gdb/
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "bfd.h"
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "target.h"
34 #include "value.h"
35 #include "demangle.h"
36 #include "complaints.h"
37 #include "gdbcmd.h"
38 #include "wrapper.h"
39 #include "cp-abi.h"
40 #include "gdb_assert.h"
41 #include "hashtab.h"
42
43
44 /* Floatformat pairs. */
45 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
46 &floatformat_ieee_single_big,
47 &floatformat_ieee_single_little
48 };
49 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
50 &floatformat_ieee_double_big,
51 &floatformat_ieee_double_little
52 };
53 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
54 &floatformat_ieee_double_big,
55 &floatformat_ieee_double_littlebyte_bigword
56 };
57 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
58 &floatformat_i387_ext,
59 &floatformat_i387_ext
60 };
61 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
62 &floatformat_m68881_ext,
63 &floatformat_m68881_ext
64 };
65 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
66 &floatformat_arm_ext_big,
67 &floatformat_arm_ext_littlebyte_bigword
68 };
69 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ia64_spill_big,
71 &floatformat_ia64_spill_little
72 };
73 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ia64_quad_big,
75 &floatformat_ia64_quad_little
76 };
77 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_vax_f,
79 &floatformat_vax_f
80 };
81 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_vax_d,
83 &floatformat_vax_d
84 };
85 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_ibm_long_double,
87 &floatformat_ibm_long_double
88 };
89
90
91 int opaque_type_resolution = 1;
92 static void
93 show_opaque_type_resolution (struct ui_file *file, int from_tty,
94 struct cmd_list_element *c,
95 const char *value)
96 {
97 fprintf_filtered (file, _("\
98 Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
99 value);
100 }
101
102 int overload_debug = 0;
103 static void
104 show_overload_debug (struct ui_file *file, int from_tty,
105 struct cmd_list_element *c, const char *value)
106 {
107 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
108 value);
109 }
110
111 struct extra
112 {
113 char str[128];
114 int len;
115 }; /* Maximum extension is 128! FIXME */
116
117 static void print_bit_vector (B_TYPE *, int);
118 static void print_arg_types (struct field *, int, int);
119 static void dump_fn_fieldlists (struct type *, int);
120 static void print_cplus_stuff (struct type *, int);
121
122
123 /* Allocate a new OBJFILE-associated type structure and fill it
124 with some defaults. Space for the type structure is allocated
125 on the objfile's objfile_obstack. */
126
127 struct type *
128 alloc_type (struct objfile *objfile)
129 {
130 struct type *type;
131
132 gdb_assert (objfile != NULL);
133
134 /* Alloc the structure and start off with all fields zeroed. */
135 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
136 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
137 struct main_type);
138 OBJSTAT (objfile, n_types++);
139
140 TYPE_OBJFILE_OWNED (type) = 1;
141 TYPE_OWNER (type).objfile = objfile;
142
143 /* Initialize the fields that might not be zero. */
144
145 TYPE_CODE (type) = TYPE_CODE_UNDEF;
146 TYPE_VPTR_FIELDNO (type) = -1;
147 TYPE_CHAIN (type) = type; /* Chain back to itself. */
148
149 return type;
150 }
151
152 /* Allocate a new GDBARCH-associated type structure and fill it
153 with some defaults. Space for the type structure is allocated
154 on the heap. */
155
156 struct type *
157 alloc_type_arch (struct gdbarch *gdbarch)
158 {
159 struct type *type;
160
161 gdb_assert (gdbarch != NULL);
162
163 /* Alloc the structure and start off with all fields zeroed. */
164
165 type = XZALLOC (struct type);
166 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
167
168 TYPE_OBJFILE_OWNED (type) = 0;
169 TYPE_OWNER (type).gdbarch = gdbarch;
170
171 /* Initialize the fields that might not be zero. */
172
173 TYPE_CODE (type) = TYPE_CODE_UNDEF;
174 TYPE_VPTR_FIELDNO (type) = -1;
175 TYPE_CHAIN (type) = type; /* Chain back to itself. */
176
177 return type;
178 }
179
180 /* If TYPE is objfile-associated, allocate a new type structure
181 associated with the same objfile. If TYPE is gdbarch-associated,
182 allocate a new type structure associated with the same gdbarch. */
183
184 struct type *
185 alloc_type_copy (const struct type *type)
186 {
187 if (TYPE_OBJFILE_OWNED (type))
188 return alloc_type (TYPE_OWNER (type).objfile);
189 else
190 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
191 }
192
193 /* If TYPE is gdbarch-associated, return that architecture.
194 If TYPE is objfile-associated, return that objfile's architecture. */
195
196 struct gdbarch *
197 get_type_arch (const struct type *type)
198 {
199 if (TYPE_OBJFILE_OWNED (type))
200 return get_objfile_arch (TYPE_OWNER (type).objfile);
201 else
202 return TYPE_OWNER (type).gdbarch;
203 }
204
205
206 /* Alloc a new type instance structure, fill it with some defaults,
207 and point it at OLDTYPE. Allocate the new type instance from the
208 same place as OLDTYPE. */
209
210 static struct type *
211 alloc_type_instance (struct type *oldtype)
212 {
213 struct type *type;
214
215 /* Allocate the structure. */
216
217 if (! TYPE_OBJFILE_OWNED (oldtype))
218 type = XZALLOC (struct type);
219 else
220 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
221 struct type);
222
223 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
224
225 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
226
227 return type;
228 }
229
230 /* Clear all remnants of the previous type at TYPE, in preparation for
231 replacing it with something else. Preserve owner information. */
232 static void
233 smash_type (struct type *type)
234 {
235 int objfile_owned = TYPE_OBJFILE_OWNED (type);
236 union type_owner owner = TYPE_OWNER (type);
237
238 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
239
240 /* Restore owner information. */
241 TYPE_OBJFILE_OWNED (type) = objfile_owned;
242 TYPE_OWNER (type) = owner;
243
244 /* For now, delete the rings. */
245 TYPE_CHAIN (type) = type;
246
247 /* For now, leave the pointer/reference types alone. */
248 }
249
250 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
251 to a pointer to memory where the pointer type should be stored.
252 If *TYPEPTR is zero, update it to point to the pointer type we return.
253 We allocate new memory if needed. */
254
255 struct type *
256 make_pointer_type (struct type *type, struct type **typeptr)
257 {
258 struct type *ntype; /* New type */
259 struct type *chain;
260
261 ntype = TYPE_POINTER_TYPE (type);
262
263 if (ntype)
264 {
265 if (typeptr == 0)
266 return ntype; /* Don't care about alloc,
267 and have new type. */
268 else if (*typeptr == 0)
269 {
270 *typeptr = ntype; /* Tracking alloc, and have new type. */
271 return ntype;
272 }
273 }
274
275 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
276 {
277 ntype = alloc_type_copy (type);
278 if (typeptr)
279 *typeptr = ntype;
280 }
281 else /* We have storage, but need to reset it. */
282 {
283 ntype = *typeptr;
284 chain = TYPE_CHAIN (ntype);
285 smash_type (ntype);
286 TYPE_CHAIN (ntype) = chain;
287 }
288
289 TYPE_TARGET_TYPE (ntype) = type;
290 TYPE_POINTER_TYPE (type) = ntype;
291
292 /* FIXME! Assume the machine has only one representation for
293 pointers! */
294
295 TYPE_LENGTH (ntype)
296 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
297 TYPE_CODE (ntype) = TYPE_CODE_PTR;
298
299 /* Mark pointers as unsigned. The target converts between pointers
300 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
301 gdbarch_address_to_pointer. */
302 TYPE_UNSIGNED (ntype) = 1;
303
304 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
305 TYPE_POINTER_TYPE (type) = ntype;
306
307 /* Update the length of all the other variants of this type. */
308 chain = TYPE_CHAIN (ntype);
309 while (chain != ntype)
310 {
311 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
312 chain = TYPE_CHAIN (chain);
313 }
314
315 return ntype;
316 }
317
318 /* Given a type TYPE, return a type of pointers to that type.
319 May need to construct such a type if this is the first use. */
320
321 struct type *
322 lookup_pointer_type (struct type *type)
323 {
324 return make_pointer_type (type, (struct type **) 0);
325 }
326
327 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
328 points to a pointer to memory where the reference type should be
329 stored. If *TYPEPTR is zero, update it to point to the reference
330 type we return. We allocate new memory if needed. */
331
332 struct type *
333 make_reference_type (struct type *type, struct type **typeptr)
334 {
335 struct type *ntype; /* New type */
336 struct type *chain;
337
338 ntype = TYPE_REFERENCE_TYPE (type);
339
340 if (ntype)
341 {
342 if (typeptr == 0)
343 return ntype; /* Don't care about alloc,
344 and have new type. */
345 else if (*typeptr == 0)
346 {
347 *typeptr = ntype; /* Tracking alloc, and have new type. */
348 return ntype;
349 }
350 }
351
352 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
353 {
354 ntype = alloc_type_copy (type);
355 if (typeptr)
356 *typeptr = ntype;
357 }
358 else /* We have storage, but need to reset it. */
359 {
360 ntype = *typeptr;
361 chain = TYPE_CHAIN (ntype);
362 smash_type (ntype);
363 TYPE_CHAIN (ntype) = chain;
364 }
365
366 TYPE_TARGET_TYPE (ntype) = type;
367 TYPE_REFERENCE_TYPE (type) = ntype;
368
369 /* FIXME! Assume the machine has only one representation for
370 references, and that it matches the (only) representation for
371 pointers! */
372
373 TYPE_LENGTH (ntype) =
374 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
375 TYPE_CODE (ntype) = TYPE_CODE_REF;
376
377 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
378 TYPE_REFERENCE_TYPE (type) = ntype;
379
380 /* Update the length of all the other variants of this type. */
381 chain = TYPE_CHAIN (ntype);
382 while (chain != ntype)
383 {
384 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
385 chain = TYPE_CHAIN (chain);
386 }
387
388 return ntype;
389 }
390
391 /* Same as above, but caller doesn't care about memory allocation
392 details. */
393
394 struct type *
395 lookup_reference_type (struct type *type)
396 {
397 return make_reference_type (type, (struct type **) 0);
398 }
399
400 /* Lookup a function type that returns type TYPE. TYPEPTR, if
401 nonzero, points to a pointer to memory where the function type
402 should be stored. If *TYPEPTR is zero, update it to point to the
403 function type we return. We allocate new memory if needed. */
404
405 struct type *
406 make_function_type (struct type *type, struct type **typeptr)
407 {
408 struct type *ntype; /* New type */
409
410 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
411 {
412 ntype = alloc_type_copy (type);
413 if (typeptr)
414 *typeptr = ntype;
415 }
416 else /* We have storage, but need to reset it. */
417 {
418 ntype = *typeptr;
419 smash_type (ntype);
420 }
421
422 TYPE_TARGET_TYPE (ntype) = type;
423
424 TYPE_LENGTH (ntype) = 1;
425 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
426
427 return ntype;
428 }
429
430
431 /* Given a type TYPE, return a type of functions that return that type.
432 May need to construct such a type if this is the first use. */
433
434 struct type *
435 lookup_function_type (struct type *type)
436 {
437 return make_function_type (type, (struct type **) 0);
438 }
439
440 /* Identify address space identifier by name --
441 return the integer flag defined in gdbtypes.h. */
442 extern int
443 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
444 {
445 int type_flags;
446 /* Check for known address space delimiters. */
447 if (!strcmp (space_identifier, "code"))
448 return TYPE_INSTANCE_FLAG_CODE_SPACE;
449 else if (!strcmp (space_identifier, "data"))
450 return TYPE_INSTANCE_FLAG_DATA_SPACE;
451 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
452 && gdbarch_address_class_name_to_type_flags (gdbarch,
453 space_identifier,
454 &type_flags))
455 return type_flags;
456 else
457 error (_("Unknown address space specifier: \"%s\""), space_identifier);
458 }
459
460 /* Identify address space identifier by integer flag as defined in
461 gdbtypes.h -- return the string version of the adress space name. */
462
463 const char *
464 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
465 {
466 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
467 return "code";
468 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
469 return "data";
470 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
471 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
472 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
473 else
474 return NULL;
475 }
476
477 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
478
479 If STORAGE is non-NULL, create the new type instance there.
480 STORAGE must be in the same obstack as TYPE. */
481
482 static struct type *
483 make_qualified_type (struct type *type, int new_flags,
484 struct type *storage)
485 {
486 struct type *ntype;
487
488 ntype = type;
489 do
490 {
491 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
492 return ntype;
493 ntype = TYPE_CHAIN (ntype);
494 }
495 while (ntype != type);
496
497 /* Create a new type instance. */
498 if (storage == NULL)
499 ntype = alloc_type_instance (type);
500 else
501 {
502 /* If STORAGE was provided, it had better be in the same objfile
503 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
504 if one objfile is freed and the other kept, we'd have
505 dangling pointers. */
506 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
507
508 ntype = storage;
509 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
510 TYPE_CHAIN (ntype) = ntype;
511 }
512
513 /* Pointers or references to the original type are not relevant to
514 the new type. */
515 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
516 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
517
518 /* Chain the new qualified type to the old type. */
519 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
520 TYPE_CHAIN (type) = ntype;
521
522 /* Now set the instance flags and return the new type. */
523 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
524
525 /* Set length of new type to that of the original type. */
526 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
527
528 return ntype;
529 }
530
531 /* Make an address-space-delimited variant of a type -- a type that
532 is identical to the one supplied except that it has an address
533 space attribute attached to it (such as "code" or "data").
534
535 The space attributes "code" and "data" are for Harvard
536 architectures. The address space attributes are for architectures
537 which have alternately sized pointers or pointers with alternate
538 representations. */
539
540 struct type *
541 make_type_with_address_space (struct type *type, int space_flag)
542 {
543 struct type *ntype;
544 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
545 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
546 | TYPE_INSTANCE_FLAG_DATA_SPACE
547 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
548 | space_flag);
549
550 return make_qualified_type (type, new_flags, NULL);
551 }
552
553 /* Make a "c-v" variant of a type -- a type that is identical to the
554 one supplied except that it may have const or volatile attributes
555 CNST is a flag for setting the const attribute
556 VOLTL is a flag for setting the volatile attribute
557 TYPE is the base type whose variant we are creating.
558
559 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
560 storage to hold the new qualified type; *TYPEPTR and TYPE must be
561 in the same objfile. Otherwise, allocate fresh memory for the new
562 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
563 new type we construct. */
564 struct type *
565 make_cv_type (int cnst, int voltl,
566 struct type *type,
567 struct type **typeptr)
568 {
569 struct type *ntype; /* New type */
570 struct type *tmp_type = type; /* tmp type */
571 struct objfile *objfile;
572
573 int new_flags = (TYPE_INSTANCE_FLAGS (type)
574 & ~(TYPE_INSTANCE_FLAG_CONST | TYPE_INSTANCE_FLAG_VOLATILE));
575
576 if (cnst)
577 new_flags |= TYPE_INSTANCE_FLAG_CONST;
578
579 if (voltl)
580 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
581
582 if (typeptr && *typeptr != NULL)
583 {
584 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
585 a C-V variant chain that threads across objfiles: if one
586 objfile gets freed, then the other has a broken C-V chain.
587
588 This code used to try to copy over the main type from TYPE to
589 *TYPEPTR if they were in different objfiles, but that's
590 wrong, too: TYPE may have a field list or member function
591 lists, which refer to types of their own, etc. etc. The
592 whole shebang would need to be copied over recursively; you
593 can't have inter-objfile pointers. The only thing to do is
594 to leave stub types as stub types, and look them up afresh by
595 name each time you encounter them. */
596 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
597 }
598
599 ntype = make_qualified_type (type, new_flags,
600 typeptr ? *typeptr : NULL);
601
602 if (typeptr != NULL)
603 *typeptr = ntype;
604
605 return ntype;
606 }
607
608 /* Replace the contents of ntype with the type *type. This changes the
609 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
610 the changes are propogated to all types in the TYPE_CHAIN.
611
612 In order to build recursive types, it's inevitable that we'll need
613 to update types in place --- but this sort of indiscriminate
614 smashing is ugly, and needs to be replaced with something more
615 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
616 clear if more steps are needed. */
617 void
618 replace_type (struct type *ntype, struct type *type)
619 {
620 struct type *chain;
621
622 /* These two types had better be in the same objfile. Otherwise,
623 the assignment of one type's main type structure to the other
624 will produce a type with references to objects (names; field
625 lists; etc.) allocated on an objfile other than its own. */
626 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
627
628 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
629
630 /* The type length is not a part of the main type. Update it for
631 each type on the variant chain. */
632 chain = ntype;
633 do
634 {
635 /* Assert that this element of the chain has no address-class bits
636 set in its flags. Such type variants might have type lengths
637 which are supposed to be different from the non-address-class
638 variants. This assertion shouldn't ever be triggered because
639 symbol readers which do construct address-class variants don't
640 call replace_type(). */
641 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
642
643 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
644 chain = TYPE_CHAIN (chain);
645 }
646 while (ntype != chain);
647
648 /* Assert that the two types have equivalent instance qualifiers.
649 This should be true for at least all of our debug readers. */
650 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
651 }
652
653 /* Implement direct support for MEMBER_TYPE in GNU C++.
654 May need to construct such a type if this is the first use.
655 The TYPE is the type of the member. The DOMAIN is the type
656 of the aggregate that the member belongs to. */
657
658 struct type *
659 lookup_memberptr_type (struct type *type, struct type *domain)
660 {
661 struct type *mtype;
662
663 mtype = alloc_type_copy (type);
664 smash_to_memberptr_type (mtype, domain, type);
665 return mtype;
666 }
667
668 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
669
670 struct type *
671 lookup_methodptr_type (struct type *to_type)
672 {
673 struct type *mtype;
674
675 mtype = alloc_type_copy (to_type);
676 TYPE_TARGET_TYPE (mtype) = to_type;
677 TYPE_DOMAIN_TYPE (mtype) = TYPE_DOMAIN_TYPE (to_type);
678 TYPE_LENGTH (mtype) = cplus_method_ptr_size (to_type);
679 TYPE_CODE (mtype) = TYPE_CODE_METHODPTR;
680 return mtype;
681 }
682
683 /* Allocate a stub method whose return type is TYPE. This apparently
684 happens for speed of symbol reading, since parsing out the
685 arguments to the method is cpu-intensive, the way we are doing it.
686 So, we will fill in arguments later. This always returns a fresh
687 type. */
688
689 struct type *
690 allocate_stub_method (struct type *type)
691 {
692 struct type *mtype;
693
694 mtype = alloc_type_copy (type);
695 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
696 TYPE_LENGTH (mtype) = 1;
697 TYPE_STUB (mtype) = 1;
698 TYPE_TARGET_TYPE (mtype) = type;
699 /* _DOMAIN_TYPE (mtype) = unknown yet */
700 return mtype;
701 }
702
703 /* Create a range type using either a blank type supplied in
704 RESULT_TYPE, or creating a new type, inheriting the objfile from
705 INDEX_TYPE.
706
707 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
708 to HIGH_BOUND, inclusive.
709
710 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
711 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
712
713 struct type *
714 create_range_type (struct type *result_type, struct type *index_type,
715 LONGEST low_bound, LONGEST high_bound)
716 {
717 if (result_type == NULL)
718 result_type = alloc_type_copy (index_type);
719 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
720 TYPE_TARGET_TYPE (result_type) = index_type;
721 if (TYPE_STUB (index_type))
722 TYPE_TARGET_STUB (result_type) = 1;
723 else
724 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
725 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
726 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
727 TYPE_LOW_BOUND (result_type) = low_bound;
728 TYPE_HIGH_BOUND (result_type) = high_bound;
729
730 if (low_bound >= 0)
731 TYPE_UNSIGNED (result_type) = 1;
732
733 return result_type;
734 }
735
736 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
737 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
738 bounds will fit in LONGEST), or -1 otherwise. */
739
740 int
741 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
742 {
743 CHECK_TYPEDEF (type);
744 switch (TYPE_CODE (type))
745 {
746 case TYPE_CODE_RANGE:
747 *lowp = TYPE_LOW_BOUND (type);
748 *highp = TYPE_HIGH_BOUND (type);
749 return 1;
750 case TYPE_CODE_ENUM:
751 if (TYPE_NFIELDS (type) > 0)
752 {
753 /* The enums may not be sorted by value, so search all
754 entries */
755 int i;
756
757 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
758 for (i = 0; i < TYPE_NFIELDS (type); i++)
759 {
760 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
761 *lowp = TYPE_FIELD_BITPOS (type, i);
762 if (TYPE_FIELD_BITPOS (type, i) > *highp)
763 *highp = TYPE_FIELD_BITPOS (type, i);
764 }
765
766 /* Set unsigned indicator if warranted. */
767 if (*lowp >= 0)
768 {
769 TYPE_UNSIGNED (type) = 1;
770 }
771 }
772 else
773 {
774 *lowp = 0;
775 *highp = -1;
776 }
777 return 0;
778 case TYPE_CODE_BOOL:
779 *lowp = 0;
780 *highp = 1;
781 return 0;
782 case TYPE_CODE_INT:
783 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
784 return -1;
785 if (!TYPE_UNSIGNED (type))
786 {
787 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
788 *highp = -*lowp - 1;
789 return 0;
790 }
791 /* ... fall through for unsigned ints ... */
792 case TYPE_CODE_CHAR:
793 *lowp = 0;
794 /* This round-about calculation is to avoid shifting by
795 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
796 if TYPE_LENGTH (type) == sizeof (LONGEST). */
797 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
798 *highp = (*highp - 1) | *highp;
799 return 0;
800 default:
801 return -1;
802 }
803 }
804
805 /* Create an array type using either a blank type supplied in
806 RESULT_TYPE, or creating a new type, inheriting the objfile from
807 RANGE_TYPE.
808
809 Elements will be of type ELEMENT_TYPE, the indices will be of type
810 RANGE_TYPE.
811
812 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
813 sure it is TYPE_CODE_UNDEF before we bash it into an array
814 type? */
815
816 struct type *
817 create_array_type (struct type *result_type,
818 struct type *element_type,
819 struct type *range_type)
820 {
821 LONGEST low_bound, high_bound;
822
823 if (result_type == NULL)
824 result_type = alloc_type_copy (range_type);
825
826 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
827 TYPE_TARGET_TYPE (result_type) = element_type;
828 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
829 low_bound = high_bound = 0;
830 CHECK_TYPEDEF (element_type);
831 /* Be careful when setting the array length. Ada arrays can be
832 empty arrays with the high_bound being smaller than the low_bound.
833 In such cases, the array length should be zero. */
834 if (high_bound < low_bound)
835 TYPE_LENGTH (result_type) = 0;
836 else
837 TYPE_LENGTH (result_type) =
838 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
839 TYPE_NFIELDS (result_type) = 1;
840 TYPE_FIELDS (result_type) =
841 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
842 TYPE_INDEX_TYPE (result_type) = range_type;
843 TYPE_VPTR_FIELDNO (result_type) = -1;
844
845 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
846 if (TYPE_LENGTH (result_type) == 0)
847 TYPE_TARGET_STUB (result_type) = 1;
848
849 return result_type;
850 }
851
852 struct type *
853 lookup_array_range_type (struct type *element_type,
854 int low_bound, int high_bound)
855 {
856 struct gdbarch *gdbarch = get_type_arch (element_type);
857 struct type *index_type = builtin_type (gdbarch)->builtin_int;
858 struct type *range_type
859 = create_range_type (NULL, index_type, low_bound, high_bound);
860 return create_array_type (NULL, element_type, range_type);
861 }
862
863 /* Create a string type using either a blank type supplied in
864 RESULT_TYPE, or creating a new type. String types are similar
865 enough to array of char types that we can use create_array_type to
866 build the basic type and then bash it into a string type.
867
868 For fixed length strings, the range type contains 0 as the lower
869 bound and the length of the string minus one as the upper bound.
870
871 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
872 sure it is TYPE_CODE_UNDEF before we bash it into a string
873 type? */
874
875 struct type *
876 create_string_type (struct type *result_type,
877 struct type *string_char_type,
878 struct type *range_type)
879 {
880 result_type = create_array_type (result_type,
881 string_char_type,
882 range_type);
883 TYPE_CODE (result_type) = TYPE_CODE_STRING;
884 return result_type;
885 }
886
887 struct type *
888 lookup_string_range_type (struct type *string_char_type,
889 int low_bound, int high_bound)
890 {
891 struct type *result_type;
892 result_type = lookup_array_range_type (string_char_type,
893 low_bound, high_bound);
894 TYPE_CODE (result_type) = TYPE_CODE_STRING;
895 return result_type;
896 }
897
898 struct type *
899 create_set_type (struct type *result_type, struct type *domain_type)
900 {
901 if (result_type == NULL)
902 result_type = alloc_type_copy (domain_type);
903
904 TYPE_CODE (result_type) = TYPE_CODE_SET;
905 TYPE_NFIELDS (result_type) = 1;
906 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
907
908 if (!TYPE_STUB (domain_type))
909 {
910 LONGEST low_bound, high_bound, bit_length;
911 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
912 low_bound = high_bound = 0;
913 bit_length = high_bound - low_bound + 1;
914 TYPE_LENGTH (result_type)
915 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
916 if (low_bound >= 0)
917 TYPE_UNSIGNED (result_type) = 1;
918 }
919 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
920
921 return result_type;
922 }
923
924 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
925 and any array types nested inside it. */
926
927 void
928 make_vector_type (struct type *array_type)
929 {
930 struct type *inner_array, *elt_type;
931 int flags;
932
933 /* Find the innermost array type, in case the array is
934 multi-dimensional. */
935 inner_array = array_type;
936 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
937 inner_array = TYPE_TARGET_TYPE (inner_array);
938
939 elt_type = TYPE_TARGET_TYPE (inner_array);
940 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
941 {
942 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
943 elt_type = make_qualified_type (elt_type, flags, NULL);
944 TYPE_TARGET_TYPE (inner_array) = elt_type;
945 }
946
947 TYPE_VECTOR (array_type) = 1;
948 }
949
950 struct type *
951 init_vector_type (struct type *elt_type, int n)
952 {
953 struct type *array_type;
954 array_type = lookup_array_range_type (elt_type, 0, n - 1);
955 make_vector_type (array_type);
956 return array_type;
957 }
958
959 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
960 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
961 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
962 TYPE doesn't include the offset (that's the value of the MEMBER
963 itself), but does include the structure type into which it points
964 (for some reason).
965
966 When "smashing" the type, we preserve the objfile that the old type
967 pointed to, since we aren't changing where the type is actually
968 allocated. */
969
970 void
971 smash_to_memberptr_type (struct type *type, struct type *domain,
972 struct type *to_type)
973 {
974 smash_type (type);
975 TYPE_TARGET_TYPE (type) = to_type;
976 TYPE_DOMAIN_TYPE (type) = domain;
977 /* Assume that a data member pointer is the same size as a normal
978 pointer. */
979 TYPE_LENGTH (type)
980 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
981 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
982 }
983
984 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
985 METHOD just means `function that gets an extra "this" argument'.
986
987 When "smashing" the type, we preserve the objfile that the old type
988 pointed to, since we aren't changing where the type is actually
989 allocated. */
990
991 void
992 smash_to_method_type (struct type *type, struct type *domain,
993 struct type *to_type, struct field *args,
994 int nargs, int varargs)
995 {
996 smash_type (type);
997 TYPE_TARGET_TYPE (type) = to_type;
998 TYPE_DOMAIN_TYPE (type) = domain;
999 TYPE_FIELDS (type) = args;
1000 TYPE_NFIELDS (type) = nargs;
1001 if (varargs)
1002 TYPE_VARARGS (type) = 1;
1003 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1004 TYPE_CODE (type) = TYPE_CODE_METHOD;
1005 }
1006
1007 /* Return a typename for a struct/union/enum type without "struct ",
1008 "union ", or "enum ". If the type has a NULL name, return NULL. */
1009
1010 char *
1011 type_name_no_tag (const struct type *type)
1012 {
1013 if (TYPE_TAG_NAME (type) != NULL)
1014 return TYPE_TAG_NAME (type);
1015
1016 /* Is there code which expects this to return the name if there is
1017 no tag name? My guess is that this is mainly used for C++ in
1018 cases where the two will always be the same. */
1019 return TYPE_NAME (type);
1020 }
1021
1022 /* Lookup a typedef or primitive type named NAME, visible in lexical
1023 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1024 suitably defined. */
1025
1026 struct type *
1027 lookup_typename (const struct language_defn *language,
1028 struct gdbarch *gdbarch, char *name,
1029 struct block *block, int noerr)
1030 {
1031 struct symbol *sym;
1032 struct type *tmp;
1033
1034 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1035 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1036 {
1037 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
1038 if (tmp)
1039 {
1040 return tmp;
1041 }
1042 else if (!tmp && noerr)
1043 {
1044 return NULL;
1045 }
1046 else
1047 {
1048 error (_("No type named %s."), name);
1049 }
1050 }
1051 return (SYMBOL_TYPE (sym));
1052 }
1053
1054 struct type *
1055 lookup_unsigned_typename (const struct language_defn *language,
1056 struct gdbarch *gdbarch, char *name)
1057 {
1058 char *uns = alloca (strlen (name) + 10);
1059
1060 strcpy (uns, "unsigned ");
1061 strcpy (uns + 9, name);
1062 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1063 }
1064
1065 struct type *
1066 lookup_signed_typename (const struct language_defn *language,
1067 struct gdbarch *gdbarch, char *name)
1068 {
1069 struct type *t;
1070 char *uns = alloca (strlen (name) + 8);
1071
1072 strcpy (uns, "signed ");
1073 strcpy (uns + 7, name);
1074 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1075 /* If we don't find "signed FOO" just try again with plain "FOO". */
1076 if (t != NULL)
1077 return t;
1078 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1079 }
1080
1081 /* Lookup a structure type named "struct NAME",
1082 visible in lexical block BLOCK. */
1083
1084 struct type *
1085 lookup_struct (char *name, struct block *block)
1086 {
1087 struct symbol *sym;
1088
1089 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1090
1091 if (sym == NULL)
1092 {
1093 error (_("No struct type named %s."), name);
1094 }
1095 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1096 {
1097 error (_("This context has class, union or enum %s, not a struct."),
1098 name);
1099 }
1100 return (SYMBOL_TYPE (sym));
1101 }
1102
1103 /* Lookup a union type named "union NAME",
1104 visible in lexical block BLOCK. */
1105
1106 struct type *
1107 lookup_union (char *name, struct block *block)
1108 {
1109 struct symbol *sym;
1110 struct type *t;
1111
1112 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1113
1114 if (sym == NULL)
1115 error (_("No union type named %s."), name);
1116
1117 t = SYMBOL_TYPE (sym);
1118
1119 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1120 return t;
1121
1122 /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
1123 * a further "declared_type" field to discover it is really a union.
1124 */
1125 if (HAVE_CPLUS_STRUCT (t))
1126 if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
1127 return t;
1128
1129 /* If we get here, it's not a union. */
1130 error (_("This context has class, struct or enum %s, not a union."),
1131 name);
1132 }
1133
1134
1135 /* Lookup an enum type named "enum NAME",
1136 visible in lexical block BLOCK. */
1137
1138 struct type *
1139 lookup_enum (char *name, struct block *block)
1140 {
1141 struct symbol *sym;
1142
1143 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1144 if (sym == NULL)
1145 {
1146 error (_("No enum type named %s."), name);
1147 }
1148 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1149 {
1150 error (_("This context has class, struct or union %s, not an enum."),
1151 name);
1152 }
1153 return (SYMBOL_TYPE (sym));
1154 }
1155
1156 /* Lookup a template type named "template NAME<TYPE>",
1157 visible in lexical block BLOCK. */
1158
1159 struct type *
1160 lookup_template_type (char *name, struct type *type,
1161 struct block *block)
1162 {
1163 struct symbol *sym;
1164 char *nam = (char *)
1165 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1166 strcpy (nam, name);
1167 strcat (nam, "<");
1168 strcat (nam, TYPE_NAME (type));
1169 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1170
1171 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1172
1173 if (sym == NULL)
1174 {
1175 error (_("No template type named %s."), name);
1176 }
1177 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1178 {
1179 error (_("This context has class, union or enum %s, not a struct."),
1180 name);
1181 }
1182 return (SYMBOL_TYPE (sym));
1183 }
1184
1185 /* Given a type TYPE, lookup the type of the component of type named
1186 NAME.
1187
1188 TYPE can be either a struct or union, or a pointer or reference to
1189 a struct or union. If it is a pointer or reference, its target
1190 type is automatically used. Thus '.' and '->' are interchangable,
1191 as specified for the definitions of the expression element types
1192 STRUCTOP_STRUCT and STRUCTOP_PTR.
1193
1194 If NOERR is nonzero, return zero if NAME is not suitably defined.
1195 If NAME is the name of a baseclass type, return that type. */
1196
1197 struct type *
1198 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1199 {
1200 int i;
1201
1202 for (;;)
1203 {
1204 CHECK_TYPEDEF (type);
1205 if (TYPE_CODE (type) != TYPE_CODE_PTR
1206 && TYPE_CODE (type) != TYPE_CODE_REF)
1207 break;
1208 type = TYPE_TARGET_TYPE (type);
1209 }
1210
1211 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1212 && TYPE_CODE (type) != TYPE_CODE_UNION)
1213 {
1214 target_terminal_ours ();
1215 gdb_flush (gdb_stdout);
1216 fprintf_unfiltered (gdb_stderr, "Type ");
1217 type_print (type, "", gdb_stderr, -1);
1218 error (_(" is not a structure or union type."));
1219 }
1220
1221 #if 0
1222 /* FIXME: This change put in by Michael seems incorrect for the case
1223 where the structure tag name is the same as the member name.
1224 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1225 foo; } bell;" Disabled by fnf. */
1226 {
1227 char *typename;
1228
1229 typename = type_name_no_tag (type);
1230 if (typename != NULL && strcmp (typename, name) == 0)
1231 return type;
1232 }
1233 #endif
1234
1235 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1236 {
1237 char *t_field_name = TYPE_FIELD_NAME (type, i);
1238
1239 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1240 {
1241 return TYPE_FIELD_TYPE (type, i);
1242 }
1243 }
1244
1245 /* OK, it's not in this class. Recursively check the baseclasses. */
1246 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1247 {
1248 struct type *t;
1249
1250 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1251 if (t != NULL)
1252 {
1253 return t;
1254 }
1255 }
1256
1257 if (noerr)
1258 {
1259 return NULL;
1260 }
1261
1262 target_terminal_ours ();
1263 gdb_flush (gdb_stdout);
1264 fprintf_unfiltered (gdb_stderr, "Type ");
1265 type_print (type, "", gdb_stderr, -1);
1266 fprintf_unfiltered (gdb_stderr, " has no component named ");
1267 fputs_filtered (name, gdb_stderr);
1268 error (("."));
1269 return (struct type *) -1; /* For lint */
1270 }
1271
1272 /* Lookup the vptr basetype/fieldno values for TYPE.
1273 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1274 vptr_fieldno. Also, if found and basetype is from the same objfile,
1275 cache the results.
1276 If not found, return -1 and ignore BASETYPEP.
1277 Callers should be aware that in some cases (for example,
1278 the type or one of its baseclasses is a stub type and we are
1279 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1280 this function will not be able to find the
1281 virtual function table pointer, and vptr_fieldno will remain -1 and
1282 vptr_basetype will remain NULL or incomplete. */
1283
1284 int
1285 get_vptr_fieldno (struct type *type, struct type **basetypep)
1286 {
1287 CHECK_TYPEDEF (type);
1288
1289 if (TYPE_VPTR_FIELDNO (type) < 0)
1290 {
1291 int i;
1292
1293 /* We must start at zero in case the first (and only) baseclass
1294 is virtual (and hence we cannot share the table pointer). */
1295 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1296 {
1297 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1298 int fieldno;
1299 struct type *basetype;
1300
1301 fieldno = get_vptr_fieldno (baseclass, &basetype);
1302 if (fieldno >= 0)
1303 {
1304 /* If the type comes from a different objfile we can't cache
1305 it, it may have a different lifetime. PR 2384 */
1306 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1307 {
1308 TYPE_VPTR_FIELDNO (type) = fieldno;
1309 TYPE_VPTR_BASETYPE (type) = basetype;
1310 }
1311 if (basetypep)
1312 *basetypep = basetype;
1313 return fieldno;
1314 }
1315 }
1316
1317 /* Not found. */
1318 return -1;
1319 }
1320 else
1321 {
1322 if (basetypep)
1323 *basetypep = TYPE_VPTR_BASETYPE (type);
1324 return TYPE_VPTR_FIELDNO (type);
1325 }
1326 }
1327
1328 static void
1329 stub_noname_complaint (void)
1330 {
1331 complaint (&symfile_complaints, _("stub type has NULL name"));
1332 }
1333
1334 /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1335
1336 If this is a stubbed struct (i.e. declared as struct foo *), see if
1337 we can find a full definition in some other file. If so, copy this
1338 definition, so we can use it in future. There used to be a comment
1339 (but not any code) that if we don't find a full definition, we'd
1340 set a flag so we don't spend time in the future checking the same
1341 type. That would be a mistake, though--we might load in more
1342 symbols which contain a full definition for the type.
1343
1344 This used to be coded as a macro, but I don't think it is called
1345 often enough to merit such treatment.
1346
1347 Find the real type of TYPE. This function returns the real type,
1348 after removing all layers of typedefs and completing opaque or stub
1349 types. Completion changes the TYPE argument, but stripping of
1350 typedefs does not.
1351
1352 If TYPE is a TYPE_CODE_TYPEDEF, its length is (also) set to the length of
1353 the target type instead of zero. However, in the case of TYPE_CODE_TYPEDEF
1354 check_typedef can still return different type than the original TYPE
1355 pointer. */
1356
1357 struct type *
1358 check_typedef (struct type *type)
1359 {
1360 struct type *orig_type = type;
1361 int is_const, is_volatile;
1362
1363 gdb_assert (type);
1364
1365 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1366 {
1367 if (!TYPE_TARGET_TYPE (type))
1368 {
1369 char *name;
1370 struct symbol *sym;
1371
1372 /* It is dangerous to call lookup_symbol if we are currently
1373 reading a symtab. Infinite recursion is one danger. */
1374 if (currently_reading_symtab)
1375 return type;
1376
1377 name = type_name_no_tag (type);
1378 /* FIXME: shouldn't we separately check the TYPE_NAME and
1379 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1380 VAR_DOMAIN as appropriate? (this code was written before
1381 TYPE_NAME and TYPE_TAG_NAME were separate). */
1382 if (name == NULL)
1383 {
1384 stub_noname_complaint ();
1385 return type;
1386 }
1387 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1388 if (sym)
1389 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1390 else /* TYPE_CODE_UNDEF */
1391 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1392 }
1393 type = TYPE_TARGET_TYPE (type);
1394 }
1395
1396 is_const = TYPE_CONST (type);
1397 is_volatile = TYPE_VOLATILE (type);
1398
1399 /* If this is a struct/class/union with no fields, then check
1400 whether a full definition exists somewhere else. This is for
1401 systems where a type definition with no fields is issued for such
1402 types, instead of identifying them as stub types in the first
1403 place. */
1404
1405 if (TYPE_IS_OPAQUE (type)
1406 && opaque_type_resolution
1407 && !currently_reading_symtab)
1408 {
1409 char *name = type_name_no_tag (type);
1410 struct type *newtype;
1411 if (name == NULL)
1412 {
1413 stub_noname_complaint ();
1414 return type;
1415 }
1416 newtype = lookup_transparent_type (name);
1417
1418 if (newtype)
1419 {
1420 /* If the resolved type and the stub are in the same
1421 objfile, then replace the stub type with the real deal.
1422 But if they're in separate objfiles, leave the stub
1423 alone; we'll just look up the transparent type every time
1424 we call check_typedef. We can't create pointers between
1425 types allocated to different objfiles, since they may
1426 have different lifetimes. Trying to copy NEWTYPE over to
1427 TYPE's objfile is pointless, too, since you'll have to
1428 move over any other types NEWTYPE refers to, which could
1429 be an unbounded amount of stuff. */
1430 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1431 make_cv_type (is_const, is_volatile, newtype, &type);
1432 else
1433 type = newtype;
1434 }
1435 }
1436 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1437 types. */
1438 else if (TYPE_STUB (type) && !currently_reading_symtab)
1439 {
1440 char *name = type_name_no_tag (type);
1441 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1442 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1443 as appropriate? (this code was written before TYPE_NAME and
1444 TYPE_TAG_NAME were separate). */
1445 struct symbol *sym;
1446 if (name == NULL)
1447 {
1448 stub_noname_complaint ();
1449 return type;
1450 }
1451 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1452 if (sym)
1453 {
1454 /* Same as above for opaque types, we can replace the stub
1455 with the complete type only if they are int the same
1456 objfile. */
1457 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1458 make_cv_type (is_const, is_volatile,
1459 SYMBOL_TYPE (sym), &type);
1460 else
1461 type = SYMBOL_TYPE (sym);
1462 }
1463 }
1464
1465 if (TYPE_TARGET_STUB (type))
1466 {
1467 struct type *range_type;
1468 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1469
1470 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1471 {
1472 /* Empty. */
1473 }
1474 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1475 && TYPE_NFIELDS (type) == 1
1476 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1477 == TYPE_CODE_RANGE))
1478 {
1479 /* Now recompute the length of the array type, based on its
1480 number of elements and the target type's length.
1481 Watch out for Ada null Ada arrays where the high bound
1482 is smaller than the low bound. */
1483 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1484 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1485 ULONGEST len;
1486
1487 if (high_bound < low_bound)
1488 len = 0;
1489 else {
1490 /* For now, we conservatively take the array length to be 0
1491 if its length exceeds UINT_MAX. The code below assumes
1492 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1493 which is technically not guaranteed by C, but is usually true
1494 (because it would be true if x were unsigned with its
1495 high-order bit on). It uses the fact that
1496 high_bound-low_bound is always representable in
1497 ULONGEST and that if high_bound-low_bound+1 overflows,
1498 it overflows to 0. We must change these tests if we
1499 decide to increase the representation of TYPE_LENGTH
1500 from unsigned int to ULONGEST. */
1501 ULONGEST ulow = low_bound, uhigh = high_bound;
1502 ULONGEST tlen = TYPE_LENGTH (target_type);
1503
1504 len = tlen * (uhigh - ulow + 1);
1505 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1506 || len > UINT_MAX)
1507 len = 0;
1508 }
1509 TYPE_LENGTH (type) = len;
1510 TYPE_TARGET_STUB (type) = 0;
1511 }
1512 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1513 {
1514 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1515 TYPE_TARGET_STUB (type) = 0;
1516 }
1517 }
1518 /* Cache TYPE_LENGTH for future use. */
1519 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1520 return type;
1521 }
1522
1523 /* Parse a type expression in the string [P..P+LENGTH). If an error
1524 occurs, silently return a void type. */
1525
1526 static struct type *
1527 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1528 {
1529 struct ui_file *saved_gdb_stderr;
1530 struct type *type;
1531
1532 /* Suppress error messages. */
1533 saved_gdb_stderr = gdb_stderr;
1534 gdb_stderr = ui_file_new ();
1535
1536 /* Call parse_and_eval_type() without fear of longjmp()s. */
1537 if (!gdb_parse_and_eval_type (p, length, &type))
1538 type = builtin_type (gdbarch)->builtin_void;
1539
1540 /* Stop suppressing error messages. */
1541 ui_file_delete (gdb_stderr);
1542 gdb_stderr = saved_gdb_stderr;
1543
1544 return type;
1545 }
1546
1547 /* Ugly hack to convert method stubs into method types.
1548
1549 He ain't kiddin'. This demangles the name of the method into a
1550 string including argument types, parses out each argument type,
1551 generates a string casting a zero to that type, evaluates the
1552 string, and stuffs the resulting type into an argtype vector!!!
1553 Then it knows the type of the whole function (including argument
1554 types for overloading), which info used to be in the stab's but was
1555 removed to hack back the space required for them. */
1556
1557 static void
1558 check_stub_method (struct type *type, int method_id, int signature_id)
1559 {
1560 struct gdbarch *gdbarch = get_type_arch (type);
1561 struct fn_field *f;
1562 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1563 char *demangled_name = cplus_demangle (mangled_name,
1564 DMGL_PARAMS | DMGL_ANSI);
1565 char *argtypetext, *p;
1566 int depth = 0, argcount = 1;
1567 struct field *argtypes;
1568 struct type *mtype;
1569
1570 /* Make sure we got back a function string that we can use. */
1571 if (demangled_name)
1572 p = strchr (demangled_name, '(');
1573 else
1574 p = NULL;
1575
1576 if (demangled_name == NULL || p == NULL)
1577 error (_("Internal: Cannot demangle mangled name `%s'."),
1578 mangled_name);
1579
1580 /* Now, read in the parameters that define this type. */
1581 p += 1;
1582 argtypetext = p;
1583 while (*p)
1584 {
1585 if (*p == '(' || *p == '<')
1586 {
1587 depth += 1;
1588 }
1589 else if (*p == ')' || *p == '>')
1590 {
1591 depth -= 1;
1592 }
1593 else if (*p == ',' && depth == 0)
1594 {
1595 argcount += 1;
1596 }
1597
1598 p += 1;
1599 }
1600
1601 /* If we read one argument and it was ``void'', don't count it. */
1602 if (strncmp (argtypetext, "(void)", 6) == 0)
1603 argcount -= 1;
1604
1605 /* We need one extra slot, for the THIS pointer. */
1606
1607 argtypes = (struct field *)
1608 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1609 p = argtypetext;
1610
1611 /* Add THIS pointer for non-static methods. */
1612 f = TYPE_FN_FIELDLIST1 (type, method_id);
1613 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1614 argcount = 0;
1615 else
1616 {
1617 argtypes[0].type = lookup_pointer_type (type);
1618 argcount = 1;
1619 }
1620
1621 if (*p != ')') /* () means no args, skip while */
1622 {
1623 depth = 0;
1624 while (*p)
1625 {
1626 if (depth <= 0 && (*p == ',' || *p == ')'))
1627 {
1628 /* Avoid parsing of ellipsis, they will be handled below.
1629 Also avoid ``void'' as above. */
1630 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1631 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1632 {
1633 argtypes[argcount].type =
1634 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1635 argcount += 1;
1636 }
1637 argtypetext = p + 1;
1638 }
1639
1640 if (*p == '(' || *p == '<')
1641 {
1642 depth += 1;
1643 }
1644 else if (*p == ')' || *p == '>')
1645 {
1646 depth -= 1;
1647 }
1648
1649 p += 1;
1650 }
1651 }
1652
1653 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1654
1655 /* Now update the old "stub" type into a real type. */
1656 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1657 TYPE_DOMAIN_TYPE (mtype) = type;
1658 TYPE_FIELDS (mtype) = argtypes;
1659 TYPE_NFIELDS (mtype) = argcount;
1660 TYPE_STUB (mtype) = 0;
1661 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1662 if (p[-2] == '.')
1663 TYPE_VARARGS (mtype) = 1;
1664
1665 xfree (demangled_name);
1666 }
1667
1668 /* This is the external interface to check_stub_method, above. This
1669 function unstubs all of the signatures for TYPE's METHOD_ID method
1670 name. After calling this function TYPE_FN_FIELD_STUB will be
1671 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1672 correct.
1673
1674 This function unfortunately can not die until stabs do. */
1675
1676 void
1677 check_stub_method_group (struct type *type, int method_id)
1678 {
1679 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1680 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1681 int j, found_stub = 0;
1682
1683 for (j = 0; j < len; j++)
1684 if (TYPE_FN_FIELD_STUB (f, j))
1685 {
1686 found_stub = 1;
1687 check_stub_method (type, method_id, j);
1688 }
1689
1690 /* GNU v3 methods with incorrect names were corrected when we read
1691 in type information, because it was cheaper to do it then. The
1692 only GNU v2 methods with incorrect method names are operators and
1693 destructors; destructors were also corrected when we read in type
1694 information.
1695
1696 Therefore the only thing we need to handle here are v2 operator
1697 names. */
1698 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1699 {
1700 int ret;
1701 char dem_opname[256];
1702
1703 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1704 method_id),
1705 dem_opname, DMGL_ANSI);
1706 if (!ret)
1707 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1708 method_id),
1709 dem_opname, 0);
1710 if (ret)
1711 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1712 }
1713 }
1714
1715 const struct cplus_struct_type cplus_struct_default;
1716
1717 void
1718 allocate_cplus_struct_type (struct type *type)
1719 {
1720 if (!HAVE_CPLUS_STRUCT (type))
1721 {
1722 TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1723 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1724 *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1725 }
1726 }
1727
1728 /* Helper function to initialize the standard scalar types.
1729
1730 If NAME is non-NULL, then we make a copy of the string pointed
1731 to by name in the objfile_obstack for that objfile, and initialize
1732 the type name to that copy. There are places (mipsread.c in particular),
1733 where init_type is called with a NULL value for NAME). */
1734
1735 struct type *
1736 init_type (enum type_code code, int length, int flags,
1737 char *name, struct objfile *objfile)
1738 {
1739 struct type *type;
1740
1741 type = alloc_type (objfile);
1742 TYPE_CODE (type) = code;
1743 TYPE_LENGTH (type) = length;
1744
1745 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1746 if (flags & TYPE_FLAG_UNSIGNED)
1747 TYPE_UNSIGNED (type) = 1;
1748 if (flags & TYPE_FLAG_NOSIGN)
1749 TYPE_NOSIGN (type) = 1;
1750 if (flags & TYPE_FLAG_STUB)
1751 TYPE_STUB (type) = 1;
1752 if (flags & TYPE_FLAG_TARGET_STUB)
1753 TYPE_TARGET_STUB (type) = 1;
1754 if (flags & TYPE_FLAG_STATIC)
1755 TYPE_STATIC (type) = 1;
1756 if (flags & TYPE_FLAG_PROTOTYPED)
1757 TYPE_PROTOTYPED (type) = 1;
1758 if (flags & TYPE_FLAG_INCOMPLETE)
1759 TYPE_INCOMPLETE (type) = 1;
1760 if (flags & TYPE_FLAG_VARARGS)
1761 TYPE_VARARGS (type) = 1;
1762 if (flags & TYPE_FLAG_VECTOR)
1763 TYPE_VECTOR (type) = 1;
1764 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1765 TYPE_STUB_SUPPORTED (type) = 1;
1766 if (flags & TYPE_FLAG_NOTTEXT)
1767 TYPE_NOTTEXT (type) = 1;
1768 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1769 TYPE_FIXED_INSTANCE (type) = 1;
1770
1771 if (name)
1772 TYPE_NAME (type) = obsavestring (name, strlen (name),
1773 &objfile->objfile_obstack);
1774
1775 /* C++ fancies. */
1776
1777 if (name && strcmp (name, "char") == 0)
1778 TYPE_NOSIGN (type) = 1;
1779
1780 if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
1781 || code == TYPE_CODE_NAMESPACE)
1782 {
1783 INIT_CPLUS_SPECIFIC (type);
1784 }
1785 return type;
1786 }
1787
1788 int
1789 can_dereference (struct type *t)
1790 {
1791 /* FIXME: Should we return true for references as well as
1792 pointers? */
1793 CHECK_TYPEDEF (t);
1794 return
1795 (t != NULL
1796 && TYPE_CODE (t) == TYPE_CODE_PTR
1797 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1798 }
1799
1800 int
1801 is_integral_type (struct type *t)
1802 {
1803 CHECK_TYPEDEF (t);
1804 return
1805 ((t != NULL)
1806 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1807 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1808 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1809 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1810 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1811 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1812 }
1813
1814 /* Check whether BASE is an ancestor or base class or DCLASS
1815 Return 1 if so, and 0 if not.
1816 Note: callers may want to check for identity of the types before
1817 calling this function -- identical types are considered to satisfy
1818 the ancestor relationship even if they're identical. */
1819
1820 int
1821 is_ancestor (struct type *base, struct type *dclass)
1822 {
1823 int i;
1824
1825 CHECK_TYPEDEF (base);
1826 CHECK_TYPEDEF (dclass);
1827
1828 if (base == dclass)
1829 return 1;
1830 if (TYPE_NAME (base) && TYPE_NAME (dclass)
1831 && !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
1832 return 1;
1833
1834 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1835 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1836 return 1;
1837
1838 return 0;
1839 }
1840 \f
1841
1842
1843 /* Functions for overload resolution begin here */
1844
1845 /* Compare two badness vectors A and B and return the result.
1846 0 => A and B are identical
1847 1 => A and B are incomparable
1848 2 => A is better than B
1849 3 => A is worse than B */
1850
1851 int
1852 compare_badness (struct badness_vector *a, struct badness_vector *b)
1853 {
1854 int i;
1855 int tmp;
1856 short found_pos = 0; /* any positives in c? */
1857 short found_neg = 0; /* any negatives in c? */
1858
1859 /* differing lengths => incomparable */
1860 if (a->length != b->length)
1861 return 1;
1862
1863 /* Subtract b from a */
1864 for (i = 0; i < a->length; i++)
1865 {
1866 tmp = a->rank[i] - b->rank[i];
1867 if (tmp > 0)
1868 found_pos = 1;
1869 else if (tmp < 0)
1870 found_neg = 1;
1871 }
1872
1873 if (found_pos)
1874 {
1875 if (found_neg)
1876 return 1; /* incomparable */
1877 else
1878 return 3; /* A > B */
1879 }
1880 else
1881 /* no positives */
1882 {
1883 if (found_neg)
1884 return 2; /* A < B */
1885 else
1886 return 0; /* A == B */
1887 }
1888 }
1889
1890 /* Rank a function by comparing its parameter types (PARMS, length
1891 NPARMS), to the types of an argument list (ARGS, length NARGS).
1892 Return a pointer to a badness vector. This has NARGS + 1
1893 entries. */
1894
1895 struct badness_vector *
1896 rank_function (struct type **parms, int nparms,
1897 struct type **args, int nargs)
1898 {
1899 int i;
1900 struct badness_vector *bv;
1901 int min_len = nparms < nargs ? nparms : nargs;
1902
1903 bv = xmalloc (sizeof (struct badness_vector));
1904 bv->length = nargs + 1; /* add 1 for the length-match rank */
1905 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
1906
1907 /* First compare the lengths of the supplied lists.
1908 If there is a mismatch, set it to a high value. */
1909
1910 /* pai/1997-06-03 FIXME: when we have debug info about default
1911 arguments and ellipsis parameter lists, we should consider those
1912 and rank the length-match more finely. */
1913
1914 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
1915
1916 /* Now rank all the parameters of the candidate function */
1917 for (i = 1; i <= min_len; i++)
1918 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
1919
1920 /* If more arguments than parameters, add dummy entries */
1921 for (i = min_len + 1; i <= nargs; i++)
1922 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
1923
1924 return bv;
1925 }
1926
1927 /* Compare the names of two integer types, assuming that any sign
1928 qualifiers have been checked already. We do it this way because
1929 there may be an "int" in the name of one of the types. */
1930
1931 static int
1932 integer_types_same_name_p (const char *first, const char *second)
1933 {
1934 int first_p, second_p;
1935
1936 /* If both are shorts, return 1; if neither is a short, keep
1937 checking. */
1938 first_p = (strstr (first, "short") != NULL);
1939 second_p = (strstr (second, "short") != NULL);
1940 if (first_p && second_p)
1941 return 1;
1942 if (first_p || second_p)
1943 return 0;
1944
1945 /* Likewise for long. */
1946 first_p = (strstr (first, "long") != NULL);
1947 second_p = (strstr (second, "long") != NULL);
1948 if (first_p && second_p)
1949 return 1;
1950 if (first_p || second_p)
1951 return 0;
1952
1953 /* Likewise for char. */
1954 first_p = (strstr (first, "char") != NULL);
1955 second_p = (strstr (second, "char") != NULL);
1956 if (first_p && second_p)
1957 return 1;
1958 if (first_p || second_p)
1959 return 0;
1960
1961 /* They must both be ints. */
1962 return 1;
1963 }
1964
1965 /* Compare one type (PARM) for compatibility with another (ARG).
1966 * PARM is intended to be the parameter type of a function; and
1967 * ARG is the supplied argument's type. This function tests if
1968 * the latter can be converted to the former.
1969 *
1970 * Return 0 if they are identical types;
1971 * Otherwise, return an integer which corresponds to how compatible
1972 * PARM is to ARG. The higher the return value, the worse the match.
1973 * Generally the "bad" conversions are all uniformly assigned a 100. */
1974
1975 int
1976 rank_one_type (struct type *parm, struct type *arg)
1977 {
1978 /* Identical type pointers. */
1979 /* However, this still doesn't catch all cases of same type for arg
1980 and param. The reason is that builtin types are different from
1981 the same ones constructed from the object. */
1982 if (parm == arg)
1983 return 0;
1984
1985 /* Resolve typedefs */
1986 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
1987 parm = check_typedef (parm);
1988 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
1989 arg = check_typedef (arg);
1990
1991 /*
1992 Well, damnit, if the names are exactly the same, I'll say they
1993 are exactly the same. This happens when we generate method
1994 stubs. The types won't point to the same address, but they
1995 really are the same.
1996 */
1997
1998 if (TYPE_NAME (parm) && TYPE_NAME (arg)
1999 && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
2000 return 0;
2001
2002 /* Check if identical after resolving typedefs. */
2003 if (parm == arg)
2004 return 0;
2005
2006 /* See through references, since we can almost make non-references
2007 references. */
2008 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2009 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
2010 + REFERENCE_CONVERSION_BADNESS);
2011 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2012 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
2013 + REFERENCE_CONVERSION_BADNESS);
2014 if (overload_debug)
2015 /* Debugging only. */
2016 fprintf_filtered (gdb_stderr,
2017 "------ Arg is %s [%d], parm is %s [%d]\n",
2018 TYPE_NAME (arg), TYPE_CODE (arg),
2019 TYPE_NAME (parm), TYPE_CODE (parm));
2020
2021 /* x -> y means arg of type x being supplied for parameter of type y */
2022
2023 switch (TYPE_CODE (parm))
2024 {
2025 case TYPE_CODE_PTR:
2026 switch (TYPE_CODE (arg))
2027 {
2028 case TYPE_CODE_PTR:
2029 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID
2030 && TYPE_CODE (TYPE_TARGET_TYPE (arg)) != TYPE_CODE_VOID)
2031 return VOID_PTR_CONVERSION_BADNESS;
2032 else
2033 return rank_one_type (TYPE_TARGET_TYPE (parm),
2034 TYPE_TARGET_TYPE (arg));
2035 case TYPE_CODE_ARRAY:
2036 return rank_one_type (TYPE_TARGET_TYPE (parm),
2037 TYPE_TARGET_TYPE (arg));
2038 case TYPE_CODE_FUNC:
2039 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2040 case TYPE_CODE_INT:
2041 case TYPE_CODE_ENUM:
2042 case TYPE_CODE_FLAGS:
2043 case TYPE_CODE_CHAR:
2044 case TYPE_CODE_RANGE:
2045 case TYPE_CODE_BOOL:
2046 return POINTER_CONVERSION_BADNESS;
2047 default:
2048 return INCOMPATIBLE_TYPE_BADNESS;
2049 }
2050 case TYPE_CODE_ARRAY:
2051 switch (TYPE_CODE (arg))
2052 {
2053 case TYPE_CODE_PTR:
2054 case TYPE_CODE_ARRAY:
2055 return rank_one_type (TYPE_TARGET_TYPE (parm),
2056 TYPE_TARGET_TYPE (arg));
2057 default:
2058 return INCOMPATIBLE_TYPE_BADNESS;
2059 }
2060 case TYPE_CODE_FUNC:
2061 switch (TYPE_CODE (arg))
2062 {
2063 case TYPE_CODE_PTR: /* funcptr -> func */
2064 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2065 default:
2066 return INCOMPATIBLE_TYPE_BADNESS;
2067 }
2068 case TYPE_CODE_INT:
2069 switch (TYPE_CODE (arg))
2070 {
2071 case TYPE_CODE_INT:
2072 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2073 {
2074 /* Deal with signed, unsigned, and plain chars and
2075 signed and unsigned ints. */
2076 if (TYPE_NOSIGN (parm))
2077 {
2078 /* This case only for character types */
2079 if (TYPE_NOSIGN (arg))
2080 return 0; /* plain char -> plain char */
2081 else /* signed/unsigned char -> plain char */
2082 return INTEGER_CONVERSION_BADNESS;
2083 }
2084 else if (TYPE_UNSIGNED (parm))
2085 {
2086 if (TYPE_UNSIGNED (arg))
2087 {
2088 /* unsigned int -> unsigned int, or
2089 unsigned long -> unsigned long */
2090 if (integer_types_same_name_p (TYPE_NAME (parm),
2091 TYPE_NAME (arg)))
2092 return 0;
2093 else if (integer_types_same_name_p (TYPE_NAME (arg),
2094 "int")
2095 && integer_types_same_name_p (TYPE_NAME (parm),
2096 "long"))
2097 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2098 else
2099 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
2100 }
2101 else
2102 {
2103 if (integer_types_same_name_p (TYPE_NAME (arg),
2104 "long")
2105 && integer_types_same_name_p (TYPE_NAME (parm),
2106 "int"))
2107 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
2108 else
2109 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2110 }
2111 }
2112 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2113 {
2114 if (integer_types_same_name_p (TYPE_NAME (parm),
2115 TYPE_NAME (arg)))
2116 return 0;
2117 else if (integer_types_same_name_p (TYPE_NAME (arg),
2118 "int")
2119 && integer_types_same_name_p (TYPE_NAME (parm),
2120 "long"))
2121 return INTEGER_PROMOTION_BADNESS;
2122 else
2123 return INTEGER_CONVERSION_BADNESS;
2124 }
2125 else
2126 return INTEGER_CONVERSION_BADNESS;
2127 }
2128 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2129 return INTEGER_PROMOTION_BADNESS;
2130 else
2131 return INTEGER_CONVERSION_BADNESS;
2132 case TYPE_CODE_ENUM:
2133 case TYPE_CODE_FLAGS:
2134 case TYPE_CODE_CHAR:
2135 case TYPE_CODE_RANGE:
2136 case TYPE_CODE_BOOL:
2137 return INTEGER_PROMOTION_BADNESS;
2138 case TYPE_CODE_FLT:
2139 return INT_FLOAT_CONVERSION_BADNESS;
2140 case TYPE_CODE_PTR:
2141 return NS_POINTER_CONVERSION_BADNESS;
2142 default:
2143 return INCOMPATIBLE_TYPE_BADNESS;
2144 }
2145 break;
2146 case TYPE_CODE_ENUM:
2147 switch (TYPE_CODE (arg))
2148 {
2149 case TYPE_CODE_INT:
2150 case TYPE_CODE_CHAR:
2151 case TYPE_CODE_RANGE:
2152 case TYPE_CODE_BOOL:
2153 case TYPE_CODE_ENUM:
2154 return INTEGER_CONVERSION_BADNESS;
2155 case TYPE_CODE_FLT:
2156 return INT_FLOAT_CONVERSION_BADNESS;
2157 default:
2158 return INCOMPATIBLE_TYPE_BADNESS;
2159 }
2160 break;
2161 case TYPE_CODE_CHAR:
2162 switch (TYPE_CODE (arg))
2163 {
2164 case TYPE_CODE_RANGE:
2165 case TYPE_CODE_BOOL:
2166 case TYPE_CODE_ENUM:
2167 return INTEGER_CONVERSION_BADNESS;
2168 case TYPE_CODE_FLT:
2169 return INT_FLOAT_CONVERSION_BADNESS;
2170 case TYPE_CODE_INT:
2171 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2172 return INTEGER_CONVERSION_BADNESS;
2173 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2174 return INTEGER_PROMOTION_BADNESS;
2175 /* >>> !! else fall through !! <<< */
2176 case TYPE_CODE_CHAR:
2177 /* Deal with signed, unsigned, and plain chars for C++ and
2178 with int cases falling through from previous case. */
2179 if (TYPE_NOSIGN (parm))
2180 {
2181 if (TYPE_NOSIGN (arg))
2182 return 0;
2183 else
2184 return INTEGER_CONVERSION_BADNESS;
2185 }
2186 else if (TYPE_UNSIGNED (parm))
2187 {
2188 if (TYPE_UNSIGNED (arg))
2189 return 0;
2190 else
2191 return INTEGER_PROMOTION_BADNESS;
2192 }
2193 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2194 return 0;
2195 else
2196 return INTEGER_CONVERSION_BADNESS;
2197 default:
2198 return INCOMPATIBLE_TYPE_BADNESS;
2199 }
2200 break;
2201 case TYPE_CODE_RANGE:
2202 switch (TYPE_CODE (arg))
2203 {
2204 case TYPE_CODE_INT:
2205 case TYPE_CODE_CHAR:
2206 case TYPE_CODE_RANGE:
2207 case TYPE_CODE_BOOL:
2208 case TYPE_CODE_ENUM:
2209 return INTEGER_CONVERSION_BADNESS;
2210 case TYPE_CODE_FLT:
2211 return INT_FLOAT_CONVERSION_BADNESS;
2212 default:
2213 return INCOMPATIBLE_TYPE_BADNESS;
2214 }
2215 break;
2216 case TYPE_CODE_BOOL:
2217 switch (TYPE_CODE (arg))
2218 {
2219 case TYPE_CODE_INT:
2220 case TYPE_CODE_CHAR:
2221 case TYPE_CODE_RANGE:
2222 case TYPE_CODE_ENUM:
2223 case TYPE_CODE_FLT:
2224 case TYPE_CODE_PTR:
2225 return BOOLEAN_CONVERSION_BADNESS;
2226 case TYPE_CODE_BOOL:
2227 return 0;
2228 default:
2229 return INCOMPATIBLE_TYPE_BADNESS;
2230 }
2231 break;
2232 case TYPE_CODE_FLT:
2233 switch (TYPE_CODE (arg))
2234 {
2235 case TYPE_CODE_FLT:
2236 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2237 return FLOAT_PROMOTION_BADNESS;
2238 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2239 return 0;
2240 else
2241 return FLOAT_CONVERSION_BADNESS;
2242 case TYPE_CODE_INT:
2243 case TYPE_CODE_BOOL:
2244 case TYPE_CODE_ENUM:
2245 case TYPE_CODE_RANGE:
2246 case TYPE_CODE_CHAR:
2247 return INT_FLOAT_CONVERSION_BADNESS;
2248 default:
2249 return INCOMPATIBLE_TYPE_BADNESS;
2250 }
2251 break;
2252 case TYPE_CODE_COMPLEX:
2253 switch (TYPE_CODE (arg))
2254 { /* Strictly not needed for C++, but... */
2255 case TYPE_CODE_FLT:
2256 return FLOAT_PROMOTION_BADNESS;
2257 case TYPE_CODE_COMPLEX:
2258 return 0;
2259 default:
2260 return INCOMPATIBLE_TYPE_BADNESS;
2261 }
2262 break;
2263 case TYPE_CODE_STRUCT:
2264 /* currently same as TYPE_CODE_CLASS */
2265 switch (TYPE_CODE (arg))
2266 {
2267 case TYPE_CODE_STRUCT:
2268 /* Check for derivation */
2269 if (is_ancestor (parm, arg))
2270 return BASE_CONVERSION_BADNESS;
2271 /* else fall through */
2272 default:
2273 return INCOMPATIBLE_TYPE_BADNESS;
2274 }
2275 break;
2276 case TYPE_CODE_UNION:
2277 switch (TYPE_CODE (arg))
2278 {
2279 case TYPE_CODE_UNION:
2280 default:
2281 return INCOMPATIBLE_TYPE_BADNESS;
2282 }
2283 break;
2284 case TYPE_CODE_MEMBERPTR:
2285 switch (TYPE_CODE (arg))
2286 {
2287 default:
2288 return INCOMPATIBLE_TYPE_BADNESS;
2289 }
2290 break;
2291 case TYPE_CODE_METHOD:
2292 switch (TYPE_CODE (arg))
2293 {
2294
2295 default:
2296 return INCOMPATIBLE_TYPE_BADNESS;
2297 }
2298 break;
2299 case TYPE_CODE_REF:
2300 switch (TYPE_CODE (arg))
2301 {
2302
2303 default:
2304 return INCOMPATIBLE_TYPE_BADNESS;
2305 }
2306
2307 break;
2308 case TYPE_CODE_SET:
2309 switch (TYPE_CODE (arg))
2310 {
2311 /* Not in C++ */
2312 case TYPE_CODE_SET:
2313 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2314 TYPE_FIELD_TYPE (arg, 0));
2315 default:
2316 return INCOMPATIBLE_TYPE_BADNESS;
2317 }
2318 break;
2319 case TYPE_CODE_VOID:
2320 default:
2321 return INCOMPATIBLE_TYPE_BADNESS;
2322 } /* switch (TYPE_CODE (arg)) */
2323 }
2324
2325
2326 /* End of functions for overload resolution */
2327
2328 static void
2329 print_bit_vector (B_TYPE *bits, int nbits)
2330 {
2331 int bitno;
2332
2333 for (bitno = 0; bitno < nbits; bitno++)
2334 {
2335 if ((bitno % 8) == 0)
2336 {
2337 puts_filtered (" ");
2338 }
2339 if (B_TST (bits, bitno))
2340 printf_filtered (("1"));
2341 else
2342 printf_filtered (("0"));
2343 }
2344 }
2345
2346 /* Note the first arg should be the "this" pointer, we may not want to
2347 include it since we may get into a infinitely recursive
2348 situation. */
2349
2350 static void
2351 print_arg_types (struct field *args, int nargs, int spaces)
2352 {
2353 if (args != NULL)
2354 {
2355 int i;
2356
2357 for (i = 0; i < nargs; i++)
2358 recursive_dump_type (args[i].type, spaces + 2);
2359 }
2360 }
2361
2362 int
2363 field_is_static (struct field *f)
2364 {
2365 /* "static" fields are the fields whose location is not relative
2366 to the address of the enclosing struct. It would be nice to
2367 have a dedicated flag that would be set for static fields when
2368 the type is being created. But in practice, checking the field
2369 loc_kind should give us an accurate answer (at least as long as
2370 we assume that DWARF block locations are not going to be used
2371 for static fields). FIXME? */
2372 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2373 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2374 }
2375
2376 static void
2377 dump_fn_fieldlists (struct type *type, int spaces)
2378 {
2379 int method_idx;
2380 int overload_idx;
2381 struct fn_field *f;
2382
2383 printfi_filtered (spaces, "fn_fieldlists ");
2384 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2385 printf_filtered ("\n");
2386 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2387 {
2388 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2389 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2390 method_idx,
2391 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2392 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2393 gdb_stdout);
2394 printf_filtered (_(") length %d\n"),
2395 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2396 for (overload_idx = 0;
2397 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2398 overload_idx++)
2399 {
2400 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2401 overload_idx,
2402 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2403 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2404 gdb_stdout);
2405 printf_filtered (")\n");
2406 printfi_filtered (spaces + 8, "type ");
2407 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2408 gdb_stdout);
2409 printf_filtered ("\n");
2410
2411 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2412 spaces + 8 + 2);
2413
2414 printfi_filtered (spaces + 8, "args ");
2415 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2416 gdb_stdout);
2417 printf_filtered ("\n");
2418
2419 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2420 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2421 overload_idx)),
2422 spaces);
2423 printfi_filtered (spaces + 8, "fcontext ");
2424 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2425 gdb_stdout);
2426 printf_filtered ("\n");
2427
2428 printfi_filtered (spaces + 8, "is_const %d\n",
2429 TYPE_FN_FIELD_CONST (f, overload_idx));
2430 printfi_filtered (spaces + 8, "is_volatile %d\n",
2431 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2432 printfi_filtered (spaces + 8, "is_private %d\n",
2433 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2434 printfi_filtered (spaces + 8, "is_protected %d\n",
2435 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2436 printfi_filtered (spaces + 8, "is_stub %d\n",
2437 TYPE_FN_FIELD_STUB (f, overload_idx));
2438 printfi_filtered (spaces + 8, "voffset %u\n",
2439 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2440 }
2441 }
2442 }
2443
2444 static void
2445 print_cplus_stuff (struct type *type, int spaces)
2446 {
2447 printfi_filtered (spaces, "n_baseclasses %d\n",
2448 TYPE_N_BASECLASSES (type));
2449 printfi_filtered (spaces, "nfn_fields %d\n",
2450 TYPE_NFN_FIELDS (type));
2451 printfi_filtered (spaces, "nfn_fields_total %d\n",
2452 TYPE_NFN_FIELDS_TOTAL (type));
2453 if (TYPE_N_BASECLASSES (type) > 0)
2454 {
2455 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2456 TYPE_N_BASECLASSES (type));
2457 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2458 gdb_stdout);
2459 printf_filtered (")");
2460
2461 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2462 TYPE_N_BASECLASSES (type));
2463 puts_filtered ("\n");
2464 }
2465 if (TYPE_NFIELDS (type) > 0)
2466 {
2467 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2468 {
2469 printfi_filtered (spaces,
2470 "private_field_bits (%d bits at *",
2471 TYPE_NFIELDS (type));
2472 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2473 gdb_stdout);
2474 printf_filtered (")");
2475 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2476 TYPE_NFIELDS (type));
2477 puts_filtered ("\n");
2478 }
2479 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2480 {
2481 printfi_filtered (spaces,
2482 "protected_field_bits (%d bits at *",
2483 TYPE_NFIELDS (type));
2484 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2485 gdb_stdout);
2486 printf_filtered (")");
2487 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2488 TYPE_NFIELDS (type));
2489 puts_filtered ("\n");
2490 }
2491 }
2492 if (TYPE_NFN_FIELDS (type) > 0)
2493 {
2494 dump_fn_fieldlists (type, spaces);
2495 }
2496 }
2497
2498 static struct obstack dont_print_type_obstack;
2499
2500 void
2501 recursive_dump_type (struct type *type, int spaces)
2502 {
2503 int idx;
2504
2505 if (spaces == 0)
2506 obstack_begin (&dont_print_type_obstack, 0);
2507
2508 if (TYPE_NFIELDS (type) > 0
2509 || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
2510 {
2511 struct type **first_dont_print
2512 = (struct type **) obstack_base (&dont_print_type_obstack);
2513
2514 int i = (struct type **)
2515 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2516
2517 while (--i >= 0)
2518 {
2519 if (type == first_dont_print[i])
2520 {
2521 printfi_filtered (spaces, "type node ");
2522 gdb_print_host_address (type, gdb_stdout);
2523 printf_filtered (_(" <same as already seen type>\n"));
2524 return;
2525 }
2526 }
2527
2528 obstack_ptr_grow (&dont_print_type_obstack, type);
2529 }
2530
2531 printfi_filtered (spaces, "type node ");
2532 gdb_print_host_address (type, gdb_stdout);
2533 printf_filtered ("\n");
2534 printfi_filtered (spaces, "name '%s' (",
2535 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2536 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2537 printf_filtered (")\n");
2538 printfi_filtered (spaces, "tagname '%s' (",
2539 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2540 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2541 printf_filtered (")\n");
2542 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2543 switch (TYPE_CODE (type))
2544 {
2545 case TYPE_CODE_UNDEF:
2546 printf_filtered ("(TYPE_CODE_UNDEF)");
2547 break;
2548 case TYPE_CODE_PTR:
2549 printf_filtered ("(TYPE_CODE_PTR)");
2550 break;
2551 case TYPE_CODE_ARRAY:
2552 printf_filtered ("(TYPE_CODE_ARRAY)");
2553 break;
2554 case TYPE_CODE_STRUCT:
2555 printf_filtered ("(TYPE_CODE_STRUCT)");
2556 break;
2557 case TYPE_CODE_UNION:
2558 printf_filtered ("(TYPE_CODE_UNION)");
2559 break;
2560 case TYPE_CODE_ENUM:
2561 printf_filtered ("(TYPE_CODE_ENUM)");
2562 break;
2563 case TYPE_CODE_FLAGS:
2564 printf_filtered ("(TYPE_CODE_FLAGS)");
2565 break;
2566 case TYPE_CODE_FUNC:
2567 printf_filtered ("(TYPE_CODE_FUNC)");
2568 break;
2569 case TYPE_CODE_INT:
2570 printf_filtered ("(TYPE_CODE_INT)");
2571 break;
2572 case TYPE_CODE_FLT:
2573 printf_filtered ("(TYPE_CODE_FLT)");
2574 break;
2575 case TYPE_CODE_VOID:
2576 printf_filtered ("(TYPE_CODE_VOID)");
2577 break;
2578 case TYPE_CODE_SET:
2579 printf_filtered ("(TYPE_CODE_SET)");
2580 break;
2581 case TYPE_CODE_RANGE:
2582 printf_filtered ("(TYPE_CODE_RANGE)");
2583 break;
2584 case TYPE_CODE_STRING:
2585 printf_filtered ("(TYPE_CODE_STRING)");
2586 break;
2587 case TYPE_CODE_BITSTRING:
2588 printf_filtered ("(TYPE_CODE_BITSTRING)");
2589 break;
2590 case TYPE_CODE_ERROR:
2591 printf_filtered ("(TYPE_CODE_ERROR)");
2592 break;
2593 case TYPE_CODE_MEMBERPTR:
2594 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2595 break;
2596 case TYPE_CODE_METHODPTR:
2597 printf_filtered ("(TYPE_CODE_METHODPTR)");
2598 break;
2599 case TYPE_CODE_METHOD:
2600 printf_filtered ("(TYPE_CODE_METHOD)");
2601 break;
2602 case TYPE_CODE_REF:
2603 printf_filtered ("(TYPE_CODE_REF)");
2604 break;
2605 case TYPE_CODE_CHAR:
2606 printf_filtered ("(TYPE_CODE_CHAR)");
2607 break;
2608 case TYPE_CODE_BOOL:
2609 printf_filtered ("(TYPE_CODE_BOOL)");
2610 break;
2611 case TYPE_CODE_COMPLEX:
2612 printf_filtered ("(TYPE_CODE_COMPLEX)");
2613 break;
2614 case TYPE_CODE_TYPEDEF:
2615 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2616 break;
2617 case TYPE_CODE_TEMPLATE:
2618 printf_filtered ("(TYPE_CODE_TEMPLATE)");
2619 break;
2620 case TYPE_CODE_TEMPLATE_ARG:
2621 printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
2622 break;
2623 case TYPE_CODE_NAMESPACE:
2624 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2625 break;
2626 default:
2627 printf_filtered ("(UNKNOWN TYPE CODE)");
2628 break;
2629 }
2630 puts_filtered ("\n");
2631 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
2632 if (TYPE_OBJFILE_OWNED (type))
2633 {
2634 printfi_filtered (spaces, "objfile ");
2635 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
2636 }
2637 else
2638 {
2639 printfi_filtered (spaces, "gdbarch ");
2640 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
2641 }
2642 printf_filtered ("\n");
2643 printfi_filtered (spaces, "target_type ");
2644 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
2645 printf_filtered ("\n");
2646 if (TYPE_TARGET_TYPE (type) != NULL)
2647 {
2648 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2649 }
2650 printfi_filtered (spaces, "pointer_type ");
2651 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
2652 printf_filtered ("\n");
2653 printfi_filtered (spaces, "reference_type ");
2654 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
2655 printf_filtered ("\n");
2656 printfi_filtered (spaces, "type_chain ");
2657 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
2658 printf_filtered ("\n");
2659 printfi_filtered (spaces, "instance_flags 0x%x",
2660 TYPE_INSTANCE_FLAGS (type));
2661 if (TYPE_CONST (type))
2662 {
2663 puts_filtered (" TYPE_FLAG_CONST");
2664 }
2665 if (TYPE_VOLATILE (type))
2666 {
2667 puts_filtered (" TYPE_FLAG_VOLATILE");
2668 }
2669 if (TYPE_CODE_SPACE (type))
2670 {
2671 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2672 }
2673 if (TYPE_DATA_SPACE (type))
2674 {
2675 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2676 }
2677 if (TYPE_ADDRESS_CLASS_1 (type))
2678 {
2679 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2680 }
2681 if (TYPE_ADDRESS_CLASS_2 (type))
2682 {
2683 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2684 }
2685 puts_filtered ("\n");
2686
2687 printfi_filtered (spaces, "flags");
2688 if (TYPE_UNSIGNED (type))
2689 {
2690 puts_filtered (" TYPE_FLAG_UNSIGNED");
2691 }
2692 if (TYPE_NOSIGN (type))
2693 {
2694 puts_filtered (" TYPE_FLAG_NOSIGN");
2695 }
2696 if (TYPE_STUB (type))
2697 {
2698 puts_filtered (" TYPE_FLAG_STUB");
2699 }
2700 if (TYPE_TARGET_STUB (type))
2701 {
2702 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2703 }
2704 if (TYPE_STATIC (type))
2705 {
2706 puts_filtered (" TYPE_FLAG_STATIC");
2707 }
2708 if (TYPE_PROTOTYPED (type))
2709 {
2710 puts_filtered (" TYPE_FLAG_PROTOTYPED");
2711 }
2712 if (TYPE_INCOMPLETE (type))
2713 {
2714 puts_filtered (" TYPE_FLAG_INCOMPLETE");
2715 }
2716 if (TYPE_VARARGS (type))
2717 {
2718 puts_filtered (" TYPE_FLAG_VARARGS");
2719 }
2720 /* This is used for things like AltiVec registers on ppc. Gcc emits
2721 an attribute for the array type, which tells whether or not we
2722 have a vector, instead of a regular array. */
2723 if (TYPE_VECTOR (type))
2724 {
2725 puts_filtered (" TYPE_FLAG_VECTOR");
2726 }
2727 if (TYPE_FIXED_INSTANCE (type))
2728 {
2729 puts_filtered (" TYPE_FIXED_INSTANCE");
2730 }
2731 if (TYPE_STUB_SUPPORTED (type))
2732 {
2733 puts_filtered (" TYPE_STUB_SUPPORTED");
2734 }
2735 if (TYPE_NOTTEXT (type))
2736 {
2737 puts_filtered (" TYPE_NOTTEXT");
2738 }
2739 puts_filtered ("\n");
2740 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
2741 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
2742 puts_filtered ("\n");
2743 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2744 {
2745 printfi_filtered (spaces + 2,
2746 "[%d] bitpos %d bitsize %d type ",
2747 idx, TYPE_FIELD_BITPOS (type, idx),
2748 TYPE_FIELD_BITSIZE (type, idx));
2749 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
2750 printf_filtered (" name '%s' (",
2751 TYPE_FIELD_NAME (type, idx) != NULL
2752 ? TYPE_FIELD_NAME (type, idx)
2753 : "<NULL>");
2754 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
2755 printf_filtered (")\n");
2756 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2757 {
2758 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2759 }
2760 }
2761 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2762 {
2763 printfi_filtered (spaces, "low %s%s high %s%s\n",
2764 plongest (TYPE_LOW_BOUND (type)),
2765 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
2766 plongest (TYPE_HIGH_BOUND (type)),
2767 TYPE_HIGH_BOUND_UNDEFINED (type) ? " (undefined)" : "");
2768 }
2769 printfi_filtered (spaces, "vptr_basetype ");
2770 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
2771 puts_filtered ("\n");
2772 if (TYPE_VPTR_BASETYPE (type) != NULL)
2773 {
2774 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2775 }
2776 printfi_filtered (spaces, "vptr_fieldno %d\n",
2777 TYPE_VPTR_FIELDNO (type));
2778 switch (TYPE_CODE (type))
2779 {
2780 case TYPE_CODE_STRUCT:
2781 printfi_filtered (spaces, "cplus_stuff ");
2782 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
2783 gdb_stdout);
2784 puts_filtered ("\n");
2785 print_cplus_stuff (type, spaces);
2786 break;
2787
2788 case TYPE_CODE_FLT:
2789 printfi_filtered (spaces, "floatformat ");
2790 if (TYPE_FLOATFORMAT (type) == NULL)
2791 puts_filtered ("(null)");
2792 else
2793 {
2794 puts_filtered ("{ ");
2795 if (TYPE_FLOATFORMAT (type)[0] == NULL
2796 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
2797 puts_filtered ("(null)");
2798 else
2799 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
2800
2801 puts_filtered (", ");
2802 if (TYPE_FLOATFORMAT (type)[1] == NULL
2803 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
2804 puts_filtered ("(null)");
2805 else
2806 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
2807
2808 puts_filtered (" }");
2809 }
2810 puts_filtered ("\n");
2811 break;
2812
2813 default:
2814 /* We have to pick one of the union types to be able print and
2815 test the value. Pick cplus_struct_type, even though we know
2816 it isn't any particular one. */
2817 printfi_filtered (spaces, "type_specific ");
2818 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
2819 if (TYPE_CPLUS_SPECIFIC (type) != NULL)
2820 {
2821 printf_filtered (_(" (unknown data form)"));
2822 }
2823 printf_filtered ("\n");
2824 break;
2825
2826 }
2827 if (spaces == 0)
2828 obstack_free (&dont_print_type_obstack, NULL);
2829 }
2830
2831 /* Trivial helpers for the libiberty hash table, for mapping one
2832 type to another. */
2833
2834 struct type_pair
2835 {
2836 struct type *old, *new;
2837 };
2838
2839 static hashval_t
2840 type_pair_hash (const void *item)
2841 {
2842 const struct type_pair *pair = item;
2843 return htab_hash_pointer (pair->old);
2844 }
2845
2846 static int
2847 type_pair_eq (const void *item_lhs, const void *item_rhs)
2848 {
2849 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
2850 return lhs->old == rhs->old;
2851 }
2852
2853 /* Allocate the hash table used by copy_type_recursive to walk
2854 types without duplicates. We use OBJFILE's obstack, because
2855 OBJFILE is about to be deleted. */
2856
2857 htab_t
2858 create_copied_types_hash (struct objfile *objfile)
2859 {
2860 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
2861 NULL, &objfile->objfile_obstack,
2862 hashtab_obstack_allocate,
2863 dummy_obstack_deallocate);
2864 }
2865
2866 /* Recursively copy (deep copy) TYPE, if it is associated with
2867 OBJFILE. Return a new type allocated using malloc, a saved type if
2868 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
2869 not associated with OBJFILE. */
2870
2871 struct type *
2872 copy_type_recursive (struct objfile *objfile,
2873 struct type *type,
2874 htab_t copied_types)
2875 {
2876 struct type_pair *stored, pair;
2877 void **slot;
2878 struct type *new_type;
2879
2880 if (! TYPE_OBJFILE_OWNED (type))
2881 return type;
2882
2883 /* This type shouldn't be pointing to any types in other objfiles;
2884 if it did, the type might disappear unexpectedly. */
2885 gdb_assert (TYPE_OBJFILE (type) == objfile);
2886
2887 pair.old = type;
2888 slot = htab_find_slot (copied_types, &pair, INSERT);
2889 if (*slot != NULL)
2890 return ((struct type_pair *) *slot)->new;
2891
2892 new_type = alloc_type_arch (get_type_arch (type));
2893
2894 /* We must add the new type to the hash table immediately, in case
2895 we encounter this type again during a recursive call below. */
2896 stored = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
2897 stored->old = type;
2898 stored->new = new_type;
2899 *slot = stored;
2900
2901 /* Copy the common fields of types. For the main type, we simply
2902 copy the entire thing and then update specific fields as needed. */
2903 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
2904 TYPE_OBJFILE_OWNED (new_type) = 0;
2905 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
2906
2907 if (TYPE_NAME (type))
2908 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
2909 if (TYPE_TAG_NAME (type))
2910 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
2911
2912 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
2913 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
2914
2915 /* Copy the fields. */
2916 if (TYPE_NFIELDS (type))
2917 {
2918 int i, nfields;
2919
2920 nfields = TYPE_NFIELDS (type);
2921 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
2922 for (i = 0; i < nfields; i++)
2923 {
2924 TYPE_FIELD_ARTIFICIAL (new_type, i) =
2925 TYPE_FIELD_ARTIFICIAL (type, i);
2926 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
2927 if (TYPE_FIELD_TYPE (type, i))
2928 TYPE_FIELD_TYPE (new_type, i)
2929 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
2930 copied_types);
2931 if (TYPE_FIELD_NAME (type, i))
2932 TYPE_FIELD_NAME (new_type, i) =
2933 xstrdup (TYPE_FIELD_NAME (type, i));
2934 switch (TYPE_FIELD_LOC_KIND (type, i))
2935 {
2936 case FIELD_LOC_KIND_BITPOS:
2937 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
2938 TYPE_FIELD_BITPOS (type, i));
2939 break;
2940 case FIELD_LOC_KIND_PHYSADDR:
2941 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
2942 TYPE_FIELD_STATIC_PHYSADDR (type, i));
2943 break;
2944 case FIELD_LOC_KIND_PHYSNAME:
2945 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
2946 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
2947 i)));
2948 break;
2949 default:
2950 internal_error (__FILE__, __LINE__,
2951 _("Unexpected type field location kind: %d"),
2952 TYPE_FIELD_LOC_KIND (type, i));
2953 }
2954 }
2955 }
2956
2957 /* For range types, copy the bounds information. */
2958 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2959 {
2960 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
2961 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
2962 }
2963
2964 /* Copy pointers to other types. */
2965 if (TYPE_TARGET_TYPE (type))
2966 TYPE_TARGET_TYPE (new_type) =
2967 copy_type_recursive (objfile,
2968 TYPE_TARGET_TYPE (type),
2969 copied_types);
2970 if (TYPE_VPTR_BASETYPE (type))
2971 TYPE_VPTR_BASETYPE (new_type) =
2972 copy_type_recursive (objfile,
2973 TYPE_VPTR_BASETYPE (type),
2974 copied_types);
2975 /* Maybe copy the type_specific bits.
2976
2977 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
2978 base classes and methods. There's no fundamental reason why we
2979 can't, but at the moment it is not needed. */
2980
2981 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2982 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
2983 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2984 || TYPE_CODE (type) == TYPE_CODE_UNION
2985 || TYPE_CODE (type) == TYPE_CODE_TEMPLATE
2986 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
2987 INIT_CPLUS_SPECIFIC (new_type);
2988
2989 return new_type;
2990 }
2991
2992 /* Make a copy of the given TYPE, except that the pointer & reference
2993 types are not preserved.
2994
2995 This function assumes that the given type has an associated objfile.
2996 This objfile is used to allocate the new type. */
2997
2998 struct type *
2999 copy_type (const struct type *type)
3000 {
3001 struct type *new_type;
3002
3003 gdb_assert (TYPE_OBJFILE_OWNED (type));
3004
3005 new_type = alloc_type_copy (type);
3006 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3007 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3008 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3009 sizeof (struct main_type));
3010
3011 return new_type;
3012 }
3013
3014
3015 /* Helper functions to initialize architecture-specific types. */
3016
3017 /* Allocate a type structure associated with GDBARCH and set its
3018 CODE, LENGTH, and NAME fields. */
3019 struct type *
3020 arch_type (struct gdbarch *gdbarch,
3021 enum type_code code, int length, char *name)
3022 {
3023 struct type *type;
3024
3025 type = alloc_type_arch (gdbarch);
3026 TYPE_CODE (type) = code;
3027 TYPE_LENGTH (type) = length;
3028
3029 if (name)
3030 TYPE_NAME (type) = xstrdup (name);
3031
3032 return type;
3033 }
3034
3035 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3036 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3037 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3038 struct type *
3039 arch_integer_type (struct gdbarch *gdbarch,
3040 int bit, int unsigned_p, char *name)
3041 {
3042 struct type *t;
3043
3044 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3045 if (unsigned_p)
3046 TYPE_UNSIGNED (t) = 1;
3047 if (name && strcmp (name, "char") == 0)
3048 TYPE_NOSIGN (t) = 1;
3049
3050 return t;
3051 }
3052
3053 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3054 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3055 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3056 struct type *
3057 arch_character_type (struct gdbarch *gdbarch,
3058 int bit, int unsigned_p, char *name)
3059 {
3060 struct type *t;
3061
3062 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3063 if (unsigned_p)
3064 TYPE_UNSIGNED (t) = 1;
3065
3066 return t;
3067 }
3068
3069 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3070 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3071 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3072 struct type *
3073 arch_boolean_type (struct gdbarch *gdbarch,
3074 int bit, int unsigned_p, char *name)
3075 {
3076 struct type *t;
3077
3078 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3079 if (unsigned_p)
3080 TYPE_UNSIGNED (t) = 1;
3081
3082 return t;
3083 }
3084
3085 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3086 BIT is the type size in bits; if BIT equals -1, the size is
3087 determined by the floatformat. NAME is the type name. Set the
3088 TYPE_FLOATFORMAT from FLOATFORMATS. */
3089 struct type *
3090 arch_float_type (struct gdbarch *gdbarch,
3091 int bit, char *name, const struct floatformat **floatformats)
3092 {
3093 struct type *t;
3094
3095 if (bit == -1)
3096 {
3097 gdb_assert (floatformats != NULL);
3098 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3099 bit = floatformats[0]->totalsize;
3100 }
3101 gdb_assert (bit >= 0);
3102
3103 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3104 TYPE_FLOATFORMAT (t) = floatformats;
3105 return t;
3106 }
3107
3108 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3109 NAME is the type name. TARGET_TYPE is the component float type. */
3110 struct type *
3111 arch_complex_type (struct gdbarch *gdbarch,
3112 char *name, struct type *target_type)
3113 {
3114 struct type *t;
3115 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3116 2 * TYPE_LENGTH (target_type), name);
3117 TYPE_TARGET_TYPE (t) = target_type;
3118 return t;
3119 }
3120
3121 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3122 NAME is the type name. LENGTH is the number of flag bits. */
3123 struct type *
3124 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3125 {
3126 int nfields = length * TARGET_CHAR_BIT;
3127 struct type *type;
3128
3129 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3130 TYPE_UNSIGNED (type) = 1;
3131 TYPE_NFIELDS (type) = nfields;
3132 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3133
3134 return type;
3135 }
3136
3137 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3138 position BITPOS is called NAME. */
3139 void
3140 append_flags_type_flag (struct type *type, int bitpos, char *name)
3141 {
3142 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3143 gdb_assert (bitpos < TYPE_NFIELDS (type));
3144 gdb_assert (bitpos >= 0);
3145
3146 if (name)
3147 {
3148 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3149 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3150 }
3151 else
3152 {
3153 /* Don't show this field to the user. */
3154 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3155 }
3156 }
3157
3158 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3159 specified by CODE) associated with GDBARCH. NAME is the type name. */
3160 struct type *
3161 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3162 {
3163 struct type *t;
3164 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3165 t = arch_type (gdbarch, code, 0, NULL);
3166 TYPE_TAG_NAME (t) = name;
3167 INIT_CPLUS_SPECIFIC (t);
3168 return t;
3169 }
3170
3171 /* Add new field with name NAME and type FIELD to composite type T.
3172 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3173 void
3174 append_composite_type_field_aligned (struct type *t, char *name,
3175 struct type *field, int alignment)
3176 {
3177 struct field *f;
3178 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3179 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3180 sizeof (struct field) * TYPE_NFIELDS (t));
3181 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3182 memset (f, 0, sizeof f[0]);
3183 FIELD_TYPE (f[0]) = field;
3184 FIELD_NAME (f[0]) = name;
3185 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3186 {
3187 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3188 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3189 }
3190 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3191 {
3192 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3193 if (TYPE_NFIELDS (t) > 1)
3194 {
3195 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3196 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3197 * TARGET_CHAR_BIT));
3198
3199 if (alignment)
3200 {
3201 int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
3202 if (left)
3203 {
3204 FIELD_BITPOS (f[0]) += left;
3205 TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
3206 }
3207 }
3208 }
3209 }
3210 }
3211
3212 /* Add new field with name NAME and type FIELD to composite type T. */
3213 void
3214 append_composite_type_field (struct type *t, char *name,
3215 struct type *field)
3216 {
3217 append_composite_type_field_aligned (t, name, field, 0);
3218 }
3219
3220
3221 static struct gdbarch_data *gdbtypes_data;
3222
3223 const struct builtin_type *
3224 builtin_type (struct gdbarch *gdbarch)
3225 {
3226 return gdbarch_data (gdbarch, gdbtypes_data);
3227 }
3228
3229 static void *
3230 gdbtypes_post_init (struct gdbarch *gdbarch)
3231 {
3232 struct builtin_type *builtin_type
3233 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3234
3235 /* Basic types. */
3236 builtin_type->builtin_void
3237 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3238 builtin_type->builtin_char
3239 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3240 !gdbarch_char_signed (gdbarch), "char");
3241 builtin_type->builtin_signed_char
3242 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3243 0, "signed char");
3244 builtin_type->builtin_unsigned_char
3245 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3246 1, "unsigned char");
3247 builtin_type->builtin_short
3248 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3249 0, "short");
3250 builtin_type->builtin_unsigned_short
3251 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3252 1, "unsigned short");
3253 builtin_type->builtin_int
3254 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3255 0, "int");
3256 builtin_type->builtin_unsigned_int
3257 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3258 1, "unsigned int");
3259 builtin_type->builtin_long
3260 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3261 0, "long");
3262 builtin_type->builtin_unsigned_long
3263 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3264 1, "unsigned long");
3265 builtin_type->builtin_long_long
3266 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3267 0, "long long");
3268 builtin_type->builtin_unsigned_long_long
3269 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3270 1, "unsigned long long");
3271 builtin_type->builtin_float
3272 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3273 "float", gdbarch_float_format (gdbarch));
3274 builtin_type->builtin_double
3275 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3276 "double", gdbarch_double_format (gdbarch));
3277 builtin_type->builtin_long_double
3278 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3279 "long double", gdbarch_long_double_format (gdbarch));
3280 builtin_type->builtin_complex
3281 = arch_complex_type (gdbarch, "complex",
3282 builtin_type->builtin_float);
3283 builtin_type->builtin_double_complex
3284 = arch_complex_type (gdbarch, "double complex",
3285 builtin_type->builtin_double);
3286 builtin_type->builtin_string
3287 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3288 builtin_type->builtin_bool
3289 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3290
3291 /* The following three are about decimal floating point types, which
3292 are 32-bits, 64-bits and 128-bits respectively. */
3293 builtin_type->builtin_decfloat
3294 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3295 builtin_type->builtin_decdouble
3296 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3297 builtin_type->builtin_declong
3298 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3299
3300 /* "True" character types. */
3301 builtin_type->builtin_true_char
3302 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3303 builtin_type->builtin_true_unsigned_char
3304 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3305
3306 /* Fixed-size integer types. */
3307 builtin_type->builtin_int0
3308 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3309 builtin_type->builtin_int8
3310 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3311 builtin_type->builtin_uint8
3312 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3313 builtin_type->builtin_int16
3314 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3315 builtin_type->builtin_uint16
3316 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3317 builtin_type->builtin_int32
3318 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3319 builtin_type->builtin_uint32
3320 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3321 builtin_type->builtin_int64
3322 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3323 builtin_type->builtin_uint64
3324 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3325 builtin_type->builtin_int128
3326 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3327 builtin_type->builtin_uint128
3328 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3329 TYPE_NOTTEXT (builtin_type->builtin_int8) = 1;
3330 TYPE_NOTTEXT (builtin_type->builtin_uint8) = 1;
3331
3332 /* Default data/code pointer types. */
3333 builtin_type->builtin_data_ptr
3334 = lookup_pointer_type (builtin_type->builtin_void);
3335 builtin_type->builtin_func_ptr
3336 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3337
3338 /* This type represents a GDB internal function. */
3339 builtin_type->internal_fn
3340 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3341 "<internal function>");
3342
3343 return builtin_type;
3344 }
3345
3346
3347 /* This set of objfile-based types is intended to be used by symbol
3348 readers as basic types. */
3349
3350 static const struct objfile_data *objfile_type_data;
3351
3352 const struct objfile_type *
3353 objfile_type (struct objfile *objfile)
3354 {
3355 struct gdbarch *gdbarch;
3356 struct objfile_type *objfile_type
3357 = objfile_data (objfile, objfile_type_data);
3358
3359 if (objfile_type)
3360 return objfile_type;
3361
3362 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3363 1, struct objfile_type);
3364
3365 /* Use the objfile architecture to determine basic type properties. */
3366 gdbarch = get_objfile_arch (objfile);
3367
3368 /* Basic types. */
3369 objfile_type->builtin_void
3370 = init_type (TYPE_CODE_VOID, 1,
3371 0,
3372 "void", objfile);
3373
3374 objfile_type->builtin_char
3375 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3376 (TYPE_FLAG_NOSIGN
3377 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3378 "char", objfile);
3379 objfile_type->builtin_signed_char
3380 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3381 0,
3382 "signed char", objfile);
3383 objfile_type->builtin_unsigned_char
3384 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3385 TYPE_FLAG_UNSIGNED,
3386 "unsigned char", objfile);
3387 objfile_type->builtin_short
3388 = init_type (TYPE_CODE_INT,
3389 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3390 0, "short", objfile);
3391 objfile_type->builtin_unsigned_short
3392 = init_type (TYPE_CODE_INT,
3393 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3394 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3395 objfile_type->builtin_int
3396 = init_type (TYPE_CODE_INT,
3397 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3398 0, "int", objfile);
3399 objfile_type->builtin_unsigned_int
3400 = init_type (TYPE_CODE_INT,
3401 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3402 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3403 objfile_type->builtin_long
3404 = init_type (TYPE_CODE_INT,
3405 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3406 0, "long", objfile);
3407 objfile_type->builtin_unsigned_long
3408 = init_type (TYPE_CODE_INT,
3409 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3410 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3411 objfile_type->builtin_long_long
3412 = init_type (TYPE_CODE_INT,
3413 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3414 0, "long long", objfile);
3415 objfile_type->builtin_unsigned_long_long
3416 = init_type (TYPE_CODE_INT,
3417 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3418 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3419
3420 objfile_type->builtin_float
3421 = init_type (TYPE_CODE_FLT,
3422 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3423 0, "float", objfile);
3424 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3425 = gdbarch_float_format (gdbarch);
3426 objfile_type->builtin_double
3427 = init_type (TYPE_CODE_FLT,
3428 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3429 0, "double", objfile);
3430 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3431 = gdbarch_double_format (gdbarch);
3432 objfile_type->builtin_long_double
3433 = init_type (TYPE_CODE_FLT,
3434 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3435 0, "long double", objfile);
3436 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3437 = gdbarch_long_double_format (gdbarch);
3438
3439 /* This type represents a type that was unrecognized in symbol read-in. */
3440 objfile_type->builtin_error
3441 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3442
3443 /* The following set of types is used for symbols with no
3444 debug information. */
3445 objfile_type->nodebug_text_symbol
3446 = init_type (TYPE_CODE_FUNC, 1, 0,
3447 "<text variable, no debug info>", objfile);
3448 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3449 = objfile_type->builtin_int;
3450 objfile_type->nodebug_data_symbol
3451 = init_type (TYPE_CODE_INT,
3452 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3453 "<data variable, no debug info>", objfile);
3454 objfile_type->nodebug_unknown_symbol
3455 = init_type (TYPE_CODE_INT, 1, 0,
3456 "<variable (not text or data), no debug info>", objfile);
3457 objfile_type->nodebug_tls_symbol
3458 = init_type (TYPE_CODE_INT,
3459 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3460 "<thread local variable, no debug info>", objfile);
3461
3462 /* NOTE: on some targets, addresses and pointers are not necessarily
3463 the same --- for example, on the D10V, pointers are 16 bits long,
3464 but addresses are 32 bits long. See doc/gdbint.texinfo,
3465 ``Pointers Are Not Always Addresses''.
3466
3467 The upshot is:
3468 - gdb's `struct type' always describes the target's
3469 representation.
3470 - gdb's `struct value' objects should always hold values in
3471 target form.
3472 - gdb's CORE_ADDR values are addresses in the unified virtual
3473 address space that the assembler and linker work with. Thus,
3474 since target_read_memory takes a CORE_ADDR as an argument, it
3475 can access any memory on the target, even if the processor has
3476 separate code and data address spaces.
3477
3478 So, for example:
3479 - If v is a value holding a D10V code pointer, its contents are
3480 in target form: a big-endian address left-shifted two bits.
3481 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3482 sizeof (void *) == 2 on the target.
3483
3484 In this context, objfile_type->builtin_core_addr is a bit odd:
3485 it's a target type for a value the target will never see. It's
3486 only used to hold the values of (typeless) linker symbols, which
3487 are indeed in the unified virtual address space. */
3488
3489 objfile_type->builtin_core_addr
3490 = init_type (TYPE_CODE_INT,
3491 gdbarch_addr_bit (gdbarch) / 8,
3492 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
3493
3494 set_objfile_data (objfile, objfile_type_data, objfile_type);
3495 return objfile_type;
3496 }
3497
3498
3499 extern void _initialize_gdbtypes (void);
3500 void
3501 _initialize_gdbtypes (void)
3502 {
3503 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3504 objfile_type_data = register_objfile_data ();
3505
3506 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3507 Set debugging of C++ overloading."), _("\
3508 Show debugging of C++ overloading."), _("\
3509 When enabled, ranking of the functions is displayed."),
3510 NULL,
3511 show_overload_debug,
3512 &setdebuglist, &showdebuglist);
3513
3514 /* Add user knob for controlling resolution of opaque types. */
3515 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3516 &opaque_type_resolution, _("\
3517 Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3518 Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3519 NULL,
3520 show_opaque_type_resolution,
3521 &setlist, &showlist);
3522 }
This page took 0.103992 seconds and 5 git commands to generate.