ef6d92c408f20149295add7ec19f29749d9608d0
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2015 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48
49 /* Forward declarations for prototypes. */
50 struct field;
51 struct block;
52 struct value_print_options;
53 struct language_defn;
54
55 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
56 are already DWARF-specific. */
57
58 /* * Offset relative to the start of its containing CU (compilation
59 unit). */
60 typedef struct
61 {
62 unsigned int cu_off;
63 } cu_offset;
64
65 /* * Offset relative to the start of its .debug_info or .debug_types
66 section. */
67
68 typedef struct
69 {
70 unsigned int sect_off;
71 } sect_offset;
72
73 /* Some macros for char-based bitfields. */
74
75 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
76 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
77 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
78 #define B_TYPE unsigned char
79 #define B_BYTES(x) ( 1 + ((x)>>3) )
80 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
81
82 /* * Different kinds of data types are distinguished by the `code'
83 field. */
84
85 enum type_code
86 {
87 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
88 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
89 TYPE_CODE_PTR, /**< Pointer type */
90
91 /* * Array type with lower & upper bounds.
92
93 Regardless of the language, GDB represents multidimensional
94 array types the way C does: as arrays of arrays. So an
95 instance of a GDB array type T can always be seen as a series
96 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
97 memory.
98
99 Row-major languages like C lay out multi-dimensional arrays so
100 that incrementing the rightmost index in a subscripting
101 expression results in the smallest change in the address of the
102 element referred to. Column-major languages like Fortran lay
103 them out so that incrementing the leftmost index results in the
104 smallest change.
105
106 This means that, in column-major languages, working our way
107 from type to target type corresponds to working through indices
108 from right to left, not left to right. */
109 TYPE_CODE_ARRAY,
110
111 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
112 TYPE_CODE_UNION, /**< C union or Pascal variant part */
113 TYPE_CODE_ENUM, /**< Enumeration type */
114 TYPE_CODE_FLAGS, /**< Bit flags type */
115 TYPE_CODE_FUNC, /**< Function type */
116 TYPE_CODE_INT, /**< Integer type */
117
118 /* * Floating type. This is *NOT* a complex type. Beware, there
119 are parts of GDB which bogusly assume that TYPE_CODE_FLT can
120 mean complex. */
121 TYPE_CODE_FLT,
122
123 /* * Void type. The length field specifies the length (probably
124 always one) which is used in pointer arithmetic involving
125 pointers to this type, but actually dereferencing such a
126 pointer is invalid; a void type has no length and no actual
127 representation in memory or registers. A pointer to a void
128 type is a generic pointer. */
129 TYPE_CODE_VOID,
130
131 TYPE_CODE_SET, /**< Pascal sets */
132 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
133
134 /* * A string type which is like an array of character but prints
135 differently. It does not contain a length field as Pascal
136 strings (for many Pascals, anyway) do; if we want to deal with
137 such strings, we should use a new type code. */
138 TYPE_CODE_STRING,
139
140 /* * Unknown type. The length field is valid if we were able to
141 deduce that much about the type, or 0 if we don't even know
142 that. */
143 TYPE_CODE_ERROR,
144
145 /* C++ */
146 TYPE_CODE_METHOD, /**< Method type */
147
148 /* * Pointer-to-member-function type. This describes how to access a
149 particular member function of a class (possibly a virtual
150 member function). The representation may vary between different
151 C++ ABIs. */
152 TYPE_CODE_METHODPTR,
153
154 /* * Pointer-to-member type. This is the offset within a class to
155 some particular data member. The only currently supported
156 representation uses an unbiased offset, with -1 representing
157 NULL; this is used by the Itanium C++ ABI (used by GCC on all
158 platforms). */
159 TYPE_CODE_MEMBERPTR,
160
161 TYPE_CODE_REF, /**< C++ Reference types */
162
163 TYPE_CODE_CHAR, /**< *real* character type */
164
165 /* * Boolean type. 0 is false, 1 is true, and other values are
166 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
167 TYPE_CODE_BOOL,
168
169 /* Fortran */
170 TYPE_CODE_COMPLEX, /**< Complex float */
171
172 TYPE_CODE_TYPEDEF,
173
174 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
175
176 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
177
178 TYPE_CODE_MODULE, /**< Fortran module. */
179
180 /* * Internal function type. */
181 TYPE_CODE_INTERNAL_FUNCTION,
182
183 /* * Methods implemented in extension languages. */
184 TYPE_CODE_XMETHOD
185 };
186
187 /* * Some constants representing each bit field in the main_type. See
188 the bit-field-specific macros, below, for documentation of each
189 constant in this enum. These enum values are only used with
190 init_type. Note that the values are chosen not to conflict with
191 type_instance_flag_value; this lets init_type error-check its
192 input. */
193
194 enum type_flag_value
195 {
196 TYPE_FLAG_UNSIGNED = (1 << 9),
197 TYPE_FLAG_NOSIGN = (1 << 10),
198 TYPE_FLAG_STUB = (1 << 11),
199 TYPE_FLAG_TARGET_STUB = (1 << 12),
200 TYPE_FLAG_STATIC = (1 << 13),
201 TYPE_FLAG_PROTOTYPED = (1 << 14),
202 TYPE_FLAG_INCOMPLETE = (1 << 15),
203 TYPE_FLAG_VARARGS = (1 << 16),
204 TYPE_FLAG_VECTOR = (1 << 17),
205 TYPE_FLAG_FIXED_INSTANCE = (1 << 18),
206 TYPE_FLAG_STUB_SUPPORTED = (1 << 19),
207 TYPE_FLAG_GNU_IFUNC = (1 << 20),
208
209 /* * Used for error-checking. */
210 TYPE_FLAG_MIN = TYPE_FLAG_UNSIGNED
211 };
212
213 /* * Some bits for the type's instance_flags word. See the macros
214 below for documentation on each bit. Note that if you add a value
215 here, you must update the enum type_flag_value as well. */
216
217 enum type_instance_flag_value
218 {
219 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
220 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
221 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
222 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
223 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
224 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
225 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
226 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
227 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
228 };
229
230 /* * Unsigned integer type. If this is not set for a TYPE_CODE_INT,
231 the type is signed (unless TYPE_FLAG_NOSIGN (below) is set). */
232
233 #define TYPE_UNSIGNED(t) (TYPE_MAIN_TYPE (t)->flag_unsigned)
234
235 /* * No sign for this type. In C++, "char", "signed char", and
236 "unsigned char" are distinct types; so we need an extra flag to
237 indicate the absence of a sign! */
238
239 #define TYPE_NOSIGN(t) (TYPE_MAIN_TYPE (t)->flag_nosign)
240
241 /* * This appears in a type's flags word if it is a stub type (e.g.,
242 if someone referenced a type that wasn't defined in a source file
243 via (struct sir_not_appearing_in_this_film *)). */
244
245 #define TYPE_STUB(t) (TYPE_MAIN_TYPE (t)->flag_stub)
246
247 /* * The target type of this type is a stub type, and this type needs
248 to be updated if it gets un-stubbed in check_typedef. Used for
249 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
250 based on the TYPE_LENGTH of the target type. Also, set for
251 TYPE_CODE_TYPEDEF. */
252
253 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
254
255 /* * Static type. If this is set, the corresponding type had
256 a static modifier.
257 Note: This may be unnecessary, since static data members
258 are indicated by other means (bitpos == -1). */
259
260 #define TYPE_STATIC(t) (TYPE_MAIN_TYPE (t)->flag_static)
261
262 /* * This is a function type which appears to have a prototype. We
263 need this for function calls in order to tell us if it's necessary
264 to coerce the args, or to just do the standard conversions. This
265 is used with a short field. */
266
267 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
268
269 /* * This flag is used to indicate that processing for this type
270 is incomplete.
271
272 (Mostly intended for HP platforms, where class methods, for
273 instance, can be encountered before their classes in the debug
274 info; the incomplete type has to be marked so that the class and
275 the method can be assigned correct types.) */
276
277 #define TYPE_INCOMPLETE(t) (TYPE_MAIN_TYPE (t)->flag_incomplete)
278
279 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
280 to functions. */
281
282 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
283
284 /* * Identify a vector type. Gcc is handling this by adding an extra
285 attribute to the array type. We slurp that in as a new flag of a
286 type. This is used only in dwarf2read.c. */
287 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
288
289 /* * The debugging formats (especially STABS) do not contain enough
290 information to represent all Ada types---especially those whose
291 size depends on dynamic quantities. Therefore, the GNAT Ada
292 compiler includes extra information in the form of additional type
293 definitions connected by naming conventions. This flag indicates
294 that the type is an ordinary (unencoded) GDB type that has been
295 created from the necessary run-time information, and does not need
296 further interpretation. Optionally marks ordinary, fixed-size GDB
297 type. */
298
299 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
300
301 /* * This debug target supports TYPE_STUB(t). In the unsupported case
302 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
303 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
304 guessed the TYPE_STUB(t) value (see dwarfread.c). */
305
306 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
307
308 /* * Not textual. By default, GDB treats all single byte integers as
309 characters (or elements of strings) unless this flag is set. */
310
311 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
312
313 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
314 address is returned by this function call. TYPE_TARGET_TYPE
315 determines the final returned function type to be presented to
316 user. */
317
318 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
319
320 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
321 the objfile retrieved as TYPE_OBJFILE. Otherweise, the type is
322 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
323
324 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
325 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
326 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
327
328 /* * True if this type was declared using the "class" keyword. This is
329 only valid for C++ structure and enum types. If false, a structure
330 was declared as a "struct"; if true it was declared "class". For
331 enum types, this is true when "enum class" or "enum struct" was
332 used to declare the type.. */
333
334 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
335
336 /* * True if this type is a "flag" enum. A flag enum is one where all
337 the values are pairwise disjoint when "and"ed together. This
338 affects how enum values are printed. */
339
340 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
341
342 /* * Constant type. If this is set, the corresponding type has a
343 const modifier. */
344
345 #define TYPE_CONST(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST)
346
347 /* * Volatile type. If this is set, the corresponding type has a
348 volatile modifier. */
349
350 #define TYPE_VOLATILE(t) \
351 (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE)
352
353 /* * Restrict type. If this is set, the corresponding type has a
354 restrict modifier. */
355
356 #define TYPE_RESTRICT(t) \
357 (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT)
358
359 /* * Atomic type. If this is set, the corresponding type has an
360 _Atomic modifier. */
361
362 #define TYPE_ATOMIC(t) \
363 (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC)
364
365 /* * Instruction-space delimited type. This is for Harvard architectures
366 which have separate instruction and data address spaces (and perhaps
367 others).
368
369 GDB usually defines a flat address space that is a superset of the
370 architecture's two (or more) address spaces, but this is an extension
371 of the architecture's model.
372
373 If TYPE_FLAG_INST is set, an object of the corresponding type
374 resides in instruction memory, even if its address (in the extended
375 flat address space) does not reflect this.
376
377 Similarly, if TYPE_FLAG_DATA is set, then an object of the
378 corresponding type resides in the data memory space, even if
379 this is not indicated by its (flat address space) address.
380
381 If neither flag is set, the default space for functions / methods
382 is instruction space, and for data objects is data memory. */
383
384 #define TYPE_CODE_SPACE(t) \
385 (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE)
386
387 #define TYPE_DATA_SPACE(t) \
388 (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE)
389
390 /* * Address class flags. Some environments provide for pointers
391 whose size is different from that of a normal pointer or address
392 types where the bits are interpreted differently than normal
393 addresses. The TYPE_FLAG_ADDRESS_CLASS_n flags may be used in
394 target specific ways to represent these different types of address
395 classes. */
396
397 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
398 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
399 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
400 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
401 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
402 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
403 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
404 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
405
406 /* * Used to store a dynamic property. */
407
408 struct dynamic_prop
409 {
410 /* Determine which field of the union dynamic_prop.data is used. */
411 enum
412 {
413 PROP_UNDEFINED, /* Not defined. */
414 PROP_CONST, /* Constant. */
415 PROP_ADDR_OFFSET, /* Address offset. */
416 PROP_LOCEXPR, /* Location expression. */
417 PROP_LOCLIST /* Location list. */
418 } kind;
419
420 /* Storage for dynamic or static value. */
421 union data
422 {
423 /* Storage for constant property. */
424
425 LONGEST const_val;
426
427 /* Storage for dynamic property. */
428
429 void *baton;
430 } data;
431 };
432
433
434 /* * Determine which field of the union main_type.fields[x].loc is
435 used. */
436
437 enum field_loc_kind
438 {
439 FIELD_LOC_KIND_BITPOS, /**< bitpos */
440 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
441 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
442 FIELD_LOC_KIND_PHYSNAME, /**< physname */
443 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
444 };
445
446 /* * A discriminant to determine which field in the
447 main_type.type_specific union is being used, if any.
448
449 For types such as TYPE_CODE_FLT, the use of this
450 discriminant is really redundant, as we know from the type code
451 which field is going to be used. As such, it would be possible to
452 reduce the size of this enum in order to save a bit or two for
453 other fields of struct main_type. But, since we still have extra
454 room , and for the sake of clarity and consistency, we treat all fields
455 of the union the same way. */
456
457 enum type_specific_kind
458 {
459 TYPE_SPECIFIC_NONE,
460 TYPE_SPECIFIC_CPLUS_STUFF,
461 TYPE_SPECIFIC_GNAT_STUFF,
462 TYPE_SPECIFIC_FLOATFORMAT,
463 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
464 TYPE_SPECIFIC_FUNC,
465 TYPE_SPECIFIC_SELF_TYPE
466 };
467
468 /* * Main structure representing a type in GDB.
469
470 This structure is space-critical. Its layout has been tweaked to
471 reduce the space used. */
472
473 struct main_type
474 {
475 /* * Code for kind of type. */
476
477 ENUM_BITFIELD(type_code) code : 8;
478
479 /* * Flags about this type. These fields appear at this location
480 because they packs nicely here. See the TYPE_* macros for
481 documentation about these fields. */
482
483 unsigned int flag_unsigned : 1;
484 unsigned int flag_nosign : 1;
485 unsigned int flag_stub : 1;
486 unsigned int flag_target_stub : 1;
487 unsigned int flag_static : 1;
488 unsigned int flag_prototyped : 1;
489 unsigned int flag_incomplete : 1;
490 unsigned int flag_varargs : 1;
491 unsigned int flag_vector : 1;
492 unsigned int flag_stub_supported : 1;
493 unsigned int flag_gnu_ifunc : 1;
494 unsigned int flag_fixed_instance : 1;
495 unsigned int flag_objfile_owned : 1;
496
497 /* * True if this type was declared with "class" rather than
498 "struct". */
499
500 unsigned int flag_declared_class : 1;
501
502 /* * True if this is an enum type with disjoint values. This
503 affects how the enum is printed. */
504
505 unsigned int flag_flag_enum : 1;
506
507 /* * A discriminant telling us which field of the type_specific
508 union is being used for this type, if any. */
509
510 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
511
512 /* * Number of fields described for this type. This field appears
513 at this location because it packs nicely here. */
514
515 short nfields;
516
517 /* * Name of this type, or NULL if none.
518
519 This is used for printing only, except by poorly designed C++
520 code. For looking up a name, look for a symbol in the
521 VAR_DOMAIN. This is generally allocated in the objfile's
522 obstack. However coffread.c uses malloc. */
523
524 const char *name;
525
526 /* * Tag name for this type, or NULL if none. This means that the
527 name of the type consists of a keyword followed by the tag name.
528 Which keyword is determined by the type code ("struct" for
529 TYPE_CODE_STRUCT, etc.). As far as I know C/C++ are the only
530 languages with this feature.
531
532 This is used for printing only, except by poorly designed C++ code.
533 For looking up a name, look for a symbol in the STRUCT_DOMAIN.
534 One more legitimate use is that if TYPE_FLAG_STUB is set, this is
535 the name to use to look for definitions in other files. */
536
537 const char *tag_name;
538
539 /* * Every type is now associated with a particular objfile, and the
540 type is allocated on the objfile_obstack for that objfile. One
541 problem however, is that there are times when gdb allocates new
542 types while it is not in the process of reading symbols from a
543 particular objfile. Fortunately, these happen when the type
544 being created is a derived type of an existing type, such as in
545 lookup_pointer_type(). So we can just allocate the new type
546 using the same objfile as the existing type, but to do this we
547 need a backpointer to the objfile from the existing type. Yes
548 this is somewhat ugly, but without major overhaul of the internal
549 type system, it can't be avoided for now. */
550
551 union type_owner
552 {
553 struct objfile *objfile;
554 struct gdbarch *gdbarch;
555 } owner;
556
557 /* * For a pointer type, describes the type of object pointed to.
558 - For an array type, describes the type of the elements.
559 - For a function or method type, describes the type of the return value.
560 - For a range type, describes the type of the full range.
561 - For a complex type, describes the type of each coordinate.
562 - For a special record or union type encoding a dynamic-sized type
563 in GNAT, a memoized pointer to a corresponding static version of
564 the type.
565 - Unused otherwise. */
566
567 struct type *target_type;
568
569 /* * For structure and union types, a description of each field.
570 For set and pascal array types, there is one "field",
571 whose type is the domain type of the set or array.
572 For range types, there are two "fields",
573 the minimum and maximum values (both inclusive).
574 For enum types, each possible value is described by one "field".
575 For a function or method type, a "field" for each parameter.
576 For C++ classes, there is one field for each base class (if it is
577 a derived class) plus one field for each class data member. Member
578 functions are recorded elsewhere.
579
580 Using a pointer to a separate array of fields
581 allows all types to have the same size, which is useful
582 because we can allocate the space for a type before
583 we know what to put in it. */
584
585 union
586 {
587 struct field
588 {
589 union field_location
590 {
591 /* * Position of this field, counting in bits from start of
592 containing structure. For gdbarch_bits_big_endian=1
593 targets, it is the bit offset to the MSB. For
594 gdbarch_bits_big_endian=0 targets, it is the bit offset to
595 the LSB. */
596
597 int bitpos;
598
599 /* * Enum value. */
600 LONGEST enumval;
601
602 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
603 physaddr is the location (in the target) of the static
604 field. Otherwise, physname is the mangled label of the
605 static field. */
606
607 CORE_ADDR physaddr;
608 const char *physname;
609
610 /* * The field location can be computed by evaluating the
611 following DWARF block. Its DATA is allocated on
612 objfile_obstack - no CU load is needed to access it. */
613
614 struct dwarf2_locexpr_baton *dwarf_block;
615 }
616 loc;
617
618 /* * For a function or member type, this is 1 if the argument is
619 marked artificial. Artificial arguments should not be shown
620 to the user. For TYPE_CODE_RANGE it is set if the specific
621 bound is not defined. */
622 unsigned int artificial : 1;
623
624 /* * Discriminant for union field_location. */
625 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
626
627 /* * Size of this field, in bits, or zero if not packed.
628 If non-zero in an array type, indicates the element size in
629 bits (used only in Ada at the moment).
630 For an unpacked field, the field's type's length
631 says how many bytes the field occupies. */
632
633 unsigned int bitsize : 28;
634
635 /* * In a struct or union type, type of this field.
636 - In a function or member type, type of this argument.
637 - In an array type, the domain-type of the array. */
638
639 struct type *type;
640
641 /* * Name of field, value or argument.
642 NULL for range bounds, array domains, and member function
643 arguments. */
644
645 const char *name;
646 } *fields;
647
648 /* * Union member used for range types. */
649
650 struct range_bounds
651 {
652 /* * Low bound of range. */
653
654 struct dynamic_prop low;
655
656 /* * High bound of range. */
657
658 struct dynamic_prop high;
659
660 /* True if HIGH range bound contains the number of elements in the
661 subrange. This affects how the final hight bound is computed. */
662
663 int flag_upper_bound_is_count : 1;
664
665 /* True if LOW or/and HIGH are resolved into a static bound from
666 a dynamic one. */
667
668 int flag_bound_evaluated : 1;
669 } *bounds;
670
671 } flds_bnds;
672
673 /* * Slot to point to additional language-specific fields of this
674 type. */
675
676 union type_specific
677 {
678 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
679 point to cplus_struct_default, a default static instance of a
680 struct cplus_struct_type. */
681
682 struct cplus_struct_type *cplus_stuff;
683
684 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
685 provides additional information. */
686
687 struct gnat_aux_type *gnat_stuff;
688
689 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to two
690 floatformat objects that describe the floating-point value
691 that resides within the type. The first is for big endian
692 targets and the second is for little endian targets. */
693
694 const struct floatformat **floatformat;
695
696 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
697
698 struct func_type *func_stuff;
699
700 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
701 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
702 is a member of. */
703
704 struct type *self_type;
705 } type_specific;
706
707 /* * Contains a location description value for the current type. Evaluating
708 this field yields to the location of the data for an object. */
709
710 struct dynamic_prop *data_location;
711 };
712
713 /* * A ``struct type'' describes a particular instance of a type, with
714 some particular qualification. */
715
716 struct type
717 {
718 /* * Type that is a pointer to this type.
719 NULL if no such pointer-to type is known yet.
720 The debugger may add the address of such a type
721 if it has to construct one later. */
722
723 struct type *pointer_type;
724
725 /* * C++: also need a reference type. */
726
727 struct type *reference_type;
728
729 /* * Variant chain. This points to a type that differs from this
730 one only in qualifiers and length. Currently, the possible
731 qualifiers are const, volatile, code-space, data-space, and
732 address class. The length may differ only when one of the
733 address class flags are set. The variants are linked in a
734 circular ring and share MAIN_TYPE. */
735
736 struct type *chain;
737
738 /* * Flags specific to this instance of the type, indicating where
739 on the ring we are.
740
741 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
742 binary or-ed with the target type, with a special case for
743 address class and space class. For example if this typedef does
744 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
745 instance flags are completely inherited from the target type. No
746 qualifiers can be cleared by the typedef. See also
747 check_typedef. */
748 int instance_flags;
749
750 /* * Length of storage for a value of this type. This is what
751 sizeof(type) would return; use it for address arithmetic, memory
752 reads and writes, etc. This size includes padding. For example,
753 an i386 extended-precision floating point value really only
754 occupies ten bytes, but most ABI's declare its size to be 12
755 bytes, to preserve alignment. A `struct type' representing such
756 a floating-point type would have a `length' value of 12, even
757 though the last two bytes are unused.
758
759 There's a bit of a host/target mess here, if you're concerned
760 about machines whose bytes aren't eight bits long, or who don't
761 have byte-addressed memory. Various places pass this to memcpy
762 and such, meaning it must be in units of host bytes. Various
763 other places expect they can calculate addresses by adding it
764 and such, meaning it must be in units of target bytes. For
765 some DSP targets, in which HOST_CHAR_BIT will (presumably) be 8
766 and TARGET_CHAR_BIT will be (say) 32, this is a problem.
767
768 One fix would be to make this field in bits (requiring that it
769 always be a multiple of HOST_CHAR_BIT and TARGET_CHAR_BIT) ---
770 the other choice would be to make it consistently in units of
771 HOST_CHAR_BIT. However, this would still fail to address
772 machines based on a ternary or decimal representation. */
773
774 unsigned length;
775
776 /* * Core type, shared by a group of qualified types. */
777
778 struct main_type *main_type;
779 };
780
781 #define NULL_TYPE ((struct type *) 0)
782
783 /* * C++ language-specific information for TYPE_CODE_STRUCT and
784 TYPE_CODE_UNION nodes. */
785
786 struct cplus_struct_type
787 {
788 /* * Number of base classes this type derives from. The
789 baseclasses are stored in the first N_BASECLASSES fields
790 (i.e. the `fields' field of the struct type). I think only the
791 `type' field of such a field has any meaning. */
792
793 short n_baseclasses;
794
795 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
796 All access to this field must be through TYPE_VPTR_FIELDNO as one
797 thing it does is check whether the field has been initialized.
798 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
799 which for portability reasons doesn't initialize this field.
800 TYPE_VPTR_FIELDNO returns -1 for this case.
801
802 If -1, we were unable to find the virtual function table pointer in
803 initial symbol reading, and get_vptr_fieldno should be called to find
804 it if possible. get_vptr_fieldno will update this field if possible.
805 Otherwise the value is left at -1.
806
807 Unused if this type does not have virtual functions. */
808
809 short vptr_fieldno;
810
811 /* * Number of methods with unique names. All overloaded methods
812 with the same name count only once. */
813
814 short nfn_fields;
815
816 /* * Number of template arguments. */
817
818 unsigned short n_template_arguments;
819
820 /* * One if this struct is a dynamic class, as defined by the
821 Itanium C++ ABI: if it requires a virtual table pointer,
822 because it or any of its base classes have one or more virtual
823 member functions or virtual base classes. Minus one if not
824 dynamic. Zero if not yet computed. */
825
826 int is_dynamic : 2;
827
828 /* * Non-zero if this type came from a Java CU. */
829
830 unsigned int is_java : 1;
831
832 /* * The base class which defined the virtual function table pointer. */
833
834 struct type *vptr_basetype;
835
836 /* * For derived classes, the number of base classes is given by
837 n_baseclasses and virtual_field_bits is a bit vector containing
838 one bit per base class. If the base class is virtual, the
839 corresponding bit will be set.
840 I.E, given:
841
842 class A{};
843 class B{};
844 class C : public B, public virtual A {};
845
846 B is a baseclass of C; A is a virtual baseclass for C.
847 This is a C++ 2.0 language feature. */
848
849 B_TYPE *virtual_field_bits;
850
851 /* * For classes with private fields, the number of fields is
852 given by nfields and private_field_bits is a bit vector
853 containing one bit per field.
854
855 If the field is private, the corresponding bit will be set. */
856
857 B_TYPE *private_field_bits;
858
859 /* * For classes with protected fields, the number of fields is
860 given by nfields and protected_field_bits is a bit vector
861 containing one bit per field.
862
863 If the field is private, the corresponding bit will be set. */
864
865 B_TYPE *protected_field_bits;
866
867 /* * For classes with fields to be ignored, either this is
868 optimized out or this field has length 0. */
869
870 B_TYPE *ignore_field_bits;
871
872 /* * For classes, structures, and unions, a description of each
873 field, which consists of an overloaded name, followed by the
874 types of arguments that the method expects, and then the name
875 after it has been renamed to make it distinct.
876
877 fn_fieldlists points to an array of nfn_fields of these. */
878
879 struct fn_fieldlist
880 {
881
882 /* * The overloaded name.
883 This is generally allocated in the objfile's obstack.
884 However stabsread.c sometimes uses malloc. */
885
886 const char *name;
887
888 /* * The number of methods with this name. */
889
890 int length;
891
892 /* * The list of methods. */
893
894 struct fn_field
895 {
896
897 /* * If is_stub is clear, this is the mangled name which
898 we can look up to find the address of the method
899 (FIXME: it would be cleaner to have a pointer to the
900 struct symbol here instead).
901
902 If is_stub is set, this is the portion of the mangled
903 name which specifies the arguments. For example, "ii",
904 if there are two int arguments, or "" if there are no
905 arguments. See gdb_mangle_name for the conversion from
906 this format to the one used if is_stub is clear. */
907
908 const char *physname;
909
910 /* * The function type for the method.
911
912 (This comment used to say "The return value of the
913 method", but that's wrong. The function type is
914 expected here, i.e. something with TYPE_CODE_METHOD, and
915 *not* the return-value type). */
916
917 struct type *type;
918
919 /* * For virtual functions.
920 First baseclass that defines this virtual function. */
921
922 struct type *fcontext;
923
924 /* Attributes. */
925
926 unsigned int is_const:1;
927 unsigned int is_volatile:1;
928 unsigned int is_private:1;
929 unsigned int is_protected:1;
930 unsigned int is_public:1;
931 unsigned int is_abstract:1;
932 unsigned int is_static:1;
933 unsigned int is_final:1;
934 unsigned int is_synchronized:1;
935 unsigned int is_native:1;
936 unsigned int is_artificial:1;
937
938 /* * A stub method only has some fields valid (but they
939 are enough to reconstruct the rest of the fields). */
940
941 unsigned int is_stub:1;
942
943 /* * True if this function is a constructor, false
944 otherwise. */
945
946 unsigned int is_constructor : 1;
947
948 /* * Unused. */
949
950 unsigned int dummy:3;
951
952 /* * Index into that baseclass's virtual function table,
953 minus 2; else if static: VOFFSET_STATIC; else: 0. */
954
955 unsigned int voffset:16;
956
957 #define VOFFSET_STATIC 1
958
959 }
960 *fn_fields;
961
962 }
963 *fn_fieldlists;
964
965 /* * typedefs defined inside this class. typedef_field points to
966 an array of typedef_field_count elements. */
967
968 struct typedef_field
969 {
970 /* * Unqualified name to be prefixed by owning class qualified
971 name. */
972
973 const char *name;
974
975 /* * Type this typedef named NAME represents. */
976
977 struct type *type;
978 }
979 *typedef_field;
980 unsigned typedef_field_count;
981
982 /* * The template arguments. This is an array with
983 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
984 classes. */
985
986 struct symbol **template_arguments;
987 };
988
989 /* * Struct used to store conversion rankings. */
990
991 struct rank
992 {
993 short rank;
994
995 /* * When two conversions are of the same type and therefore have
996 the same rank, subrank is used to differentiate the two.
997
998 Eg: Two derived-class-pointer to base-class-pointer conversions
999 would both have base pointer conversion rank, but the
1000 conversion with the shorter distance to the ancestor is
1001 preferable. 'subrank' would be used to reflect that. */
1002
1003 short subrank;
1004 };
1005
1006 /* * Struct used for ranking a function for overload resolution. */
1007
1008 struct badness_vector
1009 {
1010 int length;
1011 struct rank *rank;
1012 };
1013
1014 /* * GNAT Ada-specific information for various Ada types. */
1015
1016 struct gnat_aux_type
1017 {
1018 /* * Parallel type used to encode information about dynamic types
1019 used in Ada (such as variant records, variable-size array,
1020 etc). */
1021 struct type* descriptive_type;
1022 };
1023
1024 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1025
1026 struct func_type
1027 {
1028 /* * The calling convention for targets supporting multiple ABIs.
1029 Right now this is only fetched from the Dwarf-2
1030 DW_AT_calling_convention attribute. The value is one of the
1031 DW_CC enum dwarf_calling_convention constants. */
1032
1033 unsigned calling_convention : 8;
1034
1035 /* * Whether this function normally returns to its caller. It is
1036 set from the DW_AT_noreturn attribute if set on the
1037 DW_TAG_subprogram. */
1038
1039 unsigned int is_noreturn : 1;
1040
1041 /* * Only those DW_TAG_GNU_call_site's in this function that have
1042 DW_AT_GNU_tail_call set are linked in this list. Function
1043 without its tail call list complete
1044 (DW_AT_GNU_all_tail_call_sites or its superset
1045 DW_AT_GNU_all_call_sites) has TAIL_CALL_LIST NULL, even if some
1046 DW_TAG_GNU_call_site's exist in such function. */
1047
1048 struct call_site *tail_call_list;
1049
1050 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1051 contains the method. */
1052
1053 struct type *self_type;
1054 };
1055
1056 /* struct call_site_parameter can be referenced in callees by several ways. */
1057
1058 enum call_site_parameter_kind
1059 {
1060 /* * Use field call_site_parameter.u.dwarf_reg. */
1061 CALL_SITE_PARAMETER_DWARF_REG,
1062
1063 /* * Use field call_site_parameter.u.fb_offset. */
1064 CALL_SITE_PARAMETER_FB_OFFSET,
1065
1066 /* * Use field call_site_parameter.u.param_offset. */
1067 CALL_SITE_PARAMETER_PARAM_OFFSET
1068 };
1069
1070 /* * A place where a function gets called from, represented by
1071 DW_TAG_GNU_call_site. It can be looked up from
1072 symtab->call_site_htab. */
1073
1074 struct call_site
1075 {
1076 /* * Address of the first instruction after this call. It must be
1077 the first field as we overload core_addr_hash and core_addr_eq
1078 for it. */
1079
1080 CORE_ADDR pc;
1081
1082 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1083
1084 struct call_site *tail_call_next;
1085
1086 /* * Describe DW_AT_GNU_call_site_target. Missing attribute uses
1087 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1088
1089 struct
1090 {
1091 union field_location loc;
1092
1093 /* * Discriminant for union field_location. */
1094
1095 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1096 }
1097 target;
1098
1099 /* * Size of the PARAMETER array. */
1100
1101 unsigned parameter_count;
1102
1103 /* * CU of the function where the call is located. It gets used
1104 for DWARF blocks execution in the parameter array below. */
1105
1106 struct dwarf2_per_cu_data *per_cu;
1107
1108 /* * Describe DW_TAG_GNU_call_site's DW_TAG_formal_parameter. */
1109
1110 struct call_site_parameter
1111 {
1112 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1113
1114 union call_site_parameter_u
1115 {
1116 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1117 as DWARF register number, for register passed
1118 parameters. */
1119
1120 int dwarf_reg;
1121
1122 /* * Offset from the callee's frame base, for stack passed
1123 parameters. This equals offset from the caller's stack
1124 pointer. */
1125
1126 CORE_ADDR fb_offset;
1127
1128 /* * Offset relative to the start of this PER_CU to
1129 DW_TAG_formal_parameter which is referenced by both
1130 caller and the callee. */
1131
1132 cu_offset param_offset;
1133 }
1134 u;
1135
1136 /* * DW_TAG_formal_parameter's DW_AT_GNU_call_site_value. It
1137 is never NULL. */
1138
1139 const gdb_byte *value;
1140 size_t value_size;
1141
1142 /* * DW_TAG_formal_parameter's DW_AT_GNU_call_site_data_value.
1143 It may be NULL if not provided by DWARF. */
1144
1145 const gdb_byte *data_value;
1146 size_t data_value_size;
1147 }
1148 parameter[1];
1149 };
1150
1151 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1152 static structure. */
1153
1154 extern const struct cplus_struct_type cplus_struct_default;
1155
1156 extern void allocate_cplus_struct_type (struct type *);
1157
1158 #define INIT_CPLUS_SPECIFIC(type) \
1159 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1160 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1161 &cplus_struct_default)
1162
1163 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1164
1165 #define HAVE_CPLUS_STRUCT(type) \
1166 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1167 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1168
1169 extern const struct gnat_aux_type gnat_aux_default;
1170
1171 extern void allocate_gnat_aux_type (struct type *);
1172
1173 #define INIT_GNAT_SPECIFIC(type) \
1174 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1175 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1176 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1177 /* * A macro that returns non-zero if the type-specific data should be
1178 read as "gnat-stuff". */
1179 #define HAVE_GNAT_AUX_INFO(type) \
1180 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1181
1182 #define INIT_FUNC_SPECIFIC(type) \
1183 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1184 TYPE_MAIN_TYPE (type)->type_specific.func_stuff \
1185 = TYPE_ZALLOC (type, \
1186 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1187
1188 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1189 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1190 #define TYPE_NAME(thistype) TYPE_MAIN_TYPE(thistype)->name
1191 #define TYPE_TAG_NAME(type) TYPE_MAIN_TYPE(type)->tag_name
1192 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1193 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1194 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1195 #define TYPE_CHAIN(thistype) (thistype)->chain
1196 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1197 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1198 so you only have to call check_typedef once. Since allocate_value
1199 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1200 #define TYPE_LENGTH(thistype) (thistype)->length
1201 /* * Note that TYPE_CODE can be TYPE_CODE_TYPEDEF, so if you want the real
1202 type, you need to do TYPE_CODE (check_type (this_type)). */
1203 #define TYPE_CODE(thistype) TYPE_MAIN_TYPE(thistype)->code
1204 #define TYPE_NFIELDS(thistype) TYPE_MAIN_TYPE(thistype)->nfields
1205 #define TYPE_FIELDS(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields
1206
1207 #define TYPE_INDEX_TYPE(type) TYPE_FIELD_TYPE (type, 0)
1208 #define TYPE_RANGE_DATA(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.bounds
1209 #define TYPE_LOW_BOUND(range_type) \
1210 TYPE_RANGE_DATA(range_type)->low.data.const_val
1211 #define TYPE_HIGH_BOUND(range_type) \
1212 TYPE_RANGE_DATA(range_type)->high.data.const_val
1213 #define TYPE_LOW_BOUND_UNDEFINED(range_type) \
1214 (TYPE_RANGE_DATA(range_type)->low.kind == PROP_UNDEFINED)
1215 #define TYPE_HIGH_BOUND_UNDEFINED(range_type) \
1216 (TYPE_RANGE_DATA(range_type)->high.kind == PROP_UNDEFINED)
1217 #define TYPE_HIGH_BOUND_KIND(range_type) \
1218 TYPE_RANGE_DATA(range_type)->high.kind
1219 #define TYPE_LOW_BOUND_KIND(range_type) \
1220 TYPE_RANGE_DATA(range_type)->low.kind
1221
1222 /* Attribute accessors for the type data location. */
1223 #define TYPE_DATA_LOCATION(thistype) \
1224 TYPE_MAIN_TYPE(thistype)->data_location
1225 #define TYPE_DATA_LOCATION_BATON(thistype) \
1226 TYPE_DATA_LOCATION (thistype)->data.baton
1227 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1228 TYPE_DATA_LOCATION (thistype)->data.const_val
1229 #define TYPE_DATA_LOCATION_KIND(thistype) \
1230 TYPE_DATA_LOCATION (thistype)->kind
1231
1232 /* Moto-specific stuff for FORTRAN arrays. */
1233
1234 #define TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED(arraytype) \
1235 TYPE_HIGH_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1236 #define TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED(arraytype) \
1237 TYPE_LOW_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1238
1239 #define TYPE_ARRAY_UPPER_BOUND_VALUE(arraytype) \
1240 (TYPE_HIGH_BOUND(TYPE_INDEX_TYPE((arraytype))))
1241
1242 #define TYPE_ARRAY_LOWER_BOUND_VALUE(arraytype) \
1243 (TYPE_LOW_BOUND(TYPE_INDEX_TYPE((arraytype))))
1244
1245 /* C++ */
1246
1247 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1248 /* Do not call this, use TYPE_SELF_TYPE. */
1249 extern struct type *internal_type_self_type (struct type *);
1250 extern void set_type_self_type (struct type *, struct type *);
1251
1252 extern int internal_type_vptr_fieldno (struct type *);
1253 extern void set_type_vptr_fieldno (struct type *, int);
1254 extern struct type *internal_type_vptr_basetype (struct type *);
1255 extern void set_type_vptr_basetype (struct type *, struct type *);
1256 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1257 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1258
1259 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1260 #define TYPE_SPECIFIC_FIELD(thistype) \
1261 TYPE_MAIN_TYPE(thistype)->type_specific_field
1262 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1263 where we're trying to print an Ada array using the C language.
1264 In that case, there is no "cplus_stuff", but the C language assumes
1265 that there is. What we do, in that case, is pretend that there is
1266 an implicit one which is the default cplus stuff. */
1267 #define TYPE_CPLUS_SPECIFIC(thistype) \
1268 (!HAVE_CPLUS_STRUCT(thistype) \
1269 ? (struct cplus_struct_type*)&cplus_struct_default \
1270 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1271 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1272 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1273 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1274 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1275 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1276 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1277 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1278 #define TYPE_BASECLASS(thistype,index) TYPE_FIELD_TYPE(thistype, index)
1279 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1280 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1281 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1282 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1283 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1284 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1285 #define TYPE_CPLUS_REALLY_JAVA(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_java
1286
1287 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1288 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1289 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1290
1291 #define FIELD_TYPE(thisfld) ((thisfld).type)
1292 #define FIELD_NAME(thisfld) ((thisfld).name)
1293 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1294 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1295 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1296 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1297 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1298 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1299 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1300 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1301 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1302 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1303 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1304 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1305 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1306 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1307 #define SET_FIELD_PHYSNAME(thisfld, name) \
1308 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1309 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1310 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1311 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1312 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1313 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1314 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1315 FIELD_DWARF_BLOCK (thisfld) = (addr))
1316 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1317 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1318
1319 #define TYPE_FIELD(thistype, n) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields[n]
1320 #define TYPE_FIELD_TYPE(thistype, n) FIELD_TYPE(TYPE_FIELD(thistype, n))
1321 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME(TYPE_FIELD(thistype, n))
1322 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND (TYPE_FIELD (thistype, n))
1323 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS (TYPE_FIELD (thistype, n))
1324 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL (TYPE_FIELD (thistype, n))
1325 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME (TYPE_FIELD (thistype, n))
1326 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR (TYPE_FIELD (thistype, n))
1327 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK (TYPE_FIELD (thistype, n))
1328 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL(TYPE_FIELD(thistype,n))
1329 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE(TYPE_FIELD(thistype,n))
1330 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE(TYPE_FIELD(thistype,n))!=0)
1331
1332 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1333 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1334 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1335 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1336 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1337 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1338 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1339 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1340 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1341 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1342 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1343 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1344 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1345 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1346 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1347 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1348 #define TYPE_FIELD_PRIVATE(thistype, n) \
1349 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1350 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1351 #define TYPE_FIELD_PROTECTED(thistype, n) \
1352 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1353 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1354 #define TYPE_FIELD_IGNORE(thistype, n) \
1355 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1356 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1357 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1358 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1359 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1360
1361 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1362 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1363 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1364 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1365 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1366
1367 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1368 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1369 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1370 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1371 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1372 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1373
1374 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1375 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1376 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1377 #define TYPE_FN_FIELD_ARGS(thisfn, n) TYPE_FIELDS ((thisfn)[n].type)
1378 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1379 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1380 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1381 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1382 #define TYPE_FN_FIELD_PUBLIC(thisfn, n) ((thisfn)[n].is_public)
1383 #define TYPE_FN_FIELD_STATIC(thisfn, n) ((thisfn)[n].is_static)
1384 #define TYPE_FN_FIELD_FINAL(thisfn, n) ((thisfn)[n].is_final)
1385 #define TYPE_FN_FIELD_SYNCHRONIZED(thisfn, n) ((thisfn)[n].is_synchronized)
1386 #define TYPE_FN_FIELD_NATIVE(thisfn, n) ((thisfn)[n].is_native)
1387 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1388 #define TYPE_FN_FIELD_ABSTRACT(thisfn, n) ((thisfn)[n].is_abstract)
1389 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1390 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1391 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1392 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1393 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1394 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1395
1396 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1397 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1398 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1399 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1400 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1401 TYPE_TYPEDEF_FIELD (thistype, n).name
1402 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1403 TYPE_TYPEDEF_FIELD (thistype, n).type
1404 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1405 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1406
1407 #define TYPE_IS_OPAQUE(thistype) \
1408 (((TYPE_CODE (thistype) == TYPE_CODE_STRUCT) \
1409 || (TYPE_CODE (thistype) == TYPE_CODE_UNION)) \
1410 && (TYPE_NFIELDS (thistype) == 0) \
1411 && (!HAVE_CPLUS_STRUCT (thistype) \
1412 || TYPE_NFN_FIELDS (thistype) == 0) \
1413 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1414
1415 /* * A helper macro that returns the name of a type or "unnamed type"
1416 if the type has no name. */
1417
1418 #define TYPE_SAFE_NAME(type) \
1419 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<unnamed type>"))
1420
1421 /* * A helper macro that returns the name of an error type. If the
1422 type has a name, it is used; otherwise, a default is used. */
1423
1424 #define TYPE_ERROR_NAME(type) \
1425 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<error type>"))
1426
1427 struct builtin_type
1428 {
1429 /* Integral types. */
1430
1431 /* Implicit size/sign (based on the architecture's ABI). */
1432 struct type *builtin_void;
1433 struct type *builtin_char;
1434 struct type *builtin_short;
1435 struct type *builtin_int;
1436 struct type *builtin_long;
1437 struct type *builtin_signed_char;
1438 struct type *builtin_unsigned_char;
1439 struct type *builtin_unsigned_short;
1440 struct type *builtin_unsigned_int;
1441 struct type *builtin_unsigned_long;
1442 struct type *builtin_float;
1443 struct type *builtin_double;
1444 struct type *builtin_long_double;
1445 struct type *builtin_complex;
1446 struct type *builtin_double_complex;
1447 struct type *builtin_string;
1448 struct type *builtin_bool;
1449 struct type *builtin_long_long;
1450 struct type *builtin_unsigned_long_long;
1451 struct type *builtin_decfloat;
1452 struct type *builtin_decdouble;
1453 struct type *builtin_declong;
1454
1455 /* "True" character types.
1456 We use these for the '/c' print format, because c_char is just a
1457 one-byte integral type, which languages less laid back than C
1458 will print as ... well, a one-byte integral type. */
1459 struct type *builtin_true_char;
1460 struct type *builtin_true_unsigned_char;
1461
1462 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1463 is for when an architecture needs to describe a register that has
1464 no size. */
1465 struct type *builtin_int0;
1466 struct type *builtin_int8;
1467 struct type *builtin_uint8;
1468 struct type *builtin_int16;
1469 struct type *builtin_uint16;
1470 struct type *builtin_int32;
1471 struct type *builtin_uint32;
1472 struct type *builtin_int64;
1473 struct type *builtin_uint64;
1474 struct type *builtin_int128;
1475 struct type *builtin_uint128;
1476
1477 /* Wide character types. */
1478 struct type *builtin_char16;
1479 struct type *builtin_char32;
1480
1481 /* Pointer types. */
1482
1483 /* * `pointer to data' type. Some target platforms use an implicitly
1484 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1485 struct type *builtin_data_ptr;
1486
1487 /* * `pointer to function (returning void)' type. Harvard
1488 architectures mean that ABI function and code pointers are not
1489 interconvertible. Similarly, since ANSI, C standards have
1490 explicitly said that pointers to functions and pointers to data
1491 are not interconvertible --- that is, you can't cast a function
1492 pointer to void * and back, and expect to get the same value.
1493 However, all function pointer types are interconvertible, so void
1494 (*) () can server as a generic function pointer. */
1495
1496 struct type *builtin_func_ptr;
1497
1498 /* * `function returning pointer to function (returning void)' type.
1499 The final void return type is not significant for it. */
1500
1501 struct type *builtin_func_func;
1502
1503 /* Special-purpose types. */
1504
1505 /* * This type is used to represent a GDB internal function. */
1506
1507 struct type *internal_fn;
1508
1509 /* * This type is used to represent an xmethod. */
1510 struct type *xmethod;
1511 };
1512
1513 /* * Return the type table for the specified architecture. */
1514
1515 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1516
1517 /* * Per-objfile types used by symbol readers. */
1518
1519 struct objfile_type
1520 {
1521 /* Basic types based on the objfile architecture. */
1522 struct type *builtin_void;
1523 struct type *builtin_char;
1524 struct type *builtin_short;
1525 struct type *builtin_int;
1526 struct type *builtin_long;
1527 struct type *builtin_long_long;
1528 struct type *builtin_signed_char;
1529 struct type *builtin_unsigned_char;
1530 struct type *builtin_unsigned_short;
1531 struct type *builtin_unsigned_int;
1532 struct type *builtin_unsigned_long;
1533 struct type *builtin_unsigned_long_long;
1534 struct type *builtin_float;
1535 struct type *builtin_double;
1536 struct type *builtin_long_double;
1537
1538 /* * This type is used to represent symbol addresses. */
1539 struct type *builtin_core_addr;
1540
1541 /* * This type represents a type that was unrecognized in symbol
1542 read-in. */
1543 struct type *builtin_error;
1544
1545 /* * Types used for symbols with no debug information. */
1546 struct type *nodebug_text_symbol;
1547 struct type *nodebug_text_gnu_ifunc_symbol;
1548 struct type *nodebug_got_plt_symbol;
1549 struct type *nodebug_data_symbol;
1550 struct type *nodebug_unknown_symbol;
1551 struct type *nodebug_tls_symbol;
1552 };
1553
1554 /* * Return the type table for the specified objfile. */
1555
1556 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1557
1558 /* Explicit floating-point formats. See "floatformat.h". */
1559 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1560 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1561 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1562 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1563 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1564 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1565 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
1566 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
1567 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
1568 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
1569 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
1570 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
1571
1572
1573 /* * Allocate space for storing data associated with a particular
1574 type. We ensure that the space is allocated using the same
1575 mechanism that was used to allocate the space for the type
1576 structure itself. I.e. if the type is on an objfile's
1577 objfile_obstack, then the space for data associated with that type
1578 will also be allocated on the objfile_obstack. If the type is not
1579 associated with any particular objfile (such as builtin types),
1580 then the data space will be allocated with xmalloc, the same as for
1581 the type structure. */
1582
1583 #define TYPE_ALLOC(t,size) \
1584 (TYPE_OBJFILE_OWNED (t) \
1585 ? obstack_alloc (&TYPE_OBJFILE (t) -> objfile_obstack, size) \
1586 : xmalloc (size))
1587
1588 #define TYPE_ZALLOC(t,size) \
1589 (TYPE_OBJFILE_OWNED (t) \
1590 ? memset (obstack_alloc (&TYPE_OBJFILE (t)->objfile_obstack, size), \
1591 0, size) \
1592 : xzalloc (size))
1593
1594 /* Use alloc_type to allocate a type owned by an objfile. Use
1595 alloc_type_arch to allocate a type owned by an architecture. Use
1596 alloc_type_copy to allocate a type with the same owner as a
1597 pre-existing template type, no matter whether objfile or
1598 gdbarch. */
1599 extern struct type *alloc_type (struct objfile *);
1600 extern struct type *alloc_type_arch (struct gdbarch *);
1601 extern struct type *alloc_type_copy (const struct type *);
1602
1603 /* * Return the type's architecture. For types owned by an
1604 architecture, that architecture is returned. For types owned by an
1605 objfile, that objfile's architecture is returned. */
1606
1607 extern struct gdbarch *get_type_arch (const struct type *);
1608
1609 /* * This returns the target type (or NULL) of TYPE, also skipping
1610 past typedefs. */
1611
1612 extern struct type *get_target_type (struct type *type);
1613
1614 /* * Helper function to construct objfile-owned types. */
1615
1616 extern struct type *init_type (enum type_code, int, int, const char *,
1617 struct objfile *);
1618
1619 /* Helper functions to construct architecture-owned types. */
1620 extern struct type *arch_type (struct gdbarch *, enum type_code, int, char *);
1621 extern struct type *arch_integer_type (struct gdbarch *, int, int, char *);
1622 extern struct type *arch_character_type (struct gdbarch *, int, int, char *);
1623 extern struct type *arch_boolean_type (struct gdbarch *, int, int, char *);
1624 extern struct type *arch_float_type (struct gdbarch *, int, char *,
1625 const struct floatformat **);
1626 extern struct type *arch_complex_type (struct gdbarch *, char *,
1627 struct type *);
1628
1629 /* Helper functions to construct a struct or record type. An
1630 initially empty type is created using arch_composite_type().
1631 Fields are then added using append_composite_type_field*(). A union
1632 type has its size set to the largest field. A struct type has each
1633 field packed against the previous. */
1634
1635 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
1636 char *name, enum type_code code);
1637 extern void append_composite_type_field (struct type *t, char *name,
1638 struct type *field);
1639 extern void append_composite_type_field_aligned (struct type *t,
1640 char *name,
1641 struct type *field,
1642 int alignment);
1643 struct field *append_composite_type_field_raw (struct type *t, char *name,
1644 struct type *field);
1645
1646 /* Helper functions to construct a bit flags type. An initially empty
1647 type is created using arch_flag_type(). Flags are then added using
1648 append_flag_type_flag(). */
1649 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
1650 char *name, int length);
1651 extern void append_flags_type_flag (struct type *type, int bitpos, char *name);
1652
1653 extern void make_vector_type (struct type *array_type);
1654 extern struct type *init_vector_type (struct type *elt_type, int n);
1655
1656 extern struct type *lookup_reference_type (struct type *);
1657
1658 extern struct type *make_reference_type (struct type *, struct type **);
1659
1660 extern struct type *make_cv_type (int, int, struct type *, struct type **);
1661
1662 extern struct type *make_restrict_type (struct type *);
1663
1664 extern struct type *make_unqualified_type (struct type *);
1665
1666 extern struct type *make_atomic_type (struct type *);
1667
1668 extern void replace_type (struct type *, struct type *);
1669
1670 extern int address_space_name_to_int (struct gdbarch *, char *);
1671
1672 extern const char *address_space_int_to_name (struct gdbarch *, int);
1673
1674 extern struct type *make_type_with_address_space (struct type *type,
1675 int space_identifier);
1676
1677 extern struct type *lookup_memberptr_type (struct type *, struct type *);
1678
1679 extern struct type *lookup_methodptr_type (struct type *);
1680
1681 extern void smash_to_method_type (struct type *type, struct type *self_type,
1682 struct type *to_type, struct field *args,
1683 int nargs, int varargs);
1684
1685 extern void smash_to_memberptr_type (struct type *, struct type *,
1686 struct type *);
1687
1688 extern void smash_to_methodptr_type (struct type *, struct type *);
1689
1690 extern struct type *allocate_stub_method (struct type *);
1691
1692 extern const char *type_name_no_tag (const struct type *);
1693
1694 extern const char *type_name_no_tag_or_error (struct type *type);
1695
1696 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
1697
1698 extern struct type *make_pointer_type (struct type *, struct type **);
1699
1700 extern struct type *lookup_pointer_type (struct type *);
1701
1702 extern struct type *make_function_type (struct type *, struct type **);
1703
1704 extern struct type *lookup_function_type (struct type *);
1705
1706 extern struct type *lookup_function_type_with_arguments (struct type *,
1707 int,
1708 struct type **);
1709
1710 extern struct type *create_static_range_type (struct type *, struct type *,
1711 LONGEST, LONGEST);
1712
1713
1714 extern struct type *create_array_type_with_stride
1715 (struct type *, struct type *, struct type *, unsigned int);
1716
1717 extern struct type *create_range_type (struct type *, struct type *,
1718 const struct dynamic_prop *,
1719 const struct dynamic_prop *);
1720
1721 extern struct type *create_array_type (struct type *, struct type *,
1722 struct type *);
1723
1724 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
1725
1726 extern struct type *create_string_type (struct type *, struct type *,
1727 struct type *);
1728 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
1729
1730 extern struct type *create_set_type (struct type *, struct type *);
1731
1732 extern struct type *lookup_unsigned_typename (const struct language_defn *,
1733 struct gdbarch *, const char *);
1734
1735 extern struct type *lookup_signed_typename (const struct language_defn *,
1736 struct gdbarch *, const char *);
1737
1738 extern void get_unsigned_type_max (struct type *, ULONGEST *);
1739
1740 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
1741
1742 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
1743 ADDR specifies the location of the variable the type is bound to.
1744 If TYPE has no dynamic properties return TYPE; otherwise a new type with
1745 static properties is returned. */
1746 extern struct type *resolve_dynamic_type (struct type *type, CORE_ADDR addr);
1747
1748 /* * Predicate if the type has dynamic values, which are not resolved yet. */
1749 extern int is_dynamic_type (struct type *type);
1750
1751 extern struct type *check_typedef (struct type *);
1752
1753 #define CHECK_TYPEDEF(TYPE) \
1754 do { \
1755 (TYPE) = check_typedef (TYPE); \
1756 } while (0)
1757
1758 extern void check_stub_method_group (struct type *, int);
1759
1760 extern char *gdb_mangle_name (struct type *, int, int);
1761
1762 extern struct type *lookup_typename (const struct language_defn *,
1763 struct gdbarch *, const char *,
1764 const struct block *, int);
1765
1766 extern struct type *lookup_template_type (char *, struct type *,
1767 const struct block *);
1768
1769 extern int get_vptr_fieldno (struct type *, struct type **);
1770
1771 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
1772
1773 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
1774 LONGEST *high_bound);
1775
1776 extern int class_types_same_p (const struct type *, const struct type *);
1777
1778 extern int is_ancestor (struct type *, struct type *);
1779
1780 extern int is_public_ancestor (struct type *, struct type *);
1781
1782 extern int is_unique_ancestor (struct type *, struct value *);
1783
1784 /* Overload resolution */
1785
1786 #define LENGTH_MATCH(bv) ((bv)->rank[0])
1787
1788 /* * Badness if parameter list length doesn't match arg list length. */
1789 extern const struct rank LENGTH_MISMATCH_BADNESS;
1790
1791 /* * Dummy badness value for nonexistent parameter positions. */
1792 extern const struct rank TOO_FEW_PARAMS_BADNESS;
1793 /* * Badness if no conversion among types. */
1794 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
1795
1796 /* * Badness of an exact match. */
1797 extern const struct rank EXACT_MATCH_BADNESS;
1798
1799 /* * Badness of integral promotion. */
1800 extern const struct rank INTEGER_PROMOTION_BADNESS;
1801 /* * Badness of floating promotion. */
1802 extern const struct rank FLOAT_PROMOTION_BADNESS;
1803 /* * Badness of converting a derived class pointer
1804 to a base class pointer. */
1805 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
1806 /* * Badness of integral conversion. */
1807 extern const struct rank INTEGER_CONVERSION_BADNESS;
1808 /* * Badness of floating conversion. */
1809 extern const struct rank FLOAT_CONVERSION_BADNESS;
1810 /* * Badness of integer<->floating conversions. */
1811 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
1812 /* * Badness of conversion of pointer to void pointer. */
1813 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
1814 /* * Badness of conversion to boolean. */
1815 extern const struct rank BOOL_CONVERSION_BADNESS;
1816 /* * Badness of converting derived to base class. */
1817 extern const struct rank BASE_CONVERSION_BADNESS;
1818 /* * Badness of converting from non-reference to reference. */
1819 extern const struct rank REFERENCE_CONVERSION_BADNESS;
1820 /* * Badness of converting integer 0 to NULL pointer. */
1821 extern const struct rank NULL_POINTER_CONVERSION;
1822
1823 /* Non-standard conversions allowed by the debugger */
1824
1825 /* * Converting a pointer to an int is usually OK. */
1826 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
1827
1828 /* * Badness of converting a (non-zero) integer constant
1829 to a pointer. */
1830 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
1831
1832 extern struct rank sum_ranks (struct rank a, struct rank b);
1833 extern int compare_ranks (struct rank a, struct rank b);
1834
1835 extern int compare_badness (struct badness_vector *, struct badness_vector *);
1836
1837 extern struct badness_vector *rank_function (struct type **, int,
1838 struct value **, int);
1839
1840 extern struct rank rank_one_type (struct type *, struct type *,
1841 struct value *);
1842
1843 extern void recursive_dump_type (struct type *, int);
1844
1845 extern int field_is_static (struct field *);
1846
1847 /* printcmd.c */
1848
1849 extern void print_scalar_formatted (const void *, struct type *,
1850 const struct value_print_options *,
1851 int, struct ui_file *);
1852
1853 extern int can_dereference (struct type *);
1854
1855 extern int is_integral_type (struct type *);
1856
1857 extern int is_scalar_type_recursive (struct type *);
1858
1859 extern int class_or_union_p (const struct type *);
1860
1861 extern void maintenance_print_type (char *, int);
1862
1863 extern htab_t create_copied_types_hash (struct objfile *objfile);
1864
1865 extern struct type *copy_type_recursive (struct objfile *objfile,
1866 struct type *type,
1867 htab_t copied_types);
1868
1869 extern struct type *copy_type (const struct type *type);
1870
1871 extern int types_equal (struct type *, struct type *);
1872
1873 extern int types_deeply_equal (struct type *, struct type *);
1874
1875 #endif /* GDBTYPES_H */
This page took 0.098584 seconds and 4 git commands to generate.