Add assembler and disassembler support for the new Armv8.4-a registers for AArch64.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2017 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "common/offset-type.h"
49 #include "common/enum-flags.h"
50
51 /* Forward declarations for prototypes. */
52 struct field;
53 struct block;
54 struct value_print_options;
55 struct language_defn;
56
57 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
58 are already DWARF-specific. */
59
60 /* * Offset relative to the start of its containing CU (compilation
61 unit). */
62 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
63
64 /* * Offset relative to the start of its .debug_info or .debug_types
65 section. */
66 DEFINE_OFFSET_TYPE (sect_offset, unsigned int);
67
68 /* Some macros for char-based bitfields. */
69
70 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
71 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
72 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
73 #define B_TYPE unsigned char
74 #define B_BYTES(x) ( 1 + ((x)>>3) )
75 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
76
77 /* * Different kinds of data types are distinguished by the `code'
78 field. */
79
80 enum type_code
81 {
82 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
83 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
84 TYPE_CODE_PTR, /**< Pointer type */
85
86 /* * Array type with lower & upper bounds.
87
88 Regardless of the language, GDB represents multidimensional
89 array types the way C does: as arrays of arrays. So an
90 instance of a GDB array type T can always be seen as a series
91 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
92 memory.
93
94 Row-major languages like C lay out multi-dimensional arrays so
95 that incrementing the rightmost index in a subscripting
96 expression results in the smallest change in the address of the
97 element referred to. Column-major languages like Fortran lay
98 them out so that incrementing the leftmost index results in the
99 smallest change.
100
101 This means that, in column-major languages, working our way
102 from type to target type corresponds to working through indices
103 from right to left, not left to right. */
104 TYPE_CODE_ARRAY,
105
106 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
107 TYPE_CODE_UNION, /**< C union or Pascal variant part */
108 TYPE_CODE_ENUM, /**< Enumeration type */
109 TYPE_CODE_FLAGS, /**< Bit flags type */
110 TYPE_CODE_FUNC, /**< Function type */
111 TYPE_CODE_INT, /**< Integer type */
112
113 /* * Floating type. This is *NOT* a complex type. Beware, there
114 are parts of GDB which bogusly assume that TYPE_CODE_FLT can
115 mean complex. */
116 TYPE_CODE_FLT,
117
118 /* * Void type. The length field specifies the length (probably
119 always one) which is used in pointer arithmetic involving
120 pointers to this type, but actually dereferencing such a
121 pointer is invalid; a void type has no length and no actual
122 representation in memory or registers. A pointer to a void
123 type is a generic pointer. */
124 TYPE_CODE_VOID,
125
126 TYPE_CODE_SET, /**< Pascal sets */
127 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
128
129 /* * A string type which is like an array of character but prints
130 differently. It does not contain a length field as Pascal
131 strings (for many Pascals, anyway) do; if we want to deal with
132 such strings, we should use a new type code. */
133 TYPE_CODE_STRING,
134
135 /* * Unknown type. The length field is valid if we were able to
136 deduce that much about the type, or 0 if we don't even know
137 that. */
138 TYPE_CODE_ERROR,
139
140 /* C++ */
141 TYPE_CODE_METHOD, /**< Method type */
142
143 /* * Pointer-to-member-function type. This describes how to access a
144 particular member function of a class (possibly a virtual
145 member function). The representation may vary between different
146 C++ ABIs. */
147 TYPE_CODE_METHODPTR,
148
149 /* * Pointer-to-member type. This is the offset within a class to
150 some particular data member. The only currently supported
151 representation uses an unbiased offset, with -1 representing
152 NULL; this is used by the Itanium C++ ABI (used by GCC on all
153 platforms). */
154 TYPE_CODE_MEMBERPTR,
155
156 TYPE_CODE_REF, /**< C++ Reference types */
157
158 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
159
160 TYPE_CODE_CHAR, /**< *real* character type */
161
162 /* * Boolean type. 0 is false, 1 is true, and other values are
163 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
164 TYPE_CODE_BOOL,
165
166 /* Fortran */
167 TYPE_CODE_COMPLEX, /**< Complex float */
168
169 TYPE_CODE_TYPEDEF,
170
171 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
172
173 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
174
175 TYPE_CODE_MODULE, /**< Fortran module. */
176
177 /* * Internal function type. */
178 TYPE_CODE_INTERNAL_FUNCTION,
179
180 /* * Methods implemented in extension languages. */
181 TYPE_CODE_XMETHOD
182 };
183
184 /* * Some bits for the type's instance_flags word. See the macros
185 below for documentation on each bit. */
186
187 enum type_instance_flag_value
188 {
189 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
190 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
191 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
192 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
193 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
194 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
195 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
196 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
197 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
198 };
199
200 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
201
202 /* * Unsigned integer type. If this is not set for a TYPE_CODE_INT,
203 the type is signed (unless TYPE_NOSIGN (below) is set). */
204
205 #define TYPE_UNSIGNED(t) (TYPE_MAIN_TYPE (t)->flag_unsigned)
206
207 /* * No sign for this type. In C++, "char", "signed char", and
208 "unsigned char" are distinct types; so we need an extra flag to
209 indicate the absence of a sign! */
210
211 #define TYPE_NOSIGN(t) (TYPE_MAIN_TYPE (t)->flag_nosign)
212
213 /* * This appears in a type's flags word if it is a stub type (e.g.,
214 if someone referenced a type that wasn't defined in a source file
215 via (struct sir_not_appearing_in_this_film *)). */
216
217 #define TYPE_STUB(t) (TYPE_MAIN_TYPE (t)->flag_stub)
218
219 /* * The target type of this type is a stub type, and this type needs
220 to be updated if it gets un-stubbed in check_typedef. Used for
221 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
222 based on the TYPE_LENGTH of the target type. Also, set for
223 TYPE_CODE_TYPEDEF. */
224
225 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
226
227 /* * This is a function type which appears to have a prototype. We
228 need this for function calls in order to tell us if it's necessary
229 to coerce the args, or to just do the standard conversions. This
230 is used with a short field. */
231
232 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
233
234 /* * This flag is used to indicate that processing for this type
235 is incomplete.
236
237 (Mostly intended for HP platforms, where class methods, for
238 instance, can be encountered before their classes in the debug
239 info; the incomplete type has to be marked so that the class and
240 the method can be assigned correct types.) */
241
242 #define TYPE_INCOMPLETE(t) (TYPE_MAIN_TYPE (t)->flag_incomplete)
243
244 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
245 to functions. */
246
247 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
248
249 /* * Identify a vector type. Gcc is handling this by adding an extra
250 attribute to the array type. We slurp that in as a new flag of a
251 type. This is used only in dwarf2read.c. */
252 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
253
254 /* * The debugging formats (especially STABS) do not contain enough
255 information to represent all Ada types---especially those whose
256 size depends on dynamic quantities. Therefore, the GNAT Ada
257 compiler includes extra information in the form of additional type
258 definitions connected by naming conventions. This flag indicates
259 that the type is an ordinary (unencoded) GDB type that has been
260 created from the necessary run-time information, and does not need
261 further interpretation. Optionally marks ordinary, fixed-size GDB
262 type. */
263
264 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
265
266 /* * This debug target supports TYPE_STUB(t). In the unsupported case
267 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
268 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
269 guessed the TYPE_STUB(t) value (see dwarfread.c). */
270
271 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
272
273 /* * Not textual. By default, GDB treats all single byte integers as
274 characters (or elements of strings) unless this flag is set. */
275
276 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
277
278 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
279 address is returned by this function call. TYPE_TARGET_TYPE
280 determines the final returned function type to be presented to
281 user. */
282
283 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
284
285 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
286 the objfile retrieved as TYPE_OBJFILE. Otherweise, the type is
287 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
288
289 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
290 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
291 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
292
293 /* * True if this type was declared using the "class" keyword. This is
294 only valid for C++ structure and enum types. If false, a structure
295 was declared as a "struct"; if true it was declared "class". For
296 enum types, this is true when "enum class" or "enum struct" was
297 used to declare the type.. */
298
299 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
300
301 /* * True if this type is a "flag" enum. A flag enum is one where all
302 the values are pairwise disjoint when "and"ed together. This
303 affects how enum values are printed. */
304
305 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
306
307 /* * Constant type. If this is set, the corresponding type has a
308 const modifier. */
309
310 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
311
312 /* * Volatile type. If this is set, the corresponding type has a
313 volatile modifier. */
314
315 #define TYPE_VOLATILE(t) \
316 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
317
318 /* * Restrict type. If this is set, the corresponding type has a
319 restrict modifier. */
320
321 #define TYPE_RESTRICT(t) \
322 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
323
324 /* * Atomic type. If this is set, the corresponding type has an
325 _Atomic modifier. */
326
327 #define TYPE_ATOMIC(t) \
328 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
329
330 /* * True if this type represents either an lvalue or lvalue reference type. */
331
332 #define TYPE_IS_REFERENCE(t) \
333 (TYPE_CODE (t) == TYPE_CODE_REF || TYPE_CODE (t) == TYPE_CODE_RVALUE_REF)
334
335 /* * Instruction-space delimited type. This is for Harvard architectures
336 which have separate instruction and data address spaces (and perhaps
337 others).
338
339 GDB usually defines a flat address space that is a superset of the
340 architecture's two (or more) address spaces, but this is an extension
341 of the architecture's model.
342
343 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
344 resides in instruction memory, even if its address (in the extended
345 flat address space) does not reflect this.
346
347 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
348 corresponding type resides in the data memory space, even if
349 this is not indicated by its (flat address space) address.
350
351 If neither flag is set, the default space for functions / methods
352 is instruction space, and for data objects is data memory. */
353
354 #define TYPE_CODE_SPACE(t) \
355 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
356
357 #define TYPE_DATA_SPACE(t) \
358 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
359
360 /* * Address class flags. Some environments provide for pointers
361 whose size is different from that of a normal pointer or address
362 types where the bits are interpreted differently than normal
363 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
364 target specific ways to represent these different types of address
365 classes. */
366
367 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
368 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
369 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
370 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
371 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
372 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
373 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
374 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
375
376 enum dynamic_prop_kind
377 {
378 PROP_UNDEFINED, /* Not defined. */
379 PROP_CONST, /* Constant. */
380 PROP_ADDR_OFFSET, /* Address offset. */
381 PROP_LOCEXPR, /* Location expression. */
382 PROP_LOCLIST /* Location list. */
383 };
384
385 union dynamic_prop_data
386 {
387 /* Storage for constant property. */
388
389 LONGEST const_val;
390
391 /* Storage for dynamic property. */
392
393 void *baton;
394 };
395
396 /* * Used to store a dynamic property. */
397
398 struct dynamic_prop
399 {
400 /* Determine which field of the union dynamic_prop.data is used. */
401 enum dynamic_prop_kind kind;
402
403 /* Storage for dynamic or static value. */
404 union dynamic_prop_data data;
405 };
406
407 /* * Define a type's dynamic property node kind. */
408 enum dynamic_prop_node_kind
409 {
410 /* A property providing a type's data location.
411 Evaluating this field yields to the location of an object's data. */
412 DYN_PROP_DATA_LOCATION,
413
414 /* A property representing DW_AT_allocated. The presence of this attribute
415 indicates that the object of the type can be allocated/deallocated. */
416 DYN_PROP_ALLOCATED,
417
418 /* A property representing DW_AT_allocated. The presence of this attribute
419 indicated that the object of the type can be associated. */
420 DYN_PROP_ASSOCIATED,
421 };
422
423 /* * List for dynamic type attributes. */
424 struct dynamic_prop_list
425 {
426 /* The kind of dynamic prop in this node. */
427 enum dynamic_prop_node_kind prop_kind;
428
429 /* The dynamic property itself. */
430 struct dynamic_prop prop;
431
432 /* A pointer to the next dynamic property. */
433 struct dynamic_prop_list *next;
434 };
435
436 /* * Determine which field of the union main_type.fields[x].loc is
437 used. */
438
439 enum field_loc_kind
440 {
441 FIELD_LOC_KIND_BITPOS, /**< bitpos */
442 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
443 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
444 FIELD_LOC_KIND_PHYSNAME, /**< physname */
445 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
446 };
447
448 /* * A discriminant to determine which field in the
449 main_type.type_specific union is being used, if any.
450
451 For types such as TYPE_CODE_FLT, the use of this
452 discriminant is really redundant, as we know from the type code
453 which field is going to be used. As such, it would be possible to
454 reduce the size of this enum in order to save a bit or two for
455 other fields of struct main_type. But, since we still have extra
456 room , and for the sake of clarity and consistency, we treat all fields
457 of the union the same way. */
458
459 enum type_specific_kind
460 {
461 TYPE_SPECIFIC_NONE,
462 TYPE_SPECIFIC_CPLUS_STUFF,
463 TYPE_SPECIFIC_GNAT_STUFF,
464 TYPE_SPECIFIC_FLOATFORMAT,
465 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
466 TYPE_SPECIFIC_FUNC,
467 TYPE_SPECIFIC_SELF_TYPE
468 };
469
470 union type_owner
471 {
472 struct objfile *objfile;
473 struct gdbarch *gdbarch;
474 };
475
476 union field_location
477 {
478 /* * Position of this field, counting in bits from start of
479 containing structure. For gdbarch_bits_big_endian=1
480 targets, it is the bit offset to the MSB. For
481 gdbarch_bits_big_endian=0 targets, it is the bit offset to
482 the LSB. */
483
484 LONGEST bitpos;
485
486 /* * Enum value. */
487 LONGEST enumval;
488
489 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
490 physaddr is the location (in the target) of the static
491 field. Otherwise, physname is the mangled label of the
492 static field. */
493
494 CORE_ADDR physaddr;
495 const char *physname;
496
497 /* * The field location can be computed by evaluating the
498 following DWARF block. Its DATA is allocated on
499 objfile_obstack - no CU load is needed to access it. */
500
501 struct dwarf2_locexpr_baton *dwarf_block;
502 };
503
504 struct field
505 {
506 union field_location loc;
507
508 /* * For a function or member type, this is 1 if the argument is
509 marked artificial. Artificial arguments should not be shown
510 to the user. For TYPE_CODE_RANGE it is set if the specific
511 bound is not defined. */
512
513 unsigned int artificial : 1;
514
515 /* * Discriminant for union field_location. */
516
517 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
518
519 /* * Size of this field, in bits, or zero if not packed.
520 If non-zero in an array type, indicates the element size in
521 bits (used only in Ada at the moment).
522 For an unpacked field, the field's type's length
523 says how many bytes the field occupies. */
524
525 unsigned int bitsize : 28;
526
527 /* * In a struct or union type, type of this field.
528 - In a function or member type, type of this argument.
529 - In an array type, the domain-type of the array. */
530
531 struct type *type;
532
533 /* * Name of field, value or argument.
534 NULL for range bounds, array domains, and member function
535 arguments. */
536
537 const char *name;
538 };
539
540 struct range_bounds
541 {
542 /* * Low bound of range. */
543
544 struct dynamic_prop low;
545
546 /* * High bound of range. */
547
548 struct dynamic_prop high;
549
550 /* True if HIGH range bound contains the number of elements in the
551 subrange. This affects how the final hight bound is computed. */
552
553 int flag_upper_bound_is_count : 1;
554
555 /* True if LOW or/and HIGH are resolved into a static bound from
556 a dynamic one. */
557
558 int flag_bound_evaluated : 1;
559 };
560
561 union type_specific
562 {
563 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
564 point to cplus_struct_default, a default static instance of a
565 struct cplus_struct_type. */
566
567 struct cplus_struct_type *cplus_stuff;
568
569 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
570 provides additional information. */
571
572 struct gnat_aux_type *gnat_stuff;
573
574 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
575 floatformat object that describes the floating-point value
576 that resides within the type. */
577
578 const struct floatformat *floatformat;
579
580 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
581
582 struct func_type *func_stuff;
583
584 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
585 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
586 is a member of. */
587
588 struct type *self_type;
589 };
590
591 /* * Main structure representing a type in GDB.
592
593 This structure is space-critical. Its layout has been tweaked to
594 reduce the space used. */
595
596 struct main_type
597 {
598 /* * Code for kind of type. */
599
600 ENUM_BITFIELD(type_code) code : 8;
601
602 /* * Flags about this type. These fields appear at this location
603 because they packs nicely here. See the TYPE_* macros for
604 documentation about these fields. */
605
606 unsigned int flag_unsigned : 1;
607 unsigned int flag_nosign : 1;
608 unsigned int flag_stub : 1;
609 unsigned int flag_target_stub : 1;
610 unsigned int flag_static : 1;
611 unsigned int flag_prototyped : 1;
612 unsigned int flag_incomplete : 1;
613 unsigned int flag_varargs : 1;
614 unsigned int flag_vector : 1;
615 unsigned int flag_stub_supported : 1;
616 unsigned int flag_gnu_ifunc : 1;
617 unsigned int flag_fixed_instance : 1;
618 unsigned int flag_objfile_owned : 1;
619
620 /* * True if this type was declared with "class" rather than
621 "struct". */
622
623 unsigned int flag_declared_class : 1;
624
625 /* * True if this is an enum type with disjoint values. This
626 affects how the enum is printed. */
627
628 unsigned int flag_flag_enum : 1;
629
630 /* * A discriminant telling us which field of the type_specific
631 union is being used for this type, if any. */
632
633 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
634
635 /* * Number of fields described for this type. This field appears
636 at this location because it packs nicely here. */
637
638 short nfields;
639
640 /* * Name of this type, or NULL if none.
641
642 This is used for printing only, except by poorly designed C++
643 code. For looking up a name, look for a symbol in the
644 VAR_DOMAIN. This is generally allocated in the objfile's
645 obstack. However coffread.c uses malloc. */
646
647 const char *name;
648
649 /* * Tag name for this type, or NULL if none. This means that the
650 name of the type consists of a keyword followed by the tag name.
651 Which keyword is determined by the type code ("struct" for
652 TYPE_CODE_STRUCT, etc.). As far as I know C/C++ are the only
653 languages with this feature.
654
655 This is used for printing only, except by poorly designed C++ code.
656 For looking up a name, look for a symbol in the STRUCT_DOMAIN.
657 One more legitimate use is that if TYPE_STUB is set, this is
658 the name to use to look for definitions in other files. */
659
660 const char *tag_name;
661
662 /* * Every type is now associated with a particular objfile, and the
663 type is allocated on the objfile_obstack for that objfile. One
664 problem however, is that there are times when gdb allocates new
665 types while it is not in the process of reading symbols from a
666 particular objfile. Fortunately, these happen when the type
667 being created is a derived type of an existing type, such as in
668 lookup_pointer_type(). So we can just allocate the new type
669 using the same objfile as the existing type, but to do this we
670 need a backpointer to the objfile from the existing type. Yes
671 this is somewhat ugly, but without major overhaul of the internal
672 type system, it can't be avoided for now. */
673
674 union type_owner owner;
675
676 /* * For a pointer type, describes the type of object pointed to.
677 - For an array type, describes the type of the elements.
678 - For a function or method type, describes the type of the return value.
679 - For a range type, describes the type of the full range.
680 - For a complex type, describes the type of each coordinate.
681 - For a special record or union type encoding a dynamic-sized type
682 in GNAT, a memoized pointer to a corresponding static version of
683 the type.
684 - Unused otherwise. */
685
686 struct type *target_type;
687
688 /* * For structure and union types, a description of each field.
689 For set and pascal array types, there is one "field",
690 whose type is the domain type of the set or array.
691 For range types, there are two "fields",
692 the minimum and maximum values (both inclusive).
693 For enum types, each possible value is described by one "field".
694 For a function or method type, a "field" for each parameter.
695 For C++ classes, there is one field for each base class (if it is
696 a derived class) plus one field for each class data member. Member
697 functions are recorded elsewhere.
698
699 Using a pointer to a separate array of fields
700 allows all types to have the same size, which is useful
701 because we can allocate the space for a type before
702 we know what to put in it. */
703
704 union
705 {
706 struct field *fields;
707
708 /* * Union member used for range types. */
709
710 struct range_bounds *bounds;
711
712 } flds_bnds;
713
714 /* * Slot to point to additional language-specific fields of this
715 type. */
716
717 union type_specific type_specific;
718
719 /* * Contains all dynamic type properties. */
720 struct dynamic_prop_list *dyn_prop_list;
721 };
722
723 /* * A ``struct type'' describes a particular instance of a type, with
724 some particular qualification. */
725
726 struct type
727 {
728 /* * Type that is a pointer to this type.
729 NULL if no such pointer-to type is known yet.
730 The debugger may add the address of such a type
731 if it has to construct one later. */
732
733 struct type *pointer_type;
734
735 /* * C++: also need a reference type. */
736
737 struct type *reference_type;
738
739 /* * A C++ rvalue reference type added in C++11. */
740
741 struct type *rvalue_reference_type;
742
743 /* * Variant chain. This points to a type that differs from this
744 one only in qualifiers and length. Currently, the possible
745 qualifiers are const, volatile, code-space, data-space, and
746 address class. The length may differ only when one of the
747 address class flags are set. The variants are linked in a
748 circular ring and share MAIN_TYPE. */
749
750 struct type *chain;
751
752 /* * Flags specific to this instance of the type, indicating where
753 on the ring we are.
754
755 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
756 binary or-ed with the target type, with a special case for
757 address class and space class. For example if this typedef does
758 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
759 instance flags are completely inherited from the target type. No
760 qualifiers can be cleared by the typedef. See also
761 check_typedef. */
762 int instance_flags;
763
764 /* * Length of storage for a value of this type. The value is the
765 expression in host bytes of what sizeof(type) would return. This
766 size includes padding. For example, an i386 extended-precision
767 floating point value really only occupies ten bytes, but most
768 ABI's declare its size to be 12 bytes, to preserve alignment.
769 A `struct type' representing such a floating-point type would
770 have a `length' value of 12, even though the last two bytes are
771 unused.
772
773 Since this field is expressed in host bytes, its value is appropriate
774 to pass to memcpy and such (it is assumed that GDB itself always runs
775 on an 8-bits addressable architecture). However, when using it for
776 target address arithmetic (e.g. adding it to a target address), the
777 type_length_units function should be used in order to get the length
778 expressed in target addressable memory units. */
779
780 unsigned int length;
781
782 /* * Core type, shared by a group of qualified types. */
783
784 struct main_type *main_type;
785 };
786
787 #define NULL_TYPE ((struct type *) 0)
788
789 struct fn_fieldlist
790 {
791
792 /* * The overloaded name.
793 This is generally allocated in the objfile's obstack.
794 However stabsread.c sometimes uses malloc. */
795
796 const char *name;
797
798 /* * The number of methods with this name. */
799
800 int length;
801
802 /* * The list of methods. */
803
804 struct fn_field *fn_fields;
805 };
806
807
808
809 struct fn_field
810 {
811 /* * If is_stub is clear, this is the mangled name which we can look
812 up to find the address of the method (FIXME: it would be cleaner
813 to have a pointer to the struct symbol here instead).
814
815 If is_stub is set, this is the portion of the mangled name which
816 specifies the arguments. For example, "ii", if there are two int
817 arguments, or "" if there are no arguments. See gdb_mangle_name
818 for the conversion from this format to the one used if is_stub is
819 clear. */
820
821 const char *physname;
822
823 /* * The function type for the method.
824
825 (This comment used to say "The return value of the method", but
826 that's wrong. The function type is expected here, i.e. something
827 with TYPE_CODE_METHOD, and *not* the return-value type). */
828
829 struct type *type;
830
831 /* * For virtual functions. First baseclass that defines this
832 virtual function. */
833
834 struct type *fcontext;
835
836 /* Attributes. */
837
838 unsigned int is_const:1;
839 unsigned int is_volatile:1;
840 unsigned int is_private:1;
841 unsigned int is_protected:1;
842 unsigned int is_artificial:1;
843
844 /* * A stub method only has some fields valid (but they are enough
845 to reconstruct the rest of the fields). */
846
847 unsigned int is_stub:1;
848
849 /* * True if this function is a constructor, false otherwise. */
850
851 unsigned int is_constructor : 1;
852
853 /* * Unused. */
854
855 unsigned int dummy:9;
856
857 /* * Index into that baseclass's virtual function table, minus 2;
858 else if static: VOFFSET_STATIC; else: 0. */
859
860 unsigned int voffset:16;
861
862 #define VOFFSET_STATIC 1
863
864 };
865
866 struct typedef_field
867 {
868 /* * Unqualified name to be prefixed by owning class qualified
869 name. */
870
871 const char *name;
872
873 /* * Type this typedef named NAME represents. */
874
875 struct type *type;
876
877 /* * True if this field was declared protected, false otherwise. */
878 unsigned int is_protected : 1;
879
880 /* * True if this field was declared private, false otherwise. */
881 unsigned int is_private : 1;
882 };
883
884 /* * C++ language-specific information for TYPE_CODE_STRUCT and
885 TYPE_CODE_UNION nodes. */
886
887 struct cplus_struct_type
888 {
889 /* * Number of base classes this type derives from. The
890 baseclasses are stored in the first N_BASECLASSES fields
891 (i.e. the `fields' field of the struct type). The only fields
892 of struct field that are used are: type, name, loc.bitpos. */
893
894 short n_baseclasses;
895
896 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
897 All access to this field must be through TYPE_VPTR_FIELDNO as one
898 thing it does is check whether the field has been initialized.
899 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
900 which for portability reasons doesn't initialize this field.
901 TYPE_VPTR_FIELDNO returns -1 for this case.
902
903 If -1, we were unable to find the virtual function table pointer in
904 initial symbol reading, and get_vptr_fieldno should be called to find
905 it if possible. get_vptr_fieldno will update this field if possible.
906 Otherwise the value is left at -1.
907
908 Unused if this type does not have virtual functions. */
909
910 short vptr_fieldno;
911
912 /* * Number of methods with unique names. All overloaded methods
913 with the same name count only once. */
914
915 short nfn_fields;
916
917 /* * Number of template arguments. */
918
919 unsigned short n_template_arguments;
920
921 /* * One if this struct is a dynamic class, as defined by the
922 Itanium C++ ABI: if it requires a virtual table pointer,
923 because it or any of its base classes have one or more virtual
924 member functions or virtual base classes. Minus one if not
925 dynamic. Zero if not yet computed. */
926
927 int is_dynamic : 2;
928
929 /* * The base class which defined the virtual function table pointer. */
930
931 struct type *vptr_basetype;
932
933 /* * For derived classes, the number of base classes is given by
934 n_baseclasses and virtual_field_bits is a bit vector containing
935 one bit per base class. If the base class is virtual, the
936 corresponding bit will be set.
937 I.E, given:
938
939 class A{};
940 class B{};
941 class C : public B, public virtual A {};
942
943 B is a baseclass of C; A is a virtual baseclass for C.
944 This is a C++ 2.0 language feature. */
945
946 B_TYPE *virtual_field_bits;
947
948 /* * For classes with private fields, the number of fields is
949 given by nfields and private_field_bits is a bit vector
950 containing one bit per field.
951
952 If the field is private, the corresponding bit will be set. */
953
954 B_TYPE *private_field_bits;
955
956 /* * For classes with protected fields, the number of fields is
957 given by nfields and protected_field_bits is a bit vector
958 containing one bit per field.
959
960 If the field is private, the corresponding bit will be set. */
961
962 B_TYPE *protected_field_bits;
963
964 /* * For classes with fields to be ignored, either this is
965 optimized out or this field has length 0. */
966
967 B_TYPE *ignore_field_bits;
968
969 /* * For classes, structures, and unions, a description of each
970 field, which consists of an overloaded name, followed by the
971 types of arguments that the method expects, and then the name
972 after it has been renamed to make it distinct.
973
974 fn_fieldlists points to an array of nfn_fields of these. */
975
976 struct fn_fieldlist *fn_fieldlists;
977
978 /* * typedefs defined inside this class. typedef_field points to
979 an array of typedef_field_count elements. */
980
981 struct typedef_field *typedef_field;
982
983 unsigned typedef_field_count;
984
985 /* * The template arguments. This is an array with
986 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
987 classes. */
988
989 struct symbol **template_arguments;
990 };
991
992 /* * Struct used to store conversion rankings. */
993
994 struct rank
995 {
996 short rank;
997
998 /* * When two conversions are of the same type and therefore have
999 the same rank, subrank is used to differentiate the two.
1000
1001 Eg: Two derived-class-pointer to base-class-pointer conversions
1002 would both have base pointer conversion rank, but the
1003 conversion with the shorter distance to the ancestor is
1004 preferable. 'subrank' would be used to reflect that. */
1005
1006 short subrank;
1007 };
1008
1009 /* * Struct used for ranking a function for overload resolution. */
1010
1011 struct badness_vector
1012 {
1013 int length;
1014 struct rank *rank;
1015 };
1016
1017 /* * GNAT Ada-specific information for various Ada types. */
1018
1019 struct gnat_aux_type
1020 {
1021 /* * Parallel type used to encode information about dynamic types
1022 used in Ada (such as variant records, variable-size array,
1023 etc). */
1024 struct type* descriptive_type;
1025 };
1026
1027 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1028
1029 struct func_type
1030 {
1031 /* * The calling convention for targets supporting multiple ABIs.
1032 Right now this is only fetched from the Dwarf-2
1033 DW_AT_calling_convention attribute. The value is one of the
1034 DW_CC enum dwarf_calling_convention constants. */
1035
1036 unsigned calling_convention : 8;
1037
1038 /* * Whether this function normally returns to its caller. It is
1039 set from the DW_AT_noreturn attribute if set on the
1040 DW_TAG_subprogram. */
1041
1042 unsigned int is_noreturn : 1;
1043
1044 /* * Only those DW_TAG_call_site's in this function that have
1045 DW_AT_call_tail_call set are linked in this list. Function
1046 without its tail call list complete
1047 (DW_AT_call_all_tail_calls or its superset
1048 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1049 DW_TAG_call_site's exist in such function. */
1050
1051 struct call_site *tail_call_list;
1052
1053 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1054 contains the method. */
1055
1056 struct type *self_type;
1057 };
1058
1059 /* struct call_site_parameter can be referenced in callees by several ways. */
1060
1061 enum call_site_parameter_kind
1062 {
1063 /* * Use field call_site_parameter.u.dwarf_reg. */
1064 CALL_SITE_PARAMETER_DWARF_REG,
1065
1066 /* * Use field call_site_parameter.u.fb_offset. */
1067 CALL_SITE_PARAMETER_FB_OFFSET,
1068
1069 /* * Use field call_site_parameter.u.param_offset. */
1070 CALL_SITE_PARAMETER_PARAM_OFFSET
1071 };
1072
1073 struct call_site_target
1074 {
1075 union field_location loc;
1076
1077 /* * Discriminant for union field_location. */
1078
1079 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1080 };
1081
1082 union call_site_parameter_u
1083 {
1084 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1085 as DWARF register number, for register passed
1086 parameters. */
1087
1088 int dwarf_reg;
1089
1090 /* * Offset from the callee's frame base, for stack passed
1091 parameters. This equals offset from the caller's stack
1092 pointer. */
1093
1094 CORE_ADDR fb_offset;
1095
1096 /* * Offset relative to the start of this PER_CU to
1097 DW_TAG_formal_parameter which is referenced by both
1098 caller and the callee. */
1099
1100 cu_offset param_cu_off;
1101 };
1102
1103 struct call_site_parameter
1104 {
1105 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1106
1107 union call_site_parameter_u u;
1108
1109 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1110
1111 const gdb_byte *value;
1112 size_t value_size;
1113
1114 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1115 It may be NULL if not provided by DWARF. */
1116
1117 const gdb_byte *data_value;
1118 size_t data_value_size;
1119 };
1120
1121 /* * A place where a function gets called from, represented by
1122 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1123
1124 struct call_site
1125 {
1126 /* * Address of the first instruction after this call. It must be
1127 the first field as we overload core_addr_hash and core_addr_eq
1128 for it. */
1129
1130 CORE_ADDR pc;
1131
1132 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1133
1134 struct call_site *tail_call_next;
1135
1136 /* * Describe DW_AT_call_target. Missing attribute uses
1137 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1138
1139 struct call_site_target target;
1140
1141 /* * Size of the PARAMETER array. */
1142
1143 unsigned parameter_count;
1144
1145 /* * CU of the function where the call is located. It gets used
1146 for DWARF blocks execution in the parameter array below. */
1147
1148 struct dwarf2_per_cu_data *per_cu;
1149
1150 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1151
1152 struct call_site_parameter parameter[1];
1153 };
1154
1155 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1156 static structure. */
1157
1158 extern const struct cplus_struct_type cplus_struct_default;
1159
1160 extern void allocate_cplus_struct_type (struct type *);
1161
1162 #define INIT_CPLUS_SPECIFIC(type) \
1163 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1164 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1165 &cplus_struct_default)
1166
1167 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1168
1169 #define HAVE_CPLUS_STRUCT(type) \
1170 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1171 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1172
1173 extern const struct gnat_aux_type gnat_aux_default;
1174
1175 extern void allocate_gnat_aux_type (struct type *);
1176
1177 #define INIT_GNAT_SPECIFIC(type) \
1178 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1179 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1180 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1181 /* * A macro that returns non-zero if the type-specific data should be
1182 read as "gnat-stuff". */
1183 #define HAVE_GNAT_AUX_INFO(type) \
1184 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1185
1186 #define INIT_FUNC_SPECIFIC(type) \
1187 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1188 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1189 TYPE_ZALLOC (type, \
1190 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1191
1192 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1193 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1194 #define TYPE_NAME(thistype) TYPE_MAIN_TYPE(thistype)->name
1195 #define TYPE_TAG_NAME(type) TYPE_MAIN_TYPE(type)->tag_name
1196 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1197 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1198 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1199 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1200 #define TYPE_CHAIN(thistype) (thistype)->chain
1201 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1202 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1203 so you only have to call check_typedef once. Since allocate_value
1204 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1205 #define TYPE_LENGTH(thistype) (thistype)->length
1206 /* * Note that TYPE_CODE can be TYPE_CODE_TYPEDEF, so if you want the real
1207 type, you need to do TYPE_CODE (check_type (this_type)). */
1208 #define TYPE_CODE(thistype) TYPE_MAIN_TYPE(thistype)->code
1209 #define TYPE_NFIELDS(thistype) TYPE_MAIN_TYPE(thistype)->nfields
1210 #define TYPE_FIELDS(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields
1211
1212 #define TYPE_INDEX_TYPE(type) TYPE_FIELD_TYPE (type, 0)
1213 #define TYPE_RANGE_DATA(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.bounds
1214 #define TYPE_LOW_BOUND(range_type) \
1215 TYPE_RANGE_DATA(range_type)->low.data.const_val
1216 #define TYPE_HIGH_BOUND(range_type) \
1217 TYPE_RANGE_DATA(range_type)->high.data.const_val
1218 #define TYPE_LOW_BOUND_UNDEFINED(range_type) \
1219 (TYPE_RANGE_DATA(range_type)->low.kind == PROP_UNDEFINED)
1220 #define TYPE_HIGH_BOUND_UNDEFINED(range_type) \
1221 (TYPE_RANGE_DATA(range_type)->high.kind == PROP_UNDEFINED)
1222 #define TYPE_HIGH_BOUND_KIND(range_type) \
1223 TYPE_RANGE_DATA(range_type)->high.kind
1224 #define TYPE_LOW_BOUND_KIND(range_type) \
1225 TYPE_RANGE_DATA(range_type)->low.kind
1226
1227 /* Property accessors for the type data location. */
1228 #define TYPE_DATA_LOCATION(thistype) \
1229 get_dyn_prop (DYN_PROP_DATA_LOCATION, thistype)
1230 #define TYPE_DATA_LOCATION_BATON(thistype) \
1231 TYPE_DATA_LOCATION (thistype)->data.baton
1232 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1233 TYPE_DATA_LOCATION (thistype)->data.const_val
1234 #define TYPE_DATA_LOCATION_KIND(thistype) \
1235 TYPE_DATA_LOCATION (thistype)->kind
1236
1237 /* Property accessors for the type allocated/associated. */
1238 #define TYPE_ALLOCATED_PROP(thistype) \
1239 get_dyn_prop (DYN_PROP_ALLOCATED, thistype)
1240 #define TYPE_ASSOCIATED_PROP(thistype) \
1241 get_dyn_prop (DYN_PROP_ASSOCIATED, thistype)
1242
1243 /* Attribute accessors for dynamic properties. */
1244 #define TYPE_DYN_PROP_LIST(thistype) \
1245 TYPE_MAIN_TYPE(thistype)->dyn_prop_list
1246 #define TYPE_DYN_PROP_BATON(dynprop) \
1247 dynprop->data.baton
1248 #define TYPE_DYN_PROP_ADDR(dynprop) \
1249 dynprop->data.const_val
1250 #define TYPE_DYN_PROP_KIND(dynprop) \
1251 dynprop->kind
1252
1253
1254 /* Moto-specific stuff for FORTRAN arrays. */
1255
1256 #define TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED(arraytype) \
1257 TYPE_HIGH_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1258 #define TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED(arraytype) \
1259 TYPE_LOW_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1260
1261 #define TYPE_ARRAY_UPPER_BOUND_VALUE(arraytype) \
1262 (TYPE_HIGH_BOUND(TYPE_INDEX_TYPE((arraytype))))
1263
1264 #define TYPE_ARRAY_LOWER_BOUND_VALUE(arraytype) \
1265 (TYPE_LOW_BOUND(TYPE_INDEX_TYPE((arraytype))))
1266
1267 /* C++ */
1268
1269 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1270 /* Do not call this, use TYPE_SELF_TYPE. */
1271 extern struct type *internal_type_self_type (struct type *);
1272 extern void set_type_self_type (struct type *, struct type *);
1273
1274 extern int internal_type_vptr_fieldno (struct type *);
1275 extern void set_type_vptr_fieldno (struct type *, int);
1276 extern struct type *internal_type_vptr_basetype (struct type *);
1277 extern void set_type_vptr_basetype (struct type *, struct type *);
1278 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1279 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1280
1281 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1282 #define TYPE_SPECIFIC_FIELD(thistype) \
1283 TYPE_MAIN_TYPE(thistype)->type_specific_field
1284 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1285 where we're trying to print an Ada array using the C language.
1286 In that case, there is no "cplus_stuff", but the C language assumes
1287 that there is. What we do, in that case, is pretend that there is
1288 an implicit one which is the default cplus stuff. */
1289 #define TYPE_CPLUS_SPECIFIC(thistype) \
1290 (!HAVE_CPLUS_STRUCT(thistype) \
1291 ? (struct cplus_struct_type*)&cplus_struct_default \
1292 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1293 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1294 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1295 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1296 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1297 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1298 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1299 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1300 #define TYPE_BASECLASS(thistype,index) TYPE_FIELD_TYPE(thistype, index)
1301 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1302 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1303 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1304 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1305 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1306 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1307
1308 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1309 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1310 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1311
1312 #define FIELD_TYPE(thisfld) ((thisfld).type)
1313 #define FIELD_NAME(thisfld) ((thisfld).name)
1314 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1315 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1316 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1317 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1318 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1319 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1320 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1321 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1322 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1323 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1324 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1325 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1326 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1327 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1328 #define SET_FIELD_PHYSNAME(thisfld, name) \
1329 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1330 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1331 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1332 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1333 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1334 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1335 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1336 FIELD_DWARF_BLOCK (thisfld) = (addr))
1337 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1338 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1339
1340 #define TYPE_FIELD(thistype, n) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields[n]
1341 #define TYPE_FIELD_TYPE(thistype, n) FIELD_TYPE(TYPE_FIELD(thistype, n))
1342 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME(TYPE_FIELD(thistype, n))
1343 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND (TYPE_FIELD (thistype, n))
1344 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS (TYPE_FIELD (thistype, n))
1345 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL (TYPE_FIELD (thistype, n))
1346 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME (TYPE_FIELD (thistype, n))
1347 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR (TYPE_FIELD (thistype, n))
1348 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK (TYPE_FIELD (thistype, n))
1349 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL(TYPE_FIELD(thistype,n))
1350 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE(TYPE_FIELD(thistype,n))
1351 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE(TYPE_FIELD(thistype,n))!=0)
1352
1353 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1354 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1355 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1356 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1357 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1358 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1359 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1360 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1361 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1362 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1363 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1364 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1365 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1366 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1367 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1368 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1369 #define TYPE_FIELD_PRIVATE(thistype, n) \
1370 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1371 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1372 #define TYPE_FIELD_PROTECTED(thistype, n) \
1373 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1374 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1375 #define TYPE_FIELD_IGNORE(thistype, n) \
1376 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1377 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1378 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1379 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1380 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1381
1382 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1383 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1384 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1385 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1386 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1387
1388 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1389 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1390 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1391 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1392 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1393 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1394
1395 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1396 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1397 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1398 #define TYPE_FN_FIELD_ARGS(thisfn, n) TYPE_FIELDS ((thisfn)[n].type)
1399 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1400 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1401 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1402 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1403 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1404 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1405 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1406 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1407 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1408 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1409 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1410
1411 /* Accessors for typedefs defined by a class. */
1412 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1413 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1414 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1415 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1416 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1417 TYPE_TYPEDEF_FIELD (thistype, n).name
1418 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1419 TYPE_TYPEDEF_FIELD (thistype, n).type
1420 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1421 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1422 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1423 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1424 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1425 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1426
1427 #define TYPE_IS_OPAQUE(thistype) \
1428 (((TYPE_CODE (thistype) == TYPE_CODE_STRUCT) \
1429 || (TYPE_CODE (thistype) == TYPE_CODE_UNION)) \
1430 && (TYPE_NFIELDS (thistype) == 0) \
1431 && (!HAVE_CPLUS_STRUCT (thistype) \
1432 || TYPE_NFN_FIELDS (thistype) == 0) \
1433 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1434
1435 /* * A helper macro that returns the name of a type or "unnamed type"
1436 if the type has no name. */
1437
1438 #define TYPE_SAFE_NAME(type) \
1439 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<unnamed type>"))
1440
1441 /* * A helper macro that returns the name of an error type. If the
1442 type has a name, it is used; otherwise, a default is used. */
1443
1444 #define TYPE_ERROR_NAME(type) \
1445 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<error type>"))
1446
1447 /* Given TYPE, return its floatformat. */
1448 const struct floatformat *floatformat_from_type (const struct type *type);
1449
1450 struct builtin_type
1451 {
1452 /* Integral types. */
1453
1454 /* Implicit size/sign (based on the architecture's ABI). */
1455 struct type *builtin_void;
1456 struct type *builtin_char;
1457 struct type *builtin_short;
1458 struct type *builtin_int;
1459 struct type *builtin_long;
1460 struct type *builtin_signed_char;
1461 struct type *builtin_unsigned_char;
1462 struct type *builtin_unsigned_short;
1463 struct type *builtin_unsigned_int;
1464 struct type *builtin_unsigned_long;
1465 struct type *builtin_float;
1466 struct type *builtin_double;
1467 struct type *builtin_long_double;
1468 struct type *builtin_complex;
1469 struct type *builtin_double_complex;
1470 struct type *builtin_string;
1471 struct type *builtin_bool;
1472 struct type *builtin_long_long;
1473 struct type *builtin_unsigned_long_long;
1474 struct type *builtin_decfloat;
1475 struct type *builtin_decdouble;
1476 struct type *builtin_declong;
1477
1478 /* "True" character types.
1479 We use these for the '/c' print format, because c_char is just a
1480 one-byte integral type, which languages less laid back than C
1481 will print as ... well, a one-byte integral type. */
1482 struct type *builtin_true_char;
1483 struct type *builtin_true_unsigned_char;
1484
1485 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1486 is for when an architecture needs to describe a register that has
1487 no size. */
1488 struct type *builtin_int0;
1489 struct type *builtin_int8;
1490 struct type *builtin_uint8;
1491 struct type *builtin_int16;
1492 struct type *builtin_uint16;
1493 struct type *builtin_int32;
1494 struct type *builtin_uint32;
1495 struct type *builtin_int64;
1496 struct type *builtin_uint64;
1497 struct type *builtin_int128;
1498 struct type *builtin_uint128;
1499
1500 /* Wide character types. */
1501 struct type *builtin_char16;
1502 struct type *builtin_char32;
1503 struct type *builtin_wchar;
1504
1505 /* Pointer types. */
1506
1507 /* * `pointer to data' type. Some target platforms use an implicitly
1508 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1509 struct type *builtin_data_ptr;
1510
1511 /* * `pointer to function (returning void)' type. Harvard
1512 architectures mean that ABI function and code pointers are not
1513 interconvertible. Similarly, since ANSI, C standards have
1514 explicitly said that pointers to functions and pointers to data
1515 are not interconvertible --- that is, you can't cast a function
1516 pointer to void * and back, and expect to get the same value.
1517 However, all function pointer types are interconvertible, so void
1518 (*) () can server as a generic function pointer. */
1519
1520 struct type *builtin_func_ptr;
1521
1522 /* * `function returning pointer to function (returning void)' type.
1523 The final void return type is not significant for it. */
1524
1525 struct type *builtin_func_func;
1526
1527 /* Special-purpose types. */
1528
1529 /* * This type is used to represent a GDB internal function. */
1530
1531 struct type *internal_fn;
1532
1533 /* * This type is used to represent an xmethod. */
1534 struct type *xmethod;
1535 };
1536
1537 /* * Return the type table for the specified architecture. */
1538
1539 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1540
1541 /* * Per-objfile types used by symbol readers. */
1542
1543 struct objfile_type
1544 {
1545 /* Basic types based on the objfile architecture. */
1546 struct type *builtin_void;
1547 struct type *builtin_char;
1548 struct type *builtin_short;
1549 struct type *builtin_int;
1550 struct type *builtin_long;
1551 struct type *builtin_long_long;
1552 struct type *builtin_signed_char;
1553 struct type *builtin_unsigned_char;
1554 struct type *builtin_unsigned_short;
1555 struct type *builtin_unsigned_int;
1556 struct type *builtin_unsigned_long;
1557 struct type *builtin_unsigned_long_long;
1558 struct type *builtin_float;
1559 struct type *builtin_double;
1560 struct type *builtin_long_double;
1561
1562 /* * This type is used to represent symbol addresses. */
1563 struct type *builtin_core_addr;
1564
1565 /* * This type represents a type that was unrecognized in symbol
1566 read-in. */
1567 struct type *builtin_error;
1568
1569 /* * Types used for symbols with no debug information. */
1570 struct type *nodebug_text_symbol;
1571 struct type *nodebug_text_gnu_ifunc_symbol;
1572 struct type *nodebug_got_plt_symbol;
1573 struct type *nodebug_data_symbol;
1574 struct type *nodebug_unknown_symbol;
1575 struct type *nodebug_tls_symbol;
1576 };
1577
1578 /* * Return the type table for the specified objfile. */
1579
1580 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1581
1582 /* Explicit floating-point formats. See "floatformat.h". */
1583 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1584 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1585 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1586 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1587 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1588 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1589 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
1590 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
1591 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
1592 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
1593 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
1594 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
1595
1596
1597 /* * Allocate space for storing data associated with a particular
1598 type. We ensure that the space is allocated using the same
1599 mechanism that was used to allocate the space for the type
1600 structure itself. I.e. if the type is on an objfile's
1601 objfile_obstack, then the space for data associated with that type
1602 will also be allocated on the objfile_obstack. If the type is not
1603 associated with any particular objfile (such as builtin types),
1604 then the data space will be allocated with xmalloc, the same as for
1605 the type structure. */
1606
1607 #define TYPE_ALLOC(t,size) \
1608 (TYPE_OBJFILE_OWNED (t) \
1609 ? obstack_alloc (&TYPE_OBJFILE (t) -> objfile_obstack, size) \
1610 : xmalloc (size))
1611
1612 #define TYPE_ZALLOC(t,size) \
1613 (TYPE_OBJFILE_OWNED (t) \
1614 ? memset (obstack_alloc (&TYPE_OBJFILE (t)->objfile_obstack, size), \
1615 0, size) \
1616 : xzalloc (size))
1617
1618 /* Use alloc_type to allocate a type owned by an objfile. Use
1619 alloc_type_arch to allocate a type owned by an architecture. Use
1620 alloc_type_copy to allocate a type with the same owner as a
1621 pre-existing template type, no matter whether objfile or
1622 gdbarch. */
1623 extern struct type *alloc_type (struct objfile *);
1624 extern struct type *alloc_type_arch (struct gdbarch *);
1625 extern struct type *alloc_type_copy (const struct type *);
1626
1627 /* * Return the type's architecture. For types owned by an
1628 architecture, that architecture is returned. For types owned by an
1629 objfile, that objfile's architecture is returned. */
1630
1631 extern struct gdbarch *get_type_arch (const struct type *);
1632
1633 /* * This returns the target type (or NULL) of TYPE, also skipping
1634 past typedefs. */
1635
1636 extern struct type *get_target_type (struct type *type);
1637
1638 /* Return the equivalent of TYPE_LENGTH, but in number of target
1639 addressable memory units of the associated gdbarch instead of bytes. */
1640
1641 extern unsigned int type_length_units (struct type *type);
1642
1643 /* * Helper function to construct objfile-owned types. */
1644
1645 extern struct type *init_type (struct objfile *, enum type_code, int,
1646 const char *);
1647 extern struct type *init_integer_type (struct objfile *, int, int,
1648 const char *);
1649 extern struct type *init_character_type (struct objfile *, int, int,
1650 const char *);
1651 extern struct type *init_boolean_type (struct objfile *, int, int,
1652 const char *);
1653 extern struct type *init_float_type (struct objfile *, int, const char *,
1654 const struct floatformat **);
1655 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
1656 extern struct type *init_complex_type (struct objfile *, const char *,
1657 struct type *);
1658 extern struct type *init_pointer_type (struct objfile *, int, const char *,
1659 struct type *);
1660
1661 /* Helper functions to construct architecture-owned types. */
1662 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
1663 const char *);
1664 extern struct type *arch_integer_type (struct gdbarch *, int, int,
1665 const char *);
1666 extern struct type *arch_character_type (struct gdbarch *, int, int,
1667 const char *);
1668 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
1669 const char *);
1670 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
1671 const struct floatformat **);
1672 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
1673 extern struct type *arch_complex_type (struct gdbarch *, const char *,
1674 struct type *);
1675 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
1676 struct type *);
1677
1678 /* Helper functions to construct a struct or record type. An
1679 initially empty type is created using arch_composite_type().
1680 Fields are then added using append_composite_type_field*(). A union
1681 type has its size set to the largest field. A struct type has each
1682 field packed against the previous. */
1683
1684 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
1685 const char *name, enum type_code code);
1686 extern void append_composite_type_field (struct type *t, const char *name,
1687 struct type *field);
1688 extern void append_composite_type_field_aligned (struct type *t,
1689 const char *name,
1690 struct type *field,
1691 int alignment);
1692 struct field *append_composite_type_field_raw (struct type *t, const char *name,
1693 struct type *field);
1694
1695 /* Helper functions to construct a bit flags type. An initially empty
1696 type is created using arch_flag_type(). Flags are then added using
1697 append_flag_type_field() and append_flag_type_flag(). */
1698 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
1699 const char *name, int bit);
1700 extern void append_flags_type_field (struct type *type,
1701 int start_bitpos, int nr_bits,
1702 struct type *field_type, const char *name);
1703 extern void append_flags_type_flag (struct type *type, int bitpos,
1704 const char *name);
1705
1706 extern void make_vector_type (struct type *array_type);
1707 extern struct type *init_vector_type (struct type *elt_type, int n);
1708
1709 extern struct type *lookup_reference_type (struct type *, enum type_code);
1710 extern struct type *lookup_lvalue_reference_type (struct type *);
1711 extern struct type *lookup_rvalue_reference_type (struct type *);
1712
1713
1714 extern struct type *make_reference_type (struct type *, struct type **,
1715 enum type_code);
1716
1717 extern struct type *make_cv_type (int, int, struct type *, struct type **);
1718
1719 extern struct type *make_restrict_type (struct type *);
1720
1721 extern struct type *make_unqualified_type (struct type *);
1722
1723 extern struct type *make_atomic_type (struct type *);
1724
1725 extern void replace_type (struct type *, struct type *);
1726
1727 extern int address_space_name_to_int (struct gdbarch *, char *);
1728
1729 extern const char *address_space_int_to_name (struct gdbarch *, int);
1730
1731 extern struct type *make_type_with_address_space (struct type *type,
1732 int space_identifier);
1733
1734 extern struct type *lookup_memberptr_type (struct type *, struct type *);
1735
1736 extern struct type *lookup_methodptr_type (struct type *);
1737
1738 extern void smash_to_method_type (struct type *type, struct type *self_type,
1739 struct type *to_type, struct field *args,
1740 int nargs, int varargs);
1741
1742 extern void smash_to_memberptr_type (struct type *, struct type *,
1743 struct type *);
1744
1745 extern void smash_to_methodptr_type (struct type *, struct type *);
1746
1747 extern struct type *allocate_stub_method (struct type *);
1748
1749 extern const char *type_name_no_tag (const struct type *);
1750
1751 extern const char *type_name_no_tag_or_error (struct type *type);
1752
1753 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
1754
1755 extern struct type *make_pointer_type (struct type *, struct type **);
1756
1757 extern struct type *lookup_pointer_type (struct type *);
1758
1759 extern struct type *make_function_type (struct type *, struct type **);
1760
1761 extern struct type *lookup_function_type (struct type *);
1762
1763 extern struct type *lookup_function_type_with_arguments (struct type *,
1764 int,
1765 struct type **);
1766
1767 extern struct type *create_static_range_type (struct type *, struct type *,
1768 LONGEST, LONGEST);
1769
1770
1771 extern struct type *create_array_type_with_stride
1772 (struct type *, struct type *, struct type *, unsigned int);
1773
1774 extern struct type *create_range_type (struct type *, struct type *,
1775 const struct dynamic_prop *,
1776 const struct dynamic_prop *);
1777
1778 extern struct type *create_array_type (struct type *, struct type *,
1779 struct type *);
1780
1781 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
1782
1783 extern struct type *create_string_type (struct type *, struct type *,
1784 struct type *);
1785 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
1786
1787 extern struct type *create_set_type (struct type *, struct type *);
1788
1789 extern struct type *lookup_unsigned_typename (const struct language_defn *,
1790 struct gdbarch *, const char *);
1791
1792 extern struct type *lookup_signed_typename (const struct language_defn *,
1793 struct gdbarch *, const char *);
1794
1795 extern void get_unsigned_type_max (struct type *, ULONGEST *);
1796
1797 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
1798
1799 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
1800 ADDR specifies the location of the variable the type is bound to.
1801 If TYPE has no dynamic properties return TYPE; otherwise a new type with
1802 static properties is returned. */
1803 extern struct type *resolve_dynamic_type (struct type *type,
1804 const gdb_byte *valaddr,
1805 CORE_ADDR addr);
1806
1807 /* * Predicate if the type has dynamic values, which are not resolved yet. */
1808 extern int is_dynamic_type (struct type *type);
1809
1810 /* * Return the dynamic property of the requested KIND from TYPE's
1811 list of dynamic properties. */
1812 extern struct dynamic_prop *get_dyn_prop
1813 (enum dynamic_prop_node_kind kind, const struct type *type);
1814
1815 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1816 property to the given TYPE.
1817
1818 This function assumes that TYPE is objfile-owned, and that OBJFILE
1819 is the TYPE's objfile. */
1820 extern void add_dyn_prop
1821 (enum dynamic_prop_node_kind kind, struct dynamic_prop prop,
1822 struct type *type, struct objfile *objfile);
1823
1824 extern void remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
1825 struct type *type);
1826
1827 extern struct type *check_typedef (struct type *);
1828
1829 extern void check_stub_method_group (struct type *, int);
1830
1831 extern char *gdb_mangle_name (struct type *, int, int);
1832
1833 extern struct type *lookup_typename (const struct language_defn *,
1834 struct gdbarch *, const char *,
1835 const struct block *, int);
1836
1837 extern struct type *lookup_template_type (char *, struct type *,
1838 const struct block *);
1839
1840 extern int get_vptr_fieldno (struct type *, struct type **);
1841
1842 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
1843
1844 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
1845 LONGEST *high_bound);
1846
1847 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
1848
1849 extern int class_types_same_p (const struct type *, const struct type *);
1850
1851 extern int is_ancestor (struct type *, struct type *);
1852
1853 extern int is_public_ancestor (struct type *, struct type *);
1854
1855 extern int is_unique_ancestor (struct type *, struct value *);
1856
1857 /* Overload resolution */
1858
1859 #define LENGTH_MATCH(bv) ((bv)->rank[0])
1860
1861 /* * Badness if parameter list length doesn't match arg list length. */
1862 extern const struct rank LENGTH_MISMATCH_BADNESS;
1863
1864 /* * Dummy badness value for nonexistent parameter positions. */
1865 extern const struct rank TOO_FEW_PARAMS_BADNESS;
1866 /* * Badness if no conversion among types. */
1867 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
1868
1869 /* * Badness of an exact match. */
1870 extern const struct rank EXACT_MATCH_BADNESS;
1871
1872 /* * Badness of integral promotion. */
1873 extern const struct rank INTEGER_PROMOTION_BADNESS;
1874 /* * Badness of floating promotion. */
1875 extern const struct rank FLOAT_PROMOTION_BADNESS;
1876 /* * Badness of converting a derived class pointer
1877 to a base class pointer. */
1878 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
1879 /* * Badness of integral conversion. */
1880 extern const struct rank INTEGER_CONVERSION_BADNESS;
1881 /* * Badness of floating conversion. */
1882 extern const struct rank FLOAT_CONVERSION_BADNESS;
1883 /* * Badness of integer<->floating conversions. */
1884 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
1885 /* * Badness of conversion of pointer to void pointer. */
1886 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
1887 /* * Badness of conversion to boolean. */
1888 extern const struct rank BOOL_CONVERSION_BADNESS;
1889 /* * Badness of converting derived to base class. */
1890 extern const struct rank BASE_CONVERSION_BADNESS;
1891 /* * Badness of converting from non-reference to reference. Subrank
1892 is the type of reference conversion being done. */
1893 extern const struct rank REFERENCE_CONVERSION_BADNESS;
1894 /* * Conversion to rvalue reference. */
1895 #define REFERENCE_CONVERSION_RVALUE 1
1896 /* * Conversion to const lvalue reference. */
1897 #define REFERENCE_CONVERSION_CONST_LVALUE 2
1898
1899 /* * Badness of converting integer 0 to NULL pointer. */
1900 extern const struct rank NULL_POINTER_CONVERSION;
1901 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
1902 being done. */
1903 extern const struct rank CV_CONVERSION_BADNESS;
1904 #define CV_CONVERSION_CONST 1
1905 #define CV_CONVERSION_VOLATILE 2
1906
1907 /* Non-standard conversions allowed by the debugger */
1908
1909 /* * Converting a pointer to an int is usually OK. */
1910 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
1911
1912 /* * Badness of converting a (non-zero) integer constant
1913 to a pointer. */
1914 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
1915
1916 extern struct rank sum_ranks (struct rank a, struct rank b);
1917 extern int compare_ranks (struct rank a, struct rank b);
1918
1919 extern int compare_badness (struct badness_vector *, struct badness_vector *);
1920
1921 extern struct badness_vector *rank_function (struct type **, int,
1922 struct value **, int);
1923
1924 extern struct rank rank_one_type (struct type *, struct type *,
1925 struct value *);
1926
1927 extern void recursive_dump_type (struct type *, int);
1928
1929 extern int field_is_static (struct field *);
1930
1931 /* printcmd.c */
1932
1933 extern void print_scalar_formatted (const gdb_byte *, struct type *,
1934 const struct value_print_options *,
1935 int, struct ui_file *);
1936
1937 extern int can_dereference (struct type *);
1938
1939 extern int is_integral_type (struct type *);
1940
1941 extern int is_floating_type (struct type *);
1942
1943 extern int is_scalar_type (struct type *type);
1944
1945 extern int is_scalar_type_recursive (struct type *);
1946
1947 extern int class_or_union_p (const struct type *);
1948
1949 extern void maintenance_print_type (const char *, int);
1950
1951 extern htab_t create_copied_types_hash (struct objfile *objfile);
1952
1953 extern struct type *copy_type_recursive (struct objfile *objfile,
1954 struct type *type,
1955 htab_t copied_types);
1956
1957 extern struct type *copy_type (const struct type *type);
1958
1959 extern int types_equal (struct type *, struct type *);
1960
1961 extern int types_deeply_equal (struct type *, struct type *);
1962
1963 extern int type_not_allocated (const struct type *type);
1964
1965 extern int type_not_associated (const struct type *type);
1966
1967 #endif /* GDBTYPES_H */
This page took 0.081341 seconds and 4 git commands to generate.