Move type_byte_order earlier
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static bool opaque_type_resolution = true;
120
121 /* See gdbtypes.h. */
122
123 unsigned int overload_debug = 0;
124
125 /* A flag to enable strict type checking. */
126
127 static bool strict_type_checking = true;
128
129 /* A function to show whether opaque types are resolved. */
130
131 static void
132 show_opaque_type_resolution (struct ui_file *file, int from_tty,
133 struct cmd_list_element *c,
134 const char *value)
135 {
136 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
137 "(if set before loading symbols) is %s.\n"),
138 value);
139 }
140
141 /* A function to show whether C++ overload debugging is enabled. */
142
143 static void
144 show_overload_debug (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
148 value);
149 }
150
151 /* A function to show the status of strict type checking. */
152
153 static void
154 show_strict_type_checking (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
158 }
159
160 \f
161 /* Allocate a new OBJFILE-associated type structure and fill it
162 with some defaults. Space for the type structure is allocated
163 on the objfile's objfile_obstack. */
164
165 struct type *
166 alloc_type (struct objfile *objfile)
167 {
168 struct type *type;
169
170 gdb_assert (objfile != NULL);
171
172 /* Alloc the structure and start off with all fields zeroed. */
173 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
174 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
175 struct main_type);
176 OBJSTAT (objfile, n_types++);
177
178 TYPE_OBJFILE_OWNED (type) = 1;
179 TYPE_OWNER (type).objfile = objfile;
180
181 /* Initialize the fields that might not be zero. */
182
183 TYPE_CODE (type) = TYPE_CODE_UNDEF;
184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
185
186 return type;
187 }
188
189 /* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
191 on the obstack associated with GDBARCH. */
192
193 struct type *
194 alloc_type_arch (struct gdbarch *gdbarch)
195 {
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
202 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
203 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_CHAIN (type) = type; /* Chain back to itself. */
212
213 return type;
214 }
215
216 /* If TYPE is objfile-associated, allocate a new type structure
217 associated with the same objfile. If TYPE is gdbarch-associated,
218 allocate a new type structure associated with the same gdbarch. */
219
220 struct type *
221 alloc_type_copy (const struct type *type)
222 {
223 if (TYPE_OBJFILE_OWNED (type))
224 return alloc_type (TYPE_OWNER (type).objfile);
225 else
226 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
227 }
228
229 /* If TYPE is gdbarch-associated, return that architecture.
230 If TYPE is objfile-associated, return that objfile's architecture. */
231
232 struct gdbarch *
233 get_type_arch (const struct type *type)
234 {
235 struct gdbarch *arch;
236
237 if (TYPE_OBJFILE_OWNED (type))
238 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
239 else
240 arch = TYPE_OWNER (type).gdbarch;
241
242 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
243 a gdbarch, however, this is very rare, and even then, in most cases
244 that get_type_arch is called, we assume that a non-NULL value is
245 returned. */
246 gdb_assert (arch != NULL);
247 return arch;
248 }
249
250 /* See gdbtypes.h. */
251
252 struct type *
253 get_target_type (struct type *type)
254 {
255 if (type != NULL)
256 {
257 type = TYPE_TARGET_TYPE (type);
258 if (type != NULL)
259 type = check_typedef (type);
260 }
261
262 return type;
263 }
264
265 /* See gdbtypes.h. */
266
267 unsigned int
268 type_length_units (struct type *type)
269 {
270 struct gdbarch *arch = get_type_arch (type);
271 int unit_size = gdbarch_addressable_memory_unit_size (arch);
272
273 return TYPE_LENGTH (type) / unit_size;
274 }
275
276 /* Alloc a new type instance structure, fill it with some defaults,
277 and point it at OLDTYPE. Allocate the new type instance from the
278 same place as OLDTYPE. */
279
280 static struct type *
281 alloc_type_instance (struct type *oldtype)
282 {
283 struct type *type;
284
285 /* Allocate the structure. */
286
287 if (! TYPE_OBJFILE_OWNED (oldtype))
288 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
289 else
290 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
291 struct type);
292
293 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
294
295 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
296
297 return type;
298 }
299
300 /* Clear all remnants of the previous type at TYPE, in preparation for
301 replacing it with something else. Preserve owner information. */
302
303 static void
304 smash_type (struct type *type)
305 {
306 int objfile_owned = TYPE_OBJFILE_OWNED (type);
307 union type_owner owner = TYPE_OWNER (type);
308
309 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
310
311 /* Restore owner information. */
312 TYPE_OBJFILE_OWNED (type) = objfile_owned;
313 TYPE_OWNER (type) = owner;
314
315 /* For now, delete the rings. */
316 TYPE_CHAIN (type) = type;
317
318 /* For now, leave the pointer/reference types alone. */
319 }
320
321 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
322 to a pointer to memory where the pointer type should be stored.
323 If *TYPEPTR is zero, update it to point to the pointer type we return.
324 We allocate new memory if needed. */
325
326 struct type *
327 make_pointer_type (struct type *type, struct type **typeptr)
328 {
329 struct type *ntype; /* New type */
330 struct type *chain;
331
332 ntype = TYPE_POINTER_TYPE (type);
333
334 if (ntype)
335 {
336 if (typeptr == 0)
337 return ntype; /* Don't care about alloc,
338 and have new type. */
339 else if (*typeptr == 0)
340 {
341 *typeptr = ntype; /* Tracking alloc, and have new type. */
342 return ntype;
343 }
344 }
345
346 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
347 {
348 ntype = alloc_type_copy (type);
349 if (typeptr)
350 *typeptr = ntype;
351 }
352 else /* We have storage, but need to reset it. */
353 {
354 ntype = *typeptr;
355 chain = TYPE_CHAIN (ntype);
356 smash_type (ntype);
357 TYPE_CHAIN (ntype) = chain;
358 }
359
360 TYPE_TARGET_TYPE (ntype) = type;
361 TYPE_POINTER_TYPE (type) = ntype;
362
363 /* FIXME! Assumes the machine has only one representation for pointers! */
364
365 TYPE_LENGTH (ntype)
366 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
367 TYPE_CODE (ntype) = TYPE_CODE_PTR;
368
369 /* Mark pointers as unsigned. The target converts between pointers
370 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
371 gdbarch_address_to_pointer. */
372 TYPE_UNSIGNED (ntype) = 1;
373
374 /* Update the length of all the other variants of this type. */
375 chain = TYPE_CHAIN (ntype);
376 while (chain != ntype)
377 {
378 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
379 chain = TYPE_CHAIN (chain);
380 }
381
382 return ntype;
383 }
384
385 /* Given a type TYPE, return a type of pointers to that type.
386 May need to construct such a type if this is the first use. */
387
388 struct type *
389 lookup_pointer_type (struct type *type)
390 {
391 return make_pointer_type (type, (struct type **) 0);
392 }
393
394 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
395 points to a pointer to memory where the reference type should be
396 stored. If *TYPEPTR is zero, update it to point to the reference
397 type we return. We allocate new memory if needed. REFCODE denotes
398 the kind of reference type to lookup (lvalue or rvalue reference). */
399
400 struct type *
401 make_reference_type (struct type *type, struct type **typeptr,
402 enum type_code refcode)
403 {
404 struct type *ntype; /* New type */
405 struct type **reftype;
406 struct type *chain;
407
408 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
409
410 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
411 : TYPE_RVALUE_REFERENCE_TYPE (type));
412
413 if (ntype)
414 {
415 if (typeptr == 0)
416 return ntype; /* Don't care about alloc,
417 and have new type. */
418 else if (*typeptr == 0)
419 {
420 *typeptr = ntype; /* Tracking alloc, and have new type. */
421 return ntype;
422 }
423 }
424
425 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
426 {
427 ntype = alloc_type_copy (type);
428 if (typeptr)
429 *typeptr = ntype;
430 }
431 else /* We have storage, but need to reset it. */
432 {
433 ntype = *typeptr;
434 chain = TYPE_CHAIN (ntype);
435 smash_type (ntype);
436 TYPE_CHAIN (ntype) = chain;
437 }
438
439 TYPE_TARGET_TYPE (ntype) = type;
440 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
441 : &TYPE_RVALUE_REFERENCE_TYPE (type));
442
443 *reftype = ntype;
444
445 /* FIXME! Assume the machine has only one representation for
446 references, and that it matches the (only) representation for
447 pointers! */
448
449 TYPE_LENGTH (ntype) =
450 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
451 TYPE_CODE (ntype) = refcode;
452
453 *reftype = ntype;
454
455 /* Update the length of all the other variants of this type. */
456 chain = TYPE_CHAIN (ntype);
457 while (chain != ntype)
458 {
459 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
460 chain = TYPE_CHAIN (chain);
461 }
462
463 return ntype;
464 }
465
466 /* Same as above, but caller doesn't care about memory allocation
467 details. */
468
469 struct type *
470 lookup_reference_type (struct type *type, enum type_code refcode)
471 {
472 return make_reference_type (type, (struct type **) 0, refcode);
473 }
474
475 /* Lookup the lvalue reference type for the type TYPE. */
476
477 struct type *
478 lookup_lvalue_reference_type (struct type *type)
479 {
480 return lookup_reference_type (type, TYPE_CODE_REF);
481 }
482
483 /* Lookup the rvalue reference type for the type TYPE. */
484
485 struct type *
486 lookup_rvalue_reference_type (struct type *type)
487 {
488 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
489 }
490
491 /* Lookup a function type that returns type TYPE. TYPEPTR, if
492 nonzero, points to a pointer to memory where the function type
493 should be stored. If *TYPEPTR is zero, update it to point to the
494 function type we return. We allocate new memory if needed. */
495
496 struct type *
497 make_function_type (struct type *type, struct type **typeptr)
498 {
499 struct type *ntype; /* New type */
500
501 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
502 {
503 ntype = alloc_type_copy (type);
504 if (typeptr)
505 *typeptr = ntype;
506 }
507 else /* We have storage, but need to reset it. */
508 {
509 ntype = *typeptr;
510 smash_type (ntype);
511 }
512
513 TYPE_TARGET_TYPE (ntype) = type;
514
515 TYPE_LENGTH (ntype) = 1;
516 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
517
518 INIT_FUNC_SPECIFIC (ntype);
519
520 return ntype;
521 }
522
523 /* Given a type TYPE, return a type of functions that return that type.
524 May need to construct such a type if this is the first use. */
525
526 struct type *
527 lookup_function_type (struct type *type)
528 {
529 return make_function_type (type, (struct type **) 0);
530 }
531
532 /* Given a type TYPE and argument types, return the appropriate
533 function type. If the final type in PARAM_TYPES is NULL, make a
534 varargs function. */
535
536 struct type *
537 lookup_function_type_with_arguments (struct type *type,
538 int nparams,
539 struct type **param_types)
540 {
541 struct type *fn = make_function_type (type, (struct type **) 0);
542 int i;
543
544 if (nparams > 0)
545 {
546 if (param_types[nparams - 1] == NULL)
547 {
548 --nparams;
549 TYPE_VARARGS (fn) = 1;
550 }
551 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
552 == TYPE_CODE_VOID)
553 {
554 --nparams;
555 /* Caller should have ensured this. */
556 gdb_assert (nparams == 0);
557 TYPE_PROTOTYPED (fn) = 1;
558 }
559 else
560 TYPE_PROTOTYPED (fn) = 1;
561 }
562
563 TYPE_NFIELDS (fn) = nparams;
564 TYPE_FIELDS (fn)
565 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
566 for (i = 0; i < nparams; ++i)
567 TYPE_FIELD_TYPE (fn, i) = param_types[i];
568
569 return fn;
570 }
571
572 /* Identify address space identifier by name --
573 return the integer flag defined in gdbtypes.h. */
574
575 int
576 address_space_name_to_int (struct gdbarch *gdbarch,
577 const char *space_identifier)
578 {
579 int type_flags;
580
581 /* Check for known address space delimiters. */
582 if (!strcmp (space_identifier, "code"))
583 return TYPE_INSTANCE_FLAG_CODE_SPACE;
584 else if (!strcmp (space_identifier, "data"))
585 return TYPE_INSTANCE_FLAG_DATA_SPACE;
586 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
587 && gdbarch_address_class_name_to_type_flags (gdbarch,
588 space_identifier,
589 &type_flags))
590 return type_flags;
591 else
592 error (_("Unknown address space specifier: \"%s\""), space_identifier);
593 }
594
595 /* Identify address space identifier by integer flag as defined in
596 gdbtypes.h -- return the string version of the adress space name. */
597
598 const char *
599 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
600 {
601 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
602 return "code";
603 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
604 return "data";
605 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
606 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
607 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
608 else
609 return NULL;
610 }
611
612 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
613
614 If STORAGE is non-NULL, create the new type instance there.
615 STORAGE must be in the same obstack as TYPE. */
616
617 static struct type *
618 make_qualified_type (struct type *type, int new_flags,
619 struct type *storage)
620 {
621 struct type *ntype;
622
623 ntype = type;
624 do
625 {
626 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
627 return ntype;
628 ntype = TYPE_CHAIN (ntype);
629 }
630 while (ntype != type);
631
632 /* Create a new type instance. */
633 if (storage == NULL)
634 ntype = alloc_type_instance (type);
635 else
636 {
637 /* If STORAGE was provided, it had better be in the same objfile
638 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
639 if one objfile is freed and the other kept, we'd have
640 dangling pointers. */
641 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
642
643 ntype = storage;
644 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
645 TYPE_CHAIN (ntype) = ntype;
646 }
647
648 /* Pointers or references to the original type are not relevant to
649 the new type. */
650 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
651 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
652
653 /* Chain the new qualified type to the old type. */
654 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
655 TYPE_CHAIN (type) = ntype;
656
657 /* Now set the instance flags and return the new type. */
658 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
659
660 /* Set length of new type to that of the original type. */
661 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
662
663 return ntype;
664 }
665
666 /* Make an address-space-delimited variant of a type -- a type that
667 is identical to the one supplied except that it has an address
668 space attribute attached to it (such as "code" or "data").
669
670 The space attributes "code" and "data" are for Harvard
671 architectures. The address space attributes are for architectures
672 which have alternately sized pointers or pointers with alternate
673 representations. */
674
675 struct type *
676 make_type_with_address_space (struct type *type, int space_flag)
677 {
678 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
679 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
680 | TYPE_INSTANCE_FLAG_DATA_SPACE
681 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
682 | space_flag);
683
684 return make_qualified_type (type, new_flags, NULL);
685 }
686
687 /* Make a "c-v" variant of a type -- a type that is identical to the
688 one supplied except that it may have const or volatile attributes
689 CNST is a flag for setting the const attribute
690 VOLTL is a flag for setting the volatile attribute
691 TYPE is the base type whose variant we are creating.
692
693 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
694 storage to hold the new qualified type; *TYPEPTR and TYPE must be
695 in the same objfile. Otherwise, allocate fresh memory for the new
696 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
697 new type we construct. */
698
699 struct type *
700 make_cv_type (int cnst, int voltl,
701 struct type *type,
702 struct type **typeptr)
703 {
704 struct type *ntype; /* New type */
705
706 int new_flags = (TYPE_INSTANCE_FLAGS (type)
707 & ~(TYPE_INSTANCE_FLAG_CONST
708 | TYPE_INSTANCE_FLAG_VOLATILE));
709
710 if (cnst)
711 new_flags |= TYPE_INSTANCE_FLAG_CONST;
712
713 if (voltl)
714 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
715
716 if (typeptr && *typeptr != NULL)
717 {
718 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
719 a C-V variant chain that threads across objfiles: if one
720 objfile gets freed, then the other has a broken C-V chain.
721
722 This code used to try to copy over the main type from TYPE to
723 *TYPEPTR if they were in different objfiles, but that's
724 wrong, too: TYPE may have a field list or member function
725 lists, which refer to types of their own, etc. etc. The
726 whole shebang would need to be copied over recursively; you
727 can't have inter-objfile pointers. The only thing to do is
728 to leave stub types as stub types, and look them up afresh by
729 name each time you encounter them. */
730 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
731 }
732
733 ntype = make_qualified_type (type, new_flags,
734 typeptr ? *typeptr : NULL);
735
736 if (typeptr != NULL)
737 *typeptr = ntype;
738
739 return ntype;
740 }
741
742 /* Make a 'restrict'-qualified version of TYPE. */
743
744 struct type *
745 make_restrict_type (struct type *type)
746 {
747 return make_qualified_type (type,
748 (TYPE_INSTANCE_FLAGS (type)
749 | TYPE_INSTANCE_FLAG_RESTRICT),
750 NULL);
751 }
752
753 /* Make a type without const, volatile, or restrict. */
754
755 struct type *
756 make_unqualified_type (struct type *type)
757 {
758 return make_qualified_type (type,
759 (TYPE_INSTANCE_FLAGS (type)
760 & ~(TYPE_INSTANCE_FLAG_CONST
761 | TYPE_INSTANCE_FLAG_VOLATILE
762 | TYPE_INSTANCE_FLAG_RESTRICT)),
763 NULL);
764 }
765
766 /* Make a '_Atomic'-qualified version of TYPE. */
767
768 struct type *
769 make_atomic_type (struct type *type)
770 {
771 return make_qualified_type (type,
772 (TYPE_INSTANCE_FLAGS (type)
773 | TYPE_INSTANCE_FLAG_ATOMIC),
774 NULL);
775 }
776
777 /* Replace the contents of ntype with the type *type. This changes the
778 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
779 the changes are propogated to all types in the TYPE_CHAIN.
780
781 In order to build recursive types, it's inevitable that we'll need
782 to update types in place --- but this sort of indiscriminate
783 smashing is ugly, and needs to be replaced with something more
784 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
785 clear if more steps are needed. */
786
787 void
788 replace_type (struct type *ntype, struct type *type)
789 {
790 struct type *chain;
791
792 /* These two types had better be in the same objfile. Otherwise,
793 the assignment of one type's main type structure to the other
794 will produce a type with references to objects (names; field
795 lists; etc.) allocated on an objfile other than its own. */
796 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
797
798 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
799
800 /* The type length is not a part of the main type. Update it for
801 each type on the variant chain. */
802 chain = ntype;
803 do
804 {
805 /* Assert that this element of the chain has no address-class bits
806 set in its flags. Such type variants might have type lengths
807 which are supposed to be different from the non-address-class
808 variants. This assertion shouldn't ever be triggered because
809 symbol readers which do construct address-class variants don't
810 call replace_type(). */
811 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
812
813 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
814 chain = TYPE_CHAIN (chain);
815 }
816 while (ntype != chain);
817
818 /* Assert that the two types have equivalent instance qualifiers.
819 This should be true for at least all of our debug readers. */
820 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
821 }
822
823 /* Implement direct support for MEMBER_TYPE in GNU C++.
824 May need to construct such a type if this is the first use.
825 The TYPE is the type of the member. The DOMAIN is the type
826 of the aggregate that the member belongs to. */
827
828 struct type *
829 lookup_memberptr_type (struct type *type, struct type *domain)
830 {
831 struct type *mtype;
832
833 mtype = alloc_type_copy (type);
834 smash_to_memberptr_type (mtype, domain, type);
835 return mtype;
836 }
837
838 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
839
840 struct type *
841 lookup_methodptr_type (struct type *to_type)
842 {
843 struct type *mtype;
844
845 mtype = alloc_type_copy (to_type);
846 smash_to_methodptr_type (mtype, to_type);
847 return mtype;
848 }
849
850 /* Allocate a stub method whose return type is TYPE. This apparently
851 happens for speed of symbol reading, since parsing out the
852 arguments to the method is cpu-intensive, the way we are doing it.
853 So, we will fill in arguments later. This always returns a fresh
854 type. */
855
856 struct type *
857 allocate_stub_method (struct type *type)
858 {
859 struct type *mtype;
860
861 mtype = alloc_type_copy (type);
862 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
863 TYPE_LENGTH (mtype) = 1;
864 TYPE_STUB (mtype) = 1;
865 TYPE_TARGET_TYPE (mtype) = type;
866 /* TYPE_SELF_TYPE (mtype) = unknown yet */
867 return mtype;
868 }
869
870 /* See gdbtypes.h. */
871
872 bool
873 operator== (const dynamic_prop &l, const dynamic_prop &r)
874 {
875 if (l.kind != r.kind)
876 return false;
877
878 switch (l.kind)
879 {
880 case PROP_UNDEFINED:
881 return true;
882 case PROP_CONST:
883 return l.data.const_val == r.data.const_val;
884 case PROP_ADDR_OFFSET:
885 case PROP_LOCEXPR:
886 case PROP_LOCLIST:
887 return l.data.baton == r.data.baton;
888 }
889
890 gdb_assert_not_reached ("unhandled dynamic_prop kind");
891 }
892
893 /* See gdbtypes.h. */
894
895 bool
896 operator== (const range_bounds &l, const range_bounds &r)
897 {
898 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
899
900 return (FIELD_EQ (low)
901 && FIELD_EQ (high)
902 && FIELD_EQ (flag_upper_bound_is_count)
903 && FIELD_EQ (flag_bound_evaluated)
904 && FIELD_EQ (bias));
905
906 #undef FIELD_EQ
907 }
908
909 /* Create a range type with a dynamic range from LOW_BOUND to
910 HIGH_BOUND, inclusive. See create_range_type for further details. */
911
912 struct type *
913 create_range_type (struct type *result_type, struct type *index_type,
914 const struct dynamic_prop *low_bound,
915 const struct dynamic_prop *high_bound,
916 LONGEST bias)
917 {
918 /* The INDEX_TYPE should be a type capable of holding the upper and lower
919 bounds, as such a zero sized, or void type makes no sense. */
920 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
921 gdb_assert (TYPE_LENGTH (index_type) > 0);
922
923 if (result_type == NULL)
924 result_type = alloc_type_copy (index_type);
925 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
926 TYPE_TARGET_TYPE (result_type) = index_type;
927 if (TYPE_STUB (index_type))
928 TYPE_TARGET_STUB (result_type) = 1;
929 else
930 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
931
932 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
933 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
934 TYPE_RANGE_DATA (result_type)->low = *low_bound;
935 TYPE_RANGE_DATA (result_type)->high = *high_bound;
936 TYPE_RANGE_DATA (result_type)->bias = bias;
937
938 /* Initialize the stride to be a constant, the value will already be zero
939 thanks to the use of TYPE_ZALLOC above. */
940 TYPE_RANGE_DATA (result_type)->stride.kind = PROP_CONST;
941
942 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
943 TYPE_UNSIGNED (result_type) = 1;
944
945 /* Ada allows the declaration of range types whose upper bound is
946 less than the lower bound, so checking the lower bound is not
947 enough. Make sure we do not mark a range type whose upper bound
948 is negative as unsigned. */
949 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
950 TYPE_UNSIGNED (result_type) = 0;
951
952 return result_type;
953 }
954
955 /* See gdbtypes.h. */
956
957 struct type *
958 create_range_type_with_stride (struct type *result_type,
959 struct type *index_type,
960 const struct dynamic_prop *low_bound,
961 const struct dynamic_prop *high_bound,
962 LONGEST bias,
963 const struct dynamic_prop *stride,
964 bool byte_stride_p)
965 {
966 result_type = create_range_type (result_type, index_type, low_bound,
967 high_bound, bias);
968
969 gdb_assert (stride != nullptr);
970 TYPE_RANGE_DATA (result_type)->stride = *stride;
971 TYPE_RANGE_DATA (result_type)->flag_is_byte_stride = byte_stride_p;
972
973 return result_type;
974 }
975
976
977
978 /* Create a range type using either a blank type supplied in
979 RESULT_TYPE, or creating a new type, inheriting the objfile from
980 INDEX_TYPE.
981
982 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
983 to HIGH_BOUND, inclusive.
984
985 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
986 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
987
988 struct type *
989 create_static_range_type (struct type *result_type, struct type *index_type,
990 LONGEST low_bound, LONGEST high_bound)
991 {
992 struct dynamic_prop low, high;
993
994 low.kind = PROP_CONST;
995 low.data.const_val = low_bound;
996
997 high.kind = PROP_CONST;
998 high.data.const_val = high_bound;
999
1000 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1001
1002 return result_type;
1003 }
1004
1005 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1006 are static, otherwise returns 0. */
1007
1008 static bool
1009 has_static_range (const struct range_bounds *bounds)
1010 {
1011 /* If the range doesn't have a defined stride then its stride field will
1012 be initialized to the constant 0. */
1013 return (bounds->low.kind == PROP_CONST
1014 && bounds->high.kind == PROP_CONST
1015 && bounds->stride.kind == PROP_CONST);
1016 }
1017
1018
1019 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1020 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
1021 bounds will fit in LONGEST), or -1 otherwise. */
1022
1023 int
1024 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1025 {
1026 type = check_typedef (type);
1027 switch (TYPE_CODE (type))
1028 {
1029 case TYPE_CODE_RANGE:
1030 *lowp = TYPE_LOW_BOUND (type);
1031 *highp = TYPE_HIGH_BOUND (type);
1032 return 1;
1033 case TYPE_CODE_ENUM:
1034 if (TYPE_NFIELDS (type) > 0)
1035 {
1036 /* The enums may not be sorted by value, so search all
1037 entries. */
1038 int i;
1039
1040 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1041 for (i = 0; i < TYPE_NFIELDS (type); i++)
1042 {
1043 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1044 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1045 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1046 *highp = TYPE_FIELD_ENUMVAL (type, i);
1047 }
1048
1049 /* Set unsigned indicator if warranted. */
1050 if (*lowp >= 0)
1051 {
1052 TYPE_UNSIGNED (type) = 1;
1053 }
1054 }
1055 else
1056 {
1057 *lowp = 0;
1058 *highp = -1;
1059 }
1060 return 0;
1061 case TYPE_CODE_BOOL:
1062 *lowp = 0;
1063 *highp = 1;
1064 return 0;
1065 case TYPE_CODE_INT:
1066 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1067 return -1;
1068 if (!TYPE_UNSIGNED (type))
1069 {
1070 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1071 *highp = -*lowp - 1;
1072 return 0;
1073 }
1074 /* fall through */
1075 case TYPE_CODE_CHAR:
1076 *lowp = 0;
1077 /* This round-about calculation is to avoid shifting by
1078 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1079 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1080 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1081 *highp = (*highp - 1) | *highp;
1082 return 0;
1083 default:
1084 return -1;
1085 }
1086 }
1087
1088 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1089 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1090 Save the high bound into HIGH_BOUND if not NULL.
1091
1092 Return 1 if the operation was successful. Return zero otherwise,
1093 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1094
1095 We now simply use get_discrete_bounds call to get the values
1096 of the low and high bounds.
1097 get_discrete_bounds can return three values:
1098 1, meaning that index is a range,
1099 0, meaning that index is a discrete type,
1100 or -1 for failure. */
1101
1102 int
1103 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1104 {
1105 struct type *index = TYPE_INDEX_TYPE (type);
1106 LONGEST low = 0;
1107 LONGEST high = 0;
1108 int res;
1109
1110 if (index == NULL)
1111 return 0;
1112
1113 res = get_discrete_bounds (index, &low, &high);
1114 if (res == -1)
1115 return 0;
1116
1117 /* Check if the array bounds are undefined. */
1118 if (res == 1
1119 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1120 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1121 return 0;
1122
1123 if (low_bound)
1124 *low_bound = low;
1125
1126 if (high_bound)
1127 *high_bound = high;
1128
1129 return 1;
1130 }
1131
1132 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1133 representation of a value of this type, save the corresponding
1134 position number in POS.
1135
1136 Its differs from VAL only in the case of enumeration types. In
1137 this case, the position number of the value of the first listed
1138 enumeration literal is zero; the position number of the value of
1139 each subsequent enumeration literal is one more than that of its
1140 predecessor in the list.
1141
1142 Return 1 if the operation was successful. Return zero otherwise,
1143 in which case the value of POS is unmodified.
1144 */
1145
1146 int
1147 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1148 {
1149 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1150 {
1151 int i;
1152
1153 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1154 {
1155 if (val == TYPE_FIELD_ENUMVAL (type, i))
1156 {
1157 *pos = i;
1158 return 1;
1159 }
1160 }
1161 /* Invalid enumeration value. */
1162 return 0;
1163 }
1164 else
1165 {
1166 *pos = val;
1167 return 1;
1168 }
1169 }
1170
1171 /* Create an array type using either a blank type supplied in
1172 RESULT_TYPE, or creating a new type, inheriting the objfile from
1173 RANGE_TYPE.
1174
1175 Elements will be of type ELEMENT_TYPE, the indices will be of type
1176 RANGE_TYPE.
1177
1178 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1179 This byte stride property is added to the resulting array type
1180 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1181 argument can only be used to create types that are objfile-owned
1182 (see add_dyn_prop), meaning that either this function must be called
1183 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1184
1185 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1186 If BIT_STRIDE is not zero, build a packed array type whose element
1187 size is BIT_STRIDE. Otherwise, ignore this parameter.
1188
1189 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1190 sure it is TYPE_CODE_UNDEF before we bash it into an array
1191 type? */
1192
1193 struct type *
1194 create_array_type_with_stride (struct type *result_type,
1195 struct type *element_type,
1196 struct type *range_type,
1197 struct dynamic_prop *byte_stride_prop,
1198 unsigned int bit_stride)
1199 {
1200 if (byte_stride_prop != NULL
1201 && byte_stride_prop->kind == PROP_CONST)
1202 {
1203 /* The byte stride is actually not dynamic. Pretend we were
1204 called with bit_stride set instead of byte_stride_prop.
1205 This will give us the same result type, while avoiding
1206 the need to handle this as a special case. */
1207 bit_stride = byte_stride_prop->data.const_val * 8;
1208 byte_stride_prop = NULL;
1209 }
1210
1211 if (result_type == NULL)
1212 result_type = alloc_type_copy (range_type);
1213
1214 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1215 TYPE_TARGET_TYPE (result_type) = element_type;
1216 if (byte_stride_prop == NULL
1217 && has_static_range (TYPE_RANGE_DATA (range_type))
1218 && (!type_not_associated (result_type)
1219 && !type_not_allocated (result_type)))
1220 {
1221 LONGEST low_bound, high_bound;
1222 unsigned int stride;
1223
1224 /* If the array itself doesn't provide a stride value then take
1225 whatever stride the range provides. Don't update BIT_STRIDE as
1226 we don't want to place the stride value from the range into this
1227 arrays bit size field. */
1228 stride = bit_stride;
1229 if (stride == 0)
1230 stride = TYPE_BIT_STRIDE (range_type);
1231
1232 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1233 low_bound = high_bound = 0;
1234 element_type = check_typedef (element_type);
1235 /* Be careful when setting the array length. Ada arrays can be
1236 empty arrays with the high_bound being smaller than the low_bound.
1237 In such cases, the array length should be zero. */
1238 if (high_bound < low_bound)
1239 TYPE_LENGTH (result_type) = 0;
1240 else if (stride > 0)
1241 TYPE_LENGTH (result_type) =
1242 (stride * (high_bound - low_bound + 1) + 7) / 8;
1243 else
1244 TYPE_LENGTH (result_type) =
1245 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1246 }
1247 else
1248 {
1249 /* This type is dynamic and its length needs to be computed
1250 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1251 undefined by setting it to zero. Although we are not expected
1252 to trust TYPE_LENGTH in this case, setting the size to zero
1253 allows us to avoid allocating objects of random sizes in case
1254 we accidently do. */
1255 TYPE_LENGTH (result_type) = 0;
1256 }
1257
1258 TYPE_NFIELDS (result_type) = 1;
1259 TYPE_FIELDS (result_type) =
1260 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1261 TYPE_INDEX_TYPE (result_type) = range_type;
1262 if (byte_stride_prop != NULL)
1263 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1264 else if (bit_stride > 0)
1265 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1266
1267 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1268 if (TYPE_LENGTH (result_type) == 0)
1269 TYPE_TARGET_STUB (result_type) = 1;
1270
1271 return result_type;
1272 }
1273
1274 /* Same as create_array_type_with_stride but with no bit_stride
1275 (BIT_STRIDE = 0), thus building an unpacked array. */
1276
1277 struct type *
1278 create_array_type (struct type *result_type,
1279 struct type *element_type,
1280 struct type *range_type)
1281 {
1282 return create_array_type_with_stride (result_type, element_type,
1283 range_type, NULL, 0);
1284 }
1285
1286 struct type *
1287 lookup_array_range_type (struct type *element_type,
1288 LONGEST low_bound, LONGEST high_bound)
1289 {
1290 struct type *index_type;
1291 struct type *range_type;
1292
1293 if (TYPE_OBJFILE_OWNED (element_type))
1294 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1295 else
1296 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1297 range_type = create_static_range_type (NULL, index_type,
1298 low_bound, high_bound);
1299
1300 return create_array_type (NULL, element_type, range_type);
1301 }
1302
1303 /* Create a string type using either a blank type supplied in
1304 RESULT_TYPE, or creating a new type. String types are similar
1305 enough to array of char types that we can use create_array_type to
1306 build the basic type and then bash it into a string type.
1307
1308 For fixed length strings, the range type contains 0 as the lower
1309 bound and the length of the string minus one as the upper bound.
1310
1311 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1312 sure it is TYPE_CODE_UNDEF before we bash it into a string
1313 type? */
1314
1315 struct type *
1316 create_string_type (struct type *result_type,
1317 struct type *string_char_type,
1318 struct type *range_type)
1319 {
1320 result_type = create_array_type (result_type,
1321 string_char_type,
1322 range_type);
1323 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1324 return result_type;
1325 }
1326
1327 struct type *
1328 lookup_string_range_type (struct type *string_char_type,
1329 LONGEST low_bound, LONGEST high_bound)
1330 {
1331 struct type *result_type;
1332
1333 result_type = lookup_array_range_type (string_char_type,
1334 low_bound, high_bound);
1335 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1336 return result_type;
1337 }
1338
1339 struct type *
1340 create_set_type (struct type *result_type, struct type *domain_type)
1341 {
1342 if (result_type == NULL)
1343 result_type = alloc_type_copy (domain_type);
1344
1345 TYPE_CODE (result_type) = TYPE_CODE_SET;
1346 TYPE_NFIELDS (result_type) = 1;
1347 TYPE_FIELDS (result_type)
1348 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1349
1350 if (!TYPE_STUB (domain_type))
1351 {
1352 LONGEST low_bound, high_bound, bit_length;
1353
1354 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1355 low_bound = high_bound = 0;
1356 bit_length = high_bound - low_bound + 1;
1357 TYPE_LENGTH (result_type)
1358 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1359 if (low_bound >= 0)
1360 TYPE_UNSIGNED (result_type) = 1;
1361 }
1362 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1363
1364 return result_type;
1365 }
1366
1367 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1368 and any array types nested inside it. */
1369
1370 void
1371 make_vector_type (struct type *array_type)
1372 {
1373 struct type *inner_array, *elt_type;
1374 int flags;
1375
1376 /* Find the innermost array type, in case the array is
1377 multi-dimensional. */
1378 inner_array = array_type;
1379 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1380 inner_array = TYPE_TARGET_TYPE (inner_array);
1381
1382 elt_type = TYPE_TARGET_TYPE (inner_array);
1383 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1384 {
1385 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1386 elt_type = make_qualified_type (elt_type, flags, NULL);
1387 TYPE_TARGET_TYPE (inner_array) = elt_type;
1388 }
1389
1390 TYPE_VECTOR (array_type) = 1;
1391 }
1392
1393 struct type *
1394 init_vector_type (struct type *elt_type, int n)
1395 {
1396 struct type *array_type;
1397
1398 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1399 make_vector_type (array_type);
1400 return array_type;
1401 }
1402
1403 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1404 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1405 confusing. "self" is a common enough replacement for "this".
1406 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1407 TYPE_CODE_METHOD. */
1408
1409 struct type *
1410 internal_type_self_type (struct type *type)
1411 {
1412 switch (TYPE_CODE (type))
1413 {
1414 case TYPE_CODE_METHODPTR:
1415 case TYPE_CODE_MEMBERPTR:
1416 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1417 return NULL;
1418 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1419 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1420 case TYPE_CODE_METHOD:
1421 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1422 return NULL;
1423 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1424 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1425 default:
1426 gdb_assert_not_reached ("bad type");
1427 }
1428 }
1429
1430 /* Set the type of the class that TYPE belongs to.
1431 In c++ this is the class of "this".
1432 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1433 TYPE_CODE_METHOD. */
1434
1435 void
1436 set_type_self_type (struct type *type, struct type *self_type)
1437 {
1438 switch (TYPE_CODE (type))
1439 {
1440 case TYPE_CODE_METHODPTR:
1441 case TYPE_CODE_MEMBERPTR:
1442 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1443 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1444 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1445 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1446 break;
1447 case TYPE_CODE_METHOD:
1448 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1449 INIT_FUNC_SPECIFIC (type);
1450 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1451 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1452 break;
1453 default:
1454 gdb_assert_not_reached ("bad type");
1455 }
1456 }
1457
1458 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1459 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1460 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1461 TYPE doesn't include the offset (that's the value of the MEMBER
1462 itself), but does include the structure type into which it points
1463 (for some reason).
1464
1465 When "smashing" the type, we preserve the objfile that the old type
1466 pointed to, since we aren't changing where the type is actually
1467 allocated. */
1468
1469 void
1470 smash_to_memberptr_type (struct type *type, struct type *self_type,
1471 struct type *to_type)
1472 {
1473 smash_type (type);
1474 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1475 TYPE_TARGET_TYPE (type) = to_type;
1476 set_type_self_type (type, self_type);
1477 /* Assume that a data member pointer is the same size as a normal
1478 pointer. */
1479 TYPE_LENGTH (type)
1480 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1481 }
1482
1483 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1484
1485 When "smashing" the type, we preserve the objfile that the old type
1486 pointed to, since we aren't changing where the type is actually
1487 allocated. */
1488
1489 void
1490 smash_to_methodptr_type (struct type *type, struct type *to_type)
1491 {
1492 smash_type (type);
1493 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1494 TYPE_TARGET_TYPE (type) = to_type;
1495 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1496 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1497 }
1498
1499 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1500 METHOD just means `function that gets an extra "this" argument'.
1501
1502 When "smashing" the type, we preserve the objfile that the old type
1503 pointed to, since we aren't changing where the type is actually
1504 allocated. */
1505
1506 void
1507 smash_to_method_type (struct type *type, struct type *self_type,
1508 struct type *to_type, struct field *args,
1509 int nargs, int varargs)
1510 {
1511 smash_type (type);
1512 TYPE_CODE (type) = TYPE_CODE_METHOD;
1513 TYPE_TARGET_TYPE (type) = to_type;
1514 set_type_self_type (type, self_type);
1515 TYPE_FIELDS (type) = args;
1516 TYPE_NFIELDS (type) = nargs;
1517 if (varargs)
1518 TYPE_VARARGS (type) = 1;
1519 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1520 }
1521
1522 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1523 Since GCC PR debug/47510 DWARF provides associated information to detect the
1524 anonymous class linkage name from its typedef.
1525
1526 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1527 apply it itself. */
1528
1529 const char *
1530 type_name_or_error (struct type *type)
1531 {
1532 struct type *saved_type = type;
1533 const char *name;
1534 struct objfile *objfile;
1535
1536 type = check_typedef (type);
1537
1538 name = TYPE_NAME (type);
1539 if (name != NULL)
1540 return name;
1541
1542 name = TYPE_NAME (saved_type);
1543 objfile = TYPE_OBJFILE (saved_type);
1544 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1545 name ? name : "<anonymous>",
1546 objfile ? objfile_name (objfile) : "<arch>");
1547 }
1548
1549 /* Lookup a typedef or primitive type named NAME, visible in lexical
1550 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1551 suitably defined. */
1552
1553 struct type *
1554 lookup_typename (const struct language_defn *language,
1555 struct gdbarch *gdbarch, const char *name,
1556 const struct block *block, int noerr)
1557 {
1558 struct symbol *sym;
1559
1560 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1561 language->la_language, NULL).symbol;
1562 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1563 return SYMBOL_TYPE (sym);
1564
1565 if (noerr)
1566 return NULL;
1567 error (_("No type named %s."), name);
1568 }
1569
1570 struct type *
1571 lookup_unsigned_typename (const struct language_defn *language,
1572 struct gdbarch *gdbarch, const char *name)
1573 {
1574 char *uns = (char *) alloca (strlen (name) + 10);
1575
1576 strcpy (uns, "unsigned ");
1577 strcpy (uns + 9, name);
1578 return lookup_typename (language, gdbarch, uns, NULL, 0);
1579 }
1580
1581 struct type *
1582 lookup_signed_typename (const struct language_defn *language,
1583 struct gdbarch *gdbarch, const char *name)
1584 {
1585 struct type *t;
1586 char *uns = (char *) alloca (strlen (name) + 8);
1587
1588 strcpy (uns, "signed ");
1589 strcpy (uns + 7, name);
1590 t = lookup_typename (language, gdbarch, uns, NULL, 1);
1591 /* If we don't find "signed FOO" just try again with plain "FOO". */
1592 if (t != NULL)
1593 return t;
1594 return lookup_typename (language, gdbarch, name, NULL, 0);
1595 }
1596
1597 /* Lookup a structure type named "struct NAME",
1598 visible in lexical block BLOCK. */
1599
1600 struct type *
1601 lookup_struct (const char *name, const struct block *block)
1602 {
1603 struct symbol *sym;
1604
1605 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1606
1607 if (sym == NULL)
1608 {
1609 error (_("No struct type named %s."), name);
1610 }
1611 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1612 {
1613 error (_("This context has class, union or enum %s, not a struct."),
1614 name);
1615 }
1616 return (SYMBOL_TYPE (sym));
1617 }
1618
1619 /* Lookup a union type named "union NAME",
1620 visible in lexical block BLOCK. */
1621
1622 struct type *
1623 lookup_union (const char *name, const struct block *block)
1624 {
1625 struct symbol *sym;
1626 struct type *t;
1627
1628 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1629
1630 if (sym == NULL)
1631 error (_("No union type named %s."), name);
1632
1633 t = SYMBOL_TYPE (sym);
1634
1635 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1636 return t;
1637
1638 /* If we get here, it's not a union. */
1639 error (_("This context has class, struct or enum %s, not a union."),
1640 name);
1641 }
1642
1643 /* Lookup an enum type named "enum NAME",
1644 visible in lexical block BLOCK. */
1645
1646 struct type *
1647 lookup_enum (const char *name, const struct block *block)
1648 {
1649 struct symbol *sym;
1650
1651 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1652 if (sym == NULL)
1653 {
1654 error (_("No enum type named %s."), name);
1655 }
1656 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1657 {
1658 error (_("This context has class, struct or union %s, not an enum."),
1659 name);
1660 }
1661 return (SYMBOL_TYPE (sym));
1662 }
1663
1664 /* Lookup a template type named "template NAME<TYPE>",
1665 visible in lexical block BLOCK. */
1666
1667 struct type *
1668 lookup_template_type (const char *name, struct type *type,
1669 const struct block *block)
1670 {
1671 struct symbol *sym;
1672 char *nam = (char *)
1673 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1674
1675 strcpy (nam, name);
1676 strcat (nam, "<");
1677 strcat (nam, TYPE_NAME (type));
1678 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1679
1680 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1681
1682 if (sym == NULL)
1683 {
1684 error (_("No template type named %s."), name);
1685 }
1686 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1687 {
1688 error (_("This context has class, union or enum %s, not a struct."),
1689 name);
1690 }
1691 return (SYMBOL_TYPE (sym));
1692 }
1693
1694 /* See gdbtypes.h. */
1695
1696 struct_elt
1697 lookup_struct_elt (struct type *type, const char *name, int noerr)
1698 {
1699 int i;
1700
1701 for (;;)
1702 {
1703 type = check_typedef (type);
1704 if (TYPE_CODE (type) != TYPE_CODE_PTR
1705 && TYPE_CODE (type) != TYPE_CODE_REF)
1706 break;
1707 type = TYPE_TARGET_TYPE (type);
1708 }
1709
1710 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1711 && TYPE_CODE (type) != TYPE_CODE_UNION)
1712 {
1713 std::string type_name = type_to_string (type);
1714 error (_("Type %s is not a structure or union type."),
1715 type_name.c_str ());
1716 }
1717
1718 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1719 {
1720 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1721
1722 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1723 {
1724 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
1725 }
1726 else if (!t_field_name || *t_field_name == '\0')
1727 {
1728 struct_elt elt
1729 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1730 if (elt.field != NULL)
1731 {
1732 elt.offset += TYPE_FIELD_BITPOS (type, i);
1733 return elt;
1734 }
1735 }
1736 }
1737
1738 /* OK, it's not in this class. Recursively check the baseclasses. */
1739 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1740 {
1741 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1742 if (elt.field != NULL)
1743 return elt;
1744 }
1745
1746 if (noerr)
1747 return {nullptr, 0};
1748
1749 std::string type_name = type_to_string (type);
1750 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1751 }
1752
1753 /* See gdbtypes.h. */
1754
1755 struct type *
1756 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1757 {
1758 struct_elt elt = lookup_struct_elt (type, name, noerr);
1759 if (elt.field != NULL)
1760 return FIELD_TYPE (*elt.field);
1761 else
1762 return NULL;
1763 }
1764
1765 /* Store in *MAX the largest number representable by unsigned integer type
1766 TYPE. */
1767
1768 void
1769 get_unsigned_type_max (struct type *type, ULONGEST *max)
1770 {
1771 unsigned int n;
1772
1773 type = check_typedef (type);
1774 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1775 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1776
1777 /* Written this way to avoid overflow. */
1778 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1779 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1780 }
1781
1782 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1783 signed integer type TYPE. */
1784
1785 void
1786 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1787 {
1788 unsigned int n;
1789
1790 type = check_typedef (type);
1791 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1792 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1793
1794 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1795 *min = -((ULONGEST) 1 << (n - 1));
1796 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1797 }
1798
1799 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1800 cplus_stuff.vptr_fieldno.
1801
1802 cplus_stuff is initialized to cplus_struct_default which does not
1803 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1804 designated initializers). We cope with that here. */
1805
1806 int
1807 internal_type_vptr_fieldno (struct type *type)
1808 {
1809 type = check_typedef (type);
1810 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1811 || TYPE_CODE (type) == TYPE_CODE_UNION);
1812 if (!HAVE_CPLUS_STRUCT (type))
1813 return -1;
1814 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1815 }
1816
1817 /* Set the value of cplus_stuff.vptr_fieldno. */
1818
1819 void
1820 set_type_vptr_fieldno (struct type *type, int fieldno)
1821 {
1822 type = check_typedef (type);
1823 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1824 || TYPE_CODE (type) == TYPE_CODE_UNION);
1825 if (!HAVE_CPLUS_STRUCT (type))
1826 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1827 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1828 }
1829
1830 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1831 cplus_stuff.vptr_basetype. */
1832
1833 struct type *
1834 internal_type_vptr_basetype (struct type *type)
1835 {
1836 type = check_typedef (type);
1837 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1838 || TYPE_CODE (type) == TYPE_CODE_UNION);
1839 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1840 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1841 }
1842
1843 /* Set the value of cplus_stuff.vptr_basetype. */
1844
1845 void
1846 set_type_vptr_basetype (struct type *type, struct type *basetype)
1847 {
1848 type = check_typedef (type);
1849 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1850 || TYPE_CODE (type) == TYPE_CODE_UNION);
1851 if (!HAVE_CPLUS_STRUCT (type))
1852 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1853 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1854 }
1855
1856 /* Lookup the vptr basetype/fieldno values for TYPE.
1857 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1858 vptr_fieldno. Also, if found and basetype is from the same objfile,
1859 cache the results.
1860 If not found, return -1 and ignore BASETYPEP.
1861 Callers should be aware that in some cases (for example,
1862 the type or one of its baseclasses is a stub type and we are
1863 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1864 this function will not be able to find the
1865 virtual function table pointer, and vptr_fieldno will remain -1 and
1866 vptr_basetype will remain NULL or incomplete. */
1867
1868 int
1869 get_vptr_fieldno (struct type *type, struct type **basetypep)
1870 {
1871 type = check_typedef (type);
1872
1873 if (TYPE_VPTR_FIELDNO (type) < 0)
1874 {
1875 int i;
1876
1877 /* We must start at zero in case the first (and only) baseclass
1878 is virtual (and hence we cannot share the table pointer). */
1879 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1880 {
1881 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1882 int fieldno;
1883 struct type *basetype;
1884
1885 fieldno = get_vptr_fieldno (baseclass, &basetype);
1886 if (fieldno >= 0)
1887 {
1888 /* If the type comes from a different objfile we can't cache
1889 it, it may have a different lifetime. PR 2384 */
1890 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1891 {
1892 set_type_vptr_fieldno (type, fieldno);
1893 set_type_vptr_basetype (type, basetype);
1894 }
1895 if (basetypep)
1896 *basetypep = basetype;
1897 return fieldno;
1898 }
1899 }
1900
1901 /* Not found. */
1902 return -1;
1903 }
1904 else
1905 {
1906 if (basetypep)
1907 *basetypep = TYPE_VPTR_BASETYPE (type);
1908 return TYPE_VPTR_FIELDNO (type);
1909 }
1910 }
1911
1912 static void
1913 stub_noname_complaint (void)
1914 {
1915 complaint (_("stub type has NULL name"));
1916 }
1917
1918 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1919 attached to it, and that property has a non-constant value. */
1920
1921 static int
1922 array_type_has_dynamic_stride (struct type *type)
1923 {
1924 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1925
1926 return (prop != NULL && prop->kind != PROP_CONST);
1927 }
1928
1929 /* Worker for is_dynamic_type. */
1930
1931 static int
1932 is_dynamic_type_internal (struct type *type, int top_level)
1933 {
1934 type = check_typedef (type);
1935
1936 /* We only want to recognize references at the outermost level. */
1937 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1938 type = check_typedef (TYPE_TARGET_TYPE (type));
1939
1940 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1941 dynamic, even if the type itself is statically defined.
1942 From a user's point of view, this may appear counter-intuitive;
1943 but it makes sense in this context, because the point is to determine
1944 whether any part of the type needs to be resolved before it can
1945 be exploited. */
1946 if (TYPE_DATA_LOCATION (type) != NULL
1947 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1948 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1949 return 1;
1950
1951 if (TYPE_ASSOCIATED_PROP (type))
1952 return 1;
1953
1954 if (TYPE_ALLOCATED_PROP (type))
1955 return 1;
1956
1957 switch (TYPE_CODE (type))
1958 {
1959 case TYPE_CODE_RANGE:
1960 {
1961 /* A range type is obviously dynamic if it has at least one
1962 dynamic bound. But also consider the range type to be
1963 dynamic when its subtype is dynamic, even if the bounds
1964 of the range type are static. It allows us to assume that
1965 the subtype of a static range type is also static. */
1966 return (!has_static_range (TYPE_RANGE_DATA (type))
1967 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1968 }
1969
1970 case TYPE_CODE_STRING:
1971 /* Strings are very much like an array of characters, and can be
1972 treated as one here. */
1973 case TYPE_CODE_ARRAY:
1974 {
1975 gdb_assert (TYPE_NFIELDS (type) == 1);
1976
1977 /* The array is dynamic if either the bounds are dynamic... */
1978 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1979 return 1;
1980 /* ... or the elements it contains have a dynamic contents... */
1981 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1982 return 1;
1983 /* ... or if it has a dynamic stride... */
1984 if (array_type_has_dynamic_stride (type))
1985 return 1;
1986 return 0;
1987 }
1988
1989 case TYPE_CODE_STRUCT:
1990 case TYPE_CODE_UNION:
1991 {
1992 int i;
1993
1994 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1995 if (!field_is_static (&TYPE_FIELD (type, i))
1996 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1997 return 1;
1998 }
1999 break;
2000 }
2001
2002 return 0;
2003 }
2004
2005 /* See gdbtypes.h. */
2006
2007 int
2008 is_dynamic_type (struct type *type)
2009 {
2010 return is_dynamic_type_internal (type, 1);
2011 }
2012
2013 static struct type *resolve_dynamic_type_internal
2014 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2015
2016 /* Given a dynamic range type (dyn_range_type) and a stack of
2017 struct property_addr_info elements, return a static version
2018 of that type. */
2019
2020 static struct type *
2021 resolve_dynamic_range (struct type *dyn_range_type,
2022 struct property_addr_info *addr_stack)
2023 {
2024 CORE_ADDR value;
2025 struct type *static_range_type, *static_target_type;
2026 const struct dynamic_prop *prop;
2027 struct dynamic_prop low_bound, high_bound, stride;
2028
2029 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
2030
2031 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
2032 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2033 {
2034 low_bound.kind = PROP_CONST;
2035 low_bound.data.const_val = value;
2036 }
2037 else
2038 {
2039 low_bound.kind = PROP_UNDEFINED;
2040 low_bound.data.const_val = 0;
2041 }
2042
2043 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2044 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2045 {
2046 high_bound.kind = PROP_CONST;
2047 high_bound.data.const_val = value;
2048
2049 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2050 high_bound.data.const_val
2051 = low_bound.data.const_val + high_bound.data.const_val - 1;
2052 }
2053 else
2054 {
2055 high_bound.kind = PROP_UNDEFINED;
2056 high_bound.data.const_val = 0;
2057 }
2058
2059 bool byte_stride_p = TYPE_RANGE_DATA (dyn_range_type)->flag_is_byte_stride;
2060 prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
2061 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2062 {
2063 stride.kind = PROP_CONST;
2064 stride.data.const_val = value;
2065
2066 /* If we have a bit stride that is not an exact number of bytes then
2067 I really don't think this is going to work with current GDB, the
2068 array indexing code in GDB seems to be pretty heavily tied to byte
2069 offsets right now. Assuming 8 bits in a byte. */
2070 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2071 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2072 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2073 error (_("bit strides that are not a multiple of the byte size "
2074 "are currently not supported"));
2075 }
2076 else
2077 {
2078 stride.kind = PROP_UNDEFINED;
2079 stride.data.const_val = 0;
2080 byte_stride_p = true;
2081 }
2082
2083 static_target_type
2084 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2085 addr_stack, 0);
2086 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
2087 static_range_type = create_range_type_with_stride
2088 (copy_type (dyn_range_type), static_target_type,
2089 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2090 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2091 return static_range_type;
2092 }
2093
2094 /* Resolves dynamic bound values of an array or string type TYPE to static
2095 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2096 needed during the dynamic resolution. */
2097
2098 static struct type *
2099 resolve_dynamic_array_or_string (struct type *type,
2100 struct property_addr_info *addr_stack)
2101 {
2102 CORE_ADDR value;
2103 struct type *elt_type;
2104 struct type *range_type;
2105 struct type *ary_dim;
2106 struct dynamic_prop *prop;
2107 unsigned int bit_stride = 0;
2108
2109 /* For dynamic type resolution strings can be treated like arrays of
2110 characters. */
2111 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY
2112 || TYPE_CODE (type) == TYPE_CODE_STRING);
2113
2114 type = copy_type (type);
2115
2116 elt_type = type;
2117 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2118 range_type = resolve_dynamic_range (range_type, addr_stack);
2119
2120 /* Resolve allocated/associated here before creating a new array type, which
2121 will update the length of the array accordingly. */
2122 prop = TYPE_ALLOCATED_PROP (type);
2123 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2124 {
2125 TYPE_DYN_PROP_ADDR (prop) = value;
2126 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2127 }
2128 prop = TYPE_ASSOCIATED_PROP (type);
2129 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2130 {
2131 TYPE_DYN_PROP_ADDR (prop) = value;
2132 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2133 }
2134
2135 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2136
2137 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2138 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2139 else
2140 elt_type = TYPE_TARGET_TYPE (type);
2141
2142 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2143 if (prop != NULL)
2144 {
2145 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2146 {
2147 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2148 bit_stride = (unsigned int) (value * 8);
2149 }
2150 else
2151 {
2152 /* Could be a bug in our code, but it could also happen
2153 if the DWARF info is not correct. Issue a warning,
2154 and assume no byte/bit stride (leave bit_stride = 0). */
2155 warning (_("cannot determine array stride for type %s"),
2156 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2157 }
2158 }
2159 else
2160 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2161
2162 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2163 bit_stride);
2164 }
2165
2166 /* Resolve dynamic bounds of members of the union TYPE to static
2167 bounds. ADDR_STACK is a stack of struct property_addr_info
2168 to be used if needed during the dynamic resolution. */
2169
2170 static struct type *
2171 resolve_dynamic_union (struct type *type,
2172 struct property_addr_info *addr_stack)
2173 {
2174 struct type *resolved_type;
2175 int i;
2176 unsigned int max_len = 0;
2177
2178 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2179
2180 resolved_type = copy_type (type);
2181 TYPE_FIELDS (resolved_type)
2182 = (struct field *) TYPE_ALLOC (resolved_type,
2183 TYPE_NFIELDS (resolved_type)
2184 * sizeof (struct field));
2185 memcpy (TYPE_FIELDS (resolved_type),
2186 TYPE_FIELDS (type),
2187 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2188 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2189 {
2190 struct type *t;
2191
2192 if (field_is_static (&TYPE_FIELD (type, i)))
2193 continue;
2194
2195 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2196 addr_stack, 0);
2197 TYPE_FIELD_TYPE (resolved_type, i) = t;
2198 if (TYPE_LENGTH (t) > max_len)
2199 max_len = TYPE_LENGTH (t);
2200 }
2201
2202 TYPE_LENGTH (resolved_type) = max_len;
2203 return resolved_type;
2204 }
2205
2206 /* Resolve dynamic bounds of members of the struct TYPE to static
2207 bounds. ADDR_STACK is a stack of struct property_addr_info to
2208 be used if needed during the dynamic resolution. */
2209
2210 static struct type *
2211 resolve_dynamic_struct (struct type *type,
2212 struct property_addr_info *addr_stack)
2213 {
2214 struct type *resolved_type;
2215 int i;
2216 unsigned resolved_type_bit_length = 0;
2217
2218 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2219 gdb_assert (TYPE_NFIELDS (type) > 0);
2220
2221 resolved_type = copy_type (type);
2222 TYPE_FIELDS (resolved_type)
2223 = (struct field *) TYPE_ALLOC (resolved_type,
2224 TYPE_NFIELDS (resolved_type)
2225 * sizeof (struct field));
2226 memcpy (TYPE_FIELDS (resolved_type),
2227 TYPE_FIELDS (type),
2228 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2229 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2230 {
2231 unsigned new_bit_length;
2232 struct property_addr_info pinfo;
2233
2234 if (field_is_static (&TYPE_FIELD (type, i)))
2235 continue;
2236
2237 /* As we know this field is not a static field, the field's
2238 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2239 this is the case, but only trigger a simple error rather
2240 than an internal error if that fails. While failing
2241 that verification indicates a bug in our code, the error
2242 is not severe enough to suggest to the user he stops
2243 his debugging session because of it. */
2244 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2245 error (_("Cannot determine struct field location"
2246 " (invalid location kind)"));
2247
2248 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2249 pinfo.valaddr = addr_stack->valaddr;
2250 pinfo.addr
2251 = (addr_stack->addr
2252 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2253 pinfo.next = addr_stack;
2254
2255 TYPE_FIELD_TYPE (resolved_type, i)
2256 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2257 &pinfo, 0);
2258 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2259 == FIELD_LOC_KIND_BITPOS);
2260
2261 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2262 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2263 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2264 else
2265 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2266 * TARGET_CHAR_BIT);
2267
2268 /* Normally, we would use the position and size of the last field
2269 to determine the size of the enclosing structure. But GCC seems
2270 to be encoding the position of some fields incorrectly when
2271 the struct contains a dynamic field that is not placed last.
2272 So we compute the struct size based on the field that has
2273 the highest position + size - probably the best we can do. */
2274 if (new_bit_length > resolved_type_bit_length)
2275 resolved_type_bit_length = new_bit_length;
2276 }
2277
2278 /* The length of a type won't change for fortran, but it does for C and Ada.
2279 For fortran the size of dynamic fields might change over time but not the
2280 type length of the structure. If we adapt it, we run into problems
2281 when calculating the element offset for arrays of structs. */
2282 if (current_language->la_language != language_fortran)
2283 TYPE_LENGTH (resolved_type)
2284 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2285
2286 /* The Ada language uses this field as a cache for static fixed types: reset
2287 it as RESOLVED_TYPE must have its own static fixed type. */
2288 TYPE_TARGET_TYPE (resolved_type) = NULL;
2289
2290 return resolved_type;
2291 }
2292
2293 /* Worker for resolved_dynamic_type. */
2294
2295 static struct type *
2296 resolve_dynamic_type_internal (struct type *type,
2297 struct property_addr_info *addr_stack,
2298 int top_level)
2299 {
2300 struct type *real_type = check_typedef (type);
2301 struct type *resolved_type = type;
2302 struct dynamic_prop *prop;
2303 CORE_ADDR value;
2304
2305 if (!is_dynamic_type_internal (real_type, top_level))
2306 return type;
2307
2308 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2309 {
2310 resolved_type = copy_type (type);
2311 TYPE_TARGET_TYPE (resolved_type)
2312 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2313 top_level);
2314 }
2315 else
2316 {
2317 /* Before trying to resolve TYPE, make sure it is not a stub. */
2318 type = real_type;
2319
2320 switch (TYPE_CODE (type))
2321 {
2322 case TYPE_CODE_REF:
2323 {
2324 struct property_addr_info pinfo;
2325
2326 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2327 pinfo.valaddr = NULL;
2328 if (addr_stack->valaddr != NULL)
2329 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2330 else
2331 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2332 pinfo.next = addr_stack;
2333
2334 resolved_type = copy_type (type);
2335 TYPE_TARGET_TYPE (resolved_type)
2336 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2337 &pinfo, top_level);
2338 break;
2339 }
2340
2341 case TYPE_CODE_STRING:
2342 /* Strings are very much like an array of characters, and can be
2343 treated as one here. */
2344 case TYPE_CODE_ARRAY:
2345 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2346 break;
2347
2348 case TYPE_CODE_RANGE:
2349 resolved_type = resolve_dynamic_range (type, addr_stack);
2350 break;
2351
2352 case TYPE_CODE_UNION:
2353 resolved_type = resolve_dynamic_union (type, addr_stack);
2354 break;
2355
2356 case TYPE_CODE_STRUCT:
2357 resolved_type = resolve_dynamic_struct (type, addr_stack);
2358 break;
2359 }
2360 }
2361
2362 /* Resolve data_location attribute. */
2363 prop = TYPE_DATA_LOCATION (resolved_type);
2364 if (prop != NULL
2365 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2366 {
2367 TYPE_DYN_PROP_ADDR (prop) = value;
2368 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2369 }
2370
2371 return resolved_type;
2372 }
2373
2374 /* See gdbtypes.h */
2375
2376 struct type *
2377 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2378 CORE_ADDR addr)
2379 {
2380 struct property_addr_info pinfo
2381 = {check_typedef (type), valaddr, addr, NULL};
2382
2383 return resolve_dynamic_type_internal (type, &pinfo, 1);
2384 }
2385
2386 /* See gdbtypes.h */
2387
2388 struct dynamic_prop *
2389 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2390 {
2391 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2392
2393 while (node != NULL)
2394 {
2395 if (node->prop_kind == prop_kind)
2396 return &node->prop;
2397 node = node->next;
2398 }
2399 return NULL;
2400 }
2401
2402 /* See gdbtypes.h */
2403
2404 void
2405 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2406 struct type *type)
2407 {
2408 struct dynamic_prop_list *temp;
2409
2410 gdb_assert (TYPE_OBJFILE_OWNED (type));
2411
2412 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2413 struct dynamic_prop_list);
2414 temp->prop_kind = prop_kind;
2415 temp->prop = prop;
2416 temp->next = TYPE_DYN_PROP_LIST (type);
2417
2418 TYPE_DYN_PROP_LIST (type) = temp;
2419 }
2420
2421 /* Remove dynamic property from TYPE in case it exists. */
2422
2423 void
2424 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2425 struct type *type)
2426 {
2427 struct dynamic_prop_list *prev_node, *curr_node;
2428
2429 curr_node = TYPE_DYN_PROP_LIST (type);
2430 prev_node = NULL;
2431
2432 while (NULL != curr_node)
2433 {
2434 if (curr_node->prop_kind == prop_kind)
2435 {
2436 /* Update the linked list but don't free anything.
2437 The property was allocated on objstack and it is not known
2438 if we are on top of it. Nevertheless, everything is released
2439 when the complete objstack is freed. */
2440 if (NULL == prev_node)
2441 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2442 else
2443 prev_node->next = curr_node->next;
2444
2445 return;
2446 }
2447
2448 prev_node = curr_node;
2449 curr_node = curr_node->next;
2450 }
2451 }
2452
2453 /* Find the real type of TYPE. This function returns the real type,
2454 after removing all layers of typedefs, and completing opaque or stub
2455 types. Completion changes the TYPE argument, but stripping of
2456 typedefs does not.
2457
2458 Instance flags (e.g. const/volatile) are preserved as typedefs are
2459 stripped. If necessary a new qualified form of the underlying type
2460 is created.
2461
2462 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2463 not been computed and we're either in the middle of reading symbols, or
2464 there was no name for the typedef in the debug info.
2465
2466 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2467 QUITs in the symbol reading code can also throw.
2468 Thus this function can throw an exception.
2469
2470 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2471 the target type.
2472
2473 If this is a stubbed struct (i.e. declared as struct foo *), see if
2474 we can find a full definition in some other file. If so, copy this
2475 definition, so we can use it in future. There used to be a comment
2476 (but not any code) that if we don't find a full definition, we'd
2477 set a flag so we don't spend time in the future checking the same
2478 type. That would be a mistake, though--we might load in more
2479 symbols which contain a full definition for the type. */
2480
2481 struct type *
2482 check_typedef (struct type *type)
2483 {
2484 struct type *orig_type = type;
2485 /* While we're removing typedefs, we don't want to lose qualifiers.
2486 E.g., const/volatile. */
2487 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2488
2489 gdb_assert (type);
2490
2491 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2492 {
2493 if (!TYPE_TARGET_TYPE (type))
2494 {
2495 const char *name;
2496 struct symbol *sym;
2497
2498 /* It is dangerous to call lookup_symbol if we are currently
2499 reading a symtab. Infinite recursion is one danger. */
2500 if (currently_reading_symtab)
2501 return make_qualified_type (type, instance_flags, NULL);
2502
2503 name = TYPE_NAME (type);
2504 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2505 VAR_DOMAIN as appropriate? */
2506 if (name == NULL)
2507 {
2508 stub_noname_complaint ();
2509 return make_qualified_type (type, instance_flags, NULL);
2510 }
2511 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2512 if (sym)
2513 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2514 else /* TYPE_CODE_UNDEF */
2515 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2516 }
2517 type = TYPE_TARGET_TYPE (type);
2518
2519 /* Preserve the instance flags as we traverse down the typedef chain.
2520
2521 Handling address spaces/classes is nasty, what do we do if there's a
2522 conflict?
2523 E.g., what if an outer typedef marks the type as class_1 and an inner
2524 typedef marks the type as class_2?
2525 This is the wrong place to do such error checking. We leave it to
2526 the code that created the typedef in the first place to flag the
2527 error. We just pick the outer address space (akin to letting the
2528 outer cast in a chain of casting win), instead of assuming
2529 "it can't happen". */
2530 {
2531 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2532 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2533 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2534 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2535
2536 /* Treat code vs data spaces and address classes separately. */
2537 if ((instance_flags & ALL_SPACES) != 0)
2538 new_instance_flags &= ~ALL_SPACES;
2539 if ((instance_flags & ALL_CLASSES) != 0)
2540 new_instance_flags &= ~ALL_CLASSES;
2541
2542 instance_flags |= new_instance_flags;
2543 }
2544 }
2545
2546 /* If this is a struct/class/union with no fields, then check
2547 whether a full definition exists somewhere else. This is for
2548 systems where a type definition with no fields is issued for such
2549 types, instead of identifying them as stub types in the first
2550 place. */
2551
2552 if (TYPE_IS_OPAQUE (type)
2553 && opaque_type_resolution
2554 && !currently_reading_symtab)
2555 {
2556 const char *name = TYPE_NAME (type);
2557 struct type *newtype;
2558
2559 if (name == NULL)
2560 {
2561 stub_noname_complaint ();
2562 return make_qualified_type (type, instance_flags, NULL);
2563 }
2564 newtype = lookup_transparent_type (name);
2565
2566 if (newtype)
2567 {
2568 /* If the resolved type and the stub are in the same
2569 objfile, then replace the stub type with the real deal.
2570 But if they're in separate objfiles, leave the stub
2571 alone; we'll just look up the transparent type every time
2572 we call check_typedef. We can't create pointers between
2573 types allocated to different objfiles, since they may
2574 have different lifetimes. Trying to copy NEWTYPE over to
2575 TYPE's objfile is pointless, too, since you'll have to
2576 move over any other types NEWTYPE refers to, which could
2577 be an unbounded amount of stuff. */
2578 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2579 type = make_qualified_type (newtype,
2580 TYPE_INSTANCE_FLAGS (type),
2581 type);
2582 else
2583 type = newtype;
2584 }
2585 }
2586 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2587 types. */
2588 else if (TYPE_STUB (type) && !currently_reading_symtab)
2589 {
2590 const char *name = TYPE_NAME (type);
2591 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2592 as appropriate? */
2593 struct symbol *sym;
2594
2595 if (name == NULL)
2596 {
2597 stub_noname_complaint ();
2598 return make_qualified_type (type, instance_flags, NULL);
2599 }
2600 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2601 if (sym)
2602 {
2603 /* Same as above for opaque types, we can replace the stub
2604 with the complete type only if they are in the same
2605 objfile. */
2606 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2607 type = make_qualified_type (SYMBOL_TYPE (sym),
2608 TYPE_INSTANCE_FLAGS (type),
2609 type);
2610 else
2611 type = SYMBOL_TYPE (sym);
2612 }
2613 }
2614
2615 if (TYPE_TARGET_STUB (type))
2616 {
2617 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2618
2619 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2620 {
2621 /* Nothing we can do. */
2622 }
2623 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2624 {
2625 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2626 TYPE_TARGET_STUB (type) = 0;
2627 }
2628 }
2629
2630 type = make_qualified_type (type, instance_flags, NULL);
2631
2632 /* Cache TYPE_LENGTH for future use. */
2633 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2634
2635 return type;
2636 }
2637
2638 /* Parse a type expression in the string [P..P+LENGTH). If an error
2639 occurs, silently return a void type. */
2640
2641 static struct type *
2642 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2643 {
2644 struct ui_file *saved_gdb_stderr;
2645 struct type *type = NULL; /* Initialize to keep gcc happy. */
2646
2647 /* Suppress error messages. */
2648 saved_gdb_stderr = gdb_stderr;
2649 gdb_stderr = &null_stream;
2650
2651 /* Call parse_and_eval_type() without fear of longjmp()s. */
2652 try
2653 {
2654 type = parse_and_eval_type (p, length);
2655 }
2656 catch (const gdb_exception_error &except)
2657 {
2658 type = builtin_type (gdbarch)->builtin_void;
2659 }
2660
2661 /* Stop suppressing error messages. */
2662 gdb_stderr = saved_gdb_stderr;
2663
2664 return type;
2665 }
2666
2667 /* Ugly hack to convert method stubs into method types.
2668
2669 He ain't kiddin'. This demangles the name of the method into a
2670 string including argument types, parses out each argument type,
2671 generates a string casting a zero to that type, evaluates the
2672 string, and stuffs the resulting type into an argtype vector!!!
2673 Then it knows the type of the whole function (including argument
2674 types for overloading), which info used to be in the stab's but was
2675 removed to hack back the space required for them. */
2676
2677 static void
2678 check_stub_method (struct type *type, int method_id, int signature_id)
2679 {
2680 struct gdbarch *gdbarch = get_type_arch (type);
2681 struct fn_field *f;
2682 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2683 char *demangled_name = gdb_demangle (mangled_name,
2684 DMGL_PARAMS | DMGL_ANSI);
2685 char *argtypetext, *p;
2686 int depth = 0, argcount = 1;
2687 struct field *argtypes;
2688 struct type *mtype;
2689
2690 /* Make sure we got back a function string that we can use. */
2691 if (demangled_name)
2692 p = strchr (demangled_name, '(');
2693 else
2694 p = NULL;
2695
2696 if (demangled_name == NULL || p == NULL)
2697 error (_("Internal: Cannot demangle mangled name `%s'."),
2698 mangled_name);
2699
2700 /* Now, read in the parameters that define this type. */
2701 p += 1;
2702 argtypetext = p;
2703 while (*p)
2704 {
2705 if (*p == '(' || *p == '<')
2706 {
2707 depth += 1;
2708 }
2709 else if (*p == ')' || *p == '>')
2710 {
2711 depth -= 1;
2712 }
2713 else if (*p == ',' && depth == 0)
2714 {
2715 argcount += 1;
2716 }
2717
2718 p += 1;
2719 }
2720
2721 /* If we read one argument and it was ``void'', don't count it. */
2722 if (startswith (argtypetext, "(void)"))
2723 argcount -= 1;
2724
2725 /* We need one extra slot, for the THIS pointer. */
2726
2727 argtypes = (struct field *)
2728 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2729 p = argtypetext;
2730
2731 /* Add THIS pointer for non-static methods. */
2732 f = TYPE_FN_FIELDLIST1 (type, method_id);
2733 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2734 argcount = 0;
2735 else
2736 {
2737 argtypes[0].type = lookup_pointer_type (type);
2738 argcount = 1;
2739 }
2740
2741 if (*p != ')') /* () means no args, skip while. */
2742 {
2743 depth = 0;
2744 while (*p)
2745 {
2746 if (depth <= 0 && (*p == ',' || *p == ')'))
2747 {
2748 /* Avoid parsing of ellipsis, they will be handled below.
2749 Also avoid ``void'' as above. */
2750 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2751 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2752 {
2753 argtypes[argcount].type =
2754 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2755 argcount += 1;
2756 }
2757 argtypetext = p + 1;
2758 }
2759
2760 if (*p == '(' || *p == '<')
2761 {
2762 depth += 1;
2763 }
2764 else if (*p == ')' || *p == '>')
2765 {
2766 depth -= 1;
2767 }
2768
2769 p += 1;
2770 }
2771 }
2772
2773 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2774
2775 /* Now update the old "stub" type into a real type. */
2776 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2777 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2778 We want a method (TYPE_CODE_METHOD). */
2779 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2780 argtypes, argcount, p[-2] == '.');
2781 TYPE_STUB (mtype) = 0;
2782 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2783
2784 xfree (demangled_name);
2785 }
2786
2787 /* This is the external interface to check_stub_method, above. This
2788 function unstubs all of the signatures for TYPE's METHOD_ID method
2789 name. After calling this function TYPE_FN_FIELD_STUB will be
2790 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2791 correct.
2792
2793 This function unfortunately can not die until stabs do. */
2794
2795 void
2796 check_stub_method_group (struct type *type, int method_id)
2797 {
2798 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2799 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2800
2801 for (int j = 0; j < len; j++)
2802 {
2803 if (TYPE_FN_FIELD_STUB (f, j))
2804 check_stub_method (type, method_id, j);
2805 }
2806 }
2807
2808 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
2809 const struct cplus_struct_type cplus_struct_default = { };
2810
2811 void
2812 allocate_cplus_struct_type (struct type *type)
2813 {
2814 if (HAVE_CPLUS_STRUCT (type))
2815 /* Structure was already allocated. Nothing more to do. */
2816 return;
2817
2818 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2819 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2820 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2821 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2822 set_type_vptr_fieldno (type, -1);
2823 }
2824
2825 const struct gnat_aux_type gnat_aux_default =
2826 { NULL };
2827
2828 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2829 and allocate the associated gnat-specific data. The gnat-specific
2830 data is also initialized to gnat_aux_default. */
2831
2832 void
2833 allocate_gnat_aux_type (struct type *type)
2834 {
2835 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2836 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2837 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2838 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2839 }
2840
2841 /* Helper function to initialize a newly allocated type. Set type code
2842 to CODE and initialize the type-specific fields accordingly. */
2843
2844 static void
2845 set_type_code (struct type *type, enum type_code code)
2846 {
2847 TYPE_CODE (type) = code;
2848
2849 switch (code)
2850 {
2851 case TYPE_CODE_STRUCT:
2852 case TYPE_CODE_UNION:
2853 case TYPE_CODE_NAMESPACE:
2854 INIT_CPLUS_SPECIFIC (type);
2855 break;
2856 case TYPE_CODE_FLT:
2857 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2858 break;
2859 case TYPE_CODE_FUNC:
2860 INIT_FUNC_SPECIFIC (type);
2861 break;
2862 }
2863 }
2864
2865 /* Helper function to verify floating-point format and size.
2866 BIT is the type size in bits; if BIT equals -1, the size is
2867 determined by the floatformat. Returns size to be used. */
2868
2869 static int
2870 verify_floatformat (int bit, const struct floatformat *floatformat)
2871 {
2872 gdb_assert (floatformat != NULL);
2873
2874 if (bit == -1)
2875 bit = floatformat->totalsize;
2876
2877 gdb_assert (bit >= 0);
2878 gdb_assert (bit >= floatformat->totalsize);
2879
2880 return bit;
2881 }
2882
2883 /* Return the floating-point format for a floating-point variable of
2884 type TYPE. */
2885
2886 const struct floatformat *
2887 floatformat_from_type (const struct type *type)
2888 {
2889 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2890 gdb_assert (TYPE_FLOATFORMAT (type));
2891 return TYPE_FLOATFORMAT (type);
2892 }
2893
2894 /* Helper function to initialize the standard scalar types.
2895
2896 If NAME is non-NULL, then it is used to initialize the type name.
2897 Note that NAME is not copied; it is required to have a lifetime at
2898 least as long as OBJFILE. */
2899
2900 struct type *
2901 init_type (struct objfile *objfile, enum type_code code, int bit,
2902 const char *name)
2903 {
2904 struct type *type;
2905
2906 type = alloc_type (objfile);
2907 set_type_code (type, code);
2908 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2909 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2910 TYPE_NAME (type) = name;
2911
2912 return type;
2913 }
2914
2915 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2916 to use with variables that have no debug info. NAME is the type
2917 name. */
2918
2919 static struct type *
2920 init_nodebug_var_type (struct objfile *objfile, const char *name)
2921 {
2922 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2923 }
2924
2925 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2926 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2927 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2928
2929 struct type *
2930 init_integer_type (struct objfile *objfile,
2931 int bit, int unsigned_p, const char *name)
2932 {
2933 struct type *t;
2934
2935 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2936 if (unsigned_p)
2937 TYPE_UNSIGNED (t) = 1;
2938
2939 return t;
2940 }
2941
2942 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2943 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2944 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2945
2946 struct type *
2947 init_character_type (struct objfile *objfile,
2948 int bit, int unsigned_p, const char *name)
2949 {
2950 struct type *t;
2951
2952 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2953 if (unsigned_p)
2954 TYPE_UNSIGNED (t) = 1;
2955
2956 return t;
2957 }
2958
2959 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2960 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2961 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2962
2963 struct type *
2964 init_boolean_type (struct objfile *objfile,
2965 int bit, int unsigned_p, const char *name)
2966 {
2967 struct type *t;
2968
2969 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2970 if (unsigned_p)
2971 TYPE_UNSIGNED (t) = 1;
2972
2973 return t;
2974 }
2975
2976 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2977 BIT is the type size in bits; if BIT equals -1, the size is
2978 determined by the floatformat. NAME is the type name. Set the
2979 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
2980 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
2981 order of the objfile's architecture is used. */
2982
2983 struct type *
2984 init_float_type (struct objfile *objfile,
2985 int bit, const char *name,
2986 const struct floatformat **floatformats,
2987 enum bfd_endian byte_order)
2988 {
2989 if (byte_order == BFD_ENDIAN_UNKNOWN)
2990 {
2991 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2992 byte_order = gdbarch_byte_order (gdbarch);
2993 }
2994 const struct floatformat *fmt = floatformats[byte_order];
2995 struct type *t;
2996
2997 bit = verify_floatformat (bit, fmt);
2998 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
2999 TYPE_FLOATFORMAT (t) = fmt;
3000
3001 return t;
3002 }
3003
3004 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3005 BIT is the type size in bits. NAME is the type name. */
3006
3007 struct type *
3008 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3009 {
3010 struct type *t;
3011
3012 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3013 return t;
3014 }
3015
3016 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
3017 NAME is the type name. TARGET_TYPE is the component float type. */
3018
3019 struct type *
3020 init_complex_type (struct objfile *objfile,
3021 const char *name, struct type *target_type)
3022 {
3023 struct type *t;
3024
3025 t = init_type (objfile, TYPE_CODE_COMPLEX,
3026 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
3027 TYPE_TARGET_TYPE (t) = target_type;
3028 return t;
3029 }
3030
3031 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3032 BIT is the pointer type size in bits. NAME is the type name.
3033 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3034 TYPE_UNSIGNED flag. */
3035
3036 struct type *
3037 init_pointer_type (struct objfile *objfile,
3038 int bit, const char *name, struct type *target_type)
3039 {
3040 struct type *t;
3041
3042 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3043 TYPE_TARGET_TYPE (t) = target_type;
3044 TYPE_UNSIGNED (t) = 1;
3045 return t;
3046 }
3047
3048 /* See gdbtypes.h. */
3049
3050 unsigned
3051 type_raw_align (struct type *type)
3052 {
3053 if (type->align_log2 != 0)
3054 return 1 << (type->align_log2 - 1);
3055 return 0;
3056 }
3057
3058 /* See gdbtypes.h. */
3059
3060 unsigned
3061 type_align (struct type *type)
3062 {
3063 /* Check alignment provided in the debug information. */
3064 unsigned raw_align = type_raw_align (type);
3065 if (raw_align != 0)
3066 return raw_align;
3067
3068 /* Allow the architecture to provide an alignment. */
3069 struct gdbarch *arch = get_type_arch (type);
3070 ULONGEST align = gdbarch_type_align (arch, type);
3071 if (align != 0)
3072 return align;
3073
3074 switch (TYPE_CODE (type))
3075 {
3076 case TYPE_CODE_PTR:
3077 case TYPE_CODE_FUNC:
3078 case TYPE_CODE_FLAGS:
3079 case TYPE_CODE_INT:
3080 case TYPE_CODE_RANGE:
3081 case TYPE_CODE_FLT:
3082 case TYPE_CODE_ENUM:
3083 case TYPE_CODE_REF:
3084 case TYPE_CODE_RVALUE_REF:
3085 case TYPE_CODE_CHAR:
3086 case TYPE_CODE_BOOL:
3087 case TYPE_CODE_DECFLOAT:
3088 case TYPE_CODE_METHODPTR:
3089 case TYPE_CODE_MEMBERPTR:
3090 align = type_length_units (check_typedef (type));
3091 break;
3092
3093 case TYPE_CODE_ARRAY:
3094 case TYPE_CODE_COMPLEX:
3095 case TYPE_CODE_TYPEDEF:
3096 align = type_align (TYPE_TARGET_TYPE (type));
3097 break;
3098
3099 case TYPE_CODE_STRUCT:
3100 case TYPE_CODE_UNION:
3101 {
3102 int number_of_non_static_fields = 0;
3103 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3104 {
3105 if (!field_is_static (&TYPE_FIELD (type, i)))
3106 {
3107 number_of_non_static_fields++;
3108 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3109 if (f_align == 0)
3110 {
3111 /* Don't pretend we know something we don't. */
3112 align = 0;
3113 break;
3114 }
3115 if (f_align > align)
3116 align = f_align;
3117 }
3118 }
3119 /* A struct with no fields, or with only static fields has an
3120 alignment of 1. */
3121 if (number_of_non_static_fields == 0)
3122 align = 1;
3123 }
3124 break;
3125
3126 case TYPE_CODE_SET:
3127 case TYPE_CODE_STRING:
3128 /* Not sure what to do here, and these can't appear in C or C++
3129 anyway. */
3130 break;
3131
3132 case TYPE_CODE_VOID:
3133 align = 1;
3134 break;
3135
3136 case TYPE_CODE_ERROR:
3137 case TYPE_CODE_METHOD:
3138 default:
3139 break;
3140 }
3141
3142 if ((align & (align - 1)) != 0)
3143 {
3144 /* Not a power of 2, so pass. */
3145 align = 0;
3146 }
3147
3148 return align;
3149 }
3150
3151 /* See gdbtypes.h. */
3152
3153 bool
3154 set_type_align (struct type *type, ULONGEST align)
3155 {
3156 /* Must be a power of 2. Zero is ok. */
3157 gdb_assert ((align & (align - 1)) == 0);
3158
3159 unsigned result = 0;
3160 while (align != 0)
3161 {
3162 ++result;
3163 align >>= 1;
3164 }
3165
3166 if (result >= (1 << TYPE_ALIGN_BITS))
3167 return false;
3168
3169 type->align_log2 = result;
3170 return true;
3171 }
3172
3173 \f
3174 /* Queries on types. */
3175
3176 int
3177 can_dereference (struct type *t)
3178 {
3179 /* FIXME: Should we return true for references as well as
3180 pointers? */
3181 t = check_typedef (t);
3182 return
3183 (t != NULL
3184 && TYPE_CODE (t) == TYPE_CODE_PTR
3185 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3186 }
3187
3188 int
3189 is_integral_type (struct type *t)
3190 {
3191 t = check_typedef (t);
3192 return
3193 ((t != NULL)
3194 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3195 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3196 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3197 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3198 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3199 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3200 }
3201
3202 int
3203 is_floating_type (struct type *t)
3204 {
3205 t = check_typedef (t);
3206 return
3207 ((t != NULL)
3208 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3209 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3210 }
3211
3212 /* Return true if TYPE is scalar. */
3213
3214 int
3215 is_scalar_type (struct type *type)
3216 {
3217 type = check_typedef (type);
3218
3219 switch (TYPE_CODE (type))
3220 {
3221 case TYPE_CODE_ARRAY:
3222 case TYPE_CODE_STRUCT:
3223 case TYPE_CODE_UNION:
3224 case TYPE_CODE_SET:
3225 case TYPE_CODE_STRING:
3226 return 0;
3227 default:
3228 return 1;
3229 }
3230 }
3231
3232 /* Return true if T is scalar, or a composite type which in practice has
3233 the memory layout of a scalar type. E.g., an array or struct with only
3234 one scalar element inside it, or a union with only scalar elements. */
3235
3236 int
3237 is_scalar_type_recursive (struct type *t)
3238 {
3239 t = check_typedef (t);
3240
3241 if (is_scalar_type (t))
3242 return 1;
3243 /* Are we dealing with an array or string of known dimensions? */
3244 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3245 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3246 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3247 {
3248 LONGEST low_bound, high_bound;
3249 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3250
3251 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3252
3253 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3254 }
3255 /* Are we dealing with a struct with one element? */
3256 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3257 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3258 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3259 {
3260 int i, n = TYPE_NFIELDS (t);
3261
3262 /* If all elements of the union are scalar, then the union is scalar. */
3263 for (i = 0; i < n; i++)
3264 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3265 return 0;
3266
3267 return 1;
3268 }
3269
3270 return 0;
3271 }
3272
3273 /* Return true is T is a class or a union. False otherwise. */
3274
3275 int
3276 class_or_union_p (const struct type *t)
3277 {
3278 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3279 || TYPE_CODE (t) == TYPE_CODE_UNION);
3280 }
3281
3282 /* A helper function which returns true if types A and B represent the
3283 "same" class type. This is true if the types have the same main
3284 type, or the same name. */
3285
3286 int
3287 class_types_same_p (const struct type *a, const struct type *b)
3288 {
3289 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3290 || (TYPE_NAME (a) && TYPE_NAME (b)
3291 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3292 }
3293
3294 /* If BASE is an ancestor of DCLASS return the distance between them.
3295 otherwise return -1;
3296 eg:
3297
3298 class A {};
3299 class B: public A {};
3300 class C: public B {};
3301 class D: C {};
3302
3303 distance_to_ancestor (A, A, 0) = 0
3304 distance_to_ancestor (A, B, 0) = 1
3305 distance_to_ancestor (A, C, 0) = 2
3306 distance_to_ancestor (A, D, 0) = 3
3307
3308 If PUBLIC is 1 then only public ancestors are considered,
3309 and the function returns the distance only if BASE is a public ancestor
3310 of DCLASS.
3311 Eg:
3312
3313 distance_to_ancestor (A, D, 1) = -1. */
3314
3315 static int
3316 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3317 {
3318 int i;
3319 int d;
3320
3321 base = check_typedef (base);
3322 dclass = check_typedef (dclass);
3323
3324 if (class_types_same_p (base, dclass))
3325 return 0;
3326
3327 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3328 {
3329 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3330 continue;
3331
3332 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3333 if (d >= 0)
3334 return 1 + d;
3335 }
3336
3337 return -1;
3338 }
3339
3340 /* Check whether BASE is an ancestor or base class or DCLASS
3341 Return 1 if so, and 0 if not.
3342 Note: If BASE and DCLASS are of the same type, this function
3343 will return 1. So for some class A, is_ancestor (A, A) will
3344 return 1. */
3345
3346 int
3347 is_ancestor (struct type *base, struct type *dclass)
3348 {
3349 return distance_to_ancestor (base, dclass, 0) >= 0;
3350 }
3351
3352 /* Like is_ancestor, but only returns true when BASE is a public
3353 ancestor of DCLASS. */
3354
3355 int
3356 is_public_ancestor (struct type *base, struct type *dclass)
3357 {
3358 return distance_to_ancestor (base, dclass, 1) >= 0;
3359 }
3360
3361 /* A helper function for is_unique_ancestor. */
3362
3363 static int
3364 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3365 int *offset,
3366 const gdb_byte *valaddr, int embedded_offset,
3367 CORE_ADDR address, struct value *val)
3368 {
3369 int i, count = 0;
3370
3371 base = check_typedef (base);
3372 dclass = check_typedef (dclass);
3373
3374 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3375 {
3376 struct type *iter;
3377 int this_offset;
3378
3379 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3380
3381 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3382 address, val);
3383
3384 if (class_types_same_p (base, iter))
3385 {
3386 /* If this is the first subclass, set *OFFSET and set count
3387 to 1. Otherwise, if this is at the same offset as
3388 previous instances, do nothing. Otherwise, increment
3389 count. */
3390 if (*offset == -1)
3391 {
3392 *offset = this_offset;
3393 count = 1;
3394 }
3395 else if (this_offset == *offset)
3396 {
3397 /* Nothing. */
3398 }
3399 else
3400 ++count;
3401 }
3402 else
3403 count += is_unique_ancestor_worker (base, iter, offset,
3404 valaddr,
3405 embedded_offset + this_offset,
3406 address, val);
3407 }
3408
3409 return count;
3410 }
3411
3412 /* Like is_ancestor, but only returns true if BASE is a unique base
3413 class of the type of VAL. */
3414
3415 int
3416 is_unique_ancestor (struct type *base, struct value *val)
3417 {
3418 int offset = -1;
3419
3420 return is_unique_ancestor_worker (base, value_type (val), &offset,
3421 value_contents_for_printing (val),
3422 value_embedded_offset (val),
3423 value_address (val), val) == 1;
3424 }
3425
3426 /* See gdbtypes.h. */
3427
3428 enum bfd_endian
3429 type_byte_order (const struct type *type)
3430 {
3431 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3432 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3433 {
3434 if (byteorder == BFD_ENDIAN_BIG)
3435 return BFD_ENDIAN_LITTLE;
3436 else
3437 {
3438 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3439 return BFD_ENDIAN_BIG;
3440 }
3441 }
3442
3443 return byteorder;
3444 }
3445
3446 \f
3447 /* Overload resolution. */
3448
3449 /* Return the sum of the rank of A with the rank of B. */
3450
3451 struct rank
3452 sum_ranks (struct rank a, struct rank b)
3453 {
3454 struct rank c;
3455 c.rank = a.rank + b.rank;
3456 c.subrank = a.subrank + b.subrank;
3457 return c;
3458 }
3459
3460 /* Compare rank A and B and return:
3461 0 if a = b
3462 1 if a is better than b
3463 -1 if b is better than a. */
3464
3465 int
3466 compare_ranks (struct rank a, struct rank b)
3467 {
3468 if (a.rank == b.rank)
3469 {
3470 if (a.subrank == b.subrank)
3471 return 0;
3472 if (a.subrank < b.subrank)
3473 return 1;
3474 if (a.subrank > b.subrank)
3475 return -1;
3476 }
3477
3478 if (a.rank < b.rank)
3479 return 1;
3480
3481 /* a.rank > b.rank */
3482 return -1;
3483 }
3484
3485 /* Functions for overload resolution begin here. */
3486
3487 /* Compare two badness vectors A and B and return the result.
3488 0 => A and B are identical
3489 1 => A and B are incomparable
3490 2 => A is better than B
3491 3 => A is worse than B */
3492
3493 int
3494 compare_badness (const badness_vector &a, const badness_vector &b)
3495 {
3496 int i;
3497 int tmp;
3498 short found_pos = 0; /* any positives in c? */
3499 short found_neg = 0; /* any negatives in c? */
3500
3501 /* differing sizes => incomparable */
3502 if (a.size () != b.size ())
3503 return 1;
3504
3505 /* Subtract b from a */
3506 for (i = 0; i < a.size (); i++)
3507 {
3508 tmp = compare_ranks (b[i], a[i]);
3509 if (tmp > 0)
3510 found_pos = 1;
3511 else if (tmp < 0)
3512 found_neg = 1;
3513 }
3514
3515 if (found_pos)
3516 {
3517 if (found_neg)
3518 return 1; /* incomparable */
3519 else
3520 return 3; /* A > B */
3521 }
3522 else
3523 /* no positives */
3524 {
3525 if (found_neg)
3526 return 2; /* A < B */
3527 else
3528 return 0; /* A == B */
3529 }
3530 }
3531
3532 /* Rank a function by comparing its parameter types (PARMS), to the
3533 types of an argument list (ARGS). Return the badness vector. This
3534 has ARGS.size() + 1 entries. */
3535
3536 badness_vector
3537 rank_function (gdb::array_view<type *> parms,
3538 gdb::array_view<value *> args)
3539 {
3540 /* add 1 for the length-match rank. */
3541 badness_vector bv;
3542 bv.reserve (1 + args.size ());
3543
3544 /* First compare the lengths of the supplied lists.
3545 If there is a mismatch, set it to a high value. */
3546
3547 /* pai/1997-06-03 FIXME: when we have debug info about default
3548 arguments and ellipsis parameter lists, we should consider those
3549 and rank the length-match more finely. */
3550
3551 bv.push_back ((args.size () != parms.size ())
3552 ? LENGTH_MISMATCH_BADNESS
3553 : EXACT_MATCH_BADNESS);
3554
3555 /* Now rank all the parameters of the candidate function. */
3556 size_t min_len = std::min (parms.size (), args.size ());
3557
3558 for (size_t i = 0; i < min_len; i++)
3559 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3560 args[i]));
3561
3562 /* If more arguments than parameters, add dummy entries. */
3563 for (size_t i = min_len; i < args.size (); i++)
3564 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3565
3566 return bv;
3567 }
3568
3569 /* Compare the names of two integer types, assuming that any sign
3570 qualifiers have been checked already. We do it this way because
3571 there may be an "int" in the name of one of the types. */
3572
3573 static int
3574 integer_types_same_name_p (const char *first, const char *second)
3575 {
3576 int first_p, second_p;
3577
3578 /* If both are shorts, return 1; if neither is a short, keep
3579 checking. */
3580 first_p = (strstr (first, "short") != NULL);
3581 second_p = (strstr (second, "short") != NULL);
3582 if (first_p && second_p)
3583 return 1;
3584 if (first_p || second_p)
3585 return 0;
3586
3587 /* Likewise for long. */
3588 first_p = (strstr (first, "long") != NULL);
3589 second_p = (strstr (second, "long") != NULL);
3590 if (first_p && second_p)
3591 return 1;
3592 if (first_p || second_p)
3593 return 0;
3594
3595 /* Likewise for char. */
3596 first_p = (strstr (first, "char") != NULL);
3597 second_p = (strstr (second, "char") != NULL);
3598 if (first_p && second_p)
3599 return 1;
3600 if (first_p || second_p)
3601 return 0;
3602
3603 /* They must both be ints. */
3604 return 1;
3605 }
3606
3607 /* Compares type A to type B. Returns true if they represent the same
3608 type, false otherwise. */
3609
3610 bool
3611 types_equal (struct type *a, struct type *b)
3612 {
3613 /* Identical type pointers. */
3614 /* However, this still doesn't catch all cases of same type for b
3615 and a. The reason is that builtin types are different from
3616 the same ones constructed from the object. */
3617 if (a == b)
3618 return true;
3619
3620 /* Resolve typedefs */
3621 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3622 a = check_typedef (a);
3623 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3624 b = check_typedef (b);
3625
3626 /* If after resolving typedefs a and b are not of the same type
3627 code then they are not equal. */
3628 if (TYPE_CODE (a) != TYPE_CODE (b))
3629 return false;
3630
3631 /* If a and b are both pointers types or both reference types then
3632 they are equal of the same type iff the objects they refer to are
3633 of the same type. */
3634 if (TYPE_CODE (a) == TYPE_CODE_PTR
3635 || TYPE_CODE (a) == TYPE_CODE_REF)
3636 return types_equal (TYPE_TARGET_TYPE (a),
3637 TYPE_TARGET_TYPE (b));
3638
3639 /* Well, damnit, if the names are exactly the same, I'll say they
3640 are exactly the same. This happens when we generate method
3641 stubs. The types won't point to the same address, but they
3642 really are the same. */
3643
3644 if (TYPE_NAME (a) && TYPE_NAME (b)
3645 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3646 return true;
3647
3648 /* Check if identical after resolving typedefs. */
3649 if (a == b)
3650 return true;
3651
3652 /* Two function types are equal if their argument and return types
3653 are equal. */
3654 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3655 {
3656 int i;
3657
3658 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3659 return false;
3660
3661 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3662 return false;
3663
3664 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3665 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3666 return false;
3667
3668 return true;
3669 }
3670
3671 return false;
3672 }
3673 \f
3674 /* Deep comparison of types. */
3675
3676 /* An entry in the type-equality bcache. */
3677
3678 struct type_equality_entry
3679 {
3680 type_equality_entry (struct type *t1, struct type *t2)
3681 : type1 (t1),
3682 type2 (t2)
3683 {
3684 }
3685
3686 struct type *type1, *type2;
3687 };
3688
3689 /* A helper function to compare two strings. Returns true if they are
3690 the same, false otherwise. Handles NULLs properly. */
3691
3692 static bool
3693 compare_maybe_null_strings (const char *s, const char *t)
3694 {
3695 if (s == NULL || t == NULL)
3696 return s == t;
3697 return strcmp (s, t) == 0;
3698 }
3699
3700 /* A helper function for check_types_worklist that checks two types for
3701 "deep" equality. Returns true if the types are considered the
3702 same, false otherwise. */
3703
3704 static bool
3705 check_types_equal (struct type *type1, struct type *type2,
3706 std::vector<type_equality_entry> *worklist)
3707 {
3708 type1 = check_typedef (type1);
3709 type2 = check_typedef (type2);
3710
3711 if (type1 == type2)
3712 return true;
3713
3714 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3715 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3716 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3717 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3718 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
3719 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3720 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3721 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3722 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3723 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3724 return false;
3725
3726 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3727 return false;
3728 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3729 return false;
3730
3731 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3732 {
3733 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3734 return false;
3735 }
3736 else
3737 {
3738 int i;
3739
3740 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3741 {
3742 const struct field *field1 = &TYPE_FIELD (type1, i);
3743 const struct field *field2 = &TYPE_FIELD (type2, i);
3744
3745 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3746 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3747 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3748 return false;
3749 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3750 FIELD_NAME (*field2)))
3751 return false;
3752 switch (FIELD_LOC_KIND (*field1))
3753 {
3754 case FIELD_LOC_KIND_BITPOS:
3755 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3756 return false;
3757 break;
3758 case FIELD_LOC_KIND_ENUMVAL:
3759 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3760 return false;
3761 break;
3762 case FIELD_LOC_KIND_PHYSADDR:
3763 if (FIELD_STATIC_PHYSADDR (*field1)
3764 != FIELD_STATIC_PHYSADDR (*field2))
3765 return false;
3766 break;
3767 case FIELD_LOC_KIND_PHYSNAME:
3768 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3769 FIELD_STATIC_PHYSNAME (*field2)))
3770 return false;
3771 break;
3772 case FIELD_LOC_KIND_DWARF_BLOCK:
3773 {
3774 struct dwarf2_locexpr_baton *block1, *block2;
3775
3776 block1 = FIELD_DWARF_BLOCK (*field1);
3777 block2 = FIELD_DWARF_BLOCK (*field2);
3778 if (block1->per_cu != block2->per_cu
3779 || block1->size != block2->size
3780 || memcmp (block1->data, block2->data, block1->size) != 0)
3781 return false;
3782 }
3783 break;
3784 default:
3785 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3786 "%d by check_types_equal"),
3787 FIELD_LOC_KIND (*field1));
3788 }
3789
3790 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
3791 }
3792 }
3793
3794 if (TYPE_TARGET_TYPE (type1) != NULL)
3795 {
3796 if (TYPE_TARGET_TYPE (type2) == NULL)
3797 return false;
3798
3799 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3800 TYPE_TARGET_TYPE (type2));
3801 }
3802 else if (TYPE_TARGET_TYPE (type2) != NULL)
3803 return false;
3804
3805 return true;
3806 }
3807
3808 /* Check types on a worklist for equality. Returns false if any pair
3809 is not equal, true if they are all considered equal. */
3810
3811 static bool
3812 check_types_worklist (std::vector<type_equality_entry> *worklist,
3813 struct bcache *cache)
3814 {
3815 while (!worklist->empty ())
3816 {
3817 int added;
3818
3819 struct type_equality_entry entry = std::move (worklist->back ());
3820 worklist->pop_back ();
3821
3822 /* If the type pair has already been visited, we know it is
3823 ok. */
3824 cache->insert (&entry, sizeof (entry), &added);
3825 if (!added)
3826 continue;
3827
3828 if (!check_types_equal (entry.type1, entry.type2, worklist))
3829 return false;
3830 }
3831
3832 return true;
3833 }
3834
3835 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3836 "deep comparison". Otherwise return false. */
3837
3838 bool
3839 types_deeply_equal (struct type *type1, struct type *type2)
3840 {
3841 std::vector<type_equality_entry> worklist;
3842
3843 gdb_assert (type1 != NULL && type2 != NULL);
3844
3845 /* Early exit for the simple case. */
3846 if (type1 == type2)
3847 return true;
3848
3849 struct bcache cache (nullptr, nullptr);
3850 worklist.emplace_back (type1, type2);
3851 return check_types_worklist (&worklist, &cache);
3852 }
3853
3854 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3855 Otherwise return one. */
3856
3857 int
3858 type_not_allocated (const struct type *type)
3859 {
3860 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3861
3862 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3863 && !TYPE_DYN_PROP_ADDR (prop));
3864 }
3865
3866 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3867 Otherwise return one. */
3868
3869 int
3870 type_not_associated (const struct type *type)
3871 {
3872 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3873
3874 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3875 && !TYPE_DYN_PROP_ADDR (prop));
3876 }
3877
3878 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3879
3880 static struct rank
3881 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3882 {
3883 struct rank rank = {0,0};
3884
3885 switch (TYPE_CODE (arg))
3886 {
3887 case TYPE_CODE_PTR:
3888
3889 /* Allowed pointer conversions are:
3890 (a) pointer to void-pointer conversion. */
3891 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3892 return VOID_PTR_CONVERSION_BADNESS;
3893
3894 /* (b) pointer to ancestor-pointer conversion. */
3895 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3896 TYPE_TARGET_TYPE (arg),
3897 0);
3898 if (rank.subrank >= 0)
3899 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3900
3901 return INCOMPATIBLE_TYPE_BADNESS;
3902 case TYPE_CODE_ARRAY:
3903 {
3904 struct type *t1 = TYPE_TARGET_TYPE (parm);
3905 struct type *t2 = TYPE_TARGET_TYPE (arg);
3906
3907 if (types_equal (t1, t2))
3908 {
3909 /* Make sure they are CV equal. */
3910 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3911 rank.subrank |= CV_CONVERSION_CONST;
3912 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3913 rank.subrank |= CV_CONVERSION_VOLATILE;
3914 if (rank.subrank != 0)
3915 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3916 return EXACT_MATCH_BADNESS;
3917 }
3918 return INCOMPATIBLE_TYPE_BADNESS;
3919 }
3920 case TYPE_CODE_FUNC:
3921 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3922 case TYPE_CODE_INT:
3923 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3924 {
3925 if (value_as_long (value) == 0)
3926 {
3927 /* Null pointer conversion: allow it to be cast to a pointer.
3928 [4.10.1 of C++ standard draft n3290] */
3929 return NULL_POINTER_CONVERSION_BADNESS;
3930 }
3931 else
3932 {
3933 /* If type checking is disabled, allow the conversion. */
3934 if (!strict_type_checking)
3935 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3936 }
3937 }
3938 /* fall through */
3939 case TYPE_CODE_ENUM:
3940 case TYPE_CODE_FLAGS:
3941 case TYPE_CODE_CHAR:
3942 case TYPE_CODE_RANGE:
3943 case TYPE_CODE_BOOL:
3944 default:
3945 return INCOMPATIBLE_TYPE_BADNESS;
3946 }
3947 }
3948
3949 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3950
3951 static struct rank
3952 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3953 {
3954 switch (TYPE_CODE (arg))
3955 {
3956 case TYPE_CODE_PTR:
3957 case TYPE_CODE_ARRAY:
3958 return rank_one_type (TYPE_TARGET_TYPE (parm),
3959 TYPE_TARGET_TYPE (arg), NULL);
3960 default:
3961 return INCOMPATIBLE_TYPE_BADNESS;
3962 }
3963 }
3964
3965 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3966
3967 static struct rank
3968 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3969 {
3970 switch (TYPE_CODE (arg))
3971 {
3972 case TYPE_CODE_PTR: /* funcptr -> func */
3973 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3974 default:
3975 return INCOMPATIBLE_TYPE_BADNESS;
3976 }
3977 }
3978
3979 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3980
3981 static struct rank
3982 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3983 {
3984 switch (TYPE_CODE (arg))
3985 {
3986 case TYPE_CODE_INT:
3987 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3988 {
3989 /* Deal with signed, unsigned, and plain chars and
3990 signed and unsigned ints. */
3991 if (TYPE_NOSIGN (parm))
3992 {
3993 /* This case only for character types. */
3994 if (TYPE_NOSIGN (arg))
3995 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3996 else /* signed/unsigned char -> plain char */
3997 return INTEGER_CONVERSION_BADNESS;
3998 }
3999 else if (TYPE_UNSIGNED (parm))
4000 {
4001 if (TYPE_UNSIGNED (arg))
4002 {
4003 /* unsigned int -> unsigned int, or
4004 unsigned long -> unsigned long */
4005 if (integer_types_same_name_p (TYPE_NAME (parm),
4006 TYPE_NAME (arg)))
4007 return EXACT_MATCH_BADNESS;
4008 else if (integer_types_same_name_p (TYPE_NAME (arg),
4009 "int")
4010 && integer_types_same_name_p (TYPE_NAME (parm),
4011 "long"))
4012 /* unsigned int -> unsigned long */
4013 return INTEGER_PROMOTION_BADNESS;
4014 else
4015 /* unsigned long -> unsigned int */
4016 return INTEGER_CONVERSION_BADNESS;
4017 }
4018 else
4019 {
4020 if (integer_types_same_name_p (TYPE_NAME (arg),
4021 "long")
4022 && integer_types_same_name_p (TYPE_NAME (parm),
4023 "int"))
4024 /* signed long -> unsigned int */
4025 return INTEGER_CONVERSION_BADNESS;
4026 else
4027 /* signed int/long -> unsigned int/long */
4028 return INTEGER_CONVERSION_BADNESS;
4029 }
4030 }
4031 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4032 {
4033 if (integer_types_same_name_p (TYPE_NAME (parm),
4034 TYPE_NAME (arg)))
4035 return EXACT_MATCH_BADNESS;
4036 else if (integer_types_same_name_p (TYPE_NAME (arg),
4037 "int")
4038 && integer_types_same_name_p (TYPE_NAME (parm),
4039 "long"))
4040 return INTEGER_PROMOTION_BADNESS;
4041 else
4042 return INTEGER_CONVERSION_BADNESS;
4043 }
4044 else
4045 return INTEGER_CONVERSION_BADNESS;
4046 }
4047 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4048 return INTEGER_PROMOTION_BADNESS;
4049 else
4050 return INTEGER_CONVERSION_BADNESS;
4051 case TYPE_CODE_ENUM:
4052 case TYPE_CODE_FLAGS:
4053 case TYPE_CODE_CHAR:
4054 case TYPE_CODE_RANGE:
4055 case TYPE_CODE_BOOL:
4056 if (TYPE_DECLARED_CLASS (arg))
4057 return INCOMPATIBLE_TYPE_BADNESS;
4058 return INTEGER_PROMOTION_BADNESS;
4059 case TYPE_CODE_FLT:
4060 return INT_FLOAT_CONVERSION_BADNESS;
4061 case TYPE_CODE_PTR:
4062 return NS_POINTER_CONVERSION_BADNESS;
4063 default:
4064 return INCOMPATIBLE_TYPE_BADNESS;
4065 }
4066 }
4067
4068 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4069
4070 static struct rank
4071 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4072 {
4073 switch (TYPE_CODE (arg))
4074 {
4075 case TYPE_CODE_INT:
4076 case TYPE_CODE_CHAR:
4077 case TYPE_CODE_RANGE:
4078 case TYPE_CODE_BOOL:
4079 case TYPE_CODE_ENUM:
4080 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4081 return INCOMPATIBLE_TYPE_BADNESS;
4082 return INTEGER_CONVERSION_BADNESS;
4083 case TYPE_CODE_FLT:
4084 return INT_FLOAT_CONVERSION_BADNESS;
4085 default:
4086 return INCOMPATIBLE_TYPE_BADNESS;
4087 }
4088 }
4089
4090 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4091
4092 static struct rank
4093 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4094 {
4095 switch (TYPE_CODE (arg))
4096 {
4097 case TYPE_CODE_RANGE:
4098 case TYPE_CODE_BOOL:
4099 case TYPE_CODE_ENUM:
4100 if (TYPE_DECLARED_CLASS (arg))
4101 return INCOMPATIBLE_TYPE_BADNESS;
4102 return INTEGER_CONVERSION_BADNESS;
4103 case TYPE_CODE_FLT:
4104 return INT_FLOAT_CONVERSION_BADNESS;
4105 case TYPE_CODE_INT:
4106 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4107 return INTEGER_CONVERSION_BADNESS;
4108 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4109 return INTEGER_PROMOTION_BADNESS;
4110 /* fall through */
4111 case TYPE_CODE_CHAR:
4112 /* Deal with signed, unsigned, and plain chars for C++ and
4113 with int cases falling through from previous case. */
4114 if (TYPE_NOSIGN (parm))
4115 {
4116 if (TYPE_NOSIGN (arg))
4117 return EXACT_MATCH_BADNESS;
4118 else
4119 return INTEGER_CONVERSION_BADNESS;
4120 }
4121 else if (TYPE_UNSIGNED (parm))
4122 {
4123 if (TYPE_UNSIGNED (arg))
4124 return EXACT_MATCH_BADNESS;
4125 else
4126 return INTEGER_PROMOTION_BADNESS;
4127 }
4128 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4129 return EXACT_MATCH_BADNESS;
4130 else
4131 return INTEGER_CONVERSION_BADNESS;
4132 default:
4133 return INCOMPATIBLE_TYPE_BADNESS;
4134 }
4135 }
4136
4137 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4138
4139 static struct rank
4140 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4141 {
4142 switch (TYPE_CODE (arg))
4143 {
4144 case TYPE_CODE_INT:
4145 case TYPE_CODE_CHAR:
4146 case TYPE_CODE_RANGE:
4147 case TYPE_CODE_BOOL:
4148 case TYPE_CODE_ENUM:
4149 return INTEGER_CONVERSION_BADNESS;
4150 case TYPE_CODE_FLT:
4151 return INT_FLOAT_CONVERSION_BADNESS;
4152 default:
4153 return INCOMPATIBLE_TYPE_BADNESS;
4154 }
4155 }
4156
4157 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4158
4159 static struct rank
4160 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4161 {
4162 switch (TYPE_CODE (arg))
4163 {
4164 /* n3290 draft, section 4.12.1 (conv.bool):
4165
4166 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4167 pointer to member type can be converted to a prvalue of type
4168 bool. A zero value, null pointer value, or null member pointer
4169 value is converted to false; any other value is converted to
4170 true. A prvalue of type std::nullptr_t can be converted to a
4171 prvalue of type bool; the resulting value is false." */
4172 case TYPE_CODE_INT:
4173 case TYPE_CODE_CHAR:
4174 case TYPE_CODE_ENUM:
4175 case TYPE_CODE_FLT:
4176 case TYPE_CODE_MEMBERPTR:
4177 case TYPE_CODE_PTR:
4178 return BOOL_CONVERSION_BADNESS;
4179 case TYPE_CODE_RANGE:
4180 return INCOMPATIBLE_TYPE_BADNESS;
4181 case TYPE_CODE_BOOL:
4182 return EXACT_MATCH_BADNESS;
4183 default:
4184 return INCOMPATIBLE_TYPE_BADNESS;
4185 }
4186 }
4187
4188 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4189
4190 static struct rank
4191 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4192 {
4193 switch (TYPE_CODE (arg))
4194 {
4195 case TYPE_CODE_FLT:
4196 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4197 return FLOAT_PROMOTION_BADNESS;
4198 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4199 return EXACT_MATCH_BADNESS;
4200 else
4201 return FLOAT_CONVERSION_BADNESS;
4202 case TYPE_CODE_INT:
4203 case TYPE_CODE_BOOL:
4204 case TYPE_CODE_ENUM:
4205 case TYPE_CODE_RANGE:
4206 case TYPE_CODE_CHAR:
4207 return INT_FLOAT_CONVERSION_BADNESS;
4208 default:
4209 return INCOMPATIBLE_TYPE_BADNESS;
4210 }
4211 }
4212
4213 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4214
4215 static struct rank
4216 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4217 {
4218 switch (TYPE_CODE (arg))
4219 { /* Strictly not needed for C++, but... */
4220 case TYPE_CODE_FLT:
4221 return FLOAT_PROMOTION_BADNESS;
4222 case TYPE_CODE_COMPLEX:
4223 return EXACT_MATCH_BADNESS;
4224 default:
4225 return INCOMPATIBLE_TYPE_BADNESS;
4226 }
4227 }
4228
4229 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4230
4231 static struct rank
4232 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4233 {
4234 struct rank rank = {0, 0};
4235
4236 switch (TYPE_CODE (arg))
4237 {
4238 case TYPE_CODE_STRUCT:
4239 /* Check for derivation */
4240 rank.subrank = distance_to_ancestor (parm, arg, 0);
4241 if (rank.subrank >= 0)
4242 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4243 /* fall through */
4244 default:
4245 return INCOMPATIBLE_TYPE_BADNESS;
4246 }
4247 }
4248
4249 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4250
4251 static struct rank
4252 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4253 {
4254 switch (TYPE_CODE (arg))
4255 {
4256 /* Not in C++ */
4257 case TYPE_CODE_SET:
4258 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4259 TYPE_FIELD_TYPE (arg, 0), NULL);
4260 default:
4261 return INCOMPATIBLE_TYPE_BADNESS;
4262 }
4263 }
4264
4265 /* Compare one type (PARM) for compatibility with another (ARG).
4266 * PARM is intended to be the parameter type of a function; and
4267 * ARG is the supplied argument's type. This function tests if
4268 * the latter can be converted to the former.
4269 * VALUE is the argument's value or NULL if none (or called recursively)
4270 *
4271 * Return 0 if they are identical types;
4272 * Otherwise, return an integer which corresponds to how compatible
4273 * PARM is to ARG. The higher the return value, the worse the match.
4274 * Generally the "bad" conversions are all uniformly assigned a 100. */
4275
4276 struct rank
4277 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4278 {
4279 struct rank rank = {0,0};
4280
4281 /* Resolve typedefs */
4282 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4283 parm = check_typedef (parm);
4284 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4285 arg = check_typedef (arg);
4286
4287 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4288 {
4289 if (VALUE_LVAL (value) == not_lval)
4290 {
4291 /* Rvalues should preferably bind to rvalue references or const
4292 lvalue references. */
4293 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4294 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4295 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4296 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4297 else
4298 return INCOMPATIBLE_TYPE_BADNESS;
4299 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4300 }
4301 else
4302 {
4303 /* Lvalues should prefer lvalue overloads. */
4304 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4305 {
4306 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4307 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4308 }
4309 }
4310 }
4311
4312 if (types_equal (parm, arg))
4313 {
4314 struct type *t1 = parm;
4315 struct type *t2 = arg;
4316
4317 /* For pointers and references, compare target type. */
4318 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4319 {
4320 t1 = TYPE_TARGET_TYPE (parm);
4321 t2 = TYPE_TARGET_TYPE (arg);
4322 }
4323
4324 /* Make sure they are CV equal, too. */
4325 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4326 rank.subrank |= CV_CONVERSION_CONST;
4327 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4328 rank.subrank |= CV_CONVERSION_VOLATILE;
4329 if (rank.subrank != 0)
4330 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4331 return EXACT_MATCH_BADNESS;
4332 }
4333
4334 /* See through references, since we can almost make non-references
4335 references. */
4336
4337 if (TYPE_IS_REFERENCE (arg))
4338 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4339 REFERENCE_CONVERSION_BADNESS));
4340 if (TYPE_IS_REFERENCE (parm))
4341 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4342 REFERENCE_CONVERSION_BADNESS));
4343 if (overload_debug)
4344 /* Debugging only. */
4345 fprintf_filtered (gdb_stderr,
4346 "------ Arg is %s [%d], parm is %s [%d]\n",
4347 TYPE_NAME (arg), TYPE_CODE (arg),
4348 TYPE_NAME (parm), TYPE_CODE (parm));
4349
4350 /* x -> y means arg of type x being supplied for parameter of type y. */
4351
4352 switch (TYPE_CODE (parm))
4353 {
4354 case TYPE_CODE_PTR:
4355 return rank_one_type_parm_ptr (parm, arg, value);
4356 case TYPE_CODE_ARRAY:
4357 return rank_one_type_parm_array (parm, arg, value);
4358 case TYPE_CODE_FUNC:
4359 return rank_one_type_parm_func (parm, arg, value);
4360 case TYPE_CODE_INT:
4361 return rank_one_type_parm_int (parm, arg, value);
4362 case TYPE_CODE_ENUM:
4363 return rank_one_type_parm_enum (parm, arg, value);
4364 case TYPE_CODE_CHAR:
4365 return rank_one_type_parm_char (parm, arg, value);
4366 case TYPE_CODE_RANGE:
4367 return rank_one_type_parm_range (parm, arg, value);
4368 case TYPE_CODE_BOOL:
4369 return rank_one_type_parm_bool (parm, arg, value);
4370 case TYPE_CODE_FLT:
4371 return rank_one_type_parm_float (parm, arg, value);
4372 case TYPE_CODE_COMPLEX:
4373 return rank_one_type_parm_complex (parm, arg, value);
4374 case TYPE_CODE_STRUCT:
4375 return rank_one_type_parm_struct (parm, arg, value);
4376 case TYPE_CODE_SET:
4377 return rank_one_type_parm_set (parm, arg, value);
4378 default:
4379 return INCOMPATIBLE_TYPE_BADNESS;
4380 } /* switch (TYPE_CODE (arg)) */
4381 }
4382
4383 /* End of functions for overload resolution. */
4384 \f
4385 /* Routines to pretty-print types. */
4386
4387 static void
4388 print_bit_vector (B_TYPE *bits, int nbits)
4389 {
4390 int bitno;
4391
4392 for (bitno = 0; bitno < nbits; bitno++)
4393 {
4394 if ((bitno % 8) == 0)
4395 {
4396 puts_filtered (" ");
4397 }
4398 if (B_TST (bits, bitno))
4399 printf_filtered (("1"));
4400 else
4401 printf_filtered (("0"));
4402 }
4403 }
4404
4405 /* Note the first arg should be the "this" pointer, we may not want to
4406 include it since we may get into a infinitely recursive
4407 situation. */
4408
4409 static void
4410 print_args (struct field *args, int nargs, int spaces)
4411 {
4412 if (args != NULL)
4413 {
4414 int i;
4415
4416 for (i = 0; i < nargs; i++)
4417 {
4418 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4419 args[i].name != NULL ? args[i].name : "<NULL>");
4420 recursive_dump_type (args[i].type, spaces + 2);
4421 }
4422 }
4423 }
4424
4425 int
4426 field_is_static (struct field *f)
4427 {
4428 /* "static" fields are the fields whose location is not relative
4429 to the address of the enclosing struct. It would be nice to
4430 have a dedicated flag that would be set for static fields when
4431 the type is being created. But in practice, checking the field
4432 loc_kind should give us an accurate answer. */
4433 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4434 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4435 }
4436
4437 static void
4438 dump_fn_fieldlists (struct type *type, int spaces)
4439 {
4440 int method_idx;
4441 int overload_idx;
4442 struct fn_field *f;
4443
4444 printfi_filtered (spaces, "fn_fieldlists ");
4445 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4446 printf_filtered ("\n");
4447 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4448 {
4449 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4450 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4451 method_idx,
4452 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4453 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4454 gdb_stdout);
4455 printf_filtered (_(") length %d\n"),
4456 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4457 for (overload_idx = 0;
4458 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4459 overload_idx++)
4460 {
4461 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4462 overload_idx,
4463 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4464 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4465 gdb_stdout);
4466 printf_filtered (")\n");
4467 printfi_filtered (spaces + 8, "type ");
4468 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4469 gdb_stdout);
4470 printf_filtered ("\n");
4471
4472 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4473 spaces + 8 + 2);
4474
4475 printfi_filtered (spaces + 8, "args ");
4476 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4477 gdb_stdout);
4478 printf_filtered ("\n");
4479 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4480 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4481 spaces + 8 + 2);
4482 printfi_filtered (spaces + 8, "fcontext ");
4483 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4484 gdb_stdout);
4485 printf_filtered ("\n");
4486
4487 printfi_filtered (spaces + 8, "is_const %d\n",
4488 TYPE_FN_FIELD_CONST (f, overload_idx));
4489 printfi_filtered (spaces + 8, "is_volatile %d\n",
4490 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4491 printfi_filtered (spaces + 8, "is_private %d\n",
4492 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4493 printfi_filtered (spaces + 8, "is_protected %d\n",
4494 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4495 printfi_filtered (spaces + 8, "is_stub %d\n",
4496 TYPE_FN_FIELD_STUB (f, overload_idx));
4497 printfi_filtered (spaces + 8, "voffset %u\n",
4498 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4499 }
4500 }
4501 }
4502
4503 static void
4504 print_cplus_stuff (struct type *type, int spaces)
4505 {
4506 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4507 printfi_filtered (spaces, "vptr_basetype ");
4508 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4509 puts_filtered ("\n");
4510 if (TYPE_VPTR_BASETYPE (type) != NULL)
4511 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4512
4513 printfi_filtered (spaces, "n_baseclasses %d\n",
4514 TYPE_N_BASECLASSES (type));
4515 printfi_filtered (spaces, "nfn_fields %d\n",
4516 TYPE_NFN_FIELDS (type));
4517 if (TYPE_N_BASECLASSES (type) > 0)
4518 {
4519 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4520 TYPE_N_BASECLASSES (type));
4521 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4522 gdb_stdout);
4523 printf_filtered (")");
4524
4525 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4526 TYPE_N_BASECLASSES (type));
4527 puts_filtered ("\n");
4528 }
4529 if (TYPE_NFIELDS (type) > 0)
4530 {
4531 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4532 {
4533 printfi_filtered (spaces,
4534 "private_field_bits (%d bits at *",
4535 TYPE_NFIELDS (type));
4536 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4537 gdb_stdout);
4538 printf_filtered (")");
4539 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4540 TYPE_NFIELDS (type));
4541 puts_filtered ("\n");
4542 }
4543 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4544 {
4545 printfi_filtered (spaces,
4546 "protected_field_bits (%d bits at *",
4547 TYPE_NFIELDS (type));
4548 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4549 gdb_stdout);
4550 printf_filtered (")");
4551 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4552 TYPE_NFIELDS (type));
4553 puts_filtered ("\n");
4554 }
4555 }
4556 if (TYPE_NFN_FIELDS (type) > 0)
4557 {
4558 dump_fn_fieldlists (type, spaces);
4559 }
4560 }
4561
4562 /* Print the contents of the TYPE's type_specific union, assuming that
4563 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4564
4565 static void
4566 print_gnat_stuff (struct type *type, int spaces)
4567 {
4568 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4569
4570 if (descriptive_type == NULL)
4571 printfi_filtered (spaces + 2, "no descriptive type\n");
4572 else
4573 {
4574 printfi_filtered (spaces + 2, "descriptive type\n");
4575 recursive_dump_type (descriptive_type, spaces + 4);
4576 }
4577 }
4578
4579 static struct obstack dont_print_type_obstack;
4580
4581 void
4582 recursive_dump_type (struct type *type, int spaces)
4583 {
4584 int idx;
4585
4586 if (spaces == 0)
4587 obstack_begin (&dont_print_type_obstack, 0);
4588
4589 if (TYPE_NFIELDS (type) > 0
4590 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4591 {
4592 struct type **first_dont_print
4593 = (struct type **) obstack_base (&dont_print_type_obstack);
4594
4595 int i = (struct type **)
4596 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4597
4598 while (--i >= 0)
4599 {
4600 if (type == first_dont_print[i])
4601 {
4602 printfi_filtered (spaces, "type node ");
4603 gdb_print_host_address (type, gdb_stdout);
4604 printf_filtered (_(" <same as already seen type>\n"));
4605 return;
4606 }
4607 }
4608
4609 obstack_ptr_grow (&dont_print_type_obstack, type);
4610 }
4611
4612 printfi_filtered (spaces, "type node ");
4613 gdb_print_host_address (type, gdb_stdout);
4614 printf_filtered ("\n");
4615 printfi_filtered (spaces, "name '%s' (",
4616 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4617 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4618 printf_filtered (")\n");
4619 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4620 switch (TYPE_CODE (type))
4621 {
4622 case TYPE_CODE_UNDEF:
4623 printf_filtered ("(TYPE_CODE_UNDEF)");
4624 break;
4625 case TYPE_CODE_PTR:
4626 printf_filtered ("(TYPE_CODE_PTR)");
4627 break;
4628 case TYPE_CODE_ARRAY:
4629 printf_filtered ("(TYPE_CODE_ARRAY)");
4630 break;
4631 case TYPE_CODE_STRUCT:
4632 printf_filtered ("(TYPE_CODE_STRUCT)");
4633 break;
4634 case TYPE_CODE_UNION:
4635 printf_filtered ("(TYPE_CODE_UNION)");
4636 break;
4637 case TYPE_CODE_ENUM:
4638 printf_filtered ("(TYPE_CODE_ENUM)");
4639 break;
4640 case TYPE_CODE_FLAGS:
4641 printf_filtered ("(TYPE_CODE_FLAGS)");
4642 break;
4643 case TYPE_CODE_FUNC:
4644 printf_filtered ("(TYPE_CODE_FUNC)");
4645 break;
4646 case TYPE_CODE_INT:
4647 printf_filtered ("(TYPE_CODE_INT)");
4648 break;
4649 case TYPE_CODE_FLT:
4650 printf_filtered ("(TYPE_CODE_FLT)");
4651 break;
4652 case TYPE_CODE_VOID:
4653 printf_filtered ("(TYPE_CODE_VOID)");
4654 break;
4655 case TYPE_CODE_SET:
4656 printf_filtered ("(TYPE_CODE_SET)");
4657 break;
4658 case TYPE_CODE_RANGE:
4659 printf_filtered ("(TYPE_CODE_RANGE)");
4660 break;
4661 case TYPE_CODE_STRING:
4662 printf_filtered ("(TYPE_CODE_STRING)");
4663 break;
4664 case TYPE_CODE_ERROR:
4665 printf_filtered ("(TYPE_CODE_ERROR)");
4666 break;
4667 case TYPE_CODE_MEMBERPTR:
4668 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4669 break;
4670 case TYPE_CODE_METHODPTR:
4671 printf_filtered ("(TYPE_CODE_METHODPTR)");
4672 break;
4673 case TYPE_CODE_METHOD:
4674 printf_filtered ("(TYPE_CODE_METHOD)");
4675 break;
4676 case TYPE_CODE_REF:
4677 printf_filtered ("(TYPE_CODE_REF)");
4678 break;
4679 case TYPE_CODE_CHAR:
4680 printf_filtered ("(TYPE_CODE_CHAR)");
4681 break;
4682 case TYPE_CODE_BOOL:
4683 printf_filtered ("(TYPE_CODE_BOOL)");
4684 break;
4685 case TYPE_CODE_COMPLEX:
4686 printf_filtered ("(TYPE_CODE_COMPLEX)");
4687 break;
4688 case TYPE_CODE_TYPEDEF:
4689 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4690 break;
4691 case TYPE_CODE_NAMESPACE:
4692 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4693 break;
4694 default:
4695 printf_filtered ("(UNKNOWN TYPE CODE)");
4696 break;
4697 }
4698 puts_filtered ("\n");
4699 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
4700 if (TYPE_OBJFILE_OWNED (type))
4701 {
4702 printfi_filtered (spaces, "objfile ");
4703 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4704 }
4705 else
4706 {
4707 printfi_filtered (spaces, "gdbarch ");
4708 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4709 }
4710 printf_filtered ("\n");
4711 printfi_filtered (spaces, "target_type ");
4712 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4713 printf_filtered ("\n");
4714 if (TYPE_TARGET_TYPE (type) != NULL)
4715 {
4716 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4717 }
4718 printfi_filtered (spaces, "pointer_type ");
4719 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4720 printf_filtered ("\n");
4721 printfi_filtered (spaces, "reference_type ");
4722 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4723 printf_filtered ("\n");
4724 printfi_filtered (spaces, "type_chain ");
4725 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4726 printf_filtered ("\n");
4727 printfi_filtered (spaces, "instance_flags 0x%x",
4728 TYPE_INSTANCE_FLAGS (type));
4729 if (TYPE_CONST (type))
4730 {
4731 puts_filtered (" TYPE_CONST");
4732 }
4733 if (TYPE_VOLATILE (type))
4734 {
4735 puts_filtered (" TYPE_VOLATILE");
4736 }
4737 if (TYPE_CODE_SPACE (type))
4738 {
4739 puts_filtered (" TYPE_CODE_SPACE");
4740 }
4741 if (TYPE_DATA_SPACE (type))
4742 {
4743 puts_filtered (" TYPE_DATA_SPACE");
4744 }
4745 if (TYPE_ADDRESS_CLASS_1 (type))
4746 {
4747 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4748 }
4749 if (TYPE_ADDRESS_CLASS_2 (type))
4750 {
4751 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4752 }
4753 if (TYPE_RESTRICT (type))
4754 {
4755 puts_filtered (" TYPE_RESTRICT");
4756 }
4757 if (TYPE_ATOMIC (type))
4758 {
4759 puts_filtered (" TYPE_ATOMIC");
4760 }
4761 puts_filtered ("\n");
4762
4763 printfi_filtered (spaces, "flags");
4764 if (TYPE_UNSIGNED (type))
4765 {
4766 puts_filtered (" TYPE_UNSIGNED");
4767 }
4768 if (TYPE_NOSIGN (type))
4769 {
4770 puts_filtered (" TYPE_NOSIGN");
4771 }
4772 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
4773 {
4774 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
4775 }
4776 if (TYPE_STUB (type))
4777 {
4778 puts_filtered (" TYPE_STUB");
4779 }
4780 if (TYPE_TARGET_STUB (type))
4781 {
4782 puts_filtered (" TYPE_TARGET_STUB");
4783 }
4784 if (TYPE_PROTOTYPED (type))
4785 {
4786 puts_filtered (" TYPE_PROTOTYPED");
4787 }
4788 if (TYPE_INCOMPLETE (type))
4789 {
4790 puts_filtered (" TYPE_INCOMPLETE");
4791 }
4792 if (TYPE_VARARGS (type))
4793 {
4794 puts_filtered (" TYPE_VARARGS");
4795 }
4796 /* This is used for things like AltiVec registers on ppc. Gcc emits
4797 an attribute for the array type, which tells whether or not we
4798 have a vector, instead of a regular array. */
4799 if (TYPE_VECTOR (type))
4800 {
4801 puts_filtered (" TYPE_VECTOR");
4802 }
4803 if (TYPE_FIXED_INSTANCE (type))
4804 {
4805 puts_filtered (" TYPE_FIXED_INSTANCE");
4806 }
4807 if (TYPE_STUB_SUPPORTED (type))
4808 {
4809 puts_filtered (" TYPE_STUB_SUPPORTED");
4810 }
4811 if (TYPE_NOTTEXT (type))
4812 {
4813 puts_filtered (" TYPE_NOTTEXT");
4814 }
4815 puts_filtered ("\n");
4816 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4817 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4818 puts_filtered ("\n");
4819 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4820 {
4821 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4822 printfi_filtered (spaces + 2,
4823 "[%d] enumval %s type ",
4824 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4825 else
4826 printfi_filtered (spaces + 2,
4827 "[%d] bitpos %s bitsize %d type ",
4828 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4829 TYPE_FIELD_BITSIZE (type, idx));
4830 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4831 printf_filtered (" name '%s' (",
4832 TYPE_FIELD_NAME (type, idx) != NULL
4833 ? TYPE_FIELD_NAME (type, idx)
4834 : "<NULL>");
4835 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4836 printf_filtered (")\n");
4837 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4838 {
4839 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4840 }
4841 }
4842 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4843 {
4844 printfi_filtered (spaces, "low %s%s high %s%s\n",
4845 plongest (TYPE_LOW_BOUND (type)),
4846 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4847 plongest (TYPE_HIGH_BOUND (type)),
4848 TYPE_HIGH_BOUND_UNDEFINED (type)
4849 ? " (undefined)" : "");
4850 }
4851
4852 switch (TYPE_SPECIFIC_FIELD (type))
4853 {
4854 case TYPE_SPECIFIC_CPLUS_STUFF:
4855 printfi_filtered (spaces, "cplus_stuff ");
4856 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4857 gdb_stdout);
4858 puts_filtered ("\n");
4859 print_cplus_stuff (type, spaces);
4860 break;
4861
4862 case TYPE_SPECIFIC_GNAT_STUFF:
4863 printfi_filtered (spaces, "gnat_stuff ");
4864 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4865 puts_filtered ("\n");
4866 print_gnat_stuff (type, spaces);
4867 break;
4868
4869 case TYPE_SPECIFIC_FLOATFORMAT:
4870 printfi_filtered (spaces, "floatformat ");
4871 if (TYPE_FLOATFORMAT (type) == NULL
4872 || TYPE_FLOATFORMAT (type)->name == NULL)
4873 puts_filtered ("(null)");
4874 else
4875 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4876 puts_filtered ("\n");
4877 break;
4878
4879 case TYPE_SPECIFIC_FUNC:
4880 printfi_filtered (spaces, "calling_convention %d\n",
4881 TYPE_CALLING_CONVENTION (type));
4882 /* tail_call_list is not printed. */
4883 break;
4884
4885 case TYPE_SPECIFIC_SELF_TYPE:
4886 printfi_filtered (spaces, "self_type ");
4887 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4888 puts_filtered ("\n");
4889 break;
4890 }
4891
4892 if (spaces == 0)
4893 obstack_free (&dont_print_type_obstack, NULL);
4894 }
4895 \f
4896 /* Trivial helpers for the libiberty hash table, for mapping one
4897 type to another. */
4898
4899 struct type_pair : public allocate_on_obstack
4900 {
4901 type_pair (struct type *old_, struct type *newobj_)
4902 : old (old_), newobj (newobj_)
4903 {}
4904
4905 struct type * const old, * const newobj;
4906 };
4907
4908 static hashval_t
4909 type_pair_hash (const void *item)
4910 {
4911 const struct type_pair *pair = (const struct type_pair *) item;
4912
4913 return htab_hash_pointer (pair->old);
4914 }
4915
4916 static int
4917 type_pair_eq (const void *item_lhs, const void *item_rhs)
4918 {
4919 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4920 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4921
4922 return lhs->old == rhs->old;
4923 }
4924
4925 /* Allocate the hash table used by copy_type_recursive to walk
4926 types without duplicates. We use OBJFILE's obstack, because
4927 OBJFILE is about to be deleted. */
4928
4929 htab_t
4930 create_copied_types_hash (struct objfile *objfile)
4931 {
4932 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4933 NULL, &objfile->objfile_obstack,
4934 hashtab_obstack_allocate,
4935 dummy_obstack_deallocate);
4936 }
4937
4938 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4939
4940 static struct dynamic_prop_list *
4941 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4942 struct dynamic_prop_list *list)
4943 {
4944 struct dynamic_prop_list *copy = list;
4945 struct dynamic_prop_list **node_ptr = &copy;
4946
4947 while (*node_ptr != NULL)
4948 {
4949 struct dynamic_prop_list *node_copy;
4950
4951 node_copy = ((struct dynamic_prop_list *)
4952 obstack_copy (objfile_obstack, *node_ptr,
4953 sizeof (struct dynamic_prop_list)));
4954 node_copy->prop = (*node_ptr)->prop;
4955 *node_ptr = node_copy;
4956
4957 node_ptr = &node_copy->next;
4958 }
4959
4960 return copy;
4961 }
4962
4963 /* Recursively copy (deep copy) TYPE, if it is associated with
4964 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4965 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4966 it is not associated with OBJFILE. */
4967
4968 struct type *
4969 copy_type_recursive (struct objfile *objfile,
4970 struct type *type,
4971 htab_t copied_types)
4972 {
4973 void **slot;
4974 struct type *new_type;
4975
4976 if (! TYPE_OBJFILE_OWNED (type))
4977 return type;
4978
4979 /* This type shouldn't be pointing to any types in other objfiles;
4980 if it did, the type might disappear unexpectedly. */
4981 gdb_assert (TYPE_OBJFILE (type) == objfile);
4982
4983 struct type_pair pair (type, nullptr);
4984
4985 slot = htab_find_slot (copied_types, &pair, INSERT);
4986 if (*slot != NULL)
4987 return ((struct type_pair *) *slot)->newobj;
4988
4989 new_type = alloc_type_arch (get_type_arch (type));
4990
4991 /* We must add the new type to the hash table immediately, in case
4992 we encounter this type again during a recursive call below. */
4993 struct type_pair *stored
4994 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4995
4996 *slot = stored;
4997
4998 /* Copy the common fields of types. For the main type, we simply
4999 copy the entire thing and then update specific fields as needed. */
5000 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5001 TYPE_OBJFILE_OWNED (new_type) = 0;
5002 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
5003
5004 if (TYPE_NAME (type))
5005 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
5006
5007 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5008 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5009
5010 /* Copy the fields. */
5011 if (TYPE_NFIELDS (type))
5012 {
5013 int i, nfields;
5014
5015 nfields = TYPE_NFIELDS (type);
5016 TYPE_FIELDS (new_type) = (struct field *)
5017 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
5018 for (i = 0; i < nfields; i++)
5019 {
5020 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5021 TYPE_FIELD_ARTIFICIAL (type, i);
5022 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5023 if (TYPE_FIELD_TYPE (type, i))
5024 TYPE_FIELD_TYPE (new_type, i)
5025 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
5026 copied_types);
5027 if (TYPE_FIELD_NAME (type, i))
5028 TYPE_FIELD_NAME (new_type, i) =
5029 xstrdup (TYPE_FIELD_NAME (type, i));
5030 switch (TYPE_FIELD_LOC_KIND (type, i))
5031 {
5032 case FIELD_LOC_KIND_BITPOS:
5033 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
5034 TYPE_FIELD_BITPOS (type, i));
5035 break;
5036 case FIELD_LOC_KIND_ENUMVAL:
5037 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
5038 TYPE_FIELD_ENUMVAL (type, i));
5039 break;
5040 case FIELD_LOC_KIND_PHYSADDR:
5041 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
5042 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5043 break;
5044 case FIELD_LOC_KIND_PHYSNAME:
5045 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
5046 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5047 i)));
5048 break;
5049 default:
5050 internal_error (__FILE__, __LINE__,
5051 _("Unexpected type field location kind: %d"),
5052 TYPE_FIELD_LOC_KIND (type, i));
5053 }
5054 }
5055 }
5056
5057 /* For range types, copy the bounds information. */
5058 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5059 {
5060 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
5061 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
5062 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
5063 }
5064
5065 if (TYPE_DYN_PROP_LIST (type) != NULL)
5066 TYPE_DYN_PROP_LIST (new_type)
5067 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5068 TYPE_DYN_PROP_LIST (type));
5069
5070
5071 /* Copy pointers to other types. */
5072 if (TYPE_TARGET_TYPE (type))
5073 TYPE_TARGET_TYPE (new_type) =
5074 copy_type_recursive (objfile,
5075 TYPE_TARGET_TYPE (type),
5076 copied_types);
5077
5078 /* Maybe copy the type_specific bits.
5079
5080 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5081 base classes and methods. There's no fundamental reason why we
5082 can't, but at the moment it is not needed. */
5083
5084 switch (TYPE_SPECIFIC_FIELD (type))
5085 {
5086 case TYPE_SPECIFIC_NONE:
5087 break;
5088 case TYPE_SPECIFIC_FUNC:
5089 INIT_FUNC_SPECIFIC (new_type);
5090 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5091 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5092 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5093 break;
5094 case TYPE_SPECIFIC_FLOATFORMAT:
5095 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5096 break;
5097 case TYPE_SPECIFIC_CPLUS_STUFF:
5098 INIT_CPLUS_SPECIFIC (new_type);
5099 break;
5100 case TYPE_SPECIFIC_GNAT_STUFF:
5101 INIT_GNAT_SPECIFIC (new_type);
5102 break;
5103 case TYPE_SPECIFIC_SELF_TYPE:
5104 set_type_self_type (new_type,
5105 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5106 copied_types));
5107 break;
5108 default:
5109 gdb_assert_not_reached ("bad type_specific_kind");
5110 }
5111
5112 return new_type;
5113 }
5114
5115 /* Make a copy of the given TYPE, except that the pointer & reference
5116 types are not preserved.
5117
5118 This function assumes that the given type has an associated objfile.
5119 This objfile is used to allocate the new type. */
5120
5121 struct type *
5122 copy_type (const struct type *type)
5123 {
5124 struct type *new_type;
5125
5126 gdb_assert (TYPE_OBJFILE_OWNED (type));
5127
5128 new_type = alloc_type_copy (type);
5129 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5130 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5131 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5132 sizeof (struct main_type));
5133 if (TYPE_DYN_PROP_LIST (type) != NULL)
5134 TYPE_DYN_PROP_LIST (new_type)
5135 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5136 TYPE_DYN_PROP_LIST (type));
5137
5138 return new_type;
5139 }
5140 \f
5141 /* Helper functions to initialize architecture-specific types. */
5142
5143 /* Allocate a type structure associated with GDBARCH and set its
5144 CODE, LENGTH, and NAME fields. */
5145
5146 struct type *
5147 arch_type (struct gdbarch *gdbarch,
5148 enum type_code code, int bit, const char *name)
5149 {
5150 struct type *type;
5151
5152 type = alloc_type_arch (gdbarch);
5153 set_type_code (type, code);
5154 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5155 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5156
5157 if (name)
5158 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5159
5160 return type;
5161 }
5162
5163 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5164 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5165 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5166
5167 struct type *
5168 arch_integer_type (struct gdbarch *gdbarch,
5169 int bit, int unsigned_p, const char *name)
5170 {
5171 struct type *t;
5172
5173 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5174 if (unsigned_p)
5175 TYPE_UNSIGNED (t) = 1;
5176
5177 return t;
5178 }
5179
5180 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5181 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5182 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5183
5184 struct type *
5185 arch_character_type (struct gdbarch *gdbarch,
5186 int bit, int unsigned_p, const char *name)
5187 {
5188 struct type *t;
5189
5190 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5191 if (unsigned_p)
5192 TYPE_UNSIGNED (t) = 1;
5193
5194 return t;
5195 }
5196
5197 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5198 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5199 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5200
5201 struct type *
5202 arch_boolean_type (struct gdbarch *gdbarch,
5203 int bit, int unsigned_p, const char *name)
5204 {
5205 struct type *t;
5206
5207 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5208 if (unsigned_p)
5209 TYPE_UNSIGNED (t) = 1;
5210
5211 return t;
5212 }
5213
5214 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5215 BIT is the type size in bits; if BIT equals -1, the size is
5216 determined by the floatformat. NAME is the type name. Set the
5217 TYPE_FLOATFORMAT from FLOATFORMATS. */
5218
5219 struct type *
5220 arch_float_type (struct gdbarch *gdbarch,
5221 int bit, const char *name,
5222 const struct floatformat **floatformats)
5223 {
5224 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5225 struct type *t;
5226
5227 bit = verify_floatformat (bit, fmt);
5228 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5229 TYPE_FLOATFORMAT (t) = fmt;
5230
5231 return t;
5232 }
5233
5234 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5235 BIT is the type size in bits. NAME is the type name. */
5236
5237 struct type *
5238 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5239 {
5240 struct type *t;
5241
5242 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5243 return t;
5244 }
5245
5246 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5247 NAME is the type name. TARGET_TYPE is the component float type. */
5248
5249 struct type *
5250 arch_complex_type (struct gdbarch *gdbarch,
5251 const char *name, struct type *target_type)
5252 {
5253 struct type *t;
5254
5255 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5256 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5257 TYPE_TARGET_TYPE (t) = target_type;
5258 return t;
5259 }
5260
5261 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5262 BIT is the pointer type size in bits. NAME is the type name.
5263 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5264 TYPE_UNSIGNED flag. */
5265
5266 struct type *
5267 arch_pointer_type (struct gdbarch *gdbarch,
5268 int bit, const char *name, struct type *target_type)
5269 {
5270 struct type *t;
5271
5272 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5273 TYPE_TARGET_TYPE (t) = target_type;
5274 TYPE_UNSIGNED (t) = 1;
5275 return t;
5276 }
5277
5278 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5279 NAME is the type name. BIT is the size of the flag word in bits. */
5280
5281 struct type *
5282 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5283 {
5284 struct type *type;
5285
5286 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5287 TYPE_UNSIGNED (type) = 1;
5288 TYPE_NFIELDS (type) = 0;
5289 /* Pre-allocate enough space assuming every field is one bit. */
5290 TYPE_FIELDS (type)
5291 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5292
5293 return type;
5294 }
5295
5296 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5297 position BITPOS is called NAME. Pass NAME as "" for fields that
5298 should not be printed. */
5299
5300 void
5301 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5302 struct type *field_type, const char *name)
5303 {
5304 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5305 int field_nr = TYPE_NFIELDS (type);
5306
5307 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5308 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5309 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5310 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5311 gdb_assert (name != NULL);
5312
5313 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5314 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5315 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5316 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5317 ++TYPE_NFIELDS (type);
5318 }
5319
5320 /* Special version of append_flags_type_field to add a flag field.
5321 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5322 position BITPOS is called NAME. */
5323
5324 void
5325 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5326 {
5327 struct gdbarch *gdbarch = get_type_arch (type);
5328
5329 append_flags_type_field (type, bitpos, 1,
5330 builtin_type (gdbarch)->builtin_bool,
5331 name);
5332 }
5333
5334 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5335 specified by CODE) associated with GDBARCH. NAME is the type name. */
5336
5337 struct type *
5338 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5339 enum type_code code)
5340 {
5341 struct type *t;
5342
5343 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5344 t = arch_type (gdbarch, code, 0, NULL);
5345 TYPE_NAME (t) = name;
5346 INIT_CPLUS_SPECIFIC (t);
5347 return t;
5348 }
5349
5350 /* Add new field with name NAME and type FIELD to composite type T.
5351 Do not set the field's position or adjust the type's length;
5352 the caller should do so. Return the new field. */
5353
5354 struct field *
5355 append_composite_type_field_raw (struct type *t, const char *name,
5356 struct type *field)
5357 {
5358 struct field *f;
5359
5360 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5361 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5362 TYPE_NFIELDS (t));
5363 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5364 memset (f, 0, sizeof f[0]);
5365 FIELD_TYPE (f[0]) = field;
5366 FIELD_NAME (f[0]) = name;
5367 return f;
5368 }
5369
5370 /* Add new field with name NAME and type FIELD to composite type T.
5371 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5372
5373 void
5374 append_composite_type_field_aligned (struct type *t, const char *name,
5375 struct type *field, int alignment)
5376 {
5377 struct field *f = append_composite_type_field_raw (t, name, field);
5378
5379 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5380 {
5381 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5382 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5383 }
5384 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5385 {
5386 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5387 if (TYPE_NFIELDS (t) > 1)
5388 {
5389 SET_FIELD_BITPOS (f[0],
5390 (FIELD_BITPOS (f[-1])
5391 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5392 * TARGET_CHAR_BIT)));
5393
5394 if (alignment)
5395 {
5396 int left;
5397
5398 alignment *= TARGET_CHAR_BIT;
5399 left = FIELD_BITPOS (f[0]) % alignment;
5400
5401 if (left)
5402 {
5403 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5404 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5405 }
5406 }
5407 }
5408 }
5409 }
5410
5411 /* Add new field with name NAME and type FIELD to composite type T. */
5412
5413 void
5414 append_composite_type_field (struct type *t, const char *name,
5415 struct type *field)
5416 {
5417 append_composite_type_field_aligned (t, name, field, 0);
5418 }
5419
5420 static struct gdbarch_data *gdbtypes_data;
5421
5422 const struct builtin_type *
5423 builtin_type (struct gdbarch *gdbarch)
5424 {
5425 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5426 }
5427
5428 static void *
5429 gdbtypes_post_init (struct gdbarch *gdbarch)
5430 {
5431 struct builtin_type *builtin_type
5432 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5433
5434 /* Basic types. */
5435 builtin_type->builtin_void
5436 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5437 builtin_type->builtin_char
5438 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5439 !gdbarch_char_signed (gdbarch), "char");
5440 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5441 builtin_type->builtin_signed_char
5442 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5443 0, "signed char");
5444 builtin_type->builtin_unsigned_char
5445 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5446 1, "unsigned char");
5447 builtin_type->builtin_short
5448 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5449 0, "short");
5450 builtin_type->builtin_unsigned_short
5451 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5452 1, "unsigned short");
5453 builtin_type->builtin_int
5454 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5455 0, "int");
5456 builtin_type->builtin_unsigned_int
5457 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5458 1, "unsigned int");
5459 builtin_type->builtin_long
5460 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5461 0, "long");
5462 builtin_type->builtin_unsigned_long
5463 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5464 1, "unsigned long");
5465 builtin_type->builtin_long_long
5466 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5467 0, "long long");
5468 builtin_type->builtin_unsigned_long_long
5469 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5470 1, "unsigned long long");
5471 builtin_type->builtin_half
5472 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5473 "half", gdbarch_half_format (gdbarch));
5474 builtin_type->builtin_float
5475 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5476 "float", gdbarch_float_format (gdbarch));
5477 builtin_type->builtin_double
5478 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5479 "double", gdbarch_double_format (gdbarch));
5480 builtin_type->builtin_long_double
5481 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5482 "long double", gdbarch_long_double_format (gdbarch));
5483 builtin_type->builtin_complex
5484 = arch_complex_type (gdbarch, "complex",
5485 builtin_type->builtin_float);
5486 builtin_type->builtin_double_complex
5487 = arch_complex_type (gdbarch, "double complex",
5488 builtin_type->builtin_double);
5489 builtin_type->builtin_string
5490 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5491 builtin_type->builtin_bool
5492 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5493
5494 /* The following three are about decimal floating point types, which
5495 are 32-bits, 64-bits and 128-bits respectively. */
5496 builtin_type->builtin_decfloat
5497 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5498 builtin_type->builtin_decdouble
5499 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5500 builtin_type->builtin_declong
5501 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5502
5503 /* "True" character types. */
5504 builtin_type->builtin_true_char
5505 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5506 builtin_type->builtin_true_unsigned_char
5507 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5508
5509 /* Fixed-size integer types. */
5510 builtin_type->builtin_int0
5511 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5512 builtin_type->builtin_int8
5513 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5514 builtin_type->builtin_uint8
5515 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5516 builtin_type->builtin_int16
5517 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5518 builtin_type->builtin_uint16
5519 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5520 builtin_type->builtin_int24
5521 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5522 builtin_type->builtin_uint24
5523 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5524 builtin_type->builtin_int32
5525 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5526 builtin_type->builtin_uint32
5527 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5528 builtin_type->builtin_int64
5529 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5530 builtin_type->builtin_uint64
5531 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5532 builtin_type->builtin_int128
5533 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5534 builtin_type->builtin_uint128
5535 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5536 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5537 TYPE_INSTANCE_FLAG_NOTTEXT;
5538 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5539 TYPE_INSTANCE_FLAG_NOTTEXT;
5540
5541 /* Wide character types. */
5542 builtin_type->builtin_char16
5543 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5544 builtin_type->builtin_char32
5545 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5546 builtin_type->builtin_wchar
5547 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5548 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5549
5550 /* Default data/code pointer types. */
5551 builtin_type->builtin_data_ptr
5552 = lookup_pointer_type (builtin_type->builtin_void);
5553 builtin_type->builtin_func_ptr
5554 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5555 builtin_type->builtin_func_func
5556 = lookup_function_type (builtin_type->builtin_func_ptr);
5557
5558 /* This type represents a GDB internal function. */
5559 builtin_type->internal_fn
5560 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5561 "<internal function>");
5562
5563 /* This type represents an xmethod. */
5564 builtin_type->xmethod
5565 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5566
5567 return builtin_type;
5568 }
5569
5570 /* This set of objfile-based types is intended to be used by symbol
5571 readers as basic types. */
5572
5573 static const struct objfile_key<struct objfile_type,
5574 gdb::noop_deleter<struct objfile_type>>
5575 objfile_type_data;
5576
5577 const struct objfile_type *
5578 objfile_type (struct objfile *objfile)
5579 {
5580 struct gdbarch *gdbarch;
5581 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5582
5583 if (objfile_type)
5584 return objfile_type;
5585
5586 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5587 1, struct objfile_type);
5588
5589 /* Use the objfile architecture to determine basic type properties. */
5590 gdbarch = get_objfile_arch (objfile);
5591
5592 /* Basic types. */
5593 objfile_type->builtin_void
5594 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5595 objfile_type->builtin_char
5596 = init_integer_type (objfile, TARGET_CHAR_BIT,
5597 !gdbarch_char_signed (gdbarch), "char");
5598 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5599 objfile_type->builtin_signed_char
5600 = init_integer_type (objfile, TARGET_CHAR_BIT,
5601 0, "signed char");
5602 objfile_type->builtin_unsigned_char
5603 = init_integer_type (objfile, TARGET_CHAR_BIT,
5604 1, "unsigned char");
5605 objfile_type->builtin_short
5606 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5607 0, "short");
5608 objfile_type->builtin_unsigned_short
5609 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5610 1, "unsigned short");
5611 objfile_type->builtin_int
5612 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5613 0, "int");
5614 objfile_type->builtin_unsigned_int
5615 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5616 1, "unsigned int");
5617 objfile_type->builtin_long
5618 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5619 0, "long");
5620 objfile_type->builtin_unsigned_long
5621 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5622 1, "unsigned long");
5623 objfile_type->builtin_long_long
5624 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5625 0, "long long");
5626 objfile_type->builtin_unsigned_long_long
5627 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5628 1, "unsigned long long");
5629 objfile_type->builtin_float
5630 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5631 "float", gdbarch_float_format (gdbarch));
5632 objfile_type->builtin_double
5633 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5634 "double", gdbarch_double_format (gdbarch));
5635 objfile_type->builtin_long_double
5636 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5637 "long double", gdbarch_long_double_format (gdbarch));
5638
5639 /* This type represents a type that was unrecognized in symbol read-in. */
5640 objfile_type->builtin_error
5641 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5642
5643 /* The following set of types is used for symbols with no
5644 debug information. */
5645 objfile_type->nodebug_text_symbol
5646 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5647 "<text variable, no debug info>");
5648 objfile_type->nodebug_text_gnu_ifunc_symbol
5649 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5650 "<text gnu-indirect-function variable, no debug info>");
5651 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5652 objfile_type->nodebug_got_plt_symbol
5653 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5654 "<text from jump slot in .got.plt, no debug info>",
5655 objfile_type->nodebug_text_symbol);
5656 objfile_type->nodebug_data_symbol
5657 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5658 objfile_type->nodebug_unknown_symbol
5659 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5660 objfile_type->nodebug_tls_symbol
5661 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5662
5663 /* NOTE: on some targets, addresses and pointers are not necessarily
5664 the same.
5665
5666 The upshot is:
5667 - gdb's `struct type' always describes the target's
5668 representation.
5669 - gdb's `struct value' objects should always hold values in
5670 target form.
5671 - gdb's CORE_ADDR values are addresses in the unified virtual
5672 address space that the assembler and linker work with. Thus,
5673 since target_read_memory takes a CORE_ADDR as an argument, it
5674 can access any memory on the target, even if the processor has
5675 separate code and data address spaces.
5676
5677 In this context, objfile_type->builtin_core_addr is a bit odd:
5678 it's a target type for a value the target will never see. It's
5679 only used to hold the values of (typeless) linker symbols, which
5680 are indeed in the unified virtual address space. */
5681
5682 objfile_type->builtin_core_addr
5683 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5684 "__CORE_ADDR");
5685
5686 objfile_type_data.set (objfile, objfile_type);
5687 return objfile_type;
5688 }
5689
5690 void
5691 _initialize_gdbtypes (void)
5692 {
5693 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5694
5695 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5696 _("Set debugging of C++ overloading."),
5697 _("Show debugging of C++ overloading."),
5698 _("When enabled, ranking of the "
5699 "functions is displayed."),
5700 NULL,
5701 show_overload_debug,
5702 &setdebuglist, &showdebuglist);
5703
5704 /* Add user knob for controlling resolution of opaque types. */
5705 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5706 &opaque_type_resolution,
5707 _("Set resolution of opaque struct/class/union"
5708 " types (if set before loading symbols)."),
5709 _("Show resolution of opaque struct/class/union"
5710 " types (if set before loading symbols)."),
5711 NULL, NULL,
5712 show_opaque_type_resolution,
5713 &setlist, &showlist);
5714
5715 /* Add an option to permit non-strict type checking. */
5716 add_setshow_boolean_cmd ("type", class_support,
5717 &strict_type_checking,
5718 _("Set strict type checking."),
5719 _("Show strict type checking."),
5720 NULL, NULL,
5721 show_strict_type_checking,
5722 &setchecklist, &showchecklist);
5723 }
This page took 0.138301 seconds and 5 git commands to generate.