Rewrite the existing variant part code
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61
62 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
63 are already DWARF-specific. */
64
65 /* * Offset relative to the start of its containing CU (compilation
66 unit). */
67 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
68
69 /* * Offset relative to the start of its .debug_info or .debug_types
70 section. */
71 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
72
73 static inline char *
74 sect_offset_str (sect_offset offset)
75 {
76 return hex_string (to_underlying (offset));
77 }
78
79 /* Some macros for char-based bitfields. */
80
81 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
82 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
83 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
84 #define B_TYPE unsigned char
85 #define B_BYTES(x) ( 1 + ((x)>>3) )
86 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
87
88 /* * Different kinds of data types are distinguished by the `code'
89 field. */
90
91 enum type_code
92 {
93 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
94 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
95 TYPE_CODE_PTR, /**< Pointer type */
96
97 /* * Array type with lower & upper bounds.
98
99 Regardless of the language, GDB represents multidimensional
100 array types the way C does: as arrays of arrays. So an
101 instance of a GDB array type T can always be seen as a series
102 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
103 memory.
104
105 Row-major languages like C lay out multi-dimensional arrays so
106 that incrementing the rightmost index in a subscripting
107 expression results in the smallest change in the address of the
108 element referred to. Column-major languages like Fortran lay
109 them out so that incrementing the leftmost index results in the
110 smallest change.
111
112 This means that, in column-major languages, working our way
113 from type to target type corresponds to working through indices
114 from right to left, not left to right. */
115 TYPE_CODE_ARRAY,
116
117 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
118 TYPE_CODE_UNION, /**< C union or Pascal variant part */
119 TYPE_CODE_ENUM, /**< Enumeration type */
120 TYPE_CODE_FLAGS, /**< Bit flags type */
121 TYPE_CODE_FUNC, /**< Function type */
122 TYPE_CODE_INT, /**< Integer type */
123
124 /* * Floating type. This is *NOT* a complex type. */
125 TYPE_CODE_FLT,
126
127 /* * Void type. The length field specifies the length (probably
128 always one) which is used in pointer arithmetic involving
129 pointers to this type, but actually dereferencing such a
130 pointer is invalid; a void type has no length and no actual
131 representation in memory or registers. A pointer to a void
132 type is a generic pointer. */
133 TYPE_CODE_VOID,
134
135 TYPE_CODE_SET, /**< Pascal sets */
136 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
137
138 /* * A string type which is like an array of character but prints
139 differently. It does not contain a length field as Pascal
140 strings (for many Pascals, anyway) do; if we want to deal with
141 such strings, we should use a new type code. */
142 TYPE_CODE_STRING,
143
144 /* * Unknown type. The length field is valid if we were able to
145 deduce that much about the type, or 0 if we don't even know
146 that. */
147 TYPE_CODE_ERROR,
148
149 /* C++ */
150 TYPE_CODE_METHOD, /**< Method type */
151
152 /* * Pointer-to-member-function type. This describes how to access a
153 particular member function of a class (possibly a virtual
154 member function). The representation may vary between different
155 C++ ABIs. */
156 TYPE_CODE_METHODPTR,
157
158 /* * Pointer-to-member type. This is the offset within a class to
159 some particular data member. The only currently supported
160 representation uses an unbiased offset, with -1 representing
161 NULL; this is used by the Itanium C++ ABI (used by GCC on all
162 platforms). */
163 TYPE_CODE_MEMBERPTR,
164
165 TYPE_CODE_REF, /**< C++ Reference types */
166
167 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
168
169 TYPE_CODE_CHAR, /**< *real* character type */
170
171 /* * Boolean type. 0 is false, 1 is true, and other values are
172 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
173 TYPE_CODE_BOOL,
174
175 /* Fortran */
176 TYPE_CODE_COMPLEX, /**< Complex float */
177
178 TYPE_CODE_TYPEDEF,
179
180 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
181
182 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
183
184 TYPE_CODE_MODULE, /**< Fortran module. */
185
186 /* * Internal function type. */
187 TYPE_CODE_INTERNAL_FUNCTION,
188
189 /* * Methods implemented in extension languages. */
190 TYPE_CODE_XMETHOD
191 };
192
193 /* * Some bits for the type's instance_flags word. See the macros
194 below for documentation on each bit. */
195
196 enum type_instance_flag_value : unsigned
197 {
198 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
199 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
200 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
201 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
202 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
203 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
204 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
205 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
206 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
207 };
208
209 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
210
211 /* * Unsigned integer type. If this is not set for a TYPE_CODE_INT,
212 the type is signed (unless TYPE_NOSIGN (below) is set). */
213
214 #define TYPE_UNSIGNED(t) (TYPE_MAIN_TYPE (t)->flag_unsigned)
215
216 /* * No sign for this type. In C++, "char", "signed char", and
217 "unsigned char" are distinct types; so we need an extra flag to
218 indicate the absence of a sign! */
219
220 #define TYPE_NOSIGN(t) (TYPE_MAIN_TYPE (t)->flag_nosign)
221
222 /* * A compiler may supply dwarf instrumentation
223 that indicates the desired endian interpretation of the variable
224 differs from the native endian representation. */
225
226 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
227
228 /* * This appears in a type's flags word if it is a stub type (e.g.,
229 if someone referenced a type that wasn't defined in a source file
230 via (struct sir_not_appearing_in_this_film *)). */
231
232 #define TYPE_STUB(t) (TYPE_MAIN_TYPE (t)->flag_stub)
233
234 /* * The target type of this type is a stub type, and this type needs
235 to be updated if it gets un-stubbed in check_typedef. Used for
236 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
237 based on the TYPE_LENGTH of the target type. Also, set for
238 TYPE_CODE_TYPEDEF. */
239
240 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
241
242 /* * This is a function type which appears to have a prototype. We
243 need this for function calls in order to tell us if it's necessary
244 to coerce the args, or to just do the standard conversions. This
245 is used with a short field. */
246
247 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
248
249 /* * This flag is used to indicate that processing for this type
250 is incomplete.
251
252 (Mostly intended for HP platforms, where class methods, for
253 instance, can be encountered before their classes in the debug
254 info; the incomplete type has to be marked so that the class and
255 the method can be assigned correct types.) */
256
257 #define TYPE_INCOMPLETE(t) (TYPE_MAIN_TYPE (t)->flag_incomplete)
258
259 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
260 to functions. */
261
262 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
263
264 /* * Identify a vector type. Gcc is handling this by adding an extra
265 attribute to the array type. We slurp that in as a new flag of a
266 type. This is used only in dwarf2read.c. */
267 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
268
269 /* * The debugging formats (especially STABS) do not contain enough
270 information to represent all Ada types---especially those whose
271 size depends on dynamic quantities. Therefore, the GNAT Ada
272 compiler includes extra information in the form of additional type
273 definitions connected by naming conventions. This flag indicates
274 that the type is an ordinary (unencoded) GDB type that has been
275 created from the necessary run-time information, and does not need
276 further interpretation. Optionally marks ordinary, fixed-size GDB
277 type. */
278
279 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
280
281 /* * This debug target supports TYPE_STUB(t). In the unsupported case
282 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
283 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
284 guessed the TYPE_STUB(t) value (see dwarfread.c). */
285
286 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
287
288 /* * Not textual. By default, GDB treats all single byte integers as
289 characters (or elements of strings) unless this flag is set. */
290
291 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
292
293 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
294 address is returned by this function call. TYPE_TARGET_TYPE
295 determines the final returned function type to be presented to
296 user. */
297
298 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
299
300 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
301 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
302 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
303
304 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
305 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
306 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
307
308 /* * True if this type was declared using the "class" keyword. This is
309 only valid for C++ structure and enum types. If false, a structure
310 was declared as a "struct"; if true it was declared "class". For
311 enum types, this is true when "enum class" or "enum struct" was
312 used to declare the type.. */
313
314 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
315
316 /* * True if this type is a "flag" enum. A flag enum is one where all
317 the values are pairwise disjoint when "and"ed together. This
318 affects how enum values are printed. */
319
320 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
321
322 /* * Constant type. If this is set, the corresponding type has a
323 const modifier. */
324
325 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
326
327 /* * Volatile type. If this is set, the corresponding type has a
328 volatile modifier. */
329
330 #define TYPE_VOLATILE(t) \
331 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
332
333 /* * Restrict type. If this is set, the corresponding type has a
334 restrict modifier. */
335
336 #define TYPE_RESTRICT(t) \
337 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
338
339 /* * Atomic type. If this is set, the corresponding type has an
340 _Atomic modifier. */
341
342 #define TYPE_ATOMIC(t) \
343 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
344
345 /* * True if this type represents either an lvalue or lvalue reference type. */
346
347 #define TYPE_IS_REFERENCE(t) \
348 (TYPE_CODE (t) == TYPE_CODE_REF || TYPE_CODE (t) == TYPE_CODE_RVALUE_REF)
349
350 /* * True if this type is allocatable. */
351 #define TYPE_IS_ALLOCATABLE(t) \
352 (get_dyn_prop (DYN_PROP_ALLOCATED, t) != NULL)
353
354 /* * True if this type has variant parts. */
355 #define TYPE_HAS_VARIANT_PARTS(t) \
356 (get_dyn_prop (DYN_PROP_VARIANT_PARTS, t) != nullptr)
357
358 /* * Instruction-space delimited type. This is for Harvard architectures
359 which have separate instruction and data address spaces (and perhaps
360 others).
361
362 GDB usually defines a flat address space that is a superset of the
363 architecture's two (or more) address spaces, but this is an extension
364 of the architecture's model.
365
366 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
367 resides in instruction memory, even if its address (in the extended
368 flat address space) does not reflect this.
369
370 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
371 corresponding type resides in the data memory space, even if
372 this is not indicated by its (flat address space) address.
373
374 If neither flag is set, the default space for functions / methods
375 is instruction space, and for data objects is data memory. */
376
377 #define TYPE_CODE_SPACE(t) \
378 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
379
380 #define TYPE_DATA_SPACE(t) \
381 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
382
383 /* * Address class flags. Some environments provide for pointers
384 whose size is different from that of a normal pointer or address
385 types where the bits are interpreted differently than normal
386 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
387 target specific ways to represent these different types of address
388 classes. */
389
390 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
391 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
392 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
393 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
394 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
395 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
396 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
397 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
398
399 /* * Information about a single discriminant. */
400
401 struct discriminant_range
402 {
403 /* * The range of values for the variant. This is an inclusive
404 range. */
405 ULONGEST low, high;
406
407 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
408 is true if this should be an unsigned comparison; false for
409 signed. */
410 bool contains (ULONGEST value, bool is_unsigned) const
411 {
412 if (is_unsigned)
413 return value >= low && value <= high;
414 LONGEST valuel = (LONGEST) value;
415 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
416 }
417 };
418
419 struct variant_part;
420
421 /* * A single variant. A variant has a list of discriminant values.
422 When the discriminator matches one of these, the variant is
423 enabled. Each variant controls zero or more fields; and may also
424 control other variant parts as well. This struct corresponds to
425 DW_TAG_variant in DWARF. */
426
427 struct variant : allocate_on_obstack
428 {
429 /* * The discriminant ranges for this variant. */
430 gdb::array_view<discriminant_range> discriminants;
431
432 /* * The fields controlled by this variant. This is inclusive on
433 the low end and exclusive on the high end. A variant may not
434 control any fields, in which case the two values will be equal.
435 These are indexes into the type's array of fields. */
436 int first_field;
437 int last_field;
438
439 /* * Variant parts controlled by this variant. */
440 gdb::array_view<variant_part> parts;
441
442 /* * Return true if this is the default variant. The default
443 variant can be recognized because it has no associated
444 discriminants. */
445 bool is_default () const
446 {
447 return discriminants.empty ();
448 }
449
450 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
451 if this should be an unsigned comparison; false for signed. */
452 bool matches (ULONGEST value, bool is_unsigned) const;
453 };
454
455 /* * A variant part. Each variant part has an optional discriminant
456 and holds an array of variants. This struct corresponds to
457 DW_TAG_variant_part in DWARF. */
458
459 struct variant_part : allocate_on_obstack
460 {
461 /* * The index of the discriminant field in the outer type. This is
462 an index into the type's array of fields. If this is -1, there
463 is no discriminant, and only the default variant can be
464 considered to be selected. */
465 int discriminant_index;
466
467 /* * True if this discriminant is unsigned; false if signed. This
468 comes from the type of the discriminant. */
469 bool is_unsigned;
470
471 /* * The variants that are controlled by this variant part. Note
472 that these will always be sorted by field number. */
473 gdb::array_view<variant> variants;
474 };
475
476
477 enum dynamic_prop_kind
478 {
479 PROP_UNDEFINED, /* Not defined. */
480 PROP_CONST, /* Constant. */
481 PROP_ADDR_OFFSET, /* Address offset. */
482 PROP_LOCEXPR, /* Location expression. */
483 PROP_LOCLIST, /* Location list. */
484 PROP_VARIANT_PARTS, /* Variant parts. */
485 PROP_TYPE, /* Type. */
486 };
487
488 union dynamic_prop_data
489 {
490 /* Storage for constant property. */
491
492 LONGEST const_val;
493
494 /* Storage for dynamic property. */
495
496 void *baton;
497
498 /* Storage of variant parts for a type. A type with variant parts
499 has all its fields "linearized" -- stored in a single field
500 array, just as if they had all been declared that way. The
501 variant parts are attached via a dynamic property, and then are
502 used to control which fields end up in the final type during
503 dynamic type resolution. */
504
505 const gdb::array_view<variant_part> *variant_parts;
506
507 /* Once a variant type is resolved, we may want to be able to go
508 from the resolved type to the original type. In this case we
509 rewrite the property's kind and set this field. */
510
511 struct type *original_type;
512 };
513
514 /* * Used to store a dynamic property. */
515
516 struct dynamic_prop
517 {
518 /* Determine which field of the union dynamic_prop.data is used. */
519 enum dynamic_prop_kind kind;
520
521 /* Storage for dynamic or static value. */
522 union dynamic_prop_data data;
523 };
524
525 /* Compare two dynamic_prop objects for equality. dynamic_prop
526 instances are equal iff they have the same type and storage. */
527 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
528
529 /* Compare two dynamic_prop objects for inequality. */
530 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
531 {
532 return !(l == r);
533 }
534
535 /* * Define a type's dynamic property node kind. */
536 enum dynamic_prop_node_kind
537 {
538 /* A property providing a type's data location.
539 Evaluating this field yields to the location of an object's data. */
540 DYN_PROP_DATA_LOCATION,
541
542 /* A property representing DW_AT_allocated. The presence of this attribute
543 indicates that the object of the type can be allocated/deallocated. */
544 DYN_PROP_ALLOCATED,
545
546 /* A property representing DW_AT_allocated. The presence of this attribute
547 indicated that the object of the type can be associated. */
548 DYN_PROP_ASSOCIATED,
549
550 /* A property providing an array's byte stride. */
551 DYN_PROP_BYTE_STRIDE,
552
553 /* A property holding variant parts. */
554 DYN_PROP_VARIANT_PARTS,
555 };
556
557 /* * List for dynamic type attributes. */
558 struct dynamic_prop_list
559 {
560 /* The kind of dynamic prop in this node. */
561 enum dynamic_prop_node_kind prop_kind;
562
563 /* The dynamic property itself. */
564 struct dynamic_prop prop;
565
566 /* A pointer to the next dynamic property. */
567 struct dynamic_prop_list *next;
568 };
569
570 /* * Determine which field of the union main_type.fields[x].loc is
571 used. */
572
573 enum field_loc_kind
574 {
575 FIELD_LOC_KIND_BITPOS, /**< bitpos */
576 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
577 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
578 FIELD_LOC_KIND_PHYSNAME, /**< physname */
579 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
580 };
581
582 /* * A discriminant to determine which field in the
583 main_type.type_specific union is being used, if any.
584
585 For types such as TYPE_CODE_FLT, the use of this
586 discriminant is really redundant, as we know from the type code
587 which field is going to be used. As such, it would be possible to
588 reduce the size of this enum in order to save a bit or two for
589 other fields of struct main_type. But, since we still have extra
590 room , and for the sake of clarity and consistency, we treat all fields
591 of the union the same way. */
592
593 enum type_specific_kind
594 {
595 TYPE_SPECIFIC_NONE,
596 TYPE_SPECIFIC_CPLUS_STUFF,
597 TYPE_SPECIFIC_GNAT_STUFF,
598 TYPE_SPECIFIC_FLOATFORMAT,
599 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
600 TYPE_SPECIFIC_FUNC,
601 TYPE_SPECIFIC_SELF_TYPE
602 };
603
604 union type_owner
605 {
606 struct objfile *objfile;
607 struct gdbarch *gdbarch;
608 };
609
610 union field_location
611 {
612 /* * Position of this field, counting in bits from start of
613 containing structure. For big-endian targets, it is the bit
614 offset to the MSB. For little-endian targets, it is the bit
615 offset to the LSB. */
616
617 LONGEST bitpos;
618
619 /* * Enum value. */
620 LONGEST enumval;
621
622 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
623 physaddr is the location (in the target) of the static
624 field. Otherwise, physname is the mangled label of the
625 static field. */
626
627 CORE_ADDR physaddr;
628 const char *physname;
629
630 /* * The field location can be computed by evaluating the
631 following DWARF block. Its DATA is allocated on
632 objfile_obstack - no CU load is needed to access it. */
633
634 struct dwarf2_locexpr_baton *dwarf_block;
635 };
636
637 struct field
638 {
639 union field_location loc;
640
641 /* * For a function or member type, this is 1 if the argument is
642 marked artificial. Artificial arguments should not be shown
643 to the user. For TYPE_CODE_RANGE it is set if the specific
644 bound is not defined. */
645
646 unsigned int artificial : 1;
647
648 /* * Discriminant for union field_location. */
649
650 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
651
652 /* * Size of this field, in bits, or zero if not packed.
653 If non-zero in an array type, indicates the element size in
654 bits (used only in Ada at the moment).
655 For an unpacked field, the field's type's length
656 says how many bytes the field occupies. */
657
658 unsigned int bitsize : 28;
659
660 /* * In a struct or union type, type of this field.
661 - In a function or member type, type of this argument.
662 - In an array type, the domain-type of the array. */
663
664 struct type *type;
665
666 /* * Name of field, value or argument.
667 NULL for range bounds, array domains, and member function
668 arguments. */
669
670 const char *name;
671 };
672
673 struct range_bounds
674 {
675 /* * Low bound of range. */
676
677 struct dynamic_prop low;
678
679 /* * High bound of range. */
680
681 struct dynamic_prop high;
682
683 /* The stride value for this range. This can be stored in bits or bytes
684 based on the value of BYTE_STRIDE_P. It is optional to have a stride
685 value, if this range has no stride value defined then this will be set
686 to the constant zero. */
687
688 struct dynamic_prop stride;
689
690 /* * The bias. Sometimes a range value is biased before storage.
691 The bias is added to the stored bits to form the true value. */
692
693 LONGEST bias;
694
695 /* True if HIGH range bound contains the number of elements in the
696 subrange. This affects how the final high bound is computed. */
697
698 unsigned int flag_upper_bound_is_count : 1;
699
700 /* True if LOW or/and HIGH are resolved into a static bound from
701 a dynamic one. */
702
703 unsigned int flag_bound_evaluated : 1;
704
705 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
706
707 unsigned int flag_is_byte_stride : 1;
708 };
709
710 /* Compare two range_bounds objects for equality. Simply does
711 memberwise comparison. */
712 extern bool operator== (const range_bounds &l, const range_bounds &r);
713
714 /* Compare two range_bounds objects for inequality. */
715 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
716 {
717 return !(l == r);
718 }
719
720 union type_specific
721 {
722 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
723 point to cplus_struct_default, a default static instance of a
724 struct cplus_struct_type. */
725
726 struct cplus_struct_type *cplus_stuff;
727
728 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
729 provides additional information. */
730
731 struct gnat_aux_type *gnat_stuff;
732
733 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
734 floatformat object that describes the floating-point value
735 that resides within the type. */
736
737 const struct floatformat *floatformat;
738
739 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
740
741 struct func_type *func_stuff;
742
743 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
744 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
745 is a member of. */
746
747 struct type *self_type;
748 };
749
750 /* * Main structure representing a type in GDB.
751
752 This structure is space-critical. Its layout has been tweaked to
753 reduce the space used. */
754
755 struct main_type
756 {
757 /* * Code for kind of type. */
758
759 ENUM_BITFIELD(type_code) code : 8;
760
761 /* * Flags about this type. These fields appear at this location
762 because they packs nicely here. See the TYPE_* macros for
763 documentation about these fields. */
764
765 unsigned int flag_unsigned : 1;
766 unsigned int flag_nosign : 1;
767 unsigned int flag_stub : 1;
768 unsigned int flag_target_stub : 1;
769 unsigned int flag_static : 1;
770 unsigned int flag_prototyped : 1;
771 unsigned int flag_incomplete : 1;
772 unsigned int flag_varargs : 1;
773 unsigned int flag_vector : 1;
774 unsigned int flag_stub_supported : 1;
775 unsigned int flag_gnu_ifunc : 1;
776 unsigned int flag_fixed_instance : 1;
777 unsigned int flag_objfile_owned : 1;
778 unsigned int flag_endianity_not_default : 1;
779
780 /* * True if this type was declared with "class" rather than
781 "struct". */
782
783 unsigned int flag_declared_class : 1;
784
785 /* * True if this is an enum type with disjoint values. This
786 affects how the enum is printed. */
787
788 unsigned int flag_flag_enum : 1;
789
790 /* * A discriminant telling us which field of the type_specific
791 union is being used for this type, if any. */
792
793 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
794
795 /* * Number of fields described for this type. This field appears
796 at this location because it packs nicely here. */
797
798 short nfields;
799
800 /* * Name of this type, or NULL if none.
801
802 This is used for printing only. For looking up a name, look for
803 a symbol in the VAR_DOMAIN. This is generally allocated in the
804 objfile's obstack. However coffread.c uses malloc. */
805
806 const char *name;
807
808 /* * Every type is now associated with a particular objfile, and the
809 type is allocated on the objfile_obstack for that objfile. One
810 problem however, is that there are times when gdb allocates new
811 types while it is not in the process of reading symbols from a
812 particular objfile. Fortunately, these happen when the type
813 being created is a derived type of an existing type, such as in
814 lookup_pointer_type(). So we can just allocate the new type
815 using the same objfile as the existing type, but to do this we
816 need a backpointer to the objfile from the existing type. Yes
817 this is somewhat ugly, but without major overhaul of the internal
818 type system, it can't be avoided for now. */
819
820 union type_owner owner;
821
822 /* * For a pointer type, describes the type of object pointed to.
823 - For an array type, describes the type of the elements.
824 - For a function or method type, describes the type of the return value.
825 - For a range type, describes the type of the full range.
826 - For a complex type, describes the type of each coordinate.
827 - For a special record or union type encoding a dynamic-sized type
828 in GNAT, a memoized pointer to a corresponding static version of
829 the type.
830 - Unused otherwise. */
831
832 struct type *target_type;
833
834 /* * For structure and union types, a description of each field.
835 For set and pascal array types, there is one "field",
836 whose type is the domain type of the set or array.
837 For range types, there are two "fields",
838 the minimum and maximum values (both inclusive).
839 For enum types, each possible value is described by one "field".
840 For a function or method type, a "field" for each parameter.
841 For C++ classes, there is one field for each base class (if it is
842 a derived class) plus one field for each class data member. Member
843 functions are recorded elsewhere.
844
845 Using a pointer to a separate array of fields
846 allows all types to have the same size, which is useful
847 because we can allocate the space for a type before
848 we know what to put in it. */
849
850 union
851 {
852 struct field *fields;
853
854 /* * Union member used for range types. */
855
856 struct range_bounds *bounds;
857
858 /* If this is a scalar type, then this is its corresponding
859 complex type. */
860 struct type *complex_type;
861
862 } flds_bnds;
863
864 /* * Slot to point to additional language-specific fields of this
865 type. */
866
867 union type_specific type_specific;
868
869 /* * Contains all dynamic type properties. */
870 struct dynamic_prop_list *dyn_prop_list;
871 };
872
873 /* * Number of bits allocated for alignment. */
874
875 #define TYPE_ALIGN_BITS 8
876
877 /* * A ``struct type'' describes a particular instance of a type, with
878 some particular qualification. */
879
880 struct type
881 {
882 /* * Type that is a pointer to this type.
883 NULL if no such pointer-to type is known yet.
884 The debugger may add the address of such a type
885 if it has to construct one later. */
886
887 struct type *pointer_type;
888
889 /* * C++: also need a reference type. */
890
891 struct type *reference_type;
892
893 /* * A C++ rvalue reference type added in C++11. */
894
895 struct type *rvalue_reference_type;
896
897 /* * Variant chain. This points to a type that differs from this
898 one only in qualifiers and length. Currently, the possible
899 qualifiers are const, volatile, code-space, data-space, and
900 address class. The length may differ only when one of the
901 address class flags are set. The variants are linked in a
902 circular ring and share MAIN_TYPE. */
903
904 struct type *chain;
905
906 /* * The alignment for this type. Zero means that the alignment was
907 not specified in the debug info. Note that this is stored in a
908 funny way: as the log base 2 (plus 1) of the alignment; so a
909 value of 1 means the alignment is 1, and a value of 9 means the
910 alignment is 256. */
911
912 unsigned align_log2 : TYPE_ALIGN_BITS;
913
914 /* * Flags specific to this instance of the type, indicating where
915 on the ring we are.
916
917 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
918 binary or-ed with the target type, with a special case for
919 address class and space class. For example if this typedef does
920 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
921 instance flags are completely inherited from the target type. No
922 qualifiers can be cleared by the typedef. See also
923 check_typedef. */
924 unsigned instance_flags : 9;
925
926 /* * Length of storage for a value of this type. The value is the
927 expression in host bytes of what sizeof(type) would return. This
928 size includes padding. For example, an i386 extended-precision
929 floating point value really only occupies ten bytes, but most
930 ABI's declare its size to be 12 bytes, to preserve alignment.
931 A `struct type' representing such a floating-point type would
932 have a `length' value of 12, even though the last two bytes are
933 unused.
934
935 Since this field is expressed in host bytes, its value is appropriate
936 to pass to memcpy and such (it is assumed that GDB itself always runs
937 on an 8-bits addressable architecture). However, when using it for
938 target address arithmetic (e.g. adding it to a target address), the
939 type_length_units function should be used in order to get the length
940 expressed in target addressable memory units. */
941
942 ULONGEST length;
943
944 /* * Core type, shared by a group of qualified types. */
945
946 struct main_type *main_type;
947 };
948
949 #define NULL_TYPE ((struct type *) 0)
950
951 struct fn_fieldlist
952 {
953
954 /* * The overloaded name.
955 This is generally allocated in the objfile's obstack.
956 However stabsread.c sometimes uses malloc. */
957
958 const char *name;
959
960 /* * The number of methods with this name. */
961
962 int length;
963
964 /* * The list of methods. */
965
966 struct fn_field *fn_fields;
967 };
968
969
970
971 struct fn_field
972 {
973 /* * If is_stub is clear, this is the mangled name which we can look
974 up to find the address of the method (FIXME: it would be cleaner
975 to have a pointer to the struct symbol here instead).
976
977 If is_stub is set, this is the portion of the mangled name which
978 specifies the arguments. For example, "ii", if there are two int
979 arguments, or "" if there are no arguments. See gdb_mangle_name
980 for the conversion from this format to the one used if is_stub is
981 clear. */
982
983 const char *physname;
984
985 /* * The function type for the method.
986
987 (This comment used to say "The return value of the method", but
988 that's wrong. The function type is expected here, i.e. something
989 with TYPE_CODE_METHOD, and *not* the return-value type). */
990
991 struct type *type;
992
993 /* * For virtual functions. First baseclass that defines this
994 virtual function. */
995
996 struct type *fcontext;
997
998 /* Attributes. */
999
1000 unsigned int is_const:1;
1001 unsigned int is_volatile:1;
1002 unsigned int is_private:1;
1003 unsigned int is_protected:1;
1004 unsigned int is_artificial:1;
1005
1006 /* * A stub method only has some fields valid (but they are enough
1007 to reconstruct the rest of the fields). */
1008
1009 unsigned int is_stub:1;
1010
1011 /* * True if this function is a constructor, false otherwise. */
1012
1013 unsigned int is_constructor : 1;
1014
1015 /* * True if this function is deleted, false otherwise. */
1016
1017 unsigned int is_deleted : 1;
1018
1019 /* * DW_AT_defaulted attribute for this function. The value is one
1020 of the DW_DEFAULTED constants. */
1021
1022 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1023
1024 /* * Unused. */
1025
1026 unsigned int dummy:6;
1027
1028 /* * Index into that baseclass's virtual function table, minus 2;
1029 else if static: VOFFSET_STATIC; else: 0. */
1030
1031 unsigned int voffset:16;
1032
1033 #define VOFFSET_STATIC 1
1034
1035 };
1036
1037 struct decl_field
1038 {
1039 /* * Unqualified name to be prefixed by owning class qualified
1040 name. */
1041
1042 const char *name;
1043
1044 /* * Type this typedef named NAME represents. */
1045
1046 struct type *type;
1047
1048 /* * True if this field was declared protected, false otherwise. */
1049 unsigned int is_protected : 1;
1050
1051 /* * True if this field was declared private, false otherwise. */
1052 unsigned int is_private : 1;
1053 };
1054
1055 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1056 TYPE_CODE_UNION nodes. */
1057
1058 struct cplus_struct_type
1059 {
1060 /* * Number of base classes this type derives from. The
1061 baseclasses are stored in the first N_BASECLASSES fields
1062 (i.e. the `fields' field of the struct type). The only fields
1063 of struct field that are used are: type, name, loc.bitpos. */
1064
1065 short n_baseclasses;
1066
1067 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1068 All access to this field must be through TYPE_VPTR_FIELDNO as one
1069 thing it does is check whether the field has been initialized.
1070 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1071 which for portability reasons doesn't initialize this field.
1072 TYPE_VPTR_FIELDNO returns -1 for this case.
1073
1074 If -1, we were unable to find the virtual function table pointer in
1075 initial symbol reading, and get_vptr_fieldno should be called to find
1076 it if possible. get_vptr_fieldno will update this field if possible.
1077 Otherwise the value is left at -1.
1078
1079 Unused if this type does not have virtual functions. */
1080
1081 short vptr_fieldno;
1082
1083 /* * Number of methods with unique names. All overloaded methods
1084 with the same name count only once. */
1085
1086 short nfn_fields;
1087
1088 /* * Number of template arguments. */
1089
1090 unsigned short n_template_arguments;
1091
1092 /* * One if this struct is a dynamic class, as defined by the
1093 Itanium C++ ABI: if it requires a virtual table pointer,
1094 because it or any of its base classes have one or more virtual
1095 member functions or virtual base classes. Minus one if not
1096 dynamic. Zero if not yet computed. */
1097
1098 int is_dynamic : 2;
1099
1100 /* * The calling convention for this type, fetched from the
1101 DW_AT_calling_convention attribute. The value is one of the
1102 DW_CC constants. */
1103
1104 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1105
1106 /* * The base class which defined the virtual function table pointer. */
1107
1108 struct type *vptr_basetype;
1109
1110 /* * For derived classes, the number of base classes is given by
1111 n_baseclasses and virtual_field_bits is a bit vector containing
1112 one bit per base class. If the base class is virtual, the
1113 corresponding bit will be set.
1114 I.E, given:
1115
1116 class A{};
1117 class B{};
1118 class C : public B, public virtual A {};
1119
1120 B is a baseclass of C; A is a virtual baseclass for C.
1121 This is a C++ 2.0 language feature. */
1122
1123 B_TYPE *virtual_field_bits;
1124
1125 /* * For classes with private fields, the number of fields is
1126 given by nfields and private_field_bits is a bit vector
1127 containing one bit per field.
1128
1129 If the field is private, the corresponding bit will be set. */
1130
1131 B_TYPE *private_field_bits;
1132
1133 /* * For classes with protected fields, the number of fields is
1134 given by nfields and protected_field_bits is a bit vector
1135 containing one bit per field.
1136
1137 If the field is private, the corresponding bit will be set. */
1138
1139 B_TYPE *protected_field_bits;
1140
1141 /* * For classes with fields to be ignored, either this is
1142 optimized out or this field has length 0. */
1143
1144 B_TYPE *ignore_field_bits;
1145
1146 /* * For classes, structures, and unions, a description of each
1147 field, which consists of an overloaded name, followed by the
1148 types of arguments that the method expects, and then the name
1149 after it has been renamed to make it distinct.
1150
1151 fn_fieldlists points to an array of nfn_fields of these. */
1152
1153 struct fn_fieldlist *fn_fieldlists;
1154
1155 /* * typedefs defined inside this class. typedef_field points to
1156 an array of typedef_field_count elements. */
1157
1158 struct decl_field *typedef_field;
1159
1160 unsigned typedef_field_count;
1161
1162 /* * The nested types defined by this type. nested_types points to
1163 an array of nested_types_count elements. */
1164
1165 struct decl_field *nested_types;
1166
1167 unsigned nested_types_count;
1168
1169 /* * The template arguments. This is an array with
1170 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1171 classes. */
1172
1173 struct symbol **template_arguments;
1174 };
1175
1176 /* * Struct used to store conversion rankings. */
1177
1178 struct rank
1179 {
1180 short rank;
1181
1182 /* * When two conversions are of the same type and therefore have
1183 the same rank, subrank is used to differentiate the two.
1184
1185 Eg: Two derived-class-pointer to base-class-pointer conversions
1186 would both have base pointer conversion rank, but the
1187 conversion with the shorter distance to the ancestor is
1188 preferable. 'subrank' would be used to reflect that. */
1189
1190 short subrank;
1191 };
1192
1193 /* * Used for ranking a function for overload resolution. */
1194
1195 typedef std::vector<rank> badness_vector;
1196
1197 /* * GNAT Ada-specific information for various Ada types. */
1198
1199 struct gnat_aux_type
1200 {
1201 /* * Parallel type used to encode information about dynamic types
1202 used in Ada (such as variant records, variable-size array,
1203 etc). */
1204 struct type* descriptive_type;
1205 };
1206
1207 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1208
1209 struct func_type
1210 {
1211 /* * The calling convention for targets supporting multiple ABIs.
1212 Right now this is only fetched from the Dwarf-2
1213 DW_AT_calling_convention attribute. The value is one of the
1214 DW_CC constants. */
1215
1216 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1217
1218 /* * Whether this function normally returns to its caller. It is
1219 set from the DW_AT_noreturn attribute if set on the
1220 DW_TAG_subprogram. */
1221
1222 unsigned int is_noreturn : 1;
1223
1224 /* * Only those DW_TAG_call_site's in this function that have
1225 DW_AT_call_tail_call set are linked in this list. Function
1226 without its tail call list complete
1227 (DW_AT_call_all_tail_calls or its superset
1228 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1229 DW_TAG_call_site's exist in such function. */
1230
1231 struct call_site *tail_call_list;
1232
1233 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1234 contains the method. */
1235
1236 struct type *self_type;
1237 };
1238
1239 /* struct call_site_parameter can be referenced in callees by several ways. */
1240
1241 enum call_site_parameter_kind
1242 {
1243 /* * Use field call_site_parameter.u.dwarf_reg. */
1244 CALL_SITE_PARAMETER_DWARF_REG,
1245
1246 /* * Use field call_site_parameter.u.fb_offset. */
1247 CALL_SITE_PARAMETER_FB_OFFSET,
1248
1249 /* * Use field call_site_parameter.u.param_offset. */
1250 CALL_SITE_PARAMETER_PARAM_OFFSET
1251 };
1252
1253 struct call_site_target
1254 {
1255 union field_location loc;
1256
1257 /* * Discriminant for union field_location. */
1258
1259 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1260 };
1261
1262 union call_site_parameter_u
1263 {
1264 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1265 as DWARF register number, for register passed
1266 parameters. */
1267
1268 int dwarf_reg;
1269
1270 /* * Offset from the callee's frame base, for stack passed
1271 parameters. This equals offset from the caller's stack
1272 pointer. */
1273
1274 CORE_ADDR fb_offset;
1275
1276 /* * Offset relative to the start of this PER_CU to
1277 DW_TAG_formal_parameter which is referenced by both
1278 caller and the callee. */
1279
1280 cu_offset param_cu_off;
1281 };
1282
1283 struct call_site_parameter
1284 {
1285 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1286
1287 union call_site_parameter_u u;
1288
1289 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1290
1291 const gdb_byte *value;
1292 size_t value_size;
1293
1294 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1295 It may be NULL if not provided by DWARF. */
1296
1297 const gdb_byte *data_value;
1298 size_t data_value_size;
1299 };
1300
1301 /* * A place where a function gets called from, represented by
1302 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1303
1304 struct call_site
1305 {
1306 /* * Address of the first instruction after this call. It must be
1307 the first field as we overload core_addr_hash and core_addr_eq
1308 for it. */
1309
1310 CORE_ADDR pc;
1311
1312 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1313
1314 struct call_site *tail_call_next;
1315
1316 /* * Describe DW_AT_call_target. Missing attribute uses
1317 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1318
1319 struct call_site_target target;
1320
1321 /* * Size of the PARAMETER array. */
1322
1323 unsigned parameter_count;
1324
1325 /* * CU of the function where the call is located. It gets used
1326 for DWARF blocks execution in the parameter array below. */
1327
1328 struct dwarf2_per_cu_data *per_cu;
1329
1330 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1331
1332 struct call_site_parameter parameter[1];
1333 };
1334
1335 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1336 static structure. */
1337
1338 extern const struct cplus_struct_type cplus_struct_default;
1339
1340 extern void allocate_cplus_struct_type (struct type *);
1341
1342 #define INIT_CPLUS_SPECIFIC(type) \
1343 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1344 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1345 &cplus_struct_default)
1346
1347 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1348
1349 #define HAVE_CPLUS_STRUCT(type) \
1350 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1351 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1352
1353 #define INIT_NONE_SPECIFIC(type) \
1354 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1355 TYPE_MAIN_TYPE (type)->type_specific = {})
1356
1357 extern const struct gnat_aux_type gnat_aux_default;
1358
1359 extern void allocate_gnat_aux_type (struct type *);
1360
1361 #define INIT_GNAT_SPECIFIC(type) \
1362 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1363 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1364 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1365 /* * A macro that returns non-zero if the type-specific data should be
1366 read as "gnat-stuff". */
1367 #define HAVE_GNAT_AUX_INFO(type) \
1368 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1369
1370 /* * True if TYPE is known to be an Ada type of some kind. */
1371 #define ADA_TYPE_P(type) \
1372 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1373 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1374 && TYPE_FIXED_INSTANCE (type)))
1375
1376 #define INIT_FUNC_SPECIFIC(type) \
1377 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1378 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1379 TYPE_ZALLOC (type, \
1380 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1381
1382 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1383 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1384 #define TYPE_NAME(thistype) TYPE_MAIN_TYPE(thistype)->name
1385 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1386 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1387 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1388 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1389 #define TYPE_CHAIN(thistype) (thistype)->chain
1390 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1391 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1392 so you only have to call check_typedef once. Since allocate_value
1393 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1394 #define TYPE_LENGTH(thistype) (thistype)->length
1395
1396 /* * Return the alignment of the type in target addressable memory
1397 units, or 0 if no alignment was specified. */
1398 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1399
1400 /* * Return the alignment of the type in target addressable memory
1401 units, or 0 if no alignment was specified. */
1402 extern unsigned type_raw_align (struct type *);
1403
1404 /* * Return the alignment of the type in target addressable memory
1405 units. Return 0 if the alignment cannot be determined; but note
1406 that this makes an effort to compute the alignment even it it was
1407 not specified in the debug info. */
1408 extern unsigned type_align (struct type *);
1409
1410 /* * Set the alignment of the type. The alignment must be a power of
1411 2. Returns false if the given value does not fit in the available
1412 space in struct type. */
1413 extern bool set_type_align (struct type *, ULONGEST);
1414
1415 /* * Note that TYPE_CODE can be TYPE_CODE_TYPEDEF, so if you want the real
1416 type, you need to do TYPE_CODE (check_type (this_type)). */
1417 #define TYPE_CODE(thistype) TYPE_MAIN_TYPE(thistype)->code
1418 #define TYPE_NFIELDS(thistype) TYPE_MAIN_TYPE(thistype)->nfields
1419 #define TYPE_FIELDS(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields
1420
1421 #define TYPE_INDEX_TYPE(type) TYPE_FIELD_TYPE (type, 0)
1422 #define TYPE_RANGE_DATA(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.bounds
1423 #define TYPE_LOW_BOUND(range_type) \
1424 TYPE_RANGE_DATA(range_type)->low.data.const_val
1425 #define TYPE_HIGH_BOUND(range_type) \
1426 TYPE_RANGE_DATA(range_type)->high.data.const_val
1427 #define TYPE_LOW_BOUND_UNDEFINED(range_type) \
1428 (TYPE_RANGE_DATA(range_type)->low.kind == PROP_UNDEFINED)
1429 #define TYPE_HIGH_BOUND_UNDEFINED(range_type) \
1430 (TYPE_RANGE_DATA(range_type)->high.kind == PROP_UNDEFINED)
1431 #define TYPE_HIGH_BOUND_KIND(range_type) \
1432 TYPE_RANGE_DATA(range_type)->high.kind
1433 #define TYPE_LOW_BOUND_KIND(range_type) \
1434 TYPE_RANGE_DATA(range_type)->low.kind
1435 #define TYPE_BIT_STRIDE(range_type) \
1436 (TYPE_RANGE_DATA(range_type)->stride.data.const_val \
1437 * (TYPE_RANGE_DATA(range_type)->flag_is_byte_stride ? 8 : 1))
1438
1439 /* Property accessors for the type data location. */
1440 #define TYPE_DATA_LOCATION(thistype) \
1441 get_dyn_prop (DYN_PROP_DATA_LOCATION, thistype)
1442 #define TYPE_DATA_LOCATION_BATON(thistype) \
1443 TYPE_DATA_LOCATION (thistype)->data.baton
1444 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1445 TYPE_DATA_LOCATION (thistype)->data.const_val
1446 #define TYPE_DATA_LOCATION_KIND(thistype) \
1447 TYPE_DATA_LOCATION (thistype)->kind
1448
1449 /* Property accessors for the type allocated/associated. */
1450 #define TYPE_ALLOCATED_PROP(thistype) \
1451 get_dyn_prop (DYN_PROP_ALLOCATED, thistype)
1452 #define TYPE_ASSOCIATED_PROP(thistype) \
1453 get_dyn_prop (DYN_PROP_ASSOCIATED, thistype)
1454
1455 /* Attribute accessors for dynamic properties. */
1456 #define TYPE_DYN_PROP_LIST(thistype) \
1457 TYPE_MAIN_TYPE(thistype)->dyn_prop_list
1458 #define TYPE_DYN_PROP_BATON(dynprop) \
1459 dynprop->data.baton
1460 #define TYPE_DYN_PROP_ADDR(dynprop) \
1461 dynprop->data.const_val
1462 #define TYPE_DYN_PROP_KIND(dynprop) \
1463 dynprop->kind
1464
1465
1466 /* Accessors for struct range_bounds data attached to an array type's
1467 index type. */
1468
1469 #define TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED(arraytype) \
1470 TYPE_HIGH_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1471 #define TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED(arraytype) \
1472 TYPE_LOW_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1473
1474 #define TYPE_ARRAY_UPPER_BOUND_VALUE(arraytype) \
1475 (TYPE_HIGH_BOUND(TYPE_INDEX_TYPE((arraytype))))
1476
1477 #define TYPE_ARRAY_LOWER_BOUND_VALUE(arraytype) \
1478 (TYPE_LOW_BOUND(TYPE_INDEX_TYPE((arraytype))))
1479
1480 #define TYPE_ARRAY_BIT_STRIDE(arraytype) \
1481 (TYPE_BIT_STRIDE(TYPE_INDEX_TYPE((arraytype))))
1482
1483 /* C++ */
1484
1485 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1486 /* Do not call this, use TYPE_SELF_TYPE. */
1487 extern struct type *internal_type_self_type (struct type *);
1488 extern void set_type_self_type (struct type *, struct type *);
1489
1490 extern int internal_type_vptr_fieldno (struct type *);
1491 extern void set_type_vptr_fieldno (struct type *, int);
1492 extern struct type *internal_type_vptr_basetype (struct type *);
1493 extern void set_type_vptr_basetype (struct type *, struct type *);
1494 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1495 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1496
1497 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1498 #define TYPE_SPECIFIC_FIELD(thistype) \
1499 TYPE_MAIN_TYPE(thistype)->type_specific_field
1500 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1501 where we're trying to print an Ada array using the C language.
1502 In that case, there is no "cplus_stuff", but the C language assumes
1503 that there is. What we do, in that case, is pretend that there is
1504 an implicit one which is the default cplus stuff. */
1505 #define TYPE_CPLUS_SPECIFIC(thistype) \
1506 (!HAVE_CPLUS_STRUCT(thistype) \
1507 ? (struct cplus_struct_type*)&cplus_struct_default \
1508 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1509 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1510 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1511 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1512 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1513 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1514 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1515 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1516 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1517 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1518 #define TYPE_BASECLASS(thistype,index) TYPE_FIELD_TYPE(thistype, index)
1519 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1520 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1521 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1522 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1523 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1524 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1525
1526 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1527 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1528 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1529
1530 #define FIELD_TYPE(thisfld) ((thisfld).type)
1531 #define FIELD_NAME(thisfld) ((thisfld).name)
1532 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1533 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1534 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1535 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1536 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1537 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1538 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1539 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1540 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1541 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1542 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1543 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1544 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1545 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1546 #define SET_FIELD_PHYSNAME(thisfld, name) \
1547 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1548 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1549 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1550 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1551 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1552 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1553 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1554 FIELD_DWARF_BLOCK (thisfld) = (addr))
1555 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1556 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1557
1558 #define TYPE_FIELD(thistype, n) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields[n]
1559 #define TYPE_FIELD_TYPE(thistype, n) FIELD_TYPE(TYPE_FIELD(thistype, n))
1560 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME(TYPE_FIELD(thistype, n))
1561 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND (TYPE_FIELD (thistype, n))
1562 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS (TYPE_FIELD (thistype, n))
1563 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL (TYPE_FIELD (thistype, n))
1564 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME (TYPE_FIELD (thistype, n))
1565 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR (TYPE_FIELD (thistype, n))
1566 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK (TYPE_FIELD (thistype, n))
1567 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL(TYPE_FIELD(thistype,n))
1568 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE(TYPE_FIELD(thistype,n))
1569 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE(TYPE_FIELD(thistype,n))!=0)
1570
1571 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1572 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1573 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1574 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1575 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1576 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1577 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1578 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1579 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1580 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1581 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1582 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1583 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1584 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1585 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1586 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1587 #define TYPE_FIELD_PRIVATE(thistype, n) \
1588 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1589 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1590 #define TYPE_FIELD_PROTECTED(thistype, n) \
1591 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1592 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1593 #define TYPE_FIELD_IGNORE(thistype, n) \
1594 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1595 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1596 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1597 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1598 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1599
1600 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1601 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1602 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1603 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1604 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1605
1606 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1607 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1608 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1609 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1610 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1611 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1612
1613 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1614 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1615 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1616 #define TYPE_FN_FIELD_ARGS(thisfn, n) TYPE_FIELDS ((thisfn)[n].type)
1617 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1618 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1619 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1620 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1621 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1622 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1623 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1624 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1625 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1626 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1627 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1628 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1629 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1630
1631 /* Accessors for typedefs defined by a class. */
1632 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1633 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1634 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1635 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1636 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1637 TYPE_TYPEDEF_FIELD (thistype, n).name
1638 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1639 TYPE_TYPEDEF_FIELD (thistype, n).type
1640 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1641 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1642 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1643 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1644 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1645 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1646
1647 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1648 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1649 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1650 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1651 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1652 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1653 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1654 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1655 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1656 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1657 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1658 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1659 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1660 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1661
1662 #define TYPE_IS_OPAQUE(thistype) \
1663 (((TYPE_CODE (thistype) == TYPE_CODE_STRUCT) \
1664 || (TYPE_CODE (thistype) == TYPE_CODE_UNION)) \
1665 && (TYPE_NFIELDS (thistype) == 0) \
1666 && (!HAVE_CPLUS_STRUCT (thistype) \
1667 || TYPE_NFN_FIELDS (thistype) == 0) \
1668 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1669
1670 /* * A helper macro that returns the name of a type or "unnamed type"
1671 if the type has no name. */
1672
1673 #define TYPE_SAFE_NAME(type) \
1674 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<unnamed type>"))
1675
1676 /* * A helper macro that returns the name of an error type. If the
1677 type has a name, it is used; otherwise, a default is used. */
1678
1679 #define TYPE_ERROR_NAME(type) \
1680 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<error type>"))
1681
1682 /* Given TYPE, return its floatformat. */
1683 const struct floatformat *floatformat_from_type (const struct type *type);
1684
1685 struct builtin_type
1686 {
1687 /* Integral types. */
1688
1689 /* Implicit size/sign (based on the architecture's ABI). */
1690 struct type *builtin_void;
1691 struct type *builtin_char;
1692 struct type *builtin_short;
1693 struct type *builtin_int;
1694 struct type *builtin_long;
1695 struct type *builtin_signed_char;
1696 struct type *builtin_unsigned_char;
1697 struct type *builtin_unsigned_short;
1698 struct type *builtin_unsigned_int;
1699 struct type *builtin_unsigned_long;
1700 struct type *builtin_half;
1701 struct type *builtin_float;
1702 struct type *builtin_double;
1703 struct type *builtin_long_double;
1704 struct type *builtin_complex;
1705 struct type *builtin_double_complex;
1706 struct type *builtin_string;
1707 struct type *builtin_bool;
1708 struct type *builtin_long_long;
1709 struct type *builtin_unsigned_long_long;
1710 struct type *builtin_decfloat;
1711 struct type *builtin_decdouble;
1712 struct type *builtin_declong;
1713
1714 /* "True" character types.
1715 We use these for the '/c' print format, because c_char is just a
1716 one-byte integral type, which languages less laid back than C
1717 will print as ... well, a one-byte integral type. */
1718 struct type *builtin_true_char;
1719 struct type *builtin_true_unsigned_char;
1720
1721 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1722 is for when an architecture needs to describe a register that has
1723 no size. */
1724 struct type *builtin_int0;
1725 struct type *builtin_int8;
1726 struct type *builtin_uint8;
1727 struct type *builtin_int16;
1728 struct type *builtin_uint16;
1729 struct type *builtin_int24;
1730 struct type *builtin_uint24;
1731 struct type *builtin_int32;
1732 struct type *builtin_uint32;
1733 struct type *builtin_int64;
1734 struct type *builtin_uint64;
1735 struct type *builtin_int128;
1736 struct type *builtin_uint128;
1737
1738 /* Wide character types. */
1739 struct type *builtin_char16;
1740 struct type *builtin_char32;
1741 struct type *builtin_wchar;
1742
1743 /* Pointer types. */
1744
1745 /* * `pointer to data' type. Some target platforms use an implicitly
1746 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1747 struct type *builtin_data_ptr;
1748
1749 /* * `pointer to function (returning void)' type. Harvard
1750 architectures mean that ABI function and code pointers are not
1751 interconvertible. Similarly, since ANSI, C standards have
1752 explicitly said that pointers to functions and pointers to data
1753 are not interconvertible --- that is, you can't cast a function
1754 pointer to void * and back, and expect to get the same value.
1755 However, all function pointer types are interconvertible, so void
1756 (*) () can server as a generic function pointer. */
1757
1758 struct type *builtin_func_ptr;
1759
1760 /* * `function returning pointer to function (returning void)' type.
1761 The final void return type is not significant for it. */
1762
1763 struct type *builtin_func_func;
1764
1765 /* Special-purpose types. */
1766
1767 /* * This type is used to represent a GDB internal function. */
1768
1769 struct type *internal_fn;
1770
1771 /* * This type is used to represent an xmethod. */
1772 struct type *xmethod;
1773 };
1774
1775 /* * Return the type table for the specified architecture. */
1776
1777 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1778
1779 /* * Per-objfile types used by symbol readers. */
1780
1781 struct objfile_type
1782 {
1783 /* Basic types based on the objfile architecture. */
1784 struct type *builtin_void;
1785 struct type *builtin_char;
1786 struct type *builtin_short;
1787 struct type *builtin_int;
1788 struct type *builtin_long;
1789 struct type *builtin_long_long;
1790 struct type *builtin_signed_char;
1791 struct type *builtin_unsigned_char;
1792 struct type *builtin_unsigned_short;
1793 struct type *builtin_unsigned_int;
1794 struct type *builtin_unsigned_long;
1795 struct type *builtin_unsigned_long_long;
1796 struct type *builtin_half;
1797 struct type *builtin_float;
1798 struct type *builtin_double;
1799 struct type *builtin_long_double;
1800
1801 /* * This type is used to represent symbol addresses. */
1802 struct type *builtin_core_addr;
1803
1804 /* * This type represents a type that was unrecognized in symbol
1805 read-in. */
1806 struct type *builtin_error;
1807
1808 /* * Types used for symbols with no debug information. */
1809 struct type *nodebug_text_symbol;
1810 struct type *nodebug_text_gnu_ifunc_symbol;
1811 struct type *nodebug_got_plt_symbol;
1812 struct type *nodebug_data_symbol;
1813 struct type *nodebug_unknown_symbol;
1814 struct type *nodebug_tls_symbol;
1815 };
1816
1817 /* * Return the type table for the specified objfile. */
1818
1819 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1820
1821 /* Explicit floating-point formats. See "floatformat.h". */
1822 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1823 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1824 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1825 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1826 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1827 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1828 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
1829 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
1830 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
1831 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
1832 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
1833 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
1834
1835
1836 /* Allocate space for storing data associated with a particular
1837 type. We ensure that the space is allocated using the same
1838 mechanism that was used to allocate the space for the type
1839 structure itself. I.e. if the type is on an objfile's
1840 objfile_obstack, then the space for data associated with that type
1841 will also be allocated on the objfile_obstack. If the type is
1842 associated with a gdbarch, then the space for data associated with that
1843 type will also be allocated on the gdbarch_obstack.
1844
1845 If a type is not associated with neither an objfile or a gdbarch then
1846 you should not use this macro to allocate space for data, instead you
1847 should call xmalloc directly, and ensure the memory is correctly freed
1848 when it is no longer needed. */
1849
1850 #define TYPE_ALLOC(t,size) \
1851 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
1852 ? &TYPE_OBJFILE (t)->objfile_obstack \
1853 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
1854 size))
1855
1856
1857 /* See comment on TYPE_ALLOC. */
1858
1859 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
1860
1861 /* Use alloc_type to allocate a type owned by an objfile. Use
1862 alloc_type_arch to allocate a type owned by an architecture. Use
1863 alloc_type_copy to allocate a type with the same owner as a
1864 pre-existing template type, no matter whether objfile or
1865 gdbarch. */
1866 extern struct type *alloc_type (struct objfile *);
1867 extern struct type *alloc_type_arch (struct gdbarch *);
1868 extern struct type *alloc_type_copy (const struct type *);
1869
1870 /* * Return the type's architecture. For types owned by an
1871 architecture, that architecture is returned. For types owned by an
1872 objfile, that objfile's architecture is returned. */
1873
1874 extern struct gdbarch *get_type_arch (const struct type *);
1875
1876 /* * This returns the target type (or NULL) of TYPE, also skipping
1877 past typedefs. */
1878
1879 extern struct type *get_target_type (struct type *type);
1880
1881 /* Return the equivalent of TYPE_LENGTH, but in number of target
1882 addressable memory units of the associated gdbarch instead of bytes. */
1883
1884 extern unsigned int type_length_units (struct type *type);
1885
1886 /* * Helper function to construct objfile-owned types. */
1887
1888 extern struct type *init_type (struct objfile *, enum type_code, int,
1889 const char *);
1890 extern struct type *init_integer_type (struct objfile *, int, int,
1891 const char *);
1892 extern struct type *init_character_type (struct objfile *, int, int,
1893 const char *);
1894 extern struct type *init_boolean_type (struct objfile *, int, int,
1895 const char *);
1896 extern struct type *init_float_type (struct objfile *, int, const char *,
1897 const struct floatformat **,
1898 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
1899 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
1900 extern struct type *init_complex_type (const char *, struct type *);
1901 extern struct type *init_pointer_type (struct objfile *, int, const char *,
1902 struct type *);
1903
1904 /* Helper functions to construct architecture-owned types. */
1905 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
1906 const char *);
1907 extern struct type *arch_integer_type (struct gdbarch *, int, int,
1908 const char *);
1909 extern struct type *arch_character_type (struct gdbarch *, int, int,
1910 const char *);
1911 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
1912 const char *);
1913 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
1914 const struct floatformat **);
1915 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
1916 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
1917 struct type *);
1918
1919 /* Helper functions to construct a struct or record type. An
1920 initially empty type is created using arch_composite_type().
1921 Fields are then added using append_composite_type_field*(). A union
1922 type has its size set to the largest field. A struct type has each
1923 field packed against the previous. */
1924
1925 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
1926 const char *name, enum type_code code);
1927 extern void append_composite_type_field (struct type *t, const char *name,
1928 struct type *field);
1929 extern void append_composite_type_field_aligned (struct type *t,
1930 const char *name,
1931 struct type *field,
1932 int alignment);
1933 struct field *append_composite_type_field_raw (struct type *t, const char *name,
1934 struct type *field);
1935
1936 /* Helper functions to construct a bit flags type. An initially empty
1937 type is created using arch_flag_type(). Flags are then added using
1938 append_flag_type_field() and append_flag_type_flag(). */
1939 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
1940 const char *name, int bit);
1941 extern void append_flags_type_field (struct type *type,
1942 int start_bitpos, int nr_bits,
1943 struct type *field_type, const char *name);
1944 extern void append_flags_type_flag (struct type *type, int bitpos,
1945 const char *name);
1946
1947 extern void make_vector_type (struct type *array_type);
1948 extern struct type *init_vector_type (struct type *elt_type, int n);
1949
1950 extern struct type *lookup_reference_type (struct type *, enum type_code);
1951 extern struct type *lookup_lvalue_reference_type (struct type *);
1952 extern struct type *lookup_rvalue_reference_type (struct type *);
1953
1954
1955 extern struct type *make_reference_type (struct type *, struct type **,
1956 enum type_code);
1957
1958 extern struct type *make_cv_type (int, int, struct type *, struct type **);
1959
1960 extern struct type *make_restrict_type (struct type *);
1961
1962 extern struct type *make_unqualified_type (struct type *);
1963
1964 extern struct type *make_atomic_type (struct type *);
1965
1966 extern void replace_type (struct type *, struct type *);
1967
1968 extern int address_space_name_to_int (struct gdbarch *, const char *);
1969
1970 extern const char *address_space_int_to_name (struct gdbarch *, int);
1971
1972 extern struct type *make_type_with_address_space (struct type *type,
1973 int space_identifier);
1974
1975 extern struct type *lookup_memberptr_type (struct type *, struct type *);
1976
1977 extern struct type *lookup_methodptr_type (struct type *);
1978
1979 extern void smash_to_method_type (struct type *type, struct type *self_type,
1980 struct type *to_type, struct field *args,
1981 int nargs, int varargs);
1982
1983 extern void smash_to_memberptr_type (struct type *, struct type *,
1984 struct type *);
1985
1986 extern void smash_to_methodptr_type (struct type *, struct type *);
1987
1988 extern struct type *allocate_stub_method (struct type *);
1989
1990 extern const char *type_name_or_error (struct type *type);
1991
1992 struct struct_elt
1993 {
1994 /* The field of the element, or NULL if no element was found. */
1995 struct field *field;
1996
1997 /* The bit offset of the element in the parent structure. */
1998 LONGEST offset;
1999 };
2000
2001 /* Given a type TYPE, lookup the field and offset of the component named
2002 NAME.
2003
2004 TYPE can be either a struct or union, or a pointer or reference to
2005 a struct or union. If it is a pointer or reference, its target
2006 type is automatically used. Thus '.' and '->' are interchangable,
2007 as specified for the definitions of the expression element types
2008 STRUCTOP_STRUCT and STRUCTOP_PTR.
2009
2010 If NOERR is nonzero, the returned structure will have field set to
2011 NULL if there is no component named NAME.
2012
2013 If the component NAME is a field in an anonymous substructure of
2014 TYPE, the returned offset is a "global" offset relative to TYPE
2015 rather than an offset within the substructure. */
2016
2017 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2018
2019 /* Given a type TYPE, lookup the type of the component named NAME.
2020
2021 TYPE can be either a struct or union, or a pointer or reference to
2022 a struct or union. If it is a pointer or reference, its target
2023 type is automatically used. Thus '.' and '->' are interchangable,
2024 as specified for the definitions of the expression element types
2025 STRUCTOP_STRUCT and STRUCTOP_PTR.
2026
2027 If NOERR is nonzero, return NULL if there is no component named
2028 NAME. */
2029
2030 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2031
2032 extern struct type *make_pointer_type (struct type *, struct type **);
2033
2034 extern struct type *lookup_pointer_type (struct type *);
2035
2036 extern struct type *make_function_type (struct type *, struct type **);
2037
2038 extern struct type *lookup_function_type (struct type *);
2039
2040 extern struct type *lookup_function_type_with_arguments (struct type *,
2041 int,
2042 struct type **);
2043
2044 extern struct type *create_static_range_type (struct type *, struct type *,
2045 LONGEST, LONGEST);
2046
2047
2048 extern struct type *create_array_type_with_stride
2049 (struct type *, struct type *, struct type *,
2050 struct dynamic_prop *, unsigned int);
2051
2052 extern struct type *create_range_type (struct type *, struct type *,
2053 const struct dynamic_prop *,
2054 const struct dynamic_prop *,
2055 LONGEST);
2056
2057 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2058 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2059 stride. */
2060
2061 extern struct type * create_range_type_with_stride
2062 (struct type *result_type, struct type *index_type,
2063 const struct dynamic_prop *low_bound,
2064 const struct dynamic_prop *high_bound, LONGEST bias,
2065 const struct dynamic_prop *stride, bool byte_stride_p);
2066
2067 extern struct type *create_array_type (struct type *, struct type *,
2068 struct type *);
2069
2070 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2071
2072 extern struct type *create_string_type (struct type *, struct type *,
2073 struct type *);
2074 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2075
2076 extern struct type *create_set_type (struct type *, struct type *);
2077
2078 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2079 const char *);
2080
2081 extern struct type *lookup_signed_typename (const struct language_defn *,
2082 const char *);
2083
2084 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2085
2086 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2087
2088 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2089 ADDR specifies the location of the variable the type is bound to.
2090 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2091 static properties is returned. */
2092 extern struct type *resolve_dynamic_type
2093 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2094 CORE_ADDR addr);
2095
2096 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2097 extern int is_dynamic_type (struct type *type);
2098
2099 /* * Return the dynamic property of the requested KIND from TYPE's
2100 list of dynamic properties. */
2101 extern struct dynamic_prop *get_dyn_prop
2102 (enum dynamic_prop_node_kind kind, const struct type *type);
2103
2104 /* * Given a dynamic property PROP of a given KIND, add this dynamic
2105 property to the given TYPE.
2106
2107 This function assumes that TYPE is objfile-owned. */
2108 extern void add_dyn_prop
2109 (enum dynamic_prop_node_kind kind, struct dynamic_prop prop,
2110 struct type *type);
2111
2112 extern void remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2113 struct type *type);
2114
2115 extern struct type *check_typedef (struct type *);
2116
2117 extern void check_stub_method_group (struct type *, int);
2118
2119 extern char *gdb_mangle_name (struct type *, int, int);
2120
2121 extern struct type *lookup_typename (const struct language_defn *,
2122 const char *, const struct block *, int);
2123
2124 extern struct type *lookup_template_type (const char *, struct type *,
2125 const struct block *);
2126
2127 extern int get_vptr_fieldno (struct type *, struct type **);
2128
2129 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2130
2131 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2132 LONGEST *high_bound);
2133
2134 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2135
2136 extern int class_types_same_p (const struct type *, const struct type *);
2137
2138 extern int is_ancestor (struct type *, struct type *);
2139
2140 extern int is_public_ancestor (struct type *, struct type *);
2141
2142 extern int is_unique_ancestor (struct type *, struct value *);
2143
2144 /* Overload resolution */
2145
2146 /* * Badness if parameter list length doesn't match arg list length. */
2147 extern const struct rank LENGTH_MISMATCH_BADNESS;
2148
2149 /* * Dummy badness value for nonexistent parameter positions. */
2150 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2151 /* * Badness if no conversion among types. */
2152 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2153
2154 /* * Badness of an exact match. */
2155 extern const struct rank EXACT_MATCH_BADNESS;
2156
2157 /* * Badness of integral promotion. */
2158 extern const struct rank INTEGER_PROMOTION_BADNESS;
2159 /* * Badness of floating promotion. */
2160 extern const struct rank FLOAT_PROMOTION_BADNESS;
2161 /* * Badness of converting a derived class pointer
2162 to a base class pointer. */
2163 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2164 /* * Badness of integral conversion. */
2165 extern const struct rank INTEGER_CONVERSION_BADNESS;
2166 /* * Badness of floating conversion. */
2167 extern const struct rank FLOAT_CONVERSION_BADNESS;
2168 /* * Badness of integer<->floating conversions. */
2169 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2170 /* * Badness of conversion of pointer to void pointer. */
2171 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2172 /* * Badness of conversion to boolean. */
2173 extern const struct rank BOOL_CONVERSION_BADNESS;
2174 /* * Badness of converting derived to base class. */
2175 extern const struct rank BASE_CONVERSION_BADNESS;
2176 /* * Badness of converting from non-reference to reference. Subrank
2177 is the type of reference conversion being done. */
2178 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2179 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2180 /* * Conversion to rvalue reference. */
2181 #define REFERENCE_CONVERSION_RVALUE 1
2182 /* * Conversion to const lvalue reference. */
2183 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2184
2185 /* * Badness of converting integer 0 to NULL pointer. */
2186 extern const struct rank NULL_POINTER_CONVERSION;
2187 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2188 being done. */
2189 extern const struct rank CV_CONVERSION_BADNESS;
2190 #define CV_CONVERSION_CONST 1
2191 #define CV_CONVERSION_VOLATILE 2
2192
2193 /* Non-standard conversions allowed by the debugger */
2194
2195 /* * Converting a pointer to an int is usually OK. */
2196 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2197
2198 /* * Badness of converting a (non-zero) integer constant
2199 to a pointer. */
2200 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2201
2202 extern struct rank sum_ranks (struct rank a, struct rank b);
2203 extern int compare_ranks (struct rank a, struct rank b);
2204
2205 extern int compare_badness (const badness_vector &,
2206 const badness_vector &);
2207
2208 extern badness_vector rank_function (gdb::array_view<type *> parms,
2209 gdb::array_view<value *> args);
2210
2211 extern struct rank rank_one_type (struct type *, struct type *,
2212 struct value *);
2213
2214 extern void recursive_dump_type (struct type *, int);
2215
2216 extern int field_is_static (struct field *);
2217
2218 /* printcmd.c */
2219
2220 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2221 const struct value_print_options *,
2222 int, struct ui_file *);
2223
2224 extern int can_dereference (struct type *);
2225
2226 extern int is_integral_type (struct type *);
2227
2228 extern int is_floating_type (struct type *);
2229
2230 extern int is_scalar_type (struct type *type);
2231
2232 extern int is_scalar_type_recursive (struct type *);
2233
2234 extern int class_or_union_p (const struct type *);
2235
2236 extern void maintenance_print_type (const char *, int);
2237
2238 extern htab_t create_copied_types_hash (struct objfile *objfile);
2239
2240 extern struct type *copy_type_recursive (struct objfile *objfile,
2241 struct type *type,
2242 htab_t copied_types);
2243
2244 extern struct type *copy_type (const struct type *type);
2245
2246 extern bool types_equal (struct type *, struct type *);
2247
2248 extern bool types_deeply_equal (struct type *, struct type *);
2249
2250 extern int type_not_allocated (const struct type *type);
2251
2252 extern int type_not_associated (const struct type *type);
2253
2254 /* * When the type includes explicit byte ordering, return that.
2255 Otherwise, the byte ordering from gdbarch_byte_order for
2256 get_type_arch is returned. */
2257
2258 extern enum bfd_endian type_byte_order (const struct type *type);
2259
2260 /* A flag to enable printing of debugging information of C++
2261 overloading. */
2262
2263 extern unsigned int overload_debug;
2264
2265 #endif /* GDBTYPES_H */
This page took 0.074566 seconds and 4 git commands to generate.