type: add c99 variable length array support
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include "bfd.h"
25 #include "symtab.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "language.h"
31 #include "target.h"
32 #include "value.h"
33 #include "demangle.h"
34 #include "complaints.h"
35 #include "gdbcmd.h"
36 #include "cp-abi.h"
37 #include "gdb_assert.h"
38 #include "hashtab.h"
39 #include "exceptions.h"
40 #include "cp-support.h"
41 #include "bcache.h"
42 #include "dwarf2loc.h"
43 #include "gdbcore.h"
44
45 /* Initialize BADNESS constants. */
46
47 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
48
49 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
50 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
51
52 const struct rank EXACT_MATCH_BADNESS = {0,0};
53
54 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
55 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
56 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
57 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62 const struct rank BASE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
65 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
66 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
67
68 /* Floatformat pairs. */
69 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ieee_half_big,
71 &floatformat_ieee_half_little
72 };
73 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ieee_single_big,
75 &floatformat_ieee_single_little
76 };
77 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ieee_double_big,
79 &floatformat_ieee_double_little
80 };
81 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_ieee_double_big,
83 &floatformat_ieee_double_littlebyte_bigword
84 };
85 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_i387_ext,
87 &floatformat_i387_ext
88 };
89 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_m68881_ext,
91 &floatformat_m68881_ext
92 };
93 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
94 &floatformat_arm_ext_big,
95 &floatformat_arm_ext_littlebyte_bigword
96 };
97 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
98 &floatformat_ia64_spill_big,
99 &floatformat_ia64_spill_little
100 };
101 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
102 &floatformat_ia64_quad_big,
103 &floatformat_ia64_quad_little
104 };
105 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
106 &floatformat_vax_f,
107 &floatformat_vax_f
108 };
109 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
110 &floatformat_vax_d,
111 &floatformat_vax_d
112 };
113 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
114 &floatformat_ibm_long_double_big,
115 &floatformat_ibm_long_double_little
116 };
117
118 /* Should opaque types be resolved? */
119
120 static int opaque_type_resolution = 1;
121
122 /* A flag to enable printing of debugging information of C++
123 overloading. */
124
125 unsigned int overload_debug = 0;
126
127 /* A flag to enable strict type checking. */
128
129 static int strict_type_checking = 1;
130
131 /* A function to show whether opaque types are resolved. */
132
133 static void
134 show_opaque_type_resolution (struct ui_file *file, int from_tty,
135 struct cmd_list_element *c,
136 const char *value)
137 {
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
140 value);
141 }
142
143 /* A function to show whether C++ overload debugging is enabled. */
144
145 static void
146 show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148 {
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
151 }
152
153 /* A function to show the status of strict type checking. */
154
155 static void
156 show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160 }
161
162 \f
163 /* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
166
167 struct type *
168 alloc_type (struct objfile *objfile)
169 {
170 struct type *type;
171
172 gdb_assert (objfile != NULL);
173
174 /* Alloc the structure and start off with all fields zeroed. */
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
179
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
182
183 /* Initialize the fields that might not be zero. */
184
185 TYPE_CODE (type) = TYPE_CODE_UNDEF;
186 TYPE_VPTR_FIELDNO (type) = -1;
187 TYPE_CHAIN (type) = type; /* Chain back to itself. */
188
189 return type;
190 }
191
192 /* Allocate a new GDBARCH-associated type structure and fill it
193 with some defaults. Space for the type structure is allocated
194 on the heap. */
195
196 struct type *
197 alloc_type_arch (struct gdbarch *gdbarch)
198 {
199 struct type *type;
200
201 gdb_assert (gdbarch != NULL);
202
203 /* Alloc the structure and start off with all fields zeroed. */
204
205 type = XCNEW (struct type);
206 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
207
208 TYPE_OBJFILE_OWNED (type) = 0;
209 TYPE_OWNER (type).gdbarch = gdbarch;
210
211 /* Initialize the fields that might not be zero. */
212
213 TYPE_CODE (type) = TYPE_CODE_UNDEF;
214 TYPE_VPTR_FIELDNO (type) = -1;
215 TYPE_CHAIN (type) = type; /* Chain back to itself. */
216
217 return type;
218 }
219
220 /* If TYPE is objfile-associated, allocate a new type structure
221 associated with the same objfile. If TYPE is gdbarch-associated,
222 allocate a new type structure associated with the same gdbarch. */
223
224 struct type *
225 alloc_type_copy (const struct type *type)
226 {
227 if (TYPE_OBJFILE_OWNED (type))
228 return alloc_type (TYPE_OWNER (type).objfile);
229 else
230 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
231 }
232
233 /* If TYPE is gdbarch-associated, return that architecture.
234 If TYPE is objfile-associated, return that objfile's architecture. */
235
236 struct gdbarch *
237 get_type_arch (const struct type *type)
238 {
239 if (TYPE_OBJFILE_OWNED (type))
240 return get_objfile_arch (TYPE_OWNER (type).objfile);
241 else
242 return TYPE_OWNER (type).gdbarch;
243 }
244
245 /* See gdbtypes.h. */
246
247 struct type *
248 get_target_type (struct type *type)
249 {
250 if (type != NULL)
251 {
252 type = TYPE_TARGET_TYPE (type);
253 if (type != NULL)
254 type = check_typedef (type);
255 }
256
257 return type;
258 }
259
260 /* Alloc a new type instance structure, fill it with some defaults,
261 and point it at OLDTYPE. Allocate the new type instance from the
262 same place as OLDTYPE. */
263
264 static struct type *
265 alloc_type_instance (struct type *oldtype)
266 {
267 struct type *type;
268
269 /* Allocate the structure. */
270
271 if (! TYPE_OBJFILE_OWNED (oldtype))
272 type = XCNEW (struct type);
273 else
274 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
275 struct type);
276
277 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
278
279 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
280
281 return type;
282 }
283
284 /* Clear all remnants of the previous type at TYPE, in preparation for
285 replacing it with something else. Preserve owner information. */
286
287 static void
288 smash_type (struct type *type)
289 {
290 int objfile_owned = TYPE_OBJFILE_OWNED (type);
291 union type_owner owner = TYPE_OWNER (type);
292
293 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
294
295 /* Restore owner information. */
296 TYPE_OBJFILE_OWNED (type) = objfile_owned;
297 TYPE_OWNER (type) = owner;
298
299 /* For now, delete the rings. */
300 TYPE_CHAIN (type) = type;
301
302 /* For now, leave the pointer/reference types alone. */
303 }
304
305 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
306 to a pointer to memory where the pointer type should be stored.
307 If *TYPEPTR is zero, update it to point to the pointer type we return.
308 We allocate new memory if needed. */
309
310 struct type *
311 make_pointer_type (struct type *type, struct type **typeptr)
312 {
313 struct type *ntype; /* New type */
314 struct type *chain;
315
316 ntype = TYPE_POINTER_TYPE (type);
317
318 if (ntype)
319 {
320 if (typeptr == 0)
321 return ntype; /* Don't care about alloc,
322 and have new type. */
323 else if (*typeptr == 0)
324 {
325 *typeptr = ntype; /* Tracking alloc, and have new type. */
326 return ntype;
327 }
328 }
329
330 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
331 {
332 ntype = alloc_type_copy (type);
333 if (typeptr)
334 *typeptr = ntype;
335 }
336 else /* We have storage, but need to reset it. */
337 {
338 ntype = *typeptr;
339 chain = TYPE_CHAIN (ntype);
340 smash_type (ntype);
341 TYPE_CHAIN (ntype) = chain;
342 }
343
344 TYPE_TARGET_TYPE (ntype) = type;
345 TYPE_POINTER_TYPE (type) = ntype;
346
347 /* FIXME! Assumes the machine has only one representation for pointers! */
348
349 TYPE_LENGTH (ntype)
350 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
351 TYPE_CODE (ntype) = TYPE_CODE_PTR;
352
353 /* Mark pointers as unsigned. The target converts between pointers
354 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
355 gdbarch_address_to_pointer. */
356 TYPE_UNSIGNED (ntype) = 1;
357
358 /* Update the length of all the other variants of this type. */
359 chain = TYPE_CHAIN (ntype);
360 while (chain != ntype)
361 {
362 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
363 chain = TYPE_CHAIN (chain);
364 }
365
366 return ntype;
367 }
368
369 /* Given a type TYPE, return a type of pointers to that type.
370 May need to construct such a type if this is the first use. */
371
372 struct type *
373 lookup_pointer_type (struct type *type)
374 {
375 return make_pointer_type (type, (struct type **) 0);
376 }
377
378 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
379 points to a pointer to memory where the reference type should be
380 stored. If *TYPEPTR is zero, update it to point to the reference
381 type we return. We allocate new memory if needed. */
382
383 struct type *
384 make_reference_type (struct type *type, struct type **typeptr)
385 {
386 struct type *ntype; /* New type */
387 struct type *chain;
388
389 ntype = TYPE_REFERENCE_TYPE (type);
390
391 if (ntype)
392 {
393 if (typeptr == 0)
394 return ntype; /* Don't care about alloc,
395 and have new type. */
396 else if (*typeptr == 0)
397 {
398 *typeptr = ntype; /* Tracking alloc, and have new type. */
399 return ntype;
400 }
401 }
402
403 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
404 {
405 ntype = alloc_type_copy (type);
406 if (typeptr)
407 *typeptr = ntype;
408 }
409 else /* We have storage, but need to reset it. */
410 {
411 ntype = *typeptr;
412 chain = TYPE_CHAIN (ntype);
413 smash_type (ntype);
414 TYPE_CHAIN (ntype) = chain;
415 }
416
417 TYPE_TARGET_TYPE (ntype) = type;
418 TYPE_REFERENCE_TYPE (type) = ntype;
419
420 /* FIXME! Assume the machine has only one representation for
421 references, and that it matches the (only) representation for
422 pointers! */
423
424 TYPE_LENGTH (ntype) =
425 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
426 TYPE_CODE (ntype) = TYPE_CODE_REF;
427
428 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
429 TYPE_REFERENCE_TYPE (type) = ntype;
430
431 /* Update the length of all the other variants of this type. */
432 chain = TYPE_CHAIN (ntype);
433 while (chain != ntype)
434 {
435 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
436 chain = TYPE_CHAIN (chain);
437 }
438
439 return ntype;
440 }
441
442 /* Same as above, but caller doesn't care about memory allocation
443 details. */
444
445 struct type *
446 lookup_reference_type (struct type *type)
447 {
448 return make_reference_type (type, (struct type **) 0);
449 }
450
451 /* Lookup a function type that returns type TYPE. TYPEPTR, if
452 nonzero, points to a pointer to memory where the function type
453 should be stored. If *TYPEPTR is zero, update it to point to the
454 function type we return. We allocate new memory if needed. */
455
456 struct type *
457 make_function_type (struct type *type, struct type **typeptr)
458 {
459 struct type *ntype; /* New type */
460
461 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
462 {
463 ntype = alloc_type_copy (type);
464 if (typeptr)
465 *typeptr = ntype;
466 }
467 else /* We have storage, but need to reset it. */
468 {
469 ntype = *typeptr;
470 smash_type (ntype);
471 }
472
473 TYPE_TARGET_TYPE (ntype) = type;
474
475 TYPE_LENGTH (ntype) = 1;
476 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
477
478 INIT_FUNC_SPECIFIC (ntype);
479
480 return ntype;
481 }
482
483 /* Given a type TYPE, return a type of functions that return that type.
484 May need to construct such a type if this is the first use. */
485
486 struct type *
487 lookup_function_type (struct type *type)
488 {
489 return make_function_type (type, (struct type **) 0);
490 }
491
492 /* Given a type TYPE and argument types, return the appropriate
493 function type. If the final type in PARAM_TYPES is NULL, make a
494 varargs function. */
495
496 struct type *
497 lookup_function_type_with_arguments (struct type *type,
498 int nparams,
499 struct type **param_types)
500 {
501 struct type *fn = make_function_type (type, (struct type **) 0);
502 int i;
503
504 if (nparams > 0)
505 {
506 if (param_types[nparams - 1] == NULL)
507 {
508 --nparams;
509 TYPE_VARARGS (fn) = 1;
510 }
511 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
512 == TYPE_CODE_VOID)
513 {
514 --nparams;
515 /* Caller should have ensured this. */
516 gdb_assert (nparams == 0);
517 TYPE_PROTOTYPED (fn) = 1;
518 }
519 }
520
521 TYPE_NFIELDS (fn) = nparams;
522 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
523 for (i = 0; i < nparams; ++i)
524 TYPE_FIELD_TYPE (fn, i) = param_types[i];
525
526 return fn;
527 }
528
529 /* Identify address space identifier by name --
530 return the integer flag defined in gdbtypes.h. */
531
532 int
533 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
534 {
535 int type_flags;
536
537 /* Check for known address space delimiters. */
538 if (!strcmp (space_identifier, "code"))
539 return TYPE_INSTANCE_FLAG_CODE_SPACE;
540 else if (!strcmp (space_identifier, "data"))
541 return TYPE_INSTANCE_FLAG_DATA_SPACE;
542 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
543 && gdbarch_address_class_name_to_type_flags (gdbarch,
544 space_identifier,
545 &type_flags))
546 return type_flags;
547 else
548 error (_("Unknown address space specifier: \"%s\""), space_identifier);
549 }
550
551 /* Identify address space identifier by integer flag as defined in
552 gdbtypes.h -- return the string version of the adress space name. */
553
554 const char *
555 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
556 {
557 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
558 return "code";
559 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
560 return "data";
561 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
562 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
563 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
564 else
565 return NULL;
566 }
567
568 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
569
570 If STORAGE is non-NULL, create the new type instance there.
571 STORAGE must be in the same obstack as TYPE. */
572
573 static struct type *
574 make_qualified_type (struct type *type, int new_flags,
575 struct type *storage)
576 {
577 struct type *ntype;
578
579 ntype = type;
580 do
581 {
582 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
583 return ntype;
584 ntype = TYPE_CHAIN (ntype);
585 }
586 while (ntype != type);
587
588 /* Create a new type instance. */
589 if (storage == NULL)
590 ntype = alloc_type_instance (type);
591 else
592 {
593 /* If STORAGE was provided, it had better be in the same objfile
594 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
595 if one objfile is freed and the other kept, we'd have
596 dangling pointers. */
597 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
598
599 ntype = storage;
600 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
601 TYPE_CHAIN (ntype) = ntype;
602 }
603
604 /* Pointers or references to the original type are not relevant to
605 the new type. */
606 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
607 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
608
609 /* Chain the new qualified type to the old type. */
610 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
611 TYPE_CHAIN (type) = ntype;
612
613 /* Now set the instance flags and return the new type. */
614 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
615
616 /* Set length of new type to that of the original type. */
617 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
618
619 return ntype;
620 }
621
622 /* Make an address-space-delimited variant of a type -- a type that
623 is identical to the one supplied except that it has an address
624 space attribute attached to it (such as "code" or "data").
625
626 The space attributes "code" and "data" are for Harvard
627 architectures. The address space attributes are for architectures
628 which have alternately sized pointers or pointers with alternate
629 representations. */
630
631 struct type *
632 make_type_with_address_space (struct type *type, int space_flag)
633 {
634 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
635 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
636 | TYPE_INSTANCE_FLAG_DATA_SPACE
637 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
638 | space_flag);
639
640 return make_qualified_type (type, new_flags, NULL);
641 }
642
643 /* Make a "c-v" variant of a type -- a type that is identical to the
644 one supplied except that it may have const or volatile attributes
645 CNST is a flag for setting the const attribute
646 VOLTL is a flag for setting the volatile attribute
647 TYPE is the base type whose variant we are creating.
648
649 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
650 storage to hold the new qualified type; *TYPEPTR and TYPE must be
651 in the same objfile. Otherwise, allocate fresh memory for the new
652 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
653 new type we construct. */
654
655 struct type *
656 make_cv_type (int cnst, int voltl,
657 struct type *type,
658 struct type **typeptr)
659 {
660 struct type *ntype; /* New type */
661
662 int new_flags = (TYPE_INSTANCE_FLAGS (type)
663 & ~(TYPE_INSTANCE_FLAG_CONST
664 | TYPE_INSTANCE_FLAG_VOLATILE));
665
666 if (cnst)
667 new_flags |= TYPE_INSTANCE_FLAG_CONST;
668
669 if (voltl)
670 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
671
672 if (typeptr && *typeptr != NULL)
673 {
674 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
675 a C-V variant chain that threads across objfiles: if one
676 objfile gets freed, then the other has a broken C-V chain.
677
678 This code used to try to copy over the main type from TYPE to
679 *TYPEPTR if they were in different objfiles, but that's
680 wrong, too: TYPE may have a field list or member function
681 lists, which refer to types of their own, etc. etc. The
682 whole shebang would need to be copied over recursively; you
683 can't have inter-objfile pointers. The only thing to do is
684 to leave stub types as stub types, and look them up afresh by
685 name each time you encounter them. */
686 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
687 }
688
689 ntype = make_qualified_type (type, new_flags,
690 typeptr ? *typeptr : NULL);
691
692 if (typeptr != NULL)
693 *typeptr = ntype;
694
695 return ntype;
696 }
697
698 /* Make a 'restrict'-qualified version of TYPE. */
699
700 struct type *
701 make_restrict_type (struct type *type)
702 {
703 return make_qualified_type (type,
704 (TYPE_INSTANCE_FLAGS (type)
705 | TYPE_INSTANCE_FLAG_RESTRICT),
706 NULL);
707 }
708
709 /* Replace the contents of ntype with the type *type. This changes the
710 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
711 the changes are propogated to all types in the TYPE_CHAIN.
712
713 In order to build recursive types, it's inevitable that we'll need
714 to update types in place --- but this sort of indiscriminate
715 smashing is ugly, and needs to be replaced with something more
716 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
717 clear if more steps are needed. */
718
719 void
720 replace_type (struct type *ntype, struct type *type)
721 {
722 struct type *chain;
723
724 /* These two types had better be in the same objfile. Otherwise,
725 the assignment of one type's main type structure to the other
726 will produce a type with references to objects (names; field
727 lists; etc.) allocated on an objfile other than its own. */
728 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
729
730 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
731
732 /* The type length is not a part of the main type. Update it for
733 each type on the variant chain. */
734 chain = ntype;
735 do
736 {
737 /* Assert that this element of the chain has no address-class bits
738 set in its flags. Such type variants might have type lengths
739 which are supposed to be different from the non-address-class
740 variants. This assertion shouldn't ever be triggered because
741 symbol readers which do construct address-class variants don't
742 call replace_type(). */
743 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
744
745 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
746 chain = TYPE_CHAIN (chain);
747 }
748 while (ntype != chain);
749
750 /* Assert that the two types have equivalent instance qualifiers.
751 This should be true for at least all of our debug readers. */
752 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
753 }
754
755 /* Implement direct support for MEMBER_TYPE in GNU C++.
756 May need to construct such a type if this is the first use.
757 The TYPE is the type of the member. The DOMAIN is the type
758 of the aggregate that the member belongs to. */
759
760 struct type *
761 lookup_memberptr_type (struct type *type, struct type *domain)
762 {
763 struct type *mtype;
764
765 mtype = alloc_type_copy (type);
766 smash_to_memberptr_type (mtype, domain, type);
767 return mtype;
768 }
769
770 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
771
772 struct type *
773 lookup_methodptr_type (struct type *to_type)
774 {
775 struct type *mtype;
776
777 mtype = alloc_type_copy (to_type);
778 smash_to_methodptr_type (mtype, to_type);
779 return mtype;
780 }
781
782 /* Allocate a stub method whose return type is TYPE. This apparently
783 happens for speed of symbol reading, since parsing out the
784 arguments to the method is cpu-intensive, the way we are doing it.
785 So, we will fill in arguments later. This always returns a fresh
786 type. */
787
788 struct type *
789 allocate_stub_method (struct type *type)
790 {
791 struct type *mtype;
792
793 mtype = alloc_type_copy (type);
794 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
795 TYPE_LENGTH (mtype) = 1;
796 TYPE_STUB (mtype) = 1;
797 TYPE_TARGET_TYPE (mtype) = type;
798 /* _DOMAIN_TYPE (mtype) = unknown yet */
799 return mtype;
800 }
801
802 /* Create a range type with a dynamic range from LOW_BOUND to
803 HIGH_BOUND, inclusive. See create_range_type for further details. */
804
805 struct type *
806 create_range_type (struct type *result_type, struct type *index_type,
807 const struct dynamic_prop *low_bound,
808 const struct dynamic_prop *high_bound)
809 {
810 if (result_type == NULL)
811 result_type = alloc_type_copy (index_type);
812 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
813 TYPE_TARGET_TYPE (result_type) = index_type;
814 if (TYPE_STUB (index_type))
815 TYPE_TARGET_STUB (result_type) = 1;
816 else
817 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
818
819 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
820 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
821 TYPE_RANGE_DATA (result_type)->low = *low_bound;
822 TYPE_RANGE_DATA (result_type)->high = *high_bound;
823
824 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
825 TYPE_UNSIGNED (result_type) = 1;
826
827 return result_type;
828 }
829
830 /* Create a range type using either a blank type supplied in
831 RESULT_TYPE, or creating a new type, inheriting the objfile from
832 INDEX_TYPE.
833
834 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
835 to HIGH_BOUND, inclusive.
836
837 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
838 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
839
840 struct type *
841 create_static_range_type (struct type *result_type, struct type *index_type,
842 LONGEST low_bound, LONGEST high_bound)
843 {
844 struct dynamic_prop low, high;
845
846 low.kind = PROP_CONST;
847 low.data.const_val = low_bound;
848
849 high.kind = PROP_CONST;
850 high.data.const_val = high_bound;
851
852 result_type = create_range_type (result_type, index_type, &low, &high);
853
854 return result_type;
855 }
856
857 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
858 are static, otherwise returns 0. */
859
860 static int
861 has_static_range (const struct range_bounds *bounds)
862 {
863 return (bounds->low.kind == PROP_CONST
864 && bounds->high.kind == PROP_CONST);
865 }
866
867
868 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
869 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
870 bounds will fit in LONGEST), or -1 otherwise. */
871
872 int
873 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
874 {
875 CHECK_TYPEDEF (type);
876 switch (TYPE_CODE (type))
877 {
878 case TYPE_CODE_RANGE:
879 *lowp = TYPE_LOW_BOUND (type);
880 *highp = TYPE_HIGH_BOUND (type);
881 return 1;
882 case TYPE_CODE_ENUM:
883 if (TYPE_NFIELDS (type) > 0)
884 {
885 /* The enums may not be sorted by value, so search all
886 entries. */
887 int i;
888
889 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
890 for (i = 0; i < TYPE_NFIELDS (type); i++)
891 {
892 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
893 *lowp = TYPE_FIELD_ENUMVAL (type, i);
894 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
895 *highp = TYPE_FIELD_ENUMVAL (type, i);
896 }
897
898 /* Set unsigned indicator if warranted. */
899 if (*lowp >= 0)
900 {
901 TYPE_UNSIGNED (type) = 1;
902 }
903 }
904 else
905 {
906 *lowp = 0;
907 *highp = -1;
908 }
909 return 0;
910 case TYPE_CODE_BOOL:
911 *lowp = 0;
912 *highp = 1;
913 return 0;
914 case TYPE_CODE_INT:
915 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
916 return -1;
917 if (!TYPE_UNSIGNED (type))
918 {
919 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
920 *highp = -*lowp - 1;
921 return 0;
922 }
923 /* ... fall through for unsigned ints ... */
924 case TYPE_CODE_CHAR:
925 *lowp = 0;
926 /* This round-about calculation is to avoid shifting by
927 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
928 if TYPE_LENGTH (type) == sizeof (LONGEST). */
929 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
930 *highp = (*highp - 1) | *highp;
931 return 0;
932 default:
933 return -1;
934 }
935 }
936
937 /* Assuming TYPE is a simple, non-empty array type, compute its upper
938 and lower bound. Save the low bound into LOW_BOUND if not NULL.
939 Save the high bound into HIGH_BOUND if not NULL.
940
941 Return 1 if the operation was successful. Return zero otherwise,
942 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
943
944 We now simply use get_discrete_bounds call to get the values
945 of the low and high bounds.
946 get_discrete_bounds can return three values:
947 1, meaning that index is a range,
948 0, meaning that index is a discrete type,
949 or -1 for failure. */
950
951 int
952 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
953 {
954 struct type *index = TYPE_INDEX_TYPE (type);
955 LONGEST low = 0;
956 LONGEST high = 0;
957 int res;
958
959 if (index == NULL)
960 return 0;
961
962 res = get_discrete_bounds (index, &low, &high);
963 if (res == -1)
964 return 0;
965
966 /* Check if the array bounds are undefined. */
967 if (res == 1
968 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
969 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
970 return 0;
971
972 if (low_bound)
973 *low_bound = low;
974
975 if (high_bound)
976 *high_bound = high;
977
978 return 1;
979 }
980
981 /* Create an array type using either a blank type supplied in
982 RESULT_TYPE, or creating a new type, inheriting the objfile from
983 RANGE_TYPE.
984
985 Elements will be of type ELEMENT_TYPE, the indices will be of type
986 RANGE_TYPE.
987
988 If BIT_STRIDE is not zero, build a packed array type whose element
989 size is BIT_STRIDE. Otherwise, ignore this parameter.
990
991 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
992 sure it is TYPE_CODE_UNDEF before we bash it into an array
993 type? */
994
995 struct type *
996 create_array_type_with_stride (struct type *result_type,
997 struct type *element_type,
998 struct type *range_type,
999 unsigned int bit_stride)
1000 {
1001 if (result_type == NULL)
1002 result_type = alloc_type_copy (range_type);
1003
1004 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1005 TYPE_TARGET_TYPE (result_type) = element_type;
1006 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1007 {
1008 LONGEST low_bound, high_bound;
1009
1010 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1011 low_bound = high_bound = 0;
1012 CHECK_TYPEDEF (element_type);
1013 /* Be careful when setting the array length. Ada arrays can be
1014 empty arrays with the high_bound being smaller than the low_bound.
1015 In such cases, the array length should be zero. */
1016 if (high_bound < low_bound)
1017 TYPE_LENGTH (result_type) = 0;
1018 else if (bit_stride > 0)
1019 TYPE_LENGTH (result_type) =
1020 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1021 else
1022 TYPE_LENGTH (result_type) =
1023 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1024 }
1025 else
1026 {
1027 /* This type is dynamic and its length needs to be computed
1028 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1029 undefined by setting it to zero. Although we are not expected
1030 to trust TYPE_LENGTH in this case, setting the size to zero
1031 allows us to avoid allocating objects of random sizes in case
1032 we accidently do. */
1033 TYPE_LENGTH (result_type) = 0;
1034 }
1035
1036 TYPE_NFIELDS (result_type) = 1;
1037 TYPE_FIELDS (result_type) =
1038 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1039 TYPE_INDEX_TYPE (result_type) = range_type;
1040 TYPE_VPTR_FIELDNO (result_type) = -1;
1041 if (bit_stride > 0)
1042 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1043
1044 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1045 if (TYPE_LENGTH (result_type) == 0)
1046 TYPE_TARGET_STUB (result_type) = 1;
1047
1048 return result_type;
1049 }
1050
1051 /* Same as create_array_type_with_stride but with no bit_stride
1052 (BIT_STRIDE = 0), thus building an unpacked array. */
1053
1054 struct type *
1055 create_array_type (struct type *result_type,
1056 struct type *element_type,
1057 struct type *range_type)
1058 {
1059 return create_array_type_with_stride (result_type, element_type,
1060 range_type, 0);
1061 }
1062
1063 struct type *
1064 lookup_array_range_type (struct type *element_type,
1065 LONGEST low_bound, LONGEST high_bound)
1066 {
1067 struct gdbarch *gdbarch = get_type_arch (element_type);
1068 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1069 struct type *range_type
1070 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1071
1072 return create_array_type (NULL, element_type, range_type);
1073 }
1074
1075 /* Create a string type using either a blank type supplied in
1076 RESULT_TYPE, or creating a new type. String types are similar
1077 enough to array of char types that we can use create_array_type to
1078 build the basic type and then bash it into a string type.
1079
1080 For fixed length strings, the range type contains 0 as the lower
1081 bound and the length of the string minus one as the upper bound.
1082
1083 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1084 sure it is TYPE_CODE_UNDEF before we bash it into a string
1085 type? */
1086
1087 struct type *
1088 create_string_type (struct type *result_type,
1089 struct type *string_char_type,
1090 struct type *range_type)
1091 {
1092 result_type = create_array_type (result_type,
1093 string_char_type,
1094 range_type);
1095 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1096 return result_type;
1097 }
1098
1099 struct type *
1100 lookup_string_range_type (struct type *string_char_type,
1101 LONGEST low_bound, LONGEST high_bound)
1102 {
1103 struct type *result_type;
1104
1105 result_type = lookup_array_range_type (string_char_type,
1106 low_bound, high_bound);
1107 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1108 return result_type;
1109 }
1110
1111 struct type *
1112 create_set_type (struct type *result_type, struct type *domain_type)
1113 {
1114 if (result_type == NULL)
1115 result_type = alloc_type_copy (domain_type);
1116
1117 TYPE_CODE (result_type) = TYPE_CODE_SET;
1118 TYPE_NFIELDS (result_type) = 1;
1119 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1120
1121 if (!TYPE_STUB (domain_type))
1122 {
1123 LONGEST low_bound, high_bound, bit_length;
1124
1125 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1126 low_bound = high_bound = 0;
1127 bit_length = high_bound - low_bound + 1;
1128 TYPE_LENGTH (result_type)
1129 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1130 if (low_bound >= 0)
1131 TYPE_UNSIGNED (result_type) = 1;
1132 }
1133 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1134
1135 return result_type;
1136 }
1137
1138 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1139 and any array types nested inside it. */
1140
1141 void
1142 make_vector_type (struct type *array_type)
1143 {
1144 struct type *inner_array, *elt_type;
1145 int flags;
1146
1147 /* Find the innermost array type, in case the array is
1148 multi-dimensional. */
1149 inner_array = array_type;
1150 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1151 inner_array = TYPE_TARGET_TYPE (inner_array);
1152
1153 elt_type = TYPE_TARGET_TYPE (inner_array);
1154 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1155 {
1156 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1157 elt_type = make_qualified_type (elt_type, flags, NULL);
1158 TYPE_TARGET_TYPE (inner_array) = elt_type;
1159 }
1160
1161 TYPE_VECTOR (array_type) = 1;
1162 }
1163
1164 struct type *
1165 init_vector_type (struct type *elt_type, int n)
1166 {
1167 struct type *array_type;
1168
1169 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1170 make_vector_type (array_type);
1171 return array_type;
1172 }
1173
1174 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1175 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1176 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1177 TYPE doesn't include the offset (that's the value of the MEMBER
1178 itself), but does include the structure type into which it points
1179 (for some reason).
1180
1181 When "smashing" the type, we preserve the objfile that the old type
1182 pointed to, since we aren't changing where the type is actually
1183 allocated. */
1184
1185 void
1186 smash_to_memberptr_type (struct type *type, struct type *domain,
1187 struct type *to_type)
1188 {
1189 smash_type (type);
1190 TYPE_TARGET_TYPE (type) = to_type;
1191 TYPE_DOMAIN_TYPE (type) = domain;
1192 /* Assume that a data member pointer is the same size as a normal
1193 pointer. */
1194 TYPE_LENGTH (type)
1195 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1196 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1197 }
1198
1199 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1200
1201 When "smashing" the type, we preserve the objfile that the old type
1202 pointed to, since we aren't changing where the type is actually
1203 allocated. */
1204
1205 void
1206 smash_to_methodptr_type (struct type *type, struct type *to_type)
1207 {
1208 smash_type (type);
1209 TYPE_TARGET_TYPE (type) = to_type;
1210 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1211 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1212 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1213 }
1214
1215 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1216 METHOD just means `function that gets an extra "this" argument'.
1217
1218 When "smashing" the type, we preserve the objfile that the old type
1219 pointed to, since we aren't changing where the type is actually
1220 allocated. */
1221
1222 void
1223 smash_to_method_type (struct type *type, struct type *domain,
1224 struct type *to_type, struct field *args,
1225 int nargs, int varargs)
1226 {
1227 smash_type (type);
1228 TYPE_TARGET_TYPE (type) = to_type;
1229 TYPE_DOMAIN_TYPE (type) = domain;
1230 TYPE_FIELDS (type) = args;
1231 TYPE_NFIELDS (type) = nargs;
1232 if (varargs)
1233 TYPE_VARARGS (type) = 1;
1234 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1235 TYPE_CODE (type) = TYPE_CODE_METHOD;
1236 }
1237
1238 /* Return a typename for a struct/union/enum type without "struct ",
1239 "union ", or "enum ". If the type has a NULL name, return NULL. */
1240
1241 const char *
1242 type_name_no_tag (const struct type *type)
1243 {
1244 if (TYPE_TAG_NAME (type) != NULL)
1245 return TYPE_TAG_NAME (type);
1246
1247 /* Is there code which expects this to return the name if there is
1248 no tag name? My guess is that this is mainly used for C++ in
1249 cases where the two will always be the same. */
1250 return TYPE_NAME (type);
1251 }
1252
1253 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1254 Since GCC PR debug/47510 DWARF provides associated information to detect the
1255 anonymous class linkage name from its typedef.
1256
1257 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1258 apply it itself. */
1259
1260 const char *
1261 type_name_no_tag_or_error (struct type *type)
1262 {
1263 struct type *saved_type = type;
1264 const char *name;
1265 struct objfile *objfile;
1266
1267 CHECK_TYPEDEF (type);
1268
1269 name = type_name_no_tag (type);
1270 if (name != NULL)
1271 return name;
1272
1273 name = type_name_no_tag (saved_type);
1274 objfile = TYPE_OBJFILE (saved_type);
1275 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1276 name ? name : "<anonymous>",
1277 objfile ? objfile_name (objfile) : "<arch>");
1278 }
1279
1280 /* Lookup a typedef or primitive type named NAME, visible in lexical
1281 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1282 suitably defined. */
1283
1284 struct type *
1285 lookup_typename (const struct language_defn *language,
1286 struct gdbarch *gdbarch, const char *name,
1287 const struct block *block, int noerr)
1288 {
1289 struct symbol *sym;
1290 struct type *type;
1291
1292 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1293 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1294 return SYMBOL_TYPE (sym);
1295
1296 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1297 if (type)
1298 return type;
1299
1300 if (noerr)
1301 return NULL;
1302 error (_("No type named %s."), name);
1303 }
1304
1305 struct type *
1306 lookup_unsigned_typename (const struct language_defn *language,
1307 struct gdbarch *gdbarch, const char *name)
1308 {
1309 char *uns = alloca (strlen (name) + 10);
1310
1311 strcpy (uns, "unsigned ");
1312 strcpy (uns + 9, name);
1313 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1314 }
1315
1316 struct type *
1317 lookup_signed_typename (const struct language_defn *language,
1318 struct gdbarch *gdbarch, const char *name)
1319 {
1320 struct type *t;
1321 char *uns = alloca (strlen (name) + 8);
1322
1323 strcpy (uns, "signed ");
1324 strcpy (uns + 7, name);
1325 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1326 /* If we don't find "signed FOO" just try again with plain "FOO". */
1327 if (t != NULL)
1328 return t;
1329 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1330 }
1331
1332 /* Lookup a structure type named "struct NAME",
1333 visible in lexical block BLOCK. */
1334
1335 struct type *
1336 lookup_struct (const char *name, const struct block *block)
1337 {
1338 struct symbol *sym;
1339
1340 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1341
1342 if (sym == NULL)
1343 {
1344 error (_("No struct type named %s."), name);
1345 }
1346 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1347 {
1348 error (_("This context has class, union or enum %s, not a struct."),
1349 name);
1350 }
1351 return (SYMBOL_TYPE (sym));
1352 }
1353
1354 /* Lookup a union type named "union NAME",
1355 visible in lexical block BLOCK. */
1356
1357 struct type *
1358 lookup_union (const char *name, const struct block *block)
1359 {
1360 struct symbol *sym;
1361 struct type *t;
1362
1363 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1364
1365 if (sym == NULL)
1366 error (_("No union type named %s."), name);
1367
1368 t = SYMBOL_TYPE (sym);
1369
1370 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1371 return t;
1372
1373 /* If we get here, it's not a union. */
1374 error (_("This context has class, struct or enum %s, not a union."),
1375 name);
1376 }
1377
1378 /* Lookup an enum type named "enum NAME",
1379 visible in lexical block BLOCK. */
1380
1381 struct type *
1382 lookup_enum (const char *name, const struct block *block)
1383 {
1384 struct symbol *sym;
1385
1386 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1387 if (sym == NULL)
1388 {
1389 error (_("No enum type named %s."), name);
1390 }
1391 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1392 {
1393 error (_("This context has class, struct or union %s, not an enum."),
1394 name);
1395 }
1396 return (SYMBOL_TYPE (sym));
1397 }
1398
1399 /* Lookup a template type named "template NAME<TYPE>",
1400 visible in lexical block BLOCK. */
1401
1402 struct type *
1403 lookup_template_type (char *name, struct type *type,
1404 const struct block *block)
1405 {
1406 struct symbol *sym;
1407 char *nam = (char *)
1408 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1409
1410 strcpy (nam, name);
1411 strcat (nam, "<");
1412 strcat (nam, TYPE_NAME (type));
1413 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1414
1415 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1416
1417 if (sym == NULL)
1418 {
1419 error (_("No template type named %s."), name);
1420 }
1421 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1422 {
1423 error (_("This context has class, union or enum %s, not a struct."),
1424 name);
1425 }
1426 return (SYMBOL_TYPE (sym));
1427 }
1428
1429 /* Given a type TYPE, lookup the type of the component of type named
1430 NAME.
1431
1432 TYPE can be either a struct or union, or a pointer or reference to
1433 a struct or union. If it is a pointer or reference, its target
1434 type is automatically used. Thus '.' and '->' are interchangable,
1435 as specified for the definitions of the expression element types
1436 STRUCTOP_STRUCT and STRUCTOP_PTR.
1437
1438 If NOERR is nonzero, return zero if NAME is not suitably defined.
1439 If NAME is the name of a baseclass type, return that type. */
1440
1441 struct type *
1442 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1443 {
1444 int i;
1445 char *typename;
1446
1447 for (;;)
1448 {
1449 CHECK_TYPEDEF (type);
1450 if (TYPE_CODE (type) != TYPE_CODE_PTR
1451 && TYPE_CODE (type) != TYPE_CODE_REF)
1452 break;
1453 type = TYPE_TARGET_TYPE (type);
1454 }
1455
1456 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1457 && TYPE_CODE (type) != TYPE_CODE_UNION)
1458 {
1459 typename = type_to_string (type);
1460 make_cleanup (xfree, typename);
1461 error (_("Type %s is not a structure or union type."), typename);
1462 }
1463
1464 #if 0
1465 /* FIXME: This change put in by Michael seems incorrect for the case
1466 where the structure tag name is the same as the member name.
1467 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1468 foo; } bell;" Disabled by fnf. */
1469 {
1470 char *typename;
1471
1472 typename = type_name_no_tag (type);
1473 if (typename != NULL && strcmp (typename, name) == 0)
1474 return type;
1475 }
1476 #endif
1477
1478 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1479 {
1480 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1481
1482 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1483 {
1484 return TYPE_FIELD_TYPE (type, i);
1485 }
1486 else if (!t_field_name || *t_field_name == '\0')
1487 {
1488 struct type *subtype
1489 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1490
1491 if (subtype != NULL)
1492 return subtype;
1493 }
1494 }
1495
1496 /* OK, it's not in this class. Recursively check the baseclasses. */
1497 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1498 {
1499 struct type *t;
1500
1501 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1502 if (t != NULL)
1503 {
1504 return t;
1505 }
1506 }
1507
1508 if (noerr)
1509 {
1510 return NULL;
1511 }
1512
1513 typename = type_to_string (type);
1514 make_cleanup (xfree, typename);
1515 error (_("Type %s has no component named %s."), typename, name);
1516 }
1517
1518 /* Store in *MAX the largest number representable by unsigned integer type
1519 TYPE. */
1520
1521 void
1522 get_unsigned_type_max (struct type *type, ULONGEST *max)
1523 {
1524 unsigned int n;
1525
1526 CHECK_TYPEDEF (type);
1527 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1528 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1529
1530 /* Written this way to avoid overflow. */
1531 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1532 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1533 }
1534
1535 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1536 signed integer type TYPE. */
1537
1538 void
1539 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1540 {
1541 unsigned int n;
1542
1543 CHECK_TYPEDEF (type);
1544 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1545 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1546
1547 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1548 *min = -((ULONGEST) 1 << (n - 1));
1549 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1550 }
1551
1552 /* Lookup the vptr basetype/fieldno values for TYPE.
1553 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1554 vptr_fieldno. Also, if found and basetype is from the same objfile,
1555 cache the results.
1556 If not found, return -1 and ignore BASETYPEP.
1557 Callers should be aware that in some cases (for example,
1558 the type or one of its baseclasses is a stub type and we are
1559 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1560 this function will not be able to find the
1561 virtual function table pointer, and vptr_fieldno will remain -1 and
1562 vptr_basetype will remain NULL or incomplete. */
1563
1564 int
1565 get_vptr_fieldno (struct type *type, struct type **basetypep)
1566 {
1567 CHECK_TYPEDEF (type);
1568
1569 if (TYPE_VPTR_FIELDNO (type) < 0)
1570 {
1571 int i;
1572
1573 /* We must start at zero in case the first (and only) baseclass
1574 is virtual (and hence we cannot share the table pointer). */
1575 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1576 {
1577 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1578 int fieldno;
1579 struct type *basetype;
1580
1581 fieldno = get_vptr_fieldno (baseclass, &basetype);
1582 if (fieldno >= 0)
1583 {
1584 /* If the type comes from a different objfile we can't cache
1585 it, it may have a different lifetime. PR 2384 */
1586 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1587 {
1588 TYPE_VPTR_FIELDNO (type) = fieldno;
1589 TYPE_VPTR_BASETYPE (type) = basetype;
1590 }
1591 if (basetypep)
1592 *basetypep = basetype;
1593 return fieldno;
1594 }
1595 }
1596
1597 /* Not found. */
1598 return -1;
1599 }
1600 else
1601 {
1602 if (basetypep)
1603 *basetypep = TYPE_VPTR_BASETYPE (type);
1604 return TYPE_VPTR_FIELDNO (type);
1605 }
1606 }
1607
1608 static void
1609 stub_noname_complaint (void)
1610 {
1611 complaint (&symfile_complaints, _("stub type has NULL name"));
1612 }
1613
1614 /* See gdbtypes.h. */
1615
1616 int
1617 is_dynamic_type (struct type *type)
1618 {
1619 type = check_typedef (type);
1620
1621 if (TYPE_CODE (type) == TYPE_CODE_REF)
1622 type = check_typedef (TYPE_TARGET_TYPE (type));
1623
1624 switch (TYPE_CODE (type))
1625 {
1626 case TYPE_CODE_ARRAY:
1627 {
1628 const struct type *range_type;
1629
1630 gdb_assert (TYPE_NFIELDS (type) == 1);
1631 range_type = TYPE_INDEX_TYPE (type);
1632 if (!has_static_range (TYPE_RANGE_DATA (range_type)))
1633 return 1;
1634 else
1635 return is_dynamic_type (TYPE_TARGET_TYPE (type));
1636 break;
1637 }
1638 default:
1639 return 0;
1640 break;
1641 }
1642 }
1643
1644 /* Resolves dynamic bound values of an array type TYPE to static ones.
1645 ADDRESS might be needed to resolve the subrange bounds, it is the location
1646 of the associated array. */
1647
1648 static struct type *
1649 resolve_dynamic_bounds (struct type *type, CORE_ADDR addr)
1650 {
1651 CORE_ADDR value;
1652 struct type *elt_type;
1653 struct type *range_type;
1654 struct type *ary_dim;
1655 const struct dynamic_prop *prop;
1656 const struct dwarf2_locexpr_baton *baton;
1657 struct dynamic_prop low_bound, high_bound;
1658
1659 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1660 {
1661 struct type *copy = copy_type (type);
1662
1663 TYPE_TARGET_TYPE (copy)
1664 = resolve_dynamic_bounds (TYPE_TARGET_TYPE (type), addr);
1665
1666 return copy;
1667 }
1668
1669 if (TYPE_CODE (type) == TYPE_CODE_REF)
1670 {
1671 struct type *copy = copy_type (type);
1672 CORE_ADDR target_addr = read_memory_typed_address (addr, type);
1673
1674 TYPE_TARGET_TYPE (copy)
1675 = resolve_dynamic_bounds (TYPE_TARGET_TYPE (type), target_addr);
1676 return copy;
1677 }
1678
1679 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1680
1681 elt_type = type;
1682 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1683
1684 prop = &TYPE_RANGE_DATA (range_type)->low;
1685 if (dwarf2_evaluate_property (prop, addr, &value))
1686 {
1687 low_bound.kind = PROP_CONST;
1688 low_bound.data.const_val = value;
1689 }
1690 else
1691 {
1692 low_bound.kind = PROP_UNDEFINED;
1693 low_bound.data.const_val = 0;
1694 }
1695
1696 prop = &TYPE_RANGE_DATA (range_type)->high;
1697 if (dwarf2_evaluate_property (prop, addr, &value))
1698 {
1699 high_bound.kind = PROP_CONST;
1700 high_bound.data.const_val = value;
1701 }
1702 else
1703 {
1704 high_bound.kind = PROP_UNDEFINED;
1705 high_bound.data.const_val = 0;
1706 }
1707
1708 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1709
1710 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1711 elt_type = resolve_dynamic_bounds (TYPE_TARGET_TYPE (type), addr);
1712 else
1713 elt_type = TYPE_TARGET_TYPE (type);
1714
1715 range_type = create_range_type (NULL,
1716 TYPE_TARGET_TYPE (range_type),
1717 &low_bound, &high_bound);
1718 return create_array_type (copy_type (type),
1719 elt_type,
1720 range_type);
1721 }
1722
1723 /* See gdbtypes.h */
1724
1725 struct type *
1726 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1727 {
1728 struct type *real_type = check_typedef (type);
1729 struct type *resolved_type;
1730
1731 if (!is_dynamic_type (real_type))
1732 return type;
1733
1734 resolved_type = resolve_dynamic_bounds (type, addr);
1735
1736 return resolved_type;
1737 }
1738
1739 /* Find the real type of TYPE. This function returns the real type,
1740 after removing all layers of typedefs, and completing opaque or stub
1741 types. Completion changes the TYPE argument, but stripping of
1742 typedefs does not.
1743
1744 Instance flags (e.g. const/volatile) are preserved as typedefs are
1745 stripped. If necessary a new qualified form of the underlying type
1746 is created.
1747
1748 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1749 not been computed and we're either in the middle of reading symbols, or
1750 there was no name for the typedef in the debug info.
1751
1752 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1753 QUITs in the symbol reading code can also throw.
1754 Thus this function can throw an exception.
1755
1756 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1757 the target type.
1758
1759 If this is a stubbed struct (i.e. declared as struct foo *), see if
1760 we can find a full definition in some other file. If so, copy this
1761 definition, so we can use it in future. There used to be a comment
1762 (but not any code) that if we don't find a full definition, we'd
1763 set a flag so we don't spend time in the future checking the same
1764 type. That would be a mistake, though--we might load in more
1765 symbols which contain a full definition for the type. */
1766
1767 struct type *
1768 check_typedef (struct type *type)
1769 {
1770 struct type *orig_type = type;
1771 /* While we're removing typedefs, we don't want to lose qualifiers.
1772 E.g., const/volatile. */
1773 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1774
1775 gdb_assert (type);
1776
1777 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1778 {
1779 if (!TYPE_TARGET_TYPE (type))
1780 {
1781 const char *name;
1782 struct symbol *sym;
1783
1784 /* It is dangerous to call lookup_symbol if we are currently
1785 reading a symtab. Infinite recursion is one danger. */
1786 if (currently_reading_symtab)
1787 return make_qualified_type (type, instance_flags, NULL);
1788
1789 name = type_name_no_tag (type);
1790 /* FIXME: shouldn't we separately check the TYPE_NAME and
1791 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1792 VAR_DOMAIN as appropriate? (this code was written before
1793 TYPE_NAME and TYPE_TAG_NAME were separate). */
1794 if (name == NULL)
1795 {
1796 stub_noname_complaint ();
1797 return make_qualified_type (type, instance_flags, NULL);
1798 }
1799 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1800 if (sym)
1801 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1802 else /* TYPE_CODE_UNDEF */
1803 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1804 }
1805 type = TYPE_TARGET_TYPE (type);
1806
1807 /* Preserve the instance flags as we traverse down the typedef chain.
1808
1809 Handling address spaces/classes is nasty, what do we do if there's a
1810 conflict?
1811 E.g., what if an outer typedef marks the type as class_1 and an inner
1812 typedef marks the type as class_2?
1813 This is the wrong place to do such error checking. We leave it to
1814 the code that created the typedef in the first place to flag the
1815 error. We just pick the outer address space (akin to letting the
1816 outer cast in a chain of casting win), instead of assuming
1817 "it can't happen". */
1818 {
1819 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1820 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1821 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1822 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1823
1824 /* Treat code vs data spaces and address classes separately. */
1825 if ((instance_flags & ALL_SPACES) != 0)
1826 new_instance_flags &= ~ALL_SPACES;
1827 if ((instance_flags & ALL_CLASSES) != 0)
1828 new_instance_flags &= ~ALL_CLASSES;
1829
1830 instance_flags |= new_instance_flags;
1831 }
1832 }
1833
1834 /* If this is a struct/class/union with no fields, then check
1835 whether a full definition exists somewhere else. This is for
1836 systems where a type definition with no fields is issued for such
1837 types, instead of identifying them as stub types in the first
1838 place. */
1839
1840 if (TYPE_IS_OPAQUE (type)
1841 && opaque_type_resolution
1842 && !currently_reading_symtab)
1843 {
1844 const char *name = type_name_no_tag (type);
1845 struct type *newtype;
1846
1847 if (name == NULL)
1848 {
1849 stub_noname_complaint ();
1850 return make_qualified_type (type, instance_flags, NULL);
1851 }
1852 newtype = lookup_transparent_type (name);
1853
1854 if (newtype)
1855 {
1856 /* If the resolved type and the stub are in the same
1857 objfile, then replace the stub type with the real deal.
1858 But if they're in separate objfiles, leave the stub
1859 alone; we'll just look up the transparent type every time
1860 we call check_typedef. We can't create pointers between
1861 types allocated to different objfiles, since they may
1862 have different lifetimes. Trying to copy NEWTYPE over to
1863 TYPE's objfile is pointless, too, since you'll have to
1864 move over any other types NEWTYPE refers to, which could
1865 be an unbounded amount of stuff. */
1866 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1867 type = make_qualified_type (newtype,
1868 TYPE_INSTANCE_FLAGS (type),
1869 type);
1870 else
1871 type = newtype;
1872 }
1873 }
1874 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1875 types. */
1876 else if (TYPE_STUB (type) && !currently_reading_symtab)
1877 {
1878 const char *name = type_name_no_tag (type);
1879 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1880 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1881 as appropriate? (this code was written before TYPE_NAME and
1882 TYPE_TAG_NAME were separate). */
1883 struct symbol *sym;
1884
1885 if (name == NULL)
1886 {
1887 stub_noname_complaint ();
1888 return make_qualified_type (type, instance_flags, NULL);
1889 }
1890 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1891 if (sym)
1892 {
1893 /* Same as above for opaque types, we can replace the stub
1894 with the complete type only if they are in the same
1895 objfile. */
1896 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1897 type = make_qualified_type (SYMBOL_TYPE (sym),
1898 TYPE_INSTANCE_FLAGS (type),
1899 type);
1900 else
1901 type = SYMBOL_TYPE (sym);
1902 }
1903 }
1904
1905 if (TYPE_TARGET_STUB (type))
1906 {
1907 struct type *range_type;
1908 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1909
1910 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1911 {
1912 /* Nothing we can do. */
1913 }
1914 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1915 {
1916 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1917 TYPE_TARGET_STUB (type) = 0;
1918 }
1919 }
1920
1921 type = make_qualified_type (type, instance_flags, NULL);
1922
1923 /* Cache TYPE_LENGTH for future use. */
1924 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1925
1926 return type;
1927 }
1928
1929 /* Parse a type expression in the string [P..P+LENGTH). If an error
1930 occurs, silently return a void type. */
1931
1932 static struct type *
1933 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1934 {
1935 struct ui_file *saved_gdb_stderr;
1936 struct type *type = NULL; /* Initialize to keep gcc happy. */
1937 volatile struct gdb_exception except;
1938
1939 /* Suppress error messages. */
1940 saved_gdb_stderr = gdb_stderr;
1941 gdb_stderr = ui_file_new ();
1942
1943 /* Call parse_and_eval_type() without fear of longjmp()s. */
1944 TRY_CATCH (except, RETURN_MASK_ERROR)
1945 {
1946 type = parse_and_eval_type (p, length);
1947 }
1948
1949 if (except.reason < 0)
1950 type = builtin_type (gdbarch)->builtin_void;
1951
1952 /* Stop suppressing error messages. */
1953 ui_file_delete (gdb_stderr);
1954 gdb_stderr = saved_gdb_stderr;
1955
1956 return type;
1957 }
1958
1959 /* Ugly hack to convert method stubs into method types.
1960
1961 He ain't kiddin'. This demangles the name of the method into a
1962 string including argument types, parses out each argument type,
1963 generates a string casting a zero to that type, evaluates the
1964 string, and stuffs the resulting type into an argtype vector!!!
1965 Then it knows the type of the whole function (including argument
1966 types for overloading), which info used to be in the stab's but was
1967 removed to hack back the space required for them. */
1968
1969 static void
1970 check_stub_method (struct type *type, int method_id, int signature_id)
1971 {
1972 struct gdbarch *gdbarch = get_type_arch (type);
1973 struct fn_field *f;
1974 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1975 char *demangled_name = gdb_demangle (mangled_name,
1976 DMGL_PARAMS | DMGL_ANSI);
1977 char *argtypetext, *p;
1978 int depth = 0, argcount = 1;
1979 struct field *argtypes;
1980 struct type *mtype;
1981
1982 /* Make sure we got back a function string that we can use. */
1983 if (demangled_name)
1984 p = strchr (demangled_name, '(');
1985 else
1986 p = NULL;
1987
1988 if (demangled_name == NULL || p == NULL)
1989 error (_("Internal: Cannot demangle mangled name `%s'."),
1990 mangled_name);
1991
1992 /* Now, read in the parameters that define this type. */
1993 p += 1;
1994 argtypetext = p;
1995 while (*p)
1996 {
1997 if (*p == '(' || *p == '<')
1998 {
1999 depth += 1;
2000 }
2001 else if (*p == ')' || *p == '>')
2002 {
2003 depth -= 1;
2004 }
2005 else if (*p == ',' && depth == 0)
2006 {
2007 argcount += 1;
2008 }
2009
2010 p += 1;
2011 }
2012
2013 /* If we read one argument and it was ``void'', don't count it. */
2014 if (strncmp (argtypetext, "(void)", 6) == 0)
2015 argcount -= 1;
2016
2017 /* We need one extra slot, for the THIS pointer. */
2018
2019 argtypes = (struct field *)
2020 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2021 p = argtypetext;
2022
2023 /* Add THIS pointer for non-static methods. */
2024 f = TYPE_FN_FIELDLIST1 (type, method_id);
2025 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2026 argcount = 0;
2027 else
2028 {
2029 argtypes[0].type = lookup_pointer_type (type);
2030 argcount = 1;
2031 }
2032
2033 if (*p != ')') /* () means no args, skip while. */
2034 {
2035 depth = 0;
2036 while (*p)
2037 {
2038 if (depth <= 0 && (*p == ',' || *p == ')'))
2039 {
2040 /* Avoid parsing of ellipsis, they will be handled below.
2041 Also avoid ``void'' as above. */
2042 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2043 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2044 {
2045 argtypes[argcount].type =
2046 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2047 argcount += 1;
2048 }
2049 argtypetext = p + 1;
2050 }
2051
2052 if (*p == '(' || *p == '<')
2053 {
2054 depth += 1;
2055 }
2056 else if (*p == ')' || *p == '>')
2057 {
2058 depth -= 1;
2059 }
2060
2061 p += 1;
2062 }
2063 }
2064
2065 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2066
2067 /* Now update the old "stub" type into a real type. */
2068 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2069 TYPE_DOMAIN_TYPE (mtype) = type;
2070 TYPE_FIELDS (mtype) = argtypes;
2071 TYPE_NFIELDS (mtype) = argcount;
2072 TYPE_STUB (mtype) = 0;
2073 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2074 if (p[-2] == '.')
2075 TYPE_VARARGS (mtype) = 1;
2076
2077 xfree (demangled_name);
2078 }
2079
2080 /* This is the external interface to check_stub_method, above. This
2081 function unstubs all of the signatures for TYPE's METHOD_ID method
2082 name. After calling this function TYPE_FN_FIELD_STUB will be
2083 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2084 correct.
2085
2086 This function unfortunately can not die until stabs do. */
2087
2088 void
2089 check_stub_method_group (struct type *type, int method_id)
2090 {
2091 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2092 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2093 int j, found_stub = 0;
2094
2095 for (j = 0; j < len; j++)
2096 if (TYPE_FN_FIELD_STUB (f, j))
2097 {
2098 found_stub = 1;
2099 check_stub_method (type, method_id, j);
2100 }
2101
2102 /* GNU v3 methods with incorrect names were corrected when we read
2103 in type information, because it was cheaper to do it then. The
2104 only GNU v2 methods with incorrect method names are operators and
2105 destructors; destructors were also corrected when we read in type
2106 information.
2107
2108 Therefore the only thing we need to handle here are v2 operator
2109 names. */
2110 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2111 {
2112 int ret;
2113 char dem_opname[256];
2114
2115 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2116 method_id),
2117 dem_opname, DMGL_ANSI);
2118 if (!ret)
2119 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2120 method_id),
2121 dem_opname, 0);
2122 if (ret)
2123 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2124 }
2125 }
2126
2127 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2128 const struct cplus_struct_type cplus_struct_default = { };
2129
2130 void
2131 allocate_cplus_struct_type (struct type *type)
2132 {
2133 if (HAVE_CPLUS_STRUCT (type))
2134 /* Structure was already allocated. Nothing more to do. */
2135 return;
2136
2137 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2138 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2139 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2140 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2141 }
2142
2143 const struct gnat_aux_type gnat_aux_default =
2144 { NULL };
2145
2146 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2147 and allocate the associated gnat-specific data. The gnat-specific
2148 data is also initialized to gnat_aux_default. */
2149
2150 void
2151 allocate_gnat_aux_type (struct type *type)
2152 {
2153 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2154 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2155 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2156 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2157 }
2158
2159 /* Helper function to initialize the standard scalar types.
2160
2161 If NAME is non-NULL, then it is used to initialize the type name.
2162 Note that NAME is not copied; it is required to have a lifetime at
2163 least as long as OBJFILE. */
2164
2165 struct type *
2166 init_type (enum type_code code, int length, int flags,
2167 const char *name, struct objfile *objfile)
2168 {
2169 struct type *type;
2170
2171 type = alloc_type (objfile);
2172 TYPE_CODE (type) = code;
2173 TYPE_LENGTH (type) = length;
2174
2175 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2176 if (flags & TYPE_FLAG_UNSIGNED)
2177 TYPE_UNSIGNED (type) = 1;
2178 if (flags & TYPE_FLAG_NOSIGN)
2179 TYPE_NOSIGN (type) = 1;
2180 if (flags & TYPE_FLAG_STUB)
2181 TYPE_STUB (type) = 1;
2182 if (flags & TYPE_FLAG_TARGET_STUB)
2183 TYPE_TARGET_STUB (type) = 1;
2184 if (flags & TYPE_FLAG_STATIC)
2185 TYPE_STATIC (type) = 1;
2186 if (flags & TYPE_FLAG_PROTOTYPED)
2187 TYPE_PROTOTYPED (type) = 1;
2188 if (flags & TYPE_FLAG_INCOMPLETE)
2189 TYPE_INCOMPLETE (type) = 1;
2190 if (flags & TYPE_FLAG_VARARGS)
2191 TYPE_VARARGS (type) = 1;
2192 if (flags & TYPE_FLAG_VECTOR)
2193 TYPE_VECTOR (type) = 1;
2194 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2195 TYPE_STUB_SUPPORTED (type) = 1;
2196 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2197 TYPE_FIXED_INSTANCE (type) = 1;
2198 if (flags & TYPE_FLAG_GNU_IFUNC)
2199 TYPE_GNU_IFUNC (type) = 1;
2200
2201 TYPE_NAME (type) = name;
2202
2203 /* C++ fancies. */
2204
2205 if (name && strcmp (name, "char") == 0)
2206 TYPE_NOSIGN (type) = 1;
2207
2208 switch (code)
2209 {
2210 case TYPE_CODE_STRUCT:
2211 case TYPE_CODE_UNION:
2212 case TYPE_CODE_NAMESPACE:
2213 INIT_CPLUS_SPECIFIC (type);
2214 break;
2215 case TYPE_CODE_FLT:
2216 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2217 break;
2218 case TYPE_CODE_FUNC:
2219 INIT_FUNC_SPECIFIC (type);
2220 break;
2221 }
2222 return type;
2223 }
2224 \f
2225 /* Queries on types. */
2226
2227 int
2228 can_dereference (struct type *t)
2229 {
2230 /* FIXME: Should we return true for references as well as
2231 pointers? */
2232 CHECK_TYPEDEF (t);
2233 return
2234 (t != NULL
2235 && TYPE_CODE (t) == TYPE_CODE_PTR
2236 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2237 }
2238
2239 int
2240 is_integral_type (struct type *t)
2241 {
2242 CHECK_TYPEDEF (t);
2243 return
2244 ((t != NULL)
2245 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2246 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2247 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2248 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2249 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2250 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2251 }
2252
2253 /* Return true if TYPE is scalar. */
2254
2255 static int
2256 is_scalar_type (struct type *type)
2257 {
2258 CHECK_TYPEDEF (type);
2259
2260 switch (TYPE_CODE (type))
2261 {
2262 case TYPE_CODE_ARRAY:
2263 case TYPE_CODE_STRUCT:
2264 case TYPE_CODE_UNION:
2265 case TYPE_CODE_SET:
2266 case TYPE_CODE_STRING:
2267 return 0;
2268 default:
2269 return 1;
2270 }
2271 }
2272
2273 /* Return true if T is scalar, or a composite type which in practice has
2274 the memory layout of a scalar type. E.g., an array or struct with only
2275 one scalar element inside it, or a union with only scalar elements. */
2276
2277 int
2278 is_scalar_type_recursive (struct type *t)
2279 {
2280 CHECK_TYPEDEF (t);
2281
2282 if (is_scalar_type (t))
2283 return 1;
2284 /* Are we dealing with an array or string of known dimensions? */
2285 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2286 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2287 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2288 {
2289 LONGEST low_bound, high_bound;
2290 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2291
2292 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2293
2294 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2295 }
2296 /* Are we dealing with a struct with one element? */
2297 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2298 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2299 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2300 {
2301 int i, n = TYPE_NFIELDS (t);
2302
2303 /* If all elements of the union are scalar, then the union is scalar. */
2304 for (i = 0; i < n; i++)
2305 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2306 return 0;
2307
2308 return 1;
2309 }
2310
2311 return 0;
2312 }
2313
2314 /* A helper function which returns true if types A and B represent the
2315 "same" class type. This is true if the types have the same main
2316 type, or the same name. */
2317
2318 int
2319 class_types_same_p (const struct type *a, const struct type *b)
2320 {
2321 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2322 || (TYPE_NAME (a) && TYPE_NAME (b)
2323 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2324 }
2325
2326 /* If BASE is an ancestor of DCLASS return the distance between them.
2327 otherwise return -1;
2328 eg:
2329
2330 class A {};
2331 class B: public A {};
2332 class C: public B {};
2333 class D: C {};
2334
2335 distance_to_ancestor (A, A, 0) = 0
2336 distance_to_ancestor (A, B, 0) = 1
2337 distance_to_ancestor (A, C, 0) = 2
2338 distance_to_ancestor (A, D, 0) = 3
2339
2340 If PUBLIC is 1 then only public ancestors are considered,
2341 and the function returns the distance only if BASE is a public ancestor
2342 of DCLASS.
2343 Eg:
2344
2345 distance_to_ancestor (A, D, 1) = -1. */
2346
2347 static int
2348 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2349 {
2350 int i;
2351 int d;
2352
2353 CHECK_TYPEDEF (base);
2354 CHECK_TYPEDEF (dclass);
2355
2356 if (class_types_same_p (base, dclass))
2357 return 0;
2358
2359 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2360 {
2361 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2362 continue;
2363
2364 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2365 if (d >= 0)
2366 return 1 + d;
2367 }
2368
2369 return -1;
2370 }
2371
2372 /* Check whether BASE is an ancestor or base class or DCLASS
2373 Return 1 if so, and 0 if not.
2374 Note: If BASE and DCLASS are of the same type, this function
2375 will return 1. So for some class A, is_ancestor (A, A) will
2376 return 1. */
2377
2378 int
2379 is_ancestor (struct type *base, struct type *dclass)
2380 {
2381 return distance_to_ancestor (base, dclass, 0) >= 0;
2382 }
2383
2384 /* Like is_ancestor, but only returns true when BASE is a public
2385 ancestor of DCLASS. */
2386
2387 int
2388 is_public_ancestor (struct type *base, struct type *dclass)
2389 {
2390 return distance_to_ancestor (base, dclass, 1) >= 0;
2391 }
2392
2393 /* A helper function for is_unique_ancestor. */
2394
2395 static int
2396 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2397 int *offset,
2398 const gdb_byte *valaddr, int embedded_offset,
2399 CORE_ADDR address, struct value *val)
2400 {
2401 int i, count = 0;
2402
2403 CHECK_TYPEDEF (base);
2404 CHECK_TYPEDEF (dclass);
2405
2406 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2407 {
2408 struct type *iter;
2409 int this_offset;
2410
2411 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2412
2413 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2414 address, val);
2415
2416 if (class_types_same_p (base, iter))
2417 {
2418 /* If this is the first subclass, set *OFFSET and set count
2419 to 1. Otherwise, if this is at the same offset as
2420 previous instances, do nothing. Otherwise, increment
2421 count. */
2422 if (*offset == -1)
2423 {
2424 *offset = this_offset;
2425 count = 1;
2426 }
2427 else if (this_offset == *offset)
2428 {
2429 /* Nothing. */
2430 }
2431 else
2432 ++count;
2433 }
2434 else
2435 count += is_unique_ancestor_worker (base, iter, offset,
2436 valaddr,
2437 embedded_offset + this_offset,
2438 address, val);
2439 }
2440
2441 return count;
2442 }
2443
2444 /* Like is_ancestor, but only returns true if BASE is a unique base
2445 class of the type of VAL. */
2446
2447 int
2448 is_unique_ancestor (struct type *base, struct value *val)
2449 {
2450 int offset = -1;
2451
2452 return is_unique_ancestor_worker (base, value_type (val), &offset,
2453 value_contents_for_printing (val),
2454 value_embedded_offset (val),
2455 value_address (val), val) == 1;
2456 }
2457
2458 \f
2459 /* Overload resolution. */
2460
2461 /* Return the sum of the rank of A with the rank of B. */
2462
2463 struct rank
2464 sum_ranks (struct rank a, struct rank b)
2465 {
2466 struct rank c;
2467 c.rank = a.rank + b.rank;
2468 c.subrank = a.subrank + b.subrank;
2469 return c;
2470 }
2471
2472 /* Compare rank A and B and return:
2473 0 if a = b
2474 1 if a is better than b
2475 -1 if b is better than a. */
2476
2477 int
2478 compare_ranks (struct rank a, struct rank b)
2479 {
2480 if (a.rank == b.rank)
2481 {
2482 if (a.subrank == b.subrank)
2483 return 0;
2484 if (a.subrank < b.subrank)
2485 return 1;
2486 if (a.subrank > b.subrank)
2487 return -1;
2488 }
2489
2490 if (a.rank < b.rank)
2491 return 1;
2492
2493 /* a.rank > b.rank */
2494 return -1;
2495 }
2496
2497 /* Functions for overload resolution begin here. */
2498
2499 /* Compare two badness vectors A and B and return the result.
2500 0 => A and B are identical
2501 1 => A and B are incomparable
2502 2 => A is better than B
2503 3 => A is worse than B */
2504
2505 int
2506 compare_badness (struct badness_vector *a, struct badness_vector *b)
2507 {
2508 int i;
2509 int tmp;
2510 short found_pos = 0; /* any positives in c? */
2511 short found_neg = 0; /* any negatives in c? */
2512
2513 /* differing lengths => incomparable */
2514 if (a->length != b->length)
2515 return 1;
2516
2517 /* Subtract b from a */
2518 for (i = 0; i < a->length; i++)
2519 {
2520 tmp = compare_ranks (b->rank[i], a->rank[i]);
2521 if (tmp > 0)
2522 found_pos = 1;
2523 else if (tmp < 0)
2524 found_neg = 1;
2525 }
2526
2527 if (found_pos)
2528 {
2529 if (found_neg)
2530 return 1; /* incomparable */
2531 else
2532 return 3; /* A > B */
2533 }
2534 else
2535 /* no positives */
2536 {
2537 if (found_neg)
2538 return 2; /* A < B */
2539 else
2540 return 0; /* A == B */
2541 }
2542 }
2543
2544 /* Rank a function by comparing its parameter types (PARMS, length
2545 NPARMS), to the types of an argument list (ARGS, length NARGS).
2546 Return a pointer to a badness vector. This has NARGS + 1
2547 entries. */
2548
2549 struct badness_vector *
2550 rank_function (struct type **parms, int nparms,
2551 struct value **args, int nargs)
2552 {
2553 int i;
2554 struct badness_vector *bv;
2555 int min_len = nparms < nargs ? nparms : nargs;
2556
2557 bv = xmalloc (sizeof (struct badness_vector));
2558 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2559 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2560
2561 /* First compare the lengths of the supplied lists.
2562 If there is a mismatch, set it to a high value. */
2563
2564 /* pai/1997-06-03 FIXME: when we have debug info about default
2565 arguments and ellipsis parameter lists, we should consider those
2566 and rank the length-match more finely. */
2567
2568 LENGTH_MATCH (bv) = (nargs != nparms)
2569 ? LENGTH_MISMATCH_BADNESS
2570 : EXACT_MATCH_BADNESS;
2571
2572 /* Now rank all the parameters of the candidate function. */
2573 for (i = 1; i <= min_len; i++)
2574 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2575 args[i - 1]);
2576
2577 /* If more arguments than parameters, add dummy entries. */
2578 for (i = min_len + 1; i <= nargs; i++)
2579 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2580
2581 return bv;
2582 }
2583
2584 /* Compare the names of two integer types, assuming that any sign
2585 qualifiers have been checked already. We do it this way because
2586 there may be an "int" in the name of one of the types. */
2587
2588 static int
2589 integer_types_same_name_p (const char *first, const char *second)
2590 {
2591 int first_p, second_p;
2592
2593 /* If both are shorts, return 1; if neither is a short, keep
2594 checking. */
2595 first_p = (strstr (first, "short") != NULL);
2596 second_p = (strstr (second, "short") != NULL);
2597 if (first_p && second_p)
2598 return 1;
2599 if (first_p || second_p)
2600 return 0;
2601
2602 /* Likewise for long. */
2603 first_p = (strstr (first, "long") != NULL);
2604 second_p = (strstr (second, "long") != NULL);
2605 if (first_p && second_p)
2606 return 1;
2607 if (first_p || second_p)
2608 return 0;
2609
2610 /* Likewise for char. */
2611 first_p = (strstr (first, "char") != NULL);
2612 second_p = (strstr (second, "char") != NULL);
2613 if (first_p && second_p)
2614 return 1;
2615 if (first_p || second_p)
2616 return 0;
2617
2618 /* They must both be ints. */
2619 return 1;
2620 }
2621
2622 /* Compares type A to type B returns 1 if the represent the same type
2623 0 otherwise. */
2624
2625 int
2626 types_equal (struct type *a, struct type *b)
2627 {
2628 /* Identical type pointers. */
2629 /* However, this still doesn't catch all cases of same type for b
2630 and a. The reason is that builtin types are different from
2631 the same ones constructed from the object. */
2632 if (a == b)
2633 return 1;
2634
2635 /* Resolve typedefs */
2636 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2637 a = check_typedef (a);
2638 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2639 b = check_typedef (b);
2640
2641 /* If after resolving typedefs a and b are not of the same type
2642 code then they are not equal. */
2643 if (TYPE_CODE (a) != TYPE_CODE (b))
2644 return 0;
2645
2646 /* If a and b are both pointers types or both reference types then
2647 they are equal of the same type iff the objects they refer to are
2648 of the same type. */
2649 if (TYPE_CODE (a) == TYPE_CODE_PTR
2650 || TYPE_CODE (a) == TYPE_CODE_REF)
2651 return types_equal (TYPE_TARGET_TYPE (a),
2652 TYPE_TARGET_TYPE (b));
2653
2654 /* Well, damnit, if the names are exactly the same, I'll say they
2655 are exactly the same. This happens when we generate method
2656 stubs. The types won't point to the same address, but they
2657 really are the same. */
2658
2659 if (TYPE_NAME (a) && TYPE_NAME (b)
2660 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2661 return 1;
2662
2663 /* Check if identical after resolving typedefs. */
2664 if (a == b)
2665 return 1;
2666
2667 /* Two function types are equal if their argument and return types
2668 are equal. */
2669 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2670 {
2671 int i;
2672
2673 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2674 return 0;
2675
2676 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2677 return 0;
2678
2679 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2680 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2681 return 0;
2682
2683 return 1;
2684 }
2685
2686 return 0;
2687 }
2688 \f
2689 /* Deep comparison of types. */
2690
2691 /* An entry in the type-equality bcache. */
2692
2693 typedef struct type_equality_entry
2694 {
2695 struct type *type1, *type2;
2696 } type_equality_entry_d;
2697
2698 DEF_VEC_O (type_equality_entry_d);
2699
2700 /* A helper function to compare two strings. Returns 1 if they are
2701 the same, 0 otherwise. Handles NULLs properly. */
2702
2703 static int
2704 compare_maybe_null_strings (const char *s, const char *t)
2705 {
2706 if (s == NULL && t != NULL)
2707 return 0;
2708 else if (s != NULL && t == NULL)
2709 return 0;
2710 else if (s == NULL && t== NULL)
2711 return 1;
2712 return strcmp (s, t) == 0;
2713 }
2714
2715 /* A helper function for check_types_worklist that checks two types for
2716 "deep" equality. Returns non-zero if the types are considered the
2717 same, zero otherwise. */
2718
2719 static int
2720 check_types_equal (struct type *type1, struct type *type2,
2721 VEC (type_equality_entry_d) **worklist)
2722 {
2723 CHECK_TYPEDEF (type1);
2724 CHECK_TYPEDEF (type2);
2725
2726 if (type1 == type2)
2727 return 1;
2728
2729 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2730 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2731 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2732 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2733 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2734 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2735 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2736 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2737 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2738 return 0;
2739
2740 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2741 TYPE_TAG_NAME (type2)))
2742 return 0;
2743 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2744 return 0;
2745
2746 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2747 {
2748 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2749 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2750 return 0;
2751 }
2752 else
2753 {
2754 int i;
2755
2756 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2757 {
2758 const struct field *field1 = &TYPE_FIELD (type1, i);
2759 const struct field *field2 = &TYPE_FIELD (type2, i);
2760 struct type_equality_entry entry;
2761
2762 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2763 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2764 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2765 return 0;
2766 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2767 FIELD_NAME (*field2)))
2768 return 0;
2769 switch (FIELD_LOC_KIND (*field1))
2770 {
2771 case FIELD_LOC_KIND_BITPOS:
2772 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2773 return 0;
2774 break;
2775 case FIELD_LOC_KIND_ENUMVAL:
2776 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2777 return 0;
2778 break;
2779 case FIELD_LOC_KIND_PHYSADDR:
2780 if (FIELD_STATIC_PHYSADDR (*field1)
2781 != FIELD_STATIC_PHYSADDR (*field2))
2782 return 0;
2783 break;
2784 case FIELD_LOC_KIND_PHYSNAME:
2785 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2786 FIELD_STATIC_PHYSNAME (*field2)))
2787 return 0;
2788 break;
2789 case FIELD_LOC_KIND_DWARF_BLOCK:
2790 {
2791 struct dwarf2_locexpr_baton *block1, *block2;
2792
2793 block1 = FIELD_DWARF_BLOCK (*field1);
2794 block2 = FIELD_DWARF_BLOCK (*field2);
2795 if (block1->per_cu != block2->per_cu
2796 || block1->size != block2->size
2797 || memcmp (block1->data, block2->data, block1->size) != 0)
2798 return 0;
2799 }
2800 break;
2801 default:
2802 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
2803 "%d by check_types_equal"),
2804 FIELD_LOC_KIND (*field1));
2805 }
2806
2807 entry.type1 = FIELD_TYPE (*field1);
2808 entry.type2 = FIELD_TYPE (*field2);
2809 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2810 }
2811 }
2812
2813 if (TYPE_TARGET_TYPE (type1) != NULL)
2814 {
2815 struct type_equality_entry entry;
2816
2817 if (TYPE_TARGET_TYPE (type2) == NULL)
2818 return 0;
2819
2820 entry.type1 = TYPE_TARGET_TYPE (type1);
2821 entry.type2 = TYPE_TARGET_TYPE (type2);
2822 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2823 }
2824 else if (TYPE_TARGET_TYPE (type2) != NULL)
2825 return 0;
2826
2827 return 1;
2828 }
2829
2830 /* Check types on a worklist for equality. Returns zero if any pair
2831 is not equal, non-zero if they are all considered equal. */
2832
2833 static int
2834 check_types_worklist (VEC (type_equality_entry_d) **worklist,
2835 struct bcache *cache)
2836 {
2837 while (!VEC_empty (type_equality_entry_d, *worklist))
2838 {
2839 struct type_equality_entry entry;
2840 int added;
2841
2842 entry = *VEC_last (type_equality_entry_d, *worklist);
2843 VEC_pop (type_equality_entry_d, *worklist);
2844
2845 /* If the type pair has already been visited, we know it is
2846 ok. */
2847 bcache_full (&entry, sizeof (entry), cache, &added);
2848 if (!added)
2849 continue;
2850
2851 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
2852 return 0;
2853 }
2854
2855 return 1;
2856 }
2857
2858 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
2859 "deep comparison". Otherwise return zero. */
2860
2861 int
2862 types_deeply_equal (struct type *type1, struct type *type2)
2863 {
2864 volatile struct gdb_exception except;
2865 int result = 0;
2866 struct bcache *cache;
2867 VEC (type_equality_entry_d) *worklist = NULL;
2868 struct type_equality_entry entry;
2869
2870 gdb_assert (type1 != NULL && type2 != NULL);
2871
2872 /* Early exit for the simple case. */
2873 if (type1 == type2)
2874 return 1;
2875
2876 cache = bcache_xmalloc (NULL, NULL);
2877
2878 entry.type1 = type1;
2879 entry.type2 = type2;
2880 VEC_safe_push (type_equality_entry_d, worklist, &entry);
2881
2882 TRY_CATCH (except, RETURN_MASK_ALL)
2883 {
2884 result = check_types_worklist (&worklist, cache);
2885 }
2886 /* check_types_worklist calls several nested helper functions,
2887 some of which can raise a GDB Exception, so we just check
2888 and rethrow here. If there is a GDB exception, a comparison
2889 is not capable (or trusted), so exit. */
2890 bcache_xfree (cache);
2891 VEC_free (type_equality_entry_d, worklist);
2892 /* Rethrow if there was a problem. */
2893 if (except.reason < 0)
2894 throw_exception (except);
2895
2896 return result;
2897 }
2898 \f
2899 /* Compare one type (PARM) for compatibility with another (ARG).
2900 * PARM is intended to be the parameter type of a function; and
2901 * ARG is the supplied argument's type. This function tests if
2902 * the latter can be converted to the former.
2903 * VALUE is the argument's value or NULL if none (or called recursively)
2904 *
2905 * Return 0 if they are identical types;
2906 * Otherwise, return an integer which corresponds to how compatible
2907 * PARM is to ARG. The higher the return value, the worse the match.
2908 * Generally the "bad" conversions are all uniformly assigned a 100. */
2909
2910 struct rank
2911 rank_one_type (struct type *parm, struct type *arg, struct value *value)
2912 {
2913 struct rank rank = {0,0};
2914
2915 if (types_equal (parm, arg))
2916 return EXACT_MATCH_BADNESS;
2917
2918 /* Resolve typedefs */
2919 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2920 parm = check_typedef (parm);
2921 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2922 arg = check_typedef (arg);
2923
2924 /* See through references, since we can almost make non-references
2925 references. */
2926 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2927 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
2928 REFERENCE_CONVERSION_BADNESS));
2929 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2930 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
2931 REFERENCE_CONVERSION_BADNESS));
2932 if (overload_debug)
2933 /* Debugging only. */
2934 fprintf_filtered (gdb_stderr,
2935 "------ Arg is %s [%d], parm is %s [%d]\n",
2936 TYPE_NAME (arg), TYPE_CODE (arg),
2937 TYPE_NAME (parm), TYPE_CODE (parm));
2938
2939 /* x -> y means arg of type x being supplied for parameter of type y. */
2940
2941 switch (TYPE_CODE (parm))
2942 {
2943 case TYPE_CODE_PTR:
2944 switch (TYPE_CODE (arg))
2945 {
2946 case TYPE_CODE_PTR:
2947
2948 /* Allowed pointer conversions are:
2949 (a) pointer to void-pointer conversion. */
2950 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2951 return VOID_PTR_CONVERSION_BADNESS;
2952
2953 /* (b) pointer to ancestor-pointer conversion. */
2954 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2955 TYPE_TARGET_TYPE (arg),
2956 0);
2957 if (rank.subrank >= 0)
2958 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2959
2960 return INCOMPATIBLE_TYPE_BADNESS;
2961 case TYPE_CODE_ARRAY:
2962 if (types_equal (TYPE_TARGET_TYPE (parm),
2963 TYPE_TARGET_TYPE (arg)))
2964 return EXACT_MATCH_BADNESS;
2965 return INCOMPATIBLE_TYPE_BADNESS;
2966 case TYPE_CODE_FUNC:
2967 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
2968 case TYPE_CODE_INT:
2969 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
2970 {
2971 if (value_as_long (value) == 0)
2972 {
2973 /* Null pointer conversion: allow it to be cast to a pointer.
2974 [4.10.1 of C++ standard draft n3290] */
2975 return NULL_POINTER_CONVERSION_BADNESS;
2976 }
2977 else
2978 {
2979 /* If type checking is disabled, allow the conversion. */
2980 if (!strict_type_checking)
2981 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
2982 }
2983 }
2984 /* fall through */
2985 case TYPE_CODE_ENUM:
2986 case TYPE_CODE_FLAGS:
2987 case TYPE_CODE_CHAR:
2988 case TYPE_CODE_RANGE:
2989 case TYPE_CODE_BOOL:
2990 default:
2991 return INCOMPATIBLE_TYPE_BADNESS;
2992 }
2993 case TYPE_CODE_ARRAY:
2994 switch (TYPE_CODE (arg))
2995 {
2996 case TYPE_CODE_PTR:
2997 case TYPE_CODE_ARRAY:
2998 return rank_one_type (TYPE_TARGET_TYPE (parm),
2999 TYPE_TARGET_TYPE (arg), NULL);
3000 default:
3001 return INCOMPATIBLE_TYPE_BADNESS;
3002 }
3003 case TYPE_CODE_FUNC:
3004 switch (TYPE_CODE (arg))
3005 {
3006 case TYPE_CODE_PTR: /* funcptr -> func */
3007 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3008 default:
3009 return INCOMPATIBLE_TYPE_BADNESS;
3010 }
3011 case TYPE_CODE_INT:
3012 switch (TYPE_CODE (arg))
3013 {
3014 case TYPE_CODE_INT:
3015 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3016 {
3017 /* Deal with signed, unsigned, and plain chars and
3018 signed and unsigned ints. */
3019 if (TYPE_NOSIGN (parm))
3020 {
3021 /* This case only for character types. */
3022 if (TYPE_NOSIGN (arg))
3023 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3024 else /* signed/unsigned char -> plain char */
3025 return INTEGER_CONVERSION_BADNESS;
3026 }
3027 else if (TYPE_UNSIGNED (parm))
3028 {
3029 if (TYPE_UNSIGNED (arg))
3030 {
3031 /* unsigned int -> unsigned int, or
3032 unsigned long -> unsigned long */
3033 if (integer_types_same_name_p (TYPE_NAME (parm),
3034 TYPE_NAME (arg)))
3035 return EXACT_MATCH_BADNESS;
3036 else if (integer_types_same_name_p (TYPE_NAME (arg),
3037 "int")
3038 && integer_types_same_name_p (TYPE_NAME (parm),
3039 "long"))
3040 /* unsigned int -> unsigned long */
3041 return INTEGER_PROMOTION_BADNESS;
3042 else
3043 /* unsigned long -> unsigned int */
3044 return INTEGER_CONVERSION_BADNESS;
3045 }
3046 else
3047 {
3048 if (integer_types_same_name_p (TYPE_NAME (arg),
3049 "long")
3050 && integer_types_same_name_p (TYPE_NAME (parm),
3051 "int"))
3052 /* signed long -> unsigned int */
3053 return INTEGER_CONVERSION_BADNESS;
3054 else
3055 /* signed int/long -> unsigned int/long */
3056 return INTEGER_CONVERSION_BADNESS;
3057 }
3058 }
3059 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3060 {
3061 if (integer_types_same_name_p (TYPE_NAME (parm),
3062 TYPE_NAME (arg)))
3063 return EXACT_MATCH_BADNESS;
3064 else if (integer_types_same_name_p (TYPE_NAME (arg),
3065 "int")
3066 && integer_types_same_name_p (TYPE_NAME (parm),
3067 "long"))
3068 return INTEGER_PROMOTION_BADNESS;
3069 else
3070 return INTEGER_CONVERSION_BADNESS;
3071 }
3072 else
3073 return INTEGER_CONVERSION_BADNESS;
3074 }
3075 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3076 return INTEGER_PROMOTION_BADNESS;
3077 else
3078 return INTEGER_CONVERSION_BADNESS;
3079 case TYPE_CODE_ENUM:
3080 case TYPE_CODE_FLAGS:
3081 case TYPE_CODE_CHAR:
3082 case TYPE_CODE_RANGE:
3083 case TYPE_CODE_BOOL:
3084 return INTEGER_PROMOTION_BADNESS;
3085 case TYPE_CODE_FLT:
3086 return INT_FLOAT_CONVERSION_BADNESS;
3087 case TYPE_CODE_PTR:
3088 return NS_POINTER_CONVERSION_BADNESS;
3089 default:
3090 return INCOMPATIBLE_TYPE_BADNESS;
3091 }
3092 break;
3093 case TYPE_CODE_ENUM:
3094 switch (TYPE_CODE (arg))
3095 {
3096 case TYPE_CODE_INT:
3097 case TYPE_CODE_CHAR:
3098 case TYPE_CODE_RANGE:
3099 case TYPE_CODE_BOOL:
3100 case TYPE_CODE_ENUM:
3101 return INTEGER_CONVERSION_BADNESS;
3102 case TYPE_CODE_FLT:
3103 return INT_FLOAT_CONVERSION_BADNESS;
3104 default:
3105 return INCOMPATIBLE_TYPE_BADNESS;
3106 }
3107 break;
3108 case TYPE_CODE_CHAR:
3109 switch (TYPE_CODE (arg))
3110 {
3111 case TYPE_CODE_RANGE:
3112 case TYPE_CODE_BOOL:
3113 case TYPE_CODE_ENUM:
3114 return INTEGER_CONVERSION_BADNESS;
3115 case TYPE_CODE_FLT:
3116 return INT_FLOAT_CONVERSION_BADNESS;
3117 case TYPE_CODE_INT:
3118 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3119 return INTEGER_CONVERSION_BADNESS;
3120 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3121 return INTEGER_PROMOTION_BADNESS;
3122 /* >>> !! else fall through !! <<< */
3123 case TYPE_CODE_CHAR:
3124 /* Deal with signed, unsigned, and plain chars for C++ and
3125 with int cases falling through from previous case. */
3126 if (TYPE_NOSIGN (parm))
3127 {
3128 if (TYPE_NOSIGN (arg))
3129 return EXACT_MATCH_BADNESS;
3130 else
3131 return INTEGER_CONVERSION_BADNESS;
3132 }
3133 else if (TYPE_UNSIGNED (parm))
3134 {
3135 if (TYPE_UNSIGNED (arg))
3136 return EXACT_MATCH_BADNESS;
3137 else
3138 return INTEGER_PROMOTION_BADNESS;
3139 }
3140 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3141 return EXACT_MATCH_BADNESS;
3142 else
3143 return INTEGER_CONVERSION_BADNESS;
3144 default:
3145 return INCOMPATIBLE_TYPE_BADNESS;
3146 }
3147 break;
3148 case TYPE_CODE_RANGE:
3149 switch (TYPE_CODE (arg))
3150 {
3151 case TYPE_CODE_INT:
3152 case TYPE_CODE_CHAR:
3153 case TYPE_CODE_RANGE:
3154 case TYPE_CODE_BOOL:
3155 case TYPE_CODE_ENUM:
3156 return INTEGER_CONVERSION_BADNESS;
3157 case TYPE_CODE_FLT:
3158 return INT_FLOAT_CONVERSION_BADNESS;
3159 default:
3160 return INCOMPATIBLE_TYPE_BADNESS;
3161 }
3162 break;
3163 case TYPE_CODE_BOOL:
3164 switch (TYPE_CODE (arg))
3165 {
3166 /* n3290 draft, section 4.12.1 (conv.bool):
3167
3168 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3169 pointer to member type can be converted to a prvalue of type
3170 bool. A zero value, null pointer value, or null member pointer
3171 value is converted to false; any other value is converted to
3172 true. A prvalue of type std::nullptr_t can be converted to a
3173 prvalue of type bool; the resulting value is false." */
3174 case TYPE_CODE_INT:
3175 case TYPE_CODE_CHAR:
3176 case TYPE_CODE_ENUM:
3177 case TYPE_CODE_FLT:
3178 case TYPE_CODE_MEMBERPTR:
3179 case TYPE_CODE_PTR:
3180 return BOOL_CONVERSION_BADNESS;
3181 case TYPE_CODE_RANGE:
3182 return INCOMPATIBLE_TYPE_BADNESS;
3183 case TYPE_CODE_BOOL:
3184 return EXACT_MATCH_BADNESS;
3185 default:
3186 return INCOMPATIBLE_TYPE_BADNESS;
3187 }
3188 break;
3189 case TYPE_CODE_FLT:
3190 switch (TYPE_CODE (arg))
3191 {
3192 case TYPE_CODE_FLT:
3193 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3194 return FLOAT_PROMOTION_BADNESS;
3195 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3196 return EXACT_MATCH_BADNESS;
3197 else
3198 return FLOAT_CONVERSION_BADNESS;
3199 case TYPE_CODE_INT:
3200 case TYPE_CODE_BOOL:
3201 case TYPE_CODE_ENUM:
3202 case TYPE_CODE_RANGE:
3203 case TYPE_CODE_CHAR:
3204 return INT_FLOAT_CONVERSION_BADNESS;
3205 default:
3206 return INCOMPATIBLE_TYPE_BADNESS;
3207 }
3208 break;
3209 case TYPE_CODE_COMPLEX:
3210 switch (TYPE_CODE (arg))
3211 { /* Strictly not needed for C++, but... */
3212 case TYPE_CODE_FLT:
3213 return FLOAT_PROMOTION_BADNESS;
3214 case TYPE_CODE_COMPLEX:
3215 return EXACT_MATCH_BADNESS;
3216 default:
3217 return INCOMPATIBLE_TYPE_BADNESS;
3218 }
3219 break;
3220 case TYPE_CODE_STRUCT:
3221 /* currently same as TYPE_CODE_CLASS. */
3222 switch (TYPE_CODE (arg))
3223 {
3224 case TYPE_CODE_STRUCT:
3225 /* Check for derivation */
3226 rank.subrank = distance_to_ancestor (parm, arg, 0);
3227 if (rank.subrank >= 0)
3228 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3229 /* else fall through */
3230 default:
3231 return INCOMPATIBLE_TYPE_BADNESS;
3232 }
3233 break;
3234 case TYPE_CODE_UNION:
3235 switch (TYPE_CODE (arg))
3236 {
3237 case TYPE_CODE_UNION:
3238 default:
3239 return INCOMPATIBLE_TYPE_BADNESS;
3240 }
3241 break;
3242 case TYPE_CODE_MEMBERPTR:
3243 switch (TYPE_CODE (arg))
3244 {
3245 default:
3246 return INCOMPATIBLE_TYPE_BADNESS;
3247 }
3248 break;
3249 case TYPE_CODE_METHOD:
3250 switch (TYPE_CODE (arg))
3251 {
3252
3253 default:
3254 return INCOMPATIBLE_TYPE_BADNESS;
3255 }
3256 break;
3257 case TYPE_CODE_REF:
3258 switch (TYPE_CODE (arg))
3259 {
3260
3261 default:
3262 return INCOMPATIBLE_TYPE_BADNESS;
3263 }
3264
3265 break;
3266 case TYPE_CODE_SET:
3267 switch (TYPE_CODE (arg))
3268 {
3269 /* Not in C++ */
3270 case TYPE_CODE_SET:
3271 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3272 TYPE_FIELD_TYPE (arg, 0), NULL);
3273 default:
3274 return INCOMPATIBLE_TYPE_BADNESS;
3275 }
3276 break;
3277 case TYPE_CODE_VOID:
3278 default:
3279 return INCOMPATIBLE_TYPE_BADNESS;
3280 } /* switch (TYPE_CODE (arg)) */
3281 }
3282
3283 /* End of functions for overload resolution. */
3284 \f
3285 /* Routines to pretty-print types. */
3286
3287 static void
3288 print_bit_vector (B_TYPE *bits, int nbits)
3289 {
3290 int bitno;
3291
3292 for (bitno = 0; bitno < nbits; bitno++)
3293 {
3294 if ((bitno % 8) == 0)
3295 {
3296 puts_filtered (" ");
3297 }
3298 if (B_TST (bits, bitno))
3299 printf_filtered (("1"));
3300 else
3301 printf_filtered (("0"));
3302 }
3303 }
3304
3305 /* Note the first arg should be the "this" pointer, we may not want to
3306 include it since we may get into a infinitely recursive
3307 situation. */
3308
3309 static void
3310 print_arg_types (struct field *args, int nargs, int spaces)
3311 {
3312 if (args != NULL)
3313 {
3314 int i;
3315
3316 for (i = 0; i < nargs; i++)
3317 recursive_dump_type (args[i].type, spaces + 2);
3318 }
3319 }
3320
3321 int
3322 field_is_static (struct field *f)
3323 {
3324 /* "static" fields are the fields whose location is not relative
3325 to the address of the enclosing struct. It would be nice to
3326 have a dedicated flag that would be set for static fields when
3327 the type is being created. But in practice, checking the field
3328 loc_kind should give us an accurate answer. */
3329 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3330 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3331 }
3332
3333 static void
3334 dump_fn_fieldlists (struct type *type, int spaces)
3335 {
3336 int method_idx;
3337 int overload_idx;
3338 struct fn_field *f;
3339
3340 printfi_filtered (spaces, "fn_fieldlists ");
3341 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3342 printf_filtered ("\n");
3343 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3344 {
3345 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3346 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3347 method_idx,
3348 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3349 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3350 gdb_stdout);
3351 printf_filtered (_(") length %d\n"),
3352 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3353 for (overload_idx = 0;
3354 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3355 overload_idx++)
3356 {
3357 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3358 overload_idx,
3359 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3360 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3361 gdb_stdout);
3362 printf_filtered (")\n");
3363 printfi_filtered (spaces + 8, "type ");
3364 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3365 gdb_stdout);
3366 printf_filtered ("\n");
3367
3368 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3369 spaces + 8 + 2);
3370
3371 printfi_filtered (spaces + 8, "args ");
3372 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3373 gdb_stdout);
3374 printf_filtered ("\n");
3375
3376 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
3377 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
3378 overload_idx)),
3379 spaces);
3380 printfi_filtered (spaces + 8, "fcontext ");
3381 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3382 gdb_stdout);
3383 printf_filtered ("\n");
3384
3385 printfi_filtered (spaces + 8, "is_const %d\n",
3386 TYPE_FN_FIELD_CONST (f, overload_idx));
3387 printfi_filtered (spaces + 8, "is_volatile %d\n",
3388 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3389 printfi_filtered (spaces + 8, "is_private %d\n",
3390 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3391 printfi_filtered (spaces + 8, "is_protected %d\n",
3392 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3393 printfi_filtered (spaces + 8, "is_stub %d\n",
3394 TYPE_FN_FIELD_STUB (f, overload_idx));
3395 printfi_filtered (spaces + 8, "voffset %u\n",
3396 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3397 }
3398 }
3399 }
3400
3401 static void
3402 print_cplus_stuff (struct type *type, int spaces)
3403 {
3404 printfi_filtered (spaces, "n_baseclasses %d\n",
3405 TYPE_N_BASECLASSES (type));
3406 printfi_filtered (spaces, "nfn_fields %d\n",
3407 TYPE_NFN_FIELDS (type));
3408 if (TYPE_N_BASECLASSES (type) > 0)
3409 {
3410 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3411 TYPE_N_BASECLASSES (type));
3412 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3413 gdb_stdout);
3414 printf_filtered (")");
3415
3416 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3417 TYPE_N_BASECLASSES (type));
3418 puts_filtered ("\n");
3419 }
3420 if (TYPE_NFIELDS (type) > 0)
3421 {
3422 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3423 {
3424 printfi_filtered (spaces,
3425 "private_field_bits (%d bits at *",
3426 TYPE_NFIELDS (type));
3427 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3428 gdb_stdout);
3429 printf_filtered (")");
3430 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3431 TYPE_NFIELDS (type));
3432 puts_filtered ("\n");
3433 }
3434 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3435 {
3436 printfi_filtered (spaces,
3437 "protected_field_bits (%d bits at *",
3438 TYPE_NFIELDS (type));
3439 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3440 gdb_stdout);
3441 printf_filtered (")");
3442 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3443 TYPE_NFIELDS (type));
3444 puts_filtered ("\n");
3445 }
3446 }
3447 if (TYPE_NFN_FIELDS (type) > 0)
3448 {
3449 dump_fn_fieldlists (type, spaces);
3450 }
3451 }
3452
3453 /* Print the contents of the TYPE's type_specific union, assuming that
3454 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3455
3456 static void
3457 print_gnat_stuff (struct type *type, int spaces)
3458 {
3459 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3460
3461 recursive_dump_type (descriptive_type, spaces + 2);
3462 }
3463
3464 static struct obstack dont_print_type_obstack;
3465
3466 void
3467 recursive_dump_type (struct type *type, int spaces)
3468 {
3469 int idx;
3470
3471 if (spaces == 0)
3472 obstack_begin (&dont_print_type_obstack, 0);
3473
3474 if (TYPE_NFIELDS (type) > 0
3475 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3476 {
3477 struct type **first_dont_print
3478 = (struct type **) obstack_base (&dont_print_type_obstack);
3479
3480 int i = (struct type **)
3481 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3482
3483 while (--i >= 0)
3484 {
3485 if (type == first_dont_print[i])
3486 {
3487 printfi_filtered (spaces, "type node ");
3488 gdb_print_host_address (type, gdb_stdout);
3489 printf_filtered (_(" <same as already seen type>\n"));
3490 return;
3491 }
3492 }
3493
3494 obstack_ptr_grow (&dont_print_type_obstack, type);
3495 }
3496
3497 printfi_filtered (spaces, "type node ");
3498 gdb_print_host_address (type, gdb_stdout);
3499 printf_filtered ("\n");
3500 printfi_filtered (spaces, "name '%s' (",
3501 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3502 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3503 printf_filtered (")\n");
3504 printfi_filtered (spaces, "tagname '%s' (",
3505 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3506 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3507 printf_filtered (")\n");
3508 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3509 switch (TYPE_CODE (type))
3510 {
3511 case TYPE_CODE_UNDEF:
3512 printf_filtered ("(TYPE_CODE_UNDEF)");
3513 break;
3514 case TYPE_CODE_PTR:
3515 printf_filtered ("(TYPE_CODE_PTR)");
3516 break;
3517 case TYPE_CODE_ARRAY:
3518 printf_filtered ("(TYPE_CODE_ARRAY)");
3519 break;
3520 case TYPE_CODE_STRUCT:
3521 printf_filtered ("(TYPE_CODE_STRUCT)");
3522 break;
3523 case TYPE_CODE_UNION:
3524 printf_filtered ("(TYPE_CODE_UNION)");
3525 break;
3526 case TYPE_CODE_ENUM:
3527 printf_filtered ("(TYPE_CODE_ENUM)");
3528 break;
3529 case TYPE_CODE_FLAGS:
3530 printf_filtered ("(TYPE_CODE_FLAGS)");
3531 break;
3532 case TYPE_CODE_FUNC:
3533 printf_filtered ("(TYPE_CODE_FUNC)");
3534 break;
3535 case TYPE_CODE_INT:
3536 printf_filtered ("(TYPE_CODE_INT)");
3537 break;
3538 case TYPE_CODE_FLT:
3539 printf_filtered ("(TYPE_CODE_FLT)");
3540 break;
3541 case TYPE_CODE_VOID:
3542 printf_filtered ("(TYPE_CODE_VOID)");
3543 break;
3544 case TYPE_CODE_SET:
3545 printf_filtered ("(TYPE_CODE_SET)");
3546 break;
3547 case TYPE_CODE_RANGE:
3548 printf_filtered ("(TYPE_CODE_RANGE)");
3549 break;
3550 case TYPE_CODE_STRING:
3551 printf_filtered ("(TYPE_CODE_STRING)");
3552 break;
3553 case TYPE_CODE_ERROR:
3554 printf_filtered ("(TYPE_CODE_ERROR)");
3555 break;
3556 case TYPE_CODE_MEMBERPTR:
3557 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3558 break;
3559 case TYPE_CODE_METHODPTR:
3560 printf_filtered ("(TYPE_CODE_METHODPTR)");
3561 break;
3562 case TYPE_CODE_METHOD:
3563 printf_filtered ("(TYPE_CODE_METHOD)");
3564 break;
3565 case TYPE_CODE_REF:
3566 printf_filtered ("(TYPE_CODE_REF)");
3567 break;
3568 case TYPE_CODE_CHAR:
3569 printf_filtered ("(TYPE_CODE_CHAR)");
3570 break;
3571 case TYPE_CODE_BOOL:
3572 printf_filtered ("(TYPE_CODE_BOOL)");
3573 break;
3574 case TYPE_CODE_COMPLEX:
3575 printf_filtered ("(TYPE_CODE_COMPLEX)");
3576 break;
3577 case TYPE_CODE_TYPEDEF:
3578 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3579 break;
3580 case TYPE_CODE_NAMESPACE:
3581 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3582 break;
3583 default:
3584 printf_filtered ("(UNKNOWN TYPE CODE)");
3585 break;
3586 }
3587 puts_filtered ("\n");
3588 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3589 if (TYPE_OBJFILE_OWNED (type))
3590 {
3591 printfi_filtered (spaces, "objfile ");
3592 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3593 }
3594 else
3595 {
3596 printfi_filtered (spaces, "gdbarch ");
3597 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3598 }
3599 printf_filtered ("\n");
3600 printfi_filtered (spaces, "target_type ");
3601 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3602 printf_filtered ("\n");
3603 if (TYPE_TARGET_TYPE (type) != NULL)
3604 {
3605 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3606 }
3607 printfi_filtered (spaces, "pointer_type ");
3608 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3609 printf_filtered ("\n");
3610 printfi_filtered (spaces, "reference_type ");
3611 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3612 printf_filtered ("\n");
3613 printfi_filtered (spaces, "type_chain ");
3614 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3615 printf_filtered ("\n");
3616 printfi_filtered (spaces, "instance_flags 0x%x",
3617 TYPE_INSTANCE_FLAGS (type));
3618 if (TYPE_CONST (type))
3619 {
3620 puts_filtered (" TYPE_FLAG_CONST");
3621 }
3622 if (TYPE_VOLATILE (type))
3623 {
3624 puts_filtered (" TYPE_FLAG_VOLATILE");
3625 }
3626 if (TYPE_CODE_SPACE (type))
3627 {
3628 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3629 }
3630 if (TYPE_DATA_SPACE (type))
3631 {
3632 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3633 }
3634 if (TYPE_ADDRESS_CLASS_1 (type))
3635 {
3636 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3637 }
3638 if (TYPE_ADDRESS_CLASS_2 (type))
3639 {
3640 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3641 }
3642 if (TYPE_RESTRICT (type))
3643 {
3644 puts_filtered (" TYPE_FLAG_RESTRICT");
3645 }
3646 puts_filtered ("\n");
3647
3648 printfi_filtered (spaces, "flags");
3649 if (TYPE_UNSIGNED (type))
3650 {
3651 puts_filtered (" TYPE_FLAG_UNSIGNED");
3652 }
3653 if (TYPE_NOSIGN (type))
3654 {
3655 puts_filtered (" TYPE_FLAG_NOSIGN");
3656 }
3657 if (TYPE_STUB (type))
3658 {
3659 puts_filtered (" TYPE_FLAG_STUB");
3660 }
3661 if (TYPE_TARGET_STUB (type))
3662 {
3663 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3664 }
3665 if (TYPE_STATIC (type))
3666 {
3667 puts_filtered (" TYPE_FLAG_STATIC");
3668 }
3669 if (TYPE_PROTOTYPED (type))
3670 {
3671 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3672 }
3673 if (TYPE_INCOMPLETE (type))
3674 {
3675 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3676 }
3677 if (TYPE_VARARGS (type))
3678 {
3679 puts_filtered (" TYPE_FLAG_VARARGS");
3680 }
3681 /* This is used for things like AltiVec registers on ppc. Gcc emits
3682 an attribute for the array type, which tells whether or not we
3683 have a vector, instead of a regular array. */
3684 if (TYPE_VECTOR (type))
3685 {
3686 puts_filtered (" TYPE_FLAG_VECTOR");
3687 }
3688 if (TYPE_FIXED_INSTANCE (type))
3689 {
3690 puts_filtered (" TYPE_FIXED_INSTANCE");
3691 }
3692 if (TYPE_STUB_SUPPORTED (type))
3693 {
3694 puts_filtered (" TYPE_STUB_SUPPORTED");
3695 }
3696 if (TYPE_NOTTEXT (type))
3697 {
3698 puts_filtered (" TYPE_NOTTEXT");
3699 }
3700 puts_filtered ("\n");
3701 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3702 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3703 puts_filtered ("\n");
3704 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3705 {
3706 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3707 printfi_filtered (spaces + 2,
3708 "[%d] enumval %s type ",
3709 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3710 else
3711 printfi_filtered (spaces + 2,
3712 "[%d] bitpos %d bitsize %d type ",
3713 idx, TYPE_FIELD_BITPOS (type, idx),
3714 TYPE_FIELD_BITSIZE (type, idx));
3715 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3716 printf_filtered (" name '%s' (",
3717 TYPE_FIELD_NAME (type, idx) != NULL
3718 ? TYPE_FIELD_NAME (type, idx)
3719 : "<NULL>");
3720 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3721 printf_filtered (")\n");
3722 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3723 {
3724 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3725 }
3726 }
3727 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3728 {
3729 printfi_filtered (spaces, "low %s%s high %s%s\n",
3730 plongest (TYPE_LOW_BOUND (type)),
3731 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3732 plongest (TYPE_HIGH_BOUND (type)),
3733 TYPE_HIGH_BOUND_UNDEFINED (type)
3734 ? " (undefined)" : "");
3735 }
3736 printfi_filtered (spaces, "vptr_basetype ");
3737 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3738 puts_filtered ("\n");
3739 if (TYPE_VPTR_BASETYPE (type) != NULL)
3740 {
3741 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3742 }
3743 printfi_filtered (spaces, "vptr_fieldno %d\n",
3744 TYPE_VPTR_FIELDNO (type));
3745
3746 switch (TYPE_SPECIFIC_FIELD (type))
3747 {
3748 case TYPE_SPECIFIC_CPLUS_STUFF:
3749 printfi_filtered (spaces, "cplus_stuff ");
3750 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3751 gdb_stdout);
3752 puts_filtered ("\n");
3753 print_cplus_stuff (type, spaces);
3754 break;
3755
3756 case TYPE_SPECIFIC_GNAT_STUFF:
3757 printfi_filtered (spaces, "gnat_stuff ");
3758 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3759 puts_filtered ("\n");
3760 print_gnat_stuff (type, spaces);
3761 break;
3762
3763 case TYPE_SPECIFIC_FLOATFORMAT:
3764 printfi_filtered (spaces, "floatformat ");
3765 if (TYPE_FLOATFORMAT (type) == NULL)
3766 puts_filtered ("(null)");
3767 else
3768 {
3769 puts_filtered ("{ ");
3770 if (TYPE_FLOATFORMAT (type)[0] == NULL
3771 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3772 puts_filtered ("(null)");
3773 else
3774 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3775
3776 puts_filtered (", ");
3777 if (TYPE_FLOATFORMAT (type)[1] == NULL
3778 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3779 puts_filtered ("(null)");
3780 else
3781 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3782
3783 puts_filtered (" }");
3784 }
3785 puts_filtered ("\n");
3786 break;
3787
3788 case TYPE_SPECIFIC_FUNC:
3789 printfi_filtered (spaces, "calling_convention %d\n",
3790 TYPE_CALLING_CONVENTION (type));
3791 /* tail_call_list is not printed. */
3792 break;
3793 }
3794
3795 if (spaces == 0)
3796 obstack_free (&dont_print_type_obstack, NULL);
3797 }
3798 \f
3799 /* Trivial helpers for the libiberty hash table, for mapping one
3800 type to another. */
3801
3802 struct type_pair
3803 {
3804 struct type *old, *new;
3805 };
3806
3807 static hashval_t
3808 type_pair_hash (const void *item)
3809 {
3810 const struct type_pair *pair = item;
3811
3812 return htab_hash_pointer (pair->old);
3813 }
3814
3815 static int
3816 type_pair_eq (const void *item_lhs, const void *item_rhs)
3817 {
3818 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3819
3820 return lhs->old == rhs->old;
3821 }
3822
3823 /* Allocate the hash table used by copy_type_recursive to walk
3824 types without duplicates. We use OBJFILE's obstack, because
3825 OBJFILE is about to be deleted. */
3826
3827 htab_t
3828 create_copied_types_hash (struct objfile *objfile)
3829 {
3830 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3831 NULL, &objfile->objfile_obstack,
3832 hashtab_obstack_allocate,
3833 dummy_obstack_deallocate);
3834 }
3835
3836 /* Recursively copy (deep copy) TYPE, if it is associated with
3837 OBJFILE. Return a new type allocated using malloc, a saved type if
3838 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3839 not associated with OBJFILE. */
3840
3841 struct type *
3842 copy_type_recursive (struct objfile *objfile,
3843 struct type *type,
3844 htab_t copied_types)
3845 {
3846 struct type_pair *stored, pair;
3847 void **slot;
3848 struct type *new_type;
3849
3850 if (! TYPE_OBJFILE_OWNED (type))
3851 return type;
3852
3853 /* This type shouldn't be pointing to any types in other objfiles;
3854 if it did, the type might disappear unexpectedly. */
3855 gdb_assert (TYPE_OBJFILE (type) == objfile);
3856
3857 pair.old = type;
3858 slot = htab_find_slot (copied_types, &pair, INSERT);
3859 if (*slot != NULL)
3860 return ((struct type_pair *) *slot)->new;
3861
3862 new_type = alloc_type_arch (get_type_arch (type));
3863
3864 /* We must add the new type to the hash table immediately, in case
3865 we encounter this type again during a recursive call below. */
3866 stored
3867 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3868 stored->old = type;
3869 stored->new = new_type;
3870 *slot = stored;
3871
3872 /* Copy the common fields of types. For the main type, we simply
3873 copy the entire thing and then update specific fields as needed. */
3874 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3875 TYPE_OBJFILE_OWNED (new_type) = 0;
3876 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3877
3878 if (TYPE_NAME (type))
3879 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3880 if (TYPE_TAG_NAME (type))
3881 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3882
3883 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3884 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3885
3886 /* Copy the fields. */
3887 if (TYPE_NFIELDS (type))
3888 {
3889 int i, nfields;
3890
3891 nfields = TYPE_NFIELDS (type);
3892 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
3893 for (i = 0; i < nfields; i++)
3894 {
3895 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3896 TYPE_FIELD_ARTIFICIAL (type, i);
3897 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3898 if (TYPE_FIELD_TYPE (type, i))
3899 TYPE_FIELD_TYPE (new_type, i)
3900 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3901 copied_types);
3902 if (TYPE_FIELD_NAME (type, i))
3903 TYPE_FIELD_NAME (new_type, i) =
3904 xstrdup (TYPE_FIELD_NAME (type, i));
3905 switch (TYPE_FIELD_LOC_KIND (type, i))
3906 {
3907 case FIELD_LOC_KIND_BITPOS:
3908 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3909 TYPE_FIELD_BITPOS (type, i));
3910 break;
3911 case FIELD_LOC_KIND_ENUMVAL:
3912 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3913 TYPE_FIELD_ENUMVAL (type, i));
3914 break;
3915 case FIELD_LOC_KIND_PHYSADDR:
3916 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3917 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3918 break;
3919 case FIELD_LOC_KIND_PHYSNAME:
3920 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3921 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3922 i)));
3923 break;
3924 default:
3925 internal_error (__FILE__, __LINE__,
3926 _("Unexpected type field location kind: %d"),
3927 TYPE_FIELD_LOC_KIND (type, i));
3928 }
3929 }
3930 }
3931
3932 /* For range types, copy the bounds information. */
3933 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3934 {
3935 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3936 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3937 }
3938
3939 /* Copy pointers to other types. */
3940 if (TYPE_TARGET_TYPE (type))
3941 TYPE_TARGET_TYPE (new_type) =
3942 copy_type_recursive (objfile,
3943 TYPE_TARGET_TYPE (type),
3944 copied_types);
3945 if (TYPE_VPTR_BASETYPE (type))
3946 TYPE_VPTR_BASETYPE (new_type) =
3947 copy_type_recursive (objfile,
3948 TYPE_VPTR_BASETYPE (type),
3949 copied_types);
3950 /* Maybe copy the type_specific bits.
3951
3952 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3953 base classes and methods. There's no fundamental reason why we
3954 can't, but at the moment it is not needed. */
3955
3956 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3957 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3958 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3959 || TYPE_CODE (type) == TYPE_CODE_UNION
3960 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3961 INIT_CPLUS_SPECIFIC (new_type);
3962
3963 return new_type;
3964 }
3965
3966 /* Make a copy of the given TYPE, except that the pointer & reference
3967 types are not preserved.
3968
3969 This function assumes that the given type has an associated objfile.
3970 This objfile is used to allocate the new type. */
3971
3972 struct type *
3973 copy_type (const struct type *type)
3974 {
3975 struct type *new_type;
3976
3977 gdb_assert (TYPE_OBJFILE_OWNED (type));
3978
3979 new_type = alloc_type_copy (type);
3980 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3981 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3982 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3983 sizeof (struct main_type));
3984
3985 return new_type;
3986 }
3987 \f
3988 /* Helper functions to initialize architecture-specific types. */
3989
3990 /* Allocate a type structure associated with GDBARCH and set its
3991 CODE, LENGTH, and NAME fields. */
3992
3993 struct type *
3994 arch_type (struct gdbarch *gdbarch,
3995 enum type_code code, int length, char *name)
3996 {
3997 struct type *type;
3998
3999 type = alloc_type_arch (gdbarch);
4000 TYPE_CODE (type) = code;
4001 TYPE_LENGTH (type) = length;
4002
4003 if (name)
4004 TYPE_NAME (type) = xstrdup (name);
4005
4006 return type;
4007 }
4008
4009 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4010 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4011 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4012
4013 struct type *
4014 arch_integer_type (struct gdbarch *gdbarch,
4015 int bit, int unsigned_p, char *name)
4016 {
4017 struct type *t;
4018
4019 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4020 if (unsigned_p)
4021 TYPE_UNSIGNED (t) = 1;
4022 if (name && strcmp (name, "char") == 0)
4023 TYPE_NOSIGN (t) = 1;
4024
4025 return t;
4026 }
4027
4028 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4029 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4030 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4031
4032 struct type *
4033 arch_character_type (struct gdbarch *gdbarch,
4034 int bit, int unsigned_p, char *name)
4035 {
4036 struct type *t;
4037
4038 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4039 if (unsigned_p)
4040 TYPE_UNSIGNED (t) = 1;
4041
4042 return t;
4043 }
4044
4045 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4046 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4047 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4048
4049 struct type *
4050 arch_boolean_type (struct gdbarch *gdbarch,
4051 int bit, int unsigned_p, char *name)
4052 {
4053 struct type *t;
4054
4055 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4056 if (unsigned_p)
4057 TYPE_UNSIGNED (t) = 1;
4058
4059 return t;
4060 }
4061
4062 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4063 BIT is the type size in bits; if BIT equals -1, the size is
4064 determined by the floatformat. NAME is the type name. Set the
4065 TYPE_FLOATFORMAT from FLOATFORMATS. */
4066
4067 struct type *
4068 arch_float_type (struct gdbarch *gdbarch,
4069 int bit, char *name, const struct floatformat **floatformats)
4070 {
4071 struct type *t;
4072
4073 if (bit == -1)
4074 {
4075 gdb_assert (floatformats != NULL);
4076 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4077 bit = floatformats[0]->totalsize;
4078 }
4079 gdb_assert (bit >= 0);
4080
4081 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4082 TYPE_FLOATFORMAT (t) = floatformats;
4083 return t;
4084 }
4085
4086 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4087 NAME is the type name. TARGET_TYPE is the component float type. */
4088
4089 struct type *
4090 arch_complex_type (struct gdbarch *gdbarch,
4091 char *name, struct type *target_type)
4092 {
4093 struct type *t;
4094
4095 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4096 2 * TYPE_LENGTH (target_type), name);
4097 TYPE_TARGET_TYPE (t) = target_type;
4098 return t;
4099 }
4100
4101 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4102 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4103
4104 struct type *
4105 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4106 {
4107 int nfields = length * TARGET_CHAR_BIT;
4108 struct type *type;
4109
4110 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4111 TYPE_UNSIGNED (type) = 1;
4112 TYPE_NFIELDS (type) = nfields;
4113 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4114
4115 return type;
4116 }
4117
4118 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4119 position BITPOS is called NAME. */
4120
4121 void
4122 append_flags_type_flag (struct type *type, int bitpos, char *name)
4123 {
4124 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4125 gdb_assert (bitpos < TYPE_NFIELDS (type));
4126 gdb_assert (bitpos >= 0);
4127
4128 if (name)
4129 {
4130 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4131 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4132 }
4133 else
4134 {
4135 /* Don't show this field to the user. */
4136 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4137 }
4138 }
4139
4140 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4141 specified by CODE) associated with GDBARCH. NAME is the type name. */
4142
4143 struct type *
4144 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4145 {
4146 struct type *t;
4147
4148 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4149 t = arch_type (gdbarch, code, 0, NULL);
4150 TYPE_TAG_NAME (t) = name;
4151 INIT_CPLUS_SPECIFIC (t);
4152 return t;
4153 }
4154
4155 /* Add new field with name NAME and type FIELD to composite type T.
4156 Do not set the field's position or adjust the type's length;
4157 the caller should do so. Return the new field. */
4158
4159 struct field *
4160 append_composite_type_field_raw (struct type *t, char *name,
4161 struct type *field)
4162 {
4163 struct field *f;
4164
4165 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4166 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4167 sizeof (struct field) * TYPE_NFIELDS (t));
4168 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4169 memset (f, 0, sizeof f[0]);
4170 FIELD_TYPE (f[0]) = field;
4171 FIELD_NAME (f[0]) = name;
4172 return f;
4173 }
4174
4175 /* Add new field with name NAME and type FIELD to composite type T.
4176 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4177
4178 void
4179 append_composite_type_field_aligned (struct type *t, char *name,
4180 struct type *field, int alignment)
4181 {
4182 struct field *f = append_composite_type_field_raw (t, name, field);
4183
4184 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4185 {
4186 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4187 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4188 }
4189 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4190 {
4191 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4192 if (TYPE_NFIELDS (t) > 1)
4193 {
4194 SET_FIELD_BITPOS (f[0],
4195 (FIELD_BITPOS (f[-1])
4196 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4197 * TARGET_CHAR_BIT)));
4198
4199 if (alignment)
4200 {
4201 int left;
4202
4203 alignment *= TARGET_CHAR_BIT;
4204 left = FIELD_BITPOS (f[0]) % alignment;
4205
4206 if (left)
4207 {
4208 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4209 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4210 }
4211 }
4212 }
4213 }
4214 }
4215
4216 /* Add new field with name NAME and type FIELD to composite type T. */
4217
4218 void
4219 append_composite_type_field (struct type *t, char *name,
4220 struct type *field)
4221 {
4222 append_composite_type_field_aligned (t, name, field, 0);
4223 }
4224
4225 static struct gdbarch_data *gdbtypes_data;
4226
4227 const struct builtin_type *
4228 builtin_type (struct gdbarch *gdbarch)
4229 {
4230 return gdbarch_data (gdbarch, gdbtypes_data);
4231 }
4232
4233 static void *
4234 gdbtypes_post_init (struct gdbarch *gdbarch)
4235 {
4236 struct builtin_type *builtin_type
4237 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4238
4239 /* Basic types. */
4240 builtin_type->builtin_void
4241 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4242 builtin_type->builtin_char
4243 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4244 !gdbarch_char_signed (gdbarch), "char");
4245 builtin_type->builtin_signed_char
4246 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4247 0, "signed char");
4248 builtin_type->builtin_unsigned_char
4249 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4250 1, "unsigned char");
4251 builtin_type->builtin_short
4252 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4253 0, "short");
4254 builtin_type->builtin_unsigned_short
4255 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4256 1, "unsigned short");
4257 builtin_type->builtin_int
4258 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4259 0, "int");
4260 builtin_type->builtin_unsigned_int
4261 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4262 1, "unsigned int");
4263 builtin_type->builtin_long
4264 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4265 0, "long");
4266 builtin_type->builtin_unsigned_long
4267 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4268 1, "unsigned long");
4269 builtin_type->builtin_long_long
4270 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4271 0, "long long");
4272 builtin_type->builtin_unsigned_long_long
4273 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4274 1, "unsigned long long");
4275 builtin_type->builtin_float
4276 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4277 "float", gdbarch_float_format (gdbarch));
4278 builtin_type->builtin_double
4279 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4280 "double", gdbarch_double_format (gdbarch));
4281 builtin_type->builtin_long_double
4282 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4283 "long double", gdbarch_long_double_format (gdbarch));
4284 builtin_type->builtin_complex
4285 = arch_complex_type (gdbarch, "complex",
4286 builtin_type->builtin_float);
4287 builtin_type->builtin_double_complex
4288 = arch_complex_type (gdbarch, "double complex",
4289 builtin_type->builtin_double);
4290 builtin_type->builtin_string
4291 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4292 builtin_type->builtin_bool
4293 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4294
4295 /* The following three are about decimal floating point types, which
4296 are 32-bits, 64-bits and 128-bits respectively. */
4297 builtin_type->builtin_decfloat
4298 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4299 builtin_type->builtin_decdouble
4300 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4301 builtin_type->builtin_declong
4302 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4303
4304 /* "True" character types. */
4305 builtin_type->builtin_true_char
4306 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4307 builtin_type->builtin_true_unsigned_char
4308 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4309
4310 /* Fixed-size integer types. */
4311 builtin_type->builtin_int0
4312 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4313 builtin_type->builtin_int8
4314 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4315 builtin_type->builtin_uint8
4316 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4317 builtin_type->builtin_int16
4318 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4319 builtin_type->builtin_uint16
4320 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4321 builtin_type->builtin_int32
4322 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4323 builtin_type->builtin_uint32
4324 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4325 builtin_type->builtin_int64
4326 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4327 builtin_type->builtin_uint64
4328 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4329 builtin_type->builtin_int128
4330 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4331 builtin_type->builtin_uint128
4332 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4333 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4334 TYPE_INSTANCE_FLAG_NOTTEXT;
4335 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4336 TYPE_INSTANCE_FLAG_NOTTEXT;
4337
4338 /* Wide character types. */
4339 builtin_type->builtin_char16
4340 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4341 builtin_type->builtin_char32
4342 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4343
4344
4345 /* Default data/code pointer types. */
4346 builtin_type->builtin_data_ptr
4347 = lookup_pointer_type (builtin_type->builtin_void);
4348 builtin_type->builtin_func_ptr
4349 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4350 builtin_type->builtin_func_func
4351 = lookup_function_type (builtin_type->builtin_func_ptr);
4352
4353 /* This type represents a GDB internal function. */
4354 builtin_type->internal_fn
4355 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4356 "<internal function>");
4357
4358 return builtin_type;
4359 }
4360
4361 /* This set of objfile-based types is intended to be used by symbol
4362 readers as basic types. */
4363
4364 static const struct objfile_data *objfile_type_data;
4365
4366 const struct objfile_type *
4367 objfile_type (struct objfile *objfile)
4368 {
4369 struct gdbarch *gdbarch;
4370 struct objfile_type *objfile_type
4371 = objfile_data (objfile, objfile_type_data);
4372
4373 if (objfile_type)
4374 return objfile_type;
4375
4376 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4377 1, struct objfile_type);
4378
4379 /* Use the objfile architecture to determine basic type properties. */
4380 gdbarch = get_objfile_arch (objfile);
4381
4382 /* Basic types. */
4383 objfile_type->builtin_void
4384 = init_type (TYPE_CODE_VOID, 1,
4385 0,
4386 "void", objfile);
4387
4388 objfile_type->builtin_char
4389 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4390 (TYPE_FLAG_NOSIGN
4391 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4392 "char", objfile);
4393 objfile_type->builtin_signed_char
4394 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4395 0,
4396 "signed char", objfile);
4397 objfile_type->builtin_unsigned_char
4398 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4399 TYPE_FLAG_UNSIGNED,
4400 "unsigned char", objfile);
4401 objfile_type->builtin_short
4402 = init_type (TYPE_CODE_INT,
4403 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4404 0, "short", objfile);
4405 objfile_type->builtin_unsigned_short
4406 = init_type (TYPE_CODE_INT,
4407 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4408 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4409 objfile_type->builtin_int
4410 = init_type (TYPE_CODE_INT,
4411 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4412 0, "int", objfile);
4413 objfile_type->builtin_unsigned_int
4414 = init_type (TYPE_CODE_INT,
4415 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4416 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4417 objfile_type->builtin_long
4418 = init_type (TYPE_CODE_INT,
4419 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4420 0, "long", objfile);
4421 objfile_type->builtin_unsigned_long
4422 = init_type (TYPE_CODE_INT,
4423 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4424 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4425 objfile_type->builtin_long_long
4426 = init_type (TYPE_CODE_INT,
4427 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4428 0, "long long", objfile);
4429 objfile_type->builtin_unsigned_long_long
4430 = init_type (TYPE_CODE_INT,
4431 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4432 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4433
4434 objfile_type->builtin_float
4435 = init_type (TYPE_CODE_FLT,
4436 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4437 0, "float", objfile);
4438 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4439 = gdbarch_float_format (gdbarch);
4440 objfile_type->builtin_double
4441 = init_type (TYPE_CODE_FLT,
4442 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4443 0, "double", objfile);
4444 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4445 = gdbarch_double_format (gdbarch);
4446 objfile_type->builtin_long_double
4447 = init_type (TYPE_CODE_FLT,
4448 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4449 0, "long double", objfile);
4450 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4451 = gdbarch_long_double_format (gdbarch);
4452
4453 /* This type represents a type that was unrecognized in symbol read-in. */
4454 objfile_type->builtin_error
4455 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4456
4457 /* The following set of types is used for symbols with no
4458 debug information. */
4459 objfile_type->nodebug_text_symbol
4460 = init_type (TYPE_CODE_FUNC, 1, 0,
4461 "<text variable, no debug info>", objfile);
4462 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4463 = objfile_type->builtin_int;
4464 objfile_type->nodebug_text_gnu_ifunc_symbol
4465 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4466 "<text gnu-indirect-function variable, no debug info>",
4467 objfile);
4468 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4469 = objfile_type->nodebug_text_symbol;
4470 objfile_type->nodebug_got_plt_symbol
4471 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4472 "<text from jump slot in .got.plt, no debug info>",
4473 objfile);
4474 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4475 = objfile_type->nodebug_text_symbol;
4476 objfile_type->nodebug_data_symbol
4477 = init_type (TYPE_CODE_INT,
4478 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4479 "<data variable, no debug info>", objfile);
4480 objfile_type->nodebug_unknown_symbol
4481 = init_type (TYPE_CODE_INT, 1, 0,
4482 "<variable (not text or data), no debug info>", objfile);
4483 objfile_type->nodebug_tls_symbol
4484 = init_type (TYPE_CODE_INT,
4485 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4486 "<thread local variable, no debug info>", objfile);
4487
4488 /* NOTE: on some targets, addresses and pointers are not necessarily
4489 the same.
4490
4491 The upshot is:
4492 - gdb's `struct type' always describes the target's
4493 representation.
4494 - gdb's `struct value' objects should always hold values in
4495 target form.
4496 - gdb's CORE_ADDR values are addresses in the unified virtual
4497 address space that the assembler and linker work with. Thus,
4498 since target_read_memory takes a CORE_ADDR as an argument, it
4499 can access any memory on the target, even if the processor has
4500 separate code and data address spaces.
4501
4502 In this context, objfile_type->builtin_core_addr is a bit odd:
4503 it's a target type for a value the target will never see. It's
4504 only used to hold the values of (typeless) linker symbols, which
4505 are indeed in the unified virtual address space. */
4506
4507 objfile_type->builtin_core_addr
4508 = init_type (TYPE_CODE_INT,
4509 gdbarch_addr_bit (gdbarch) / 8,
4510 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4511
4512 set_objfile_data (objfile, objfile_type_data, objfile_type);
4513 return objfile_type;
4514 }
4515
4516 extern initialize_file_ftype _initialize_gdbtypes;
4517
4518 void
4519 _initialize_gdbtypes (void)
4520 {
4521 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4522 objfile_type_data = register_objfile_data ();
4523
4524 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4525 _("Set debugging of C++ overloading."),
4526 _("Show debugging of C++ overloading."),
4527 _("When enabled, ranking of the "
4528 "functions is displayed."),
4529 NULL,
4530 show_overload_debug,
4531 &setdebuglist, &showdebuglist);
4532
4533 /* Add user knob for controlling resolution of opaque types. */
4534 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4535 &opaque_type_resolution,
4536 _("Set resolution of opaque struct/class/union"
4537 " types (if set before loading symbols)."),
4538 _("Show resolution of opaque struct/class/union"
4539 " types (if set before loading symbols)."),
4540 NULL, NULL,
4541 show_opaque_type_resolution,
4542 &setlist, &showlist);
4543
4544 /* Add an option to permit non-strict type checking. */
4545 add_setshow_boolean_cmd ("type", class_support,
4546 &strict_type_checking,
4547 _("Set strict type checking."),
4548 _("Show strict type checking."),
4549 NULL, NULL,
4550 show_strict_type_checking,
4551 &setchecklist, &showchecklist);
4552 }
This page took 0.116072 seconds and 5 git commands to generate.