add make_unqualified_type
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_VPTR_FIELDNO (type) = -1;
184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
185
186 return type;
187 }
188
189 /* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
191 on the heap. */
192
193 struct type *
194 alloc_type_arch (struct gdbarch *gdbarch)
195 {
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
202 type = XCNEW (struct type);
203 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_VPTR_FIELDNO (type) = -1;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240 }
241
242 /* See gdbtypes.h. */
243
244 struct type *
245 get_target_type (struct type *type)
246 {
247 if (type != NULL)
248 {
249 type = TYPE_TARGET_TYPE (type);
250 if (type != NULL)
251 type = check_typedef (type);
252 }
253
254 return type;
255 }
256
257 /* Alloc a new type instance structure, fill it with some defaults,
258 and point it at OLDTYPE. Allocate the new type instance from the
259 same place as OLDTYPE. */
260
261 static struct type *
262 alloc_type_instance (struct type *oldtype)
263 {
264 struct type *type;
265
266 /* Allocate the structure. */
267
268 if (! TYPE_OBJFILE_OWNED (oldtype))
269 type = XCNEW (struct type);
270 else
271 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
272 struct type);
273
274 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
275
276 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
277
278 return type;
279 }
280
281 /* Clear all remnants of the previous type at TYPE, in preparation for
282 replacing it with something else. Preserve owner information. */
283
284 static void
285 smash_type (struct type *type)
286 {
287 int objfile_owned = TYPE_OBJFILE_OWNED (type);
288 union type_owner owner = TYPE_OWNER (type);
289
290 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
291
292 /* Restore owner information. */
293 TYPE_OBJFILE_OWNED (type) = objfile_owned;
294 TYPE_OWNER (type) = owner;
295
296 /* For now, delete the rings. */
297 TYPE_CHAIN (type) = type;
298
299 /* For now, leave the pointer/reference types alone. */
300 }
301
302 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
303 to a pointer to memory where the pointer type should be stored.
304 If *TYPEPTR is zero, update it to point to the pointer type we return.
305 We allocate new memory if needed. */
306
307 struct type *
308 make_pointer_type (struct type *type, struct type **typeptr)
309 {
310 struct type *ntype; /* New type */
311 struct type *chain;
312
313 ntype = TYPE_POINTER_TYPE (type);
314
315 if (ntype)
316 {
317 if (typeptr == 0)
318 return ntype; /* Don't care about alloc,
319 and have new type. */
320 else if (*typeptr == 0)
321 {
322 *typeptr = ntype; /* Tracking alloc, and have new type. */
323 return ntype;
324 }
325 }
326
327 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
328 {
329 ntype = alloc_type_copy (type);
330 if (typeptr)
331 *typeptr = ntype;
332 }
333 else /* We have storage, but need to reset it. */
334 {
335 ntype = *typeptr;
336 chain = TYPE_CHAIN (ntype);
337 smash_type (ntype);
338 TYPE_CHAIN (ntype) = chain;
339 }
340
341 TYPE_TARGET_TYPE (ntype) = type;
342 TYPE_POINTER_TYPE (type) = ntype;
343
344 /* FIXME! Assumes the machine has only one representation for pointers! */
345
346 TYPE_LENGTH (ntype)
347 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
348 TYPE_CODE (ntype) = TYPE_CODE_PTR;
349
350 /* Mark pointers as unsigned. The target converts between pointers
351 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
352 gdbarch_address_to_pointer. */
353 TYPE_UNSIGNED (ntype) = 1;
354
355 /* Update the length of all the other variants of this type. */
356 chain = TYPE_CHAIN (ntype);
357 while (chain != ntype)
358 {
359 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
360 chain = TYPE_CHAIN (chain);
361 }
362
363 return ntype;
364 }
365
366 /* Given a type TYPE, return a type of pointers to that type.
367 May need to construct such a type if this is the first use. */
368
369 struct type *
370 lookup_pointer_type (struct type *type)
371 {
372 return make_pointer_type (type, (struct type **) 0);
373 }
374
375 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
376 points to a pointer to memory where the reference type should be
377 stored. If *TYPEPTR is zero, update it to point to the reference
378 type we return. We allocate new memory if needed. */
379
380 struct type *
381 make_reference_type (struct type *type, struct type **typeptr)
382 {
383 struct type *ntype; /* New type */
384 struct type *chain;
385
386 ntype = TYPE_REFERENCE_TYPE (type);
387
388 if (ntype)
389 {
390 if (typeptr == 0)
391 return ntype; /* Don't care about alloc,
392 and have new type. */
393 else if (*typeptr == 0)
394 {
395 *typeptr = ntype; /* Tracking alloc, and have new type. */
396 return ntype;
397 }
398 }
399
400 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
401 {
402 ntype = alloc_type_copy (type);
403 if (typeptr)
404 *typeptr = ntype;
405 }
406 else /* We have storage, but need to reset it. */
407 {
408 ntype = *typeptr;
409 chain = TYPE_CHAIN (ntype);
410 smash_type (ntype);
411 TYPE_CHAIN (ntype) = chain;
412 }
413
414 TYPE_TARGET_TYPE (ntype) = type;
415 TYPE_REFERENCE_TYPE (type) = ntype;
416
417 /* FIXME! Assume the machine has only one representation for
418 references, and that it matches the (only) representation for
419 pointers! */
420
421 TYPE_LENGTH (ntype) =
422 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
423 TYPE_CODE (ntype) = TYPE_CODE_REF;
424
425 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
426 TYPE_REFERENCE_TYPE (type) = ntype;
427
428 /* Update the length of all the other variants of this type. */
429 chain = TYPE_CHAIN (ntype);
430 while (chain != ntype)
431 {
432 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
433 chain = TYPE_CHAIN (chain);
434 }
435
436 return ntype;
437 }
438
439 /* Same as above, but caller doesn't care about memory allocation
440 details. */
441
442 struct type *
443 lookup_reference_type (struct type *type)
444 {
445 return make_reference_type (type, (struct type **) 0);
446 }
447
448 /* Lookup a function type that returns type TYPE. TYPEPTR, if
449 nonzero, points to a pointer to memory where the function type
450 should be stored. If *TYPEPTR is zero, update it to point to the
451 function type we return. We allocate new memory if needed. */
452
453 struct type *
454 make_function_type (struct type *type, struct type **typeptr)
455 {
456 struct type *ntype; /* New type */
457
458 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
459 {
460 ntype = alloc_type_copy (type);
461 if (typeptr)
462 *typeptr = ntype;
463 }
464 else /* We have storage, but need to reset it. */
465 {
466 ntype = *typeptr;
467 smash_type (ntype);
468 }
469
470 TYPE_TARGET_TYPE (ntype) = type;
471
472 TYPE_LENGTH (ntype) = 1;
473 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
474
475 INIT_FUNC_SPECIFIC (ntype);
476
477 return ntype;
478 }
479
480 /* Given a type TYPE, return a type of functions that return that type.
481 May need to construct such a type if this is the first use. */
482
483 struct type *
484 lookup_function_type (struct type *type)
485 {
486 return make_function_type (type, (struct type **) 0);
487 }
488
489 /* Given a type TYPE and argument types, return the appropriate
490 function type. If the final type in PARAM_TYPES is NULL, make a
491 varargs function. */
492
493 struct type *
494 lookup_function_type_with_arguments (struct type *type,
495 int nparams,
496 struct type **param_types)
497 {
498 struct type *fn = make_function_type (type, (struct type **) 0);
499 int i;
500
501 if (nparams > 0)
502 {
503 if (param_types[nparams - 1] == NULL)
504 {
505 --nparams;
506 TYPE_VARARGS (fn) = 1;
507 }
508 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
509 == TYPE_CODE_VOID)
510 {
511 --nparams;
512 /* Caller should have ensured this. */
513 gdb_assert (nparams == 0);
514 TYPE_PROTOTYPED (fn) = 1;
515 }
516 }
517
518 TYPE_NFIELDS (fn) = nparams;
519 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
520 for (i = 0; i < nparams; ++i)
521 TYPE_FIELD_TYPE (fn, i) = param_types[i];
522
523 return fn;
524 }
525
526 /* Identify address space identifier by name --
527 return the integer flag defined in gdbtypes.h. */
528
529 int
530 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
531 {
532 int type_flags;
533
534 /* Check for known address space delimiters. */
535 if (!strcmp (space_identifier, "code"))
536 return TYPE_INSTANCE_FLAG_CODE_SPACE;
537 else if (!strcmp (space_identifier, "data"))
538 return TYPE_INSTANCE_FLAG_DATA_SPACE;
539 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
540 && gdbarch_address_class_name_to_type_flags (gdbarch,
541 space_identifier,
542 &type_flags))
543 return type_flags;
544 else
545 error (_("Unknown address space specifier: \"%s\""), space_identifier);
546 }
547
548 /* Identify address space identifier by integer flag as defined in
549 gdbtypes.h -- return the string version of the adress space name. */
550
551 const char *
552 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
553 {
554 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
555 return "code";
556 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
557 return "data";
558 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
559 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
560 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
561 else
562 return NULL;
563 }
564
565 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
566
567 If STORAGE is non-NULL, create the new type instance there.
568 STORAGE must be in the same obstack as TYPE. */
569
570 static struct type *
571 make_qualified_type (struct type *type, int new_flags,
572 struct type *storage)
573 {
574 struct type *ntype;
575
576 ntype = type;
577 do
578 {
579 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
580 return ntype;
581 ntype = TYPE_CHAIN (ntype);
582 }
583 while (ntype != type);
584
585 /* Create a new type instance. */
586 if (storage == NULL)
587 ntype = alloc_type_instance (type);
588 else
589 {
590 /* If STORAGE was provided, it had better be in the same objfile
591 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
592 if one objfile is freed and the other kept, we'd have
593 dangling pointers. */
594 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
595
596 ntype = storage;
597 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
598 TYPE_CHAIN (ntype) = ntype;
599 }
600
601 /* Pointers or references to the original type are not relevant to
602 the new type. */
603 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
604 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
605
606 /* Chain the new qualified type to the old type. */
607 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
608 TYPE_CHAIN (type) = ntype;
609
610 /* Now set the instance flags and return the new type. */
611 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
612
613 /* Set length of new type to that of the original type. */
614 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
615
616 return ntype;
617 }
618
619 /* Make an address-space-delimited variant of a type -- a type that
620 is identical to the one supplied except that it has an address
621 space attribute attached to it (such as "code" or "data").
622
623 The space attributes "code" and "data" are for Harvard
624 architectures. The address space attributes are for architectures
625 which have alternately sized pointers or pointers with alternate
626 representations. */
627
628 struct type *
629 make_type_with_address_space (struct type *type, int space_flag)
630 {
631 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
632 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
633 | TYPE_INSTANCE_FLAG_DATA_SPACE
634 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
635 | space_flag);
636
637 return make_qualified_type (type, new_flags, NULL);
638 }
639
640 /* Make a "c-v" variant of a type -- a type that is identical to the
641 one supplied except that it may have const or volatile attributes
642 CNST is a flag for setting the const attribute
643 VOLTL is a flag for setting the volatile attribute
644 TYPE is the base type whose variant we are creating.
645
646 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
647 storage to hold the new qualified type; *TYPEPTR and TYPE must be
648 in the same objfile. Otherwise, allocate fresh memory for the new
649 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
650 new type we construct. */
651
652 struct type *
653 make_cv_type (int cnst, int voltl,
654 struct type *type,
655 struct type **typeptr)
656 {
657 struct type *ntype; /* New type */
658
659 int new_flags = (TYPE_INSTANCE_FLAGS (type)
660 & ~(TYPE_INSTANCE_FLAG_CONST
661 | TYPE_INSTANCE_FLAG_VOLATILE));
662
663 if (cnst)
664 new_flags |= TYPE_INSTANCE_FLAG_CONST;
665
666 if (voltl)
667 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
668
669 if (typeptr && *typeptr != NULL)
670 {
671 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
672 a C-V variant chain that threads across objfiles: if one
673 objfile gets freed, then the other has a broken C-V chain.
674
675 This code used to try to copy over the main type from TYPE to
676 *TYPEPTR if they were in different objfiles, but that's
677 wrong, too: TYPE may have a field list or member function
678 lists, which refer to types of their own, etc. etc. The
679 whole shebang would need to be copied over recursively; you
680 can't have inter-objfile pointers. The only thing to do is
681 to leave stub types as stub types, and look them up afresh by
682 name each time you encounter them. */
683 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
684 }
685
686 ntype = make_qualified_type (type, new_flags,
687 typeptr ? *typeptr : NULL);
688
689 if (typeptr != NULL)
690 *typeptr = ntype;
691
692 return ntype;
693 }
694
695 /* Make a 'restrict'-qualified version of TYPE. */
696
697 struct type *
698 make_restrict_type (struct type *type)
699 {
700 return make_qualified_type (type,
701 (TYPE_INSTANCE_FLAGS (type)
702 | TYPE_INSTANCE_FLAG_RESTRICT),
703 NULL);
704 }
705
706 /* Make a type without const, volatile, or restrict. */
707
708 struct type *
709 make_unqualified_type (struct type *type)
710 {
711 return make_qualified_type (type,
712 (TYPE_INSTANCE_FLAGS (type)
713 & ~(TYPE_INSTANCE_FLAG_CONST
714 | TYPE_INSTANCE_FLAG_VOLATILE
715 | TYPE_INSTANCE_FLAG_RESTRICT)),
716 NULL);
717 }
718
719 /* Replace the contents of ntype with the type *type. This changes the
720 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
721 the changes are propogated to all types in the TYPE_CHAIN.
722
723 In order to build recursive types, it's inevitable that we'll need
724 to update types in place --- but this sort of indiscriminate
725 smashing is ugly, and needs to be replaced with something more
726 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
727 clear if more steps are needed. */
728
729 void
730 replace_type (struct type *ntype, struct type *type)
731 {
732 struct type *chain;
733
734 /* These two types had better be in the same objfile. Otherwise,
735 the assignment of one type's main type structure to the other
736 will produce a type with references to objects (names; field
737 lists; etc.) allocated on an objfile other than its own. */
738 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
739
740 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
741
742 /* The type length is not a part of the main type. Update it for
743 each type on the variant chain. */
744 chain = ntype;
745 do
746 {
747 /* Assert that this element of the chain has no address-class bits
748 set in its flags. Such type variants might have type lengths
749 which are supposed to be different from the non-address-class
750 variants. This assertion shouldn't ever be triggered because
751 symbol readers which do construct address-class variants don't
752 call replace_type(). */
753 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
754
755 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
756 chain = TYPE_CHAIN (chain);
757 }
758 while (ntype != chain);
759
760 /* Assert that the two types have equivalent instance qualifiers.
761 This should be true for at least all of our debug readers. */
762 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
763 }
764
765 /* Implement direct support for MEMBER_TYPE in GNU C++.
766 May need to construct such a type if this is the first use.
767 The TYPE is the type of the member. The DOMAIN is the type
768 of the aggregate that the member belongs to. */
769
770 struct type *
771 lookup_memberptr_type (struct type *type, struct type *domain)
772 {
773 struct type *mtype;
774
775 mtype = alloc_type_copy (type);
776 smash_to_memberptr_type (mtype, domain, type);
777 return mtype;
778 }
779
780 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
781
782 struct type *
783 lookup_methodptr_type (struct type *to_type)
784 {
785 struct type *mtype;
786
787 mtype = alloc_type_copy (to_type);
788 smash_to_methodptr_type (mtype, to_type);
789 return mtype;
790 }
791
792 /* Allocate a stub method whose return type is TYPE. This apparently
793 happens for speed of symbol reading, since parsing out the
794 arguments to the method is cpu-intensive, the way we are doing it.
795 So, we will fill in arguments later. This always returns a fresh
796 type. */
797
798 struct type *
799 allocate_stub_method (struct type *type)
800 {
801 struct type *mtype;
802
803 mtype = alloc_type_copy (type);
804 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
805 TYPE_LENGTH (mtype) = 1;
806 TYPE_STUB (mtype) = 1;
807 TYPE_TARGET_TYPE (mtype) = type;
808 /* _DOMAIN_TYPE (mtype) = unknown yet */
809 return mtype;
810 }
811
812 /* Create a range type with a dynamic range from LOW_BOUND to
813 HIGH_BOUND, inclusive. See create_range_type for further details. */
814
815 struct type *
816 create_range_type (struct type *result_type, struct type *index_type,
817 const struct dynamic_prop *low_bound,
818 const struct dynamic_prop *high_bound)
819 {
820 if (result_type == NULL)
821 result_type = alloc_type_copy (index_type);
822 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
823 TYPE_TARGET_TYPE (result_type) = index_type;
824 if (TYPE_STUB (index_type))
825 TYPE_TARGET_STUB (result_type) = 1;
826 else
827 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
828
829 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
830 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
831 TYPE_RANGE_DATA (result_type)->low = *low_bound;
832 TYPE_RANGE_DATA (result_type)->high = *high_bound;
833
834 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
835 TYPE_UNSIGNED (result_type) = 1;
836
837 /* Ada allows the declaration of range types whose upper bound is
838 less than the lower bound, so checking the lower bound is not
839 enough. Make sure we do not mark a range type whose upper bound
840 is negative as unsigned. */
841 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
842 TYPE_UNSIGNED (result_type) = 0;
843
844 return result_type;
845 }
846
847 /* Create a range type using either a blank type supplied in
848 RESULT_TYPE, or creating a new type, inheriting the objfile from
849 INDEX_TYPE.
850
851 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
852 to HIGH_BOUND, inclusive.
853
854 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
855 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
856
857 struct type *
858 create_static_range_type (struct type *result_type, struct type *index_type,
859 LONGEST low_bound, LONGEST high_bound)
860 {
861 struct dynamic_prop low, high;
862
863 low.kind = PROP_CONST;
864 low.data.const_val = low_bound;
865
866 high.kind = PROP_CONST;
867 high.data.const_val = high_bound;
868
869 result_type = create_range_type (result_type, index_type, &low, &high);
870
871 return result_type;
872 }
873
874 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
875 are static, otherwise returns 0. */
876
877 static int
878 has_static_range (const struct range_bounds *bounds)
879 {
880 return (bounds->low.kind == PROP_CONST
881 && bounds->high.kind == PROP_CONST);
882 }
883
884
885 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
886 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
887 bounds will fit in LONGEST), or -1 otherwise. */
888
889 int
890 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
891 {
892 CHECK_TYPEDEF (type);
893 switch (TYPE_CODE (type))
894 {
895 case TYPE_CODE_RANGE:
896 *lowp = TYPE_LOW_BOUND (type);
897 *highp = TYPE_HIGH_BOUND (type);
898 return 1;
899 case TYPE_CODE_ENUM:
900 if (TYPE_NFIELDS (type) > 0)
901 {
902 /* The enums may not be sorted by value, so search all
903 entries. */
904 int i;
905
906 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
907 for (i = 0; i < TYPE_NFIELDS (type); i++)
908 {
909 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
910 *lowp = TYPE_FIELD_ENUMVAL (type, i);
911 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
912 *highp = TYPE_FIELD_ENUMVAL (type, i);
913 }
914
915 /* Set unsigned indicator if warranted. */
916 if (*lowp >= 0)
917 {
918 TYPE_UNSIGNED (type) = 1;
919 }
920 }
921 else
922 {
923 *lowp = 0;
924 *highp = -1;
925 }
926 return 0;
927 case TYPE_CODE_BOOL:
928 *lowp = 0;
929 *highp = 1;
930 return 0;
931 case TYPE_CODE_INT:
932 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
933 return -1;
934 if (!TYPE_UNSIGNED (type))
935 {
936 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
937 *highp = -*lowp - 1;
938 return 0;
939 }
940 /* ... fall through for unsigned ints ... */
941 case TYPE_CODE_CHAR:
942 *lowp = 0;
943 /* This round-about calculation is to avoid shifting by
944 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
945 if TYPE_LENGTH (type) == sizeof (LONGEST). */
946 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
947 *highp = (*highp - 1) | *highp;
948 return 0;
949 default:
950 return -1;
951 }
952 }
953
954 /* Assuming TYPE is a simple, non-empty array type, compute its upper
955 and lower bound. Save the low bound into LOW_BOUND if not NULL.
956 Save the high bound into HIGH_BOUND if not NULL.
957
958 Return 1 if the operation was successful. Return zero otherwise,
959 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
960
961 We now simply use get_discrete_bounds call to get the values
962 of the low and high bounds.
963 get_discrete_bounds can return three values:
964 1, meaning that index is a range,
965 0, meaning that index is a discrete type,
966 or -1 for failure. */
967
968 int
969 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
970 {
971 struct type *index = TYPE_INDEX_TYPE (type);
972 LONGEST low = 0;
973 LONGEST high = 0;
974 int res;
975
976 if (index == NULL)
977 return 0;
978
979 res = get_discrete_bounds (index, &low, &high);
980 if (res == -1)
981 return 0;
982
983 /* Check if the array bounds are undefined. */
984 if (res == 1
985 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
986 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
987 return 0;
988
989 if (low_bound)
990 *low_bound = low;
991
992 if (high_bound)
993 *high_bound = high;
994
995 return 1;
996 }
997
998 /* Create an array type using either a blank type supplied in
999 RESULT_TYPE, or creating a new type, inheriting the objfile from
1000 RANGE_TYPE.
1001
1002 Elements will be of type ELEMENT_TYPE, the indices will be of type
1003 RANGE_TYPE.
1004
1005 If BIT_STRIDE is not zero, build a packed array type whose element
1006 size is BIT_STRIDE. Otherwise, ignore this parameter.
1007
1008 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1009 sure it is TYPE_CODE_UNDEF before we bash it into an array
1010 type? */
1011
1012 struct type *
1013 create_array_type_with_stride (struct type *result_type,
1014 struct type *element_type,
1015 struct type *range_type,
1016 unsigned int bit_stride)
1017 {
1018 if (result_type == NULL)
1019 result_type = alloc_type_copy (range_type);
1020
1021 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1022 TYPE_TARGET_TYPE (result_type) = element_type;
1023 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1024 {
1025 LONGEST low_bound, high_bound;
1026
1027 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1028 low_bound = high_bound = 0;
1029 CHECK_TYPEDEF (element_type);
1030 /* Be careful when setting the array length. Ada arrays can be
1031 empty arrays with the high_bound being smaller than the low_bound.
1032 In such cases, the array length should be zero. */
1033 if (high_bound < low_bound)
1034 TYPE_LENGTH (result_type) = 0;
1035 else if (bit_stride > 0)
1036 TYPE_LENGTH (result_type) =
1037 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1038 else
1039 TYPE_LENGTH (result_type) =
1040 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1041 }
1042 else
1043 {
1044 /* This type is dynamic and its length needs to be computed
1045 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1046 undefined by setting it to zero. Although we are not expected
1047 to trust TYPE_LENGTH in this case, setting the size to zero
1048 allows us to avoid allocating objects of random sizes in case
1049 we accidently do. */
1050 TYPE_LENGTH (result_type) = 0;
1051 }
1052
1053 TYPE_NFIELDS (result_type) = 1;
1054 TYPE_FIELDS (result_type) =
1055 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1056 TYPE_INDEX_TYPE (result_type) = range_type;
1057 TYPE_VPTR_FIELDNO (result_type) = -1;
1058 if (bit_stride > 0)
1059 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1060
1061 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1062 if (TYPE_LENGTH (result_type) == 0)
1063 TYPE_TARGET_STUB (result_type) = 1;
1064
1065 return result_type;
1066 }
1067
1068 /* Same as create_array_type_with_stride but with no bit_stride
1069 (BIT_STRIDE = 0), thus building an unpacked array. */
1070
1071 struct type *
1072 create_array_type (struct type *result_type,
1073 struct type *element_type,
1074 struct type *range_type)
1075 {
1076 return create_array_type_with_stride (result_type, element_type,
1077 range_type, 0);
1078 }
1079
1080 struct type *
1081 lookup_array_range_type (struct type *element_type,
1082 LONGEST low_bound, LONGEST high_bound)
1083 {
1084 struct gdbarch *gdbarch = get_type_arch (element_type);
1085 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1086 struct type *range_type
1087 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1088
1089 return create_array_type (NULL, element_type, range_type);
1090 }
1091
1092 /* Create a string type using either a blank type supplied in
1093 RESULT_TYPE, or creating a new type. String types are similar
1094 enough to array of char types that we can use create_array_type to
1095 build the basic type and then bash it into a string type.
1096
1097 For fixed length strings, the range type contains 0 as the lower
1098 bound and the length of the string minus one as the upper bound.
1099
1100 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1101 sure it is TYPE_CODE_UNDEF before we bash it into a string
1102 type? */
1103
1104 struct type *
1105 create_string_type (struct type *result_type,
1106 struct type *string_char_type,
1107 struct type *range_type)
1108 {
1109 result_type = create_array_type (result_type,
1110 string_char_type,
1111 range_type);
1112 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1113 return result_type;
1114 }
1115
1116 struct type *
1117 lookup_string_range_type (struct type *string_char_type,
1118 LONGEST low_bound, LONGEST high_bound)
1119 {
1120 struct type *result_type;
1121
1122 result_type = lookup_array_range_type (string_char_type,
1123 low_bound, high_bound);
1124 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1125 return result_type;
1126 }
1127
1128 struct type *
1129 create_set_type (struct type *result_type, struct type *domain_type)
1130 {
1131 if (result_type == NULL)
1132 result_type = alloc_type_copy (domain_type);
1133
1134 TYPE_CODE (result_type) = TYPE_CODE_SET;
1135 TYPE_NFIELDS (result_type) = 1;
1136 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1137
1138 if (!TYPE_STUB (domain_type))
1139 {
1140 LONGEST low_bound, high_bound, bit_length;
1141
1142 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1143 low_bound = high_bound = 0;
1144 bit_length = high_bound - low_bound + 1;
1145 TYPE_LENGTH (result_type)
1146 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1147 if (low_bound >= 0)
1148 TYPE_UNSIGNED (result_type) = 1;
1149 }
1150 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1151
1152 return result_type;
1153 }
1154
1155 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1156 and any array types nested inside it. */
1157
1158 void
1159 make_vector_type (struct type *array_type)
1160 {
1161 struct type *inner_array, *elt_type;
1162 int flags;
1163
1164 /* Find the innermost array type, in case the array is
1165 multi-dimensional. */
1166 inner_array = array_type;
1167 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1168 inner_array = TYPE_TARGET_TYPE (inner_array);
1169
1170 elt_type = TYPE_TARGET_TYPE (inner_array);
1171 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1172 {
1173 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1174 elt_type = make_qualified_type (elt_type, flags, NULL);
1175 TYPE_TARGET_TYPE (inner_array) = elt_type;
1176 }
1177
1178 TYPE_VECTOR (array_type) = 1;
1179 }
1180
1181 struct type *
1182 init_vector_type (struct type *elt_type, int n)
1183 {
1184 struct type *array_type;
1185
1186 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1187 make_vector_type (array_type);
1188 return array_type;
1189 }
1190
1191 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1192 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1193 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1194 TYPE doesn't include the offset (that's the value of the MEMBER
1195 itself), but does include the structure type into which it points
1196 (for some reason).
1197
1198 When "smashing" the type, we preserve the objfile that the old type
1199 pointed to, since we aren't changing where the type is actually
1200 allocated. */
1201
1202 void
1203 smash_to_memberptr_type (struct type *type, struct type *domain,
1204 struct type *to_type)
1205 {
1206 smash_type (type);
1207 TYPE_TARGET_TYPE (type) = to_type;
1208 TYPE_DOMAIN_TYPE (type) = domain;
1209 /* Assume that a data member pointer is the same size as a normal
1210 pointer. */
1211 TYPE_LENGTH (type)
1212 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1213 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1214 }
1215
1216 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1217
1218 When "smashing" the type, we preserve the objfile that the old type
1219 pointed to, since we aren't changing where the type is actually
1220 allocated. */
1221
1222 void
1223 smash_to_methodptr_type (struct type *type, struct type *to_type)
1224 {
1225 smash_type (type);
1226 TYPE_TARGET_TYPE (type) = to_type;
1227 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1228 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1229 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1230 }
1231
1232 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1233 METHOD just means `function that gets an extra "this" argument'.
1234
1235 When "smashing" the type, we preserve the objfile that the old type
1236 pointed to, since we aren't changing where the type is actually
1237 allocated. */
1238
1239 void
1240 smash_to_method_type (struct type *type, struct type *domain,
1241 struct type *to_type, struct field *args,
1242 int nargs, int varargs)
1243 {
1244 smash_type (type);
1245 TYPE_TARGET_TYPE (type) = to_type;
1246 TYPE_DOMAIN_TYPE (type) = domain;
1247 TYPE_FIELDS (type) = args;
1248 TYPE_NFIELDS (type) = nargs;
1249 if (varargs)
1250 TYPE_VARARGS (type) = 1;
1251 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1252 TYPE_CODE (type) = TYPE_CODE_METHOD;
1253 }
1254
1255 /* Return a typename for a struct/union/enum type without "struct ",
1256 "union ", or "enum ". If the type has a NULL name, return NULL. */
1257
1258 const char *
1259 type_name_no_tag (const struct type *type)
1260 {
1261 if (TYPE_TAG_NAME (type) != NULL)
1262 return TYPE_TAG_NAME (type);
1263
1264 /* Is there code which expects this to return the name if there is
1265 no tag name? My guess is that this is mainly used for C++ in
1266 cases where the two will always be the same. */
1267 return TYPE_NAME (type);
1268 }
1269
1270 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1271 Since GCC PR debug/47510 DWARF provides associated information to detect the
1272 anonymous class linkage name from its typedef.
1273
1274 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1275 apply it itself. */
1276
1277 const char *
1278 type_name_no_tag_or_error (struct type *type)
1279 {
1280 struct type *saved_type = type;
1281 const char *name;
1282 struct objfile *objfile;
1283
1284 CHECK_TYPEDEF (type);
1285
1286 name = type_name_no_tag (type);
1287 if (name != NULL)
1288 return name;
1289
1290 name = type_name_no_tag (saved_type);
1291 objfile = TYPE_OBJFILE (saved_type);
1292 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1293 name ? name : "<anonymous>",
1294 objfile ? objfile_name (objfile) : "<arch>");
1295 }
1296
1297 /* Lookup a typedef or primitive type named NAME, visible in lexical
1298 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1299 suitably defined. */
1300
1301 struct type *
1302 lookup_typename (const struct language_defn *language,
1303 struct gdbarch *gdbarch, const char *name,
1304 const struct block *block, int noerr)
1305 {
1306 struct symbol *sym;
1307 struct type *type;
1308
1309 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1310 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1311 return SYMBOL_TYPE (sym);
1312
1313 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1314 if (type)
1315 return type;
1316
1317 if (noerr)
1318 return NULL;
1319 error (_("No type named %s."), name);
1320 }
1321
1322 struct type *
1323 lookup_unsigned_typename (const struct language_defn *language,
1324 struct gdbarch *gdbarch, const char *name)
1325 {
1326 char *uns = alloca (strlen (name) + 10);
1327
1328 strcpy (uns, "unsigned ");
1329 strcpy (uns + 9, name);
1330 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1331 }
1332
1333 struct type *
1334 lookup_signed_typename (const struct language_defn *language,
1335 struct gdbarch *gdbarch, const char *name)
1336 {
1337 struct type *t;
1338 char *uns = alloca (strlen (name) + 8);
1339
1340 strcpy (uns, "signed ");
1341 strcpy (uns + 7, name);
1342 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1343 /* If we don't find "signed FOO" just try again with plain "FOO". */
1344 if (t != NULL)
1345 return t;
1346 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1347 }
1348
1349 /* Lookup a structure type named "struct NAME",
1350 visible in lexical block BLOCK. */
1351
1352 struct type *
1353 lookup_struct (const char *name, const struct block *block)
1354 {
1355 struct symbol *sym;
1356
1357 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1358
1359 if (sym == NULL)
1360 {
1361 error (_("No struct type named %s."), name);
1362 }
1363 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1364 {
1365 error (_("This context has class, union or enum %s, not a struct."),
1366 name);
1367 }
1368 return (SYMBOL_TYPE (sym));
1369 }
1370
1371 /* Lookup a union type named "union NAME",
1372 visible in lexical block BLOCK. */
1373
1374 struct type *
1375 lookup_union (const char *name, const struct block *block)
1376 {
1377 struct symbol *sym;
1378 struct type *t;
1379
1380 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1381
1382 if (sym == NULL)
1383 error (_("No union type named %s."), name);
1384
1385 t = SYMBOL_TYPE (sym);
1386
1387 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1388 return t;
1389
1390 /* If we get here, it's not a union. */
1391 error (_("This context has class, struct or enum %s, not a union."),
1392 name);
1393 }
1394
1395 /* Lookup an enum type named "enum NAME",
1396 visible in lexical block BLOCK. */
1397
1398 struct type *
1399 lookup_enum (const char *name, const struct block *block)
1400 {
1401 struct symbol *sym;
1402
1403 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1404 if (sym == NULL)
1405 {
1406 error (_("No enum type named %s."), name);
1407 }
1408 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1409 {
1410 error (_("This context has class, struct or union %s, not an enum."),
1411 name);
1412 }
1413 return (SYMBOL_TYPE (sym));
1414 }
1415
1416 /* Lookup a template type named "template NAME<TYPE>",
1417 visible in lexical block BLOCK. */
1418
1419 struct type *
1420 lookup_template_type (char *name, struct type *type,
1421 const struct block *block)
1422 {
1423 struct symbol *sym;
1424 char *nam = (char *)
1425 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1426
1427 strcpy (nam, name);
1428 strcat (nam, "<");
1429 strcat (nam, TYPE_NAME (type));
1430 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1431
1432 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1433
1434 if (sym == NULL)
1435 {
1436 error (_("No template type named %s."), name);
1437 }
1438 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1439 {
1440 error (_("This context has class, union or enum %s, not a struct."),
1441 name);
1442 }
1443 return (SYMBOL_TYPE (sym));
1444 }
1445
1446 /* Given a type TYPE, lookup the type of the component of type named
1447 NAME.
1448
1449 TYPE can be either a struct or union, or a pointer or reference to
1450 a struct or union. If it is a pointer or reference, its target
1451 type is automatically used. Thus '.' and '->' are interchangable,
1452 as specified for the definitions of the expression element types
1453 STRUCTOP_STRUCT and STRUCTOP_PTR.
1454
1455 If NOERR is nonzero, return zero if NAME is not suitably defined.
1456 If NAME is the name of a baseclass type, return that type. */
1457
1458 struct type *
1459 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1460 {
1461 int i;
1462 char *typename;
1463
1464 for (;;)
1465 {
1466 CHECK_TYPEDEF (type);
1467 if (TYPE_CODE (type) != TYPE_CODE_PTR
1468 && TYPE_CODE (type) != TYPE_CODE_REF)
1469 break;
1470 type = TYPE_TARGET_TYPE (type);
1471 }
1472
1473 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1474 && TYPE_CODE (type) != TYPE_CODE_UNION)
1475 {
1476 typename = type_to_string (type);
1477 make_cleanup (xfree, typename);
1478 error (_("Type %s is not a structure or union type."), typename);
1479 }
1480
1481 #if 0
1482 /* FIXME: This change put in by Michael seems incorrect for the case
1483 where the structure tag name is the same as the member name.
1484 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1485 foo; } bell;" Disabled by fnf. */
1486 {
1487 char *typename;
1488
1489 typename = type_name_no_tag (type);
1490 if (typename != NULL && strcmp (typename, name) == 0)
1491 return type;
1492 }
1493 #endif
1494
1495 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1496 {
1497 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1498
1499 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1500 {
1501 return TYPE_FIELD_TYPE (type, i);
1502 }
1503 else if (!t_field_name || *t_field_name == '\0')
1504 {
1505 struct type *subtype
1506 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1507
1508 if (subtype != NULL)
1509 return subtype;
1510 }
1511 }
1512
1513 /* OK, it's not in this class. Recursively check the baseclasses. */
1514 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1515 {
1516 struct type *t;
1517
1518 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1519 if (t != NULL)
1520 {
1521 return t;
1522 }
1523 }
1524
1525 if (noerr)
1526 {
1527 return NULL;
1528 }
1529
1530 typename = type_to_string (type);
1531 make_cleanup (xfree, typename);
1532 error (_("Type %s has no component named %s."), typename, name);
1533 }
1534
1535 /* Store in *MAX the largest number representable by unsigned integer type
1536 TYPE. */
1537
1538 void
1539 get_unsigned_type_max (struct type *type, ULONGEST *max)
1540 {
1541 unsigned int n;
1542
1543 CHECK_TYPEDEF (type);
1544 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1545 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1546
1547 /* Written this way to avoid overflow. */
1548 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1549 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1550 }
1551
1552 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1553 signed integer type TYPE. */
1554
1555 void
1556 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1557 {
1558 unsigned int n;
1559
1560 CHECK_TYPEDEF (type);
1561 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1562 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1563
1564 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1565 *min = -((ULONGEST) 1 << (n - 1));
1566 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1567 }
1568
1569 /* Lookup the vptr basetype/fieldno values for TYPE.
1570 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1571 vptr_fieldno. Also, if found and basetype is from the same objfile,
1572 cache the results.
1573 If not found, return -1 and ignore BASETYPEP.
1574 Callers should be aware that in some cases (for example,
1575 the type or one of its baseclasses is a stub type and we are
1576 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1577 this function will not be able to find the
1578 virtual function table pointer, and vptr_fieldno will remain -1 and
1579 vptr_basetype will remain NULL or incomplete. */
1580
1581 int
1582 get_vptr_fieldno (struct type *type, struct type **basetypep)
1583 {
1584 CHECK_TYPEDEF (type);
1585
1586 if (TYPE_VPTR_FIELDNO (type) < 0)
1587 {
1588 int i;
1589
1590 /* We must start at zero in case the first (and only) baseclass
1591 is virtual (and hence we cannot share the table pointer). */
1592 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1593 {
1594 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1595 int fieldno;
1596 struct type *basetype;
1597
1598 fieldno = get_vptr_fieldno (baseclass, &basetype);
1599 if (fieldno >= 0)
1600 {
1601 /* If the type comes from a different objfile we can't cache
1602 it, it may have a different lifetime. PR 2384 */
1603 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1604 {
1605 TYPE_VPTR_FIELDNO (type) = fieldno;
1606 TYPE_VPTR_BASETYPE (type) = basetype;
1607 }
1608 if (basetypep)
1609 *basetypep = basetype;
1610 return fieldno;
1611 }
1612 }
1613
1614 /* Not found. */
1615 return -1;
1616 }
1617 else
1618 {
1619 if (basetypep)
1620 *basetypep = TYPE_VPTR_BASETYPE (type);
1621 return TYPE_VPTR_FIELDNO (type);
1622 }
1623 }
1624
1625 static void
1626 stub_noname_complaint (void)
1627 {
1628 complaint (&symfile_complaints, _("stub type has NULL name"));
1629 }
1630
1631 /* Worker for is_dynamic_type. */
1632
1633 static int
1634 is_dynamic_type_internal (struct type *type, int top_level)
1635 {
1636 type = check_typedef (type);
1637
1638 /* We only want to recognize references at the outermost level. */
1639 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1640 type = check_typedef (TYPE_TARGET_TYPE (type));
1641
1642 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1643 dynamic, even if the type itself is statically defined.
1644 From a user's point of view, this may appear counter-intuitive;
1645 but it makes sense in this context, because the point is to determine
1646 whether any part of the type needs to be resolved before it can
1647 be exploited. */
1648 if (TYPE_DATA_LOCATION (type) != NULL
1649 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1650 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1651 return 1;
1652
1653 switch (TYPE_CODE (type))
1654 {
1655 case TYPE_CODE_RANGE:
1656 return !has_static_range (TYPE_RANGE_DATA (type));
1657
1658 case TYPE_CODE_ARRAY:
1659 {
1660 gdb_assert (TYPE_NFIELDS (type) == 1);
1661
1662 /* The array is dynamic if either the bounds are dynamic,
1663 or the elements it contains have a dynamic contents. */
1664 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1665 return 1;
1666 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1667 }
1668
1669 case TYPE_CODE_STRUCT:
1670 case TYPE_CODE_UNION:
1671 {
1672 int i;
1673
1674 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1675 if (!field_is_static (&TYPE_FIELD (type, i))
1676 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1677 return 1;
1678 }
1679 break;
1680 }
1681
1682 return 0;
1683 }
1684
1685 /* See gdbtypes.h. */
1686
1687 int
1688 is_dynamic_type (struct type *type)
1689 {
1690 return is_dynamic_type_internal (type, 1);
1691 }
1692
1693 static struct type *resolve_dynamic_type_internal (struct type *type,
1694 CORE_ADDR addr,
1695 int top_level);
1696
1697 /* Given a dynamic range type (dyn_range_type) and address,
1698 return a static version of that type. */
1699
1700 static struct type *
1701 resolve_dynamic_range (struct type *dyn_range_type, CORE_ADDR addr)
1702 {
1703 CORE_ADDR value;
1704 struct type *static_range_type;
1705 const struct dynamic_prop *prop;
1706 const struct dwarf2_locexpr_baton *baton;
1707 struct dynamic_prop low_bound, high_bound;
1708
1709 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1710
1711 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1712 if (dwarf2_evaluate_property (prop, addr, &value))
1713 {
1714 low_bound.kind = PROP_CONST;
1715 low_bound.data.const_val = value;
1716 }
1717 else
1718 {
1719 low_bound.kind = PROP_UNDEFINED;
1720 low_bound.data.const_val = 0;
1721 }
1722
1723 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1724 if (dwarf2_evaluate_property (prop, addr, &value))
1725 {
1726 high_bound.kind = PROP_CONST;
1727 high_bound.data.const_val = value;
1728
1729 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1730 high_bound.data.const_val
1731 = low_bound.data.const_val + high_bound.data.const_val - 1;
1732 }
1733 else
1734 {
1735 high_bound.kind = PROP_UNDEFINED;
1736 high_bound.data.const_val = 0;
1737 }
1738
1739 static_range_type = create_range_type (copy_type (dyn_range_type),
1740 TYPE_TARGET_TYPE (dyn_range_type),
1741 &low_bound, &high_bound);
1742 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1743 return static_range_type;
1744 }
1745
1746 /* Resolves dynamic bound values of an array type TYPE to static ones.
1747 ADDRESS might be needed to resolve the subrange bounds, it is the location
1748 of the associated array. */
1749
1750 static struct type *
1751 resolve_dynamic_array (struct type *type, CORE_ADDR addr)
1752 {
1753 CORE_ADDR value;
1754 struct type *elt_type;
1755 struct type *range_type;
1756 struct type *ary_dim;
1757
1758 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1759
1760 elt_type = type;
1761 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1762 range_type = resolve_dynamic_range (range_type, addr);
1763
1764 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1765
1766 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1767 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr);
1768 else
1769 elt_type = TYPE_TARGET_TYPE (type);
1770
1771 return create_array_type (copy_type (type),
1772 elt_type,
1773 range_type);
1774 }
1775
1776 /* Resolve dynamic bounds of members of the union TYPE to static
1777 bounds. */
1778
1779 static struct type *
1780 resolve_dynamic_union (struct type *type, CORE_ADDR addr)
1781 {
1782 struct type *resolved_type;
1783 int i;
1784 unsigned int max_len = 0;
1785
1786 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1787
1788 resolved_type = copy_type (type);
1789 TYPE_FIELDS (resolved_type)
1790 = TYPE_ALLOC (resolved_type,
1791 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1792 memcpy (TYPE_FIELDS (resolved_type),
1793 TYPE_FIELDS (type),
1794 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1795 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1796 {
1797 struct type *t;
1798
1799 if (field_is_static (&TYPE_FIELD (type, i)))
1800 continue;
1801
1802 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1803 addr, 0);
1804 TYPE_FIELD_TYPE (resolved_type, i) = t;
1805 if (TYPE_LENGTH (t) > max_len)
1806 max_len = TYPE_LENGTH (t);
1807 }
1808
1809 TYPE_LENGTH (resolved_type) = max_len;
1810 return resolved_type;
1811 }
1812
1813 /* Resolve dynamic bounds of members of the struct TYPE to static
1814 bounds. */
1815
1816 static struct type *
1817 resolve_dynamic_struct (struct type *type, CORE_ADDR addr)
1818 {
1819 struct type *resolved_type;
1820 int i;
1821 unsigned resolved_type_bit_length = 0;
1822
1823 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1824 gdb_assert (TYPE_NFIELDS (type) > 0);
1825
1826 resolved_type = copy_type (type);
1827 TYPE_FIELDS (resolved_type)
1828 = TYPE_ALLOC (resolved_type,
1829 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1830 memcpy (TYPE_FIELDS (resolved_type),
1831 TYPE_FIELDS (type),
1832 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1833 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1834 {
1835 unsigned new_bit_length;
1836
1837 if (field_is_static (&TYPE_FIELD (type, i)))
1838 continue;
1839
1840 TYPE_FIELD_TYPE (resolved_type, i)
1841 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1842 addr, 0);
1843
1844 /* As we know this field is not a static field, the field's
1845 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1846 this is the case, but only trigger a simple error rather
1847 than an internal error if that fails. While failing
1848 that verification indicates a bug in our code, the error
1849 is not severe enough to suggest to the user he stops
1850 his debugging session because of it. */
1851 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
1852 error (_("Cannot determine struct field location"
1853 " (invalid location kind)"));
1854 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1855 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1856 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1857 else
1858 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
1859 * TARGET_CHAR_BIT);
1860
1861 /* Normally, we would use the position and size of the last field
1862 to determine the size of the enclosing structure. But GCC seems
1863 to be encoding the position of some fields incorrectly when
1864 the struct contains a dynamic field that is not placed last.
1865 So we compute the struct size based on the field that has
1866 the highest position + size - probably the best we can do. */
1867 if (new_bit_length > resolved_type_bit_length)
1868 resolved_type_bit_length = new_bit_length;
1869 }
1870
1871 TYPE_LENGTH (resolved_type)
1872 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1873
1874 return resolved_type;
1875 }
1876
1877 /* Worker for resolved_dynamic_type. */
1878
1879 static struct type *
1880 resolve_dynamic_type_internal (struct type *type, CORE_ADDR addr,
1881 int top_level)
1882 {
1883 struct type *real_type = check_typedef (type);
1884 struct type *resolved_type = type;
1885 const struct dynamic_prop *prop;
1886 CORE_ADDR value;
1887
1888 if (!is_dynamic_type_internal (real_type, top_level))
1889 return type;
1890
1891 switch (TYPE_CODE (type))
1892 {
1893 case TYPE_CODE_TYPEDEF:
1894 resolved_type = copy_type (type);
1895 TYPE_TARGET_TYPE (resolved_type)
1896 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr,
1897 top_level);
1898 break;
1899
1900 case TYPE_CODE_REF:
1901 {
1902 CORE_ADDR target_addr = read_memory_typed_address (addr, type);
1903
1904 resolved_type = copy_type (type);
1905 TYPE_TARGET_TYPE (resolved_type)
1906 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
1907 target_addr, top_level);
1908 break;
1909 }
1910
1911 case TYPE_CODE_ARRAY:
1912 resolved_type = resolve_dynamic_array (type, addr);
1913 break;
1914
1915 case TYPE_CODE_RANGE:
1916 resolved_type = resolve_dynamic_range (type, addr);
1917 break;
1918
1919 case TYPE_CODE_UNION:
1920 resolved_type = resolve_dynamic_union (type, addr);
1921 break;
1922
1923 case TYPE_CODE_STRUCT:
1924 resolved_type = resolve_dynamic_struct (type, addr);
1925 break;
1926 }
1927
1928 /* Resolve data_location attribute. */
1929 prop = TYPE_DATA_LOCATION (resolved_type);
1930 if (dwarf2_evaluate_property (prop, addr, &value))
1931 {
1932 TYPE_DATA_LOCATION_ADDR (resolved_type) = value;
1933 TYPE_DATA_LOCATION_KIND (resolved_type) = PROP_CONST;
1934 }
1935 else
1936 TYPE_DATA_LOCATION (resolved_type) = NULL;
1937
1938 return resolved_type;
1939 }
1940
1941 /* See gdbtypes.h */
1942
1943 struct type *
1944 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1945 {
1946 return resolve_dynamic_type_internal (type, addr, 1);
1947 }
1948
1949 /* Find the real type of TYPE. This function returns the real type,
1950 after removing all layers of typedefs, and completing opaque or stub
1951 types. Completion changes the TYPE argument, but stripping of
1952 typedefs does not.
1953
1954 Instance flags (e.g. const/volatile) are preserved as typedefs are
1955 stripped. If necessary a new qualified form of the underlying type
1956 is created.
1957
1958 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1959 not been computed and we're either in the middle of reading symbols, or
1960 there was no name for the typedef in the debug info.
1961
1962 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1963 QUITs in the symbol reading code can also throw.
1964 Thus this function can throw an exception.
1965
1966 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1967 the target type.
1968
1969 If this is a stubbed struct (i.e. declared as struct foo *), see if
1970 we can find a full definition in some other file. If so, copy this
1971 definition, so we can use it in future. There used to be a comment
1972 (but not any code) that if we don't find a full definition, we'd
1973 set a flag so we don't spend time in the future checking the same
1974 type. That would be a mistake, though--we might load in more
1975 symbols which contain a full definition for the type. */
1976
1977 struct type *
1978 check_typedef (struct type *type)
1979 {
1980 struct type *orig_type = type;
1981 /* While we're removing typedefs, we don't want to lose qualifiers.
1982 E.g., const/volatile. */
1983 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1984
1985 gdb_assert (type);
1986
1987 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1988 {
1989 if (!TYPE_TARGET_TYPE (type))
1990 {
1991 const char *name;
1992 struct symbol *sym;
1993
1994 /* It is dangerous to call lookup_symbol if we are currently
1995 reading a symtab. Infinite recursion is one danger. */
1996 if (currently_reading_symtab)
1997 return make_qualified_type (type, instance_flags, NULL);
1998
1999 name = type_name_no_tag (type);
2000 /* FIXME: shouldn't we separately check the TYPE_NAME and
2001 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2002 VAR_DOMAIN as appropriate? (this code was written before
2003 TYPE_NAME and TYPE_TAG_NAME were separate). */
2004 if (name == NULL)
2005 {
2006 stub_noname_complaint ();
2007 return make_qualified_type (type, instance_flags, NULL);
2008 }
2009 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2010 if (sym)
2011 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2012 else /* TYPE_CODE_UNDEF */
2013 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2014 }
2015 type = TYPE_TARGET_TYPE (type);
2016
2017 /* Preserve the instance flags as we traverse down the typedef chain.
2018
2019 Handling address spaces/classes is nasty, what do we do if there's a
2020 conflict?
2021 E.g., what if an outer typedef marks the type as class_1 and an inner
2022 typedef marks the type as class_2?
2023 This is the wrong place to do such error checking. We leave it to
2024 the code that created the typedef in the first place to flag the
2025 error. We just pick the outer address space (akin to letting the
2026 outer cast in a chain of casting win), instead of assuming
2027 "it can't happen". */
2028 {
2029 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2030 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2031 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2032 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2033
2034 /* Treat code vs data spaces and address classes separately. */
2035 if ((instance_flags & ALL_SPACES) != 0)
2036 new_instance_flags &= ~ALL_SPACES;
2037 if ((instance_flags & ALL_CLASSES) != 0)
2038 new_instance_flags &= ~ALL_CLASSES;
2039
2040 instance_flags |= new_instance_flags;
2041 }
2042 }
2043
2044 /* If this is a struct/class/union with no fields, then check
2045 whether a full definition exists somewhere else. This is for
2046 systems where a type definition with no fields is issued for such
2047 types, instead of identifying them as stub types in the first
2048 place. */
2049
2050 if (TYPE_IS_OPAQUE (type)
2051 && opaque_type_resolution
2052 && !currently_reading_symtab)
2053 {
2054 const char *name = type_name_no_tag (type);
2055 struct type *newtype;
2056
2057 if (name == NULL)
2058 {
2059 stub_noname_complaint ();
2060 return make_qualified_type (type, instance_flags, NULL);
2061 }
2062 newtype = lookup_transparent_type (name);
2063
2064 if (newtype)
2065 {
2066 /* If the resolved type and the stub are in the same
2067 objfile, then replace the stub type with the real deal.
2068 But if they're in separate objfiles, leave the stub
2069 alone; we'll just look up the transparent type every time
2070 we call check_typedef. We can't create pointers between
2071 types allocated to different objfiles, since they may
2072 have different lifetimes. Trying to copy NEWTYPE over to
2073 TYPE's objfile is pointless, too, since you'll have to
2074 move over any other types NEWTYPE refers to, which could
2075 be an unbounded amount of stuff. */
2076 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2077 type = make_qualified_type (newtype,
2078 TYPE_INSTANCE_FLAGS (type),
2079 type);
2080 else
2081 type = newtype;
2082 }
2083 }
2084 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2085 types. */
2086 else if (TYPE_STUB (type) && !currently_reading_symtab)
2087 {
2088 const char *name = type_name_no_tag (type);
2089 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2090 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2091 as appropriate? (this code was written before TYPE_NAME and
2092 TYPE_TAG_NAME were separate). */
2093 struct symbol *sym;
2094
2095 if (name == NULL)
2096 {
2097 stub_noname_complaint ();
2098 return make_qualified_type (type, instance_flags, NULL);
2099 }
2100 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2101 if (sym)
2102 {
2103 /* Same as above for opaque types, we can replace the stub
2104 with the complete type only if they are in the same
2105 objfile. */
2106 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2107 type = make_qualified_type (SYMBOL_TYPE (sym),
2108 TYPE_INSTANCE_FLAGS (type),
2109 type);
2110 else
2111 type = SYMBOL_TYPE (sym);
2112 }
2113 }
2114
2115 if (TYPE_TARGET_STUB (type))
2116 {
2117 struct type *range_type;
2118 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2119
2120 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2121 {
2122 /* Nothing we can do. */
2123 }
2124 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2125 {
2126 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2127 TYPE_TARGET_STUB (type) = 0;
2128 }
2129 }
2130
2131 type = make_qualified_type (type, instance_flags, NULL);
2132
2133 /* Cache TYPE_LENGTH for future use. */
2134 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2135
2136 return type;
2137 }
2138
2139 /* Parse a type expression in the string [P..P+LENGTH). If an error
2140 occurs, silently return a void type. */
2141
2142 static struct type *
2143 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2144 {
2145 struct ui_file *saved_gdb_stderr;
2146 struct type *type = NULL; /* Initialize to keep gcc happy. */
2147 volatile struct gdb_exception except;
2148
2149 /* Suppress error messages. */
2150 saved_gdb_stderr = gdb_stderr;
2151 gdb_stderr = ui_file_new ();
2152
2153 /* Call parse_and_eval_type() without fear of longjmp()s. */
2154 TRY_CATCH (except, RETURN_MASK_ERROR)
2155 {
2156 type = parse_and_eval_type (p, length);
2157 }
2158
2159 if (except.reason < 0)
2160 type = builtin_type (gdbarch)->builtin_void;
2161
2162 /* Stop suppressing error messages. */
2163 ui_file_delete (gdb_stderr);
2164 gdb_stderr = saved_gdb_stderr;
2165
2166 return type;
2167 }
2168
2169 /* Ugly hack to convert method stubs into method types.
2170
2171 He ain't kiddin'. This demangles the name of the method into a
2172 string including argument types, parses out each argument type,
2173 generates a string casting a zero to that type, evaluates the
2174 string, and stuffs the resulting type into an argtype vector!!!
2175 Then it knows the type of the whole function (including argument
2176 types for overloading), which info used to be in the stab's but was
2177 removed to hack back the space required for them. */
2178
2179 static void
2180 check_stub_method (struct type *type, int method_id, int signature_id)
2181 {
2182 struct gdbarch *gdbarch = get_type_arch (type);
2183 struct fn_field *f;
2184 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2185 char *demangled_name = gdb_demangle (mangled_name,
2186 DMGL_PARAMS | DMGL_ANSI);
2187 char *argtypetext, *p;
2188 int depth = 0, argcount = 1;
2189 struct field *argtypes;
2190 struct type *mtype;
2191
2192 /* Make sure we got back a function string that we can use. */
2193 if (demangled_name)
2194 p = strchr (demangled_name, '(');
2195 else
2196 p = NULL;
2197
2198 if (demangled_name == NULL || p == NULL)
2199 error (_("Internal: Cannot demangle mangled name `%s'."),
2200 mangled_name);
2201
2202 /* Now, read in the parameters that define this type. */
2203 p += 1;
2204 argtypetext = p;
2205 while (*p)
2206 {
2207 if (*p == '(' || *p == '<')
2208 {
2209 depth += 1;
2210 }
2211 else if (*p == ')' || *p == '>')
2212 {
2213 depth -= 1;
2214 }
2215 else if (*p == ',' && depth == 0)
2216 {
2217 argcount += 1;
2218 }
2219
2220 p += 1;
2221 }
2222
2223 /* If we read one argument and it was ``void'', don't count it. */
2224 if (strncmp (argtypetext, "(void)", 6) == 0)
2225 argcount -= 1;
2226
2227 /* We need one extra slot, for the THIS pointer. */
2228
2229 argtypes = (struct field *)
2230 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2231 p = argtypetext;
2232
2233 /* Add THIS pointer for non-static methods. */
2234 f = TYPE_FN_FIELDLIST1 (type, method_id);
2235 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2236 argcount = 0;
2237 else
2238 {
2239 argtypes[0].type = lookup_pointer_type (type);
2240 argcount = 1;
2241 }
2242
2243 if (*p != ')') /* () means no args, skip while. */
2244 {
2245 depth = 0;
2246 while (*p)
2247 {
2248 if (depth <= 0 && (*p == ',' || *p == ')'))
2249 {
2250 /* Avoid parsing of ellipsis, they will be handled below.
2251 Also avoid ``void'' as above. */
2252 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2253 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2254 {
2255 argtypes[argcount].type =
2256 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2257 argcount += 1;
2258 }
2259 argtypetext = p + 1;
2260 }
2261
2262 if (*p == '(' || *p == '<')
2263 {
2264 depth += 1;
2265 }
2266 else if (*p == ')' || *p == '>')
2267 {
2268 depth -= 1;
2269 }
2270
2271 p += 1;
2272 }
2273 }
2274
2275 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2276
2277 /* Now update the old "stub" type into a real type. */
2278 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2279 TYPE_DOMAIN_TYPE (mtype) = type;
2280 TYPE_FIELDS (mtype) = argtypes;
2281 TYPE_NFIELDS (mtype) = argcount;
2282 TYPE_STUB (mtype) = 0;
2283 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2284 if (p[-2] == '.')
2285 TYPE_VARARGS (mtype) = 1;
2286
2287 xfree (demangled_name);
2288 }
2289
2290 /* This is the external interface to check_stub_method, above. This
2291 function unstubs all of the signatures for TYPE's METHOD_ID method
2292 name. After calling this function TYPE_FN_FIELD_STUB will be
2293 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2294 correct.
2295
2296 This function unfortunately can not die until stabs do. */
2297
2298 void
2299 check_stub_method_group (struct type *type, int method_id)
2300 {
2301 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2302 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2303 int j, found_stub = 0;
2304
2305 for (j = 0; j < len; j++)
2306 if (TYPE_FN_FIELD_STUB (f, j))
2307 {
2308 found_stub = 1;
2309 check_stub_method (type, method_id, j);
2310 }
2311
2312 /* GNU v3 methods with incorrect names were corrected when we read
2313 in type information, because it was cheaper to do it then. The
2314 only GNU v2 methods with incorrect method names are operators and
2315 destructors; destructors were also corrected when we read in type
2316 information.
2317
2318 Therefore the only thing we need to handle here are v2 operator
2319 names. */
2320 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2321 {
2322 int ret;
2323 char dem_opname[256];
2324
2325 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2326 method_id),
2327 dem_opname, DMGL_ANSI);
2328 if (!ret)
2329 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2330 method_id),
2331 dem_opname, 0);
2332 if (ret)
2333 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2334 }
2335 }
2336
2337 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2338 const struct cplus_struct_type cplus_struct_default = { };
2339
2340 void
2341 allocate_cplus_struct_type (struct type *type)
2342 {
2343 if (HAVE_CPLUS_STRUCT (type))
2344 /* Structure was already allocated. Nothing more to do. */
2345 return;
2346
2347 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2348 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2349 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2350 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2351 }
2352
2353 const struct gnat_aux_type gnat_aux_default =
2354 { NULL };
2355
2356 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2357 and allocate the associated gnat-specific data. The gnat-specific
2358 data is also initialized to gnat_aux_default. */
2359
2360 void
2361 allocate_gnat_aux_type (struct type *type)
2362 {
2363 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2364 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2365 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2366 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2367 }
2368
2369 /* Helper function to initialize the standard scalar types.
2370
2371 If NAME is non-NULL, then it is used to initialize the type name.
2372 Note that NAME is not copied; it is required to have a lifetime at
2373 least as long as OBJFILE. */
2374
2375 struct type *
2376 init_type (enum type_code code, int length, int flags,
2377 const char *name, struct objfile *objfile)
2378 {
2379 struct type *type;
2380
2381 type = alloc_type (objfile);
2382 TYPE_CODE (type) = code;
2383 TYPE_LENGTH (type) = length;
2384
2385 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2386 if (flags & TYPE_FLAG_UNSIGNED)
2387 TYPE_UNSIGNED (type) = 1;
2388 if (flags & TYPE_FLAG_NOSIGN)
2389 TYPE_NOSIGN (type) = 1;
2390 if (flags & TYPE_FLAG_STUB)
2391 TYPE_STUB (type) = 1;
2392 if (flags & TYPE_FLAG_TARGET_STUB)
2393 TYPE_TARGET_STUB (type) = 1;
2394 if (flags & TYPE_FLAG_STATIC)
2395 TYPE_STATIC (type) = 1;
2396 if (flags & TYPE_FLAG_PROTOTYPED)
2397 TYPE_PROTOTYPED (type) = 1;
2398 if (flags & TYPE_FLAG_INCOMPLETE)
2399 TYPE_INCOMPLETE (type) = 1;
2400 if (flags & TYPE_FLAG_VARARGS)
2401 TYPE_VARARGS (type) = 1;
2402 if (flags & TYPE_FLAG_VECTOR)
2403 TYPE_VECTOR (type) = 1;
2404 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2405 TYPE_STUB_SUPPORTED (type) = 1;
2406 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2407 TYPE_FIXED_INSTANCE (type) = 1;
2408 if (flags & TYPE_FLAG_GNU_IFUNC)
2409 TYPE_GNU_IFUNC (type) = 1;
2410
2411 TYPE_NAME (type) = name;
2412
2413 /* C++ fancies. */
2414
2415 if (name && strcmp (name, "char") == 0)
2416 TYPE_NOSIGN (type) = 1;
2417
2418 switch (code)
2419 {
2420 case TYPE_CODE_STRUCT:
2421 case TYPE_CODE_UNION:
2422 case TYPE_CODE_NAMESPACE:
2423 INIT_CPLUS_SPECIFIC (type);
2424 break;
2425 case TYPE_CODE_FLT:
2426 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2427 break;
2428 case TYPE_CODE_FUNC:
2429 INIT_FUNC_SPECIFIC (type);
2430 break;
2431 }
2432 return type;
2433 }
2434 \f
2435 /* Queries on types. */
2436
2437 int
2438 can_dereference (struct type *t)
2439 {
2440 /* FIXME: Should we return true for references as well as
2441 pointers? */
2442 CHECK_TYPEDEF (t);
2443 return
2444 (t != NULL
2445 && TYPE_CODE (t) == TYPE_CODE_PTR
2446 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2447 }
2448
2449 int
2450 is_integral_type (struct type *t)
2451 {
2452 CHECK_TYPEDEF (t);
2453 return
2454 ((t != NULL)
2455 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2456 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2457 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2458 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2459 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2460 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2461 }
2462
2463 /* Return true if TYPE is scalar. */
2464
2465 static int
2466 is_scalar_type (struct type *type)
2467 {
2468 CHECK_TYPEDEF (type);
2469
2470 switch (TYPE_CODE (type))
2471 {
2472 case TYPE_CODE_ARRAY:
2473 case TYPE_CODE_STRUCT:
2474 case TYPE_CODE_UNION:
2475 case TYPE_CODE_SET:
2476 case TYPE_CODE_STRING:
2477 return 0;
2478 default:
2479 return 1;
2480 }
2481 }
2482
2483 /* Return true if T is scalar, or a composite type which in practice has
2484 the memory layout of a scalar type. E.g., an array or struct with only
2485 one scalar element inside it, or a union with only scalar elements. */
2486
2487 int
2488 is_scalar_type_recursive (struct type *t)
2489 {
2490 CHECK_TYPEDEF (t);
2491
2492 if (is_scalar_type (t))
2493 return 1;
2494 /* Are we dealing with an array or string of known dimensions? */
2495 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2496 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2497 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2498 {
2499 LONGEST low_bound, high_bound;
2500 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2501
2502 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2503
2504 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2505 }
2506 /* Are we dealing with a struct with one element? */
2507 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2508 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2509 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2510 {
2511 int i, n = TYPE_NFIELDS (t);
2512
2513 /* If all elements of the union are scalar, then the union is scalar. */
2514 for (i = 0; i < n; i++)
2515 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2516 return 0;
2517
2518 return 1;
2519 }
2520
2521 return 0;
2522 }
2523
2524 /* Return true is T is a class or a union. False otherwise. */
2525
2526 int
2527 class_or_union_p (const struct type *t)
2528 {
2529 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2530 || TYPE_CODE (t) == TYPE_CODE_UNION);
2531 }
2532
2533 /* A helper function which returns true if types A and B represent the
2534 "same" class type. This is true if the types have the same main
2535 type, or the same name. */
2536
2537 int
2538 class_types_same_p (const struct type *a, const struct type *b)
2539 {
2540 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2541 || (TYPE_NAME (a) && TYPE_NAME (b)
2542 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2543 }
2544
2545 /* If BASE is an ancestor of DCLASS return the distance between them.
2546 otherwise return -1;
2547 eg:
2548
2549 class A {};
2550 class B: public A {};
2551 class C: public B {};
2552 class D: C {};
2553
2554 distance_to_ancestor (A, A, 0) = 0
2555 distance_to_ancestor (A, B, 0) = 1
2556 distance_to_ancestor (A, C, 0) = 2
2557 distance_to_ancestor (A, D, 0) = 3
2558
2559 If PUBLIC is 1 then only public ancestors are considered,
2560 and the function returns the distance only if BASE is a public ancestor
2561 of DCLASS.
2562 Eg:
2563
2564 distance_to_ancestor (A, D, 1) = -1. */
2565
2566 static int
2567 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2568 {
2569 int i;
2570 int d;
2571
2572 CHECK_TYPEDEF (base);
2573 CHECK_TYPEDEF (dclass);
2574
2575 if (class_types_same_p (base, dclass))
2576 return 0;
2577
2578 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2579 {
2580 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2581 continue;
2582
2583 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2584 if (d >= 0)
2585 return 1 + d;
2586 }
2587
2588 return -1;
2589 }
2590
2591 /* Check whether BASE is an ancestor or base class or DCLASS
2592 Return 1 if so, and 0 if not.
2593 Note: If BASE and DCLASS are of the same type, this function
2594 will return 1. So for some class A, is_ancestor (A, A) will
2595 return 1. */
2596
2597 int
2598 is_ancestor (struct type *base, struct type *dclass)
2599 {
2600 return distance_to_ancestor (base, dclass, 0) >= 0;
2601 }
2602
2603 /* Like is_ancestor, but only returns true when BASE is a public
2604 ancestor of DCLASS. */
2605
2606 int
2607 is_public_ancestor (struct type *base, struct type *dclass)
2608 {
2609 return distance_to_ancestor (base, dclass, 1) >= 0;
2610 }
2611
2612 /* A helper function for is_unique_ancestor. */
2613
2614 static int
2615 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2616 int *offset,
2617 const gdb_byte *valaddr, int embedded_offset,
2618 CORE_ADDR address, struct value *val)
2619 {
2620 int i, count = 0;
2621
2622 CHECK_TYPEDEF (base);
2623 CHECK_TYPEDEF (dclass);
2624
2625 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2626 {
2627 struct type *iter;
2628 int this_offset;
2629
2630 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2631
2632 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2633 address, val);
2634
2635 if (class_types_same_p (base, iter))
2636 {
2637 /* If this is the first subclass, set *OFFSET and set count
2638 to 1. Otherwise, if this is at the same offset as
2639 previous instances, do nothing. Otherwise, increment
2640 count. */
2641 if (*offset == -1)
2642 {
2643 *offset = this_offset;
2644 count = 1;
2645 }
2646 else if (this_offset == *offset)
2647 {
2648 /* Nothing. */
2649 }
2650 else
2651 ++count;
2652 }
2653 else
2654 count += is_unique_ancestor_worker (base, iter, offset,
2655 valaddr,
2656 embedded_offset + this_offset,
2657 address, val);
2658 }
2659
2660 return count;
2661 }
2662
2663 /* Like is_ancestor, but only returns true if BASE is a unique base
2664 class of the type of VAL. */
2665
2666 int
2667 is_unique_ancestor (struct type *base, struct value *val)
2668 {
2669 int offset = -1;
2670
2671 return is_unique_ancestor_worker (base, value_type (val), &offset,
2672 value_contents_for_printing (val),
2673 value_embedded_offset (val),
2674 value_address (val), val) == 1;
2675 }
2676
2677 \f
2678 /* Overload resolution. */
2679
2680 /* Return the sum of the rank of A with the rank of B. */
2681
2682 struct rank
2683 sum_ranks (struct rank a, struct rank b)
2684 {
2685 struct rank c;
2686 c.rank = a.rank + b.rank;
2687 c.subrank = a.subrank + b.subrank;
2688 return c;
2689 }
2690
2691 /* Compare rank A and B and return:
2692 0 if a = b
2693 1 if a is better than b
2694 -1 if b is better than a. */
2695
2696 int
2697 compare_ranks (struct rank a, struct rank b)
2698 {
2699 if (a.rank == b.rank)
2700 {
2701 if (a.subrank == b.subrank)
2702 return 0;
2703 if (a.subrank < b.subrank)
2704 return 1;
2705 if (a.subrank > b.subrank)
2706 return -1;
2707 }
2708
2709 if (a.rank < b.rank)
2710 return 1;
2711
2712 /* a.rank > b.rank */
2713 return -1;
2714 }
2715
2716 /* Functions for overload resolution begin here. */
2717
2718 /* Compare two badness vectors A and B and return the result.
2719 0 => A and B are identical
2720 1 => A and B are incomparable
2721 2 => A is better than B
2722 3 => A is worse than B */
2723
2724 int
2725 compare_badness (struct badness_vector *a, struct badness_vector *b)
2726 {
2727 int i;
2728 int tmp;
2729 short found_pos = 0; /* any positives in c? */
2730 short found_neg = 0; /* any negatives in c? */
2731
2732 /* differing lengths => incomparable */
2733 if (a->length != b->length)
2734 return 1;
2735
2736 /* Subtract b from a */
2737 for (i = 0; i < a->length; i++)
2738 {
2739 tmp = compare_ranks (b->rank[i], a->rank[i]);
2740 if (tmp > 0)
2741 found_pos = 1;
2742 else if (tmp < 0)
2743 found_neg = 1;
2744 }
2745
2746 if (found_pos)
2747 {
2748 if (found_neg)
2749 return 1; /* incomparable */
2750 else
2751 return 3; /* A > B */
2752 }
2753 else
2754 /* no positives */
2755 {
2756 if (found_neg)
2757 return 2; /* A < B */
2758 else
2759 return 0; /* A == B */
2760 }
2761 }
2762
2763 /* Rank a function by comparing its parameter types (PARMS, length
2764 NPARMS), to the types of an argument list (ARGS, length NARGS).
2765 Return a pointer to a badness vector. This has NARGS + 1
2766 entries. */
2767
2768 struct badness_vector *
2769 rank_function (struct type **parms, int nparms,
2770 struct value **args, int nargs)
2771 {
2772 int i;
2773 struct badness_vector *bv;
2774 int min_len = nparms < nargs ? nparms : nargs;
2775
2776 bv = xmalloc (sizeof (struct badness_vector));
2777 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2778 bv->rank = XNEWVEC (struct rank, nargs + 1);
2779
2780 /* First compare the lengths of the supplied lists.
2781 If there is a mismatch, set it to a high value. */
2782
2783 /* pai/1997-06-03 FIXME: when we have debug info about default
2784 arguments and ellipsis parameter lists, we should consider those
2785 and rank the length-match more finely. */
2786
2787 LENGTH_MATCH (bv) = (nargs != nparms)
2788 ? LENGTH_MISMATCH_BADNESS
2789 : EXACT_MATCH_BADNESS;
2790
2791 /* Now rank all the parameters of the candidate function. */
2792 for (i = 1; i <= min_len; i++)
2793 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2794 args[i - 1]);
2795
2796 /* If more arguments than parameters, add dummy entries. */
2797 for (i = min_len + 1; i <= nargs; i++)
2798 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2799
2800 return bv;
2801 }
2802
2803 /* Compare the names of two integer types, assuming that any sign
2804 qualifiers have been checked already. We do it this way because
2805 there may be an "int" in the name of one of the types. */
2806
2807 static int
2808 integer_types_same_name_p (const char *first, const char *second)
2809 {
2810 int first_p, second_p;
2811
2812 /* If both are shorts, return 1; if neither is a short, keep
2813 checking. */
2814 first_p = (strstr (first, "short") != NULL);
2815 second_p = (strstr (second, "short") != NULL);
2816 if (first_p && second_p)
2817 return 1;
2818 if (first_p || second_p)
2819 return 0;
2820
2821 /* Likewise for long. */
2822 first_p = (strstr (first, "long") != NULL);
2823 second_p = (strstr (second, "long") != NULL);
2824 if (first_p && second_p)
2825 return 1;
2826 if (first_p || second_p)
2827 return 0;
2828
2829 /* Likewise for char. */
2830 first_p = (strstr (first, "char") != NULL);
2831 second_p = (strstr (second, "char") != NULL);
2832 if (first_p && second_p)
2833 return 1;
2834 if (first_p || second_p)
2835 return 0;
2836
2837 /* They must both be ints. */
2838 return 1;
2839 }
2840
2841 /* Compares type A to type B returns 1 if the represent the same type
2842 0 otherwise. */
2843
2844 int
2845 types_equal (struct type *a, struct type *b)
2846 {
2847 /* Identical type pointers. */
2848 /* However, this still doesn't catch all cases of same type for b
2849 and a. The reason is that builtin types are different from
2850 the same ones constructed from the object. */
2851 if (a == b)
2852 return 1;
2853
2854 /* Resolve typedefs */
2855 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2856 a = check_typedef (a);
2857 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2858 b = check_typedef (b);
2859
2860 /* If after resolving typedefs a and b are not of the same type
2861 code then they are not equal. */
2862 if (TYPE_CODE (a) != TYPE_CODE (b))
2863 return 0;
2864
2865 /* If a and b are both pointers types or both reference types then
2866 they are equal of the same type iff the objects they refer to are
2867 of the same type. */
2868 if (TYPE_CODE (a) == TYPE_CODE_PTR
2869 || TYPE_CODE (a) == TYPE_CODE_REF)
2870 return types_equal (TYPE_TARGET_TYPE (a),
2871 TYPE_TARGET_TYPE (b));
2872
2873 /* Well, damnit, if the names are exactly the same, I'll say they
2874 are exactly the same. This happens when we generate method
2875 stubs. The types won't point to the same address, but they
2876 really are the same. */
2877
2878 if (TYPE_NAME (a) && TYPE_NAME (b)
2879 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2880 return 1;
2881
2882 /* Check if identical after resolving typedefs. */
2883 if (a == b)
2884 return 1;
2885
2886 /* Two function types are equal if their argument and return types
2887 are equal. */
2888 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2889 {
2890 int i;
2891
2892 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2893 return 0;
2894
2895 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2896 return 0;
2897
2898 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2899 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2900 return 0;
2901
2902 return 1;
2903 }
2904
2905 return 0;
2906 }
2907 \f
2908 /* Deep comparison of types. */
2909
2910 /* An entry in the type-equality bcache. */
2911
2912 typedef struct type_equality_entry
2913 {
2914 struct type *type1, *type2;
2915 } type_equality_entry_d;
2916
2917 DEF_VEC_O (type_equality_entry_d);
2918
2919 /* A helper function to compare two strings. Returns 1 if they are
2920 the same, 0 otherwise. Handles NULLs properly. */
2921
2922 static int
2923 compare_maybe_null_strings (const char *s, const char *t)
2924 {
2925 if (s == NULL && t != NULL)
2926 return 0;
2927 else if (s != NULL && t == NULL)
2928 return 0;
2929 else if (s == NULL && t== NULL)
2930 return 1;
2931 return strcmp (s, t) == 0;
2932 }
2933
2934 /* A helper function for check_types_worklist that checks two types for
2935 "deep" equality. Returns non-zero if the types are considered the
2936 same, zero otherwise. */
2937
2938 static int
2939 check_types_equal (struct type *type1, struct type *type2,
2940 VEC (type_equality_entry_d) **worklist)
2941 {
2942 CHECK_TYPEDEF (type1);
2943 CHECK_TYPEDEF (type2);
2944
2945 if (type1 == type2)
2946 return 1;
2947
2948 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2949 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2950 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2951 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2952 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2953 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2954 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2955 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2956 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2957 return 0;
2958
2959 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2960 TYPE_TAG_NAME (type2)))
2961 return 0;
2962 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2963 return 0;
2964
2965 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2966 {
2967 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2968 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2969 return 0;
2970 }
2971 else
2972 {
2973 int i;
2974
2975 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2976 {
2977 const struct field *field1 = &TYPE_FIELD (type1, i);
2978 const struct field *field2 = &TYPE_FIELD (type2, i);
2979 struct type_equality_entry entry;
2980
2981 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2982 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2983 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2984 return 0;
2985 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2986 FIELD_NAME (*field2)))
2987 return 0;
2988 switch (FIELD_LOC_KIND (*field1))
2989 {
2990 case FIELD_LOC_KIND_BITPOS:
2991 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2992 return 0;
2993 break;
2994 case FIELD_LOC_KIND_ENUMVAL:
2995 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2996 return 0;
2997 break;
2998 case FIELD_LOC_KIND_PHYSADDR:
2999 if (FIELD_STATIC_PHYSADDR (*field1)
3000 != FIELD_STATIC_PHYSADDR (*field2))
3001 return 0;
3002 break;
3003 case FIELD_LOC_KIND_PHYSNAME:
3004 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3005 FIELD_STATIC_PHYSNAME (*field2)))
3006 return 0;
3007 break;
3008 case FIELD_LOC_KIND_DWARF_BLOCK:
3009 {
3010 struct dwarf2_locexpr_baton *block1, *block2;
3011
3012 block1 = FIELD_DWARF_BLOCK (*field1);
3013 block2 = FIELD_DWARF_BLOCK (*field2);
3014 if (block1->per_cu != block2->per_cu
3015 || block1->size != block2->size
3016 || memcmp (block1->data, block2->data, block1->size) != 0)
3017 return 0;
3018 }
3019 break;
3020 default:
3021 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3022 "%d by check_types_equal"),
3023 FIELD_LOC_KIND (*field1));
3024 }
3025
3026 entry.type1 = FIELD_TYPE (*field1);
3027 entry.type2 = FIELD_TYPE (*field2);
3028 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3029 }
3030 }
3031
3032 if (TYPE_TARGET_TYPE (type1) != NULL)
3033 {
3034 struct type_equality_entry entry;
3035
3036 if (TYPE_TARGET_TYPE (type2) == NULL)
3037 return 0;
3038
3039 entry.type1 = TYPE_TARGET_TYPE (type1);
3040 entry.type2 = TYPE_TARGET_TYPE (type2);
3041 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3042 }
3043 else if (TYPE_TARGET_TYPE (type2) != NULL)
3044 return 0;
3045
3046 return 1;
3047 }
3048
3049 /* Check types on a worklist for equality. Returns zero if any pair
3050 is not equal, non-zero if they are all considered equal. */
3051
3052 static int
3053 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3054 struct bcache *cache)
3055 {
3056 while (!VEC_empty (type_equality_entry_d, *worklist))
3057 {
3058 struct type_equality_entry entry;
3059 int added;
3060
3061 entry = *VEC_last (type_equality_entry_d, *worklist);
3062 VEC_pop (type_equality_entry_d, *worklist);
3063
3064 /* If the type pair has already been visited, we know it is
3065 ok. */
3066 bcache_full (&entry, sizeof (entry), cache, &added);
3067 if (!added)
3068 continue;
3069
3070 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3071 return 0;
3072 }
3073
3074 return 1;
3075 }
3076
3077 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3078 "deep comparison". Otherwise return zero. */
3079
3080 int
3081 types_deeply_equal (struct type *type1, struct type *type2)
3082 {
3083 volatile struct gdb_exception except;
3084 int result = 0;
3085 struct bcache *cache;
3086 VEC (type_equality_entry_d) *worklist = NULL;
3087 struct type_equality_entry entry;
3088
3089 gdb_assert (type1 != NULL && type2 != NULL);
3090
3091 /* Early exit for the simple case. */
3092 if (type1 == type2)
3093 return 1;
3094
3095 cache = bcache_xmalloc (NULL, NULL);
3096
3097 entry.type1 = type1;
3098 entry.type2 = type2;
3099 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3100
3101 TRY_CATCH (except, RETURN_MASK_ALL)
3102 {
3103 result = check_types_worklist (&worklist, cache);
3104 }
3105 /* check_types_worklist calls several nested helper functions,
3106 some of which can raise a GDB Exception, so we just check
3107 and rethrow here. If there is a GDB exception, a comparison
3108 is not capable (or trusted), so exit. */
3109 bcache_xfree (cache);
3110 VEC_free (type_equality_entry_d, worklist);
3111 /* Rethrow if there was a problem. */
3112 if (except.reason < 0)
3113 throw_exception (except);
3114
3115 return result;
3116 }
3117 \f
3118 /* Compare one type (PARM) for compatibility with another (ARG).
3119 * PARM is intended to be the parameter type of a function; and
3120 * ARG is the supplied argument's type. This function tests if
3121 * the latter can be converted to the former.
3122 * VALUE is the argument's value or NULL if none (or called recursively)
3123 *
3124 * Return 0 if they are identical types;
3125 * Otherwise, return an integer which corresponds to how compatible
3126 * PARM is to ARG. The higher the return value, the worse the match.
3127 * Generally the "bad" conversions are all uniformly assigned a 100. */
3128
3129 struct rank
3130 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3131 {
3132 struct rank rank = {0,0};
3133
3134 if (types_equal (parm, arg))
3135 return EXACT_MATCH_BADNESS;
3136
3137 /* Resolve typedefs */
3138 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3139 parm = check_typedef (parm);
3140 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3141 arg = check_typedef (arg);
3142
3143 /* See through references, since we can almost make non-references
3144 references. */
3145 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3146 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3147 REFERENCE_CONVERSION_BADNESS));
3148 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3149 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3150 REFERENCE_CONVERSION_BADNESS));
3151 if (overload_debug)
3152 /* Debugging only. */
3153 fprintf_filtered (gdb_stderr,
3154 "------ Arg is %s [%d], parm is %s [%d]\n",
3155 TYPE_NAME (arg), TYPE_CODE (arg),
3156 TYPE_NAME (parm), TYPE_CODE (parm));
3157
3158 /* x -> y means arg of type x being supplied for parameter of type y. */
3159
3160 switch (TYPE_CODE (parm))
3161 {
3162 case TYPE_CODE_PTR:
3163 switch (TYPE_CODE (arg))
3164 {
3165 case TYPE_CODE_PTR:
3166
3167 /* Allowed pointer conversions are:
3168 (a) pointer to void-pointer conversion. */
3169 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3170 return VOID_PTR_CONVERSION_BADNESS;
3171
3172 /* (b) pointer to ancestor-pointer conversion. */
3173 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3174 TYPE_TARGET_TYPE (arg),
3175 0);
3176 if (rank.subrank >= 0)
3177 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3178
3179 return INCOMPATIBLE_TYPE_BADNESS;
3180 case TYPE_CODE_ARRAY:
3181 if (types_equal (TYPE_TARGET_TYPE (parm),
3182 TYPE_TARGET_TYPE (arg)))
3183 return EXACT_MATCH_BADNESS;
3184 return INCOMPATIBLE_TYPE_BADNESS;
3185 case TYPE_CODE_FUNC:
3186 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3187 case TYPE_CODE_INT:
3188 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3189 {
3190 if (value_as_long (value) == 0)
3191 {
3192 /* Null pointer conversion: allow it to be cast to a pointer.
3193 [4.10.1 of C++ standard draft n3290] */
3194 return NULL_POINTER_CONVERSION_BADNESS;
3195 }
3196 else
3197 {
3198 /* If type checking is disabled, allow the conversion. */
3199 if (!strict_type_checking)
3200 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3201 }
3202 }
3203 /* fall through */
3204 case TYPE_CODE_ENUM:
3205 case TYPE_CODE_FLAGS:
3206 case TYPE_CODE_CHAR:
3207 case TYPE_CODE_RANGE:
3208 case TYPE_CODE_BOOL:
3209 default:
3210 return INCOMPATIBLE_TYPE_BADNESS;
3211 }
3212 case TYPE_CODE_ARRAY:
3213 switch (TYPE_CODE (arg))
3214 {
3215 case TYPE_CODE_PTR:
3216 case TYPE_CODE_ARRAY:
3217 return rank_one_type (TYPE_TARGET_TYPE (parm),
3218 TYPE_TARGET_TYPE (arg), NULL);
3219 default:
3220 return INCOMPATIBLE_TYPE_BADNESS;
3221 }
3222 case TYPE_CODE_FUNC:
3223 switch (TYPE_CODE (arg))
3224 {
3225 case TYPE_CODE_PTR: /* funcptr -> func */
3226 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3227 default:
3228 return INCOMPATIBLE_TYPE_BADNESS;
3229 }
3230 case TYPE_CODE_INT:
3231 switch (TYPE_CODE (arg))
3232 {
3233 case TYPE_CODE_INT:
3234 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3235 {
3236 /* Deal with signed, unsigned, and plain chars and
3237 signed and unsigned ints. */
3238 if (TYPE_NOSIGN (parm))
3239 {
3240 /* This case only for character types. */
3241 if (TYPE_NOSIGN (arg))
3242 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3243 else /* signed/unsigned char -> plain char */
3244 return INTEGER_CONVERSION_BADNESS;
3245 }
3246 else if (TYPE_UNSIGNED (parm))
3247 {
3248 if (TYPE_UNSIGNED (arg))
3249 {
3250 /* unsigned int -> unsigned int, or
3251 unsigned long -> unsigned long */
3252 if (integer_types_same_name_p (TYPE_NAME (parm),
3253 TYPE_NAME (arg)))
3254 return EXACT_MATCH_BADNESS;
3255 else if (integer_types_same_name_p (TYPE_NAME (arg),
3256 "int")
3257 && integer_types_same_name_p (TYPE_NAME (parm),
3258 "long"))
3259 /* unsigned int -> unsigned long */
3260 return INTEGER_PROMOTION_BADNESS;
3261 else
3262 /* unsigned long -> unsigned int */
3263 return INTEGER_CONVERSION_BADNESS;
3264 }
3265 else
3266 {
3267 if (integer_types_same_name_p (TYPE_NAME (arg),
3268 "long")
3269 && integer_types_same_name_p (TYPE_NAME (parm),
3270 "int"))
3271 /* signed long -> unsigned int */
3272 return INTEGER_CONVERSION_BADNESS;
3273 else
3274 /* signed int/long -> unsigned int/long */
3275 return INTEGER_CONVERSION_BADNESS;
3276 }
3277 }
3278 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3279 {
3280 if (integer_types_same_name_p (TYPE_NAME (parm),
3281 TYPE_NAME (arg)))
3282 return EXACT_MATCH_BADNESS;
3283 else if (integer_types_same_name_p (TYPE_NAME (arg),
3284 "int")
3285 && integer_types_same_name_p (TYPE_NAME (parm),
3286 "long"))
3287 return INTEGER_PROMOTION_BADNESS;
3288 else
3289 return INTEGER_CONVERSION_BADNESS;
3290 }
3291 else
3292 return INTEGER_CONVERSION_BADNESS;
3293 }
3294 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3295 return INTEGER_PROMOTION_BADNESS;
3296 else
3297 return INTEGER_CONVERSION_BADNESS;
3298 case TYPE_CODE_ENUM:
3299 case TYPE_CODE_FLAGS:
3300 case TYPE_CODE_CHAR:
3301 case TYPE_CODE_RANGE:
3302 case TYPE_CODE_BOOL:
3303 if (TYPE_DECLARED_CLASS (arg))
3304 return INCOMPATIBLE_TYPE_BADNESS;
3305 return INTEGER_PROMOTION_BADNESS;
3306 case TYPE_CODE_FLT:
3307 return INT_FLOAT_CONVERSION_BADNESS;
3308 case TYPE_CODE_PTR:
3309 return NS_POINTER_CONVERSION_BADNESS;
3310 default:
3311 return INCOMPATIBLE_TYPE_BADNESS;
3312 }
3313 break;
3314 case TYPE_CODE_ENUM:
3315 switch (TYPE_CODE (arg))
3316 {
3317 case TYPE_CODE_INT:
3318 case TYPE_CODE_CHAR:
3319 case TYPE_CODE_RANGE:
3320 case TYPE_CODE_BOOL:
3321 case TYPE_CODE_ENUM:
3322 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3323 return INCOMPATIBLE_TYPE_BADNESS;
3324 return INTEGER_CONVERSION_BADNESS;
3325 case TYPE_CODE_FLT:
3326 return INT_FLOAT_CONVERSION_BADNESS;
3327 default:
3328 return INCOMPATIBLE_TYPE_BADNESS;
3329 }
3330 break;
3331 case TYPE_CODE_CHAR:
3332 switch (TYPE_CODE (arg))
3333 {
3334 case TYPE_CODE_RANGE:
3335 case TYPE_CODE_BOOL:
3336 case TYPE_CODE_ENUM:
3337 if (TYPE_DECLARED_CLASS (arg))
3338 return INCOMPATIBLE_TYPE_BADNESS;
3339 return INTEGER_CONVERSION_BADNESS;
3340 case TYPE_CODE_FLT:
3341 return INT_FLOAT_CONVERSION_BADNESS;
3342 case TYPE_CODE_INT:
3343 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3344 return INTEGER_CONVERSION_BADNESS;
3345 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3346 return INTEGER_PROMOTION_BADNESS;
3347 /* >>> !! else fall through !! <<< */
3348 case TYPE_CODE_CHAR:
3349 /* Deal with signed, unsigned, and plain chars for C++ and
3350 with int cases falling through from previous case. */
3351 if (TYPE_NOSIGN (parm))
3352 {
3353 if (TYPE_NOSIGN (arg))
3354 return EXACT_MATCH_BADNESS;
3355 else
3356 return INTEGER_CONVERSION_BADNESS;
3357 }
3358 else if (TYPE_UNSIGNED (parm))
3359 {
3360 if (TYPE_UNSIGNED (arg))
3361 return EXACT_MATCH_BADNESS;
3362 else
3363 return INTEGER_PROMOTION_BADNESS;
3364 }
3365 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3366 return EXACT_MATCH_BADNESS;
3367 else
3368 return INTEGER_CONVERSION_BADNESS;
3369 default:
3370 return INCOMPATIBLE_TYPE_BADNESS;
3371 }
3372 break;
3373 case TYPE_CODE_RANGE:
3374 switch (TYPE_CODE (arg))
3375 {
3376 case TYPE_CODE_INT:
3377 case TYPE_CODE_CHAR:
3378 case TYPE_CODE_RANGE:
3379 case TYPE_CODE_BOOL:
3380 case TYPE_CODE_ENUM:
3381 return INTEGER_CONVERSION_BADNESS;
3382 case TYPE_CODE_FLT:
3383 return INT_FLOAT_CONVERSION_BADNESS;
3384 default:
3385 return INCOMPATIBLE_TYPE_BADNESS;
3386 }
3387 break;
3388 case TYPE_CODE_BOOL:
3389 switch (TYPE_CODE (arg))
3390 {
3391 /* n3290 draft, section 4.12.1 (conv.bool):
3392
3393 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3394 pointer to member type can be converted to a prvalue of type
3395 bool. A zero value, null pointer value, or null member pointer
3396 value is converted to false; any other value is converted to
3397 true. A prvalue of type std::nullptr_t can be converted to a
3398 prvalue of type bool; the resulting value is false." */
3399 case TYPE_CODE_INT:
3400 case TYPE_CODE_CHAR:
3401 case TYPE_CODE_ENUM:
3402 case TYPE_CODE_FLT:
3403 case TYPE_CODE_MEMBERPTR:
3404 case TYPE_CODE_PTR:
3405 return BOOL_CONVERSION_BADNESS;
3406 case TYPE_CODE_RANGE:
3407 return INCOMPATIBLE_TYPE_BADNESS;
3408 case TYPE_CODE_BOOL:
3409 return EXACT_MATCH_BADNESS;
3410 default:
3411 return INCOMPATIBLE_TYPE_BADNESS;
3412 }
3413 break;
3414 case TYPE_CODE_FLT:
3415 switch (TYPE_CODE (arg))
3416 {
3417 case TYPE_CODE_FLT:
3418 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3419 return FLOAT_PROMOTION_BADNESS;
3420 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3421 return EXACT_MATCH_BADNESS;
3422 else
3423 return FLOAT_CONVERSION_BADNESS;
3424 case TYPE_CODE_INT:
3425 case TYPE_CODE_BOOL:
3426 case TYPE_CODE_ENUM:
3427 case TYPE_CODE_RANGE:
3428 case TYPE_CODE_CHAR:
3429 return INT_FLOAT_CONVERSION_BADNESS;
3430 default:
3431 return INCOMPATIBLE_TYPE_BADNESS;
3432 }
3433 break;
3434 case TYPE_CODE_COMPLEX:
3435 switch (TYPE_CODE (arg))
3436 { /* Strictly not needed for C++, but... */
3437 case TYPE_CODE_FLT:
3438 return FLOAT_PROMOTION_BADNESS;
3439 case TYPE_CODE_COMPLEX:
3440 return EXACT_MATCH_BADNESS;
3441 default:
3442 return INCOMPATIBLE_TYPE_BADNESS;
3443 }
3444 break;
3445 case TYPE_CODE_STRUCT:
3446 switch (TYPE_CODE (arg))
3447 {
3448 case TYPE_CODE_STRUCT:
3449 /* Check for derivation */
3450 rank.subrank = distance_to_ancestor (parm, arg, 0);
3451 if (rank.subrank >= 0)
3452 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3453 /* else fall through */
3454 default:
3455 return INCOMPATIBLE_TYPE_BADNESS;
3456 }
3457 break;
3458 case TYPE_CODE_UNION:
3459 switch (TYPE_CODE (arg))
3460 {
3461 case TYPE_CODE_UNION:
3462 default:
3463 return INCOMPATIBLE_TYPE_BADNESS;
3464 }
3465 break;
3466 case TYPE_CODE_MEMBERPTR:
3467 switch (TYPE_CODE (arg))
3468 {
3469 default:
3470 return INCOMPATIBLE_TYPE_BADNESS;
3471 }
3472 break;
3473 case TYPE_CODE_METHOD:
3474 switch (TYPE_CODE (arg))
3475 {
3476
3477 default:
3478 return INCOMPATIBLE_TYPE_BADNESS;
3479 }
3480 break;
3481 case TYPE_CODE_REF:
3482 switch (TYPE_CODE (arg))
3483 {
3484
3485 default:
3486 return INCOMPATIBLE_TYPE_BADNESS;
3487 }
3488
3489 break;
3490 case TYPE_CODE_SET:
3491 switch (TYPE_CODE (arg))
3492 {
3493 /* Not in C++ */
3494 case TYPE_CODE_SET:
3495 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3496 TYPE_FIELD_TYPE (arg, 0), NULL);
3497 default:
3498 return INCOMPATIBLE_TYPE_BADNESS;
3499 }
3500 break;
3501 case TYPE_CODE_VOID:
3502 default:
3503 return INCOMPATIBLE_TYPE_BADNESS;
3504 } /* switch (TYPE_CODE (arg)) */
3505 }
3506
3507 /* End of functions for overload resolution. */
3508 \f
3509 /* Routines to pretty-print types. */
3510
3511 static void
3512 print_bit_vector (B_TYPE *bits, int nbits)
3513 {
3514 int bitno;
3515
3516 for (bitno = 0; bitno < nbits; bitno++)
3517 {
3518 if ((bitno % 8) == 0)
3519 {
3520 puts_filtered (" ");
3521 }
3522 if (B_TST (bits, bitno))
3523 printf_filtered (("1"));
3524 else
3525 printf_filtered (("0"));
3526 }
3527 }
3528
3529 /* Note the first arg should be the "this" pointer, we may not want to
3530 include it since we may get into a infinitely recursive
3531 situation. */
3532
3533 static void
3534 print_args (struct field *args, int nargs, int spaces)
3535 {
3536 if (args != NULL)
3537 {
3538 int i;
3539
3540 for (i = 0; i < nargs; i++)
3541 {
3542 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3543 args[i].name != NULL ? args[i].name : "<NULL>");
3544 recursive_dump_type (args[i].type, spaces + 2);
3545 }
3546 }
3547 }
3548
3549 int
3550 field_is_static (struct field *f)
3551 {
3552 /* "static" fields are the fields whose location is not relative
3553 to the address of the enclosing struct. It would be nice to
3554 have a dedicated flag that would be set for static fields when
3555 the type is being created. But in practice, checking the field
3556 loc_kind should give us an accurate answer. */
3557 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3558 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3559 }
3560
3561 static void
3562 dump_fn_fieldlists (struct type *type, int spaces)
3563 {
3564 int method_idx;
3565 int overload_idx;
3566 struct fn_field *f;
3567
3568 printfi_filtered (spaces, "fn_fieldlists ");
3569 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3570 printf_filtered ("\n");
3571 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3572 {
3573 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3574 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3575 method_idx,
3576 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3577 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3578 gdb_stdout);
3579 printf_filtered (_(") length %d\n"),
3580 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3581 for (overload_idx = 0;
3582 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3583 overload_idx++)
3584 {
3585 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3586 overload_idx,
3587 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3588 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3589 gdb_stdout);
3590 printf_filtered (")\n");
3591 printfi_filtered (spaces + 8, "type ");
3592 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3593 gdb_stdout);
3594 printf_filtered ("\n");
3595
3596 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3597 spaces + 8 + 2);
3598
3599 printfi_filtered (spaces + 8, "args ");
3600 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3601 gdb_stdout);
3602 printf_filtered ("\n");
3603 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3604 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3605 spaces + 8 + 2);
3606 printfi_filtered (spaces + 8, "fcontext ");
3607 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3608 gdb_stdout);
3609 printf_filtered ("\n");
3610
3611 printfi_filtered (spaces + 8, "is_const %d\n",
3612 TYPE_FN_FIELD_CONST (f, overload_idx));
3613 printfi_filtered (spaces + 8, "is_volatile %d\n",
3614 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3615 printfi_filtered (spaces + 8, "is_private %d\n",
3616 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3617 printfi_filtered (spaces + 8, "is_protected %d\n",
3618 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3619 printfi_filtered (spaces + 8, "is_stub %d\n",
3620 TYPE_FN_FIELD_STUB (f, overload_idx));
3621 printfi_filtered (spaces + 8, "voffset %u\n",
3622 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3623 }
3624 }
3625 }
3626
3627 static void
3628 print_cplus_stuff (struct type *type, int spaces)
3629 {
3630 printfi_filtered (spaces, "n_baseclasses %d\n",
3631 TYPE_N_BASECLASSES (type));
3632 printfi_filtered (spaces, "nfn_fields %d\n",
3633 TYPE_NFN_FIELDS (type));
3634 if (TYPE_N_BASECLASSES (type) > 0)
3635 {
3636 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3637 TYPE_N_BASECLASSES (type));
3638 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3639 gdb_stdout);
3640 printf_filtered (")");
3641
3642 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3643 TYPE_N_BASECLASSES (type));
3644 puts_filtered ("\n");
3645 }
3646 if (TYPE_NFIELDS (type) > 0)
3647 {
3648 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3649 {
3650 printfi_filtered (spaces,
3651 "private_field_bits (%d bits at *",
3652 TYPE_NFIELDS (type));
3653 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3654 gdb_stdout);
3655 printf_filtered (")");
3656 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3657 TYPE_NFIELDS (type));
3658 puts_filtered ("\n");
3659 }
3660 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3661 {
3662 printfi_filtered (spaces,
3663 "protected_field_bits (%d bits at *",
3664 TYPE_NFIELDS (type));
3665 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3666 gdb_stdout);
3667 printf_filtered (")");
3668 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3669 TYPE_NFIELDS (type));
3670 puts_filtered ("\n");
3671 }
3672 }
3673 if (TYPE_NFN_FIELDS (type) > 0)
3674 {
3675 dump_fn_fieldlists (type, spaces);
3676 }
3677 }
3678
3679 /* Print the contents of the TYPE's type_specific union, assuming that
3680 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3681
3682 static void
3683 print_gnat_stuff (struct type *type, int spaces)
3684 {
3685 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3686
3687 recursive_dump_type (descriptive_type, spaces + 2);
3688 }
3689
3690 static struct obstack dont_print_type_obstack;
3691
3692 void
3693 recursive_dump_type (struct type *type, int spaces)
3694 {
3695 int idx;
3696
3697 if (spaces == 0)
3698 obstack_begin (&dont_print_type_obstack, 0);
3699
3700 if (TYPE_NFIELDS (type) > 0
3701 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3702 {
3703 struct type **first_dont_print
3704 = (struct type **) obstack_base (&dont_print_type_obstack);
3705
3706 int i = (struct type **)
3707 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3708
3709 while (--i >= 0)
3710 {
3711 if (type == first_dont_print[i])
3712 {
3713 printfi_filtered (spaces, "type node ");
3714 gdb_print_host_address (type, gdb_stdout);
3715 printf_filtered (_(" <same as already seen type>\n"));
3716 return;
3717 }
3718 }
3719
3720 obstack_ptr_grow (&dont_print_type_obstack, type);
3721 }
3722
3723 printfi_filtered (spaces, "type node ");
3724 gdb_print_host_address (type, gdb_stdout);
3725 printf_filtered ("\n");
3726 printfi_filtered (spaces, "name '%s' (",
3727 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3728 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3729 printf_filtered (")\n");
3730 printfi_filtered (spaces, "tagname '%s' (",
3731 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3732 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3733 printf_filtered (")\n");
3734 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3735 switch (TYPE_CODE (type))
3736 {
3737 case TYPE_CODE_UNDEF:
3738 printf_filtered ("(TYPE_CODE_UNDEF)");
3739 break;
3740 case TYPE_CODE_PTR:
3741 printf_filtered ("(TYPE_CODE_PTR)");
3742 break;
3743 case TYPE_CODE_ARRAY:
3744 printf_filtered ("(TYPE_CODE_ARRAY)");
3745 break;
3746 case TYPE_CODE_STRUCT:
3747 printf_filtered ("(TYPE_CODE_STRUCT)");
3748 break;
3749 case TYPE_CODE_UNION:
3750 printf_filtered ("(TYPE_CODE_UNION)");
3751 break;
3752 case TYPE_CODE_ENUM:
3753 printf_filtered ("(TYPE_CODE_ENUM)");
3754 break;
3755 case TYPE_CODE_FLAGS:
3756 printf_filtered ("(TYPE_CODE_FLAGS)");
3757 break;
3758 case TYPE_CODE_FUNC:
3759 printf_filtered ("(TYPE_CODE_FUNC)");
3760 break;
3761 case TYPE_CODE_INT:
3762 printf_filtered ("(TYPE_CODE_INT)");
3763 break;
3764 case TYPE_CODE_FLT:
3765 printf_filtered ("(TYPE_CODE_FLT)");
3766 break;
3767 case TYPE_CODE_VOID:
3768 printf_filtered ("(TYPE_CODE_VOID)");
3769 break;
3770 case TYPE_CODE_SET:
3771 printf_filtered ("(TYPE_CODE_SET)");
3772 break;
3773 case TYPE_CODE_RANGE:
3774 printf_filtered ("(TYPE_CODE_RANGE)");
3775 break;
3776 case TYPE_CODE_STRING:
3777 printf_filtered ("(TYPE_CODE_STRING)");
3778 break;
3779 case TYPE_CODE_ERROR:
3780 printf_filtered ("(TYPE_CODE_ERROR)");
3781 break;
3782 case TYPE_CODE_MEMBERPTR:
3783 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3784 break;
3785 case TYPE_CODE_METHODPTR:
3786 printf_filtered ("(TYPE_CODE_METHODPTR)");
3787 break;
3788 case TYPE_CODE_METHOD:
3789 printf_filtered ("(TYPE_CODE_METHOD)");
3790 break;
3791 case TYPE_CODE_REF:
3792 printf_filtered ("(TYPE_CODE_REF)");
3793 break;
3794 case TYPE_CODE_CHAR:
3795 printf_filtered ("(TYPE_CODE_CHAR)");
3796 break;
3797 case TYPE_CODE_BOOL:
3798 printf_filtered ("(TYPE_CODE_BOOL)");
3799 break;
3800 case TYPE_CODE_COMPLEX:
3801 printf_filtered ("(TYPE_CODE_COMPLEX)");
3802 break;
3803 case TYPE_CODE_TYPEDEF:
3804 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3805 break;
3806 case TYPE_CODE_NAMESPACE:
3807 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3808 break;
3809 default:
3810 printf_filtered ("(UNKNOWN TYPE CODE)");
3811 break;
3812 }
3813 puts_filtered ("\n");
3814 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3815 if (TYPE_OBJFILE_OWNED (type))
3816 {
3817 printfi_filtered (spaces, "objfile ");
3818 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3819 }
3820 else
3821 {
3822 printfi_filtered (spaces, "gdbarch ");
3823 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3824 }
3825 printf_filtered ("\n");
3826 printfi_filtered (spaces, "target_type ");
3827 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3828 printf_filtered ("\n");
3829 if (TYPE_TARGET_TYPE (type) != NULL)
3830 {
3831 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3832 }
3833 printfi_filtered (spaces, "pointer_type ");
3834 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3835 printf_filtered ("\n");
3836 printfi_filtered (spaces, "reference_type ");
3837 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3838 printf_filtered ("\n");
3839 printfi_filtered (spaces, "type_chain ");
3840 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3841 printf_filtered ("\n");
3842 printfi_filtered (spaces, "instance_flags 0x%x",
3843 TYPE_INSTANCE_FLAGS (type));
3844 if (TYPE_CONST (type))
3845 {
3846 puts_filtered (" TYPE_FLAG_CONST");
3847 }
3848 if (TYPE_VOLATILE (type))
3849 {
3850 puts_filtered (" TYPE_FLAG_VOLATILE");
3851 }
3852 if (TYPE_CODE_SPACE (type))
3853 {
3854 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3855 }
3856 if (TYPE_DATA_SPACE (type))
3857 {
3858 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3859 }
3860 if (TYPE_ADDRESS_CLASS_1 (type))
3861 {
3862 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3863 }
3864 if (TYPE_ADDRESS_CLASS_2 (type))
3865 {
3866 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3867 }
3868 if (TYPE_RESTRICT (type))
3869 {
3870 puts_filtered (" TYPE_FLAG_RESTRICT");
3871 }
3872 puts_filtered ("\n");
3873
3874 printfi_filtered (spaces, "flags");
3875 if (TYPE_UNSIGNED (type))
3876 {
3877 puts_filtered (" TYPE_FLAG_UNSIGNED");
3878 }
3879 if (TYPE_NOSIGN (type))
3880 {
3881 puts_filtered (" TYPE_FLAG_NOSIGN");
3882 }
3883 if (TYPE_STUB (type))
3884 {
3885 puts_filtered (" TYPE_FLAG_STUB");
3886 }
3887 if (TYPE_TARGET_STUB (type))
3888 {
3889 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3890 }
3891 if (TYPE_STATIC (type))
3892 {
3893 puts_filtered (" TYPE_FLAG_STATIC");
3894 }
3895 if (TYPE_PROTOTYPED (type))
3896 {
3897 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3898 }
3899 if (TYPE_INCOMPLETE (type))
3900 {
3901 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3902 }
3903 if (TYPE_VARARGS (type))
3904 {
3905 puts_filtered (" TYPE_FLAG_VARARGS");
3906 }
3907 /* This is used for things like AltiVec registers on ppc. Gcc emits
3908 an attribute for the array type, which tells whether or not we
3909 have a vector, instead of a regular array. */
3910 if (TYPE_VECTOR (type))
3911 {
3912 puts_filtered (" TYPE_FLAG_VECTOR");
3913 }
3914 if (TYPE_FIXED_INSTANCE (type))
3915 {
3916 puts_filtered (" TYPE_FIXED_INSTANCE");
3917 }
3918 if (TYPE_STUB_SUPPORTED (type))
3919 {
3920 puts_filtered (" TYPE_STUB_SUPPORTED");
3921 }
3922 if (TYPE_NOTTEXT (type))
3923 {
3924 puts_filtered (" TYPE_NOTTEXT");
3925 }
3926 puts_filtered ("\n");
3927 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3928 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3929 puts_filtered ("\n");
3930 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3931 {
3932 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3933 printfi_filtered (spaces + 2,
3934 "[%d] enumval %s type ",
3935 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3936 else
3937 printfi_filtered (spaces + 2,
3938 "[%d] bitpos %d bitsize %d type ",
3939 idx, TYPE_FIELD_BITPOS (type, idx),
3940 TYPE_FIELD_BITSIZE (type, idx));
3941 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3942 printf_filtered (" name '%s' (",
3943 TYPE_FIELD_NAME (type, idx) != NULL
3944 ? TYPE_FIELD_NAME (type, idx)
3945 : "<NULL>");
3946 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3947 printf_filtered (")\n");
3948 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3949 {
3950 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3951 }
3952 }
3953 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3954 {
3955 printfi_filtered (spaces, "low %s%s high %s%s\n",
3956 plongest (TYPE_LOW_BOUND (type)),
3957 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3958 plongest (TYPE_HIGH_BOUND (type)),
3959 TYPE_HIGH_BOUND_UNDEFINED (type)
3960 ? " (undefined)" : "");
3961 }
3962 printfi_filtered (spaces, "vptr_basetype ");
3963 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3964 puts_filtered ("\n");
3965 if (TYPE_VPTR_BASETYPE (type) != NULL)
3966 {
3967 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3968 }
3969 printfi_filtered (spaces, "vptr_fieldno %d\n",
3970 TYPE_VPTR_FIELDNO (type));
3971
3972 switch (TYPE_SPECIFIC_FIELD (type))
3973 {
3974 case TYPE_SPECIFIC_CPLUS_STUFF:
3975 printfi_filtered (spaces, "cplus_stuff ");
3976 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3977 gdb_stdout);
3978 puts_filtered ("\n");
3979 print_cplus_stuff (type, spaces);
3980 break;
3981
3982 case TYPE_SPECIFIC_GNAT_STUFF:
3983 printfi_filtered (spaces, "gnat_stuff ");
3984 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3985 puts_filtered ("\n");
3986 print_gnat_stuff (type, spaces);
3987 break;
3988
3989 case TYPE_SPECIFIC_FLOATFORMAT:
3990 printfi_filtered (spaces, "floatformat ");
3991 if (TYPE_FLOATFORMAT (type) == NULL)
3992 puts_filtered ("(null)");
3993 else
3994 {
3995 puts_filtered ("{ ");
3996 if (TYPE_FLOATFORMAT (type)[0] == NULL
3997 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3998 puts_filtered ("(null)");
3999 else
4000 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4001
4002 puts_filtered (", ");
4003 if (TYPE_FLOATFORMAT (type)[1] == NULL
4004 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4005 puts_filtered ("(null)");
4006 else
4007 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4008
4009 puts_filtered (" }");
4010 }
4011 puts_filtered ("\n");
4012 break;
4013
4014 case TYPE_SPECIFIC_FUNC:
4015 printfi_filtered (spaces, "calling_convention %d\n",
4016 TYPE_CALLING_CONVENTION (type));
4017 /* tail_call_list is not printed. */
4018 break;
4019 }
4020
4021 if (spaces == 0)
4022 obstack_free (&dont_print_type_obstack, NULL);
4023 }
4024 \f
4025 /* Trivial helpers for the libiberty hash table, for mapping one
4026 type to another. */
4027
4028 struct type_pair
4029 {
4030 struct type *old, *new;
4031 };
4032
4033 static hashval_t
4034 type_pair_hash (const void *item)
4035 {
4036 const struct type_pair *pair = item;
4037
4038 return htab_hash_pointer (pair->old);
4039 }
4040
4041 static int
4042 type_pair_eq (const void *item_lhs, const void *item_rhs)
4043 {
4044 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
4045
4046 return lhs->old == rhs->old;
4047 }
4048
4049 /* Allocate the hash table used by copy_type_recursive to walk
4050 types without duplicates. We use OBJFILE's obstack, because
4051 OBJFILE is about to be deleted. */
4052
4053 htab_t
4054 create_copied_types_hash (struct objfile *objfile)
4055 {
4056 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4057 NULL, &objfile->objfile_obstack,
4058 hashtab_obstack_allocate,
4059 dummy_obstack_deallocate);
4060 }
4061
4062 /* Recursively copy (deep copy) TYPE, if it is associated with
4063 OBJFILE. Return a new type allocated using malloc, a saved type if
4064 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4065 not associated with OBJFILE. */
4066
4067 struct type *
4068 copy_type_recursive (struct objfile *objfile,
4069 struct type *type,
4070 htab_t copied_types)
4071 {
4072 struct type_pair *stored, pair;
4073 void **slot;
4074 struct type *new_type;
4075
4076 if (! TYPE_OBJFILE_OWNED (type))
4077 return type;
4078
4079 /* This type shouldn't be pointing to any types in other objfiles;
4080 if it did, the type might disappear unexpectedly. */
4081 gdb_assert (TYPE_OBJFILE (type) == objfile);
4082
4083 pair.old = type;
4084 slot = htab_find_slot (copied_types, &pair, INSERT);
4085 if (*slot != NULL)
4086 return ((struct type_pair *) *slot)->new;
4087
4088 new_type = alloc_type_arch (get_type_arch (type));
4089
4090 /* We must add the new type to the hash table immediately, in case
4091 we encounter this type again during a recursive call below. */
4092 stored
4093 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4094 stored->old = type;
4095 stored->new = new_type;
4096 *slot = stored;
4097
4098 /* Copy the common fields of types. For the main type, we simply
4099 copy the entire thing and then update specific fields as needed. */
4100 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4101 TYPE_OBJFILE_OWNED (new_type) = 0;
4102 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4103
4104 if (TYPE_NAME (type))
4105 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4106 if (TYPE_TAG_NAME (type))
4107 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4108
4109 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4110 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4111
4112 /* Copy the fields. */
4113 if (TYPE_NFIELDS (type))
4114 {
4115 int i, nfields;
4116
4117 nfields = TYPE_NFIELDS (type);
4118 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4119 for (i = 0; i < nfields; i++)
4120 {
4121 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4122 TYPE_FIELD_ARTIFICIAL (type, i);
4123 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4124 if (TYPE_FIELD_TYPE (type, i))
4125 TYPE_FIELD_TYPE (new_type, i)
4126 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4127 copied_types);
4128 if (TYPE_FIELD_NAME (type, i))
4129 TYPE_FIELD_NAME (new_type, i) =
4130 xstrdup (TYPE_FIELD_NAME (type, i));
4131 switch (TYPE_FIELD_LOC_KIND (type, i))
4132 {
4133 case FIELD_LOC_KIND_BITPOS:
4134 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4135 TYPE_FIELD_BITPOS (type, i));
4136 break;
4137 case FIELD_LOC_KIND_ENUMVAL:
4138 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4139 TYPE_FIELD_ENUMVAL (type, i));
4140 break;
4141 case FIELD_LOC_KIND_PHYSADDR:
4142 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4143 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4144 break;
4145 case FIELD_LOC_KIND_PHYSNAME:
4146 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4147 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4148 i)));
4149 break;
4150 default:
4151 internal_error (__FILE__, __LINE__,
4152 _("Unexpected type field location kind: %d"),
4153 TYPE_FIELD_LOC_KIND (type, i));
4154 }
4155 }
4156 }
4157
4158 /* For range types, copy the bounds information. */
4159 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4160 {
4161 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4162 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4163 }
4164
4165 /* Copy the data location information. */
4166 if (TYPE_DATA_LOCATION (type) != NULL)
4167 {
4168 TYPE_DATA_LOCATION (new_type)
4169 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4170 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4171 sizeof (struct dynamic_prop));
4172 }
4173
4174 /* Copy pointers to other types. */
4175 if (TYPE_TARGET_TYPE (type))
4176 TYPE_TARGET_TYPE (new_type) =
4177 copy_type_recursive (objfile,
4178 TYPE_TARGET_TYPE (type),
4179 copied_types);
4180 if (TYPE_VPTR_BASETYPE (type))
4181 TYPE_VPTR_BASETYPE (new_type) =
4182 copy_type_recursive (objfile,
4183 TYPE_VPTR_BASETYPE (type),
4184 copied_types);
4185 /* Maybe copy the type_specific bits.
4186
4187 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4188 base classes and methods. There's no fundamental reason why we
4189 can't, but at the moment it is not needed. */
4190
4191 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4192 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4193 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4194 || TYPE_CODE (type) == TYPE_CODE_UNION
4195 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
4196 INIT_CPLUS_SPECIFIC (new_type);
4197
4198 return new_type;
4199 }
4200
4201 /* Make a copy of the given TYPE, except that the pointer & reference
4202 types are not preserved.
4203
4204 This function assumes that the given type has an associated objfile.
4205 This objfile is used to allocate the new type. */
4206
4207 struct type *
4208 copy_type (const struct type *type)
4209 {
4210 struct type *new_type;
4211
4212 gdb_assert (TYPE_OBJFILE_OWNED (type));
4213
4214 new_type = alloc_type_copy (type);
4215 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4216 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4217 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4218 sizeof (struct main_type));
4219 if (TYPE_DATA_LOCATION (type) != NULL)
4220 {
4221 TYPE_DATA_LOCATION (new_type)
4222 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4223 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4224 sizeof (struct dynamic_prop));
4225 }
4226
4227 return new_type;
4228 }
4229 \f
4230 /* Helper functions to initialize architecture-specific types. */
4231
4232 /* Allocate a type structure associated with GDBARCH and set its
4233 CODE, LENGTH, and NAME fields. */
4234
4235 struct type *
4236 arch_type (struct gdbarch *gdbarch,
4237 enum type_code code, int length, char *name)
4238 {
4239 struct type *type;
4240
4241 type = alloc_type_arch (gdbarch);
4242 TYPE_CODE (type) = code;
4243 TYPE_LENGTH (type) = length;
4244
4245 if (name)
4246 TYPE_NAME (type) = xstrdup (name);
4247
4248 return type;
4249 }
4250
4251 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4252 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4253 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4254
4255 struct type *
4256 arch_integer_type (struct gdbarch *gdbarch,
4257 int bit, int unsigned_p, char *name)
4258 {
4259 struct type *t;
4260
4261 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4262 if (unsigned_p)
4263 TYPE_UNSIGNED (t) = 1;
4264 if (name && strcmp (name, "char") == 0)
4265 TYPE_NOSIGN (t) = 1;
4266
4267 return t;
4268 }
4269
4270 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4271 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4272 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4273
4274 struct type *
4275 arch_character_type (struct gdbarch *gdbarch,
4276 int bit, int unsigned_p, char *name)
4277 {
4278 struct type *t;
4279
4280 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4281 if (unsigned_p)
4282 TYPE_UNSIGNED (t) = 1;
4283
4284 return t;
4285 }
4286
4287 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4288 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4289 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4290
4291 struct type *
4292 arch_boolean_type (struct gdbarch *gdbarch,
4293 int bit, int unsigned_p, char *name)
4294 {
4295 struct type *t;
4296
4297 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4298 if (unsigned_p)
4299 TYPE_UNSIGNED (t) = 1;
4300
4301 return t;
4302 }
4303
4304 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4305 BIT is the type size in bits; if BIT equals -1, the size is
4306 determined by the floatformat. NAME is the type name. Set the
4307 TYPE_FLOATFORMAT from FLOATFORMATS. */
4308
4309 struct type *
4310 arch_float_type (struct gdbarch *gdbarch,
4311 int bit, char *name, const struct floatformat **floatformats)
4312 {
4313 struct type *t;
4314
4315 if (bit == -1)
4316 {
4317 gdb_assert (floatformats != NULL);
4318 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4319 bit = floatformats[0]->totalsize;
4320 }
4321 gdb_assert (bit >= 0);
4322
4323 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4324 TYPE_FLOATFORMAT (t) = floatformats;
4325 return t;
4326 }
4327
4328 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4329 NAME is the type name. TARGET_TYPE is the component float type. */
4330
4331 struct type *
4332 arch_complex_type (struct gdbarch *gdbarch,
4333 char *name, struct type *target_type)
4334 {
4335 struct type *t;
4336
4337 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4338 2 * TYPE_LENGTH (target_type), name);
4339 TYPE_TARGET_TYPE (t) = target_type;
4340 return t;
4341 }
4342
4343 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4344 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4345
4346 struct type *
4347 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4348 {
4349 int nfields = length * TARGET_CHAR_BIT;
4350 struct type *type;
4351
4352 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4353 TYPE_UNSIGNED (type) = 1;
4354 TYPE_NFIELDS (type) = nfields;
4355 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4356
4357 return type;
4358 }
4359
4360 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4361 position BITPOS is called NAME. */
4362
4363 void
4364 append_flags_type_flag (struct type *type, int bitpos, char *name)
4365 {
4366 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4367 gdb_assert (bitpos < TYPE_NFIELDS (type));
4368 gdb_assert (bitpos >= 0);
4369
4370 if (name)
4371 {
4372 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4373 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4374 }
4375 else
4376 {
4377 /* Don't show this field to the user. */
4378 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4379 }
4380 }
4381
4382 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4383 specified by CODE) associated with GDBARCH. NAME is the type name. */
4384
4385 struct type *
4386 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4387 {
4388 struct type *t;
4389
4390 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4391 t = arch_type (gdbarch, code, 0, NULL);
4392 TYPE_TAG_NAME (t) = name;
4393 INIT_CPLUS_SPECIFIC (t);
4394 return t;
4395 }
4396
4397 /* Add new field with name NAME and type FIELD to composite type T.
4398 Do not set the field's position or adjust the type's length;
4399 the caller should do so. Return the new field. */
4400
4401 struct field *
4402 append_composite_type_field_raw (struct type *t, char *name,
4403 struct type *field)
4404 {
4405 struct field *f;
4406
4407 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4408 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4409 sizeof (struct field) * TYPE_NFIELDS (t));
4410 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4411 memset (f, 0, sizeof f[0]);
4412 FIELD_TYPE (f[0]) = field;
4413 FIELD_NAME (f[0]) = name;
4414 return f;
4415 }
4416
4417 /* Add new field with name NAME and type FIELD to composite type T.
4418 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4419
4420 void
4421 append_composite_type_field_aligned (struct type *t, char *name,
4422 struct type *field, int alignment)
4423 {
4424 struct field *f = append_composite_type_field_raw (t, name, field);
4425
4426 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4427 {
4428 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4429 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4430 }
4431 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4432 {
4433 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4434 if (TYPE_NFIELDS (t) > 1)
4435 {
4436 SET_FIELD_BITPOS (f[0],
4437 (FIELD_BITPOS (f[-1])
4438 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4439 * TARGET_CHAR_BIT)));
4440
4441 if (alignment)
4442 {
4443 int left;
4444
4445 alignment *= TARGET_CHAR_BIT;
4446 left = FIELD_BITPOS (f[0]) % alignment;
4447
4448 if (left)
4449 {
4450 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4451 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4452 }
4453 }
4454 }
4455 }
4456 }
4457
4458 /* Add new field with name NAME and type FIELD to composite type T. */
4459
4460 void
4461 append_composite_type_field (struct type *t, char *name,
4462 struct type *field)
4463 {
4464 append_composite_type_field_aligned (t, name, field, 0);
4465 }
4466
4467 static struct gdbarch_data *gdbtypes_data;
4468
4469 const struct builtin_type *
4470 builtin_type (struct gdbarch *gdbarch)
4471 {
4472 return gdbarch_data (gdbarch, gdbtypes_data);
4473 }
4474
4475 static void *
4476 gdbtypes_post_init (struct gdbarch *gdbarch)
4477 {
4478 struct builtin_type *builtin_type
4479 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4480
4481 /* Basic types. */
4482 builtin_type->builtin_void
4483 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4484 builtin_type->builtin_char
4485 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4486 !gdbarch_char_signed (gdbarch), "char");
4487 builtin_type->builtin_signed_char
4488 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4489 0, "signed char");
4490 builtin_type->builtin_unsigned_char
4491 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4492 1, "unsigned char");
4493 builtin_type->builtin_short
4494 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4495 0, "short");
4496 builtin_type->builtin_unsigned_short
4497 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4498 1, "unsigned short");
4499 builtin_type->builtin_int
4500 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4501 0, "int");
4502 builtin_type->builtin_unsigned_int
4503 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4504 1, "unsigned int");
4505 builtin_type->builtin_long
4506 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4507 0, "long");
4508 builtin_type->builtin_unsigned_long
4509 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4510 1, "unsigned long");
4511 builtin_type->builtin_long_long
4512 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4513 0, "long long");
4514 builtin_type->builtin_unsigned_long_long
4515 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4516 1, "unsigned long long");
4517 builtin_type->builtin_float
4518 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4519 "float", gdbarch_float_format (gdbarch));
4520 builtin_type->builtin_double
4521 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4522 "double", gdbarch_double_format (gdbarch));
4523 builtin_type->builtin_long_double
4524 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4525 "long double", gdbarch_long_double_format (gdbarch));
4526 builtin_type->builtin_complex
4527 = arch_complex_type (gdbarch, "complex",
4528 builtin_type->builtin_float);
4529 builtin_type->builtin_double_complex
4530 = arch_complex_type (gdbarch, "double complex",
4531 builtin_type->builtin_double);
4532 builtin_type->builtin_string
4533 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4534 builtin_type->builtin_bool
4535 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4536
4537 /* The following three are about decimal floating point types, which
4538 are 32-bits, 64-bits and 128-bits respectively. */
4539 builtin_type->builtin_decfloat
4540 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4541 builtin_type->builtin_decdouble
4542 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4543 builtin_type->builtin_declong
4544 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4545
4546 /* "True" character types. */
4547 builtin_type->builtin_true_char
4548 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4549 builtin_type->builtin_true_unsigned_char
4550 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4551
4552 /* Fixed-size integer types. */
4553 builtin_type->builtin_int0
4554 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4555 builtin_type->builtin_int8
4556 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4557 builtin_type->builtin_uint8
4558 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4559 builtin_type->builtin_int16
4560 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4561 builtin_type->builtin_uint16
4562 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4563 builtin_type->builtin_int32
4564 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4565 builtin_type->builtin_uint32
4566 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4567 builtin_type->builtin_int64
4568 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4569 builtin_type->builtin_uint64
4570 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4571 builtin_type->builtin_int128
4572 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4573 builtin_type->builtin_uint128
4574 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4575 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4576 TYPE_INSTANCE_FLAG_NOTTEXT;
4577 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4578 TYPE_INSTANCE_FLAG_NOTTEXT;
4579
4580 /* Wide character types. */
4581 builtin_type->builtin_char16
4582 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4583 builtin_type->builtin_char32
4584 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4585
4586
4587 /* Default data/code pointer types. */
4588 builtin_type->builtin_data_ptr
4589 = lookup_pointer_type (builtin_type->builtin_void);
4590 builtin_type->builtin_func_ptr
4591 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4592 builtin_type->builtin_func_func
4593 = lookup_function_type (builtin_type->builtin_func_ptr);
4594
4595 /* This type represents a GDB internal function. */
4596 builtin_type->internal_fn
4597 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4598 "<internal function>");
4599
4600 /* This type represents an xmethod. */
4601 builtin_type->xmethod
4602 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4603
4604 return builtin_type;
4605 }
4606
4607 /* This set of objfile-based types is intended to be used by symbol
4608 readers as basic types. */
4609
4610 static const struct objfile_data *objfile_type_data;
4611
4612 const struct objfile_type *
4613 objfile_type (struct objfile *objfile)
4614 {
4615 struct gdbarch *gdbarch;
4616 struct objfile_type *objfile_type
4617 = objfile_data (objfile, objfile_type_data);
4618
4619 if (objfile_type)
4620 return objfile_type;
4621
4622 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4623 1, struct objfile_type);
4624
4625 /* Use the objfile architecture to determine basic type properties. */
4626 gdbarch = get_objfile_arch (objfile);
4627
4628 /* Basic types. */
4629 objfile_type->builtin_void
4630 = init_type (TYPE_CODE_VOID, 1,
4631 0,
4632 "void", objfile);
4633
4634 objfile_type->builtin_char
4635 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4636 (TYPE_FLAG_NOSIGN
4637 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4638 "char", objfile);
4639 objfile_type->builtin_signed_char
4640 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4641 0,
4642 "signed char", objfile);
4643 objfile_type->builtin_unsigned_char
4644 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4645 TYPE_FLAG_UNSIGNED,
4646 "unsigned char", objfile);
4647 objfile_type->builtin_short
4648 = init_type (TYPE_CODE_INT,
4649 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4650 0, "short", objfile);
4651 objfile_type->builtin_unsigned_short
4652 = init_type (TYPE_CODE_INT,
4653 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4654 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4655 objfile_type->builtin_int
4656 = init_type (TYPE_CODE_INT,
4657 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4658 0, "int", objfile);
4659 objfile_type->builtin_unsigned_int
4660 = init_type (TYPE_CODE_INT,
4661 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4662 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4663 objfile_type->builtin_long
4664 = init_type (TYPE_CODE_INT,
4665 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4666 0, "long", objfile);
4667 objfile_type->builtin_unsigned_long
4668 = init_type (TYPE_CODE_INT,
4669 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4670 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4671 objfile_type->builtin_long_long
4672 = init_type (TYPE_CODE_INT,
4673 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4674 0, "long long", objfile);
4675 objfile_type->builtin_unsigned_long_long
4676 = init_type (TYPE_CODE_INT,
4677 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4678 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4679
4680 objfile_type->builtin_float
4681 = init_type (TYPE_CODE_FLT,
4682 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4683 0, "float", objfile);
4684 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4685 = gdbarch_float_format (gdbarch);
4686 objfile_type->builtin_double
4687 = init_type (TYPE_CODE_FLT,
4688 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4689 0, "double", objfile);
4690 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4691 = gdbarch_double_format (gdbarch);
4692 objfile_type->builtin_long_double
4693 = init_type (TYPE_CODE_FLT,
4694 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4695 0, "long double", objfile);
4696 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4697 = gdbarch_long_double_format (gdbarch);
4698
4699 /* This type represents a type that was unrecognized in symbol read-in. */
4700 objfile_type->builtin_error
4701 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4702
4703 /* The following set of types is used for symbols with no
4704 debug information. */
4705 objfile_type->nodebug_text_symbol
4706 = init_type (TYPE_CODE_FUNC, 1, 0,
4707 "<text variable, no debug info>", objfile);
4708 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4709 = objfile_type->builtin_int;
4710 objfile_type->nodebug_text_gnu_ifunc_symbol
4711 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4712 "<text gnu-indirect-function variable, no debug info>",
4713 objfile);
4714 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4715 = objfile_type->nodebug_text_symbol;
4716 objfile_type->nodebug_got_plt_symbol
4717 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4718 "<text from jump slot in .got.plt, no debug info>",
4719 objfile);
4720 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4721 = objfile_type->nodebug_text_symbol;
4722 objfile_type->nodebug_data_symbol
4723 = init_type (TYPE_CODE_INT,
4724 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4725 "<data variable, no debug info>", objfile);
4726 objfile_type->nodebug_unknown_symbol
4727 = init_type (TYPE_CODE_INT, 1, 0,
4728 "<variable (not text or data), no debug info>", objfile);
4729 objfile_type->nodebug_tls_symbol
4730 = init_type (TYPE_CODE_INT,
4731 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4732 "<thread local variable, no debug info>", objfile);
4733
4734 /* NOTE: on some targets, addresses and pointers are not necessarily
4735 the same.
4736
4737 The upshot is:
4738 - gdb's `struct type' always describes the target's
4739 representation.
4740 - gdb's `struct value' objects should always hold values in
4741 target form.
4742 - gdb's CORE_ADDR values are addresses in the unified virtual
4743 address space that the assembler and linker work with. Thus,
4744 since target_read_memory takes a CORE_ADDR as an argument, it
4745 can access any memory on the target, even if the processor has
4746 separate code and data address spaces.
4747
4748 In this context, objfile_type->builtin_core_addr is a bit odd:
4749 it's a target type for a value the target will never see. It's
4750 only used to hold the values of (typeless) linker symbols, which
4751 are indeed in the unified virtual address space. */
4752
4753 objfile_type->builtin_core_addr
4754 = init_type (TYPE_CODE_INT,
4755 gdbarch_addr_bit (gdbarch) / 8,
4756 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4757
4758 set_objfile_data (objfile, objfile_type_data, objfile_type);
4759 return objfile_type;
4760 }
4761
4762 extern initialize_file_ftype _initialize_gdbtypes;
4763
4764 void
4765 _initialize_gdbtypes (void)
4766 {
4767 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4768 objfile_type_data = register_objfile_data ();
4769
4770 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4771 _("Set debugging of C++ overloading."),
4772 _("Show debugging of C++ overloading."),
4773 _("When enabled, ranking of the "
4774 "functions is displayed."),
4775 NULL,
4776 show_overload_debug,
4777 &setdebuglist, &showdebuglist);
4778
4779 /* Add user knob for controlling resolution of opaque types. */
4780 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4781 &opaque_type_resolution,
4782 _("Set resolution of opaque struct/class/union"
4783 " types (if set before loading symbols)."),
4784 _("Show resolution of opaque struct/class/union"
4785 " types (if set before loading symbols)."),
4786 NULL, NULL,
4787 show_opaque_type_resolution,
4788 &setlist, &showlist);
4789
4790 /* Add an option to permit non-strict type checking. */
4791 add_setshow_boolean_cmd ("type", class_support,
4792 &strict_type_checking,
4793 _("Set strict type checking."),
4794 _("Show strict type checking."),
4795 NULL, NULL,
4796 show_strict_type_checking,
4797 &setchecklist, &showchecklist);
4798 }
This page took 0.198383 seconds and 5 git commands to generate.