vla: support for DW_AT_count
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include "bfd.h"
25 #include "symtab.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "language.h"
31 #include "target.h"
32 #include "value.h"
33 #include "demangle.h"
34 #include "complaints.h"
35 #include "gdbcmd.h"
36 #include "cp-abi.h"
37 #include "gdb_assert.h"
38 #include "hashtab.h"
39 #include "exceptions.h"
40 #include "cp-support.h"
41 #include "bcache.h"
42 #include "dwarf2loc.h"
43
44 /* Initialize BADNESS constants. */
45
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static int opaque_type_resolution = 1;
120
121 /* A flag to enable printing of debugging information of C++
122 overloading. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static int strict_type_checking = 1;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_VPTR_FIELDNO (type) = -1;
186 TYPE_CHAIN (type) = type; /* Chain back to itself. */
187
188 return type;
189 }
190
191 /* Allocate a new GDBARCH-associated type structure and fill it
192 with some defaults. Space for the type structure is allocated
193 on the heap. */
194
195 struct type *
196 alloc_type_arch (struct gdbarch *gdbarch)
197 {
198 struct type *type;
199
200 gdb_assert (gdbarch != NULL);
201
202 /* Alloc the structure and start off with all fields zeroed. */
203
204 type = XCNEW (struct type);
205 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
206
207 TYPE_OBJFILE_OWNED (type) = 0;
208 TYPE_OWNER (type).gdbarch = gdbarch;
209
210 /* Initialize the fields that might not be zero. */
211
212 TYPE_CODE (type) = TYPE_CODE_UNDEF;
213 TYPE_VPTR_FIELDNO (type) = -1;
214 TYPE_CHAIN (type) = type; /* Chain back to itself. */
215
216 return type;
217 }
218
219 /* If TYPE is objfile-associated, allocate a new type structure
220 associated with the same objfile. If TYPE is gdbarch-associated,
221 allocate a new type structure associated with the same gdbarch. */
222
223 struct type *
224 alloc_type_copy (const struct type *type)
225 {
226 if (TYPE_OBJFILE_OWNED (type))
227 return alloc_type (TYPE_OWNER (type).objfile);
228 else
229 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
230 }
231
232 /* If TYPE is gdbarch-associated, return that architecture.
233 If TYPE is objfile-associated, return that objfile's architecture. */
234
235 struct gdbarch *
236 get_type_arch (const struct type *type)
237 {
238 if (TYPE_OBJFILE_OWNED (type))
239 return get_objfile_arch (TYPE_OWNER (type).objfile);
240 else
241 return TYPE_OWNER (type).gdbarch;
242 }
243
244 /* See gdbtypes.h. */
245
246 struct type *
247 get_target_type (struct type *type)
248 {
249 if (type != NULL)
250 {
251 type = TYPE_TARGET_TYPE (type);
252 if (type != NULL)
253 type = check_typedef (type);
254 }
255
256 return type;
257 }
258
259 /* Alloc a new type instance structure, fill it with some defaults,
260 and point it at OLDTYPE. Allocate the new type instance from the
261 same place as OLDTYPE. */
262
263 static struct type *
264 alloc_type_instance (struct type *oldtype)
265 {
266 struct type *type;
267
268 /* Allocate the structure. */
269
270 if (! TYPE_OBJFILE_OWNED (oldtype))
271 type = XCNEW (struct type);
272 else
273 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
274 struct type);
275
276 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
277
278 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
279
280 return type;
281 }
282
283 /* Clear all remnants of the previous type at TYPE, in preparation for
284 replacing it with something else. Preserve owner information. */
285
286 static void
287 smash_type (struct type *type)
288 {
289 int objfile_owned = TYPE_OBJFILE_OWNED (type);
290 union type_owner owner = TYPE_OWNER (type);
291
292 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
293
294 /* Restore owner information. */
295 TYPE_OBJFILE_OWNED (type) = objfile_owned;
296 TYPE_OWNER (type) = owner;
297
298 /* For now, delete the rings. */
299 TYPE_CHAIN (type) = type;
300
301 /* For now, leave the pointer/reference types alone. */
302 }
303
304 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
305 to a pointer to memory where the pointer type should be stored.
306 If *TYPEPTR is zero, update it to point to the pointer type we return.
307 We allocate new memory if needed. */
308
309 struct type *
310 make_pointer_type (struct type *type, struct type **typeptr)
311 {
312 struct type *ntype; /* New type */
313 struct type *chain;
314
315 ntype = TYPE_POINTER_TYPE (type);
316
317 if (ntype)
318 {
319 if (typeptr == 0)
320 return ntype; /* Don't care about alloc,
321 and have new type. */
322 else if (*typeptr == 0)
323 {
324 *typeptr = ntype; /* Tracking alloc, and have new type. */
325 return ntype;
326 }
327 }
328
329 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
330 {
331 ntype = alloc_type_copy (type);
332 if (typeptr)
333 *typeptr = ntype;
334 }
335 else /* We have storage, but need to reset it. */
336 {
337 ntype = *typeptr;
338 chain = TYPE_CHAIN (ntype);
339 smash_type (ntype);
340 TYPE_CHAIN (ntype) = chain;
341 }
342
343 TYPE_TARGET_TYPE (ntype) = type;
344 TYPE_POINTER_TYPE (type) = ntype;
345
346 /* FIXME! Assumes the machine has only one representation for pointers! */
347
348 TYPE_LENGTH (ntype)
349 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
350 TYPE_CODE (ntype) = TYPE_CODE_PTR;
351
352 /* Mark pointers as unsigned. The target converts between pointers
353 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
354 gdbarch_address_to_pointer. */
355 TYPE_UNSIGNED (ntype) = 1;
356
357 /* Update the length of all the other variants of this type. */
358 chain = TYPE_CHAIN (ntype);
359 while (chain != ntype)
360 {
361 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
362 chain = TYPE_CHAIN (chain);
363 }
364
365 return ntype;
366 }
367
368 /* Given a type TYPE, return a type of pointers to that type.
369 May need to construct such a type if this is the first use. */
370
371 struct type *
372 lookup_pointer_type (struct type *type)
373 {
374 return make_pointer_type (type, (struct type **) 0);
375 }
376
377 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
378 points to a pointer to memory where the reference type should be
379 stored. If *TYPEPTR is zero, update it to point to the reference
380 type we return. We allocate new memory if needed. */
381
382 struct type *
383 make_reference_type (struct type *type, struct type **typeptr)
384 {
385 struct type *ntype; /* New type */
386 struct type *chain;
387
388 ntype = TYPE_REFERENCE_TYPE (type);
389
390 if (ntype)
391 {
392 if (typeptr == 0)
393 return ntype; /* Don't care about alloc,
394 and have new type. */
395 else if (*typeptr == 0)
396 {
397 *typeptr = ntype; /* Tracking alloc, and have new type. */
398 return ntype;
399 }
400 }
401
402 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
403 {
404 ntype = alloc_type_copy (type);
405 if (typeptr)
406 *typeptr = ntype;
407 }
408 else /* We have storage, but need to reset it. */
409 {
410 ntype = *typeptr;
411 chain = TYPE_CHAIN (ntype);
412 smash_type (ntype);
413 TYPE_CHAIN (ntype) = chain;
414 }
415
416 TYPE_TARGET_TYPE (ntype) = type;
417 TYPE_REFERENCE_TYPE (type) = ntype;
418
419 /* FIXME! Assume the machine has only one representation for
420 references, and that it matches the (only) representation for
421 pointers! */
422
423 TYPE_LENGTH (ntype) =
424 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
425 TYPE_CODE (ntype) = TYPE_CODE_REF;
426
427 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
428 TYPE_REFERENCE_TYPE (type) = ntype;
429
430 /* Update the length of all the other variants of this type. */
431 chain = TYPE_CHAIN (ntype);
432 while (chain != ntype)
433 {
434 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
435 chain = TYPE_CHAIN (chain);
436 }
437
438 return ntype;
439 }
440
441 /* Same as above, but caller doesn't care about memory allocation
442 details. */
443
444 struct type *
445 lookup_reference_type (struct type *type)
446 {
447 return make_reference_type (type, (struct type **) 0);
448 }
449
450 /* Lookup a function type that returns type TYPE. TYPEPTR, if
451 nonzero, points to a pointer to memory where the function type
452 should be stored. If *TYPEPTR is zero, update it to point to the
453 function type we return. We allocate new memory if needed. */
454
455 struct type *
456 make_function_type (struct type *type, struct type **typeptr)
457 {
458 struct type *ntype; /* New type */
459
460 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
461 {
462 ntype = alloc_type_copy (type);
463 if (typeptr)
464 *typeptr = ntype;
465 }
466 else /* We have storage, but need to reset it. */
467 {
468 ntype = *typeptr;
469 smash_type (ntype);
470 }
471
472 TYPE_TARGET_TYPE (ntype) = type;
473
474 TYPE_LENGTH (ntype) = 1;
475 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
476
477 INIT_FUNC_SPECIFIC (ntype);
478
479 return ntype;
480 }
481
482 /* Given a type TYPE, return a type of functions that return that type.
483 May need to construct such a type if this is the first use. */
484
485 struct type *
486 lookup_function_type (struct type *type)
487 {
488 return make_function_type (type, (struct type **) 0);
489 }
490
491 /* Given a type TYPE and argument types, return the appropriate
492 function type. If the final type in PARAM_TYPES is NULL, make a
493 varargs function. */
494
495 struct type *
496 lookup_function_type_with_arguments (struct type *type,
497 int nparams,
498 struct type **param_types)
499 {
500 struct type *fn = make_function_type (type, (struct type **) 0);
501 int i;
502
503 if (nparams > 0)
504 {
505 if (param_types[nparams - 1] == NULL)
506 {
507 --nparams;
508 TYPE_VARARGS (fn) = 1;
509 }
510 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
511 == TYPE_CODE_VOID)
512 {
513 --nparams;
514 /* Caller should have ensured this. */
515 gdb_assert (nparams == 0);
516 TYPE_PROTOTYPED (fn) = 1;
517 }
518 }
519
520 TYPE_NFIELDS (fn) = nparams;
521 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
522 for (i = 0; i < nparams; ++i)
523 TYPE_FIELD_TYPE (fn, i) = param_types[i];
524
525 return fn;
526 }
527
528 /* Identify address space identifier by name --
529 return the integer flag defined in gdbtypes.h. */
530
531 int
532 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
533 {
534 int type_flags;
535
536 /* Check for known address space delimiters. */
537 if (!strcmp (space_identifier, "code"))
538 return TYPE_INSTANCE_FLAG_CODE_SPACE;
539 else if (!strcmp (space_identifier, "data"))
540 return TYPE_INSTANCE_FLAG_DATA_SPACE;
541 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
542 && gdbarch_address_class_name_to_type_flags (gdbarch,
543 space_identifier,
544 &type_flags))
545 return type_flags;
546 else
547 error (_("Unknown address space specifier: \"%s\""), space_identifier);
548 }
549
550 /* Identify address space identifier by integer flag as defined in
551 gdbtypes.h -- return the string version of the adress space name. */
552
553 const char *
554 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
555 {
556 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
557 return "code";
558 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
559 return "data";
560 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
561 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
562 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
563 else
564 return NULL;
565 }
566
567 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
568
569 If STORAGE is non-NULL, create the new type instance there.
570 STORAGE must be in the same obstack as TYPE. */
571
572 static struct type *
573 make_qualified_type (struct type *type, int new_flags,
574 struct type *storage)
575 {
576 struct type *ntype;
577
578 ntype = type;
579 do
580 {
581 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
582 return ntype;
583 ntype = TYPE_CHAIN (ntype);
584 }
585 while (ntype != type);
586
587 /* Create a new type instance. */
588 if (storage == NULL)
589 ntype = alloc_type_instance (type);
590 else
591 {
592 /* If STORAGE was provided, it had better be in the same objfile
593 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
594 if one objfile is freed and the other kept, we'd have
595 dangling pointers. */
596 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
597
598 ntype = storage;
599 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
600 TYPE_CHAIN (ntype) = ntype;
601 }
602
603 /* Pointers or references to the original type are not relevant to
604 the new type. */
605 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
606 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
607
608 /* Chain the new qualified type to the old type. */
609 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
610 TYPE_CHAIN (type) = ntype;
611
612 /* Now set the instance flags and return the new type. */
613 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
614
615 /* Set length of new type to that of the original type. */
616 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
617
618 return ntype;
619 }
620
621 /* Make an address-space-delimited variant of a type -- a type that
622 is identical to the one supplied except that it has an address
623 space attribute attached to it (such as "code" or "data").
624
625 The space attributes "code" and "data" are for Harvard
626 architectures. The address space attributes are for architectures
627 which have alternately sized pointers or pointers with alternate
628 representations. */
629
630 struct type *
631 make_type_with_address_space (struct type *type, int space_flag)
632 {
633 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
634 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
635 | TYPE_INSTANCE_FLAG_DATA_SPACE
636 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
637 | space_flag);
638
639 return make_qualified_type (type, new_flags, NULL);
640 }
641
642 /* Make a "c-v" variant of a type -- a type that is identical to the
643 one supplied except that it may have const or volatile attributes
644 CNST is a flag for setting the const attribute
645 VOLTL is a flag for setting the volatile attribute
646 TYPE is the base type whose variant we are creating.
647
648 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
649 storage to hold the new qualified type; *TYPEPTR and TYPE must be
650 in the same objfile. Otherwise, allocate fresh memory for the new
651 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
652 new type we construct. */
653
654 struct type *
655 make_cv_type (int cnst, int voltl,
656 struct type *type,
657 struct type **typeptr)
658 {
659 struct type *ntype; /* New type */
660
661 int new_flags = (TYPE_INSTANCE_FLAGS (type)
662 & ~(TYPE_INSTANCE_FLAG_CONST
663 | TYPE_INSTANCE_FLAG_VOLATILE));
664
665 if (cnst)
666 new_flags |= TYPE_INSTANCE_FLAG_CONST;
667
668 if (voltl)
669 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
670
671 if (typeptr && *typeptr != NULL)
672 {
673 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
674 a C-V variant chain that threads across objfiles: if one
675 objfile gets freed, then the other has a broken C-V chain.
676
677 This code used to try to copy over the main type from TYPE to
678 *TYPEPTR if they were in different objfiles, but that's
679 wrong, too: TYPE may have a field list or member function
680 lists, which refer to types of their own, etc. etc. The
681 whole shebang would need to be copied over recursively; you
682 can't have inter-objfile pointers. The only thing to do is
683 to leave stub types as stub types, and look them up afresh by
684 name each time you encounter them. */
685 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
686 }
687
688 ntype = make_qualified_type (type, new_flags,
689 typeptr ? *typeptr : NULL);
690
691 if (typeptr != NULL)
692 *typeptr = ntype;
693
694 return ntype;
695 }
696
697 /* Make a 'restrict'-qualified version of TYPE. */
698
699 struct type *
700 make_restrict_type (struct type *type)
701 {
702 return make_qualified_type (type,
703 (TYPE_INSTANCE_FLAGS (type)
704 | TYPE_INSTANCE_FLAG_RESTRICT),
705 NULL);
706 }
707
708 /* Replace the contents of ntype with the type *type. This changes the
709 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
710 the changes are propogated to all types in the TYPE_CHAIN.
711
712 In order to build recursive types, it's inevitable that we'll need
713 to update types in place --- but this sort of indiscriminate
714 smashing is ugly, and needs to be replaced with something more
715 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
716 clear if more steps are needed. */
717
718 void
719 replace_type (struct type *ntype, struct type *type)
720 {
721 struct type *chain;
722
723 /* These two types had better be in the same objfile. Otherwise,
724 the assignment of one type's main type structure to the other
725 will produce a type with references to objects (names; field
726 lists; etc.) allocated on an objfile other than its own. */
727 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
728
729 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
730
731 /* The type length is not a part of the main type. Update it for
732 each type on the variant chain. */
733 chain = ntype;
734 do
735 {
736 /* Assert that this element of the chain has no address-class bits
737 set in its flags. Such type variants might have type lengths
738 which are supposed to be different from the non-address-class
739 variants. This assertion shouldn't ever be triggered because
740 symbol readers which do construct address-class variants don't
741 call replace_type(). */
742 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
743
744 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
745 chain = TYPE_CHAIN (chain);
746 }
747 while (ntype != chain);
748
749 /* Assert that the two types have equivalent instance qualifiers.
750 This should be true for at least all of our debug readers. */
751 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
752 }
753
754 /* Implement direct support for MEMBER_TYPE in GNU C++.
755 May need to construct such a type if this is the first use.
756 The TYPE is the type of the member. The DOMAIN is the type
757 of the aggregate that the member belongs to. */
758
759 struct type *
760 lookup_memberptr_type (struct type *type, struct type *domain)
761 {
762 struct type *mtype;
763
764 mtype = alloc_type_copy (type);
765 smash_to_memberptr_type (mtype, domain, type);
766 return mtype;
767 }
768
769 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
770
771 struct type *
772 lookup_methodptr_type (struct type *to_type)
773 {
774 struct type *mtype;
775
776 mtype = alloc_type_copy (to_type);
777 smash_to_methodptr_type (mtype, to_type);
778 return mtype;
779 }
780
781 /* Allocate a stub method whose return type is TYPE. This apparently
782 happens for speed of symbol reading, since parsing out the
783 arguments to the method is cpu-intensive, the way we are doing it.
784 So, we will fill in arguments later. This always returns a fresh
785 type. */
786
787 struct type *
788 allocate_stub_method (struct type *type)
789 {
790 struct type *mtype;
791
792 mtype = alloc_type_copy (type);
793 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
794 TYPE_LENGTH (mtype) = 1;
795 TYPE_STUB (mtype) = 1;
796 TYPE_TARGET_TYPE (mtype) = type;
797 /* _DOMAIN_TYPE (mtype) = unknown yet */
798 return mtype;
799 }
800
801 /* Create a range type with a dynamic range from LOW_BOUND to
802 HIGH_BOUND, inclusive. See create_range_type for further details. */
803
804 struct type *
805 create_range_type (struct type *result_type, struct type *index_type,
806 const struct dynamic_prop *low_bound,
807 const struct dynamic_prop *high_bound)
808 {
809 if (result_type == NULL)
810 result_type = alloc_type_copy (index_type);
811 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
812 TYPE_TARGET_TYPE (result_type) = index_type;
813 if (TYPE_STUB (index_type))
814 TYPE_TARGET_STUB (result_type) = 1;
815 else
816 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
817
818 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
819 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
820 TYPE_RANGE_DATA (result_type)->low = *low_bound;
821 TYPE_RANGE_DATA (result_type)->high = *high_bound;
822
823 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
824 TYPE_UNSIGNED (result_type) = 1;
825
826 return result_type;
827 }
828
829 /* Create a range type using either a blank type supplied in
830 RESULT_TYPE, or creating a new type, inheriting the objfile from
831 INDEX_TYPE.
832
833 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
834 to HIGH_BOUND, inclusive.
835
836 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
837 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
838
839 struct type *
840 create_static_range_type (struct type *result_type, struct type *index_type,
841 LONGEST low_bound, LONGEST high_bound)
842 {
843 struct dynamic_prop low, high;
844
845 low.kind = PROP_CONST;
846 low.data.const_val = low_bound;
847
848 high.kind = PROP_CONST;
849 high.data.const_val = high_bound;
850
851 result_type = create_range_type (result_type, index_type, &low, &high);
852
853 return result_type;
854 }
855
856 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
857 are static, otherwise returns 0. */
858
859 static int
860 has_static_range (const struct range_bounds *bounds)
861 {
862 return (bounds->low.kind == PROP_CONST
863 && bounds->high.kind == PROP_CONST);
864 }
865
866
867 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
868 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
869 bounds will fit in LONGEST), or -1 otherwise. */
870
871 int
872 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
873 {
874 CHECK_TYPEDEF (type);
875 switch (TYPE_CODE (type))
876 {
877 case TYPE_CODE_RANGE:
878 *lowp = TYPE_LOW_BOUND (type);
879 *highp = TYPE_HIGH_BOUND (type);
880 return 1;
881 case TYPE_CODE_ENUM:
882 if (TYPE_NFIELDS (type) > 0)
883 {
884 /* The enums may not be sorted by value, so search all
885 entries. */
886 int i;
887
888 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
889 for (i = 0; i < TYPE_NFIELDS (type); i++)
890 {
891 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
892 *lowp = TYPE_FIELD_ENUMVAL (type, i);
893 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
894 *highp = TYPE_FIELD_ENUMVAL (type, i);
895 }
896
897 /* Set unsigned indicator if warranted. */
898 if (*lowp >= 0)
899 {
900 TYPE_UNSIGNED (type) = 1;
901 }
902 }
903 else
904 {
905 *lowp = 0;
906 *highp = -1;
907 }
908 return 0;
909 case TYPE_CODE_BOOL:
910 *lowp = 0;
911 *highp = 1;
912 return 0;
913 case TYPE_CODE_INT:
914 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
915 return -1;
916 if (!TYPE_UNSIGNED (type))
917 {
918 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
919 *highp = -*lowp - 1;
920 return 0;
921 }
922 /* ... fall through for unsigned ints ... */
923 case TYPE_CODE_CHAR:
924 *lowp = 0;
925 /* This round-about calculation is to avoid shifting by
926 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
927 if TYPE_LENGTH (type) == sizeof (LONGEST). */
928 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
929 *highp = (*highp - 1) | *highp;
930 return 0;
931 default:
932 return -1;
933 }
934 }
935
936 /* Assuming TYPE is a simple, non-empty array type, compute its upper
937 and lower bound. Save the low bound into LOW_BOUND if not NULL.
938 Save the high bound into HIGH_BOUND if not NULL.
939
940 Return 1 if the operation was successful. Return zero otherwise,
941 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
942
943 We now simply use get_discrete_bounds call to get the values
944 of the low and high bounds.
945 get_discrete_bounds can return three values:
946 1, meaning that index is a range,
947 0, meaning that index is a discrete type,
948 or -1 for failure. */
949
950 int
951 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
952 {
953 struct type *index = TYPE_INDEX_TYPE (type);
954 LONGEST low = 0;
955 LONGEST high = 0;
956 int res;
957
958 if (index == NULL)
959 return 0;
960
961 res = get_discrete_bounds (index, &low, &high);
962 if (res == -1)
963 return 0;
964
965 /* Check if the array bounds are undefined. */
966 if (res == 1
967 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
968 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
969 return 0;
970
971 if (low_bound)
972 *low_bound = low;
973
974 if (high_bound)
975 *high_bound = high;
976
977 return 1;
978 }
979
980 /* Create an array type using either a blank type supplied in
981 RESULT_TYPE, or creating a new type, inheriting the objfile from
982 RANGE_TYPE.
983
984 Elements will be of type ELEMENT_TYPE, the indices will be of type
985 RANGE_TYPE.
986
987 If BIT_STRIDE is not zero, build a packed array type whose element
988 size is BIT_STRIDE. Otherwise, ignore this parameter.
989
990 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
991 sure it is TYPE_CODE_UNDEF before we bash it into an array
992 type? */
993
994 struct type *
995 create_array_type_with_stride (struct type *result_type,
996 struct type *element_type,
997 struct type *range_type,
998 unsigned int bit_stride)
999 {
1000 if (result_type == NULL)
1001 result_type = alloc_type_copy (range_type);
1002
1003 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1004 TYPE_TARGET_TYPE (result_type) = element_type;
1005 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1006 {
1007 LONGEST low_bound, high_bound;
1008
1009 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1010 low_bound = high_bound = 0;
1011 CHECK_TYPEDEF (element_type);
1012 /* Be careful when setting the array length. Ada arrays can be
1013 empty arrays with the high_bound being smaller than the low_bound.
1014 In such cases, the array length should be zero. */
1015 if (high_bound < low_bound)
1016 TYPE_LENGTH (result_type) = 0;
1017 else if (bit_stride > 0)
1018 TYPE_LENGTH (result_type) =
1019 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1020 else
1021 TYPE_LENGTH (result_type) =
1022 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1023 }
1024 else
1025 {
1026 /* This type is dynamic and its length needs to be computed
1027 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1028 undefined by setting it to zero. Although we are not expected
1029 to trust TYPE_LENGTH in this case, setting the size to zero
1030 allows us to avoid allocating objects of random sizes in case
1031 we accidently do. */
1032 TYPE_LENGTH (result_type) = 0;
1033 }
1034
1035 TYPE_NFIELDS (result_type) = 1;
1036 TYPE_FIELDS (result_type) =
1037 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1038 TYPE_INDEX_TYPE (result_type) = range_type;
1039 TYPE_VPTR_FIELDNO (result_type) = -1;
1040 if (bit_stride > 0)
1041 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1042
1043 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1044 if (TYPE_LENGTH (result_type) == 0)
1045 TYPE_TARGET_STUB (result_type) = 1;
1046
1047 return result_type;
1048 }
1049
1050 /* Same as create_array_type_with_stride but with no bit_stride
1051 (BIT_STRIDE = 0), thus building an unpacked array. */
1052
1053 struct type *
1054 create_array_type (struct type *result_type,
1055 struct type *element_type,
1056 struct type *range_type)
1057 {
1058 return create_array_type_with_stride (result_type, element_type,
1059 range_type, 0);
1060 }
1061
1062 struct type *
1063 lookup_array_range_type (struct type *element_type,
1064 LONGEST low_bound, LONGEST high_bound)
1065 {
1066 struct gdbarch *gdbarch = get_type_arch (element_type);
1067 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1068 struct type *range_type
1069 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1070
1071 return create_array_type (NULL, element_type, range_type);
1072 }
1073
1074 /* Create a string type using either a blank type supplied in
1075 RESULT_TYPE, or creating a new type. String types are similar
1076 enough to array of char types that we can use create_array_type to
1077 build the basic type and then bash it into a string type.
1078
1079 For fixed length strings, the range type contains 0 as the lower
1080 bound and the length of the string minus one as the upper bound.
1081
1082 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1083 sure it is TYPE_CODE_UNDEF before we bash it into a string
1084 type? */
1085
1086 struct type *
1087 create_string_type (struct type *result_type,
1088 struct type *string_char_type,
1089 struct type *range_type)
1090 {
1091 result_type = create_array_type (result_type,
1092 string_char_type,
1093 range_type);
1094 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1095 return result_type;
1096 }
1097
1098 struct type *
1099 lookup_string_range_type (struct type *string_char_type,
1100 LONGEST low_bound, LONGEST high_bound)
1101 {
1102 struct type *result_type;
1103
1104 result_type = lookup_array_range_type (string_char_type,
1105 low_bound, high_bound);
1106 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1107 return result_type;
1108 }
1109
1110 struct type *
1111 create_set_type (struct type *result_type, struct type *domain_type)
1112 {
1113 if (result_type == NULL)
1114 result_type = alloc_type_copy (domain_type);
1115
1116 TYPE_CODE (result_type) = TYPE_CODE_SET;
1117 TYPE_NFIELDS (result_type) = 1;
1118 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1119
1120 if (!TYPE_STUB (domain_type))
1121 {
1122 LONGEST low_bound, high_bound, bit_length;
1123
1124 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1125 low_bound = high_bound = 0;
1126 bit_length = high_bound - low_bound + 1;
1127 TYPE_LENGTH (result_type)
1128 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1129 if (low_bound >= 0)
1130 TYPE_UNSIGNED (result_type) = 1;
1131 }
1132 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1133
1134 return result_type;
1135 }
1136
1137 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1138 and any array types nested inside it. */
1139
1140 void
1141 make_vector_type (struct type *array_type)
1142 {
1143 struct type *inner_array, *elt_type;
1144 int flags;
1145
1146 /* Find the innermost array type, in case the array is
1147 multi-dimensional. */
1148 inner_array = array_type;
1149 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1150 inner_array = TYPE_TARGET_TYPE (inner_array);
1151
1152 elt_type = TYPE_TARGET_TYPE (inner_array);
1153 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1154 {
1155 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1156 elt_type = make_qualified_type (elt_type, flags, NULL);
1157 TYPE_TARGET_TYPE (inner_array) = elt_type;
1158 }
1159
1160 TYPE_VECTOR (array_type) = 1;
1161 }
1162
1163 struct type *
1164 init_vector_type (struct type *elt_type, int n)
1165 {
1166 struct type *array_type;
1167
1168 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1169 make_vector_type (array_type);
1170 return array_type;
1171 }
1172
1173 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1174 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1175 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1176 TYPE doesn't include the offset (that's the value of the MEMBER
1177 itself), but does include the structure type into which it points
1178 (for some reason).
1179
1180 When "smashing" the type, we preserve the objfile that the old type
1181 pointed to, since we aren't changing where the type is actually
1182 allocated. */
1183
1184 void
1185 smash_to_memberptr_type (struct type *type, struct type *domain,
1186 struct type *to_type)
1187 {
1188 smash_type (type);
1189 TYPE_TARGET_TYPE (type) = to_type;
1190 TYPE_DOMAIN_TYPE (type) = domain;
1191 /* Assume that a data member pointer is the same size as a normal
1192 pointer. */
1193 TYPE_LENGTH (type)
1194 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1195 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1196 }
1197
1198 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1199
1200 When "smashing" the type, we preserve the objfile that the old type
1201 pointed to, since we aren't changing where the type is actually
1202 allocated. */
1203
1204 void
1205 smash_to_methodptr_type (struct type *type, struct type *to_type)
1206 {
1207 smash_type (type);
1208 TYPE_TARGET_TYPE (type) = to_type;
1209 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1210 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1211 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1212 }
1213
1214 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1215 METHOD just means `function that gets an extra "this" argument'.
1216
1217 When "smashing" the type, we preserve the objfile that the old type
1218 pointed to, since we aren't changing where the type is actually
1219 allocated. */
1220
1221 void
1222 smash_to_method_type (struct type *type, struct type *domain,
1223 struct type *to_type, struct field *args,
1224 int nargs, int varargs)
1225 {
1226 smash_type (type);
1227 TYPE_TARGET_TYPE (type) = to_type;
1228 TYPE_DOMAIN_TYPE (type) = domain;
1229 TYPE_FIELDS (type) = args;
1230 TYPE_NFIELDS (type) = nargs;
1231 if (varargs)
1232 TYPE_VARARGS (type) = 1;
1233 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1234 TYPE_CODE (type) = TYPE_CODE_METHOD;
1235 }
1236
1237 /* Return a typename for a struct/union/enum type without "struct ",
1238 "union ", or "enum ". If the type has a NULL name, return NULL. */
1239
1240 const char *
1241 type_name_no_tag (const struct type *type)
1242 {
1243 if (TYPE_TAG_NAME (type) != NULL)
1244 return TYPE_TAG_NAME (type);
1245
1246 /* Is there code which expects this to return the name if there is
1247 no tag name? My guess is that this is mainly used for C++ in
1248 cases where the two will always be the same. */
1249 return TYPE_NAME (type);
1250 }
1251
1252 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1253 Since GCC PR debug/47510 DWARF provides associated information to detect the
1254 anonymous class linkage name from its typedef.
1255
1256 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1257 apply it itself. */
1258
1259 const char *
1260 type_name_no_tag_or_error (struct type *type)
1261 {
1262 struct type *saved_type = type;
1263 const char *name;
1264 struct objfile *objfile;
1265
1266 CHECK_TYPEDEF (type);
1267
1268 name = type_name_no_tag (type);
1269 if (name != NULL)
1270 return name;
1271
1272 name = type_name_no_tag (saved_type);
1273 objfile = TYPE_OBJFILE (saved_type);
1274 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1275 name ? name : "<anonymous>",
1276 objfile ? objfile_name (objfile) : "<arch>");
1277 }
1278
1279 /* Lookup a typedef or primitive type named NAME, visible in lexical
1280 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1281 suitably defined. */
1282
1283 struct type *
1284 lookup_typename (const struct language_defn *language,
1285 struct gdbarch *gdbarch, const char *name,
1286 const struct block *block, int noerr)
1287 {
1288 struct symbol *sym;
1289 struct type *type;
1290
1291 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1292 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1293 return SYMBOL_TYPE (sym);
1294
1295 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1296 if (type)
1297 return type;
1298
1299 if (noerr)
1300 return NULL;
1301 error (_("No type named %s."), name);
1302 }
1303
1304 struct type *
1305 lookup_unsigned_typename (const struct language_defn *language,
1306 struct gdbarch *gdbarch, const char *name)
1307 {
1308 char *uns = alloca (strlen (name) + 10);
1309
1310 strcpy (uns, "unsigned ");
1311 strcpy (uns + 9, name);
1312 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1313 }
1314
1315 struct type *
1316 lookup_signed_typename (const struct language_defn *language,
1317 struct gdbarch *gdbarch, const char *name)
1318 {
1319 struct type *t;
1320 char *uns = alloca (strlen (name) + 8);
1321
1322 strcpy (uns, "signed ");
1323 strcpy (uns + 7, name);
1324 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1325 /* If we don't find "signed FOO" just try again with plain "FOO". */
1326 if (t != NULL)
1327 return t;
1328 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1329 }
1330
1331 /* Lookup a structure type named "struct NAME",
1332 visible in lexical block BLOCK. */
1333
1334 struct type *
1335 lookup_struct (const char *name, const struct block *block)
1336 {
1337 struct symbol *sym;
1338
1339 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1340
1341 if (sym == NULL)
1342 {
1343 error (_("No struct type named %s."), name);
1344 }
1345 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1346 {
1347 error (_("This context has class, union or enum %s, not a struct."),
1348 name);
1349 }
1350 return (SYMBOL_TYPE (sym));
1351 }
1352
1353 /* Lookup a union type named "union NAME",
1354 visible in lexical block BLOCK. */
1355
1356 struct type *
1357 lookup_union (const char *name, const struct block *block)
1358 {
1359 struct symbol *sym;
1360 struct type *t;
1361
1362 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1363
1364 if (sym == NULL)
1365 error (_("No union type named %s."), name);
1366
1367 t = SYMBOL_TYPE (sym);
1368
1369 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1370 return t;
1371
1372 /* If we get here, it's not a union. */
1373 error (_("This context has class, struct or enum %s, not a union."),
1374 name);
1375 }
1376
1377 /* Lookup an enum type named "enum NAME",
1378 visible in lexical block BLOCK. */
1379
1380 struct type *
1381 lookup_enum (const char *name, const struct block *block)
1382 {
1383 struct symbol *sym;
1384
1385 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1386 if (sym == NULL)
1387 {
1388 error (_("No enum type named %s."), name);
1389 }
1390 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1391 {
1392 error (_("This context has class, struct or union %s, not an enum."),
1393 name);
1394 }
1395 return (SYMBOL_TYPE (sym));
1396 }
1397
1398 /* Lookup a template type named "template NAME<TYPE>",
1399 visible in lexical block BLOCK. */
1400
1401 struct type *
1402 lookup_template_type (char *name, struct type *type,
1403 const struct block *block)
1404 {
1405 struct symbol *sym;
1406 char *nam = (char *)
1407 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1408
1409 strcpy (nam, name);
1410 strcat (nam, "<");
1411 strcat (nam, TYPE_NAME (type));
1412 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1413
1414 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1415
1416 if (sym == NULL)
1417 {
1418 error (_("No template type named %s."), name);
1419 }
1420 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1421 {
1422 error (_("This context has class, union or enum %s, not a struct."),
1423 name);
1424 }
1425 return (SYMBOL_TYPE (sym));
1426 }
1427
1428 /* Given a type TYPE, lookup the type of the component of type named
1429 NAME.
1430
1431 TYPE can be either a struct or union, or a pointer or reference to
1432 a struct or union. If it is a pointer or reference, its target
1433 type is automatically used. Thus '.' and '->' are interchangable,
1434 as specified for the definitions of the expression element types
1435 STRUCTOP_STRUCT and STRUCTOP_PTR.
1436
1437 If NOERR is nonzero, return zero if NAME is not suitably defined.
1438 If NAME is the name of a baseclass type, return that type. */
1439
1440 struct type *
1441 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1442 {
1443 int i;
1444 char *typename;
1445
1446 for (;;)
1447 {
1448 CHECK_TYPEDEF (type);
1449 if (TYPE_CODE (type) != TYPE_CODE_PTR
1450 && TYPE_CODE (type) != TYPE_CODE_REF)
1451 break;
1452 type = TYPE_TARGET_TYPE (type);
1453 }
1454
1455 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1456 && TYPE_CODE (type) != TYPE_CODE_UNION)
1457 {
1458 typename = type_to_string (type);
1459 make_cleanup (xfree, typename);
1460 error (_("Type %s is not a structure or union type."), typename);
1461 }
1462
1463 #if 0
1464 /* FIXME: This change put in by Michael seems incorrect for the case
1465 where the structure tag name is the same as the member name.
1466 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1467 foo; } bell;" Disabled by fnf. */
1468 {
1469 char *typename;
1470
1471 typename = type_name_no_tag (type);
1472 if (typename != NULL && strcmp (typename, name) == 0)
1473 return type;
1474 }
1475 #endif
1476
1477 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1478 {
1479 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1480
1481 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1482 {
1483 return TYPE_FIELD_TYPE (type, i);
1484 }
1485 else if (!t_field_name || *t_field_name == '\0')
1486 {
1487 struct type *subtype
1488 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1489
1490 if (subtype != NULL)
1491 return subtype;
1492 }
1493 }
1494
1495 /* OK, it's not in this class. Recursively check the baseclasses. */
1496 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1497 {
1498 struct type *t;
1499
1500 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1501 if (t != NULL)
1502 {
1503 return t;
1504 }
1505 }
1506
1507 if (noerr)
1508 {
1509 return NULL;
1510 }
1511
1512 typename = type_to_string (type);
1513 make_cleanup (xfree, typename);
1514 error (_("Type %s has no component named %s."), typename, name);
1515 }
1516
1517 /* Store in *MAX the largest number representable by unsigned integer type
1518 TYPE. */
1519
1520 void
1521 get_unsigned_type_max (struct type *type, ULONGEST *max)
1522 {
1523 unsigned int n;
1524
1525 CHECK_TYPEDEF (type);
1526 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1527 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1528
1529 /* Written this way to avoid overflow. */
1530 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1531 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1532 }
1533
1534 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1535 signed integer type TYPE. */
1536
1537 void
1538 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1539 {
1540 unsigned int n;
1541
1542 CHECK_TYPEDEF (type);
1543 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1544 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1545
1546 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1547 *min = -((ULONGEST) 1 << (n - 1));
1548 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1549 }
1550
1551 /* Lookup the vptr basetype/fieldno values for TYPE.
1552 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1553 vptr_fieldno. Also, if found and basetype is from the same objfile,
1554 cache the results.
1555 If not found, return -1 and ignore BASETYPEP.
1556 Callers should be aware that in some cases (for example,
1557 the type or one of its baseclasses is a stub type and we are
1558 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1559 this function will not be able to find the
1560 virtual function table pointer, and vptr_fieldno will remain -1 and
1561 vptr_basetype will remain NULL or incomplete. */
1562
1563 int
1564 get_vptr_fieldno (struct type *type, struct type **basetypep)
1565 {
1566 CHECK_TYPEDEF (type);
1567
1568 if (TYPE_VPTR_FIELDNO (type) < 0)
1569 {
1570 int i;
1571
1572 /* We must start at zero in case the first (and only) baseclass
1573 is virtual (and hence we cannot share the table pointer). */
1574 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1575 {
1576 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1577 int fieldno;
1578 struct type *basetype;
1579
1580 fieldno = get_vptr_fieldno (baseclass, &basetype);
1581 if (fieldno >= 0)
1582 {
1583 /* If the type comes from a different objfile we can't cache
1584 it, it may have a different lifetime. PR 2384 */
1585 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1586 {
1587 TYPE_VPTR_FIELDNO (type) = fieldno;
1588 TYPE_VPTR_BASETYPE (type) = basetype;
1589 }
1590 if (basetypep)
1591 *basetypep = basetype;
1592 return fieldno;
1593 }
1594 }
1595
1596 /* Not found. */
1597 return -1;
1598 }
1599 else
1600 {
1601 if (basetypep)
1602 *basetypep = TYPE_VPTR_BASETYPE (type);
1603 return TYPE_VPTR_FIELDNO (type);
1604 }
1605 }
1606
1607 static void
1608 stub_noname_complaint (void)
1609 {
1610 complaint (&symfile_complaints, _("stub type has NULL name"));
1611 }
1612
1613 /* See gdbtypes.h. */
1614
1615 int
1616 is_dynamic_type (struct type *type)
1617 {
1618 type = check_typedef (type);
1619
1620 if (TYPE_CODE (type) == TYPE_CODE_REF)
1621 type = check_typedef (TYPE_TARGET_TYPE (type));
1622
1623 switch (TYPE_CODE (type))
1624 {
1625 case TYPE_CODE_ARRAY:
1626 {
1627 const struct type *range_type;
1628
1629 gdb_assert (TYPE_NFIELDS (type) == 1);
1630 range_type = TYPE_INDEX_TYPE (type);
1631 if (!has_static_range (TYPE_RANGE_DATA (range_type)))
1632 return 1;
1633 else
1634 return is_dynamic_type (TYPE_TARGET_TYPE (type));
1635 break;
1636 }
1637 default:
1638 return 0;
1639 break;
1640 }
1641 }
1642
1643 /* Resolves dynamic bound values of an array type TYPE to static ones.
1644 ADDRESS might be needed to resolve the subrange bounds, it is the location
1645 of the associated array. */
1646
1647 static struct type *
1648 resolve_dynamic_bounds (struct type *type, CORE_ADDR addr)
1649 {
1650 CORE_ADDR value;
1651 struct type *elt_type;
1652 struct type *range_type;
1653 struct type *ary_dim;
1654 const struct dynamic_prop *prop;
1655 const struct dwarf2_locexpr_baton *baton;
1656 struct dynamic_prop low_bound, high_bound;
1657
1658 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1659 {
1660 struct type *copy = copy_type (type);
1661
1662 TYPE_TARGET_TYPE (copy)
1663 = resolve_dynamic_bounds (TYPE_TARGET_TYPE (type), addr);
1664
1665 return copy;
1666 }
1667
1668 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1669
1670 elt_type = type;
1671 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1672
1673 prop = &TYPE_RANGE_DATA (range_type)->low;
1674 if (dwarf2_evaluate_property (prop, addr, &value))
1675 {
1676 low_bound.kind = PROP_CONST;
1677 low_bound.data.const_val = value;
1678 }
1679 else
1680 {
1681 low_bound.kind = PROP_UNDEFINED;
1682 low_bound.data.const_val = 0;
1683 }
1684
1685 prop = &TYPE_RANGE_DATA (range_type)->high;
1686 if (dwarf2_evaluate_property (prop, addr, &value))
1687 {
1688 high_bound.kind = PROP_CONST;
1689 high_bound.data.const_val = value;
1690
1691 if (TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count)
1692 high_bound.data.const_val
1693 = low_bound.data.const_val + high_bound.data.const_val - 1;
1694 }
1695 else
1696 {
1697 high_bound.kind = PROP_UNDEFINED;
1698 high_bound.data.const_val = 0;
1699 }
1700
1701 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1702
1703 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1704 elt_type = resolve_dynamic_bounds (TYPE_TARGET_TYPE (type), addr);
1705 else
1706 elt_type = TYPE_TARGET_TYPE (type);
1707
1708 range_type = create_range_type (NULL,
1709 TYPE_TARGET_TYPE (range_type),
1710 &low_bound, &high_bound);
1711 return create_array_type (copy_type (type),
1712 elt_type,
1713 range_type);
1714 }
1715
1716 /* See gdbtypes.h */
1717
1718 struct type *
1719 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1720 {
1721 struct type *real_type = check_typedef (type);
1722 struct type *resolved_type;
1723
1724 if (!is_dynamic_type (real_type))
1725 return type;
1726
1727 resolved_type = resolve_dynamic_bounds (type, addr);
1728
1729 return resolved_type;
1730 }
1731
1732 /* Find the real type of TYPE. This function returns the real type,
1733 after removing all layers of typedefs, and completing opaque or stub
1734 types. Completion changes the TYPE argument, but stripping of
1735 typedefs does not.
1736
1737 Instance flags (e.g. const/volatile) are preserved as typedefs are
1738 stripped. If necessary a new qualified form of the underlying type
1739 is created.
1740
1741 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1742 not been computed and we're either in the middle of reading symbols, or
1743 there was no name for the typedef in the debug info.
1744
1745 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1746 QUITs in the symbol reading code can also throw.
1747 Thus this function can throw an exception.
1748
1749 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1750 the target type.
1751
1752 If this is a stubbed struct (i.e. declared as struct foo *), see if
1753 we can find a full definition in some other file. If so, copy this
1754 definition, so we can use it in future. There used to be a comment
1755 (but not any code) that if we don't find a full definition, we'd
1756 set a flag so we don't spend time in the future checking the same
1757 type. That would be a mistake, though--we might load in more
1758 symbols which contain a full definition for the type. */
1759
1760 struct type *
1761 check_typedef (struct type *type)
1762 {
1763 struct type *orig_type = type;
1764 /* While we're removing typedefs, we don't want to lose qualifiers.
1765 E.g., const/volatile. */
1766 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1767
1768 gdb_assert (type);
1769
1770 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1771 {
1772 if (!TYPE_TARGET_TYPE (type))
1773 {
1774 const char *name;
1775 struct symbol *sym;
1776
1777 /* It is dangerous to call lookup_symbol if we are currently
1778 reading a symtab. Infinite recursion is one danger. */
1779 if (currently_reading_symtab)
1780 return make_qualified_type (type, instance_flags, NULL);
1781
1782 name = type_name_no_tag (type);
1783 /* FIXME: shouldn't we separately check the TYPE_NAME and
1784 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1785 VAR_DOMAIN as appropriate? (this code was written before
1786 TYPE_NAME and TYPE_TAG_NAME were separate). */
1787 if (name == NULL)
1788 {
1789 stub_noname_complaint ();
1790 return make_qualified_type (type, instance_flags, NULL);
1791 }
1792 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1793 if (sym)
1794 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1795 else /* TYPE_CODE_UNDEF */
1796 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1797 }
1798 type = TYPE_TARGET_TYPE (type);
1799
1800 /* Preserve the instance flags as we traverse down the typedef chain.
1801
1802 Handling address spaces/classes is nasty, what do we do if there's a
1803 conflict?
1804 E.g., what if an outer typedef marks the type as class_1 and an inner
1805 typedef marks the type as class_2?
1806 This is the wrong place to do such error checking. We leave it to
1807 the code that created the typedef in the first place to flag the
1808 error. We just pick the outer address space (akin to letting the
1809 outer cast in a chain of casting win), instead of assuming
1810 "it can't happen". */
1811 {
1812 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1813 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1814 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1815 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1816
1817 /* Treat code vs data spaces and address classes separately. */
1818 if ((instance_flags & ALL_SPACES) != 0)
1819 new_instance_flags &= ~ALL_SPACES;
1820 if ((instance_flags & ALL_CLASSES) != 0)
1821 new_instance_flags &= ~ALL_CLASSES;
1822
1823 instance_flags |= new_instance_flags;
1824 }
1825 }
1826
1827 /* If this is a struct/class/union with no fields, then check
1828 whether a full definition exists somewhere else. This is for
1829 systems where a type definition with no fields is issued for such
1830 types, instead of identifying them as stub types in the first
1831 place. */
1832
1833 if (TYPE_IS_OPAQUE (type)
1834 && opaque_type_resolution
1835 && !currently_reading_symtab)
1836 {
1837 const char *name = type_name_no_tag (type);
1838 struct type *newtype;
1839
1840 if (name == NULL)
1841 {
1842 stub_noname_complaint ();
1843 return make_qualified_type (type, instance_flags, NULL);
1844 }
1845 newtype = lookup_transparent_type (name);
1846
1847 if (newtype)
1848 {
1849 /* If the resolved type and the stub are in the same
1850 objfile, then replace the stub type with the real deal.
1851 But if they're in separate objfiles, leave the stub
1852 alone; we'll just look up the transparent type every time
1853 we call check_typedef. We can't create pointers between
1854 types allocated to different objfiles, since they may
1855 have different lifetimes. Trying to copy NEWTYPE over to
1856 TYPE's objfile is pointless, too, since you'll have to
1857 move over any other types NEWTYPE refers to, which could
1858 be an unbounded amount of stuff. */
1859 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1860 type = make_qualified_type (newtype,
1861 TYPE_INSTANCE_FLAGS (type),
1862 type);
1863 else
1864 type = newtype;
1865 }
1866 }
1867 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1868 types. */
1869 else if (TYPE_STUB (type) && !currently_reading_symtab)
1870 {
1871 const char *name = type_name_no_tag (type);
1872 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1873 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1874 as appropriate? (this code was written before TYPE_NAME and
1875 TYPE_TAG_NAME were separate). */
1876 struct symbol *sym;
1877
1878 if (name == NULL)
1879 {
1880 stub_noname_complaint ();
1881 return make_qualified_type (type, instance_flags, NULL);
1882 }
1883 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1884 if (sym)
1885 {
1886 /* Same as above for opaque types, we can replace the stub
1887 with the complete type only if they are in the same
1888 objfile. */
1889 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1890 type = make_qualified_type (SYMBOL_TYPE (sym),
1891 TYPE_INSTANCE_FLAGS (type),
1892 type);
1893 else
1894 type = SYMBOL_TYPE (sym);
1895 }
1896 }
1897
1898 if (TYPE_TARGET_STUB (type))
1899 {
1900 struct type *range_type;
1901 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1902
1903 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1904 {
1905 /* Nothing we can do. */
1906 }
1907 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1908 {
1909 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1910 TYPE_TARGET_STUB (type) = 0;
1911 }
1912 }
1913
1914 type = make_qualified_type (type, instance_flags, NULL);
1915
1916 /* Cache TYPE_LENGTH for future use. */
1917 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1918
1919 return type;
1920 }
1921
1922 /* Parse a type expression in the string [P..P+LENGTH). If an error
1923 occurs, silently return a void type. */
1924
1925 static struct type *
1926 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1927 {
1928 struct ui_file *saved_gdb_stderr;
1929 struct type *type = NULL; /* Initialize to keep gcc happy. */
1930 volatile struct gdb_exception except;
1931
1932 /* Suppress error messages. */
1933 saved_gdb_stderr = gdb_stderr;
1934 gdb_stderr = ui_file_new ();
1935
1936 /* Call parse_and_eval_type() without fear of longjmp()s. */
1937 TRY_CATCH (except, RETURN_MASK_ERROR)
1938 {
1939 type = parse_and_eval_type (p, length);
1940 }
1941
1942 if (except.reason < 0)
1943 type = builtin_type (gdbarch)->builtin_void;
1944
1945 /* Stop suppressing error messages. */
1946 ui_file_delete (gdb_stderr);
1947 gdb_stderr = saved_gdb_stderr;
1948
1949 return type;
1950 }
1951
1952 /* Ugly hack to convert method stubs into method types.
1953
1954 He ain't kiddin'. This demangles the name of the method into a
1955 string including argument types, parses out each argument type,
1956 generates a string casting a zero to that type, evaluates the
1957 string, and stuffs the resulting type into an argtype vector!!!
1958 Then it knows the type of the whole function (including argument
1959 types for overloading), which info used to be in the stab's but was
1960 removed to hack back the space required for them. */
1961
1962 static void
1963 check_stub_method (struct type *type, int method_id, int signature_id)
1964 {
1965 struct gdbarch *gdbarch = get_type_arch (type);
1966 struct fn_field *f;
1967 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1968 char *demangled_name = gdb_demangle (mangled_name,
1969 DMGL_PARAMS | DMGL_ANSI);
1970 char *argtypetext, *p;
1971 int depth = 0, argcount = 1;
1972 struct field *argtypes;
1973 struct type *mtype;
1974
1975 /* Make sure we got back a function string that we can use. */
1976 if (demangled_name)
1977 p = strchr (demangled_name, '(');
1978 else
1979 p = NULL;
1980
1981 if (demangled_name == NULL || p == NULL)
1982 error (_("Internal: Cannot demangle mangled name `%s'."),
1983 mangled_name);
1984
1985 /* Now, read in the parameters that define this type. */
1986 p += 1;
1987 argtypetext = p;
1988 while (*p)
1989 {
1990 if (*p == '(' || *p == '<')
1991 {
1992 depth += 1;
1993 }
1994 else if (*p == ')' || *p == '>')
1995 {
1996 depth -= 1;
1997 }
1998 else if (*p == ',' && depth == 0)
1999 {
2000 argcount += 1;
2001 }
2002
2003 p += 1;
2004 }
2005
2006 /* If we read one argument and it was ``void'', don't count it. */
2007 if (strncmp (argtypetext, "(void)", 6) == 0)
2008 argcount -= 1;
2009
2010 /* We need one extra slot, for the THIS pointer. */
2011
2012 argtypes = (struct field *)
2013 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2014 p = argtypetext;
2015
2016 /* Add THIS pointer for non-static methods. */
2017 f = TYPE_FN_FIELDLIST1 (type, method_id);
2018 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2019 argcount = 0;
2020 else
2021 {
2022 argtypes[0].type = lookup_pointer_type (type);
2023 argcount = 1;
2024 }
2025
2026 if (*p != ')') /* () means no args, skip while. */
2027 {
2028 depth = 0;
2029 while (*p)
2030 {
2031 if (depth <= 0 && (*p == ',' || *p == ')'))
2032 {
2033 /* Avoid parsing of ellipsis, they will be handled below.
2034 Also avoid ``void'' as above. */
2035 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2036 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2037 {
2038 argtypes[argcount].type =
2039 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2040 argcount += 1;
2041 }
2042 argtypetext = p + 1;
2043 }
2044
2045 if (*p == '(' || *p == '<')
2046 {
2047 depth += 1;
2048 }
2049 else if (*p == ')' || *p == '>')
2050 {
2051 depth -= 1;
2052 }
2053
2054 p += 1;
2055 }
2056 }
2057
2058 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2059
2060 /* Now update the old "stub" type into a real type. */
2061 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2062 TYPE_DOMAIN_TYPE (mtype) = type;
2063 TYPE_FIELDS (mtype) = argtypes;
2064 TYPE_NFIELDS (mtype) = argcount;
2065 TYPE_STUB (mtype) = 0;
2066 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2067 if (p[-2] == '.')
2068 TYPE_VARARGS (mtype) = 1;
2069
2070 xfree (demangled_name);
2071 }
2072
2073 /* This is the external interface to check_stub_method, above. This
2074 function unstubs all of the signatures for TYPE's METHOD_ID method
2075 name. After calling this function TYPE_FN_FIELD_STUB will be
2076 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2077 correct.
2078
2079 This function unfortunately can not die until stabs do. */
2080
2081 void
2082 check_stub_method_group (struct type *type, int method_id)
2083 {
2084 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2085 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2086 int j, found_stub = 0;
2087
2088 for (j = 0; j < len; j++)
2089 if (TYPE_FN_FIELD_STUB (f, j))
2090 {
2091 found_stub = 1;
2092 check_stub_method (type, method_id, j);
2093 }
2094
2095 /* GNU v3 methods with incorrect names were corrected when we read
2096 in type information, because it was cheaper to do it then. The
2097 only GNU v2 methods with incorrect method names are operators and
2098 destructors; destructors were also corrected when we read in type
2099 information.
2100
2101 Therefore the only thing we need to handle here are v2 operator
2102 names. */
2103 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2104 {
2105 int ret;
2106 char dem_opname[256];
2107
2108 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2109 method_id),
2110 dem_opname, DMGL_ANSI);
2111 if (!ret)
2112 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2113 method_id),
2114 dem_opname, 0);
2115 if (ret)
2116 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2117 }
2118 }
2119
2120 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2121 const struct cplus_struct_type cplus_struct_default = { };
2122
2123 void
2124 allocate_cplus_struct_type (struct type *type)
2125 {
2126 if (HAVE_CPLUS_STRUCT (type))
2127 /* Structure was already allocated. Nothing more to do. */
2128 return;
2129
2130 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2131 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2132 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2133 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2134 }
2135
2136 const struct gnat_aux_type gnat_aux_default =
2137 { NULL };
2138
2139 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2140 and allocate the associated gnat-specific data. The gnat-specific
2141 data is also initialized to gnat_aux_default. */
2142
2143 void
2144 allocate_gnat_aux_type (struct type *type)
2145 {
2146 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2147 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2148 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2149 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2150 }
2151
2152 /* Helper function to initialize the standard scalar types.
2153
2154 If NAME is non-NULL, then it is used to initialize the type name.
2155 Note that NAME is not copied; it is required to have a lifetime at
2156 least as long as OBJFILE. */
2157
2158 struct type *
2159 init_type (enum type_code code, int length, int flags,
2160 const char *name, struct objfile *objfile)
2161 {
2162 struct type *type;
2163
2164 type = alloc_type (objfile);
2165 TYPE_CODE (type) = code;
2166 TYPE_LENGTH (type) = length;
2167
2168 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2169 if (flags & TYPE_FLAG_UNSIGNED)
2170 TYPE_UNSIGNED (type) = 1;
2171 if (flags & TYPE_FLAG_NOSIGN)
2172 TYPE_NOSIGN (type) = 1;
2173 if (flags & TYPE_FLAG_STUB)
2174 TYPE_STUB (type) = 1;
2175 if (flags & TYPE_FLAG_TARGET_STUB)
2176 TYPE_TARGET_STUB (type) = 1;
2177 if (flags & TYPE_FLAG_STATIC)
2178 TYPE_STATIC (type) = 1;
2179 if (flags & TYPE_FLAG_PROTOTYPED)
2180 TYPE_PROTOTYPED (type) = 1;
2181 if (flags & TYPE_FLAG_INCOMPLETE)
2182 TYPE_INCOMPLETE (type) = 1;
2183 if (flags & TYPE_FLAG_VARARGS)
2184 TYPE_VARARGS (type) = 1;
2185 if (flags & TYPE_FLAG_VECTOR)
2186 TYPE_VECTOR (type) = 1;
2187 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2188 TYPE_STUB_SUPPORTED (type) = 1;
2189 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2190 TYPE_FIXED_INSTANCE (type) = 1;
2191 if (flags & TYPE_FLAG_GNU_IFUNC)
2192 TYPE_GNU_IFUNC (type) = 1;
2193
2194 TYPE_NAME (type) = name;
2195
2196 /* C++ fancies. */
2197
2198 if (name && strcmp (name, "char") == 0)
2199 TYPE_NOSIGN (type) = 1;
2200
2201 switch (code)
2202 {
2203 case TYPE_CODE_STRUCT:
2204 case TYPE_CODE_UNION:
2205 case TYPE_CODE_NAMESPACE:
2206 INIT_CPLUS_SPECIFIC (type);
2207 break;
2208 case TYPE_CODE_FLT:
2209 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2210 break;
2211 case TYPE_CODE_FUNC:
2212 INIT_FUNC_SPECIFIC (type);
2213 break;
2214 }
2215 return type;
2216 }
2217 \f
2218 /* Queries on types. */
2219
2220 int
2221 can_dereference (struct type *t)
2222 {
2223 /* FIXME: Should we return true for references as well as
2224 pointers? */
2225 CHECK_TYPEDEF (t);
2226 return
2227 (t != NULL
2228 && TYPE_CODE (t) == TYPE_CODE_PTR
2229 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2230 }
2231
2232 int
2233 is_integral_type (struct type *t)
2234 {
2235 CHECK_TYPEDEF (t);
2236 return
2237 ((t != NULL)
2238 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2239 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2240 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2241 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2242 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2243 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2244 }
2245
2246 /* Return true if TYPE is scalar. */
2247
2248 static int
2249 is_scalar_type (struct type *type)
2250 {
2251 CHECK_TYPEDEF (type);
2252
2253 switch (TYPE_CODE (type))
2254 {
2255 case TYPE_CODE_ARRAY:
2256 case TYPE_CODE_STRUCT:
2257 case TYPE_CODE_UNION:
2258 case TYPE_CODE_SET:
2259 case TYPE_CODE_STRING:
2260 return 0;
2261 default:
2262 return 1;
2263 }
2264 }
2265
2266 /* Return true if T is scalar, or a composite type which in practice has
2267 the memory layout of a scalar type. E.g., an array or struct with only
2268 one scalar element inside it, or a union with only scalar elements. */
2269
2270 int
2271 is_scalar_type_recursive (struct type *t)
2272 {
2273 CHECK_TYPEDEF (t);
2274
2275 if (is_scalar_type (t))
2276 return 1;
2277 /* Are we dealing with an array or string of known dimensions? */
2278 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2279 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2280 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2281 {
2282 LONGEST low_bound, high_bound;
2283 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2284
2285 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2286
2287 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2288 }
2289 /* Are we dealing with a struct with one element? */
2290 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2291 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2292 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2293 {
2294 int i, n = TYPE_NFIELDS (t);
2295
2296 /* If all elements of the union are scalar, then the union is scalar. */
2297 for (i = 0; i < n; i++)
2298 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2299 return 0;
2300
2301 return 1;
2302 }
2303
2304 return 0;
2305 }
2306
2307 /* A helper function which returns true if types A and B represent the
2308 "same" class type. This is true if the types have the same main
2309 type, or the same name. */
2310
2311 int
2312 class_types_same_p (const struct type *a, const struct type *b)
2313 {
2314 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2315 || (TYPE_NAME (a) && TYPE_NAME (b)
2316 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2317 }
2318
2319 /* If BASE is an ancestor of DCLASS return the distance between them.
2320 otherwise return -1;
2321 eg:
2322
2323 class A {};
2324 class B: public A {};
2325 class C: public B {};
2326 class D: C {};
2327
2328 distance_to_ancestor (A, A, 0) = 0
2329 distance_to_ancestor (A, B, 0) = 1
2330 distance_to_ancestor (A, C, 0) = 2
2331 distance_to_ancestor (A, D, 0) = 3
2332
2333 If PUBLIC is 1 then only public ancestors are considered,
2334 and the function returns the distance only if BASE is a public ancestor
2335 of DCLASS.
2336 Eg:
2337
2338 distance_to_ancestor (A, D, 1) = -1. */
2339
2340 static int
2341 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2342 {
2343 int i;
2344 int d;
2345
2346 CHECK_TYPEDEF (base);
2347 CHECK_TYPEDEF (dclass);
2348
2349 if (class_types_same_p (base, dclass))
2350 return 0;
2351
2352 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2353 {
2354 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2355 continue;
2356
2357 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2358 if (d >= 0)
2359 return 1 + d;
2360 }
2361
2362 return -1;
2363 }
2364
2365 /* Check whether BASE is an ancestor or base class or DCLASS
2366 Return 1 if so, and 0 if not.
2367 Note: If BASE and DCLASS are of the same type, this function
2368 will return 1. So for some class A, is_ancestor (A, A) will
2369 return 1. */
2370
2371 int
2372 is_ancestor (struct type *base, struct type *dclass)
2373 {
2374 return distance_to_ancestor (base, dclass, 0) >= 0;
2375 }
2376
2377 /* Like is_ancestor, but only returns true when BASE is a public
2378 ancestor of DCLASS. */
2379
2380 int
2381 is_public_ancestor (struct type *base, struct type *dclass)
2382 {
2383 return distance_to_ancestor (base, dclass, 1) >= 0;
2384 }
2385
2386 /* A helper function for is_unique_ancestor. */
2387
2388 static int
2389 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2390 int *offset,
2391 const gdb_byte *valaddr, int embedded_offset,
2392 CORE_ADDR address, struct value *val)
2393 {
2394 int i, count = 0;
2395
2396 CHECK_TYPEDEF (base);
2397 CHECK_TYPEDEF (dclass);
2398
2399 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2400 {
2401 struct type *iter;
2402 int this_offset;
2403
2404 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2405
2406 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2407 address, val);
2408
2409 if (class_types_same_p (base, iter))
2410 {
2411 /* If this is the first subclass, set *OFFSET and set count
2412 to 1. Otherwise, if this is at the same offset as
2413 previous instances, do nothing. Otherwise, increment
2414 count. */
2415 if (*offset == -1)
2416 {
2417 *offset = this_offset;
2418 count = 1;
2419 }
2420 else if (this_offset == *offset)
2421 {
2422 /* Nothing. */
2423 }
2424 else
2425 ++count;
2426 }
2427 else
2428 count += is_unique_ancestor_worker (base, iter, offset,
2429 valaddr,
2430 embedded_offset + this_offset,
2431 address, val);
2432 }
2433
2434 return count;
2435 }
2436
2437 /* Like is_ancestor, but only returns true if BASE is a unique base
2438 class of the type of VAL. */
2439
2440 int
2441 is_unique_ancestor (struct type *base, struct value *val)
2442 {
2443 int offset = -1;
2444
2445 return is_unique_ancestor_worker (base, value_type (val), &offset,
2446 value_contents_for_printing (val),
2447 value_embedded_offset (val),
2448 value_address (val), val) == 1;
2449 }
2450
2451 \f
2452 /* Overload resolution. */
2453
2454 /* Return the sum of the rank of A with the rank of B. */
2455
2456 struct rank
2457 sum_ranks (struct rank a, struct rank b)
2458 {
2459 struct rank c;
2460 c.rank = a.rank + b.rank;
2461 c.subrank = a.subrank + b.subrank;
2462 return c;
2463 }
2464
2465 /* Compare rank A and B and return:
2466 0 if a = b
2467 1 if a is better than b
2468 -1 if b is better than a. */
2469
2470 int
2471 compare_ranks (struct rank a, struct rank b)
2472 {
2473 if (a.rank == b.rank)
2474 {
2475 if (a.subrank == b.subrank)
2476 return 0;
2477 if (a.subrank < b.subrank)
2478 return 1;
2479 if (a.subrank > b.subrank)
2480 return -1;
2481 }
2482
2483 if (a.rank < b.rank)
2484 return 1;
2485
2486 /* a.rank > b.rank */
2487 return -1;
2488 }
2489
2490 /* Functions for overload resolution begin here. */
2491
2492 /* Compare two badness vectors A and B and return the result.
2493 0 => A and B are identical
2494 1 => A and B are incomparable
2495 2 => A is better than B
2496 3 => A is worse than B */
2497
2498 int
2499 compare_badness (struct badness_vector *a, struct badness_vector *b)
2500 {
2501 int i;
2502 int tmp;
2503 short found_pos = 0; /* any positives in c? */
2504 short found_neg = 0; /* any negatives in c? */
2505
2506 /* differing lengths => incomparable */
2507 if (a->length != b->length)
2508 return 1;
2509
2510 /* Subtract b from a */
2511 for (i = 0; i < a->length; i++)
2512 {
2513 tmp = compare_ranks (b->rank[i], a->rank[i]);
2514 if (tmp > 0)
2515 found_pos = 1;
2516 else if (tmp < 0)
2517 found_neg = 1;
2518 }
2519
2520 if (found_pos)
2521 {
2522 if (found_neg)
2523 return 1; /* incomparable */
2524 else
2525 return 3; /* A > B */
2526 }
2527 else
2528 /* no positives */
2529 {
2530 if (found_neg)
2531 return 2; /* A < B */
2532 else
2533 return 0; /* A == B */
2534 }
2535 }
2536
2537 /* Rank a function by comparing its parameter types (PARMS, length
2538 NPARMS), to the types of an argument list (ARGS, length NARGS).
2539 Return a pointer to a badness vector. This has NARGS + 1
2540 entries. */
2541
2542 struct badness_vector *
2543 rank_function (struct type **parms, int nparms,
2544 struct value **args, int nargs)
2545 {
2546 int i;
2547 struct badness_vector *bv;
2548 int min_len = nparms < nargs ? nparms : nargs;
2549
2550 bv = xmalloc (sizeof (struct badness_vector));
2551 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2552 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2553
2554 /* First compare the lengths of the supplied lists.
2555 If there is a mismatch, set it to a high value. */
2556
2557 /* pai/1997-06-03 FIXME: when we have debug info about default
2558 arguments and ellipsis parameter lists, we should consider those
2559 and rank the length-match more finely. */
2560
2561 LENGTH_MATCH (bv) = (nargs != nparms)
2562 ? LENGTH_MISMATCH_BADNESS
2563 : EXACT_MATCH_BADNESS;
2564
2565 /* Now rank all the parameters of the candidate function. */
2566 for (i = 1; i <= min_len; i++)
2567 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2568 args[i - 1]);
2569
2570 /* If more arguments than parameters, add dummy entries. */
2571 for (i = min_len + 1; i <= nargs; i++)
2572 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2573
2574 return bv;
2575 }
2576
2577 /* Compare the names of two integer types, assuming that any sign
2578 qualifiers have been checked already. We do it this way because
2579 there may be an "int" in the name of one of the types. */
2580
2581 static int
2582 integer_types_same_name_p (const char *first, const char *second)
2583 {
2584 int first_p, second_p;
2585
2586 /* If both are shorts, return 1; if neither is a short, keep
2587 checking. */
2588 first_p = (strstr (first, "short") != NULL);
2589 second_p = (strstr (second, "short") != NULL);
2590 if (first_p && second_p)
2591 return 1;
2592 if (first_p || second_p)
2593 return 0;
2594
2595 /* Likewise for long. */
2596 first_p = (strstr (first, "long") != NULL);
2597 second_p = (strstr (second, "long") != NULL);
2598 if (first_p && second_p)
2599 return 1;
2600 if (first_p || second_p)
2601 return 0;
2602
2603 /* Likewise for char. */
2604 first_p = (strstr (first, "char") != NULL);
2605 second_p = (strstr (second, "char") != NULL);
2606 if (first_p && second_p)
2607 return 1;
2608 if (first_p || second_p)
2609 return 0;
2610
2611 /* They must both be ints. */
2612 return 1;
2613 }
2614
2615 /* Compares type A to type B returns 1 if the represent the same type
2616 0 otherwise. */
2617
2618 int
2619 types_equal (struct type *a, struct type *b)
2620 {
2621 /* Identical type pointers. */
2622 /* However, this still doesn't catch all cases of same type for b
2623 and a. The reason is that builtin types are different from
2624 the same ones constructed from the object. */
2625 if (a == b)
2626 return 1;
2627
2628 /* Resolve typedefs */
2629 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2630 a = check_typedef (a);
2631 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2632 b = check_typedef (b);
2633
2634 /* If after resolving typedefs a and b are not of the same type
2635 code then they are not equal. */
2636 if (TYPE_CODE (a) != TYPE_CODE (b))
2637 return 0;
2638
2639 /* If a and b are both pointers types or both reference types then
2640 they are equal of the same type iff the objects they refer to are
2641 of the same type. */
2642 if (TYPE_CODE (a) == TYPE_CODE_PTR
2643 || TYPE_CODE (a) == TYPE_CODE_REF)
2644 return types_equal (TYPE_TARGET_TYPE (a),
2645 TYPE_TARGET_TYPE (b));
2646
2647 /* Well, damnit, if the names are exactly the same, I'll say they
2648 are exactly the same. This happens when we generate method
2649 stubs. The types won't point to the same address, but they
2650 really are the same. */
2651
2652 if (TYPE_NAME (a) && TYPE_NAME (b)
2653 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2654 return 1;
2655
2656 /* Check if identical after resolving typedefs. */
2657 if (a == b)
2658 return 1;
2659
2660 /* Two function types are equal if their argument and return types
2661 are equal. */
2662 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2663 {
2664 int i;
2665
2666 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2667 return 0;
2668
2669 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2670 return 0;
2671
2672 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2673 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2674 return 0;
2675
2676 return 1;
2677 }
2678
2679 return 0;
2680 }
2681 \f
2682 /* Deep comparison of types. */
2683
2684 /* An entry in the type-equality bcache. */
2685
2686 typedef struct type_equality_entry
2687 {
2688 struct type *type1, *type2;
2689 } type_equality_entry_d;
2690
2691 DEF_VEC_O (type_equality_entry_d);
2692
2693 /* A helper function to compare two strings. Returns 1 if they are
2694 the same, 0 otherwise. Handles NULLs properly. */
2695
2696 static int
2697 compare_maybe_null_strings (const char *s, const char *t)
2698 {
2699 if (s == NULL && t != NULL)
2700 return 0;
2701 else if (s != NULL && t == NULL)
2702 return 0;
2703 else if (s == NULL && t== NULL)
2704 return 1;
2705 return strcmp (s, t) == 0;
2706 }
2707
2708 /* A helper function for check_types_worklist that checks two types for
2709 "deep" equality. Returns non-zero if the types are considered the
2710 same, zero otherwise. */
2711
2712 static int
2713 check_types_equal (struct type *type1, struct type *type2,
2714 VEC (type_equality_entry_d) **worklist)
2715 {
2716 CHECK_TYPEDEF (type1);
2717 CHECK_TYPEDEF (type2);
2718
2719 if (type1 == type2)
2720 return 1;
2721
2722 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2723 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2724 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2725 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2726 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2727 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2728 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2729 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2730 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2731 return 0;
2732
2733 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2734 TYPE_TAG_NAME (type2)))
2735 return 0;
2736 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2737 return 0;
2738
2739 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2740 {
2741 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2742 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2743 return 0;
2744 }
2745 else
2746 {
2747 int i;
2748
2749 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2750 {
2751 const struct field *field1 = &TYPE_FIELD (type1, i);
2752 const struct field *field2 = &TYPE_FIELD (type2, i);
2753 struct type_equality_entry entry;
2754
2755 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2756 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2757 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2758 return 0;
2759 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2760 FIELD_NAME (*field2)))
2761 return 0;
2762 switch (FIELD_LOC_KIND (*field1))
2763 {
2764 case FIELD_LOC_KIND_BITPOS:
2765 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2766 return 0;
2767 break;
2768 case FIELD_LOC_KIND_ENUMVAL:
2769 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2770 return 0;
2771 break;
2772 case FIELD_LOC_KIND_PHYSADDR:
2773 if (FIELD_STATIC_PHYSADDR (*field1)
2774 != FIELD_STATIC_PHYSADDR (*field2))
2775 return 0;
2776 break;
2777 case FIELD_LOC_KIND_PHYSNAME:
2778 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2779 FIELD_STATIC_PHYSNAME (*field2)))
2780 return 0;
2781 break;
2782 case FIELD_LOC_KIND_DWARF_BLOCK:
2783 {
2784 struct dwarf2_locexpr_baton *block1, *block2;
2785
2786 block1 = FIELD_DWARF_BLOCK (*field1);
2787 block2 = FIELD_DWARF_BLOCK (*field2);
2788 if (block1->per_cu != block2->per_cu
2789 || block1->size != block2->size
2790 || memcmp (block1->data, block2->data, block1->size) != 0)
2791 return 0;
2792 }
2793 break;
2794 default:
2795 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
2796 "%d by check_types_equal"),
2797 FIELD_LOC_KIND (*field1));
2798 }
2799
2800 entry.type1 = FIELD_TYPE (*field1);
2801 entry.type2 = FIELD_TYPE (*field2);
2802 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2803 }
2804 }
2805
2806 if (TYPE_TARGET_TYPE (type1) != NULL)
2807 {
2808 struct type_equality_entry entry;
2809
2810 if (TYPE_TARGET_TYPE (type2) == NULL)
2811 return 0;
2812
2813 entry.type1 = TYPE_TARGET_TYPE (type1);
2814 entry.type2 = TYPE_TARGET_TYPE (type2);
2815 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2816 }
2817 else if (TYPE_TARGET_TYPE (type2) != NULL)
2818 return 0;
2819
2820 return 1;
2821 }
2822
2823 /* Check types on a worklist for equality. Returns zero if any pair
2824 is not equal, non-zero if they are all considered equal. */
2825
2826 static int
2827 check_types_worklist (VEC (type_equality_entry_d) **worklist,
2828 struct bcache *cache)
2829 {
2830 while (!VEC_empty (type_equality_entry_d, *worklist))
2831 {
2832 struct type_equality_entry entry;
2833 int added;
2834
2835 entry = *VEC_last (type_equality_entry_d, *worklist);
2836 VEC_pop (type_equality_entry_d, *worklist);
2837
2838 /* If the type pair has already been visited, we know it is
2839 ok. */
2840 bcache_full (&entry, sizeof (entry), cache, &added);
2841 if (!added)
2842 continue;
2843
2844 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
2845 return 0;
2846 }
2847
2848 return 1;
2849 }
2850
2851 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
2852 "deep comparison". Otherwise return zero. */
2853
2854 int
2855 types_deeply_equal (struct type *type1, struct type *type2)
2856 {
2857 volatile struct gdb_exception except;
2858 int result = 0;
2859 struct bcache *cache;
2860 VEC (type_equality_entry_d) *worklist = NULL;
2861 struct type_equality_entry entry;
2862
2863 gdb_assert (type1 != NULL && type2 != NULL);
2864
2865 /* Early exit for the simple case. */
2866 if (type1 == type2)
2867 return 1;
2868
2869 cache = bcache_xmalloc (NULL, NULL);
2870
2871 entry.type1 = type1;
2872 entry.type2 = type2;
2873 VEC_safe_push (type_equality_entry_d, worklist, &entry);
2874
2875 TRY_CATCH (except, RETURN_MASK_ALL)
2876 {
2877 result = check_types_worklist (&worklist, cache);
2878 }
2879 /* check_types_worklist calls several nested helper functions,
2880 some of which can raise a GDB Exception, so we just check
2881 and rethrow here. If there is a GDB exception, a comparison
2882 is not capable (or trusted), so exit. */
2883 bcache_xfree (cache);
2884 VEC_free (type_equality_entry_d, worklist);
2885 /* Rethrow if there was a problem. */
2886 if (except.reason < 0)
2887 throw_exception (except);
2888
2889 return result;
2890 }
2891 \f
2892 /* Compare one type (PARM) for compatibility with another (ARG).
2893 * PARM is intended to be the parameter type of a function; and
2894 * ARG is the supplied argument's type. This function tests if
2895 * the latter can be converted to the former.
2896 * VALUE is the argument's value or NULL if none (or called recursively)
2897 *
2898 * Return 0 if they are identical types;
2899 * Otherwise, return an integer which corresponds to how compatible
2900 * PARM is to ARG. The higher the return value, the worse the match.
2901 * Generally the "bad" conversions are all uniformly assigned a 100. */
2902
2903 struct rank
2904 rank_one_type (struct type *parm, struct type *arg, struct value *value)
2905 {
2906 struct rank rank = {0,0};
2907
2908 if (types_equal (parm, arg))
2909 return EXACT_MATCH_BADNESS;
2910
2911 /* Resolve typedefs */
2912 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2913 parm = check_typedef (parm);
2914 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2915 arg = check_typedef (arg);
2916
2917 /* See through references, since we can almost make non-references
2918 references. */
2919 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2920 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
2921 REFERENCE_CONVERSION_BADNESS));
2922 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2923 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
2924 REFERENCE_CONVERSION_BADNESS));
2925 if (overload_debug)
2926 /* Debugging only. */
2927 fprintf_filtered (gdb_stderr,
2928 "------ Arg is %s [%d], parm is %s [%d]\n",
2929 TYPE_NAME (arg), TYPE_CODE (arg),
2930 TYPE_NAME (parm), TYPE_CODE (parm));
2931
2932 /* x -> y means arg of type x being supplied for parameter of type y. */
2933
2934 switch (TYPE_CODE (parm))
2935 {
2936 case TYPE_CODE_PTR:
2937 switch (TYPE_CODE (arg))
2938 {
2939 case TYPE_CODE_PTR:
2940
2941 /* Allowed pointer conversions are:
2942 (a) pointer to void-pointer conversion. */
2943 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2944 return VOID_PTR_CONVERSION_BADNESS;
2945
2946 /* (b) pointer to ancestor-pointer conversion. */
2947 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2948 TYPE_TARGET_TYPE (arg),
2949 0);
2950 if (rank.subrank >= 0)
2951 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2952
2953 return INCOMPATIBLE_TYPE_BADNESS;
2954 case TYPE_CODE_ARRAY:
2955 if (types_equal (TYPE_TARGET_TYPE (parm),
2956 TYPE_TARGET_TYPE (arg)))
2957 return EXACT_MATCH_BADNESS;
2958 return INCOMPATIBLE_TYPE_BADNESS;
2959 case TYPE_CODE_FUNC:
2960 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
2961 case TYPE_CODE_INT:
2962 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
2963 {
2964 if (value_as_long (value) == 0)
2965 {
2966 /* Null pointer conversion: allow it to be cast to a pointer.
2967 [4.10.1 of C++ standard draft n3290] */
2968 return NULL_POINTER_CONVERSION_BADNESS;
2969 }
2970 else
2971 {
2972 /* If type checking is disabled, allow the conversion. */
2973 if (!strict_type_checking)
2974 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
2975 }
2976 }
2977 /* fall through */
2978 case TYPE_CODE_ENUM:
2979 case TYPE_CODE_FLAGS:
2980 case TYPE_CODE_CHAR:
2981 case TYPE_CODE_RANGE:
2982 case TYPE_CODE_BOOL:
2983 default:
2984 return INCOMPATIBLE_TYPE_BADNESS;
2985 }
2986 case TYPE_CODE_ARRAY:
2987 switch (TYPE_CODE (arg))
2988 {
2989 case TYPE_CODE_PTR:
2990 case TYPE_CODE_ARRAY:
2991 return rank_one_type (TYPE_TARGET_TYPE (parm),
2992 TYPE_TARGET_TYPE (arg), NULL);
2993 default:
2994 return INCOMPATIBLE_TYPE_BADNESS;
2995 }
2996 case TYPE_CODE_FUNC:
2997 switch (TYPE_CODE (arg))
2998 {
2999 case TYPE_CODE_PTR: /* funcptr -> func */
3000 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3001 default:
3002 return INCOMPATIBLE_TYPE_BADNESS;
3003 }
3004 case TYPE_CODE_INT:
3005 switch (TYPE_CODE (arg))
3006 {
3007 case TYPE_CODE_INT:
3008 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3009 {
3010 /* Deal with signed, unsigned, and plain chars and
3011 signed and unsigned ints. */
3012 if (TYPE_NOSIGN (parm))
3013 {
3014 /* This case only for character types. */
3015 if (TYPE_NOSIGN (arg))
3016 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3017 else /* signed/unsigned char -> plain char */
3018 return INTEGER_CONVERSION_BADNESS;
3019 }
3020 else if (TYPE_UNSIGNED (parm))
3021 {
3022 if (TYPE_UNSIGNED (arg))
3023 {
3024 /* unsigned int -> unsigned int, or
3025 unsigned long -> unsigned long */
3026 if (integer_types_same_name_p (TYPE_NAME (parm),
3027 TYPE_NAME (arg)))
3028 return EXACT_MATCH_BADNESS;
3029 else if (integer_types_same_name_p (TYPE_NAME (arg),
3030 "int")
3031 && integer_types_same_name_p (TYPE_NAME (parm),
3032 "long"))
3033 /* unsigned int -> unsigned long */
3034 return INTEGER_PROMOTION_BADNESS;
3035 else
3036 /* unsigned long -> unsigned int */
3037 return INTEGER_CONVERSION_BADNESS;
3038 }
3039 else
3040 {
3041 if (integer_types_same_name_p (TYPE_NAME (arg),
3042 "long")
3043 && integer_types_same_name_p (TYPE_NAME (parm),
3044 "int"))
3045 /* signed long -> unsigned int */
3046 return INTEGER_CONVERSION_BADNESS;
3047 else
3048 /* signed int/long -> unsigned int/long */
3049 return INTEGER_CONVERSION_BADNESS;
3050 }
3051 }
3052 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3053 {
3054 if (integer_types_same_name_p (TYPE_NAME (parm),
3055 TYPE_NAME (arg)))
3056 return EXACT_MATCH_BADNESS;
3057 else if (integer_types_same_name_p (TYPE_NAME (arg),
3058 "int")
3059 && integer_types_same_name_p (TYPE_NAME (parm),
3060 "long"))
3061 return INTEGER_PROMOTION_BADNESS;
3062 else
3063 return INTEGER_CONVERSION_BADNESS;
3064 }
3065 else
3066 return INTEGER_CONVERSION_BADNESS;
3067 }
3068 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3069 return INTEGER_PROMOTION_BADNESS;
3070 else
3071 return INTEGER_CONVERSION_BADNESS;
3072 case TYPE_CODE_ENUM:
3073 case TYPE_CODE_FLAGS:
3074 case TYPE_CODE_CHAR:
3075 case TYPE_CODE_RANGE:
3076 case TYPE_CODE_BOOL:
3077 return INTEGER_PROMOTION_BADNESS;
3078 case TYPE_CODE_FLT:
3079 return INT_FLOAT_CONVERSION_BADNESS;
3080 case TYPE_CODE_PTR:
3081 return NS_POINTER_CONVERSION_BADNESS;
3082 default:
3083 return INCOMPATIBLE_TYPE_BADNESS;
3084 }
3085 break;
3086 case TYPE_CODE_ENUM:
3087 switch (TYPE_CODE (arg))
3088 {
3089 case TYPE_CODE_INT:
3090 case TYPE_CODE_CHAR:
3091 case TYPE_CODE_RANGE:
3092 case TYPE_CODE_BOOL:
3093 case TYPE_CODE_ENUM:
3094 return INTEGER_CONVERSION_BADNESS;
3095 case TYPE_CODE_FLT:
3096 return INT_FLOAT_CONVERSION_BADNESS;
3097 default:
3098 return INCOMPATIBLE_TYPE_BADNESS;
3099 }
3100 break;
3101 case TYPE_CODE_CHAR:
3102 switch (TYPE_CODE (arg))
3103 {
3104 case TYPE_CODE_RANGE:
3105 case TYPE_CODE_BOOL:
3106 case TYPE_CODE_ENUM:
3107 return INTEGER_CONVERSION_BADNESS;
3108 case TYPE_CODE_FLT:
3109 return INT_FLOAT_CONVERSION_BADNESS;
3110 case TYPE_CODE_INT:
3111 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3112 return INTEGER_CONVERSION_BADNESS;
3113 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3114 return INTEGER_PROMOTION_BADNESS;
3115 /* >>> !! else fall through !! <<< */
3116 case TYPE_CODE_CHAR:
3117 /* Deal with signed, unsigned, and plain chars for C++ and
3118 with int cases falling through from previous case. */
3119 if (TYPE_NOSIGN (parm))
3120 {
3121 if (TYPE_NOSIGN (arg))
3122 return EXACT_MATCH_BADNESS;
3123 else
3124 return INTEGER_CONVERSION_BADNESS;
3125 }
3126 else if (TYPE_UNSIGNED (parm))
3127 {
3128 if (TYPE_UNSIGNED (arg))
3129 return EXACT_MATCH_BADNESS;
3130 else
3131 return INTEGER_PROMOTION_BADNESS;
3132 }
3133 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3134 return EXACT_MATCH_BADNESS;
3135 else
3136 return INTEGER_CONVERSION_BADNESS;
3137 default:
3138 return INCOMPATIBLE_TYPE_BADNESS;
3139 }
3140 break;
3141 case TYPE_CODE_RANGE:
3142 switch (TYPE_CODE (arg))
3143 {
3144 case TYPE_CODE_INT:
3145 case TYPE_CODE_CHAR:
3146 case TYPE_CODE_RANGE:
3147 case TYPE_CODE_BOOL:
3148 case TYPE_CODE_ENUM:
3149 return INTEGER_CONVERSION_BADNESS;
3150 case TYPE_CODE_FLT:
3151 return INT_FLOAT_CONVERSION_BADNESS;
3152 default:
3153 return INCOMPATIBLE_TYPE_BADNESS;
3154 }
3155 break;
3156 case TYPE_CODE_BOOL:
3157 switch (TYPE_CODE (arg))
3158 {
3159 /* n3290 draft, section 4.12.1 (conv.bool):
3160
3161 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3162 pointer to member type can be converted to a prvalue of type
3163 bool. A zero value, null pointer value, or null member pointer
3164 value is converted to false; any other value is converted to
3165 true. A prvalue of type std::nullptr_t can be converted to a
3166 prvalue of type bool; the resulting value is false." */
3167 case TYPE_CODE_INT:
3168 case TYPE_CODE_CHAR:
3169 case TYPE_CODE_ENUM:
3170 case TYPE_CODE_FLT:
3171 case TYPE_CODE_MEMBERPTR:
3172 case TYPE_CODE_PTR:
3173 return BOOL_CONVERSION_BADNESS;
3174 case TYPE_CODE_RANGE:
3175 return INCOMPATIBLE_TYPE_BADNESS;
3176 case TYPE_CODE_BOOL:
3177 return EXACT_MATCH_BADNESS;
3178 default:
3179 return INCOMPATIBLE_TYPE_BADNESS;
3180 }
3181 break;
3182 case TYPE_CODE_FLT:
3183 switch (TYPE_CODE (arg))
3184 {
3185 case TYPE_CODE_FLT:
3186 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3187 return FLOAT_PROMOTION_BADNESS;
3188 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3189 return EXACT_MATCH_BADNESS;
3190 else
3191 return FLOAT_CONVERSION_BADNESS;
3192 case TYPE_CODE_INT:
3193 case TYPE_CODE_BOOL:
3194 case TYPE_CODE_ENUM:
3195 case TYPE_CODE_RANGE:
3196 case TYPE_CODE_CHAR:
3197 return INT_FLOAT_CONVERSION_BADNESS;
3198 default:
3199 return INCOMPATIBLE_TYPE_BADNESS;
3200 }
3201 break;
3202 case TYPE_CODE_COMPLEX:
3203 switch (TYPE_CODE (arg))
3204 { /* Strictly not needed for C++, but... */
3205 case TYPE_CODE_FLT:
3206 return FLOAT_PROMOTION_BADNESS;
3207 case TYPE_CODE_COMPLEX:
3208 return EXACT_MATCH_BADNESS;
3209 default:
3210 return INCOMPATIBLE_TYPE_BADNESS;
3211 }
3212 break;
3213 case TYPE_CODE_STRUCT:
3214 /* currently same as TYPE_CODE_CLASS. */
3215 switch (TYPE_CODE (arg))
3216 {
3217 case TYPE_CODE_STRUCT:
3218 /* Check for derivation */
3219 rank.subrank = distance_to_ancestor (parm, arg, 0);
3220 if (rank.subrank >= 0)
3221 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3222 /* else fall through */
3223 default:
3224 return INCOMPATIBLE_TYPE_BADNESS;
3225 }
3226 break;
3227 case TYPE_CODE_UNION:
3228 switch (TYPE_CODE (arg))
3229 {
3230 case TYPE_CODE_UNION:
3231 default:
3232 return INCOMPATIBLE_TYPE_BADNESS;
3233 }
3234 break;
3235 case TYPE_CODE_MEMBERPTR:
3236 switch (TYPE_CODE (arg))
3237 {
3238 default:
3239 return INCOMPATIBLE_TYPE_BADNESS;
3240 }
3241 break;
3242 case TYPE_CODE_METHOD:
3243 switch (TYPE_CODE (arg))
3244 {
3245
3246 default:
3247 return INCOMPATIBLE_TYPE_BADNESS;
3248 }
3249 break;
3250 case TYPE_CODE_REF:
3251 switch (TYPE_CODE (arg))
3252 {
3253
3254 default:
3255 return INCOMPATIBLE_TYPE_BADNESS;
3256 }
3257
3258 break;
3259 case TYPE_CODE_SET:
3260 switch (TYPE_CODE (arg))
3261 {
3262 /* Not in C++ */
3263 case TYPE_CODE_SET:
3264 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3265 TYPE_FIELD_TYPE (arg, 0), NULL);
3266 default:
3267 return INCOMPATIBLE_TYPE_BADNESS;
3268 }
3269 break;
3270 case TYPE_CODE_VOID:
3271 default:
3272 return INCOMPATIBLE_TYPE_BADNESS;
3273 } /* switch (TYPE_CODE (arg)) */
3274 }
3275
3276 /* End of functions for overload resolution. */
3277 \f
3278 /* Routines to pretty-print types. */
3279
3280 static void
3281 print_bit_vector (B_TYPE *bits, int nbits)
3282 {
3283 int bitno;
3284
3285 for (bitno = 0; bitno < nbits; bitno++)
3286 {
3287 if ((bitno % 8) == 0)
3288 {
3289 puts_filtered (" ");
3290 }
3291 if (B_TST (bits, bitno))
3292 printf_filtered (("1"));
3293 else
3294 printf_filtered (("0"));
3295 }
3296 }
3297
3298 /* Note the first arg should be the "this" pointer, we may not want to
3299 include it since we may get into a infinitely recursive
3300 situation. */
3301
3302 static void
3303 print_arg_types (struct field *args, int nargs, int spaces)
3304 {
3305 if (args != NULL)
3306 {
3307 int i;
3308
3309 for (i = 0; i < nargs; i++)
3310 recursive_dump_type (args[i].type, spaces + 2);
3311 }
3312 }
3313
3314 int
3315 field_is_static (struct field *f)
3316 {
3317 /* "static" fields are the fields whose location is not relative
3318 to the address of the enclosing struct. It would be nice to
3319 have a dedicated flag that would be set for static fields when
3320 the type is being created. But in practice, checking the field
3321 loc_kind should give us an accurate answer. */
3322 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3323 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3324 }
3325
3326 static void
3327 dump_fn_fieldlists (struct type *type, int spaces)
3328 {
3329 int method_idx;
3330 int overload_idx;
3331 struct fn_field *f;
3332
3333 printfi_filtered (spaces, "fn_fieldlists ");
3334 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3335 printf_filtered ("\n");
3336 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3337 {
3338 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3339 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3340 method_idx,
3341 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3342 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3343 gdb_stdout);
3344 printf_filtered (_(") length %d\n"),
3345 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3346 for (overload_idx = 0;
3347 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3348 overload_idx++)
3349 {
3350 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3351 overload_idx,
3352 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3353 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3354 gdb_stdout);
3355 printf_filtered (")\n");
3356 printfi_filtered (spaces + 8, "type ");
3357 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3358 gdb_stdout);
3359 printf_filtered ("\n");
3360
3361 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3362 spaces + 8 + 2);
3363
3364 printfi_filtered (spaces + 8, "args ");
3365 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3366 gdb_stdout);
3367 printf_filtered ("\n");
3368
3369 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
3370 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
3371 overload_idx)),
3372 spaces);
3373 printfi_filtered (spaces + 8, "fcontext ");
3374 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3375 gdb_stdout);
3376 printf_filtered ("\n");
3377
3378 printfi_filtered (spaces + 8, "is_const %d\n",
3379 TYPE_FN_FIELD_CONST (f, overload_idx));
3380 printfi_filtered (spaces + 8, "is_volatile %d\n",
3381 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3382 printfi_filtered (spaces + 8, "is_private %d\n",
3383 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3384 printfi_filtered (spaces + 8, "is_protected %d\n",
3385 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3386 printfi_filtered (spaces + 8, "is_stub %d\n",
3387 TYPE_FN_FIELD_STUB (f, overload_idx));
3388 printfi_filtered (spaces + 8, "voffset %u\n",
3389 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3390 }
3391 }
3392 }
3393
3394 static void
3395 print_cplus_stuff (struct type *type, int spaces)
3396 {
3397 printfi_filtered (spaces, "n_baseclasses %d\n",
3398 TYPE_N_BASECLASSES (type));
3399 printfi_filtered (spaces, "nfn_fields %d\n",
3400 TYPE_NFN_FIELDS (type));
3401 if (TYPE_N_BASECLASSES (type) > 0)
3402 {
3403 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3404 TYPE_N_BASECLASSES (type));
3405 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3406 gdb_stdout);
3407 printf_filtered (")");
3408
3409 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3410 TYPE_N_BASECLASSES (type));
3411 puts_filtered ("\n");
3412 }
3413 if (TYPE_NFIELDS (type) > 0)
3414 {
3415 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3416 {
3417 printfi_filtered (spaces,
3418 "private_field_bits (%d bits at *",
3419 TYPE_NFIELDS (type));
3420 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3421 gdb_stdout);
3422 printf_filtered (")");
3423 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3424 TYPE_NFIELDS (type));
3425 puts_filtered ("\n");
3426 }
3427 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3428 {
3429 printfi_filtered (spaces,
3430 "protected_field_bits (%d bits at *",
3431 TYPE_NFIELDS (type));
3432 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3433 gdb_stdout);
3434 printf_filtered (")");
3435 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3436 TYPE_NFIELDS (type));
3437 puts_filtered ("\n");
3438 }
3439 }
3440 if (TYPE_NFN_FIELDS (type) > 0)
3441 {
3442 dump_fn_fieldlists (type, spaces);
3443 }
3444 }
3445
3446 /* Print the contents of the TYPE's type_specific union, assuming that
3447 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3448
3449 static void
3450 print_gnat_stuff (struct type *type, int spaces)
3451 {
3452 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3453
3454 recursive_dump_type (descriptive_type, spaces + 2);
3455 }
3456
3457 static struct obstack dont_print_type_obstack;
3458
3459 void
3460 recursive_dump_type (struct type *type, int spaces)
3461 {
3462 int idx;
3463
3464 if (spaces == 0)
3465 obstack_begin (&dont_print_type_obstack, 0);
3466
3467 if (TYPE_NFIELDS (type) > 0
3468 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3469 {
3470 struct type **first_dont_print
3471 = (struct type **) obstack_base (&dont_print_type_obstack);
3472
3473 int i = (struct type **)
3474 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3475
3476 while (--i >= 0)
3477 {
3478 if (type == first_dont_print[i])
3479 {
3480 printfi_filtered (spaces, "type node ");
3481 gdb_print_host_address (type, gdb_stdout);
3482 printf_filtered (_(" <same as already seen type>\n"));
3483 return;
3484 }
3485 }
3486
3487 obstack_ptr_grow (&dont_print_type_obstack, type);
3488 }
3489
3490 printfi_filtered (spaces, "type node ");
3491 gdb_print_host_address (type, gdb_stdout);
3492 printf_filtered ("\n");
3493 printfi_filtered (spaces, "name '%s' (",
3494 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3495 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3496 printf_filtered (")\n");
3497 printfi_filtered (spaces, "tagname '%s' (",
3498 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3499 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3500 printf_filtered (")\n");
3501 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3502 switch (TYPE_CODE (type))
3503 {
3504 case TYPE_CODE_UNDEF:
3505 printf_filtered ("(TYPE_CODE_UNDEF)");
3506 break;
3507 case TYPE_CODE_PTR:
3508 printf_filtered ("(TYPE_CODE_PTR)");
3509 break;
3510 case TYPE_CODE_ARRAY:
3511 printf_filtered ("(TYPE_CODE_ARRAY)");
3512 break;
3513 case TYPE_CODE_STRUCT:
3514 printf_filtered ("(TYPE_CODE_STRUCT)");
3515 break;
3516 case TYPE_CODE_UNION:
3517 printf_filtered ("(TYPE_CODE_UNION)");
3518 break;
3519 case TYPE_CODE_ENUM:
3520 printf_filtered ("(TYPE_CODE_ENUM)");
3521 break;
3522 case TYPE_CODE_FLAGS:
3523 printf_filtered ("(TYPE_CODE_FLAGS)");
3524 break;
3525 case TYPE_CODE_FUNC:
3526 printf_filtered ("(TYPE_CODE_FUNC)");
3527 break;
3528 case TYPE_CODE_INT:
3529 printf_filtered ("(TYPE_CODE_INT)");
3530 break;
3531 case TYPE_CODE_FLT:
3532 printf_filtered ("(TYPE_CODE_FLT)");
3533 break;
3534 case TYPE_CODE_VOID:
3535 printf_filtered ("(TYPE_CODE_VOID)");
3536 break;
3537 case TYPE_CODE_SET:
3538 printf_filtered ("(TYPE_CODE_SET)");
3539 break;
3540 case TYPE_CODE_RANGE:
3541 printf_filtered ("(TYPE_CODE_RANGE)");
3542 break;
3543 case TYPE_CODE_STRING:
3544 printf_filtered ("(TYPE_CODE_STRING)");
3545 break;
3546 case TYPE_CODE_ERROR:
3547 printf_filtered ("(TYPE_CODE_ERROR)");
3548 break;
3549 case TYPE_CODE_MEMBERPTR:
3550 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3551 break;
3552 case TYPE_CODE_METHODPTR:
3553 printf_filtered ("(TYPE_CODE_METHODPTR)");
3554 break;
3555 case TYPE_CODE_METHOD:
3556 printf_filtered ("(TYPE_CODE_METHOD)");
3557 break;
3558 case TYPE_CODE_REF:
3559 printf_filtered ("(TYPE_CODE_REF)");
3560 break;
3561 case TYPE_CODE_CHAR:
3562 printf_filtered ("(TYPE_CODE_CHAR)");
3563 break;
3564 case TYPE_CODE_BOOL:
3565 printf_filtered ("(TYPE_CODE_BOOL)");
3566 break;
3567 case TYPE_CODE_COMPLEX:
3568 printf_filtered ("(TYPE_CODE_COMPLEX)");
3569 break;
3570 case TYPE_CODE_TYPEDEF:
3571 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3572 break;
3573 case TYPE_CODE_NAMESPACE:
3574 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3575 break;
3576 default:
3577 printf_filtered ("(UNKNOWN TYPE CODE)");
3578 break;
3579 }
3580 puts_filtered ("\n");
3581 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3582 if (TYPE_OBJFILE_OWNED (type))
3583 {
3584 printfi_filtered (spaces, "objfile ");
3585 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3586 }
3587 else
3588 {
3589 printfi_filtered (spaces, "gdbarch ");
3590 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3591 }
3592 printf_filtered ("\n");
3593 printfi_filtered (spaces, "target_type ");
3594 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3595 printf_filtered ("\n");
3596 if (TYPE_TARGET_TYPE (type) != NULL)
3597 {
3598 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3599 }
3600 printfi_filtered (spaces, "pointer_type ");
3601 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3602 printf_filtered ("\n");
3603 printfi_filtered (spaces, "reference_type ");
3604 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3605 printf_filtered ("\n");
3606 printfi_filtered (spaces, "type_chain ");
3607 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3608 printf_filtered ("\n");
3609 printfi_filtered (spaces, "instance_flags 0x%x",
3610 TYPE_INSTANCE_FLAGS (type));
3611 if (TYPE_CONST (type))
3612 {
3613 puts_filtered (" TYPE_FLAG_CONST");
3614 }
3615 if (TYPE_VOLATILE (type))
3616 {
3617 puts_filtered (" TYPE_FLAG_VOLATILE");
3618 }
3619 if (TYPE_CODE_SPACE (type))
3620 {
3621 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3622 }
3623 if (TYPE_DATA_SPACE (type))
3624 {
3625 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3626 }
3627 if (TYPE_ADDRESS_CLASS_1 (type))
3628 {
3629 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3630 }
3631 if (TYPE_ADDRESS_CLASS_2 (type))
3632 {
3633 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3634 }
3635 if (TYPE_RESTRICT (type))
3636 {
3637 puts_filtered (" TYPE_FLAG_RESTRICT");
3638 }
3639 puts_filtered ("\n");
3640
3641 printfi_filtered (spaces, "flags");
3642 if (TYPE_UNSIGNED (type))
3643 {
3644 puts_filtered (" TYPE_FLAG_UNSIGNED");
3645 }
3646 if (TYPE_NOSIGN (type))
3647 {
3648 puts_filtered (" TYPE_FLAG_NOSIGN");
3649 }
3650 if (TYPE_STUB (type))
3651 {
3652 puts_filtered (" TYPE_FLAG_STUB");
3653 }
3654 if (TYPE_TARGET_STUB (type))
3655 {
3656 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3657 }
3658 if (TYPE_STATIC (type))
3659 {
3660 puts_filtered (" TYPE_FLAG_STATIC");
3661 }
3662 if (TYPE_PROTOTYPED (type))
3663 {
3664 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3665 }
3666 if (TYPE_INCOMPLETE (type))
3667 {
3668 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3669 }
3670 if (TYPE_VARARGS (type))
3671 {
3672 puts_filtered (" TYPE_FLAG_VARARGS");
3673 }
3674 /* This is used for things like AltiVec registers on ppc. Gcc emits
3675 an attribute for the array type, which tells whether or not we
3676 have a vector, instead of a regular array. */
3677 if (TYPE_VECTOR (type))
3678 {
3679 puts_filtered (" TYPE_FLAG_VECTOR");
3680 }
3681 if (TYPE_FIXED_INSTANCE (type))
3682 {
3683 puts_filtered (" TYPE_FIXED_INSTANCE");
3684 }
3685 if (TYPE_STUB_SUPPORTED (type))
3686 {
3687 puts_filtered (" TYPE_STUB_SUPPORTED");
3688 }
3689 if (TYPE_NOTTEXT (type))
3690 {
3691 puts_filtered (" TYPE_NOTTEXT");
3692 }
3693 puts_filtered ("\n");
3694 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3695 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3696 puts_filtered ("\n");
3697 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3698 {
3699 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3700 printfi_filtered (spaces + 2,
3701 "[%d] enumval %s type ",
3702 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3703 else
3704 printfi_filtered (spaces + 2,
3705 "[%d] bitpos %d bitsize %d type ",
3706 idx, TYPE_FIELD_BITPOS (type, idx),
3707 TYPE_FIELD_BITSIZE (type, idx));
3708 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3709 printf_filtered (" name '%s' (",
3710 TYPE_FIELD_NAME (type, idx) != NULL
3711 ? TYPE_FIELD_NAME (type, idx)
3712 : "<NULL>");
3713 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3714 printf_filtered (")\n");
3715 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3716 {
3717 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3718 }
3719 }
3720 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3721 {
3722 printfi_filtered (spaces, "low %s%s high %s%s\n",
3723 plongest (TYPE_LOW_BOUND (type)),
3724 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3725 plongest (TYPE_HIGH_BOUND (type)),
3726 TYPE_HIGH_BOUND_UNDEFINED (type)
3727 ? " (undefined)" : "");
3728 }
3729 printfi_filtered (spaces, "vptr_basetype ");
3730 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3731 puts_filtered ("\n");
3732 if (TYPE_VPTR_BASETYPE (type) != NULL)
3733 {
3734 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3735 }
3736 printfi_filtered (spaces, "vptr_fieldno %d\n",
3737 TYPE_VPTR_FIELDNO (type));
3738
3739 switch (TYPE_SPECIFIC_FIELD (type))
3740 {
3741 case TYPE_SPECIFIC_CPLUS_STUFF:
3742 printfi_filtered (spaces, "cplus_stuff ");
3743 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3744 gdb_stdout);
3745 puts_filtered ("\n");
3746 print_cplus_stuff (type, spaces);
3747 break;
3748
3749 case TYPE_SPECIFIC_GNAT_STUFF:
3750 printfi_filtered (spaces, "gnat_stuff ");
3751 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3752 puts_filtered ("\n");
3753 print_gnat_stuff (type, spaces);
3754 break;
3755
3756 case TYPE_SPECIFIC_FLOATFORMAT:
3757 printfi_filtered (spaces, "floatformat ");
3758 if (TYPE_FLOATFORMAT (type) == NULL)
3759 puts_filtered ("(null)");
3760 else
3761 {
3762 puts_filtered ("{ ");
3763 if (TYPE_FLOATFORMAT (type)[0] == NULL
3764 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3765 puts_filtered ("(null)");
3766 else
3767 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3768
3769 puts_filtered (", ");
3770 if (TYPE_FLOATFORMAT (type)[1] == NULL
3771 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3772 puts_filtered ("(null)");
3773 else
3774 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3775
3776 puts_filtered (" }");
3777 }
3778 puts_filtered ("\n");
3779 break;
3780
3781 case TYPE_SPECIFIC_FUNC:
3782 printfi_filtered (spaces, "calling_convention %d\n",
3783 TYPE_CALLING_CONVENTION (type));
3784 /* tail_call_list is not printed. */
3785 break;
3786 }
3787
3788 if (spaces == 0)
3789 obstack_free (&dont_print_type_obstack, NULL);
3790 }
3791 \f
3792 /* Trivial helpers for the libiberty hash table, for mapping one
3793 type to another. */
3794
3795 struct type_pair
3796 {
3797 struct type *old, *new;
3798 };
3799
3800 static hashval_t
3801 type_pair_hash (const void *item)
3802 {
3803 const struct type_pair *pair = item;
3804
3805 return htab_hash_pointer (pair->old);
3806 }
3807
3808 static int
3809 type_pair_eq (const void *item_lhs, const void *item_rhs)
3810 {
3811 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3812
3813 return lhs->old == rhs->old;
3814 }
3815
3816 /* Allocate the hash table used by copy_type_recursive to walk
3817 types without duplicates. We use OBJFILE's obstack, because
3818 OBJFILE is about to be deleted. */
3819
3820 htab_t
3821 create_copied_types_hash (struct objfile *objfile)
3822 {
3823 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3824 NULL, &objfile->objfile_obstack,
3825 hashtab_obstack_allocate,
3826 dummy_obstack_deallocate);
3827 }
3828
3829 /* Recursively copy (deep copy) TYPE, if it is associated with
3830 OBJFILE. Return a new type allocated using malloc, a saved type if
3831 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3832 not associated with OBJFILE. */
3833
3834 struct type *
3835 copy_type_recursive (struct objfile *objfile,
3836 struct type *type,
3837 htab_t copied_types)
3838 {
3839 struct type_pair *stored, pair;
3840 void **slot;
3841 struct type *new_type;
3842
3843 if (! TYPE_OBJFILE_OWNED (type))
3844 return type;
3845
3846 /* This type shouldn't be pointing to any types in other objfiles;
3847 if it did, the type might disappear unexpectedly. */
3848 gdb_assert (TYPE_OBJFILE (type) == objfile);
3849
3850 pair.old = type;
3851 slot = htab_find_slot (copied_types, &pair, INSERT);
3852 if (*slot != NULL)
3853 return ((struct type_pair *) *slot)->new;
3854
3855 new_type = alloc_type_arch (get_type_arch (type));
3856
3857 /* We must add the new type to the hash table immediately, in case
3858 we encounter this type again during a recursive call below. */
3859 stored
3860 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3861 stored->old = type;
3862 stored->new = new_type;
3863 *slot = stored;
3864
3865 /* Copy the common fields of types. For the main type, we simply
3866 copy the entire thing and then update specific fields as needed. */
3867 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3868 TYPE_OBJFILE_OWNED (new_type) = 0;
3869 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3870
3871 if (TYPE_NAME (type))
3872 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3873 if (TYPE_TAG_NAME (type))
3874 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3875
3876 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3877 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3878
3879 /* Copy the fields. */
3880 if (TYPE_NFIELDS (type))
3881 {
3882 int i, nfields;
3883
3884 nfields = TYPE_NFIELDS (type);
3885 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
3886 for (i = 0; i < nfields; i++)
3887 {
3888 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3889 TYPE_FIELD_ARTIFICIAL (type, i);
3890 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3891 if (TYPE_FIELD_TYPE (type, i))
3892 TYPE_FIELD_TYPE (new_type, i)
3893 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3894 copied_types);
3895 if (TYPE_FIELD_NAME (type, i))
3896 TYPE_FIELD_NAME (new_type, i) =
3897 xstrdup (TYPE_FIELD_NAME (type, i));
3898 switch (TYPE_FIELD_LOC_KIND (type, i))
3899 {
3900 case FIELD_LOC_KIND_BITPOS:
3901 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3902 TYPE_FIELD_BITPOS (type, i));
3903 break;
3904 case FIELD_LOC_KIND_ENUMVAL:
3905 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3906 TYPE_FIELD_ENUMVAL (type, i));
3907 break;
3908 case FIELD_LOC_KIND_PHYSADDR:
3909 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3910 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3911 break;
3912 case FIELD_LOC_KIND_PHYSNAME:
3913 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3914 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3915 i)));
3916 break;
3917 default:
3918 internal_error (__FILE__, __LINE__,
3919 _("Unexpected type field location kind: %d"),
3920 TYPE_FIELD_LOC_KIND (type, i));
3921 }
3922 }
3923 }
3924
3925 /* For range types, copy the bounds information. */
3926 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3927 {
3928 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3929 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3930 }
3931
3932 /* Copy pointers to other types. */
3933 if (TYPE_TARGET_TYPE (type))
3934 TYPE_TARGET_TYPE (new_type) =
3935 copy_type_recursive (objfile,
3936 TYPE_TARGET_TYPE (type),
3937 copied_types);
3938 if (TYPE_VPTR_BASETYPE (type))
3939 TYPE_VPTR_BASETYPE (new_type) =
3940 copy_type_recursive (objfile,
3941 TYPE_VPTR_BASETYPE (type),
3942 copied_types);
3943 /* Maybe copy the type_specific bits.
3944
3945 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3946 base classes and methods. There's no fundamental reason why we
3947 can't, but at the moment it is not needed. */
3948
3949 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3950 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3951 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3952 || TYPE_CODE (type) == TYPE_CODE_UNION
3953 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3954 INIT_CPLUS_SPECIFIC (new_type);
3955
3956 return new_type;
3957 }
3958
3959 /* Make a copy of the given TYPE, except that the pointer & reference
3960 types are not preserved.
3961
3962 This function assumes that the given type has an associated objfile.
3963 This objfile is used to allocate the new type. */
3964
3965 struct type *
3966 copy_type (const struct type *type)
3967 {
3968 struct type *new_type;
3969
3970 gdb_assert (TYPE_OBJFILE_OWNED (type));
3971
3972 new_type = alloc_type_copy (type);
3973 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3974 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3975 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3976 sizeof (struct main_type));
3977
3978 return new_type;
3979 }
3980 \f
3981 /* Helper functions to initialize architecture-specific types. */
3982
3983 /* Allocate a type structure associated with GDBARCH and set its
3984 CODE, LENGTH, and NAME fields. */
3985
3986 struct type *
3987 arch_type (struct gdbarch *gdbarch,
3988 enum type_code code, int length, char *name)
3989 {
3990 struct type *type;
3991
3992 type = alloc_type_arch (gdbarch);
3993 TYPE_CODE (type) = code;
3994 TYPE_LENGTH (type) = length;
3995
3996 if (name)
3997 TYPE_NAME (type) = xstrdup (name);
3998
3999 return type;
4000 }
4001
4002 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4003 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4004 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4005
4006 struct type *
4007 arch_integer_type (struct gdbarch *gdbarch,
4008 int bit, int unsigned_p, char *name)
4009 {
4010 struct type *t;
4011
4012 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4013 if (unsigned_p)
4014 TYPE_UNSIGNED (t) = 1;
4015 if (name && strcmp (name, "char") == 0)
4016 TYPE_NOSIGN (t) = 1;
4017
4018 return t;
4019 }
4020
4021 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4022 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4023 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4024
4025 struct type *
4026 arch_character_type (struct gdbarch *gdbarch,
4027 int bit, int unsigned_p, char *name)
4028 {
4029 struct type *t;
4030
4031 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4032 if (unsigned_p)
4033 TYPE_UNSIGNED (t) = 1;
4034
4035 return t;
4036 }
4037
4038 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4039 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4040 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4041
4042 struct type *
4043 arch_boolean_type (struct gdbarch *gdbarch,
4044 int bit, int unsigned_p, char *name)
4045 {
4046 struct type *t;
4047
4048 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4049 if (unsigned_p)
4050 TYPE_UNSIGNED (t) = 1;
4051
4052 return t;
4053 }
4054
4055 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4056 BIT is the type size in bits; if BIT equals -1, the size is
4057 determined by the floatformat. NAME is the type name. Set the
4058 TYPE_FLOATFORMAT from FLOATFORMATS. */
4059
4060 struct type *
4061 arch_float_type (struct gdbarch *gdbarch,
4062 int bit, char *name, const struct floatformat **floatformats)
4063 {
4064 struct type *t;
4065
4066 if (bit == -1)
4067 {
4068 gdb_assert (floatformats != NULL);
4069 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4070 bit = floatformats[0]->totalsize;
4071 }
4072 gdb_assert (bit >= 0);
4073
4074 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4075 TYPE_FLOATFORMAT (t) = floatformats;
4076 return t;
4077 }
4078
4079 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4080 NAME is the type name. TARGET_TYPE is the component float type. */
4081
4082 struct type *
4083 arch_complex_type (struct gdbarch *gdbarch,
4084 char *name, struct type *target_type)
4085 {
4086 struct type *t;
4087
4088 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4089 2 * TYPE_LENGTH (target_type), name);
4090 TYPE_TARGET_TYPE (t) = target_type;
4091 return t;
4092 }
4093
4094 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4095 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4096
4097 struct type *
4098 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4099 {
4100 int nfields = length * TARGET_CHAR_BIT;
4101 struct type *type;
4102
4103 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4104 TYPE_UNSIGNED (type) = 1;
4105 TYPE_NFIELDS (type) = nfields;
4106 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4107
4108 return type;
4109 }
4110
4111 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4112 position BITPOS is called NAME. */
4113
4114 void
4115 append_flags_type_flag (struct type *type, int bitpos, char *name)
4116 {
4117 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4118 gdb_assert (bitpos < TYPE_NFIELDS (type));
4119 gdb_assert (bitpos >= 0);
4120
4121 if (name)
4122 {
4123 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4124 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4125 }
4126 else
4127 {
4128 /* Don't show this field to the user. */
4129 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4130 }
4131 }
4132
4133 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4134 specified by CODE) associated with GDBARCH. NAME is the type name. */
4135
4136 struct type *
4137 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4138 {
4139 struct type *t;
4140
4141 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4142 t = arch_type (gdbarch, code, 0, NULL);
4143 TYPE_TAG_NAME (t) = name;
4144 INIT_CPLUS_SPECIFIC (t);
4145 return t;
4146 }
4147
4148 /* Add new field with name NAME and type FIELD to composite type T.
4149 Do not set the field's position or adjust the type's length;
4150 the caller should do so. Return the new field. */
4151
4152 struct field *
4153 append_composite_type_field_raw (struct type *t, char *name,
4154 struct type *field)
4155 {
4156 struct field *f;
4157
4158 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4159 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4160 sizeof (struct field) * TYPE_NFIELDS (t));
4161 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4162 memset (f, 0, sizeof f[0]);
4163 FIELD_TYPE (f[0]) = field;
4164 FIELD_NAME (f[0]) = name;
4165 return f;
4166 }
4167
4168 /* Add new field with name NAME and type FIELD to composite type T.
4169 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4170
4171 void
4172 append_composite_type_field_aligned (struct type *t, char *name,
4173 struct type *field, int alignment)
4174 {
4175 struct field *f = append_composite_type_field_raw (t, name, field);
4176
4177 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4178 {
4179 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4180 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4181 }
4182 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4183 {
4184 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4185 if (TYPE_NFIELDS (t) > 1)
4186 {
4187 SET_FIELD_BITPOS (f[0],
4188 (FIELD_BITPOS (f[-1])
4189 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4190 * TARGET_CHAR_BIT)));
4191
4192 if (alignment)
4193 {
4194 int left;
4195
4196 alignment *= TARGET_CHAR_BIT;
4197 left = FIELD_BITPOS (f[0]) % alignment;
4198
4199 if (left)
4200 {
4201 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4202 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4203 }
4204 }
4205 }
4206 }
4207 }
4208
4209 /* Add new field with name NAME and type FIELD to composite type T. */
4210
4211 void
4212 append_composite_type_field (struct type *t, char *name,
4213 struct type *field)
4214 {
4215 append_composite_type_field_aligned (t, name, field, 0);
4216 }
4217
4218 static struct gdbarch_data *gdbtypes_data;
4219
4220 const struct builtin_type *
4221 builtin_type (struct gdbarch *gdbarch)
4222 {
4223 return gdbarch_data (gdbarch, gdbtypes_data);
4224 }
4225
4226 static void *
4227 gdbtypes_post_init (struct gdbarch *gdbarch)
4228 {
4229 struct builtin_type *builtin_type
4230 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4231
4232 /* Basic types. */
4233 builtin_type->builtin_void
4234 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4235 builtin_type->builtin_char
4236 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4237 !gdbarch_char_signed (gdbarch), "char");
4238 builtin_type->builtin_signed_char
4239 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4240 0, "signed char");
4241 builtin_type->builtin_unsigned_char
4242 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4243 1, "unsigned char");
4244 builtin_type->builtin_short
4245 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4246 0, "short");
4247 builtin_type->builtin_unsigned_short
4248 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4249 1, "unsigned short");
4250 builtin_type->builtin_int
4251 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4252 0, "int");
4253 builtin_type->builtin_unsigned_int
4254 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4255 1, "unsigned int");
4256 builtin_type->builtin_long
4257 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4258 0, "long");
4259 builtin_type->builtin_unsigned_long
4260 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4261 1, "unsigned long");
4262 builtin_type->builtin_long_long
4263 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4264 0, "long long");
4265 builtin_type->builtin_unsigned_long_long
4266 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4267 1, "unsigned long long");
4268 builtin_type->builtin_float
4269 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4270 "float", gdbarch_float_format (gdbarch));
4271 builtin_type->builtin_double
4272 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4273 "double", gdbarch_double_format (gdbarch));
4274 builtin_type->builtin_long_double
4275 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4276 "long double", gdbarch_long_double_format (gdbarch));
4277 builtin_type->builtin_complex
4278 = arch_complex_type (gdbarch, "complex",
4279 builtin_type->builtin_float);
4280 builtin_type->builtin_double_complex
4281 = arch_complex_type (gdbarch, "double complex",
4282 builtin_type->builtin_double);
4283 builtin_type->builtin_string
4284 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4285 builtin_type->builtin_bool
4286 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4287
4288 /* The following three are about decimal floating point types, which
4289 are 32-bits, 64-bits and 128-bits respectively. */
4290 builtin_type->builtin_decfloat
4291 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4292 builtin_type->builtin_decdouble
4293 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4294 builtin_type->builtin_declong
4295 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4296
4297 /* "True" character types. */
4298 builtin_type->builtin_true_char
4299 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4300 builtin_type->builtin_true_unsigned_char
4301 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4302
4303 /* Fixed-size integer types. */
4304 builtin_type->builtin_int0
4305 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4306 builtin_type->builtin_int8
4307 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4308 builtin_type->builtin_uint8
4309 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4310 builtin_type->builtin_int16
4311 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4312 builtin_type->builtin_uint16
4313 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4314 builtin_type->builtin_int32
4315 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4316 builtin_type->builtin_uint32
4317 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4318 builtin_type->builtin_int64
4319 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4320 builtin_type->builtin_uint64
4321 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4322 builtin_type->builtin_int128
4323 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4324 builtin_type->builtin_uint128
4325 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4326 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4327 TYPE_INSTANCE_FLAG_NOTTEXT;
4328 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4329 TYPE_INSTANCE_FLAG_NOTTEXT;
4330
4331 /* Wide character types. */
4332 builtin_type->builtin_char16
4333 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4334 builtin_type->builtin_char32
4335 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4336
4337
4338 /* Default data/code pointer types. */
4339 builtin_type->builtin_data_ptr
4340 = lookup_pointer_type (builtin_type->builtin_void);
4341 builtin_type->builtin_func_ptr
4342 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4343 builtin_type->builtin_func_func
4344 = lookup_function_type (builtin_type->builtin_func_ptr);
4345
4346 /* This type represents a GDB internal function. */
4347 builtin_type->internal_fn
4348 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4349 "<internal function>");
4350
4351 return builtin_type;
4352 }
4353
4354 /* This set of objfile-based types is intended to be used by symbol
4355 readers as basic types. */
4356
4357 static const struct objfile_data *objfile_type_data;
4358
4359 const struct objfile_type *
4360 objfile_type (struct objfile *objfile)
4361 {
4362 struct gdbarch *gdbarch;
4363 struct objfile_type *objfile_type
4364 = objfile_data (objfile, objfile_type_data);
4365
4366 if (objfile_type)
4367 return objfile_type;
4368
4369 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4370 1, struct objfile_type);
4371
4372 /* Use the objfile architecture to determine basic type properties. */
4373 gdbarch = get_objfile_arch (objfile);
4374
4375 /* Basic types. */
4376 objfile_type->builtin_void
4377 = init_type (TYPE_CODE_VOID, 1,
4378 0,
4379 "void", objfile);
4380
4381 objfile_type->builtin_char
4382 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4383 (TYPE_FLAG_NOSIGN
4384 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4385 "char", objfile);
4386 objfile_type->builtin_signed_char
4387 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4388 0,
4389 "signed char", objfile);
4390 objfile_type->builtin_unsigned_char
4391 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4392 TYPE_FLAG_UNSIGNED,
4393 "unsigned char", objfile);
4394 objfile_type->builtin_short
4395 = init_type (TYPE_CODE_INT,
4396 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4397 0, "short", objfile);
4398 objfile_type->builtin_unsigned_short
4399 = init_type (TYPE_CODE_INT,
4400 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4401 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4402 objfile_type->builtin_int
4403 = init_type (TYPE_CODE_INT,
4404 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4405 0, "int", objfile);
4406 objfile_type->builtin_unsigned_int
4407 = init_type (TYPE_CODE_INT,
4408 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4409 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4410 objfile_type->builtin_long
4411 = init_type (TYPE_CODE_INT,
4412 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4413 0, "long", objfile);
4414 objfile_type->builtin_unsigned_long
4415 = init_type (TYPE_CODE_INT,
4416 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4417 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4418 objfile_type->builtin_long_long
4419 = init_type (TYPE_CODE_INT,
4420 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4421 0, "long long", objfile);
4422 objfile_type->builtin_unsigned_long_long
4423 = init_type (TYPE_CODE_INT,
4424 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4425 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4426
4427 objfile_type->builtin_float
4428 = init_type (TYPE_CODE_FLT,
4429 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4430 0, "float", objfile);
4431 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4432 = gdbarch_float_format (gdbarch);
4433 objfile_type->builtin_double
4434 = init_type (TYPE_CODE_FLT,
4435 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4436 0, "double", objfile);
4437 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4438 = gdbarch_double_format (gdbarch);
4439 objfile_type->builtin_long_double
4440 = init_type (TYPE_CODE_FLT,
4441 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4442 0, "long double", objfile);
4443 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4444 = gdbarch_long_double_format (gdbarch);
4445
4446 /* This type represents a type that was unrecognized in symbol read-in. */
4447 objfile_type->builtin_error
4448 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4449
4450 /* The following set of types is used for symbols with no
4451 debug information. */
4452 objfile_type->nodebug_text_symbol
4453 = init_type (TYPE_CODE_FUNC, 1, 0,
4454 "<text variable, no debug info>", objfile);
4455 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4456 = objfile_type->builtin_int;
4457 objfile_type->nodebug_text_gnu_ifunc_symbol
4458 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4459 "<text gnu-indirect-function variable, no debug info>",
4460 objfile);
4461 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4462 = objfile_type->nodebug_text_symbol;
4463 objfile_type->nodebug_got_plt_symbol
4464 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4465 "<text from jump slot in .got.plt, no debug info>",
4466 objfile);
4467 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4468 = objfile_type->nodebug_text_symbol;
4469 objfile_type->nodebug_data_symbol
4470 = init_type (TYPE_CODE_INT,
4471 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4472 "<data variable, no debug info>", objfile);
4473 objfile_type->nodebug_unknown_symbol
4474 = init_type (TYPE_CODE_INT, 1, 0,
4475 "<variable (not text or data), no debug info>", objfile);
4476 objfile_type->nodebug_tls_symbol
4477 = init_type (TYPE_CODE_INT,
4478 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4479 "<thread local variable, no debug info>", objfile);
4480
4481 /* NOTE: on some targets, addresses and pointers are not necessarily
4482 the same.
4483
4484 The upshot is:
4485 - gdb's `struct type' always describes the target's
4486 representation.
4487 - gdb's `struct value' objects should always hold values in
4488 target form.
4489 - gdb's CORE_ADDR values are addresses in the unified virtual
4490 address space that the assembler and linker work with. Thus,
4491 since target_read_memory takes a CORE_ADDR as an argument, it
4492 can access any memory on the target, even if the processor has
4493 separate code and data address spaces.
4494
4495 In this context, objfile_type->builtin_core_addr is a bit odd:
4496 it's a target type for a value the target will never see. It's
4497 only used to hold the values of (typeless) linker symbols, which
4498 are indeed in the unified virtual address space. */
4499
4500 objfile_type->builtin_core_addr
4501 = init_type (TYPE_CODE_INT,
4502 gdbarch_addr_bit (gdbarch) / 8,
4503 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4504
4505 set_objfile_data (objfile, objfile_type_data, objfile_type);
4506 return objfile_type;
4507 }
4508
4509 extern initialize_file_ftype _initialize_gdbtypes;
4510
4511 void
4512 _initialize_gdbtypes (void)
4513 {
4514 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4515 objfile_type_data = register_objfile_data ();
4516
4517 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4518 _("Set debugging of C++ overloading."),
4519 _("Show debugging of C++ overloading."),
4520 _("When enabled, ranking of the "
4521 "functions is displayed."),
4522 NULL,
4523 show_overload_debug,
4524 &setdebuglist, &showdebuglist);
4525
4526 /* Add user knob for controlling resolution of opaque types. */
4527 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4528 &opaque_type_resolution,
4529 _("Set resolution of opaque struct/class/union"
4530 " types (if set before loading symbols)."),
4531 _("Show resolution of opaque struct/class/union"
4532 " types (if set before loading symbols)."),
4533 NULL, NULL,
4534 show_opaque_type_resolution,
4535 &setlist, &showlist);
4536
4537 /* Add an option to permit non-strict type checking. */
4538 add_setshow_boolean_cmd ("type", class_support,
4539 &strict_type_checking,
4540 _("Set strict type checking."),
4541 _("Show strict type checking."),
4542 NULL, NULL,
4543 show_strict_type_checking,
4544 &setchecklist, &showchecklist);
4545 }
This page took 0.145001 seconds and 5 git commands to generate.