Revert "gdbtypes.c: remove the usuned "top_level" parameter"
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
184
185 return type;
186 }
187
188 /* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the heap. */
191
192 struct type *
193 alloc_type_arch (struct gdbarch *gdbarch)
194 {
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
201 type = XCNEW (struct type);
202 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213 }
214
215 /* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219 struct type *
220 alloc_type_copy (const struct type *type)
221 {
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226 }
227
228 /* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231 struct gdbarch *
232 get_type_arch (const struct type *type)
233 {
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238 }
239
240 /* See gdbtypes.h. */
241
242 struct type *
243 get_target_type (struct type *type)
244 {
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253 }
254
255 /* Alloc a new type instance structure, fill it with some defaults,
256 and point it at OLDTYPE. Allocate the new type instance from the
257 same place as OLDTYPE. */
258
259 static struct type *
260 alloc_type_instance (struct type *oldtype)
261 {
262 struct type *type;
263
264 /* Allocate the structure. */
265
266 if (! TYPE_OBJFILE_OWNED (oldtype))
267 type = XCNEW (struct type);
268 else
269 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
270 struct type);
271
272 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
273
274 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
275
276 return type;
277 }
278
279 /* Clear all remnants of the previous type at TYPE, in preparation for
280 replacing it with something else. Preserve owner information. */
281
282 static void
283 smash_type (struct type *type)
284 {
285 int objfile_owned = TYPE_OBJFILE_OWNED (type);
286 union type_owner owner = TYPE_OWNER (type);
287
288 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
289
290 /* Restore owner information. */
291 TYPE_OBJFILE_OWNED (type) = objfile_owned;
292 TYPE_OWNER (type) = owner;
293
294 /* For now, delete the rings. */
295 TYPE_CHAIN (type) = type;
296
297 /* For now, leave the pointer/reference types alone. */
298 }
299
300 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
301 to a pointer to memory where the pointer type should be stored.
302 If *TYPEPTR is zero, update it to point to the pointer type we return.
303 We allocate new memory if needed. */
304
305 struct type *
306 make_pointer_type (struct type *type, struct type **typeptr)
307 {
308 struct type *ntype; /* New type */
309 struct type *chain;
310
311 ntype = TYPE_POINTER_TYPE (type);
312
313 if (ntype)
314 {
315 if (typeptr == 0)
316 return ntype; /* Don't care about alloc,
317 and have new type. */
318 else if (*typeptr == 0)
319 {
320 *typeptr = ntype; /* Tracking alloc, and have new type. */
321 return ntype;
322 }
323 }
324
325 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
326 {
327 ntype = alloc_type_copy (type);
328 if (typeptr)
329 *typeptr = ntype;
330 }
331 else /* We have storage, but need to reset it. */
332 {
333 ntype = *typeptr;
334 chain = TYPE_CHAIN (ntype);
335 smash_type (ntype);
336 TYPE_CHAIN (ntype) = chain;
337 }
338
339 TYPE_TARGET_TYPE (ntype) = type;
340 TYPE_POINTER_TYPE (type) = ntype;
341
342 /* FIXME! Assumes the machine has only one representation for pointers! */
343
344 TYPE_LENGTH (ntype)
345 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
346 TYPE_CODE (ntype) = TYPE_CODE_PTR;
347
348 /* Mark pointers as unsigned. The target converts between pointers
349 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
350 gdbarch_address_to_pointer. */
351 TYPE_UNSIGNED (ntype) = 1;
352
353 /* Update the length of all the other variants of this type. */
354 chain = TYPE_CHAIN (ntype);
355 while (chain != ntype)
356 {
357 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
358 chain = TYPE_CHAIN (chain);
359 }
360
361 return ntype;
362 }
363
364 /* Given a type TYPE, return a type of pointers to that type.
365 May need to construct such a type if this is the first use. */
366
367 struct type *
368 lookup_pointer_type (struct type *type)
369 {
370 return make_pointer_type (type, (struct type **) 0);
371 }
372
373 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
374 points to a pointer to memory where the reference type should be
375 stored. If *TYPEPTR is zero, update it to point to the reference
376 type we return. We allocate new memory if needed. */
377
378 struct type *
379 make_reference_type (struct type *type, struct type **typeptr)
380 {
381 struct type *ntype; /* New type */
382 struct type *chain;
383
384 ntype = TYPE_REFERENCE_TYPE (type);
385
386 if (ntype)
387 {
388 if (typeptr == 0)
389 return ntype; /* Don't care about alloc,
390 and have new type. */
391 else if (*typeptr == 0)
392 {
393 *typeptr = ntype; /* Tracking alloc, and have new type. */
394 return ntype;
395 }
396 }
397
398 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
399 {
400 ntype = alloc_type_copy (type);
401 if (typeptr)
402 *typeptr = ntype;
403 }
404 else /* We have storage, but need to reset it. */
405 {
406 ntype = *typeptr;
407 chain = TYPE_CHAIN (ntype);
408 smash_type (ntype);
409 TYPE_CHAIN (ntype) = chain;
410 }
411
412 TYPE_TARGET_TYPE (ntype) = type;
413 TYPE_REFERENCE_TYPE (type) = ntype;
414
415 /* FIXME! Assume the machine has only one representation for
416 references, and that it matches the (only) representation for
417 pointers! */
418
419 TYPE_LENGTH (ntype) =
420 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
421 TYPE_CODE (ntype) = TYPE_CODE_REF;
422
423 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
426 /* Update the length of all the other variants of this type. */
427 chain = TYPE_CHAIN (ntype);
428 while (chain != ntype)
429 {
430 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
431 chain = TYPE_CHAIN (chain);
432 }
433
434 return ntype;
435 }
436
437 /* Same as above, but caller doesn't care about memory allocation
438 details. */
439
440 struct type *
441 lookup_reference_type (struct type *type)
442 {
443 return make_reference_type (type, (struct type **) 0);
444 }
445
446 /* Lookup a function type that returns type TYPE. TYPEPTR, if
447 nonzero, points to a pointer to memory where the function type
448 should be stored. If *TYPEPTR is zero, update it to point to the
449 function type we return. We allocate new memory if needed. */
450
451 struct type *
452 make_function_type (struct type *type, struct type **typeptr)
453 {
454 struct type *ntype; /* New type */
455
456 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
457 {
458 ntype = alloc_type_copy (type);
459 if (typeptr)
460 *typeptr = ntype;
461 }
462 else /* We have storage, but need to reset it. */
463 {
464 ntype = *typeptr;
465 smash_type (ntype);
466 }
467
468 TYPE_TARGET_TYPE (ntype) = type;
469
470 TYPE_LENGTH (ntype) = 1;
471 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
472
473 INIT_FUNC_SPECIFIC (ntype);
474
475 return ntype;
476 }
477
478 /* Given a type TYPE, return a type of functions that return that type.
479 May need to construct such a type if this is the first use. */
480
481 struct type *
482 lookup_function_type (struct type *type)
483 {
484 return make_function_type (type, (struct type **) 0);
485 }
486
487 /* Given a type TYPE and argument types, return the appropriate
488 function type. If the final type in PARAM_TYPES is NULL, make a
489 varargs function. */
490
491 struct type *
492 lookup_function_type_with_arguments (struct type *type,
493 int nparams,
494 struct type **param_types)
495 {
496 struct type *fn = make_function_type (type, (struct type **) 0);
497 int i;
498
499 if (nparams > 0)
500 {
501 if (param_types[nparams - 1] == NULL)
502 {
503 --nparams;
504 TYPE_VARARGS (fn) = 1;
505 }
506 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
507 == TYPE_CODE_VOID)
508 {
509 --nparams;
510 /* Caller should have ensured this. */
511 gdb_assert (nparams == 0);
512 TYPE_PROTOTYPED (fn) = 1;
513 }
514 }
515
516 TYPE_NFIELDS (fn) = nparams;
517 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
518 for (i = 0; i < nparams; ++i)
519 TYPE_FIELD_TYPE (fn, i) = param_types[i];
520
521 return fn;
522 }
523
524 /* Identify address space identifier by name --
525 return the integer flag defined in gdbtypes.h. */
526
527 int
528 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
529 {
530 int type_flags;
531
532 /* Check for known address space delimiters. */
533 if (!strcmp (space_identifier, "code"))
534 return TYPE_INSTANCE_FLAG_CODE_SPACE;
535 else if (!strcmp (space_identifier, "data"))
536 return TYPE_INSTANCE_FLAG_DATA_SPACE;
537 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
538 && gdbarch_address_class_name_to_type_flags (gdbarch,
539 space_identifier,
540 &type_flags))
541 return type_flags;
542 else
543 error (_("Unknown address space specifier: \"%s\""), space_identifier);
544 }
545
546 /* Identify address space identifier by integer flag as defined in
547 gdbtypes.h -- return the string version of the adress space name. */
548
549 const char *
550 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
551 {
552 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
553 return "code";
554 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
555 return "data";
556 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
557 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
558 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
559 else
560 return NULL;
561 }
562
563 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
564
565 If STORAGE is non-NULL, create the new type instance there.
566 STORAGE must be in the same obstack as TYPE. */
567
568 static struct type *
569 make_qualified_type (struct type *type, int new_flags,
570 struct type *storage)
571 {
572 struct type *ntype;
573
574 ntype = type;
575 do
576 {
577 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
578 return ntype;
579 ntype = TYPE_CHAIN (ntype);
580 }
581 while (ntype != type);
582
583 /* Create a new type instance. */
584 if (storage == NULL)
585 ntype = alloc_type_instance (type);
586 else
587 {
588 /* If STORAGE was provided, it had better be in the same objfile
589 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
590 if one objfile is freed and the other kept, we'd have
591 dangling pointers. */
592 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
593
594 ntype = storage;
595 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
596 TYPE_CHAIN (ntype) = ntype;
597 }
598
599 /* Pointers or references to the original type are not relevant to
600 the new type. */
601 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
602 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
603
604 /* Chain the new qualified type to the old type. */
605 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
606 TYPE_CHAIN (type) = ntype;
607
608 /* Now set the instance flags and return the new type. */
609 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
610
611 /* Set length of new type to that of the original type. */
612 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
613
614 return ntype;
615 }
616
617 /* Make an address-space-delimited variant of a type -- a type that
618 is identical to the one supplied except that it has an address
619 space attribute attached to it (such as "code" or "data").
620
621 The space attributes "code" and "data" are for Harvard
622 architectures. The address space attributes are for architectures
623 which have alternately sized pointers or pointers with alternate
624 representations. */
625
626 struct type *
627 make_type_with_address_space (struct type *type, int space_flag)
628 {
629 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
630 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
631 | TYPE_INSTANCE_FLAG_DATA_SPACE
632 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
633 | space_flag);
634
635 return make_qualified_type (type, new_flags, NULL);
636 }
637
638 /* Make a "c-v" variant of a type -- a type that is identical to the
639 one supplied except that it may have const or volatile attributes
640 CNST is a flag for setting the const attribute
641 VOLTL is a flag for setting the volatile attribute
642 TYPE is the base type whose variant we are creating.
643
644 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
645 storage to hold the new qualified type; *TYPEPTR and TYPE must be
646 in the same objfile. Otherwise, allocate fresh memory for the new
647 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
648 new type we construct. */
649
650 struct type *
651 make_cv_type (int cnst, int voltl,
652 struct type *type,
653 struct type **typeptr)
654 {
655 struct type *ntype; /* New type */
656
657 int new_flags = (TYPE_INSTANCE_FLAGS (type)
658 & ~(TYPE_INSTANCE_FLAG_CONST
659 | TYPE_INSTANCE_FLAG_VOLATILE));
660
661 if (cnst)
662 new_flags |= TYPE_INSTANCE_FLAG_CONST;
663
664 if (voltl)
665 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
666
667 if (typeptr && *typeptr != NULL)
668 {
669 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
670 a C-V variant chain that threads across objfiles: if one
671 objfile gets freed, then the other has a broken C-V chain.
672
673 This code used to try to copy over the main type from TYPE to
674 *TYPEPTR if they were in different objfiles, but that's
675 wrong, too: TYPE may have a field list or member function
676 lists, which refer to types of their own, etc. etc. The
677 whole shebang would need to be copied over recursively; you
678 can't have inter-objfile pointers. The only thing to do is
679 to leave stub types as stub types, and look them up afresh by
680 name each time you encounter them. */
681 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
682 }
683
684 ntype = make_qualified_type (type, new_flags,
685 typeptr ? *typeptr : NULL);
686
687 if (typeptr != NULL)
688 *typeptr = ntype;
689
690 return ntype;
691 }
692
693 /* Make a 'restrict'-qualified version of TYPE. */
694
695 struct type *
696 make_restrict_type (struct type *type)
697 {
698 return make_qualified_type (type,
699 (TYPE_INSTANCE_FLAGS (type)
700 | TYPE_INSTANCE_FLAG_RESTRICT),
701 NULL);
702 }
703
704 /* Make a type without const, volatile, or restrict. */
705
706 struct type *
707 make_unqualified_type (struct type *type)
708 {
709 return make_qualified_type (type,
710 (TYPE_INSTANCE_FLAGS (type)
711 & ~(TYPE_INSTANCE_FLAG_CONST
712 | TYPE_INSTANCE_FLAG_VOLATILE
713 | TYPE_INSTANCE_FLAG_RESTRICT)),
714 NULL);
715 }
716
717 /* Make a '_Atomic'-qualified version of TYPE. */
718
719 struct type *
720 make_atomic_type (struct type *type)
721 {
722 return make_qualified_type (type,
723 (TYPE_INSTANCE_FLAGS (type)
724 | TYPE_INSTANCE_FLAG_ATOMIC),
725 NULL);
726 }
727
728 /* Replace the contents of ntype with the type *type. This changes the
729 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
730 the changes are propogated to all types in the TYPE_CHAIN.
731
732 In order to build recursive types, it's inevitable that we'll need
733 to update types in place --- but this sort of indiscriminate
734 smashing is ugly, and needs to be replaced with something more
735 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
736 clear if more steps are needed. */
737
738 void
739 replace_type (struct type *ntype, struct type *type)
740 {
741 struct type *chain;
742
743 /* These two types had better be in the same objfile. Otherwise,
744 the assignment of one type's main type structure to the other
745 will produce a type with references to objects (names; field
746 lists; etc.) allocated on an objfile other than its own. */
747 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
748
749 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
750
751 /* The type length is not a part of the main type. Update it for
752 each type on the variant chain. */
753 chain = ntype;
754 do
755 {
756 /* Assert that this element of the chain has no address-class bits
757 set in its flags. Such type variants might have type lengths
758 which are supposed to be different from the non-address-class
759 variants. This assertion shouldn't ever be triggered because
760 symbol readers which do construct address-class variants don't
761 call replace_type(). */
762 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
763
764 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
765 chain = TYPE_CHAIN (chain);
766 }
767 while (ntype != chain);
768
769 /* Assert that the two types have equivalent instance qualifiers.
770 This should be true for at least all of our debug readers. */
771 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
772 }
773
774 /* Implement direct support for MEMBER_TYPE in GNU C++.
775 May need to construct such a type if this is the first use.
776 The TYPE is the type of the member. The DOMAIN is the type
777 of the aggregate that the member belongs to. */
778
779 struct type *
780 lookup_memberptr_type (struct type *type, struct type *domain)
781 {
782 struct type *mtype;
783
784 mtype = alloc_type_copy (type);
785 smash_to_memberptr_type (mtype, domain, type);
786 return mtype;
787 }
788
789 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
790
791 struct type *
792 lookup_methodptr_type (struct type *to_type)
793 {
794 struct type *mtype;
795
796 mtype = alloc_type_copy (to_type);
797 smash_to_methodptr_type (mtype, to_type);
798 return mtype;
799 }
800
801 /* Allocate a stub method whose return type is TYPE. This apparently
802 happens for speed of symbol reading, since parsing out the
803 arguments to the method is cpu-intensive, the way we are doing it.
804 So, we will fill in arguments later. This always returns a fresh
805 type. */
806
807 struct type *
808 allocate_stub_method (struct type *type)
809 {
810 struct type *mtype;
811
812 mtype = alloc_type_copy (type);
813 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
814 TYPE_LENGTH (mtype) = 1;
815 TYPE_STUB (mtype) = 1;
816 TYPE_TARGET_TYPE (mtype) = type;
817 /* TYPE_SELF_TYPE (mtype) = unknown yet */
818 return mtype;
819 }
820
821 /* Create a range type with a dynamic range from LOW_BOUND to
822 HIGH_BOUND, inclusive. See create_range_type for further details. */
823
824 struct type *
825 create_range_type (struct type *result_type, struct type *index_type,
826 const struct dynamic_prop *low_bound,
827 const struct dynamic_prop *high_bound)
828 {
829 if (result_type == NULL)
830 result_type = alloc_type_copy (index_type);
831 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
832 TYPE_TARGET_TYPE (result_type) = index_type;
833 if (TYPE_STUB (index_type))
834 TYPE_TARGET_STUB (result_type) = 1;
835 else
836 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
837
838 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
839 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
840 TYPE_RANGE_DATA (result_type)->low = *low_bound;
841 TYPE_RANGE_DATA (result_type)->high = *high_bound;
842
843 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
844 TYPE_UNSIGNED (result_type) = 1;
845
846 /* Ada allows the declaration of range types whose upper bound is
847 less than the lower bound, so checking the lower bound is not
848 enough. Make sure we do not mark a range type whose upper bound
849 is negative as unsigned. */
850 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
851 TYPE_UNSIGNED (result_type) = 0;
852
853 return result_type;
854 }
855
856 /* Create a range type using either a blank type supplied in
857 RESULT_TYPE, or creating a new type, inheriting the objfile from
858 INDEX_TYPE.
859
860 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
861 to HIGH_BOUND, inclusive.
862
863 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
864 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
865
866 struct type *
867 create_static_range_type (struct type *result_type, struct type *index_type,
868 LONGEST low_bound, LONGEST high_bound)
869 {
870 struct dynamic_prop low, high;
871
872 low.kind = PROP_CONST;
873 low.data.const_val = low_bound;
874
875 high.kind = PROP_CONST;
876 high.data.const_val = high_bound;
877
878 result_type = create_range_type (result_type, index_type, &low, &high);
879
880 return result_type;
881 }
882
883 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
884 are static, otherwise returns 0. */
885
886 static int
887 has_static_range (const struct range_bounds *bounds)
888 {
889 return (bounds->low.kind == PROP_CONST
890 && bounds->high.kind == PROP_CONST);
891 }
892
893
894 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
895 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
896 bounds will fit in LONGEST), or -1 otherwise. */
897
898 int
899 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
900 {
901 CHECK_TYPEDEF (type);
902 switch (TYPE_CODE (type))
903 {
904 case TYPE_CODE_RANGE:
905 *lowp = TYPE_LOW_BOUND (type);
906 *highp = TYPE_HIGH_BOUND (type);
907 return 1;
908 case TYPE_CODE_ENUM:
909 if (TYPE_NFIELDS (type) > 0)
910 {
911 /* The enums may not be sorted by value, so search all
912 entries. */
913 int i;
914
915 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
916 for (i = 0; i < TYPE_NFIELDS (type); i++)
917 {
918 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
919 *lowp = TYPE_FIELD_ENUMVAL (type, i);
920 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
921 *highp = TYPE_FIELD_ENUMVAL (type, i);
922 }
923
924 /* Set unsigned indicator if warranted. */
925 if (*lowp >= 0)
926 {
927 TYPE_UNSIGNED (type) = 1;
928 }
929 }
930 else
931 {
932 *lowp = 0;
933 *highp = -1;
934 }
935 return 0;
936 case TYPE_CODE_BOOL:
937 *lowp = 0;
938 *highp = 1;
939 return 0;
940 case TYPE_CODE_INT:
941 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
942 return -1;
943 if (!TYPE_UNSIGNED (type))
944 {
945 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
946 *highp = -*lowp - 1;
947 return 0;
948 }
949 /* ... fall through for unsigned ints ... */
950 case TYPE_CODE_CHAR:
951 *lowp = 0;
952 /* This round-about calculation is to avoid shifting by
953 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
954 if TYPE_LENGTH (type) == sizeof (LONGEST). */
955 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
956 *highp = (*highp - 1) | *highp;
957 return 0;
958 default:
959 return -1;
960 }
961 }
962
963 /* Assuming TYPE is a simple, non-empty array type, compute its upper
964 and lower bound. Save the low bound into LOW_BOUND if not NULL.
965 Save the high bound into HIGH_BOUND if not NULL.
966
967 Return 1 if the operation was successful. Return zero otherwise,
968 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
969
970 We now simply use get_discrete_bounds call to get the values
971 of the low and high bounds.
972 get_discrete_bounds can return three values:
973 1, meaning that index is a range,
974 0, meaning that index is a discrete type,
975 or -1 for failure. */
976
977 int
978 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
979 {
980 struct type *index = TYPE_INDEX_TYPE (type);
981 LONGEST low = 0;
982 LONGEST high = 0;
983 int res;
984
985 if (index == NULL)
986 return 0;
987
988 res = get_discrete_bounds (index, &low, &high);
989 if (res == -1)
990 return 0;
991
992 /* Check if the array bounds are undefined. */
993 if (res == 1
994 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
995 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
996 return 0;
997
998 if (low_bound)
999 *low_bound = low;
1000
1001 if (high_bound)
1002 *high_bound = high;
1003
1004 return 1;
1005 }
1006
1007 /* Create an array type using either a blank type supplied in
1008 RESULT_TYPE, or creating a new type, inheriting the objfile from
1009 RANGE_TYPE.
1010
1011 Elements will be of type ELEMENT_TYPE, the indices will be of type
1012 RANGE_TYPE.
1013
1014 If BIT_STRIDE is not zero, build a packed array type whose element
1015 size is BIT_STRIDE. Otherwise, ignore this parameter.
1016
1017 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1018 sure it is TYPE_CODE_UNDEF before we bash it into an array
1019 type? */
1020
1021 struct type *
1022 create_array_type_with_stride (struct type *result_type,
1023 struct type *element_type,
1024 struct type *range_type,
1025 unsigned int bit_stride)
1026 {
1027 if (result_type == NULL)
1028 result_type = alloc_type_copy (range_type);
1029
1030 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1031 TYPE_TARGET_TYPE (result_type) = element_type;
1032 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1033 {
1034 LONGEST low_bound, high_bound;
1035
1036 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1037 low_bound = high_bound = 0;
1038 CHECK_TYPEDEF (element_type);
1039 /* Be careful when setting the array length. Ada arrays can be
1040 empty arrays with the high_bound being smaller than the low_bound.
1041 In such cases, the array length should be zero. */
1042 if (high_bound < low_bound)
1043 TYPE_LENGTH (result_type) = 0;
1044 else if (bit_stride > 0)
1045 TYPE_LENGTH (result_type) =
1046 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1047 else
1048 TYPE_LENGTH (result_type) =
1049 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1050 }
1051 else
1052 {
1053 /* This type is dynamic and its length needs to be computed
1054 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1055 undefined by setting it to zero. Although we are not expected
1056 to trust TYPE_LENGTH in this case, setting the size to zero
1057 allows us to avoid allocating objects of random sizes in case
1058 we accidently do. */
1059 TYPE_LENGTH (result_type) = 0;
1060 }
1061
1062 TYPE_NFIELDS (result_type) = 1;
1063 TYPE_FIELDS (result_type) =
1064 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1065 TYPE_INDEX_TYPE (result_type) = range_type;
1066 if (bit_stride > 0)
1067 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1068
1069 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1070 if (TYPE_LENGTH (result_type) == 0)
1071 TYPE_TARGET_STUB (result_type) = 1;
1072
1073 return result_type;
1074 }
1075
1076 /* Same as create_array_type_with_stride but with no bit_stride
1077 (BIT_STRIDE = 0), thus building an unpacked array. */
1078
1079 struct type *
1080 create_array_type (struct type *result_type,
1081 struct type *element_type,
1082 struct type *range_type)
1083 {
1084 return create_array_type_with_stride (result_type, element_type,
1085 range_type, 0);
1086 }
1087
1088 struct type *
1089 lookup_array_range_type (struct type *element_type,
1090 LONGEST low_bound, LONGEST high_bound)
1091 {
1092 struct gdbarch *gdbarch = get_type_arch (element_type);
1093 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1094 struct type *range_type
1095 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1096
1097 return create_array_type (NULL, element_type, range_type);
1098 }
1099
1100 /* Create a string type using either a blank type supplied in
1101 RESULT_TYPE, or creating a new type. String types are similar
1102 enough to array of char types that we can use create_array_type to
1103 build the basic type and then bash it into a string type.
1104
1105 For fixed length strings, the range type contains 0 as the lower
1106 bound and the length of the string minus one as the upper bound.
1107
1108 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1109 sure it is TYPE_CODE_UNDEF before we bash it into a string
1110 type? */
1111
1112 struct type *
1113 create_string_type (struct type *result_type,
1114 struct type *string_char_type,
1115 struct type *range_type)
1116 {
1117 result_type = create_array_type (result_type,
1118 string_char_type,
1119 range_type);
1120 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1121 return result_type;
1122 }
1123
1124 struct type *
1125 lookup_string_range_type (struct type *string_char_type,
1126 LONGEST low_bound, LONGEST high_bound)
1127 {
1128 struct type *result_type;
1129
1130 result_type = lookup_array_range_type (string_char_type,
1131 low_bound, high_bound);
1132 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1133 return result_type;
1134 }
1135
1136 struct type *
1137 create_set_type (struct type *result_type, struct type *domain_type)
1138 {
1139 if (result_type == NULL)
1140 result_type = alloc_type_copy (domain_type);
1141
1142 TYPE_CODE (result_type) = TYPE_CODE_SET;
1143 TYPE_NFIELDS (result_type) = 1;
1144 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1145
1146 if (!TYPE_STUB (domain_type))
1147 {
1148 LONGEST low_bound, high_bound, bit_length;
1149
1150 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1151 low_bound = high_bound = 0;
1152 bit_length = high_bound - low_bound + 1;
1153 TYPE_LENGTH (result_type)
1154 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1155 if (low_bound >= 0)
1156 TYPE_UNSIGNED (result_type) = 1;
1157 }
1158 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1159
1160 return result_type;
1161 }
1162
1163 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1164 and any array types nested inside it. */
1165
1166 void
1167 make_vector_type (struct type *array_type)
1168 {
1169 struct type *inner_array, *elt_type;
1170 int flags;
1171
1172 /* Find the innermost array type, in case the array is
1173 multi-dimensional. */
1174 inner_array = array_type;
1175 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1176 inner_array = TYPE_TARGET_TYPE (inner_array);
1177
1178 elt_type = TYPE_TARGET_TYPE (inner_array);
1179 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1180 {
1181 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1182 elt_type = make_qualified_type (elt_type, flags, NULL);
1183 TYPE_TARGET_TYPE (inner_array) = elt_type;
1184 }
1185
1186 TYPE_VECTOR (array_type) = 1;
1187 }
1188
1189 struct type *
1190 init_vector_type (struct type *elt_type, int n)
1191 {
1192 struct type *array_type;
1193
1194 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1195 make_vector_type (array_type);
1196 return array_type;
1197 }
1198
1199 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1200 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1201 confusing. "self" is a common enough replacement for "this".
1202 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1203 TYPE_CODE_METHOD. */
1204
1205 struct type *
1206 internal_type_self_type (struct type *type)
1207 {
1208 switch (TYPE_CODE (type))
1209 {
1210 case TYPE_CODE_METHODPTR:
1211 case TYPE_CODE_MEMBERPTR:
1212 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1213 return NULL;
1214 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1215 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1216 case TYPE_CODE_METHOD:
1217 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1218 return NULL;
1219 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1220 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1221 default:
1222 gdb_assert_not_reached ("bad type");
1223 }
1224 }
1225
1226 /* Set the type of the class that TYPE belongs to.
1227 In c++ this is the class of "this".
1228 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1229 TYPE_CODE_METHOD. */
1230
1231 void
1232 set_type_self_type (struct type *type, struct type *self_type)
1233 {
1234 switch (TYPE_CODE (type))
1235 {
1236 case TYPE_CODE_METHODPTR:
1237 case TYPE_CODE_MEMBERPTR:
1238 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1239 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1240 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1241 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1242 break;
1243 case TYPE_CODE_METHOD:
1244 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1245 INIT_FUNC_SPECIFIC (type);
1246 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1247 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1248 break;
1249 default:
1250 gdb_assert_not_reached ("bad type");
1251 }
1252 }
1253
1254 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1255 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1256 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1257 TYPE doesn't include the offset (that's the value of the MEMBER
1258 itself), but does include the structure type into which it points
1259 (for some reason).
1260
1261 When "smashing" the type, we preserve the objfile that the old type
1262 pointed to, since we aren't changing where the type is actually
1263 allocated. */
1264
1265 void
1266 smash_to_memberptr_type (struct type *type, struct type *self_type,
1267 struct type *to_type)
1268 {
1269 smash_type (type);
1270 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1271 TYPE_TARGET_TYPE (type) = to_type;
1272 set_type_self_type (type, self_type);
1273 /* Assume that a data member pointer is the same size as a normal
1274 pointer. */
1275 TYPE_LENGTH (type)
1276 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1277 }
1278
1279 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1280
1281 When "smashing" the type, we preserve the objfile that the old type
1282 pointed to, since we aren't changing where the type is actually
1283 allocated. */
1284
1285 void
1286 smash_to_methodptr_type (struct type *type, struct type *to_type)
1287 {
1288 smash_type (type);
1289 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1290 TYPE_TARGET_TYPE (type) = to_type;
1291 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1292 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1293 }
1294
1295 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1296 METHOD just means `function that gets an extra "this" argument'.
1297
1298 When "smashing" the type, we preserve the objfile that the old type
1299 pointed to, since we aren't changing where the type is actually
1300 allocated. */
1301
1302 void
1303 smash_to_method_type (struct type *type, struct type *self_type,
1304 struct type *to_type, struct field *args,
1305 int nargs, int varargs)
1306 {
1307 smash_type (type);
1308 TYPE_CODE (type) = TYPE_CODE_METHOD;
1309 TYPE_TARGET_TYPE (type) = to_type;
1310 set_type_self_type (type, self_type);
1311 TYPE_FIELDS (type) = args;
1312 TYPE_NFIELDS (type) = nargs;
1313 if (varargs)
1314 TYPE_VARARGS (type) = 1;
1315 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1316 }
1317
1318 /* Return a typename for a struct/union/enum type without "struct ",
1319 "union ", or "enum ". If the type has a NULL name, return NULL. */
1320
1321 const char *
1322 type_name_no_tag (const struct type *type)
1323 {
1324 if (TYPE_TAG_NAME (type) != NULL)
1325 return TYPE_TAG_NAME (type);
1326
1327 /* Is there code which expects this to return the name if there is
1328 no tag name? My guess is that this is mainly used for C++ in
1329 cases where the two will always be the same. */
1330 return TYPE_NAME (type);
1331 }
1332
1333 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1334 Since GCC PR debug/47510 DWARF provides associated information to detect the
1335 anonymous class linkage name from its typedef.
1336
1337 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1338 apply it itself. */
1339
1340 const char *
1341 type_name_no_tag_or_error (struct type *type)
1342 {
1343 struct type *saved_type = type;
1344 const char *name;
1345 struct objfile *objfile;
1346
1347 CHECK_TYPEDEF (type);
1348
1349 name = type_name_no_tag (type);
1350 if (name != NULL)
1351 return name;
1352
1353 name = type_name_no_tag (saved_type);
1354 objfile = TYPE_OBJFILE (saved_type);
1355 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1356 name ? name : "<anonymous>",
1357 objfile ? objfile_name (objfile) : "<arch>");
1358 }
1359
1360 /* Lookup a typedef or primitive type named NAME, visible in lexical
1361 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1362 suitably defined. */
1363
1364 struct type *
1365 lookup_typename (const struct language_defn *language,
1366 struct gdbarch *gdbarch, const char *name,
1367 const struct block *block, int noerr)
1368 {
1369 struct symbol *sym;
1370 struct type *type;
1371
1372 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1373 language->la_language, NULL);
1374 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1375 return SYMBOL_TYPE (sym);
1376
1377 if (noerr)
1378 return NULL;
1379 error (_("No type named %s."), name);
1380 }
1381
1382 struct type *
1383 lookup_unsigned_typename (const struct language_defn *language,
1384 struct gdbarch *gdbarch, const char *name)
1385 {
1386 char *uns = alloca (strlen (name) + 10);
1387
1388 strcpy (uns, "unsigned ");
1389 strcpy (uns + 9, name);
1390 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1391 }
1392
1393 struct type *
1394 lookup_signed_typename (const struct language_defn *language,
1395 struct gdbarch *gdbarch, const char *name)
1396 {
1397 struct type *t;
1398 char *uns = alloca (strlen (name) + 8);
1399
1400 strcpy (uns, "signed ");
1401 strcpy (uns + 7, name);
1402 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1403 /* If we don't find "signed FOO" just try again with plain "FOO". */
1404 if (t != NULL)
1405 return t;
1406 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1407 }
1408
1409 /* Lookup a structure type named "struct NAME",
1410 visible in lexical block BLOCK. */
1411
1412 struct type *
1413 lookup_struct (const char *name, const struct block *block)
1414 {
1415 struct symbol *sym;
1416
1417 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1418
1419 if (sym == NULL)
1420 {
1421 error (_("No struct type named %s."), name);
1422 }
1423 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1424 {
1425 error (_("This context has class, union or enum %s, not a struct."),
1426 name);
1427 }
1428 return (SYMBOL_TYPE (sym));
1429 }
1430
1431 /* Lookup a union type named "union NAME",
1432 visible in lexical block BLOCK. */
1433
1434 struct type *
1435 lookup_union (const char *name, const struct block *block)
1436 {
1437 struct symbol *sym;
1438 struct type *t;
1439
1440 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1441
1442 if (sym == NULL)
1443 error (_("No union type named %s."), name);
1444
1445 t = SYMBOL_TYPE (sym);
1446
1447 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1448 return t;
1449
1450 /* If we get here, it's not a union. */
1451 error (_("This context has class, struct or enum %s, not a union."),
1452 name);
1453 }
1454
1455 /* Lookup an enum type named "enum NAME",
1456 visible in lexical block BLOCK. */
1457
1458 struct type *
1459 lookup_enum (const char *name, const struct block *block)
1460 {
1461 struct symbol *sym;
1462
1463 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1464 if (sym == NULL)
1465 {
1466 error (_("No enum type named %s."), name);
1467 }
1468 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1469 {
1470 error (_("This context has class, struct or union %s, not an enum."),
1471 name);
1472 }
1473 return (SYMBOL_TYPE (sym));
1474 }
1475
1476 /* Lookup a template type named "template NAME<TYPE>",
1477 visible in lexical block BLOCK. */
1478
1479 struct type *
1480 lookup_template_type (char *name, struct type *type,
1481 const struct block *block)
1482 {
1483 struct symbol *sym;
1484 char *nam = (char *)
1485 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1486
1487 strcpy (nam, name);
1488 strcat (nam, "<");
1489 strcat (nam, TYPE_NAME (type));
1490 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1491
1492 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1493
1494 if (sym == NULL)
1495 {
1496 error (_("No template type named %s."), name);
1497 }
1498 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1499 {
1500 error (_("This context has class, union or enum %s, not a struct."),
1501 name);
1502 }
1503 return (SYMBOL_TYPE (sym));
1504 }
1505
1506 /* Given a type TYPE, lookup the type of the component of type named
1507 NAME.
1508
1509 TYPE can be either a struct or union, or a pointer or reference to
1510 a struct or union. If it is a pointer or reference, its target
1511 type is automatically used. Thus '.' and '->' are interchangable,
1512 as specified for the definitions of the expression element types
1513 STRUCTOP_STRUCT and STRUCTOP_PTR.
1514
1515 If NOERR is nonzero, return zero if NAME is not suitably defined.
1516 If NAME is the name of a baseclass type, return that type. */
1517
1518 struct type *
1519 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1520 {
1521 int i;
1522 char *type_name;
1523
1524 for (;;)
1525 {
1526 CHECK_TYPEDEF (type);
1527 if (TYPE_CODE (type) != TYPE_CODE_PTR
1528 && TYPE_CODE (type) != TYPE_CODE_REF)
1529 break;
1530 type = TYPE_TARGET_TYPE (type);
1531 }
1532
1533 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1534 && TYPE_CODE (type) != TYPE_CODE_UNION)
1535 {
1536 type_name = type_to_string (type);
1537 make_cleanup (xfree, type_name);
1538 error (_("Type %s is not a structure or union type."), type_name);
1539 }
1540
1541 #if 0
1542 /* FIXME: This change put in by Michael seems incorrect for the case
1543 where the structure tag name is the same as the member name.
1544 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1545 foo; } bell;" Disabled by fnf. */
1546 {
1547 char *type_name;
1548
1549 type_name = type_name_no_tag (type);
1550 if (type_name != NULL && strcmp (type_name, name) == 0)
1551 return type;
1552 }
1553 #endif
1554
1555 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1556 {
1557 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1558
1559 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1560 {
1561 return TYPE_FIELD_TYPE (type, i);
1562 }
1563 else if (!t_field_name || *t_field_name == '\0')
1564 {
1565 struct type *subtype
1566 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1567
1568 if (subtype != NULL)
1569 return subtype;
1570 }
1571 }
1572
1573 /* OK, it's not in this class. Recursively check the baseclasses. */
1574 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1575 {
1576 struct type *t;
1577
1578 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1579 if (t != NULL)
1580 {
1581 return t;
1582 }
1583 }
1584
1585 if (noerr)
1586 {
1587 return NULL;
1588 }
1589
1590 type_name = type_to_string (type);
1591 make_cleanup (xfree, type_name);
1592 error (_("Type %s has no component named %s."), type_name, name);
1593 }
1594
1595 /* Store in *MAX the largest number representable by unsigned integer type
1596 TYPE. */
1597
1598 void
1599 get_unsigned_type_max (struct type *type, ULONGEST *max)
1600 {
1601 unsigned int n;
1602
1603 CHECK_TYPEDEF (type);
1604 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1605 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1606
1607 /* Written this way to avoid overflow. */
1608 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1609 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1610 }
1611
1612 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1613 signed integer type TYPE. */
1614
1615 void
1616 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1617 {
1618 unsigned int n;
1619
1620 CHECK_TYPEDEF (type);
1621 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1622 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1623
1624 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1625 *min = -((ULONGEST) 1 << (n - 1));
1626 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1627 }
1628
1629 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1630 cplus_stuff.vptr_fieldno.
1631
1632 cplus_stuff is initialized to cplus_struct_default which does not
1633 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1634 designated initializers). We cope with that here. */
1635
1636 int
1637 internal_type_vptr_fieldno (struct type *type)
1638 {
1639 CHECK_TYPEDEF (type);
1640 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1641 || TYPE_CODE (type) == TYPE_CODE_UNION);
1642 if (!HAVE_CPLUS_STRUCT (type))
1643 return -1;
1644 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1645 }
1646
1647 /* Set the value of cplus_stuff.vptr_fieldno. */
1648
1649 void
1650 set_type_vptr_fieldno (struct type *type, int fieldno)
1651 {
1652 CHECK_TYPEDEF (type);
1653 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1654 || TYPE_CODE (type) == TYPE_CODE_UNION);
1655 if (!HAVE_CPLUS_STRUCT (type))
1656 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1657 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1658 }
1659
1660 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1661 cplus_stuff.vptr_basetype. */
1662
1663 struct type *
1664 internal_type_vptr_basetype (struct type *type)
1665 {
1666 CHECK_TYPEDEF (type);
1667 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1668 || TYPE_CODE (type) == TYPE_CODE_UNION);
1669 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1670 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1671 }
1672
1673 /* Set the value of cplus_stuff.vptr_basetype. */
1674
1675 void
1676 set_type_vptr_basetype (struct type *type, struct type *basetype)
1677 {
1678 CHECK_TYPEDEF (type);
1679 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1680 || TYPE_CODE (type) == TYPE_CODE_UNION);
1681 if (!HAVE_CPLUS_STRUCT (type))
1682 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1683 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1684 }
1685
1686 /* Lookup the vptr basetype/fieldno values for TYPE.
1687 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1688 vptr_fieldno. Also, if found and basetype is from the same objfile,
1689 cache the results.
1690 If not found, return -1 and ignore BASETYPEP.
1691 Callers should be aware that in some cases (for example,
1692 the type or one of its baseclasses is a stub type and we are
1693 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1694 this function will not be able to find the
1695 virtual function table pointer, and vptr_fieldno will remain -1 and
1696 vptr_basetype will remain NULL or incomplete. */
1697
1698 int
1699 get_vptr_fieldno (struct type *type, struct type **basetypep)
1700 {
1701 CHECK_TYPEDEF (type);
1702
1703 if (TYPE_VPTR_FIELDNO (type) < 0)
1704 {
1705 int i;
1706
1707 /* We must start at zero in case the first (and only) baseclass
1708 is virtual (and hence we cannot share the table pointer). */
1709 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1710 {
1711 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1712 int fieldno;
1713 struct type *basetype;
1714
1715 fieldno = get_vptr_fieldno (baseclass, &basetype);
1716 if (fieldno >= 0)
1717 {
1718 /* If the type comes from a different objfile we can't cache
1719 it, it may have a different lifetime. PR 2384 */
1720 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1721 {
1722 set_type_vptr_fieldno (type, fieldno);
1723 set_type_vptr_basetype (type, basetype);
1724 }
1725 if (basetypep)
1726 *basetypep = basetype;
1727 return fieldno;
1728 }
1729 }
1730
1731 /* Not found. */
1732 return -1;
1733 }
1734 else
1735 {
1736 if (basetypep)
1737 *basetypep = TYPE_VPTR_BASETYPE (type);
1738 return TYPE_VPTR_FIELDNO (type);
1739 }
1740 }
1741
1742 static void
1743 stub_noname_complaint (void)
1744 {
1745 complaint (&symfile_complaints, _("stub type has NULL name"));
1746 }
1747
1748 /* Worker for is_dynamic_type. */
1749
1750 static int
1751 is_dynamic_type_internal (struct type *type, int top_level)
1752 {
1753 type = check_typedef (type);
1754
1755 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1756 dynamic, even if the type itself is statically defined.
1757 From a user's point of view, this may appear counter-intuitive;
1758 but it makes sense in this context, because the point is to determine
1759 whether any part of the type needs to be resolved before it can
1760 be exploited. */
1761 if (TYPE_DATA_LOCATION (type) != NULL
1762 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1763 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1764 return 1;
1765
1766 switch (TYPE_CODE (type))
1767 {
1768 case TYPE_CODE_RANGE:
1769 {
1770 /* A range type is obviously dynamic if it has at least one
1771 dynamic bound. But also consider the range type to be
1772 dynamic when its subtype is dynamic, even if the bounds
1773 of the range type are static. It allows us to assume that
1774 the subtype of a static range type is also static. */
1775 return (!has_static_range (TYPE_RANGE_DATA (type))
1776 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1777 }
1778
1779 case TYPE_CODE_ARRAY:
1780 {
1781 gdb_assert (TYPE_NFIELDS (type) == 1);
1782
1783 /* The array is dynamic if either the bounds are dynamic,
1784 or the elements it contains have a dynamic contents. */
1785 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1786 return 1;
1787 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1788 }
1789
1790 case TYPE_CODE_STRUCT:
1791 case TYPE_CODE_UNION:
1792 {
1793 int i;
1794
1795 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1796 if (!field_is_static (&TYPE_FIELD (type, i))
1797 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1798 return 1;
1799 }
1800 break;
1801 }
1802
1803 return 0;
1804 }
1805
1806 /* See gdbtypes.h. */
1807
1808 int
1809 is_dynamic_type (struct type *type)
1810 {
1811 return is_dynamic_type_internal (type, 1);
1812 }
1813
1814 static struct type *resolve_dynamic_type_internal
1815 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1816
1817 /* Given a dynamic range type (dyn_range_type) and a stack of
1818 struct property_addr_info elements, return a static version
1819 of that type. */
1820
1821 static struct type *
1822 resolve_dynamic_range (struct type *dyn_range_type,
1823 struct property_addr_info *addr_stack)
1824 {
1825 CORE_ADDR value;
1826 struct type *static_range_type, *static_target_type;
1827 const struct dynamic_prop *prop;
1828 const struct dwarf2_locexpr_baton *baton;
1829 struct dynamic_prop low_bound, high_bound;
1830
1831 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1832
1833 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1834 if (dwarf2_evaluate_property (prop, addr_stack, &value))
1835 {
1836 low_bound.kind = PROP_CONST;
1837 low_bound.data.const_val = value;
1838 }
1839 else
1840 {
1841 low_bound.kind = PROP_UNDEFINED;
1842 low_bound.data.const_val = 0;
1843 }
1844
1845 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1846 if (dwarf2_evaluate_property (prop, addr_stack, &value))
1847 {
1848 high_bound.kind = PROP_CONST;
1849 high_bound.data.const_val = value;
1850
1851 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1852 high_bound.data.const_val
1853 = low_bound.data.const_val + high_bound.data.const_val - 1;
1854 }
1855 else
1856 {
1857 high_bound.kind = PROP_UNDEFINED;
1858 high_bound.data.const_val = 0;
1859 }
1860
1861 static_target_type
1862 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1863 addr_stack, 0);
1864 static_range_type = create_range_type (copy_type (dyn_range_type),
1865 static_target_type,
1866 &low_bound, &high_bound);
1867 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1868 return static_range_type;
1869 }
1870
1871 /* Resolves dynamic bound values of an array type TYPE to static ones.
1872 ADDR_STACK is a stack of struct property_addr_info to be used
1873 if needed during the dynamic resolution. */
1874
1875 static struct type *
1876 resolve_dynamic_array (struct type *type,
1877 struct property_addr_info *addr_stack)
1878 {
1879 CORE_ADDR value;
1880 struct type *elt_type;
1881 struct type *range_type;
1882 struct type *ary_dim;
1883
1884 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1885
1886 elt_type = type;
1887 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1888 range_type = resolve_dynamic_range (range_type, addr_stack);
1889
1890 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1891
1892 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1893 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr_stack);
1894 else
1895 elt_type = TYPE_TARGET_TYPE (type);
1896
1897 return create_array_type (copy_type (type),
1898 elt_type,
1899 range_type);
1900 }
1901
1902 /* Resolve dynamic bounds of members of the union TYPE to static
1903 bounds. ADDR_STACK is a stack of struct property_addr_info
1904 to be used if needed during the dynamic resolution. */
1905
1906 static struct type *
1907 resolve_dynamic_union (struct type *type,
1908 struct property_addr_info *addr_stack)
1909 {
1910 struct type *resolved_type;
1911 int i;
1912 unsigned int max_len = 0;
1913
1914 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1915
1916 resolved_type = copy_type (type);
1917 TYPE_FIELDS (resolved_type)
1918 = TYPE_ALLOC (resolved_type,
1919 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1920 memcpy (TYPE_FIELDS (resolved_type),
1921 TYPE_FIELDS (type),
1922 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1923 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1924 {
1925 struct type *t;
1926
1927 if (field_is_static (&TYPE_FIELD (type, i)))
1928 continue;
1929
1930 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1931 addr_stack, 0);
1932 TYPE_FIELD_TYPE (resolved_type, i) = t;
1933 if (TYPE_LENGTH (t) > max_len)
1934 max_len = TYPE_LENGTH (t);
1935 }
1936
1937 TYPE_LENGTH (resolved_type) = max_len;
1938 return resolved_type;
1939 }
1940
1941 /* Resolve dynamic bounds of members of the struct TYPE to static
1942 bounds. ADDR_STACK is a stack of struct property_addr_info to
1943 be used if needed during the dynamic resolution. */
1944
1945 static struct type *
1946 resolve_dynamic_struct (struct type *type,
1947 struct property_addr_info *addr_stack)
1948 {
1949 struct type *resolved_type;
1950 int i;
1951 unsigned resolved_type_bit_length = 0;
1952
1953 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1954 gdb_assert (TYPE_NFIELDS (type) > 0);
1955
1956 resolved_type = copy_type (type);
1957 TYPE_FIELDS (resolved_type)
1958 = TYPE_ALLOC (resolved_type,
1959 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1960 memcpy (TYPE_FIELDS (resolved_type),
1961 TYPE_FIELDS (type),
1962 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1963 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1964 {
1965 unsigned new_bit_length;
1966 struct property_addr_info pinfo;
1967
1968 if (field_is_static (&TYPE_FIELD (type, i)))
1969 continue;
1970
1971 /* As we know this field is not a static field, the field's
1972 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1973 this is the case, but only trigger a simple error rather
1974 than an internal error if that fails. While failing
1975 that verification indicates a bug in our code, the error
1976 is not severe enough to suggest to the user he stops
1977 his debugging session because of it. */
1978 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
1979 error (_("Cannot determine struct field location"
1980 " (invalid location kind)"));
1981
1982 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
1983 pinfo.addr = addr_stack->addr;
1984 pinfo.next = addr_stack;
1985
1986 TYPE_FIELD_TYPE (resolved_type, i)
1987 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1988 &pinfo, 0);
1989 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
1990 == FIELD_LOC_KIND_BITPOS);
1991
1992 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1993 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1994 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1995 else
1996 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
1997 * TARGET_CHAR_BIT);
1998
1999 /* Normally, we would use the position and size of the last field
2000 to determine the size of the enclosing structure. But GCC seems
2001 to be encoding the position of some fields incorrectly when
2002 the struct contains a dynamic field that is not placed last.
2003 So we compute the struct size based on the field that has
2004 the highest position + size - probably the best we can do. */
2005 if (new_bit_length > resolved_type_bit_length)
2006 resolved_type_bit_length = new_bit_length;
2007 }
2008
2009 TYPE_LENGTH (resolved_type)
2010 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2011
2012 return resolved_type;
2013 }
2014
2015 /* Worker for resolved_dynamic_type. */
2016
2017 static struct type *
2018 resolve_dynamic_type_internal (struct type *type,
2019 struct property_addr_info *addr_stack,
2020 int top_level)
2021 {
2022 struct type *real_type = check_typedef (type);
2023 struct type *resolved_type = type;
2024 struct dynamic_prop *prop;
2025 CORE_ADDR value;
2026
2027 if (!is_dynamic_type_internal (real_type, top_level))
2028 return type;
2029
2030 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2031 {
2032 resolved_type = copy_type (type);
2033 TYPE_TARGET_TYPE (resolved_type)
2034 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2035 top_level);
2036 }
2037 else
2038 {
2039 /* Before trying to resolve TYPE, make sure it is not a stub. */
2040 type = real_type;
2041
2042 switch (TYPE_CODE (type))
2043 {
2044 case TYPE_CODE_ARRAY:
2045 resolved_type = resolve_dynamic_array (type, addr_stack);
2046 break;
2047
2048 case TYPE_CODE_RANGE:
2049 resolved_type = resolve_dynamic_range (type, addr_stack);
2050 break;
2051
2052 case TYPE_CODE_UNION:
2053 resolved_type = resolve_dynamic_union (type, addr_stack);
2054 break;
2055
2056 case TYPE_CODE_STRUCT:
2057 resolved_type = resolve_dynamic_struct (type, addr_stack);
2058 break;
2059 }
2060 }
2061
2062 /* Resolve data_location attribute. */
2063 prop = TYPE_DATA_LOCATION (resolved_type);
2064 if (prop != NULL && dwarf2_evaluate_property (prop, addr_stack, &value))
2065 {
2066 TYPE_DYN_PROP_ADDR (prop) = value;
2067 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2068 }
2069
2070 return resolved_type;
2071 }
2072
2073 /* See gdbtypes.h */
2074
2075 struct type *
2076 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
2077 {
2078 struct property_addr_info pinfo = {check_typedef (type), addr, NULL};
2079
2080 return resolve_dynamic_type_internal (type, &pinfo, 1);
2081 }
2082
2083 /* See gdbtypes.h */
2084
2085 struct dynamic_prop *
2086 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2087 {
2088 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2089
2090 while (node != NULL)
2091 {
2092 if (node->prop_kind == prop_kind)
2093 return &node->prop;
2094 node = node->next;
2095 }
2096 return NULL;
2097 }
2098
2099 /* See gdbtypes.h */
2100
2101 void
2102 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2103 struct type *type, struct objfile *objfile)
2104 {
2105 struct dynamic_prop_list *temp;
2106
2107 gdb_assert (TYPE_OBJFILE_OWNED (type));
2108
2109 temp = obstack_alloc (&objfile->objfile_obstack,
2110 sizeof (struct dynamic_prop_list));
2111 temp->prop_kind = prop_kind;
2112 temp->prop = prop;
2113 temp->next = TYPE_DYN_PROP_LIST (type);
2114
2115 TYPE_DYN_PROP_LIST (type) = temp;
2116 }
2117
2118
2119 /* Find the real type of TYPE. This function returns the real type,
2120 after removing all layers of typedefs, and completing opaque or stub
2121 types. Completion changes the TYPE argument, but stripping of
2122 typedefs does not.
2123
2124 Instance flags (e.g. const/volatile) are preserved as typedefs are
2125 stripped. If necessary a new qualified form of the underlying type
2126 is created.
2127
2128 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2129 not been computed and we're either in the middle of reading symbols, or
2130 there was no name for the typedef in the debug info.
2131
2132 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2133 QUITs in the symbol reading code can also throw.
2134 Thus this function can throw an exception.
2135
2136 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2137 the target type.
2138
2139 If this is a stubbed struct (i.e. declared as struct foo *), see if
2140 we can find a full definition in some other file. If so, copy this
2141 definition, so we can use it in future. There used to be a comment
2142 (but not any code) that if we don't find a full definition, we'd
2143 set a flag so we don't spend time in the future checking the same
2144 type. That would be a mistake, though--we might load in more
2145 symbols which contain a full definition for the type. */
2146
2147 struct type *
2148 check_typedef (struct type *type)
2149 {
2150 struct type *orig_type = type;
2151 /* While we're removing typedefs, we don't want to lose qualifiers.
2152 E.g., const/volatile. */
2153 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2154
2155 gdb_assert (type);
2156
2157 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2158 {
2159 if (!TYPE_TARGET_TYPE (type))
2160 {
2161 const char *name;
2162 struct symbol *sym;
2163
2164 /* It is dangerous to call lookup_symbol if we are currently
2165 reading a symtab. Infinite recursion is one danger. */
2166 if (currently_reading_symtab)
2167 return make_qualified_type (type, instance_flags, NULL);
2168
2169 name = type_name_no_tag (type);
2170 /* FIXME: shouldn't we separately check the TYPE_NAME and
2171 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2172 VAR_DOMAIN as appropriate? (this code was written before
2173 TYPE_NAME and TYPE_TAG_NAME were separate). */
2174 if (name == NULL)
2175 {
2176 stub_noname_complaint ();
2177 return make_qualified_type (type, instance_flags, NULL);
2178 }
2179 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2180 if (sym)
2181 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2182 else /* TYPE_CODE_UNDEF */
2183 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2184 }
2185 type = TYPE_TARGET_TYPE (type);
2186
2187 /* Preserve the instance flags as we traverse down the typedef chain.
2188
2189 Handling address spaces/classes is nasty, what do we do if there's a
2190 conflict?
2191 E.g., what if an outer typedef marks the type as class_1 and an inner
2192 typedef marks the type as class_2?
2193 This is the wrong place to do such error checking. We leave it to
2194 the code that created the typedef in the first place to flag the
2195 error. We just pick the outer address space (akin to letting the
2196 outer cast in a chain of casting win), instead of assuming
2197 "it can't happen". */
2198 {
2199 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2200 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2201 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2202 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2203
2204 /* Treat code vs data spaces and address classes separately. */
2205 if ((instance_flags & ALL_SPACES) != 0)
2206 new_instance_flags &= ~ALL_SPACES;
2207 if ((instance_flags & ALL_CLASSES) != 0)
2208 new_instance_flags &= ~ALL_CLASSES;
2209
2210 instance_flags |= new_instance_flags;
2211 }
2212 }
2213
2214 /* If this is a struct/class/union with no fields, then check
2215 whether a full definition exists somewhere else. This is for
2216 systems where a type definition with no fields is issued for such
2217 types, instead of identifying them as stub types in the first
2218 place. */
2219
2220 if (TYPE_IS_OPAQUE (type)
2221 && opaque_type_resolution
2222 && !currently_reading_symtab)
2223 {
2224 const char *name = type_name_no_tag (type);
2225 struct type *newtype;
2226
2227 if (name == NULL)
2228 {
2229 stub_noname_complaint ();
2230 return make_qualified_type (type, instance_flags, NULL);
2231 }
2232 newtype = lookup_transparent_type (name);
2233
2234 if (newtype)
2235 {
2236 /* If the resolved type and the stub are in the same
2237 objfile, then replace the stub type with the real deal.
2238 But if they're in separate objfiles, leave the stub
2239 alone; we'll just look up the transparent type every time
2240 we call check_typedef. We can't create pointers between
2241 types allocated to different objfiles, since they may
2242 have different lifetimes. Trying to copy NEWTYPE over to
2243 TYPE's objfile is pointless, too, since you'll have to
2244 move over any other types NEWTYPE refers to, which could
2245 be an unbounded amount of stuff. */
2246 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2247 type = make_qualified_type (newtype,
2248 TYPE_INSTANCE_FLAGS (type),
2249 type);
2250 else
2251 type = newtype;
2252 }
2253 }
2254 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2255 types. */
2256 else if (TYPE_STUB (type) && !currently_reading_symtab)
2257 {
2258 const char *name = type_name_no_tag (type);
2259 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2260 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2261 as appropriate? (this code was written before TYPE_NAME and
2262 TYPE_TAG_NAME were separate). */
2263 struct symbol *sym;
2264
2265 if (name == NULL)
2266 {
2267 stub_noname_complaint ();
2268 return make_qualified_type (type, instance_flags, NULL);
2269 }
2270 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2271 if (sym)
2272 {
2273 /* Same as above for opaque types, we can replace the stub
2274 with the complete type only if they are in the same
2275 objfile. */
2276 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2277 type = make_qualified_type (SYMBOL_TYPE (sym),
2278 TYPE_INSTANCE_FLAGS (type),
2279 type);
2280 else
2281 type = SYMBOL_TYPE (sym);
2282 }
2283 }
2284
2285 if (TYPE_TARGET_STUB (type))
2286 {
2287 struct type *range_type;
2288 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2289
2290 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2291 {
2292 /* Nothing we can do. */
2293 }
2294 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2295 {
2296 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2297 TYPE_TARGET_STUB (type) = 0;
2298 }
2299 }
2300
2301 type = make_qualified_type (type, instance_flags, NULL);
2302
2303 /* Cache TYPE_LENGTH for future use. */
2304 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2305
2306 return type;
2307 }
2308
2309 /* Parse a type expression in the string [P..P+LENGTH). If an error
2310 occurs, silently return a void type. */
2311
2312 static struct type *
2313 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2314 {
2315 struct ui_file *saved_gdb_stderr;
2316 struct type *type = NULL; /* Initialize to keep gcc happy. */
2317
2318 /* Suppress error messages. */
2319 saved_gdb_stderr = gdb_stderr;
2320 gdb_stderr = ui_file_new ();
2321
2322 /* Call parse_and_eval_type() without fear of longjmp()s. */
2323 TRY
2324 {
2325 type = parse_and_eval_type (p, length);
2326 }
2327 CATCH (except, RETURN_MASK_ERROR)
2328 {
2329 type = builtin_type (gdbarch)->builtin_void;
2330 }
2331 END_CATCH
2332
2333 /* Stop suppressing error messages. */
2334 ui_file_delete (gdb_stderr);
2335 gdb_stderr = saved_gdb_stderr;
2336
2337 return type;
2338 }
2339
2340 /* Ugly hack to convert method stubs into method types.
2341
2342 He ain't kiddin'. This demangles the name of the method into a
2343 string including argument types, parses out each argument type,
2344 generates a string casting a zero to that type, evaluates the
2345 string, and stuffs the resulting type into an argtype vector!!!
2346 Then it knows the type of the whole function (including argument
2347 types for overloading), which info used to be in the stab's but was
2348 removed to hack back the space required for them. */
2349
2350 static void
2351 check_stub_method (struct type *type, int method_id, int signature_id)
2352 {
2353 struct gdbarch *gdbarch = get_type_arch (type);
2354 struct fn_field *f;
2355 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2356 char *demangled_name = gdb_demangle (mangled_name,
2357 DMGL_PARAMS | DMGL_ANSI);
2358 char *argtypetext, *p;
2359 int depth = 0, argcount = 1;
2360 struct field *argtypes;
2361 struct type *mtype;
2362
2363 /* Make sure we got back a function string that we can use. */
2364 if (demangled_name)
2365 p = strchr (demangled_name, '(');
2366 else
2367 p = NULL;
2368
2369 if (demangled_name == NULL || p == NULL)
2370 error (_("Internal: Cannot demangle mangled name `%s'."),
2371 mangled_name);
2372
2373 /* Now, read in the parameters that define this type. */
2374 p += 1;
2375 argtypetext = p;
2376 while (*p)
2377 {
2378 if (*p == '(' || *p == '<')
2379 {
2380 depth += 1;
2381 }
2382 else if (*p == ')' || *p == '>')
2383 {
2384 depth -= 1;
2385 }
2386 else if (*p == ',' && depth == 0)
2387 {
2388 argcount += 1;
2389 }
2390
2391 p += 1;
2392 }
2393
2394 /* If we read one argument and it was ``void'', don't count it. */
2395 if (startswith (argtypetext, "(void)"))
2396 argcount -= 1;
2397
2398 /* We need one extra slot, for the THIS pointer. */
2399
2400 argtypes = (struct field *)
2401 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2402 p = argtypetext;
2403
2404 /* Add THIS pointer for non-static methods. */
2405 f = TYPE_FN_FIELDLIST1 (type, method_id);
2406 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2407 argcount = 0;
2408 else
2409 {
2410 argtypes[0].type = lookup_pointer_type (type);
2411 argcount = 1;
2412 }
2413
2414 if (*p != ')') /* () means no args, skip while. */
2415 {
2416 depth = 0;
2417 while (*p)
2418 {
2419 if (depth <= 0 && (*p == ',' || *p == ')'))
2420 {
2421 /* Avoid parsing of ellipsis, they will be handled below.
2422 Also avoid ``void'' as above. */
2423 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2424 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2425 {
2426 argtypes[argcount].type =
2427 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2428 argcount += 1;
2429 }
2430 argtypetext = p + 1;
2431 }
2432
2433 if (*p == '(' || *p == '<')
2434 {
2435 depth += 1;
2436 }
2437 else if (*p == ')' || *p == '>')
2438 {
2439 depth -= 1;
2440 }
2441
2442 p += 1;
2443 }
2444 }
2445
2446 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2447
2448 /* Now update the old "stub" type into a real type. */
2449 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2450 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2451 We want a method (TYPE_CODE_METHOD). */
2452 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2453 argtypes, argcount, p[-2] == '.');
2454 TYPE_STUB (mtype) = 0;
2455 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2456
2457 xfree (demangled_name);
2458 }
2459
2460 /* This is the external interface to check_stub_method, above. This
2461 function unstubs all of the signatures for TYPE's METHOD_ID method
2462 name. After calling this function TYPE_FN_FIELD_STUB will be
2463 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2464 correct.
2465
2466 This function unfortunately can not die until stabs do. */
2467
2468 void
2469 check_stub_method_group (struct type *type, int method_id)
2470 {
2471 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2472 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2473 int j, found_stub = 0;
2474
2475 for (j = 0; j < len; j++)
2476 if (TYPE_FN_FIELD_STUB (f, j))
2477 {
2478 found_stub = 1;
2479 check_stub_method (type, method_id, j);
2480 }
2481
2482 /* GNU v3 methods with incorrect names were corrected when we read
2483 in type information, because it was cheaper to do it then. The
2484 only GNU v2 methods with incorrect method names are operators and
2485 destructors; destructors were also corrected when we read in type
2486 information.
2487
2488 Therefore the only thing we need to handle here are v2 operator
2489 names. */
2490 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2491 {
2492 int ret;
2493 char dem_opname[256];
2494
2495 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2496 method_id),
2497 dem_opname, DMGL_ANSI);
2498 if (!ret)
2499 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2500 method_id),
2501 dem_opname, 0);
2502 if (ret)
2503 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2504 }
2505 }
2506
2507 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2508 const struct cplus_struct_type cplus_struct_default = { };
2509
2510 void
2511 allocate_cplus_struct_type (struct type *type)
2512 {
2513 if (HAVE_CPLUS_STRUCT (type))
2514 /* Structure was already allocated. Nothing more to do. */
2515 return;
2516
2517 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2518 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2519 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2520 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2521 set_type_vptr_fieldno (type, -1);
2522 }
2523
2524 const struct gnat_aux_type gnat_aux_default =
2525 { NULL };
2526
2527 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2528 and allocate the associated gnat-specific data. The gnat-specific
2529 data is also initialized to gnat_aux_default. */
2530
2531 void
2532 allocate_gnat_aux_type (struct type *type)
2533 {
2534 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2535 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2536 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2537 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2538 }
2539
2540 /* Helper function to initialize the standard scalar types.
2541
2542 If NAME is non-NULL, then it is used to initialize the type name.
2543 Note that NAME is not copied; it is required to have a lifetime at
2544 least as long as OBJFILE. */
2545
2546 struct type *
2547 init_type (enum type_code code, int length, int flags,
2548 const char *name, struct objfile *objfile)
2549 {
2550 struct type *type;
2551
2552 type = alloc_type (objfile);
2553 TYPE_CODE (type) = code;
2554 TYPE_LENGTH (type) = length;
2555
2556 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2557 if (flags & TYPE_FLAG_UNSIGNED)
2558 TYPE_UNSIGNED (type) = 1;
2559 if (flags & TYPE_FLAG_NOSIGN)
2560 TYPE_NOSIGN (type) = 1;
2561 if (flags & TYPE_FLAG_STUB)
2562 TYPE_STUB (type) = 1;
2563 if (flags & TYPE_FLAG_TARGET_STUB)
2564 TYPE_TARGET_STUB (type) = 1;
2565 if (flags & TYPE_FLAG_STATIC)
2566 TYPE_STATIC (type) = 1;
2567 if (flags & TYPE_FLAG_PROTOTYPED)
2568 TYPE_PROTOTYPED (type) = 1;
2569 if (flags & TYPE_FLAG_INCOMPLETE)
2570 TYPE_INCOMPLETE (type) = 1;
2571 if (flags & TYPE_FLAG_VARARGS)
2572 TYPE_VARARGS (type) = 1;
2573 if (flags & TYPE_FLAG_VECTOR)
2574 TYPE_VECTOR (type) = 1;
2575 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2576 TYPE_STUB_SUPPORTED (type) = 1;
2577 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2578 TYPE_FIXED_INSTANCE (type) = 1;
2579 if (flags & TYPE_FLAG_GNU_IFUNC)
2580 TYPE_GNU_IFUNC (type) = 1;
2581
2582 TYPE_NAME (type) = name;
2583
2584 /* C++ fancies. */
2585
2586 if (name && strcmp (name, "char") == 0)
2587 TYPE_NOSIGN (type) = 1;
2588
2589 switch (code)
2590 {
2591 case TYPE_CODE_STRUCT:
2592 case TYPE_CODE_UNION:
2593 case TYPE_CODE_NAMESPACE:
2594 INIT_CPLUS_SPECIFIC (type);
2595 break;
2596 case TYPE_CODE_FLT:
2597 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2598 break;
2599 case TYPE_CODE_FUNC:
2600 INIT_FUNC_SPECIFIC (type);
2601 break;
2602 }
2603 return type;
2604 }
2605 \f
2606 /* Queries on types. */
2607
2608 int
2609 can_dereference (struct type *t)
2610 {
2611 /* FIXME: Should we return true for references as well as
2612 pointers? */
2613 CHECK_TYPEDEF (t);
2614 return
2615 (t != NULL
2616 && TYPE_CODE (t) == TYPE_CODE_PTR
2617 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2618 }
2619
2620 int
2621 is_integral_type (struct type *t)
2622 {
2623 CHECK_TYPEDEF (t);
2624 return
2625 ((t != NULL)
2626 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2627 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2628 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2629 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2630 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2631 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2632 }
2633
2634 /* Return true if TYPE is scalar. */
2635
2636 static int
2637 is_scalar_type (struct type *type)
2638 {
2639 CHECK_TYPEDEF (type);
2640
2641 switch (TYPE_CODE (type))
2642 {
2643 case TYPE_CODE_ARRAY:
2644 case TYPE_CODE_STRUCT:
2645 case TYPE_CODE_UNION:
2646 case TYPE_CODE_SET:
2647 case TYPE_CODE_STRING:
2648 return 0;
2649 default:
2650 return 1;
2651 }
2652 }
2653
2654 /* Return true if T is scalar, or a composite type which in practice has
2655 the memory layout of a scalar type. E.g., an array or struct with only
2656 one scalar element inside it, or a union with only scalar elements. */
2657
2658 int
2659 is_scalar_type_recursive (struct type *t)
2660 {
2661 CHECK_TYPEDEF (t);
2662
2663 if (is_scalar_type (t))
2664 return 1;
2665 /* Are we dealing with an array or string of known dimensions? */
2666 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2667 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2668 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2669 {
2670 LONGEST low_bound, high_bound;
2671 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2672
2673 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2674
2675 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2676 }
2677 /* Are we dealing with a struct with one element? */
2678 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2679 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2680 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2681 {
2682 int i, n = TYPE_NFIELDS (t);
2683
2684 /* If all elements of the union are scalar, then the union is scalar. */
2685 for (i = 0; i < n; i++)
2686 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2687 return 0;
2688
2689 return 1;
2690 }
2691
2692 return 0;
2693 }
2694
2695 /* Return true is T is a class or a union. False otherwise. */
2696
2697 int
2698 class_or_union_p (const struct type *t)
2699 {
2700 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2701 || TYPE_CODE (t) == TYPE_CODE_UNION);
2702 }
2703
2704 /* A helper function which returns true if types A and B represent the
2705 "same" class type. This is true if the types have the same main
2706 type, or the same name. */
2707
2708 int
2709 class_types_same_p (const struct type *a, const struct type *b)
2710 {
2711 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2712 || (TYPE_NAME (a) && TYPE_NAME (b)
2713 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2714 }
2715
2716 /* If BASE is an ancestor of DCLASS return the distance between them.
2717 otherwise return -1;
2718 eg:
2719
2720 class A {};
2721 class B: public A {};
2722 class C: public B {};
2723 class D: C {};
2724
2725 distance_to_ancestor (A, A, 0) = 0
2726 distance_to_ancestor (A, B, 0) = 1
2727 distance_to_ancestor (A, C, 0) = 2
2728 distance_to_ancestor (A, D, 0) = 3
2729
2730 If PUBLIC is 1 then only public ancestors are considered,
2731 and the function returns the distance only if BASE is a public ancestor
2732 of DCLASS.
2733 Eg:
2734
2735 distance_to_ancestor (A, D, 1) = -1. */
2736
2737 static int
2738 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
2739 {
2740 int i;
2741 int d;
2742
2743 CHECK_TYPEDEF (base);
2744 CHECK_TYPEDEF (dclass);
2745
2746 if (class_types_same_p (base, dclass))
2747 return 0;
2748
2749 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2750 {
2751 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2752 continue;
2753
2754 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
2755 if (d >= 0)
2756 return 1 + d;
2757 }
2758
2759 return -1;
2760 }
2761
2762 /* Check whether BASE is an ancestor or base class or DCLASS
2763 Return 1 if so, and 0 if not.
2764 Note: If BASE and DCLASS are of the same type, this function
2765 will return 1. So for some class A, is_ancestor (A, A) will
2766 return 1. */
2767
2768 int
2769 is_ancestor (struct type *base, struct type *dclass)
2770 {
2771 return distance_to_ancestor (base, dclass, 0) >= 0;
2772 }
2773
2774 /* Like is_ancestor, but only returns true when BASE is a public
2775 ancestor of DCLASS. */
2776
2777 int
2778 is_public_ancestor (struct type *base, struct type *dclass)
2779 {
2780 return distance_to_ancestor (base, dclass, 1) >= 0;
2781 }
2782
2783 /* A helper function for is_unique_ancestor. */
2784
2785 static int
2786 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2787 int *offset,
2788 const gdb_byte *valaddr, int embedded_offset,
2789 CORE_ADDR address, struct value *val)
2790 {
2791 int i, count = 0;
2792
2793 CHECK_TYPEDEF (base);
2794 CHECK_TYPEDEF (dclass);
2795
2796 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2797 {
2798 struct type *iter;
2799 int this_offset;
2800
2801 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2802
2803 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2804 address, val);
2805
2806 if (class_types_same_p (base, iter))
2807 {
2808 /* If this is the first subclass, set *OFFSET and set count
2809 to 1. Otherwise, if this is at the same offset as
2810 previous instances, do nothing. Otherwise, increment
2811 count. */
2812 if (*offset == -1)
2813 {
2814 *offset = this_offset;
2815 count = 1;
2816 }
2817 else if (this_offset == *offset)
2818 {
2819 /* Nothing. */
2820 }
2821 else
2822 ++count;
2823 }
2824 else
2825 count += is_unique_ancestor_worker (base, iter, offset,
2826 valaddr,
2827 embedded_offset + this_offset,
2828 address, val);
2829 }
2830
2831 return count;
2832 }
2833
2834 /* Like is_ancestor, but only returns true if BASE is a unique base
2835 class of the type of VAL. */
2836
2837 int
2838 is_unique_ancestor (struct type *base, struct value *val)
2839 {
2840 int offset = -1;
2841
2842 return is_unique_ancestor_worker (base, value_type (val), &offset,
2843 value_contents_for_printing (val),
2844 value_embedded_offset (val),
2845 value_address (val), val) == 1;
2846 }
2847
2848 \f
2849 /* Overload resolution. */
2850
2851 /* Return the sum of the rank of A with the rank of B. */
2852
2853 struct rank
2854 sum_ranks (struct rank a, struct rank b)
2855 {
2856 struct rank c;
2857 c.rank = a.rank + b.rank;
2858 c.subrank = a.subrank + b.subrank;
2859 return c;
2860 }
2861
2862 /* Compare rank A and B and return:
2863 0 if a = b
2864 1 if a is better than b
2865 -1 if b is better than a. */
2866
2867 int
2868 compare_ranks (struct rank a, struct rank b)
2869 {
2870 if (a.rank == b.rank)
2871 {
2872 if (a.subrank == b.subrank)
2873 return 0;
2874 if (a.subrank < b.subrank)
2875 return 1;
2876 if (a.subrank > b.subrank)
2877 return -1;
2878 }
2879
2880 if (a.rank < b.rank)
2881 return 1;
2882
2883 /* a.rank > b.rank */
2884 return -1;
2885 }
2886
2887 /* Functions for overload resolution begin here. */
2888
2889 /* Compare two badness vectors A and B and return the result.
2890 0 => A and B are identical
2891 1 => A and B are incomparable
2892 2 => A is better than B
2893 3 => A is worse than B */
2894
2895 int
2896 compare_badness (struct badness_vector *a, struct badness_vector *b)
2897 {
2898 int i;
2899 int tmp;
2900 short found_pos = 0; /* any positives in c? */
2901 short found_neg = 0; /* any negatives in c? */
2902
2903 /* differing lengths => incomparable */
2904 if (a->length != b->length)
2905 return 1;
2906
2907 /* Subtract b from a */
2908 for (i = 0; i < a->length; i++)
2909 {
2910 tmp = compare_ranks (b->rank[i], a->rank[i]);
2911 if (tmp > 0)
2912 found_pos = 1;
2913 else if (tmp < 0)
2914 found_neg = 1;
2915 }
2916
2917 if (found_pos)
2918 {
2919 if (found_neg)
2920 return 1; /* incomparable */
2921 else
2922 return 3; /* A > B */
2923 }
2924 else
2925 /* no positives */
2926 {
2927 if (found_neg)
2928 return 2; /* A < B */
2929 else
2930 return 0; /* A == B */
2931 }
2932 }
2933
2934 /* Rank a function by comparing its parameter types (PARMS, length
2935 NPARMS), to the types of an argument list (ARGS, length NARGS).
2936 Return a pointer to a badness vector. This has NARGS + 1
2937 entries. */
2938
2939 struct badness_vector *
2940 rank_function (struct type **parms, int nparms,
2941 struct value **args, int nargs)
2942 {
2943 int i;
2944 struct badness_vector *bv;
2945 int min_len = nparms < nargs ? nparms : nargs;
2946
2947 bv = xmalloc (sizeof (struct badness_vector));
2948 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2949 bv->rank = XNEWVEC (struct rank, nargs + 1);
2950
2951 /* First compare the lengths of the supplied lists.
2952 If there is a mismatch, set it to a high value. */
2953
2954 /* pai/1997-06-03 FIXME: when we have debug info about default
2955 arguments and ellipsis parameter lists, we should consider those
2956 and rank the length-match more finely. */
2957
2958 LENGTH_MATCH (bv) = (nargs != nparms)
2959 ? LENGTH_MISMATCH_BADNESS
2960 : EXACT_MATCH_BADNESS;
2961
2962 /* Now rank all the parameters of the candidate function. */
2963 for (i = 1; i <= min_len; i++)
2964 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2965 args[i - 1]);
2966
2967 /* If more arguments than parameters, add dummy entries. */
2968 for (i = min_len + 1; i <= nargs; i++)
2969 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2970
2971 return bv;
2972 }
2973
2974 /* Compare the names of two integer types, assuming that any sign
2975 qualifiers have been checked already. We do it this way because
2976 there may be an "int" in the name of one of the types. */
2977
2978 static int
2979 integer_types_same_name_p (const char *first, const char *second)
2980 {
2981 int first_p, second_p;
2982
2983 /* If both are shorts, return 1; if neither is a short, keep
2984 checking. */
2985 first_p = (strstr (first, "short") != NULL);
2986 second_p = (strstr (second, "short") != NULL);
2987 if (first_p && second_p)
2988 return 1;
2989 if (first_p || second_p)
2990 return 0;
2991
2992 /* Likewise for long. */
2993 first_p = (strstr (first, "long") != NULL);
2994 second_p = (strstr (second, "long") != NULL);
2995 if (first_p && second_p)
2996 return 1;
2997 if (first_p || second_p)
2998 return 0;
2999
3000 /* Likewise for char. */
3001 first_p = (strstr (first, "char") != NULL);
3002 second_p = (strstr (second, "char") != NULL);
3003 if (first_p && second_p)
3004 return 1;
3005 if (first_p || second_p)
3006 return 0;
3007
3008 /* They must both be ints. */
3009 return 1;
3010 }
3011
3012 /* Compares type A to type B returns 1 if the represent the same type
3013 0 otherwise. */
3014
3015 int
3016 types_equal (struct type *a, struct type *b)
3017 {
3018 /* Identical type pointers. */
3019 /* However, this still doesn't catch all cases of same type for b
3020 and a. The reason is that builtin types are different from
3021 the same ones constructed from the object. */
3022 if (a == b)
3023 return 1;
3024
3025 /* Resolve typedefs */
3026 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3027 a = check_typedef (a);
3028 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3029 b = check_typedef (b);
3030
3031 /* If after resolving typedefs a and b are not of the same type
3032 code then they are not equal. */
3033 if (TYPE_CODE (a) != TYPE_CODE (b))
3034 return 0;
3035
3036 /* If a and b are both pointers types or both reference types then
3037 they are equal of the same type iff the objects they refer to are
3038 of the same type. */
3039 if (TYPE_CODE (a) == TYPE_CODE_PTR
3040 || TYPE_CODE (a) == TYPE_CODE_REF)
3041 return types_equal (TYPE_TARGET_TYPE (a),
3042 TYPE_TARGET_TYPE (b));
3043
3044 /* Well, damnit, if the names are exactly the same, I'll say they
3045 are exactly the same. This happens when we generate method
3046 stubs. The types won't point to the same address, but they
3047 really are the same. */
3048
3049 if (TYPE_NAME (a) && TYPE_NAME (b)
3050 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3051 return 1;
3052
3053 /* Check if identical after resolving typedefs. */
3054 if (a == b)
3055 return 1;
3056
3057 /* Two function types are equal if their argument and return types
3058 are equal. */
3059 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3060 {
3061 int i;
3062
3063 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3064 return 0;
3065
3066 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3067 return 0;
3068
3069 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3070 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3071 return 0;
3072
3073 return 1;
3074 }
3075
3076 return 0;
3077 }
3078 \f
3079 /* Deep comparison of types. */
3080
3081 /* An entry in the type-equality bcache. */
3082
3083 typedef struct type_equality_entry
3084 {
3085 struct type *type1, *type2;
3086 } type_equality_entry_d;
3087
3088 DEF_VEC_O (type_equality_entry_d);
3089
3090 /* A helper function to compare two strings. Returns 1 if they are
3091 the same, 0 otherwise. Handles NULLs properly. */
3092
3093 static int
3094 compare_maybe_null_strings (const char *s, const char *t)
3095 {
3096 if (s == NULL && t != NULL)
3097 return 0;
3098 else if (s != NULL && t == NULL)
3099 return 0;
3100 else if (s == NULL && t== NULL)
3101 return 1;
3102 return strcmp (s, t) == 0;
3103 }
3104
3105 /* A helper function for check_types_worklist that checks two types for
3106 "deep" equality. Returns non-zero if the types are considered the
3107 same, zero otherwise. */
3108
3109 static int
3110 check_types_equal (struct type *type1, struct type *type2,
3111 VEC (type_equality_entry_d) **worklist)
3112 {
3113 CHECK_TYPEDEF (type1);
3114 CHECK_TYPEDEF (type2);
3115
3116 if (type1 == type2)
3117 return 1;
3118
3119 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3120 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3121 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3122 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3123 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3124 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3125 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3126 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3127 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3128 return 0;
3129
3130 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3131 TYPE_TAG_NAME (type2)))
3132 return 0;
3133 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3134 return 0;
3135
3136 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3137 {
3138 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3139 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3140 return 0;
3141 }
3142 else
3143 {
3144 int i;
3145
3146 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3147 {
3148 const struct field *field1 = &TYPE_FIELD (type1, i);
3149 const struct field *field2 = &TYPE_FIELD (type2, i);
3150 struct type_equality_entry entry;
3151
3152 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3153 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3154 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3155 return 0;
3156 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3157 FIELD_NAME (*field2)))
3158 return 0;
3159 switch (FIELD_LOC_KIND (*field1))
3160 {
3161 case FIELD_LOC_KIND_BITPOS:
3162 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3163 return 0;
3164 break;
3165 case FIELD_LOC_KIND_ENUMVAL:
3166 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3167 return 0;
3168 break;
3169 case FIELD_LOC_KIND_PHYSADDR:
3170 if (FIELD_STATIC_PHYSADDR (*field1)
3171 != FIELD_STATIC_PHYSADDR (*field2))
3172 return 0;
3173 break;
3174 case FIELD_LOC_KIND_PHYSNAME:
3175 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3176 FIELD_STATIC_PHYSNAME (*field2)))
3177 return 0;
3178 break;
3179 case FIELD_LOC_KIND_DWARF_BLOCK:
3180 {
3181 struct dwarf2_locexpr_baton *block1, *block2;
3182
3183 block1 = FIELD_DWARF_BLOCK (*field1);
3184 block2 = FIELD_DWARF_BLOCK (*field2);
3185 if (block1->per_cu != block2->per_cu
3186 || block1->size != block2->size
3187 || memcmp (block1->data, block2->data, block1->size) != 0)
3188 return 0;
3189 }
3190 break;
3191 default:
3192 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3193 "%d by check_types_equal"),
3194 FIELD_LOC_KIND (*field1));
3195 }
3196
3197 entry.type1 = FIELD_TYPE (*field1);
3198 entry.type2 = FIELD_TYPE (*field2);
3199 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3200 }
3201 }
3202
3203 if (TYPE_TARGET_TYPE (type1) != NULL)
3204 {
3205 struct type_equality_entry entry;
3206
3207 if (TYPE_TARGET_TYPE (type2) == NULL)
3208 return 0;
3209
3210 entry.type1 = TYPE_TARGET_TYPE (type1);
3211 entry.type2 = TYPE_TARGET_TYPE (type2);
3212 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3213 }
3214 else if (TYPE_TARGET_TYPE (type2) != NULL)
3215 return 0;
3216
3217 return 1;
3218 }
3219
3220 /* Check types on a worklist for equality. Returns zero if any pair
3221 is not equal, non-zero if they are all considered equal. */
3222
3223 static int
3224 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3225 struct bcache *cache)
3226 {
3227 while (!VEC_empty (type_equality_entry_d, *worklist))
3228 {
3229 struct type_equality_entry entry;
3230 int added;
3231
3232 entry = *VEC_last (type_equality_entry_d, *worklist);
3233 VEC_pop (type_equality_entry_d, *worklist);
3234
3235 /* If the type pair has already been visited, we know it is
3236 ok. */
3237 bcache_full (&entry, sizeof (entry), cache, &added);
3238 if (!added)
3239 continue;
3240
3241 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3242 return 0;
3243 }
3244
3245 return 1;
3246 }
3247
3248 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3249 "deep comparison". Otherwise return zero. */
3250
3251 int
3252 types_deeply_equal (struct type *type1, struct type *type2)
3253 {
3254 struct gdb_exception except = exception_none;
3255 int result = 0;
3256 struct bcache *cache;
3257 VEC (type_equality_entry_d) *worklist = NULL;
3258 struct type_equality_entry entry;
3259
3260 gdb_assert (type1 != NULL && type2 != NULL);
3261
3262 /* Early exit for the simple case. */
3263 if (type1 == type2)
3264 return 1;
3265
3266 cache = bcache_xmalloc (NULL, NULL);
3267
3268 entry.type1 = type1;
3269 entry.type2 = type2;
3270 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3271
3272 /* check_types_worklist calls several nested helper functions, some
3273 of which can raise a GDB exception, so we just check and rethrow
3274 here. If there is a GDB exception, a comparison is not capable
3275 (or trusted), so exit. */
3276 TRY
3277 {
3278 result = check_types_worklist (&worklist, cache);
3279 }
3280 CATCH (ex, RETURN_MASK_ALL)
3281 {
3282 except = ex;
3283 }
3284 END_CATCH
3285
3286 bcache_xfree (cache);
3287 VEC_free (type_equality_entry_d, worklist);
3288
3289 /* Rethrow if there was a problem. */
3290 if (except.reason < 0)
3291 throw_exception (except);
3292
3293 return result;
3294 }
3295 \f
3296 /* Compare one type (PARM) for compatibility with another (ARG).
3297 * PARM is intended to be the parameter type of a function; and
3298 * ARG is the supplied argument's type. This function tests if
3299 * the latter can be converted to the former.
3300 * VALUE is the argument's value or NULL if none (or called recursively)
3301 *
3302 * Return 0 if they are identical types;
3303 * Otherwise, return an integer which corresponds to how compatible
3304 * PARM is to ARG. The higher the return value, the worse the match.
3305 * Generally the "bad" conversions are all uniformly assigned a 100. */
3306
3307 struct rank
3308 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3309 {
3310 struct rank rank = {0,0};
3311
3312 if (types_equal (parm, arg))
3313 return EXACT_MATCH_BADNESS;
3314
3315 /* Resolve typedefs */
3316 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3317 parm = check_typedef (parm);
3318 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3319 arg = check_typedef (arg);
3320
3321 /* See through references, since we can almost make non-references
3322 references. */
3323 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3324 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3325 REFERENCE_CONVERSION_BADNESS));
3326 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3327 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3328 REFERENCE_CONVERSION_BADNESS));
3329 if (overload_debug)
3330 /* Debugging only. */
3331 fprintf_filtered (gdb_stderr,
3332 "------ Arg is %s [%d], parm is %s [%d]\n",
3333 TYPE_NAME (arg), TYPE_CODE (arg),
3334 TYPE_NAME (parm), TYPE_CODE (parm));
3335
3336 /* x -> y means arg of type x being supplied for parameter of type y. */
3337
3338 switch (TYPE_CODE (parm))
3339 {
3340 case TYPE_CODE_PTR:
3341 switch (TYPE_CODE (arg))
3342 {
3343 case TYPE_CODE_PTR:
3344
3345 /* Allowed pointer conversions are:
3346 (a) pointer to void-pointer conversion. */
3347 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3348 return VOID_PTR_CONVERSION_BADNESS;
3349
3350 /* (b) pointer to ancestor-pointer conversion. */
3351 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3352 TYPE_TARGET_TYPE (arg),
3353 0);
3354 if (rank.subrank >= 0)
3355 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3356
3357 return INCOMPATIBLE_TYPE_BADNESS;
3358 case TYPE_CODE_ARRAY:
3359 if (types_equal (TYPE_TARGET_TYPE (parm),
3360 TYPE_TARGET_TYPE (arg)))
3361 return EXACT_MATCH_BADNESS;
3362 return INCOMPATIBLE_TYPE_BADNESS;
3363 case TYPE_CODE_FUNC:
3364 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3365 case TYPE_CODE_INT:
3366 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3367 {
3368 if (value_as_long (value) == 0)
3369 {
3370 /* Null pointer conversion: allow it to be cast to a pointer.
3371 [4.10.1 of C++ standard draft n3290] */
3372 return NULL_POINTER_CONVERSION_BADNESS;
3373 }
3374 else
3375 {
3376 /* If type checking is disabled, allow the conversion. */
3377 if (!strict_type_checking)
3378 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3379 }
3380 }
3381 /* fall through */
3382 case TYPE_CODE_ENUM:
3383 case TYPE_CODE_FLAGS:
3384 case TYPE_CODE_CHAR:
3385 case TYPE_CODE_RANGE:
3386 case TYPE_CODE_BOOL:
3387 default:
3388 return INCOMPATIBLE_TYPE_BADNESS;
3389 }
3390 case TYPE_CODE_ARRAY:
3391 switch (TYPE_CODE (arg))
3392 {
3393 case TYPE_CODE_PTR:
3394 case TYPE_CODE_ARRAY:
3395 return rank_one_type (TYPE_TARGET_TYPE (parm),
3396 TYPE_TARGET_TYPE (arg), NULL);
3397 default:
3398 return INCOMPATIBLE_TYPE_BADNESS;
3399 }
3400 case TYPE_CODE_FUNC:
3401 switch (TYPE_CODE (arg))
3402 {
3403 case TYPE_CODE_PTR: /* funcptr -> func */
3404 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3405 default:
3406 return INCOMPATIBLE_TYPE_BADNESS;
3407 }
3408 case TYPE_CODE_INT:
3409 switch (TYPE_CODE (arg))
3410 {
3411 case TYPE_CODE_INT:
3412 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3413 {
3414 /* Deal with signed, unsigned, and plain chars and
3415 signed and unsigned ints. */
3416 if (TYPE_NOSIGN (parm))
3417 {
3418 /* This case only for character types. */
3419 if (TYPE_NOSIGN (arg))
3420 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3421 else /* signed/unsigned char -> plain char */
3422 return INTEGER_CONVERSION_BADNESS;
3423 }
3424 else if (TYPE_UNSIGNED (parm))
3425 {
3426 if (TYPE_UNSIGNED (arg))
3427 {
3428 /* unsigned int -> unsigned int, or
3429 unsigned long -> unsigned long */
3430 if (integer_types_same_name_p (TYPE_NAME (parm),
3431 TYPE_NAME (arg)))
3432 return EXACT_MATCH_BADNESS;
3433 else if (integer_types_same_name_p (TYPE_NAME (arg),
3434 "int")
3435 && integer_types_same_name_p (TYPE_NAME (parm),
3436 "long"))
3437 /* unsigned int -> unsigned long */
3438 return INTEGER_PROMOTION_BADNESS;
3439 else
3440 /* unsigned long -> unsigned int */
3441 return INTEGER_CONVERSION_BADNESS;
3442 }
3443 else
3444 {
3445 if (integer_types_same_name_p (TYPE_NAME (arg),
3446 "long")
3447 && integer_types_same_name_p (TYPE_NAME (parm),
3448 "int"))
3449 /* signed long -> unsigned int */
3450 return INTEGER_CONVERSION_BADNESS;
3451 else
3452 /* signed int/long -> unsigned int/long */
3453 return INTEGER_CONVERSION_BADNESS;
3454 }
3455 }
3456 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3457 {
3458 if (integer_types_same_name_p (TYPE_NAME (parm),
3459 TYPE_NAME (arg)))
3460 return EXACT_MATCH_BADNESS;
3461 else if (integer_types_same_name_p (TYPE_NAME (arg),
3462 "int")
3463 && integer_types_same_name_p (TYPE_NAME (parm),
3464 "long"))
3465 return INTEGER_PROMOTION_BADNESS;
3466 else
3467 return INTEGER_CONVERSION_BADNESS;
3468 }
3469 else
3470 return INTEGER_CONVERSION_BADNESS;
3471 }
3472 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3473 return INTEGER_PROMOTION_BADNESS;
3474 else
3475 return INTEGER_CONVERSION_BADNESS;
3476 case TYPE_CODE_ENUM:
3477 case TYPE_CODE_FLAGS:
3478 case TYPE_CODE_CHAR:
3479 case TYPE_CODE_RANGE:
3480 case TYPE_CODE_BOOL:
3481 if (TYPE_DECLARED_CLASS (arg))
3482 return INCOMPATIBLE_TYPE_BADNESS;
3483 return INTEGER_PROMOTION_BADNESS;
3484 case TYPE_CODE_FLT:
3485 return INT_FLOAT_CONVERSION_BADNESS;
3486 case TYPE_CODE_PTR:
3487 return NS_POINTER_CONVERSION_BADNESS;
3488 default:
3489 return INCOMPATIBLE_TYPE_BADNESS;
3490 }
3491 break;
3492 case TYPE_CODE_ENUM:
3493 switch (TYPE_CODE (arg))
3494 {
3495 case TYPE_CODE_INT:
3496 case TYPE_CODE_CHAR:
3497 case TYPE_CODE_RANGE:
3498 case TYPE_CODE_BOOL:
3499 case TYPE_CODE_ENUM:
3500 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3501 return INCOMPATIBLE_TYPE_BADNESS;
3502 return INTEGER_CONVERSION_BADNESS;
3503 case TYPE_CODE_FLT:
3504 return INT_FLOAT_CONVERSION_BADNESS;
3505 default:
3506 return INCOMPATIBLE_TYPE_BADNESS;
3507 }
3508 break;
3509 case TYPE_CODE_CHAR:
3510 switch (TYPE_CODE (arg))
3511 {
3512 case TYPE_CODE_RANGE:
3513 case TYPE_CODE_BOOL:
3514 case TYPE_CODE_ENUM:
3515 if (TYPE_DECLARED_CLASS (arg))
3516 return INCOMPATIBLE_TYPE_BADNESS;
3517 return INTEGER_CONVERSION_BADNESS;
3518 case TYPE_CODE_FLT:
3519 return INT_FLOAT_CONVERSION_BADNESS;
3520 case TYPE_CODE_INT:
3521 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3522 return INTEGER_CONVERSION_BADNESS;
3523 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3524 return INTEGER_PROMOTION_BADNESS;
3525 /* >>> !! else fall through !! <<< */
3526 case TYPE_CODE_CHAR:
3527 /* Deal with signed, unsigned, and plain chars for C++ and
3528 with int cases falling through from previous case. */
3529 if (TYPE_NOSIGN (parm))
3530 {
3531 if (TYPE_NOSIGN (arg))
3532 return EXACT_MATCH_BADNESS;
3533 else
3534 return INTEGER_CONVERSION_BADNESS;
3535 }
3536 else if (TYPE_UNSIGNED (parm))
3537 {
3538 if (TYPE_UNSIGNED (arg))
3539 return EXACT_MATCH_BADNESS;
3540 else
3541 return INTEGER_PROMOTION_BADNESS;
3542 }
3543 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3544 return EXACT_MATCH_BADNESS;
3545 else
3546 return INTEGER_CONVERSION_BADNESS;
3547 default:
3548 return INCOMPATIBLE_TYPE_BADNESS;
3549 }
3550 break;
3551 case TYPE_CODE_RANGE:
3552 switch (TYPE_CODE (arg))
3553 {
3554 case TYPE_CODE_INT:
3555 case TYPE_CODE_CHAR:
3556 case TYPE_CODE_RANGE:
3557 case TYPE_CODE_BOOL:
3558 case TYPE_CODE_ENUM:
3559 return INTEGER_CONVERSION_BADNESS;
3560 case TYPE_CODE_FLT:
3561 return INT_FLOAT_CONVERSION_BADNESS;
3562 default:
3563 return INCOMPATIBLE_TYPE_BADNESS;
3564 }
3565 break;
3566 case TYPE_CODE_BOOL:
3567 switch (TYPE_CODE (arg))
3568 {
3569 /* n3290 draft, section 4.12.1 (conv.bool):
3570
3571 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3572 pointer to member type can be converted to a prvalue of type
3573 bool. A zero value, null pointer value, or null member pointer
3574 value is converted to false; any other value is converted to
3575 true. A prvalue of type std::nullptr_t can be converted to a
3576 prvalue of type bool; the resulting value is false." */
3577 case TYPE_CODE_INT:
3578 case TYPE_CODE_CHAR:
3579 case TYPE_CODE_ENUM:
3580 case TYPE_CODE_FLT:
3581 case TYPE_CODE_MEMBERPTR:
3582 case TYPE_CODE_PTR:
3583 return BOOL_CONVERSION_BADNESS;
3584 case TYPE_CODE_RANGE:
3585 return INCOMPATIBLE_TYPE_BADNESS;
3586 case TYPE_CODE_BOOL:
3587 return EXACT_MATCH_BADNESS;
3588 default:
3589 return INCOMPATIBLE_TYPE_BADNESS;
3590 }
3591 break;
3592 case TYPE_CODE_FLT:
3593 switch (TYPE_CODE (arg))
3594 {
3595 case TYPE_CODE_FLT:
3596 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3597 return FLOAT_PROMOTION_BADNESS;
3598 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3599 return EXACT_MATCH_BADNESS;
3600 else
3601 return FLOAT_CONVERSION_BADNESS;
3602 case TYPE_CODE_INT:
3603 case TYPE_CODE_BOOL:
3604 case TYPE_CODE_ENUM:
3605 case TYPE_CODE_RANGE:
3606 case TYPE_CODE_CHAR:
3607 return INT_FLOAT_CONVERSION_BADNESS;
3608 default:
3609 return INCOMPATIBLE_TYPE_BADNESS;
3610 }
3611 break;
3612 case TYPE_CODE_COMPLEX:
3613 switch (TYPE_CODE (arg))
3614 { /* Strictly not needed for C++, but... */
3615 case TYPE_CODE_FLT:
3616 return FLOAT_PROMOTION_BADNESS;
3617 case TYPE_CODE_COMPLEX:
3618 return EXACT_MATCH_BADNESS;
3619 default:
3620 return INCOMPATIBLE_TYPE_BADNESS;
3621 }
3622 break;
3623 case TYPE_CODE_STRUCT:
3624 switch (TYPE_CODE (arg))
3625 {
3626 case TYPE_CODE_STRUCT:
3627 /* Check for derivation */
3628 rank.subrank = distance_to_ancestor (parm, arg, 0);
3629 if (rank.subrank >= 0)
3630 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3631 /* else fall through */
3632 default:
3633 return INCOMPATIBLE_TYPE_BADNESS;
3634 }
3635 break;
3636 case TYPE_CODE_UNION:
3637 switch (TYPE_CODE (arg))
3638 {
3639 case TYPE_CODE_UNION:
3640 default:
3641 return INCOMPATIBLE_TYPE_BADNESS;
3642 }
3643 break;
3644 case TYPE_CODE_MEMBERPTR:
3645 switch (TYPE_CODE (arg))
3646 {
3647 default:
3648 return INCOMPATIBLE_TYPE_BADNESS;
3649 }
3650 break;
3651 case TYPE_CODE_METHOD:
3652 switch (TYPE_CODE (arg))
3653 {
3654
3655 default:
3656 return INCOMPATIBLE_TYPE_BADNESS;
3657 }
3658 break;
3659 case TYPE_CODE_REF:
3660 switch (TYPE_CODE (arg))
3661 {
3662
3663 default:
3664 return INCOMPATIBLE_TYPE_BADNESS;
3665 }
3666
3667 break;
3668 case TYPE_CODE_SET:
3669 switch (TYPE_CODE (arg))
3670 {
3671 /* Not in C++ */
3672 case TYPE_CODE_SET:
3673 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3674 TYPE_FIELD_TYPE (arg, 0), NULL);
3675 default:
3676 return INCOMPATIBLE_TYPE_BADNESS;
3677 }
3678 break;
3679 case TYPE_CODE_VOID:
3680 default:
3681 return INCOMPATIBLE_TYPE_BADNESS;
3682 } /* switch (TYPE_CODE (arg)) */
3683 }
3684
3685 /* End of functions for overload resolution. */
3686 \f
3687 /* Routines to pretty-print types. */
3688
3689 static void
3690 print_bit_vector (B_TYPE *bits, int nbits)
3691 {
3692 int bitno;
3693
3694 for (bitno = 0; bitno < nbits; bitno++)
3695 {
3696 if ((bitno % 8) == 0)
3697 {
3698 puts_filtered (" ");
3699 }
3700 if (B_TST (bits, bitno))
3701 printf_filtered (("1"));
3702 else
3703 printf_filtered (("0"));
3704 }
3705 }
3706
3707 /* Note the first arg should be the "this" pointer, we may not want to
3708 include it since we may get into a infinitely recursive
3709 situation. */
3710
3711 static void
3712 print_args (struct field *args, int nargs, int spaces)
3713 {
3714 if (args != NULL)
3715 {
3716 int i;
3717
3718 for (i = 0; i < nargs; i++)
3719 {
3720 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3721 args[i].name != NULL ? args[i].name : "<NULL>");
3722 recursive_dump_type (args[i].type, spaces + 2);
3723 }
3724 }
3725 }
3726
3727 int
3728 field_is_static (struct field *f)
3729 {
3730 /* "static" fields are the fields whose location is not relative
3731 to the address of the enclosing struct. It would be nice to
3732 have a dedicated flag that would be set for static fields when
3733 the type is being created. But in practice, checking the field
3734 loc_kind should give us an accurate answer. */
3735 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3736 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3737 }
3738
3739 static void
3740 dump_fn_fieldlists (struct type *type, int spaces)
3741 {
3742 int method_idx;
3743 int overload_idx;
3744 struct fn_field *f;
3745
3746 printfi_filtered (spaces, "fn_fieldlists ");
3747 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3748 printf_filtered ("\n");
3749 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3750 {
3751 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3752 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3753 method_idx,
3754 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3755 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3756 gdb_stdout);
3757 printf_filtered (_(") length %d\n"),
3758 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3759 for (overload_idx = 0;
3760 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3761 overload_idx++)
3762 {
3763 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3764 overload_idx,
3765 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3766 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3767 gdb_stdout);
3768 printf_filtered (")\n");
3769 printfi_filtered (spaces + 8, "type ");
3770 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3771 gdb_stdout);
3772 printf_filtered ("\n");
3773
3774 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3775 spaces + 8 + 2);
3776
3777 printfi_filtered (spaces + 8, "args ");
3778 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3779 gdb_stdout);
3780 printf_filtered ("\n");
3781 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3782 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3783 spaces + 8 + 2);
3784 printfi_filtered (spaces + 8, "fcontext ");
3785 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3786 gdb_stdout);
3787 printf_filtered ("\n");
3788
3789 printfi_filtered (spaces + 8, "is_const %d\n",
3790 TYPE_FN_FIELD_CONST (f, overload_idx));
3791 printfi_filtered (spaces + 8, "is_volatile %d\n",
3792 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3793 printfi_filtered (spaces + 8, "is_private %d\n",
3794 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3795 printfi_filtered (spaces + 8, "is_protected %d\n",
3796 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3797 printfi_filtered (spaces + 8, "is_stub %d\n",
3798 TYPE_FN_FIELD_STUB (f, overload_idx));
3799 printfi_filtered (spaces + 8, "voffset %u\n",
3800 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3801 }
3802 }
3803 }
3804
3805 static void
3806 print_cplus_stuff (struct type *type, int spaces)
3807 {
3808 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3809 printfi_filtered (spaces, "vptr_basetype ");
3810 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3811 puts_filtered ("\n");
3812 if (TYPE_VPTR_BASETYPE (type) != NULL)
3813 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3814
3815 printfi_filtered (spaces, "n_baseclasses %d\n",
3816 TYPE_N_BASECLASSES (type));
3817 printfi_filtered (spaces, "nfn_fields %d\n",
3818 TYPE_NFN_FIELDS (type));
3819 if (TYPE_N_BASECLASSES (type) > 0)
3820 {
3821 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3822 TYPE_N_BASECLASSES (type));
3823 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3824 gdb_stdout);
3825 printf_filtered (")");
3826
3827 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3828 TYPE_N_BASECLASSES (type));
3829 puts_filtered ("\n");
3830 }
3831 if (TYPE_NFIELDS (type) > 0)
3832 {
3833 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3834 {
3835 printfi_filtered (spaces,
3836 "private_field_bits (%d bits at *",
3837 TYPE_NFIELDS (type));
3838 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3839 gdb_stdout);
3840 printf_filtered (")");
3841 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3842 TYPE_NFIELDS (type));
3843 puts_filtered ("\n");
3844 }
3845 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3846 {
3847 printfi_filtered (spaces,
3848 "protected_field_bits (%d bits at *",
3849 TYPE_NFIELDS (type));
3850 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3851 gdb_stdout);
3852 printf_filtered (")");
3853 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3854 TYPE_NFIELDS (type));
3855 puts_filtered ("\n");
3856 }
3857 }
3858 if (TYPE_NFN_FIELDS (type) > 0)
3859 {
3860 dump_fn_fieldlists (type, spaces);
3861 }
3862 }
3863
3864 /* Print the contents of the TYPE's type_specific union, assuming that
3865 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3866
3867 static void
3868 print_gnat_stuff (struct type *type, int spaces)
3869 {
3870 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3871
3872 recursive_dump_type (descriptive_type, spaces + 2);
3873 }
3874
3875 static struct obstack dont_print_type_obstack;
3876
3877 void
3878 recursive_dump_type (struct type *type, int spaces)
3879 {
3880 int idx;
3881
3882 if (spaces == 0)
3883 obstack_begin (&dont_print_type_obstack, 0);
3884
3885 if (TYPE_NFIELDS (type) > 0
3886 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3887 {
3888 struct type **first_dont_print
3889 = (struct type **) obstack_base (&dont_print_type_obstack);
3890
3891 int i = (struct type **)
3892 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3893
3894 while (--i >= 0)
3895 {
3896 if (type == first_dont_print[i])
3897 {
3898 printfi_filtered (spaces, "type node ");
3899 gdb_print_host_address (type, gdb_stdout);
3900 printf_filtered (_(" <same as already seen type>\n"));
3901 return;
3902 }
3903 }
3904
3905 obstack_ptr_grow (&dont_print_type_obstack, type);
3906 }
3907
3908 printfi_filtered (spaces, "type node ");
3909 gdb_print_host_address (type, gdb_stdout);
3910 printf_filtered ("\n");
3911 printfi_filtered (spaces, "name '%s' (",
3912 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3913 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3914 printf_filtered (")\n");
3915 printfi_filtered (spaces, "tagname '%s' (",
3916 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3917 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3918 printf_filtered (")\n");
3919 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3920 switch (TYPE_CODE (type))
3921 {
3922 case TYPE_CODE_UNDEF:
3923 printf_filtered ("(TYPE_CODE_UNDEF)");
3924 break;
3925 case TYPE_CODE_PTR:
3926 printf_filtered ("(TYPE_CODE_PTR)");
3927 break;
3928 case TYPE_CODE_ARRAY:
3929 printf_filtered ("(TYPE_CODE_ARRAY)");
3930 break;
3931 case TYPE_CODE_STRUCT:
3932 printf_filtered ("(TYPE_CODE_STRUCT)");
3933 break;
3934 case TYPE_CODE_UNION:
3935 printf_filtered ("(TYPE_CODE_UNION)");
3936 break;
3937 case TYPE_CODE_ENUM:
3938 printf_filtered ("(TYPE_CODE_ENUM)");
3939 break;
3940 case TYPE_CODE_FLAGS:
3941 printf_filtered ("(TYPE_CODE_FLAGS)");
3942 break;
3943 case TYPE_CODE_FUNC:
3944 printf_filtered ("(TYPE_CODE_FUNC)");
3945 break;
3946 case TYPE_CODE_INT:
3947 printf_filtered ("(TYPE_CODE_INT)");
3948 break;
3949 case TYPE_CODE_FLT:
3950 printf_filtered ("(TYPE_CODE_FLT)");
3951 break;
3952 case TYPE_CODE_VOID:
3953 printf_filtered ("(TYPE_CODE_VOID)");
3954 break;
3955 case TYPE_CODE_SET:
3956 printf_filtered ("(TYPE_CODE_SET)");
3957 break;
3958 case TYPE_CODE_RANGE:
3959 printf_filtered ("(TYPE_CODE_RANGE)");
3960 break;
3961 case TYPE_CODE_STRING:
3962 printf_filtered ("(TYPE_CODE_STRING)");
3963 break;
3964 case TYPE_CODE_ERROR:
3965 printf_filtered ("(TYPE_CODE_ERROR)");
3966 break;
3967 case TYPE_CODE_MEMBERPTR:
3968 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3969 break;
3970 case TYPE_CODE_METHODPTR:
3971 printf_filtered ("(TYPE_CODE_METHODPTR)");
3972 break;
3973 case TYPE_CODE_METHOD:
3974 printf_filtered ("(TYPE_CODE_METHOD)");
3975 break;
3976 case TYPE_CODE_REF:
3977 printf_filtered ("(TYPE_CODE_REF)");
3978 break;
3979 case TYPE_CODE_CHAR:
3980 printf_filtered ("(TYPE_CODE_CHAR)");
3981 break;
3982 case TYPE_CODE_BOOL:
3983 printf_filtered ("(TYPE_CODE_BOOL)");
3984 break;
3985 case TYPE_CODE_COMPLEX:
3986 printf_filtered ("(TYPE_CODE_COMPLEX)");
3987 break;
3988 case TYPE_CODE_TYPEDEF:
3989 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3990 break;
3991 case TYPE_CODE_NAMESPACE:
3992 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3993 break;
3994 default:
3995 printf_filtered ("(UNKNOWN TYPE CODE)");
3996 break;
3997 }
3998 puts_filtered ("\n");
3999 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4000 if (TYPE_OBJFILE_OWNED (type))
4001 {
4002 printfi_filtered (spaces, "objfile ");
4003 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4004 }
4005 else
4006 {
4007 printfi_filtered (spaces, "gdbarch ");
4008 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4009 }
4010 printf_filtered ("\n");
4011 printfi_filtered (spaces, "target_type ");
4012 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4013 printf_filtered ("\n");
4014 if (TYPE_TARGET_TYPE (type) != NULL)
4015 {
4016 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4017 }
4018 printfi_filtered (spaces, "pointer_type ");
4019 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4020 printf_filtered ("\n");
4021 printfi_filtered (spaces, "reference_type ");
4022 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4023 printf_filtered ("\n");
4024 printfi_filtered (spaces, "type_chain ");
4025 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4026 printf_filtered ("\n");
4027 printfi_filtered (spaces, "instance_flags 0x%x",
4028 TYPE_INSTANCE_FLAGS (type));
4029 if (TYPE_CONST (type))
4030 {
4031 puts_filtered (" TYPE_FLAG_CONST");
4032 }
4033 if (TYPE_VOLATILE (type))
4034 {
4035 puts_filtered (" TYPE_FLAG_VOLATILE");
4036 }
4037 if (TYPE_CODE_SPACE (type))
4038 {
4039 puts_filtered (" TYPE_FLAG_CODE_SPACE");
4040 }
4041 if (TYPE_DATA_SPACE (type))
4042 {
4043 puts_filtered (" TYPE_FLAG_DATA_SPACE");
4044 }
4045 if (TYPE_ADDRESS_CLASS_1 (type))
4046 {
4047 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
4048 }
4049 if (TYPE_ADDRESS_CLASS_2 (type))
4050 {
4051 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
4052 }
4053 if (TYPE_RESTRICT (type))
4054 {
4055 puts_filtered (" TYPE_FLAG_RESTRICT");
4056 }
4057 if (TYPE_ATOMIC (type))
4058 {
4059 puts_filtered (" TYPE_FLAG_ATOMIC");
4060 }
4061 puts_filtered ("\n");
4062
4063 printfi_filtered (spaces, "flags");
4064 if (TYPE_UNSIGNED (type))
4065 {
4066 puts_filtered (" TYPE_FLAG_UNSIGNED");
4067 }
4068 if (TYPE_NOSIGN (type))
4069 {
4070 puts_filtered (" TYPE_FLAG_NOSIGN");
4071 }
4072 if (TYPE_STUB (type))
4073 {
4074 puts_filtered (" TYPE_FLAG_STUB");
4075 }
4076 if (TYPE_TARGET_STUB (type))
4077 {
4078 puts_filtered (" TYPE_FLAG_TARGET_STUB");
4079 }
4080 if (TYPE_STATIC (type))
4081 {
4082 puts_filtered (" TYPE_FLAG_STATIC");
4083 }
4084 if (TYPE_PROTOTYPED (type))
4085 {
4086 puts_filtered (" TYPE_FLAG_PROTOTYPED");
4087 }
4088 if (TYPE_INCOMPLETE (type))
4089 {
4090 puts_filtered (" TYPE_FLAG_INCOMPLETE");
4091 }
4092 if (TYPE_VARARGS (type))
4093 {
4094 puts_filtered (" TYPE_FLAG_VARARGS");
4095 }
4096 /* This is used for things like AltiVec registers on ppc. Gcc emits
4097 an attribute for the array type, which tells whether or not we
4098 have a vector, instead of a regular array. */
4099 if (TYPE_VECTOR (type))
4100 {
4101 puts_filtered (" TYPE_FLAG_VECTOR");
4102 }
4103 if (TYPE_FIXED_INSTANCE (type))
4104 {
4105 puts_filtered (" TYPE_FIXED_INSTANCE");
4106 }
4107 if (TYPE_STUB_SUPPORTED (type))
4108 {
4109 puts_filtered (" TYPE_STUB_SUPPORTED");
4110 }
4111 if (TYPE_NOTTEXT (type))
4112 {
4113 puts_filtered (" TYPE_NOTTEXT");
4114 }
4115 puts_filtered ("\n");
4116 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4117 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4118 puts_filtered ("\n");
4119 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4120 {
4121 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4122 printfi_filtered (spaces + 2,
4123 "[%d] enumval %s type ",
4124 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4125 else
4126 printfi_filtered (spaces + 2,
4127 "[%d] bitpos %d bitsize %d type ",
4128 idx, TYPE_FIELD_BITPOS (type, idx),
4129 TYPE_FIELD_BITSIZE (type, idx));
4130 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4131 printf_filtered (" name '%s' (",
4132 TYPE_FIELD_NAME (type, idx) != NULL
4133 ? TYPE_FIELD_NAME (type, idx)
4134 : "<NULL>");
4135 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4136 printf_filtered (")\n");
4137 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4138 {
4139 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4140 }
4141 }
4142 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4143 {
4144 printfi_filtered (spaces, "low %s%s high %s%s\n",
4145 plongest (TYPE_LOW_BOUND (type)),
4146 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4147 plongest (TYPE_HIGH_BOUND (type)),
4148 TYPE_HIGH_BOUND_UNDEFINED (type)
4149 ? " (undefined)" : "");
4150 }
4151
4152 switch (TYPE_SPECIFIC_FIELD (type))
4153 {
4154 case TYPE_SPECIFIC_CPLUS_STUFF:
4155 printfi_filtered (spaces, "cplus_stuff ");
4156 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4157 gdb_stdout);
4158 puts_filtered ("\n");
4159 print_cplus_stuff (type, spaces);
4160 break;
4161
4162 case TYPE_SPECIFIC_GNAT_STUFF:
4163 printfi_filtered (spaces, "gnat_stuff ");
4164 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4165 puts_filtered ("\n");
4166 print_gnat_stuff (type, spaces);
4167 break;
4168
4169 case TYPE_SPECIFIC_FLOATFORMAT:
4170 printfi_filtered (spaces, "floatformat ");
4171 if (TYPE_FLOATFORMAT (type) == NULL)
4172 puts_filtered ("(null)");
4173 else
4174 {
4175 puts_filtered ("{ ");
4176 if (TYPE_FLOATFORMAT (type)[0] == NULL
4177 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4178 puts_filtered ("(null)");
4179 else
4180 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4181
4182 puts_filtered (", ");
4183 if (TYPE_FLOATFORMAT (type)[1] == NULL
4184 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4185 puts_filtered ("(null)");
4186 else
4187 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4188
4189 puts_filtered (" }");
4190 }
4191 puts_filtered ("\n");
4192 break;
4193
4194 case TYPE_SPECIFIC_FUNC:
4195 printfi_filtered (spaces, "calling_convention %d\n",
4196 TYPE_CALLING_CONVENTION (type));
4197 /* tail_call_list is not printed. */
4198 break;
4199
4200 case TYPE_SPECIFIC_SELF_TYPE:
4201 printfi_filtered (spaces, "self_type ");
4202 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4203 puts_filtered ("\n");
4204 break;
4205 }
4206
4207 if (spaces == 0)
4208 obstack_free (&dont_print_type_obstack, NULL);
4209 }
4210 \f
4211 /* Trivial helpers for the libiberty hash table, for mapping one
4212 type to another. */
4213
4214 struct type_pair
4215 {
4216 struct type *old, *newobj;
4217 };
4218
4219 static hashval_t
4220 type_pair_hash (const void *item)
4221 {
4222 const struct type_pair *pair = item;
4223
4224 return htab_hash_pointer (pair->old);
4225 }
4226
4227 static int
4228 type_pair_eq (const void *item_lhs, const void *item_rhs)
4229 {
4230 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
4231
4232 return lhs->old == rhs->old;
4233 }
4234
4235 /* Allocate the hash table used by copy_type_recursive to walk
4236 types without duplicates. We use OBJFILE's obstack, because
4237 OBJFILE is about to be deleted. */
4238
4239 htab_t
4240 create_copied_types_hash (struct objfile *objfile)
4241 {
4242 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4243 NULL, &objfile->objfile_obstack,
4244 hashtab_obstack_allocate,
4245 dummy_obstack_deallocate);
4246 }
4247
4248 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4249
4250 static struct dynamic_prop_list *
4251 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4252 struct dynamic_prop_list *list)
4253 {
4254 struct dynamic_prop_list *copy = list;
4255 struct dynamic_prop_list **node_ptr = &copy;
4256
4257 while (*node_ptr != NULL)
4258 {
4259 struct dynamic_prop_list *node_copy;
4260
4261 node_copy = obstack_copy (objfile_obstack, *node_ptr,
4262 sizeof (struct dynamic_prop_list));
4263 node_copy->prop = (*node_ptr)->prop;
4264 *node_ptr = node_copy;
4265
4266 node_ptr = &node_copy->next;
4267 }
4268
4269 return copy;
4270 }
4271
4272 /* Recursively copy (deep copy) TYPE, if it is associated with
4273 OBJFILE. Return a new type allocated using malloc, a saved type if
4274 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4275 not associated with OBJFILE. */
4276
4277 struct type *
4278 copy_type_recursive (struct objfile *objfile,
4279 struct type *type,
4280 htab_t copied_types)
4281 {
4282 struct type_pair *stored, pair;
4283 void **slot;
4284 struct type *new_type;
4285
4286 if (! TYPE_OBJFILE_OWNED (type))
4287 return type;
4288
4289 /* This type shouldn't be pointing to any types in other objfiles;
4290 if it did, the type might disappear unexpectedly. */
4291 gdb_assert (TYPE_OBJFILE (type) == objfile);
4292
4293 pair.old = type;
4294 slot = htab_find_slot (copied_types, &pair, INSERT);
4295 if (*slot != NULL)
4296 return ((struct type_pair *) *slot)->newobj;
4297
4298 new_type = alloc_type_arch (get_type_arch (type));
4299
4300 /* We must add the new type to the hash table immediately, in case
4301 we encounter this type again during a recursive call below. */
4302 stored
4303 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4304 stored->old = type;
4305 stored->newobj = new_type;
4306 *slot = stored;
4307
4308 /* Copy the common fields of types. For the main type, we simply
4309 copy the entire thing and then update specific fields as needed. */
4310 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4311 TYPE_OBJFILE_OWNED (new_type) = 0;
4312 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4313
4314 if (TYPE_NAME (type))
4315 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4316 if (TYPE_TAG_NAME (type))
4317 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4318
4319 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4320 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4321
4322 /* Copy the fields. */
4323 if (TYPE_NFIELDS (type))
4324 {
4325 int i, nfields;
4326
4327 nfields = TYPE_NFIELDS (type);
4328 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4329 for (i = 0; i < nfields; i++)
4330 {
4331 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4332 TYPE_FIELD_ARTIFICIAL (type, i);
4333 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4334 if (TYPE_FIELD_TYPE (type, i))
4335 TYPE_FIELD_TYPE (new_type, i)
4336 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4337 copied_types);
4338 if (TYPE_FIELD_NAME (type, i))
4339 TYPE_FIELD_NAME (new_type, i) =
4340 xstrdup (TYPE_FIELD_NAME (type, i));
4341 switch (TYPE_FIELD_LOC_KIND (type, i))
4342 {
4343 case FIELD_LOC_KIND_BITPOS:
4344 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4345 TYPE_FIELD_BITPOS (type, i));
4346 break;
4347 case FIELD_LOC_KIND_ENUMVAL:
4348 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4349 TYPE_FIELD_ENUMVAL (type, i));
4350 break;
4351 case FIELD_LOC_KIND_PHYSADDR:
4352 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4353 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4354 break;
4355 case FIELD_LOC_KIND_PHYSNAME:
4356 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4357 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4358 i)));
4359 break;
4360 default:
4361 internal_error (__FILE__, __LINE__,
4362 _("Unexpected type field location kind: %d"),
4363 TYPE_FIELD_LOC_KIND (type, i));
4364 }
4365 }
4366 }
4367
4368 /* For range types, copy the bounds information. */
4369 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4370 {
4371 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4372 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4373 }
4374
4375 if (TYPE_DYN_PROP_LIST (type) != NULL)
4376 TYPE_DYN_PROP_LIST (new_type)
4377 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4378 TYPE_DYN_PROP_LIST (type));
4379
4380
4381 /* Copy pointers to other types. */
4382 if (TYPE_TARGET_TYPE (type))
4383 TYPE_TARGET_TYPE (new_type) =
4384 copy_type_recursive (objfile,
4385 TYPE_TARGET_TYPE (type),
4386 copied_types);
4387
4388 /* Maybe copy the type_specific bits.
4389
4390 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4391 base classes and methods. There's no fundamental reason why we
4392 can't, but at the moment it is not needed. */
4393
4394 switch (TYPE_SPECIFIC_FIELD (type))
4395 {
4396 case TYPE_SPECIFIC_NONE:
4397 break;
4398 case TYPE_SPECIFIC_FUNC:
4399 INIT_FUNC_SPECIFIC (new_type);
4400 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4401 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4402 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4403 break;
4404 case TYPE_SPECIFIC_FLOATFORMAT:
4405 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4406 break;
4407 case TYPE_SPECIFIC_CPLUS_STUFF:
4408 INIT_CPLUS_SPECIFIC (new_type);
4409 break;
4410 case TYPE_SPECIFIC_GNAT_STUFF:
4411 INIT_GNAT_SPECIFIC (new_type);
4412 break;
4413 case TYPE_SPECIFIC_SELF_TYPE:
4414 set_type_self_type (new_type,
4415 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4416 copied_types));
4417 break;
4418 default:
4419 gdb_assert_not_reached ("bad type_specific_kind");
4420 }
4421
4422 return new_type;
4423 }
4424
4425 /* Make a copy of the given TYPE, except that the pointer & reference
4426 types are not preserved.
4427
4428 This function assumes that the given type has an associated objfile.
4429 This objfile is used to allocate the new type. */
4430
4431 struct type *
4432 copy_type (const struct type *type)
4433 {
4434 struct type *new_type;
4435
4436 gdb_assert (TYPE_OBJFILE_OWNED (type));
4437
4438 new_type = alloc_type_copy (type);
4439 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4440 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4441 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4442 sizeof (struct main_type));
4443 if (TYPE_DYN_PROP_LIST (type) != NULL)
4444 TYPE_DYN_PROP_LIST (new_type)
4445 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4446 TYPE_DYN_PROP_LIST (type));
4447
4448 return new_type;
4449 }
4450 \f
4451 /* Helper functions to initialize architecture-specific types. */
4452
4453 /* Allocate a type structure associated with GDBARCH and set its
4454 CODE, LENGTH, and NAME fields. */
4455
4456 struct type *
4457 arch_type (struct gdbarch *gdbarch,
4458 enum type_code code, int length, char *name)
4459 {
4460 struct type *type;
4461
4462 type = alloc_type_arch (gdbarch);
4463 TYPE_CODE (type) = code;
4464 TYPE_LENGTH (type) = length;
4465
4466 if (name)
4467 TYPE_NAME (type) = xstrdup (name);
4468
4469 return type;
4470 }
4471
4472 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4473 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4474 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4475
4476 struct type *
4477 arch_integer_type (struct gdbarch *gdbarch,
4478 int bit, int unsigned_p, char *name)
4479 {
4480 struct type *t;
4481
4482 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4483 if (unsigned_p)
4484 TYPE_UNSIGNED (t) = 1;
4485 if (name && strcmp (name, "char") == 0)
4486 TYPE_NOSIGN (t) = 1;
4487
4488 return t;
4489 }
4490
4491 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4492 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4493 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4494
4495 struct type *
4496 arch_character_type (struct gdbarch *gdbarch,
4497 int bit, int unsigned_p, char *name)
4498 {
4499 struct type *t;
4500
4501 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4502 if (unsigned_p)
4503 TYPE_UNSIGNED (t) = 1;
4504
4505 return t;
4506 }
4507
4508 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4509 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4510 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4511
4512 struct type *
4513 arch_boolean_type (struct gdbarch *gdbarch,
4514 int bit, int unsigned_p, char *name)
4515 {
4516 struct type *t;
4517
4518 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4519 if (unsigned_p)
4520 TYPE_UNSIGNED (t) = 1;
4521
4522 return t;
4523 }
4524
4525 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4526 BIT is the type size in bits; if BIT equals -1, the size is
4527 determined by the floatformat. NAME is the type name. Set the
4528 TYPE_FLOATFORMAT from FLOATFORMATS. */
4529
4530 struct type *
4531 arch_float_type (struct gdbarch *gdbarch,
4532 int bit, char *name, const struct floatformat **floatformats)
4533 {
4534 struct type *t;
4535
4536 if (bit == -1)
4537 {
4538 gdb_assert (floatformats != NULL);
4539 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4540 bit = floatformats[0]->totalsize;
4541 }
4542 gdb_assert (bit >= 0);
4543
4544 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4545 TYPE_FLOATFORMAT (t) = floatformats;
4546 return t;
4547 }
4548
4549 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4550 NAME is the type name. TARGET_TYPE is the component float type. */
4551
4552 struct type *
4553 arch_complex_type (struct gdbarch *gdbarch,
4554 char *name, struct type *target_type)
4555 {
4556 struct type *t;
4557
4558 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4559 2 * TYPE_LENGTH (target_type), name);
4560 TYPE_TARGET_TYPE (t) = target_type;
4561 return t;
4562 }
4563
4564 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4565 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4566
4567 struct type *
4568 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4569 {
4570 int nfields = length * TARGET_CHAR_BIT;
4571 struct type *type;
4572
4573 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4574 TYPE_UNSIGNED (type) = 1;
4575 TYPE_NFIELDS (type) = nfields;
4576 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4577
4578 return type;
4579 }
4580
4581 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4582 position BITPOS is called NAME. */
4583
4584 void
4585 append_flags_type_flag (struct type *type, int bitpos, char *name)
4586 {
4587 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4588 gdb_assert (bitpos < TYPE_NFIELDS (type));
4589 gdb_assert (bitpos >= 0);
4590
4591 if (name)
4592 {
4593 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4594 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4595 }
4596 else
4597 {
4598 /* Don't show this field to the user. */
4599 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4600 }
4601 }
4602
4603 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4604 specified by CODE) associated with GDBARCH. NAME is the type name. */
4605
4606 struct type *
4607 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4608 {
4609 struct type *t;
4610
4611 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4612 t = arch_type (gdbarch, code, 0, NULL);
4613 TYPE_TAG_NAME (t) = name;
4614 INIT_CPLUS_SPECIFIC (t);
4615 return t;
4616 }
4617
4618 /* Add new field with name NAME and type FIELD to composite type T.
4619 Do not set the field's position or adjust the type's length;
4620 the caller should do so. Return the new field. */
4621
4622 struct field *
4623 append_composite_type_field_raw (struct type *t, char *name,
4624 struct type *field)
4625 {
4626 struct field *f;
4627
4628 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4629 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4630 sizeof (struct field) * TYPE_NFIELDS (t));
4631 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4632 memset (f, 0, sizeof f[0]);
4633 FIELD_TYPE (f[0]) = field;
4634 FIELD_NAME (f[0]) = name;
4635 return f;
4636 }
4637
4638 /* Add new field with name NAME and type FIELD to composite type T.
4639 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4640
4641 void
4642 append_composite_type_field_aligned (struct type *t, char *name,
4643 struct type *field, int alignment)
4644 {
4645 struct field *f = append_composite_type_field_raw (t, name, field);
4646
4647 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4648 {
4649 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4650 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4651 }
4652 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4653 {
4654 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4655 if (TYPE_NFIELDS (t) > 1)
4656 {
4657 SET_FIELD_BITPOS (f[0],
4658 (FIELD_BITPOS (f[-1])
4659 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4660 * TARGET_CHAR_BIT)));
4661
4662 if (alignment)
4663 {
4664 int left;
4665
4666 alignment *= TARGET_CHAR_BIT;
4667 left = FIELD_BITPOS (f[0]) % alignment;
4668
4669 if (left)
4670 {
4671 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4672 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4673 }
4674 }
4675 }
4676 }
4677 }
4678
4679 /* Add new field with name NAME and type FIELD to composite type T. */
4680
4681 void
4682 append_composite_type_field (struct type *t, char *name,
4683 struct type *field)
4684 {
4685 append_composite_type_field_aligned (t, name, field, 0);
4686 }
4687
4688 static struct gdbarch_data *gdbtypes_data;
4689
4690 const struct builtin_type *
4691 builtin_type (struct gdbarch *gdbarch)
4692 {
4693 return gdbarch_data (gdbarch, gdbtypes_data);
4694 }
4695
4696 static void *
4697 gdbtypes_post_init (struct gdbarch *gdbarch)
4698 {
4699 struct builtin_type *builtin_type
4700 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4701
4702 /* Basic types. */
4703 builtin_type->builtin_void
4704 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4705 builtin_type->builtin_char
4706 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4707 !gdbarch_char_signed (gdbarch), "char");
4708 builtin_type->builtin_signed_char
4709 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4710 0, "signed char");
4711 builtin_type->builtin_unsigned_char
4712 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4713 1, "unsigned char");
4714 builtin_type->builtin_short
4715 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4716 0, "short");
4717 builtin_type->builtin_unsigned_short
4718 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4719 1, "unsigned short");
4720 builtin_type->builtin_int
4721 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4722 0, "int");
4723 builtin_type->builtin_unsigned_int
4724 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4725 1, "unsigned int");
4726 builtin_type->builtin_long
4727 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4728 0, "long");
4729 builtin_type->builtin_unsigned_long
4730 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4731 1, "unsigned long");
4732 builtin_type->builtin_long_long
4733 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4734 0, "long long");
4735 builtin_type->builtin_unsigned_long_long
4736 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4737 1, "unsigned long long");
4738 builtin_type->builtin_float
4739 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4740 "float", gdbarch_float_format (gdbarch));
4741 builtin_type->builtin_double
4742 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4743 "double", gdbarch_double_format (gdbarch));
4744 builtin_type->builtin_long_double
4745 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4746 "long double", gdbarch_long_double_format (gdbarch));
4747 builtin_type->builtin_complex
4748 = arch_complex_type (gdbarch, "complex",
4749 builtin_type->builtin_float);
4750 builtin_type->builtin_double_complex
4751 = arch_complex_type (gdbarch, "double complex",
4752 builtin_type->builtin_double);
4753 builtin_type->builtin_string
4754 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4755 builtin_type->builtin_bool
4756 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4757
4758 /* The following three are about decimal floating point types, which
4759 are 32-bits, 64-bits and 128-bits respectively. */
4760 builtin_type->builtin_decfloat
4761 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4762 builtin_type->builtin_decdouble
4763 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4764 builtin_type->builtin_declong
4765 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4766
4767 /* "True" character types. */
4768 builtin_type->builtin_true_char
4769 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4770 builtin_type->builtin_true_unsigned_char
4771 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4772
4773 /* Fixed-size integer types. */
4774 builtin_type->builtin_int0
4775 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4776 builtin_type->builtin_int8
4777 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4778 builtin_type->builtin_uint8
4779 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4780 builtin_type->builtin_int16
4781 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4782 builtin_type->builtin_uint16
4783 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4784 builtin_type->builtin_int32
4785 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4786 builtin_type->builtin_uint32
4787 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4788 builtin_type->builtin_int64
4789 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4790 builtin_type->builtin_uint64
4791 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4792 builtin_type->builtin_int128
4793 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4794 builtin_type->builtin_uint128
4795 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4796 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4797 TYPE_INSTANCE_FLAG_NOTTEXT;
4798 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4799 TYPE_INSTANCE_FLAG_NOTTEXT;
4800
4801 /* Wide character types. */
4802 builtin_type->builtin_char16
4803 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4804 builtin_type->builtin_char32
4805 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4806
4807
4808 /* Default data/code pointer types. */
4809 builtin_type->builtin_data_ptr
4810 = lookup_pointer_type (builtin_type->builtin_void);
4811 builtin_type->builtin_func_ptr
4812 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4813 builtin_type->builtin_func_func
4814 = lookup_function_type (builtin_type->builtin_func_ptr);
4815
4816 /* This type represents a GDB internal function. */
4817 builtin_type->internal_fn
4818 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4819 "<internal function>");
4820
4821 /* This type represents an xmethod. */
4822 builtin_type->xmethod
4823 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4824
4825 return builtin_type;
4826 }
4827
4828 /* This set of objfile-based types is intended to be used by symbol
4829 readers as basic types. */
4830
4831 static const struct objfile_data *objfile_type_data;
4832
4833 const struct objfile_type *
4834 objfile_type (struct objfile *objfile)
4835 {
4836 struct gdbarch *gdbarch;
4837 struct objfile_type *objfile_type
4838 = objfile_data (objfile, objfile_type_data);
4839
4840 if (objfile_type)
4841 return objfile_type;
4842
4843 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4844 1, struct objfile_type);
4845
4846 /* Use the objfile architecture to determine basic type properties. */
4847 gdbarch = get_objfile_arch (objfile);
4848
4849 /* Basic types. */
4850 objfile_type->builtin_void
4851 = init_type (TYPE_CODE_VOID, 1,
4852 0,
4853 "void", objfile);
4854
4855 objfile_type->builtin_char
4856 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4857 (TYPE_FLAG_NOSIGN
4858 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4859 "char", objfile);
4860 objfile_type->builtin_signed_char
4861 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4862 0,
4863 "signed char", objfile);
4864 objfile_type->builtin_unsigned_char
4865 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4866 TYPE_FLAG_UNSIGNED,
4867 "unsigned char", objfile);
4868 objfile_type->builtin_short
4869 = init_type (TYPE_CODE_INT,
4870 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4871 0, "short", objfile);
4872 objfile_type->builtin_unsigned_short
4873 = init_type (TYPE_CODE_INT,
4874 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4875 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4876 objfile_type->builtin_int
4877 = init_type (TYPE_CODE_INT,
4878 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4879 0, "int", objfile);
4880 objfile_type->builtin_unsigned_int
4881 = init_type (TYPE_CODE_INT,
4882 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4883 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4884 objfile_type->builtin_long
4885 = init_type (TYPE_CODE_INT,
4886 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4887 0, "long", objfile);
4888 objfile_type->builtin_unsigned_long
4889 = init_type (TYPE_CODE_INT,
4890 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4891 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4892 objfile_type->builtin_long_long
4893 = init_type (TYPE_CODE_INT,
4894 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4895 0, "long long", objfile);
4896 objfile_type->builtin_unsigned_long_long
4897 = init_type (TYPE_CODE_INT,
4898 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4899 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4900
4901 objfile_type->builtin_float
4902 = init_type (TYPE_CODE_FLT,
4903 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4904 0, "float", objfile);
4905 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4906 = gdbarch_float_format (gdbarch);
4907 objfile_type->builtin_double
4908 = init_type (TYPE_CODE_FLT,
4909 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4910 0, "double", objfile);
4911 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4912 = gdbarch_double_format (gdbarch);
4913 objfile_type->builtin_long_double
4914 = init_type (TYPE_CODE_FLT,
4915 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4916 0, "long double", objfile);
4917 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4918 = gdbarch_long_double_format (gdbarch);
4919
4920 /* This type represents a type that was unrecognized in symbol read-in. */
4921 objfile_type->builtin_error
4922 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4923
4924 /* The following set of types is used for symbols with no
4925 debug information. */
4926 objfile_type->nodebug_text_symbol
4927 = init_type (TYPE_CODE_FUNC, 1, 0,
4928 "<text variable, no debug info>", objfile);
4929 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4930 = objfile_type->builtin_int;
4931 objfile_type->nodebug_text_gnu_ifunc_symbol
4932 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4933 "<text gnu-indirect-function variable, no debug info>",
4934 objfile);
4935 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4936 = objfile_type->nodebug_text_symbol;
4937 objfile_type->nodebug_got_plt_symbol
4938 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4939 "<text from jump slot in .got.plt, no debug info>",
4940 objfile);
4941 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4942 = objfile_type->nodebug_text_symbol;
4943 objfile_type->nodebug_data_symbol
4944 = init_type (TYPE_CODE_INT,
4945 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4946 "<data variable, no debug info>", objfile);
4947 objfile_type->nodebug_unknown_symbol
4948 = init_type (TYPE_CODE_INT, 1, 0,
4949 "<variable (not text or data), no debug info>", objfile);
4950 objfile_type->nodebug_tls_symbol
4951 = init_type (TYPE_CODE_INT,
4952 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4953 "<thread local variable, no debug info>", objfile);
4954
4955 /* NOTE: on some targets, addresses and pointers are not necessarily
4956 the same.
4957
4958 The upshot is:
4959 - gdb's `struct type' always describes the target's
4960 representation.
4961 - gdb's `struct value' objects should always hold values in
4962 target form.
4963 - gdb's CORE_ADDR values are addresses in the unified virtual
4964 address space that the assembler and linker work with. Thus,
4965 since target_read_memory takes a CORE_ADDR as an argument, it
4966 can access any memory on the target, even if the processor has
4967 separate code and data address spaces.
4968
4969 In this context, objfile_type->builtin_core_addr is a bit odd:
4970 it's a target type for a value the target will never see. It's
4971 only used to hold the values of (typeless) linker symbols, which
4972 are indeed in the unified virtual address space. */
4973
4974 objfile_type->builtin_core_addr
4975 = init_type (TYPE_CODE_INT,
4976 gdbarch_addr_bit (gdbarch) / 8,
4977 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4978
4979 set_objfile_data (objfile, objfile_type_data, objfile_type);
4980 return objfile_type;
4981 }
4982
4983 extern initialize_file_ftype _initialize_gdbtypes;
4984
4985 void
4986 _initialize_gdbtypes (void)
4987 {
4988 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4989 objfile_type_data = register_objfile_data ();
4990
4991 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4992 _("Set debugging of C++ overloading."),
4993 _("Show debugging of C++ overloading."),
4994 _("When enabled, ranking of the "
4995 "functions is displayed."),
4996 NULL,
4997 show_overload_debug,
4998 &setdebuglist, &showdebuglist);
4999
5000 /* Add user knob for controlling resolution of opaque types. */
5001 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5002 &opaque_type_resolution,
5003 _("Set resolution of opaque struct/class/union"
5004 " types (if set before loading symbols)."),
5005 _("Show resolution of opaque struct/class/union"
5006 " types (if set before loading symbols)."),
5007 NULL, NULL,
5008 show_opaque_type_resolution,
5009 &setlist, &showlist);
5010
5011 /* Add an option to permit non-strict type checking. */
5012 add_setshow_boolean_cmd ("type", class_support,
5013 &strict_type_checking,
5014 _("Set strict type checking."),
5015 _("Show strict type checking."),
5016 NULL, NULL,
5017 show_strict_type_checking,
5018 &setchecklist, &showchecklist);
5019 }
This page took 0.212532 seconds and 5 git commands to generate.