD_STATIC_PHYSADDR (*field1)
4038 != FIELD_STATIC_PHYSADDR (*field2))
4039 return false;
4040 break;
4041 case FIELD_LOC_KIND_PHYSNAME:
4042 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4043 FIELD_STATIC_PHYSNAME (*field2)))
4044 return false;
4045 break;
4046 case FIELD_LOC_KIND_DWARF_BLOCK:
4047 {
4048 struct dwarf2_locexpr_baton *block1, *block2;
4049
4050 block1 = FIELD_DWARF_BLOCK (*field1);
4051 block2 = FIELD_DWARF_BLOCK (*field2);
4052 if (block1->per_cu != block2->per_cu
4053 || block1->size != block2->size
4054 || memcmp (block1->data, block2->data, block1->size) != 0)
4055 return false;
4056 }
4057 break;
4058 default:
4059 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4060 "%d by check_types_equal"),
4061 FIELD_LOC_KIND (*field1));
4062 }
4063
4064 worklist->emplace_back (field1->type (), field2->type ());
4065 }
4066 }
4067
4068 if (TYPE_TARGET_TYPE (type1) != NULL)
4069 {
4070 if (TYPE_TARGET_TYPE (type2) == NULL)
4071 return false;
4072
4073 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4074 TYPE_TARGET_TYPE (type2));
4075 }
4076 else if (TYPE_TARGET_TYPE (type2) != NULL)
4077 return false;
4078
4079 return true;
4080 }
4081
4082 /* Check types on a worklist for equality. Returns false if any pair
4083 is not equal, true if they are all considered equal. */
4084
4085 static bool
4086 check_types_worklist (std::vector<type_equality_entry> *worklist,
4087 gdb::bcache *cache)
4088 {
4089 while (!worklist->empty ())
4090 {
4091 int added;
4092
4093 struct type_equality_entry entry = std::move (worklist->back ());
4094 worklist->pop_back ();
4095
4096 /* If the type pair has already been visited, we know it is
4097 ok. */
4098 cache->insert (&entry, sizeof (entry), &added);
4099 if (!added)
4100 continue;
4101
4102 if (!check_types_equal (entry.type1, entry.type2, worklist))
4103 return false;
4104 }
4105
4106 return true;
4107 }
4108
4109 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4110 "deep comparison". Otherwise return false. */
4111
4112 bool
4113 types_deeply_equal (struct type *type1, struct type *type2)
4114 {
4115 std::vector<type_equality_entry> worklist;
4116
4117 gdb_assert (type1 != NULL && type2 != NULL);
4118
4119 /* Early exit for the simple case. */
4120 if (type1 == type2)
4121 return true;
4122
4123 gdb::bcache cache (nullptr, nullptr);
4124 worklist.emplace_back (type1, type2);
4125 return check_types_worklist (&worklist, &cache);
4126 }
4127
4128 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4129 Otherwise return one. */
4130
4131 int
4132 type_not_allocated (const struct type *type)
4133 {
4134 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4135
4136 return (prop != nullptr && prop->kind () == PROP_CONST
4137 && prop->const_val () == 0);
4138 }
4139
4140 /* Associated status of type TYPE. Return zero if type TYPE is associated.
4141 Otherwise return one. */
4142
4143 int
4144 type_not_associated (const struct type *type)
4145 {
4146 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4147
4148 return (prop != nullptr && prop->kind () == PROP_CONST
4149 && prop->const_val () == 0);
4150 }
4151
4152 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4153
4154 static struct rank
4155 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4156 {
4157 struct rank rank = {0,0};
4158
4159 switch (arg->code ())
4160 {
4161 case TYPE_CODE_PTR:
4162
4163 /* Allowed pointer conversions are:
4164 (a) pointer to void-pointer conversion. */
4165 if (TYPE_TARGET_TYPE (parm)->code () == TYPE_CODE_VOID)
4166 return VOID_PTR_CONVERSION_BADNESS;
4167
4168 /* (b) pointer to ancestor-pointer conversion. */
4169 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4170 TYPE_TARGET_TYPE (arg),
4171 0);
4172 if (rank.subrank >= 0)
4173 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4174
4175 return INCOMPATIBLE_TYPE_BADNESS;
4176 case TYPE_CODE_ARRAY:
4177 {
4178 struct type *t1 = TYPE_TARGET_TYPE (parm);
4179 struct type *t2 = TYPE_TARGET_TYPE (arg);
4180
4181 if (types_equal (t1, t2))
4182 {
4183 /* Make sure they are CV equal. */
4184 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4185 rank.subrank |= CV_CONVERSION_CONST;
4186 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4187 rank.subrank |= CV_CONVERSION_VOLATILE;
4188 if (rank.subrank != 0)
4189 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4190 return EXACT_MATCH_BADNESS;
4191 }
4192 return INCOMPATIBLE_TYPE_BADNESS;
4193 }
4194 case TYPE_CODE_FUNC:
4195 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4196 case TYPE_CODE_INT:
4197 if (value != NULL && value_type (value)->code () == TYPE_CODE_INT)
4198 {
4199 if (value_as_long (value) == 0)
4200 {
4201 /* Null pointer conversion: allow it to be cast to a pointer.
4202 [4.10.1 of C++ standard draft n3290] */
4203 return NULL_POINTER_CONVERSION_BADNESS;
4204 }
4205 else
4206 {
4207 /* If type checking is disabled, allow the conversion. */
4208 if (!strict_type_checking)
4209 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4210 }
4211 }
4212 /* fall through */
4213 case TYPE_CODE_ENUM:
4214 case TYPE_CODE_FLAGS:
4215 case TYPE_CODE_CHAR:
4216 case TYPE_CODE_RANGE:
4217 case TYPE_CODE_BOOL:
4218 default:
4219 return INCOMPATIBLE_TYPE_BADNESS;
4220 }
4221 }
4222
4223 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4224
4225 static struct rank
4226 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4227 {
4228 switch (arg->code ())
4229 {
4230 case TYPE_CODE_PTR:
4231 case TYPE_CODE_ARRAY:
4232 return rank_one_type (TYPE_TARGET_TYPE (parm),
4233 TYPE_TARGET_TYPE (arg), NULL);
4234 default:
4235 return INCOMPATIBLE_TYPE_BADNESS;
4236 }
4237 }
4238
4239 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4240
4241 static struct rank
4242 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4243 {
4244 switch (arg->code ())
4245 {
4246 case TYPE_CODE_PTR: /* funcptr -> func */
4247 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4248 default:
4249 return INCOMPATIBLE_TYPE_BADNESS;
4250 }
4251 }
4252
4253 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4254
4255 static struct rank
4256 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4257 {
4258 switch (arg->code ())
4259 {
4260 case TYPE_CODE_INT:
4261 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4262 {
4263 /* Deal with signed, unsigned, and plain chars and
4264 signed and unsigned ints. */
4265 if (TYPE_NOSIGN (parm))
4266 {
4267 /* This case only for character types. */
4268 if (TYPE_NOSIGN (arg))
4269 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4270 else /* signed/unsigned char -> plain char */
4271 return INTEGER_CONVERSION_BADNESS;
4272 }
4273 else if (TYPE_UNSIGNED (parm))
4274 {
4275 if (TYPE_UNSIGNED (arg))
4276 {
4277 /* unsigned int -> unsigned int, or
4278 unsigned long -> unsigned long */
4279 if (integer_types_same_name_p (parm->name (),
4280 arg->name ()))
4281 return EXACT_MATCH_BADNESS;
4282 else if (integer_types_same_name_p (arg->name (),
4283 "int")
4284 && integer_types_same_name_p (parm->name (),
4285 "long"))
4286 /* unsigned int -> unsigned long */
4287 return INTEGER_PROMOTION_BADNESS;
4288 else
4289 /* unsigned long -> unsigned int */
4290 return INTEGER_CONVERSION_BADNESS;
4291 }
4292 else
4293 {
4294 if (integer_types_same_name_p (arg->name (),
4295 "long")
4296 && integer_types_same_name_p (parm->name (),
4297 "int"))
4298 /* signed long -> unsigned int */
4299 return INTEGER_CONVERSION_BADNESS;
4300 else
4301 /* signed int/long -> unsigned int/long */
4302 return INTEGER_CONVERSION_BADNESS;
4303 }
4304 }
4305 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4306 {
4307 if (integer_types_same_name_p (parm->name (),
4308 arg->name ()))
4309 return EXACT_MATCH_BADNESS;
4310 else if (integer_types_same_name_p (arg->name (),
4311 "int")
4312 && integer_types_same_name_p (parm->name (),
4313 "long"))
4314 return INTEGER_PROMOTION_BADNESS;
4315 else
4316 return INTEGER_CONVERSION_BADNESS;
4317 }
4318 else
4319 return INTEGER_CONVERSION_BADNESS;
4320 }
4321 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4322 return INTEGER_PROMOTION_BADNESS;
4323 else
4324 return INTEGER_CONVERSION_BADNESS;
4325 case TYPE_CODE_ENUM:
4326 case TYPE_CODE_FLAGS:
4327 case TYPE_CODE_CHAR:
4328 case TYPE_CODE_RANGE:
4329 case TYPE_CODE_BOOL:
4330 if (TYPE_DECLARED_CLASS (arg))
4331 return INCOMPATIBLE_TYPE_BADNESS;
4332 return INTEGER_PROMOTION_BADNESS;
4333 case TYPE_CODE_FLT:
4334 return INT_FLOAT_CONVERSION_BADNESS;
4335 case TYPE_CODE_PTR:
4336 return NS_POINTER_CONVERSION_BADNESS;
4337 default:
4338 return INCOMPATIBLE_TYPE_BADNESS;
4339 }
4340 }
4341
4342 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4343
4344 static struct rank
4345 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4346 {
4347 switch (arg->code ())
4348 {
4349 case TYPE_CODE_INT:
4350 case TYPE_CODE_CHAR:
4351 case TYPE_CODE_RANGE:
4352 case TYPE_CODE_BOOL:
4353 case TYPE_CODE_ENUM:
4354 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4355 return INCOMPATIBLE_TYPE_BADNESS;
4356 return INTEGER_CONVERSION_BADNESS;
4357 case TYPE_CODE_FLT:
4358 return INT_FLOAT_CONVERSION_BADNESS;
4359 default:
4360 return INCOMPATIBLE_TYPE_BADNESS;
4361 }
4362 }
4363
4364 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4365
4366 static struct rank
4367 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4368 {
4369 switch (arg->code ())
4370 {
4371 case TYPE_CODE_RANGE:
4372 case TYPE_CODE_BOOL:
4373 case TYPE_CODE_ENUM:
4374 if (TYPE_DECLARED_CLASS (arg))
4375 return INCOMPATIBLE_TYPE_BADNESS;
4376 return INTEGER_CONVERSION_BADNESS;
4377 case TYPE_CODE_FLT:
4378 return INT_FLOAT_CONVERSION_BADNESS;
4379 case TYPE_CODE_INT:
4380 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4381 return INTEGER_CONVERSION_BADNESS;
4382 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4383 return INTEGER_PROMOTION_BADNESS;
4384 /* fall through */
4385 case TYPE_CODE_CHAR:
4386 /* Deal with signed, unsigned, and plain chars for C++ and
4387 with int cases falling through from previous case. */
4388 if (TYPE_NOSIGN (parm))
4389 {
4390 if (TYPE_NOSIGN (arg))
4391 return EXACT_MATCH_BADNESS;
4392 else
4393 return INTEGER_CONVERSION_BADNESS;
4394 }
4395 else if (TYPE_UNSIGNED (parm))
4396 {
4397 if (TYPE_UNSIGNED (arg))
4398 return EXACT_MATCH_BADNESS;
4399 else
4400 return INTEGER_PROMOTION_BADNESS;
4401 }
4402 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4403 return EXACT_MATCH_BADNESS;
4404 else
4405 return INTEGER_CONVERSION_BADNESS;
4406 default:
4407 return INCOMPATIBLE_TYPE_BADNESS;
4408 }
4409 }
4410
4411 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4412
4413 static struct rank
4414 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4415 {
4416 switch (arg->code ())
4417 {
4418 case TYPE_CODE_INT:
4419 case TYPE_CODE_CHAR:
4420 case TYPE_CODE_RANGE:
4421 case TYPE_CODE_BOOL:
4422 case TYPE_CODE_ENUM:
4423 return INTEGER_CONVERSION_BADNESS;
4424 case TYPE_CODE_FLT:
4425 return INT_FLOAT_CONVERSION_BADNESS;
4426 default:
4427 return INCOMPATIBLE_TYPE_BADNESS;
4428 }
4429 }
4430
4431 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4432
4433 static struct rank
4434 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4435 {
4436 switch (arg->code ())
4437 {
4438 /* n3290 draft, section 4.12.1 (conv.bool):
4439
4440 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4441 pointer to member type can be converted to a prvalue of type
4442 bool. A zero value, null pointer value, or null member pointer
4443 value is converted to false; any other value is converted to
4444 true. A prvalue of type std::nullptr_t can be converted to a
4445 prvalue of type bool; the resulting value is false." */
4446 case TYPE_CODE_INT:
4447 case TYPE_CODE_CHAR:
4448 case TYPE_CODE_ENUM:
4449 case TYPE_CODE_FLT:
4450 case TYPE_CODE_MEMBERPTR:
4451 case TYPE_CODE_PTR:
4452 return BOOL_CONVERSION_BADNESS;
4453 case TYPE_CODE_RANGE:
4454 return INCOMPATIBLE_TYPE_BADNESS;
4455 case TYPE_CODE_BOOL:
4456 return EXACT_MATCH_BADNESS;
4457 default:
4458 return INCOMPATIBLE_TYPE_BADNESS;
4459 }
4460 }
4461
4462 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4463
4464 static struct rank
4465 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4466 {
4467 switch (arg->code ())
4468 {
4469 case TYPE_CODE_FLT:
4470 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4471 return FLOAT_PROMOTION_BADNESS;
4472 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4473 return EXACT_MATCH_BADNESS;
4474 else
4475 return FLOAT_CONVERSION_BADNESS;
4476 case TYPE_CODE_INT:
4477 case TYPE_CODE_BOOL:
4478 case TYPE_CODE_ENUM:
4479 case TYPE_CODE_RANGE:
4480 case TYPE_CODE_CHAR:
4481 return INT_FLOAT_CONVERSION_BADNESS;
4482 default:
4483 return INCOMPATIBLE_TYPE_BADNESS;
4484 }
4485 }
4486
4487 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4488
4489 static struct rank
4490 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4491 {
4492 switch (arg->code ())
4493 { /* Strictly not needed for C++, but... */
4494 case TYPE_CODE_FLT:
4495 return FLOAT_PROMOTION_BADNESS;
4496 case TYPE_CODE_COMPLEX:
4497 return EXACT_MATCH_BADNESS;
4498 default:
4499 return INCOMPATIBLE_TYPE_BADNESS;
4500 }
4501 }
4502
4503 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4504
4505 static struct rank
4506 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4507 {
4508 struct rank rank = {0, 0};
4509
4510 switch (arg->code ())
4511 {
4512 case TYPE_CODE_STRUCT:
4513 /* Check for derivation */
4514 rank.subrank = distance_to_ancestor (parm, arg, 0);
4515 if (rank.subrank >= 0)
4516 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4517 /* fall through */
4518 default:
4519 return INCOMPATIBLE_TYPE_BADNESS;
4520 }
4521 }
4522
4523 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4524
4525 static struct rank
4526 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4527 {
4528 switch (arg->code ())
4529 {
4530 /* Not in C++ */
4531 case TYPE_CODE_SET:
4532 return rank_one_type (parm->field (0).type (),
4533 arg->field (0).type (), NULL);
4534 default:
4535 return INCOMPATIBLE_TYPE_BADNESS;
4536 }
4537 }
4538
4539 /* Compare one type (PARM) for compatibility with another (ARG).
4540 * PARM is intended to be the parameter type of a function; and
4541 * ARG is the supplied argument's type. This function tests if
4542 * the latter can be converted to the former.
4543 * VALUE is the argument's value or NULL if none (or called recursively)
4544 *
4545 * Return 0 if they are identical types;
4546 * Otherwise, return an integer which corresponds to how compatible
4547 * PARM is to ARG. The higher the return value, the worse the match.
4548 * Generally the "bad" conversions are all uniformly assigned a 100. */
4549
4550 struct rank
4551 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4552 {
4553 struct rank rank = {0,0};
4554
4555 /* Resolve typedefs */
4556 if (parm->code () == TYPE_CODE_TYPEDEF)
4557 parm = check_typedef (parm);
4558 if (arg->code () == TYPE_CODE_TYPEDEF)
4559 arg = check_typedef (arg);
4560
4561 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4562 {
4563 if (VALUE_LVAL (value) == not_lval)
4564 {
4565 /* Rvalues should preferably bind to rvalue references or const
4566 lvalue references. */
4567 if (parm->code () == TYPE_CODE_RVALUE_REF)
4568 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4569 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4570 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4571 else
4572 return INCOMPATIBLE_TYPE_BADNESS;
4573 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4574 }
4575 else
4576 {
4577 /* It's illegal to pass an lvalue as an rvalue. */
4578 if (parm->code () == TYPE_CODE_RVALUE_REF)
4579 return INCOMPATIBLE_TYPE_BADNESS;
4580 }
4581 }
4582
4583 if (types_equal (parm, arg))
4584 {
4585 struct type *t1 = parm;
4586 struct type *t2 = arg;
4587
4588 /* For pointers and references, compare target type. */
4589 if (parm->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4590 {
4591 t1 = TYPE_TARGET_TYPE (parm);
4592 t2 = TYPE_TARGET_TYPE (arg);
4593 }
4594
4595 /* Make sure they are CV equal, too. */
4596 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4597 rank.subrank |= CV_CONVERSION_CONST;
4598 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4599 rank.subrank |= CV_CONVERSION_VOLATILE;
4600 if (rank.subrank != 0)
4601 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4602 return EXACT_MATCH_BADNESS;
4603 }
4604
4605 /* See through references, since we can almost make non-references
4606 references. */
4607
4608 if (TYPE_IS_REFERENCE (arg))
4609 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4610 REFERENCE_SEE_THROUGH_BADNESS));
4611 if (TYPE_IS_REFERENCE (parm))
4612 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4613 REFERENCE_SEE_THROUGH_BADNESS));
4614 if (overload_debug)
4615 /* Debugging only. */
4616 fprintf_filtered (gdb_stderr,
4617 "------ Arg is %s [%d], parm is %s [%d]\n",
4618 arg->name (), arg->code (),
4619 parm->name (), parm->code ());
4620
4621 /* x -> y means arg of type x being supplied for parameter of type y. */
4622
4623 switch (parm->code ())
4624 {
4625 case TYPE_CODE_PTR:
4626 return rank_one_type_parm_ptr (parm, arg, value);
4627 case TYPE_CODE_ARRAY:
4628 return rank_one_type_parm_array (parm, arg, value);
4629 case TYPE_CODE_FUNC:
4630 return rank_one_type_parm_func (parm, arg, value);
4631 case TYPE_CODE_INT:
4632 return rank_one_type_parm_int (parm, arg, value);
4633 case TYPE_CODE_ENUM:
4634 return rank_one_type_parm_enum (parm, arg, value);
4635 case TYPE_CODE_CHAR:
4636 return rank_one_type_parm_char (parm, arg, value);
4637 case TYPE_CODE_RANGE:
4638 return rank_one_type_parm_range (parm, arg, value);
4639 case TYPE_CODE_BOOL:
4640 return rank_one_type_parm_bool (parm, arg, value);
4641 case TYPE_CODE_FLT:
4642 return rank_one_type_parm_float (parm, arg, value);
4643 case TYPE_CODE_COMPLEX:
4644 return rank_one_type_parm_complex (parm, arg, value);
4645 case TYPE_CODE_STRUCT:
4646 return rank_one_type_parm_struct (parm, arg, value);
4647 case TYPE_CODE_SET:
4648 return rank_one_type_parm_set (parm, arg, value);
4649 default:
4650 return INCOMPATIBLE_TYPE_BADNESS;
4651 } /* switch (arg->code ()) */
4652 }
4653
4654 /* End of functions for overload resolution. */
4655 \f
4656 /* Routines to pretty-print types. */
4657
4658 static void
4659 print_bit_vector (B_TYPE *bits, int nbits)
4660 {
4661 int bitno;
4662
4663 for (bitno = 0; bitno < nbits; bitno++)
4664 {
4665 if ((bitno % 8) == 0)
4666 {
4667 puts_filtered (" ");
4668 }
4669 if (B_TST (bits, bitno))
4670 printf_filtered (("1"));
4671 else
4672 printf_filtered (("0"));
4673 }
4674 }
4675
4676 /* Note the first arg should be the "this" pointer, we may not want to
4677 include it since we may get into a infinitely recursive
4678 situation. */
4679
4680 static void
4681 print_args (struct field *args, int nargs, int spaces)
4682 {
4683 if (args != NULL)
4684 {
4685 int i;
4686
4687 for (i = 0; i < nargs; i++)
4688 {
4689 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4690 args[i].name != NULL ? args[i].name : "<NULL>");
4691 recursive_dump_type (args[i].type (), spaces + 2);
4692 }
4693 }
4694 }
4695
4696 int
4697 field_is_static (struct field *f)
4698 {
4699 /* "static" fields are the fields whose location is not relative
4700 to the address of the enclosing struct. It would be nice to
4701 have a dedicated flag that would be set for static fields when
4702 the type is being created. But in practice, checking the field
4703 loc_kind should give us an accurate answer. */
4704 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4705 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4706 }
4707
4708 static void
4709 dump_fn_fieldlists (struct type *type, int spaces)
4710 {
4711 int method_idx;
4712 int overload_idx;
4713 struct fn_field *f;
4714
4715 printfi_filtered (spaces, "fn_fieldlists ");
4716 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4717 printf_filtered ("\n");
4718 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4719 {
4720 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4721 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4722 method_idx,
4723 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4724 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4725 gdb_stdout);
4726 printf_filtered (_(") length %d\n"),
4727 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4728 for (overload_idx = 0;
4729 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4730 overload_idx++)
4731 {
4732 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4733 overload_idx,
4734 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4735 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4736 gdb_stdout);
4737 printf_filtered (")\n");
4738 printfi_filtered (spaces + 8, "type ");
4739 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4740 gdb_stdout);
4741 printf_filtered ("\n");
4742
4743 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4744 spaces + 8 + 2);
4745
4746 printfi_filtered (spaces + 8, "args ");
4747 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4748 gdb_stdout);
4749 printf_filtered ("\n");
4750 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4751 TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (),
4752 spaces + 8 + 2);
4753 printfi_filtered (spaces + 8, "fcontext ");
4754 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4755 gdb_stdout);
4756 printf_filtered ("\n");
4757
4758 printfi_filtered (spaces + 8, "is_const %d\n",
4759 TYPE_FN_FIELD_CONST (f, overload_idx));
4760 printfi_filtered (spaces + 8, "is_volatile %d\n",
4761 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4762 printfi_filtered (spaces + 8, "is_private %d\n",
4763 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4764 printfi_filtered (spaces + 8, "is_protected %d\n",
4765 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4766 printfi_filtered (spaces + 8, "is_stub %d\n",
4767 TYPE_FN_FIELD_STUB (f, overload_idx));
4768 printfi_filtered (spaces + 8, "defaulted %d\n",
4769 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4770 printfi_filtered (spaces + 8, "is_deleted %d\n",
4771 TYPE_FN_FIELD_DELETED (f, overload_idx));
4772 printfi_filtered (spaces + 8, "voffset %u\n",
4773 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4774 }
4775 }
4776 }
4777
4778 static void
4779 print_cplus_stuff (struct type *type, int spaces)
4780 {
4781 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4782 printfi_filtered (spaces, "vptr_basetype ");
4783 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4784 puts_filtered ("\n");
4785 if (TYPE_VPTR_BASETYPE (type) != NULL)
4786 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4787
4788 printfi_filtered (spaces, "n_baseclasses %d\n",
4789 TYPE_N_BASECLASSES (type));
4790 printfi_filtered (spaces, "nfn_fields %d\n",
4791 TYPE_NFN_FIELDS (type));
4792 if (TYPE_N_BASECLASSES (type) > 0)
4793 {
4794 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4795 TYPE_N_BASECLASSES (type));
4796 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4797 gdb_stdout);
4798 printf_filtered (")");
4799
4800 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4801 TYPE_N_BASECLASSES (type));
4802 puts_filtered ("\n");
4803 }
4804 if (type->num_fields () > 0)
4805 {
4806 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4807 {
4808 printfi_filtered (spaces,
4809 "private_field_bits (%d bits at *",
4810 type->num_fields ());
4811 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4812 gdb_stdout);
4813 printf_filtered (")");
4814 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4815 type->num_fields ());
4816 puts_filtered ("\n");
4817 }
4818 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4819 {
4820 printfi_filtered (spaces,
4821 "protected_field_bits (%d bits at *",
4822 type->num_fields ());
4823 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4824 gdb_stdout);
4825 printf_filtered (")");
4826 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4827 type->num_fields ());
4828 puts_filtered ("\n");
4829 }
4830 }
4831 if (TYPE_NFN_FIELDS (type) > 0)
4832 {
4833 dump_fn_fieldlists (type, spaces);
4834 }
4835
4836 printfi_filtered (spaces, "calling_convention %d\n",
4837 TYPE_CPLUS_CALLING_CONVENTION (type));
4838 }
4839
4840 /* Print the contents of the TYPE's type_specific union, assuming that
4841 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4842
4843 static void
4844 print_gnat_stuff (struct type *type, int spaces)
4845 {
4846 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4847
4848 if (descriptive_type == NULL)
4849 printfi_filtered (spaces + 2, "no descriptive type\n");
4850 else
4851 {
4852 printfi_filtered (spaces + 2, "descriptive type\n");
4853 recursive_dump_type (descriptive_type, spaces + 4);
4854 }
4855 }
4856
4857 static struct obstack dont_print_type_obstack;
4858
4859 void
4860 recursive_dump_type (struct type *type, int spaces)
4861 {
4862 int idx;
4863
4864 if (spaces == 0)
4865 obstack_begin (&dont_print_type_obstack, 0);
4866
4867 if (type->num_fields () > 0
4868 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4869 {
4870 struct type **first_dont_print
4871 = (struct type **) obstack_base (&dont_print_type_obstack);
4872
4873 int i = (struct type **)
4874 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4875
4876 while (--i >= 0)
4877 {
4878 if (type == first_dont_print[i])
4879 {
4880 printfi_filtered (spaces, "type node ");
4881 gdb_print_host_address (type, gdb_stdout);
4882 printf_filtered (_(" <same as already seen type>\n"));
4883 return;
4884 }
4885 }
4886
4887 obstack_ptr_grow (&dont_print_type_obstack, type);
4888 }
4889
4890 printfi_filtered (spaces, "type node ");
4891 gdb_print_host_address (type, gdb_stdout);
4892 printf_filtered ("\n");
4893 printfi_filtered (spaces, "name '%s' (",
4894 type->name () ? type->name () : "<NULL>");
4895 gdb_print_host_address (type->name (), gdb_stdout);
4896 printf_filtered (")\n");
4897 printfi_filtered (spaces, "code 0x%x ", type->code ());
4898 switch (type->code ())
4899 {
4900 case TYPE_CODE_UNDEF:
4901 printf_filtered ("(TYPE_CODE_UNDEF)");
4902 break;
4903 case TYPE_CODE_PTR:
4904 printf_filtered ("(TYPE_CODE_PTR)");
4905 break;
4906 case TYPE_CODE_ARRAY:
4907 printf_filtered ("(TYPE_CODE_ARRAY)");
4908 break;
4909 case TYPE_CODE_STRUCT:
4910 printf_filtered ("(TYPE_CODE_STRUCT)");
4911 break;
4912 case TYPE_CODE_UNION:
4913 printf_filtered ("(TYPE_CODE_UNION)");
4914 break;
4915 case TYPE_CODE_ENUM:
4916 printf_filtered ("(TYPE_CODE_ENUM)");
4917 break;
4918 case TYPE_CODE_FLAGS:
4919 printf_filtered ("(TYPE_CODE_FLAGS)");
4920 break;
4921 case TYPE_CODE_FUNC:
4922 printf_filtered ("(TYPE_CODE_FUNC)");
4923 break;
4924 case TYPE_CODE_INT:
4925 printf_filtered ("(TYPE_CODE_INT)");
4926 break;
4927 case TYPE_CODE_FLT:
4928 printf_filtered ("(TYPE_CODE_FLT)");
4929 break;
4930 case TYPE_CODE_VOID:
4931 printf_filtered ("(TYPE_CODE_VOID)");
4932 break;
4933 case TYPE_CODE_SET:
4934 printf_filtered ("(TYPE_CODE_SET)");
4935 break;
4936 case TYPE_CODE_RANGE:
4937 printf_filtered ("(TYPE_CODE_RANGE)");
4938 break;
4939 case TYPE_CODE_STRING:
4940 printf_filtered ("(TYPE_CODE_STRING)");
4941 break;
4942 case TYPE_CODE_ERROR:
4943 printf_filtered ("(TYPE_CODE_ERROR)");
4944 break;
4945 case TYPE_CODE_MEMBERPTR:
4946 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4947 break;
4948 case TYPE_CODE_METHODPTR:
4949 printf_filtered ("(TYPE_CODE_METHODPTR)");
4950 break;
4951 case TYPE_CODE_METHOD:
4952 printf_filtered ("(TYPE_CODE_METHOD)");
4953 break;
4954 case TYPE_CODE_REF:
4955 printf_filtered ("(TYPE_CODE_REF)");
4956 break;
4957 case TYPE_CODE_CHAR:
4958 printf_filtered ("(TYPE_CODE_CHAR)");
4959 break;
4960 case TYPE_CODE_BOOL:
4961 printf_filtered ("(TYPE_CODE_BOOL)");
4962 break;
4963 case TYPE_CODE_COMPLEX:
4964 printf_filtered ("(TYPE_CODE_COMPLEX)");
4965 break;
4966 case TYPE_CODE_TYPEDEF:
4967 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4968 break;
4969 case TYPE_CODE_NAMESPACE:
4970 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4971 break;
4972 default:
4973 printf_filtered ("(UNKNOWN TYPE CODE)");
4974 break;
4975 }
4976 puts_filtered ("\n");
4977 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
4978 if (TYPE_OBJFILE_OWNED (type))
4979 {
4980 printfi_filtered (spaces, "objfile ");
4981 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4982 }
4983 else
4984 {
4985 printfi_filtered (spaces, "gdbarch ");
4986 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4987 }
4988 printf_filtered ("\n");
4989 printfi_filtered (spaces, "target_type ");
4990 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4991 printf_filtered ("\n");
4992 if (TYPE_TARGET_TYPE (type) != NULL)
4993 {
4994 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4995 }
4996 printfi_filtered (spaces, "pointer_type ");
4997 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4998 printf_filtered ("\n");
4999 printfi_filtered (spaces, "reference_type ");
5000 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
5001 printf_filtered ("\n");
5002 printfi_filtered (spaces, "type_chain ");
5003 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
5004 printf_filtered ("\n");
5005 printfi_filtered (spaces, "instance_flags 0x%x",
5006 TYPE_INSTANCE_FLAGS (type));
5007 if (TYPE_CONST (type))
5008 {
5009 puts_filtered (" TYPE_CONST");
5010 }
5011 if (TYPE_VOLATILE (type))
5012 {
5013 puts_filtered (" TYPE_VOLATILE");
5014 }
5015 if (TYPE_CODE_SPACE (type))
5016 {
5017 puts_filtered (" TYPE_CODE_SPACE");
5018 }
5019 if (TYPE_DATA_SPACE (type))
5020 {
5021 puts_filtered (" TYPE_DATA_SPACE");
5022 }
5023 if (TYPE_ADDRESS_CLASS_1 (type))
5024 {
5025 puts_filtered (" TYPE_ADDRESS_CLASS_1");
5026 }
5027 if (TYPE_ADDRESS_CLASS_2 (type))
5028 {
5029 puts_filtered (" TYPE_ADDRESS_CLASS_2");
5030 }
5031 if (TYPE_RESTRICT (type))
5032 {
5033 puts_filtered (" TYPE_RESTRICT");
5034 }
5035 if (TYPE_ATOMIC (type))
5036 {
5037 puts_filtered (" TYPE_ATOMIC");
5038 }
5039 puts_filtered ("\n");
5040
5041 printfi_filtered (spaces, "flags");
5042 if (TYPE_UNSIGNED (type))
5043 {
5044 puts_filtered (" TYPE_UNSIGNED");
5045 }
5046 if (TYPE_NOSIGN (type))
5047 {
5048 puts_filtered (" TYPE_NOSIGN");
5049 }
5050 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
5051 {
5052 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5053 }
5054 if (TYPE_STUB (type))
5055 {
5056 puts_filtered (" TYPE_STUB");
5057 }
5058 if (TYPE_TARGET_STUB (type))
5059 {
5060 puts_filtered (" TYPE_TARGET_STUB");
5061 }
5062 if (TYPE_PROTOTYPED (type))
5063 {
5064 puts_filtered (" TYPE_PROTOTYPED");
5065 }
5066 if (TYPE_VARARGS (type))
5067 {
5068 puts_filtered (" TYPE_VARARGS");
5069 }
5070 /* This is used for things like AltiVec registers on ppc. Gcc emits
5071 an attribute for the array type, which tells whether or not we
5072 have a vector, instead of a regular array. */
5073 if (TYPE_VECTOR (type))
5074 {
5075 puts_filtered (" TYPE_VECTOR");
5076 }
5077 if (TYPE_FIXED_INSTANCE (type))
5078 {
5079 puts_filtered (" TYPE_FIXED_INSTANCE");
5080 }
5081 if (TYPE_STUB_SUPPORTED (type))
5082 {
5083 puts_filtered (" TYPE_STUB_SUPPORTED");
5084 }
5085 if (TYPE_NOTTEXT (type))
5086 {
5087 puts_filtered (" TYPE_NOTTEXT");
5088 }
5089 puts_filtered ("\n");
5090 printfi_filtered (spaces, "nfields %d ", type->num_fields ());
5091 gdb_print_host_address (type->fields (), gdb_stdout);
5092 puts_filtered ("\n");
5093 for (idx = 0; idx < type->num_fields (); idx++)
5094 {
5095 if (type->code () == TYPE_CODE_ENUM)
5096 printfi_filtered (spaces + 2,
5097 "[%d] enumval %s type ",
5098 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5099 else
5100 printfi_filtered (spaces + 2,
5101 "[%d] bitpos %s bitsize %d type ",
5102 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
5103 TYPE_FIELD_BITSIZE (type, idx));
5104 gdb_print_host_address (type->field (idx).type (), gdb_stdout);
5105 printf_filtered (" name '%s' (",
5106 TYPE_FIELD_NAME (type, idx) != NULL
5107 ? TYPE_FIELD_NAME (type, idx)
5108 : "<NULL>");
5109 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
5110 printf_filtered (")\n");
5111 if (type->field (idx).type () != NULL)
5112 {
5113 recursive_dump_type (type->field (idx).type (), spaces + 4);
5114 }
5115 }
5116 if (type->code () == TYPE_CODE_RANGE)
5117 {
5118 printfi_filtered (spaces, "low %s%s high %s%s\n",
5119 plongest (type->bounds ()->low.const_val ()),
5120 (type->bounds ()->low.kind () == PROP_UNDEFINED
5121 ? " (undefined)" : ""),
5122 plongest (type->bounds ()->high.const_val ()),
5123 (type->bounds ()->high.kind () == PROP_UNDEFINED
5124 ? " (undefined)" : ""));
5125 }
5126
5127 switch (TYPE_SPECIFIC_FIELD (type))
5128 {
5129 case TYPE_SPECIFIC_CPLUS_STUFF:
5130 printfi_filtered (spaces, "cplus_stuff ");
5131 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5132 gdb_stdout);
5133 puts_filtered ("\n");
5134 print_cplus_stuff (type, spaces);
5135 break;
5136
5137 case TYPE_SPECIFIC_GNAT_STUFF:
5138 printfi_filtered (spaces, "gnat_stuff ");
5139 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5140 puts_filtered ("\n");
5141 print_gnat_stuff (type, spaces);
5142 break;
5143
5144 case TYPE_SPECIFIC_FLOATFORMAT:
5145 printfi_filtered (spaces, "floatformat ");
5146 if (TYPE_FLOATFORMAT (type) == NULL
5147 || TYPE_FLOATFORMAT (type)->name == NULL)
5148 puts_filtered ("(null)");
5149 else
5150 puts_filtered (TYPE_FLOATFORMAT (type)->name);
5151 puts_filtered ("\n");
5152 break;
5153
5154 case TYPE_SPECIFIC_FUNC:
5155 printfi_filtered (spaces, "calling_convention %d\n",
5156 TYPE_CALLING_CONVENTION (type));
5157 /* tail_call_list is not printed. */
5158 break;
5159
5160 case TYPE_SPECIFIC_SELF_TYPE:
5161 printfi_filtered (spaces, "self_type ");
5162 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5163 puts_filtered ("\n");
5164 break;
5165 }
5166
5167 if (spaces == 0)
5168 obstack_free (&dont_print_type_obstack, NULL);
5169 }
5170 \f
5171 /* Trivial helpers for the libiberty hash table, for mapping one
5172 type to another. */
5173
5174 struct type_pair : public allocate_on_obstack
5175 {
5176 type_pair (struct type *old_, struct type *newobj_)
5177 : old (old_), newobj (newobj_)
5178 {}
5179
5180 struct type * const old, * const newobj;
5181 };
5182
5183 static hashval_t
5184 type_pair_hash (const void *item)
5185 {
5186 const struct type_pair *pair = (const struct type_pair *) item;
5187
5188 return htab_hash_pointer (pair->old);
5189 }
5190
5191 static int
5192 type_pair_eq (const void *item_lhs, const void *item_rhs)
5193 {
5194 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5195 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
5196
5197 return lhs->old == rhs->old;
5198 }
5199
5200 /* Allocate the hash table used by copy_type_recursive to walk
5201 types without duplicates. We use OBJFILE's obstack, because
5202 OBJFILE is about to be deleted. */
5203
5204 htab_t
5205 create_copied_types_hash (struct objfile *objfile)
5206 {
5207 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5208 NULL, &objfile->objfile_obstack,
5209 hashtab_obstack_allocate,
5210 dummy_obstack_deallocate);
5211 }
5212
5213 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
5214
5215 static struct dynamic_prop_list *
5216 copy_dynamic_prop_list (struct obstack *objfile_obstack,
5217 struct dynamic_prop_list *list)
5218 {
5219 struct dynamic_prop_list *copy = list;
5220 struct dynamic_prop_list **node_ptr = &copy;
5221
5222 while (*node_ptr != NULL)
5223 {
5224 struct dynamic_prop_list *node_copy;
5225
5226 node_copy = ((struct dynamic_prop_list *)
5227 obstack_copy (objfile_obstack, *node_ptr,
5228 sizeof (struct dynamic_prop_list)));
5229 node_copy->prop = (*node_ptr)->prop;
5230 *node_ptr = node_copy;
5231
5232 node_ptr = &node_copy->next;
5233 }
5234
5235 return copy;
5236 }
5237
5238 /* Recursively copy (deep copy) TYPE, if it is associated with
5239 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5240 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5241 it is not associated with OBJFILE. */
5242
5243 struct type *
5244 copy_type_recursive (struct objfile *objfile,
5245 struct type *type,
5246 htab_t copied_types)
5247 {
5248 void **slot;
5249 struct type *new_type;
5250
5251 if (! TYPE_OBJFILE_OWNED (type))
5252 return type;
5253
5254 /* This type shouldn't be pointing to any types in other objfiles;
5255 if it did, the type might disappear unexpectedly. */
5256 gdb_assert (TYPE_OBJFILE (type) == objfile);
5257
5258 struct type_pair pair (type, nullptr);
5259
5260 slot = htab_find_slot (copied_types, &pair, INSERT);
5261 if (*slot != NULL)
5262 return ((struct type_pair *) *slot)->newobj;
5263
5264 new_type = alloc_type_arch (get_type_arch (type));
5265
5266 /* We must add the new type to the hash table immediately, in case
5267 we encounter this type again during a recursive call below. */
5268 struct type_pair *stored
5269 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5270
5271 *slot = stored;
5272
5273 /* Copy the common fields of types. For the main type, we simply
5274 copy the entire thing and then update specific fields as needed. */
5275 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5276 TYPE_OBJFILE_OWNED (new_type) = 0;
5277 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
5278
5279 if (type->name ())
5280 new_type->set_name (xstrdup (type->name ()));
5281
5282 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5283 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5284
5285 /* Copy the fields. */
5286 if (type->num_fields ())
5287 {
5288 int i, nfields;
5289
5290 nfields = type->num_fields ();
5291 new_type->set_fields
5292 ((struct field *)
5293 TYPE_ZALLOC (new_type, nfields * sizeof (struct field)));
5294
5295 for (i = 0; i < nfields; i++)
5296 {
5297 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5298 TYPE_FIELD_ARTIFICIAL (type, i);
5299 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5300 if (type->field (i).type ())
5301 new_type->field (i).set_type
5302 (copy_type_recursive (objfile, type->field (i).type (),
5303 copied_types));
5304 if (TYPE_FIELD_NAME (type, i))
5305 TYPE_FIELD_NAME (new_type, i) =
5306 xstrdup (TYPE_FIELD_NAME (type, i));
5307 switch (TYPE_FIELD_LOC_KIND (type, i))
5308 {
5309 case FIELD_LOC_KIND_BITPOS:
5310 SET_FIELD_BITPOS (new_type->field (i),
5311 TYPE_FIELD_BITPOS (type, i));
5312 break;
5313 case FIELD_LOC_KIND_ENUMVAL:
5314 SET_FIELD_ENUMVAL (new_type->field (i),
5315 TYPE_FIELD_ENUMVAL (type, i));
5316 break;
5317 case FIELD_LOC_KIND_PHYSADDR:
5318 SET_FIELD_PHYSADDR (new_type->field (i),
5319 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5320 break;
5321 case FIELD_LOC_KIND_PHYSNAME:
5322 SET_FIELD_PHYSNAME (new_type->field (i),
5323 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5324 i)));
5325 break;
5326 default:
5327 internal_error (__FILE__, __LINE__,
5328 _("Unexpected type field location kind: %d"),
5329 TYPE_FIELD_LOC_KIND (type, i));
5330 }
5331 }
5332 }
5333
5334 /* For range types, copy the bounds information. */
5335 if (type->code () == TYPE_CODE_RANGE)
5336 {
5337 range_bounds *bounds
5338 = ((struct range_bounds *) TYPE_ALLOC
5339 (new_type, sizeof (struct range_bounds)));
5340
5341 *bounds = *type->bounds ();
5342 new_type->set_bounds (bounds);
5343 }
5344
5345 if (type->main_type->dyn_prop_list != NULL)
5346 new_type->main_type->dyn_prop_list
5347 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5348 type->main_type->dyn_prop_list);
5349
5350
5351 /* Copy pointers to other types. */
5352 if (TYPE_TARGET_TYPE (type))
5353 TYPE_TARGET_TYPE (new_type) =
5354 copy_type_recursive (objfile,
5355 TYPE_TARGET_TYPE (type),
5356 copied_types);
5357
5358 /* Maybe copy the type_specific bits.
5359
5360 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5361 base classes and methods. There's no fundamental reason why we
5362 can't, but at the moment it is not needed. */
5363
5364 switch (TYPE_SPECIFIC_FIELD (type))
5365 {
5366 case TYPE_SPECIFIC_NONE:
5367 break;
5368 case TYPE_SPECIFIC_FUNC:
5369 INIT_FUNC_SPECIFIC (new_type);
5370 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5371 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5372 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5373 break;
5374 case TYPE_SPECIFIC_FLOATFORMAT:
5375 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5376 break;
5377 case TYPE_SPECIFIC_CPLUS_STUFF:
5378 INIT_CPLUS_SPECIFIC (new_type);
5379 break;
5380 case TYPE_SPECIFIC_GNAT_STUFF:
5381 INIT_GNAT_SPECIFIC (new_type);
5382 break;
5383 case TYPE_SPECIFIC_SELF_TYPE:
5384 set_type_self_type (new_type,
5385 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5386 copied_types));
5387 break;
5388 default:
5389 gdb_assert_not_reached ("bad type_specific_kind");
5390 }
5391
5392 return new_type;
5393 }
5394
5395 /* Make a copy of the given TYPE, except that the pointer & reference
5396 types are not preserved.
5397
5398 This function assumes that the given type has an associated objfile.
5399 This objfile is used to allocate the new type. */
5400
5401 struct type *
5402 copy_type (const struct type *type)
5403 {
5404 struct type *new_type;
5405
5406 gdb_assert (TYPE_OBJFILE_OWNED (type));
5407
5408 new_type = alloc_type_copy (type);
5409 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5410 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5411 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5412 sizeof (struct main_type));
5413 if (type->main_type->dyn_prop_list != NULL)
5414 new_type->main_type->dyn_prop_list
5415 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5416 type->main_type->dyn_prop_list);
5417
5418 return new_type;
5419 }
5420 \f
5421 /* Helper functions to initialize architecture-specific types. */
5422
5423 /* Allocate a type structure associated with GDBARCH and set its
5424 CODE, LENGTH, and NAME fields. */
5425
5426 struct type *
5427 arch_type (struct gdbarch *gdbarch,
5428 enum type_code code, int bit, const char *name)
5429 {
5430 struct type *type;
5431
5432 type = alloc_type_arch (gdbarch);
5433 set_type_code (type, code);
5434 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5435 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5436
5437 if (name)
5438 type->set_name (gdbarch_obstack_strdup (gdbarch, name));
5439
5440 return type;
5441 }
5442
5443 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5444 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5445 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5446
5447 struct type *
5448 arch_integer_type (struct gdbarch *gdbarch,
5449 int bit, int unsigned_p, const char *name)
5450 {
5451 struct type *t;
5452
5453 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5454 if (unsigned_p)
5455 TYPE_UNSIGNED (t) = 1;
5456
5457 return t;
5458 }
5459
5460 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5461 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5462 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5463
5464 struct type *
5465 arch_character_type (struct gdbarch *gdbarch,
5466 int bit, int unsigned_p, const char *name)
5467 {
5468 struct type *t;
5469
5470 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5471 if (unsigned_p)
5472 TYPE_UNSIGNED (t) = 1;
5473
5474 return t;
5475 }
5476
5477 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5478 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5479 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5480
5481 struct type *
5482 arch_boolean_type (struct gdbarch *gdbarch,
5483 int bit, int unsigned_p, const char *name)
5484 {
5485 struct type *t;
5486
5487 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5488 if (unsigned_p)
5489 TYPE_UNSIGNED (t) = 1;
5490
5491 return t;
5492 }
5493
5494 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5495 BIT is the type size in bits; if BIT equals -1, the size is
5496 determined by the floatformat. NAME is the type name. Set the
5497 TYPE_FLOATFORMAT from FLOATFORMATS. */
5498
5499 struct type *
5500 arch_float_type (struct gdbarch *gdbarch,
5501 int bit, const char *name,
5502 const struct floatformat **floatformats)
5503 {
5504 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5505 struct type *t;
5506
5507 bit = verify_floatformat (bit, fmt);
5508 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5509 TYPE_FLOATFORMAT (t) = fmt;
5510
5511 return t;
5512 }
5513
5514 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5515 BIT is the type size in bits. NAME is the type name. */
5516
5517 struct type *
5518 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5519 {
5520 struct type *t;
5521
5522 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5523 return t;
5524 }
5525
5526 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5527 BIT is the pointer type size in bits. NAME is the type name.
5528 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5529 TYPE_UNSIGNED flag. */
5530
5531 struct type *
5532 arch_pointer_type (struct gdbarch *gdbarch,
5533 int bit, const char *name, struct type *target_type)
5534 {
5535 struct type *t;
5536
5537 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5538 TYPE_TARGET_TYPE (t) = target_type;
5539 TYPE_UNSIGNED (t) = 1;
5540 return t;
5541 }
5542
5543 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5544 NAME is the type name. BIT is the size of the flag word in bits. */
5545
5546 struct type *
5547 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5548 {
5549 struct type *type;
5550
5551 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5552 TYPE_UNSIGNED (type) = 1;
5553 type->set_num_fields (0);
5554 /* Pre-allocate enough space assuming every field is one bit. */
5555 type->set_fields
5556 ((struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field)));
5557
5558 return type;
5559 }
5560
5561 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5562 position BITPOS is called NAME. Pass NAME as "" for fields that
5563 should not be printed. */
5564
5565 void
5566 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5567 struct type *field_type, const char *name)
5568 {
5569 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5570 int field_nr = type->num_fields ();
5571
5572 gdb_assert (type->code () == TYPE_CODE_FLAGS);
5573 gdb_assert (type->num_fields () + 1 <= type_bitsize);
5574 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5575 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5576 gdb_assert (name != NULL);
5577
5578 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5579 type->field (field_nr).set_type (field_type);
5580 SET_FIELD_BITPOS (type->field (field_nr), start_bitpos);
5581 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5582 type->set_num_fields (type->num_fields () + 1);
5583 }
5584
5585 /* Special version of append_flags_type_field to add a flag field.
5586 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5587 position BITPOS is called NAME. */
5588
5589 void
5590 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5591 {
5592 struct gdbarch *gdbarch = get_type_arch (type);
5593
5594 append_flags_type_field (type, bitpos, 1,
5595 builtin_type (gdbarch)->builtin_bool,
5596 name);
5597 }
5598
5599 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5600 specified by CODE) associated with GDBARCH. NAME is the type name. */
5601
5602 struct type *
5603 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5604 enum type_code code)
5605 {
5606 struct type *t;
5607
5608 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5609 t = arch_type (gdbarch, code, 0, NULL);
5610 t->set_name (name);
5611 INIT_CPLUS_SPECIFIC (t);
5612 return t;
5613 }
5614
5615 /* Add new field with name NAME and type FIELD to composite type T.
5616 Do not set the field's position or adjust the type's length;
5617 the caller should do so. Return the new field. */
5618
5619 struct field *
5620 append_composite_type_field_raw (struct type *t, const char *name,
5621 struct type *field)
5622 {
5623 struct field *f;
5624
5625 t->set_num_fields (t->num_fields () + 1);
5626 t->set_fields (XRESIZEVEC (struct field, t->fields (),
5627 t->num_fields ()));
5628 f = &t->field (t->num_fields () - 1);
5629 memset (f, 0, sizeof f[0]);
5630 f[0].set_type (field);
5631 FIELD_NAME (f[0]) = name;
5632 return f;
5633 }
5634
5635 /* Add new field with name NAME and type FIELD to composite type T.
5636 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5637
5638 void
5639 append_composite_type_field_aligned (struct type *t, const char *name,
5640 struct type *field, int alignment)
5641 {
5642 struct field *f = append_composite_type_field_raw (t, name, field);
5643
5644 if (t->code () == TYPE_CODE_UNION)
5645 {
5646 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5647 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5648 }
5649 else if (t->code () == TYPE_CODE_STRUCT)
5650 {
5651 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5652 if (t->num_fields () > 1)
5653 {
5654 SET_FIELD_BITPOS (f[0],
5655 (FIELD_BITPOS (f[-1])
5656 + (TYPE_LENGTH (f[-1].type ())
5657 * TARGET_CHAR_BIT)));
5658
5659 if (alignment)
5660 {
5661 int left;
5662
5663 alignment *= TARGET_CHAR_BIT;
5664 left = FIELD_BITPOS (f[0]) % alignment;
5665
5666 if (left)
5667 {
5668 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5669 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5670 }
5671 }
5672 }
5673 }
5674 }
5675
5676 /* Add new field with name NAME and type FIELD to composite type T. */
5677
5678 void
5679 append_composite_type_field (struct type *t, const char *name,
5680 struct type *field)
5681 {
5682 append_composite_type_field_aligned (t, name, field, 0);
5683 }
5684
5685 static struct gdbarch_data *gdbtypes_data;
5686
5687 const struct builtin_type *
5688 builtin_type (struct gdbarch *gdbarch)
5689 {
5690 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5691 }
5692
5693 static void *
5694 gdbtypes_post_init (struct gdbarch *gdbarch)
5695 {
5696 struct builtin_type *builtin_type
5697 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5698
5699 /* Basic types. */
5700 builtin_type->builtin_void
5701 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5702 builtin_type->builtin_char
5703 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5704 !gdbarch_char_signed (gdbarch), "char");
5705 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5706 builtin_type->builtin_signed_char
5707 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5708 0, "signed char");
5709 builtin_type->builtin_unsigned_char
5710 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5711 1, "unsigned char");
5712 builtin_type->builtin_short
5713 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5714 0, "short");
5715 builtin_type->builtin_unsigned_short
5716 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5717 1, "unsigned short");
5718 builtin_type->builtin_int
5719 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5720 0, "int");
5721 builtin_type->builtin_unsigned_int
5722 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5723 1, "unsigned int");
5724 builtin_type->builtin_long
5725 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5726 0, "long");
5727 builtin_type->builtin_unsigned_long
5728 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5729 1, "unsigned long");
5730 builtin_type->builtin_long_long
5731 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5732 0, "long long");
5733 builtin_type->builtin_unsigned_long_long
5734 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5735 1, "unsigned long long");
5736 builtin_type->builtin_half
5737 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5738 "half", gdbarch_half_format (gdbarch));
5739 builtin_type->builtin_float
5740 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5741 "float", gdbarch_float_format (gdbarch));
5742 builtin_type->builtin_double
5743 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5744 "double", gdbarch_double_format (gdbarch));
5745 builtin_type->builtin_long_double
5746 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5747 "long double", gdbarch_long_double_format (gdbarch));
5748 builtin_type->builtin_complex
5749 = init_complex_type ("complex", builtin_type->builtin_float);
5750 builtin_type->builtin_double_complex
5751 = init_complex_type ("double complex", builtin_type->builtin_double);
5752 builtin_type->builtin_string
5753 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5754 builtin_type->builtin_bool
5755 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5756
5757 /* The following three are about decimal floating point types, which
5758 are 32-bits, 64-bits and 128-bits respectively. */
5759 builtin_type->builtin_decfloat
5760 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5761 builtin_type->builtin_decdouble
5762 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5763 builtin_type->builtin_declong
5764 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5765
5766 /* "True" character types. */
5767 builtin_type->builtin_true_char
5768 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5769 builtin_type->builtin_true_unsigned_char
5770 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5771
5772 /* Fixed-size integer types. */
5773 builtin_type->builtin_int0
5774 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5775 builtin_type->builtin_int8
5776 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5777 builtin_type->builtin_uint8
5778 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5779 builtin_type->builtin_int16
5780 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5781 builtin_type->builtin_uint16
5782 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5783 builtin_type->builtin_int24
5784 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5785 builtin_type->builtin_uint24
5786 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5787 builtin_type->builtin_int32
5788 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5789 builtin_type->builtin_uint32
5790 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5791 builtin_type->builtin_int64
5792 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5793 builtin_type->builtin_uint64
5794 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5795 builtin_type->builtin_int128
5796 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5797 builtin_type->builtin_uint128
5798 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5799 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5800 TYPE_INSTANCE_FLAG_NOTTEXT;
5801 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5802 TYPE_INSTANCE_FLAG_NOTTEXT;
5803
5804 /* Wide character types. */
5805 builtin_type->builtin_char16
5806 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5807 builtin_type->builtin_char32
5808 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5809 builtin_type->builtin_wchar
5810 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5811 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5812
5813 /* Default data/code pointer types. */
5814 builtin_type->builtin_data_ptr
5815 = lookup_pointer_type (builtin_type->builtin_void);
5816 builtin_type->builtin_func_ptr
5817 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5818 builtin_type->builtin_func_func
5819 = lookup_function_type (builtin_type->builtin_func_ptr);
5820
5821 /* This type represents a GDB internal function. */
5822 builtin_type->internal_fn
5823 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5824 "<internal function>");
5825
5826 /* This type represents an xmethod. */
5827 builtin_type->xmethod
5828 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5829
5830 return builtin_type;
5831 }
5832
5833 /* This set of objfile-based types is intended to be used by symbol
5834 readers as basic types. */
5835
5836 static const struct objfile_key<struct objfile_type,
5837 gdb::noop_deleter<struct objfile_type>>
5838 objfile_type_data;
5839
5840 const struct objfile_type *
5841 objfile_type (struct objfile *objfile)
5842 {
5843 struct gdbarch *gdbarch;
5844 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5845
5846 if (objfile_type)
5847 return objfile_type;
5848
5849 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5850 1, struct objfile_type);
5851
5852 /* Use the objfile architecture to determine basic type properties. */
5853 gdbarch = objfile->arch ();
5854
5855 /* Basic types. */
5856 objfile_type->builtin_void
5857 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5858 objfile_type->builtin_char
5859 = init_integer_type (objfile, TARGET_CHAR_BIT,
5860 !gdbarch_char_signed (gdbarch), "char");
5861 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5862 objfile_type->builtin_signed_char
5863 = init_integer_type (objfile, TARGET_CHAR_BIT,
5864 0, "signed char");
5865 objfile_type->builtin_unsigned_char
5866 = init_integer_type (objfile, TARGET_CHAR_BIT,
5867 1, "unsigned char");
5868 objfile_type->builtin_short
5869 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5870 0, "short");
5871 objfile_type->builtin_unsigned_short
5872 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5873 1, "unsigned short");
5874 objfile_type->builtin_int
5875 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5876 0, "int");
5877 objfile_type->builtin_unsigned_int
5878 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5879 1, "unsigned int");
5880 objfile_type->builtin_long
5881 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5882 0, "long");
5883 objfile_type->builtin_unsigned_long
5884 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5885 1, "unsigned long");
5886 objfile_type->builtin_long_long
5887 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5888 0, "long long");
5889 objfile_type->builtin_unsigned_long_long
5890 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5891 1, "unsigned long long");
5892 objfile_type->builtin_float
5893 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5894 "float", gdbarch_float_format (gdbarch));
5895 objfile_type->builtin_double
5896 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5897 "double", gdbarch_double_format (gdbarch));
5898 objfile_type->builtin_long_double
5899 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5900 "long double", gdbarch_long_double_format (gdbarch));
5901
5902 /* This type represents a type that was unrecognized in symbol read-in. */
5903 objfile_type->builtin_error
5904 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5905
5906 /* The following set of types is used for symbols with no
5907 debug information. */
5908 objfile_type->nodebug_text_symbol
5909 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5910 "<text variable, no debug info>");
5911 objfile_type->nodebug_text_gnu_ifunc_symbol
5912 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5913 "<text gnu-indirect-function variable, no debug info>");
5914 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5915 objfile_type->nodebug_got_plt_symbol
5916 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5917 "<text from jump slot in .got.plt, no debug info>",
5918 objfile_type->nodebug_text_symbol);
5919 objfile_type->nodebug_data_symbol
5920 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5921 objfile_type->nodebug_unknown_symbol
5922 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5923 objfile_type->nodebug_tls_symbol
5924 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5925
5926 /* NOTE: on some targets, addresses and pointers are not necessarily
5927 the same.
5928
5929 The upshot is:
5930 - gdb's `struct type' always describes the target's
5931 representation.
5932 - gdb's `struct value' objects should always hold values in
5933 target form.
5934 - gdb's CORE_ADDR values are addresses in the unified virtual
5935 address space that the assembler and linker work with. Thus,
5936 since target_read_memory takes a CORE_ADDR as an argument, it
5937 can access any memory on the target, even if the processor has
5938 separate code and data address spaces.
5939
5940 In this context, objfile_type->builtin_core_addr is a bit odd:
5941 it's a target type for a value the target will never see. It's
5942 only used to hold the values of (typeless) linker symbols, which
5943 are indeed in the unified virtual address space. */
5944
5945 objfile_type->builtin_core_addr
5946 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5947 "__CORE_ADDR");
5948
5949 objfile_type_data.set (objfile, objfile_type);
5950 return objfile_type;
5951 }
5952
5953 void _initialize_gdbtypes ();
5954 void
5955 _initialize_gdbtypes ()
5956 {
5957 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5958
5959 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5960 _("Set debugging of C++ overloading."),
5961 _("Show debugging of C++ overloading."),
5962 _("When enabled, ranking of the "
5963 "functions is displayed."),
5964 NULL,
5965 show_overload_debug,
5966 &setdebuglist, &showdebuglist);
5967
5968 /* Add user knob for controlling resolution of opaque types. */
5969 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5970 &opaque_type_resolution,
5971 _("Set resolution of opaque struct/class/union"
5972 " types (if set before loading symbols)."),
5973 _("Show resolution of opaque struct/class/union"
5974 " types (if set before loading symbols)."),
5975 NULL, NULL,
5976 show_opaque_type_resolution,
5977 &setlist, &showlist);
5978
5979 /* Add an option to permit non-strict type checking. */
5980 add_setshow_boolean_cmd ("type", class_support,
5981 &strict_type_checking,
5982 _("Set strict type checking."),
5983 _("Show strict type checking."),
5984 NULL, NULL,
5985 show_strict_type_checking,
5986 &setchecklist, &showchecklist);
5987 }
This page took 0.181496 seconds and 5 git commands to generate.