Update/correct copyright notices.
[deliverable/binutils-gdb.git] / gdb / gnu-regex.c
1 /* *INDENT-OFF* */ /* keep in sync with glibc */
2 /* Extended regular expression matching and search library,
3 version 0.12.
4 (Implements POSIX draft P1003.2/D11.2, except for some of the
5 internationalization features.)
6 Copyright 1993, 1994, 1995, 1996, 1998, 1999, 2000
7 Free Software Foundation, Inc.
8
9 NOTE: The canonical source of this file is maintained with the
10 GNU C Library. Bugs can be reported to bug-glibc@gnu.org.
11
12 This program is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published by the
14 Free Software Foundation; either version 2, or (at your option) any
15 later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software Foundation,
24 Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
26
27 /* AIX requires this to be the first thing in the file. */
28 #if defined _AIX && !defined REGEX_MALLOC
29 #pragma alloca
30 #endif
31
32 #undef _GNU_SOURCE
33 #define _GNU_SOURCE
34
35 #ifdef HAVE_CONFIG_H
36 # include <config.h>
37 #endif
38
39 #ifndef PARAMS
40 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
41 # define PARAMS(args) args
42 # else
43 # define PARAMS(args) ()
44 # endif /* GCC. */
45 #endif /* Not PARAMS. */
46
47 #if defined STDC_HEADERS && !defined emacs
48 # include <stddef.h>
49 #else
50 /* We need this for `gnu-regex.h', and perhaps for the Emacs include files. */
51 # include <sys/types.h>
52 #endif
53
54 /* For platform which support the ISO C amendement 1 functionality we
55 support user defined character classes. */
56 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
57 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
58 # include <wchar.h>
59 # include <wctype.h>
60 #endif
61
62 /* This is for other GNU distributions with internationalized messages. */
63 /* CYGNUS LOCAL: ../intl will handle this for us */
64 #ifdef ENABLE_NLS
65 # include <libintl.h>
66 #else
67 # define gettext(msgid) (msgid)
68 #endif
69
70 #ifndef gettext_noop
71 /* This define is so xgettext can find the internationalizable
72 strings. */
73 # define gettext_noop(String) String
74 #endif
75
76 /* The `emacs' switch turns on certain matching commands
77 that make sense only in Emacs. */
78 #ifdef emacs
79
80 # include "lisp.h"
81 # include "buffer.h"
82 # include "syntax.h"
83
84 #else /* not emacs */
85
86 /* If we are not linking with Emacs proper,
87 we can't use the relocating allocator
88 even if config.h says that we can. */
89 # undef REL_ALLOC
90
91 # if defined STDC_HEADERS || defined _LIBC
92 # include <stdlib.h>
93 # else
94 char *malloc ();
95 char *realloc ();
96 # endif
97
98 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
99 If nothing else has been done, use the method below. */
100 # ifdef INHIBIT_STRING_HEADER
101 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
102 # if !defined bzero && !defined bcopy
103 # undef INHIBIT_STRING_HEADER
104 # endif
105 # endif
106 # endif
107
108 /* This is the normal way of making sure we have a bcopy and a bzero.
109 This is used in most programs--a few other programs avoid this
110 by defining INHIBIT_STRING_HEADER. */
111 # ifndef INHIBIT_STRING_HEADER
112 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
113 # include <string.h>
114 # ifndef bzero
115 # ifndef _LIBC
116 # define bzero(s, n) (memset (s, '\0', n), (s))
117 # else
118 # define bzero(s, n) __bzero (s, n)
119 # endif
120 # endif
121 # else
122 # include <strings.h>
123 # ifndef memcmp
124 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
125 # endif
126 # ifndef memcpy
127 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
128 # endif
129 # endif
130 # endif
131
132 /* Define the syntax stuff for \<, \>, etc. */
133
134 /* This must be nonzero for the wordchar and notwordchar pattern
135 commands in re_match_2. */
136 # ifndef Sword
137 # define Sword 1
138 # endif
139
140 # ifdef SWITCH_ENUM_BUG
141 # define SWITCH_ENUM_CAST(x) ((int)(x))
142 # else
143 # define SWITCH_ENUM_CAST(x) (x)
144 # endif
145
146 /* How many characters in the character set. */
147 # define CHAR_SET_SIZE 256
148
149 /* GDB LOCAL: define _REGEX_RE_COMP to get BSD style re_comp and re_exec */
150 #ifndef _REGEX_RE_COMP
151 #define _REGEX_RE_COMP
152 #endif
153
154 # ifdef SYNTAX_TABLE
155
156 extern char *re_syntax_table;
157
158 # else /* not SYNTAX_TABLE */
159
160 static char re_syntax_table[CHAR_SET_SIZE];
161
162 static void
163 init_syntax_once ()
164 {
165 register int c;
166 static int done = 0;
167
168 if (done)
169 return;
170
171 bzero (re_syntax_table, sizeof re_syntax_table);
172
173 for (c = 'a'; c <= 'z'; c++)
174 re_syntax_table[c] = Sword;
175
176 for (c = 'A'; c <= 'Z'; c++)
177 re_syntax_table[c] = Sword;
178
179 for (c = '0'; c <= '9'; c++)
180 re_syntax_table[c] = Sword;
181
182 re_syntax_table['_'] = Sword;
183
184 done = 1;
185 }
186
187 # endif /* not SYNTAX_TABLE */
188
189 # define SYNTAX(c) re_syntax_table[c]
190
191 #endif /* not emacs */
192 \f
193 /* Get the interface, including the syntax bits. */
194 /* CYGNUS LOCAL: call it gnu-regex.h, not regex.h, to avoid name conflicts */
195 #include "gnu-regex.h"
196
197 /* isalpha etc. are used for the character classes. */
198 #include <ctype.h>
199
200 /* Jim Meyering writes:
201
202 "... Some ctype macros are valid only for character codes that
203 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
204 using /bin/cc or gcc but without giving an ansi option). So, all
205 ctype uses should be through macros like ISPRINT... If
206 STDC_HEADERS is defined, then autoconf has verified that the ctype
207 macros don't need to be guarded with references to isascii. ...
208 Defining isascii to 1 should let any compiler worth its salt
209 eliminate the && through constant folding."
210 Solaris defines some of these symbols so we must undefine them first. */
211
212 #undef ISASCII
213 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
214 # define ISASCII(c) 1
215 #else
216 # define ISASCII(c) isascii(c)
217 #endif
218
219 #ifdef isblank
220 # define ISBLANK(c) (ISASCII (c) && isblank (c))
221 #else
222 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
223 #endif
224 #ifdef isgraph
225 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
226 #else
227 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
228 #endif
229
230 #undef ISPRINT
231 #define ISPRINT(c) (ISASCII (c) && isprint (c))
232 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
233 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
234 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
235 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
236 #define ISLOWER(c) (ISASCII (c) && islower (c))
237 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
238 #define ISSPACE(c) (ISASCII (c) && isspace (c))
239 #define ISUPPER(c) (ISASCII (c) && isupper (c))
240 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
241
242 #ifndef NULL
243 # define NULL (void *)0
244 #endif
245
246 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
247 since ours (we hope) works properly with all combinations of
248 machines, compilers, `char' and `unsigned char' argument types.
249 (Per Bothner suggested the basic approach.) */
250 #undef SIGN_EXTEND_CHAR
251 #if __STDC__
252 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
253 #else /* not __STDC__ */
254 /* As in Harbison and Steele. */
255 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
256 #endif
257 \f
258 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
259 use `alloca' instead of `malloc'. This is because using malloc in
260 re_search* or re_match* could cause memory leaks when C-g is used in
261 Emacs; also, malloc is slower and causes storage fragmentation. On
262 the other hand, malloc is more portable, and easier to debug.
263
264 Because we sometimes use alloca, some routines have to be macros,
265 not functions -- `alloca'-allocated space disappears at the end of the
266 function it is called in. */
267
268 #ifdef REGEX_MALLOC
269
270 # define REGEX_ALLOCATE malloc
271 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
272 # define REGEX_FREE free
273
274 #else /* not REGEX_MALLOC */
275
276 /* Emacs already defines alloca, sometimes. */
277 # ifndef alloca
278
279 /* Make alloca work the best possible way. */
280 # ifdef __GNUC__
281 # define alloca __builtin_alloca
282 # else /* not __GNUC__ */
283 # if HAVE_ALLOCA_H
284 # include <alloca.h>
285 # endif /* HAVE_ALLOCA_H */
286 # endif /* not __GNUC__ */
287
288 # endif /* not alloca */
289
290 # define REGEX_ALLOCATE alloca
291
292 /* Assumes a `char *destination' variable. */
293 # define REGEX_REALLOCATE(source, osize, nsize) \
294 (destination = (char *) alloca (nsize), \
295 memcpy (destination, source, osize))
296
297 /* No need to do anything to free, after alloca. */
298 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
299
300 #endif /* not REGEX_MALLOC */
301
302 /* Define how to allocate the failure stack. */
303
304 #if defined REL_ALLOC && defined REGEX_MALLOC
305
306 # define REGEX_ALLOCATE_STACK(size) \
307 r_alloc (&failure_stack_ptr, (size))
308 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
309 r_re_alloc (&failure_stack_ptr, (nsize))
310 # define REGEX_FREE_STACK(ptr) \
311 r_alloc_free (&failure_stack_ptr)
312
313 #else /* not using relocating allocator */
314
315 # ifdef REGEX_MALLOC
316
317 # define REGEX_ALLOCATE_STACK malloc
318 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
319 # define REGEX_FREE_STACK free
320
321 # else /* not REGEX_MALLOC */
322
323 # define REGEX_ALLOCATE_STACK alloca
324
325 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
326 REGEX_REALLOCATE (source, osize, nsize)
327 /* No need to explicitly free anything. */
328 # define REGEX_FREE_STACK(arg)
329
330 # endif /* not REGEX_MALLOC */
331 #endif /* not using relocating allocator */
332
333
334 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
335 `string1' or just past its end. This works if PTR is NULL, which is
336 a good thing. */
337 #define FIRST_STRING_P(ptr) \
338 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
339
340 /* (Re)Allocate N items of type T using malloc, or fail. */
341 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
342 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
343 #define RETALLOC_IF(addr, n, t) \
344 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
345 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
346
347 #define BYTEWIDTH 8 /* In bits. */
348
349 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
350
351 #undef MAX
352 #undef MIN
353 #define MAX(a, b) ((a) > (b) ? (a) : (b))
354 #define MIN(a, b) ((a) < (b) ? (a) : (b))
355
356 typedef char boolean;
357 #define false 0
358 #define true 1
359
360 static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
361 const char *string1, int size1,
362 const char *string2, int size2,
363 int pos,
364 struct re_registers *regs,
365 int stop));
366 \f
367 /* These are the command codes that appear in compiled regular
368 expressions. Some opcodes are followed by argument bytes. A
369 command code can specify any interpretation whatsoever for its
370 arguments. Zero bytes may appear in the compiled regular expression. */
371
372 typedef enum
373 {
374 no_op = 0,
375
376 /* Succeed right away--no more backtracking. */
377 succeed,
378
379 /* Followed by one byte giving n, then by n literal bytes. */
380 exactn,
381
382 /* Matches any (more or less) character. */
383 anychar,
384
385 /* Matches any one char belonging to specified set. First
386 following byte is number of bitmap bytes. Then come bytes
387 for a bitmap saying which chars are in. Bits in each byte
388 are ordered low-bit-first. A character is in the set if its
389 bit is 1. A character too large to have a bit in the map is
390 automatically not in the set. */
391 charset,
392
393 /* Same parameters as charset, but match any character that is
394 not one of those specified. */
395 charset_not,
396
397 /* Start remembering the text that is matched, for storing in a
398 register. Followed by one byte with the register number, in
399 the range 0 to one less than the pattern buffer's re_nsub
400 field. Then followed by one byte with the number of groups
401 inner to this one. (This last has to be part of the
402 start_memory only because we need it in the on_failure_jump
403 of re_match_2.) */
404 start_memory,
405
406 /* Stop remembering the text that is matched and store it in a
407 memory register. Followed by one byte with the register
408 number, in the range 0 to one less than `re_nsub' in the
409 pattern buffer, and one byte with the number of inner groups,
410 just like `start_memory'. (We need the number of inner
411 groups here because we don't have any easy way of finding the
412 corresponding start_memory when we're at a stop_memory.) */
413 stop_memory,
414
415 /* Match a duplicate of something remembered. Followed by one
416 byte containing the register number. */
417 duplicate,
418
419 /* Fail unless at beginning of line. */
420 begline,
421
422 /* Fail unless at end of line. */
423 endline,
424
425 /* Succeeds if at beginning of buffer (if emacs) or at beginning
426 of string to be matched (if not). */
427 begbuf,
428
429 /* Analogously, for end of buffer/string. */
430 endbuf,
431
432 /* Followed by two byte relative address to which to jump. */
433 jump,
434
435 /* Same as jump, but marks the end of an alternative. */
436 jump_past_alt,
437
438 /* Followed by two-byte relative address of place to resume at
439 in case of failure. */
440 on_failure_jump,
441
442 /* Like on_failure_jump, but pushes a placeholder instead of the
443 current string position when executed. */
444 on_failure_keep_string_jump,
445
446 /* Throw away latest failure point and then jump to following
447 two-byte relative address. */
448 pop_failure_jump,
449
450 /* Change to pop_failure_jump if know won't have to backtrack to
451 match; otherwise change to jump. This is used to jump
452 back to the beginning of a repeat. If what follows this jump
453 clearly won't match what the repeat does, such that we can be
454 sure that there is no use backtracking out of repetitions
455 already matched, then we change it to a pop_failure_jump.
456 Followed by two-byte address. */
457 maybe_pop_jump,
458
459 /* Jump to following two-byte address, and push a dummy failure
460 point. This failure point will be thrown away if an attempt
461 is made to use it for a failure. A `+' construct makes this
462 before the first repeat. Also used as an intermediary kind
463 of jump when compiling an alternative. */
464 dummy_failure_jump,
465
466 /* Push a dummy failure point and continue. Used at the end of
467 alternatives. */
468 push_dummy_failure,
469
470 /* Followed by two-byte relative address and two-byte number n.
471 After matching N times, jump to the address upon failure. */
472 succeed_n,
473
474 /* Followed by two-byte relative address, and two-byte number n.
475 Jump to the address N times, then fail. */
476 jump_n,
477
478 /* Set the following two-byte relative address to the
479 subsequent two-byte number. The address *includes* the two
480 bytes of number. */
481 set_number_at,
482
483 wordchar, /* Matches any word-constituent character. */
484 notwordchar, /* Matches any char that is not a word-constituent. */
485
486 wordbeg, /* Succeeds if at word beginning. */
487 wordend, /* Succeeds if at word end. */
488
489 wordbound, /* Succeeds if at a word boundary. */
490 notwordbound /* Succeeds if not at a word boundary. */
491
492 #ifdef emacs
493 ,before_dot, /* Succeeds if before point. */
494 at_dot, /* Succeeds if at point. */
495 after_dot, /* Succeeds if after point. */
496
497 /* Matches any character whose syntax is specified. Followed by
498 a byte which contains a syntax code, e.g., Sword. */
499 syntaxspec,
500
501 /* Matches any character whose syntax is not that specified. */
502 notsyntaxspec
503 #endif /* emacs */
504 } re_opcode_t;
505 \f
506 /* Common operations on the compiled pattern. */
507
508 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
509
510 #define STORE_NUMBER(destination, number) \
511 do { \
512 (destination)[0] = (number) & 0377; \
513 (destination)[1] = (number) >> 8; \
514 } while (0)
515
516 /* Same as STORE_NUMBER, except increment DESTINATION to
517 the byte after where the number is stored. Therefore, DESTINATION
518 must be an lvalue. */
519
520 #define STORE_NUMBER_AND_INCR(destination, number) \
521 do { \
522 STORE_NUMBER (destination, number); \
523 (destination) += 2; \
524 } while (0)
525
526 /* Put into DESTINATION a number stored in two contiguous bytes starting
527 at SOURCE. */
528
529 #define EXTRACT_NUMBER(destination, source) \
530 do { \
531 (destination) = *(source) & 0377; \
532 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
533 } while (0)
534
535 #ifdef DEBUG
536 static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
537 static void
538 extract_number (dest, source)
539 int *dest;
540 unsigned char *source;
541 {
542 int temp = SIGN_EXTEND_CHAR (*(source + 1));
543 *dest = *source & 0377;
544 *dest += temp << 8;
545 }
546
547 # ifndef EXTRACT_MACROS /* To debug the macros. */
548 # undef EXTRACT_NUMBER
549 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
550 # endif /* not EXTRACT_MACROS */
551
552 #endif /* DEBUG */
553
554 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
555 SOURCE must be an lvalue. */
556
557 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
558 do { \
559 EXTRACT_NUMBER (destination, source); \
560 (source) += 2; \
561 } while (0)
562
563 #ifdef DEBUG
564 static void extract_number_and_incr _RE_ARGS ((int *destination,
565 unsigned char **source));
566 static void
567 extract_number_and_incr (destination, source)
568 int *destination;
569 unsigned char **source;
570 {
571 extract_number (destination, *source);
572 *source += 2;
573 }
574
575 # ifndef EXTRACT_MACROS
576 # undef EXTRACT_NUMBER_AND_INCR
577 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
578 extract_number_and_incr (&dest, &src)
579 # endif /* not EXTRACT_MACROS */
580
581 #endif /* DEBUG */
582 \f
583 /* If DEBUG is defined, Regex prints many voluminous messages about what
584 it is doing (if the variable `debug' is nonzero). If linked with the
585 main program in `iregex.c', you can enter patterns and strings
586 interactively. And if linked with the main program in `main.c' and
587 the other test files, you can run the already-written tests. */
588
589 #ifdef DEBUG
590
591 /* We use standard I/O for debugging. */
592 # include <stdio.h>
593
594 /* It is useful to test things that ``must'' be true when debugging. */
595 # include <assert.h>
596
597 static int debug = 0;
598
599 # define DEBUG_STATEMENT(e) e
600 # define DEBUG_PRINT1(x) if (debug) printf (x)
601 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
602 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
603 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
604 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
605 if (debug) print_partial_compiled_pattern (s, e)
606 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
607 if (debug) print_double_string (w, s1, sz1, s2, sz2)
608
609
610 /* Print the fastmap in human-readable form. */
611
612 void
613 print_fastmap (fastmap)
614 char *fastmap;
615 {
616 unsigned was_a_range = 0;
617 unsigned i = 0;
618
619 while (i < (1 << BYTEWIDTH))
620 {
621 if (fastmap[i++])
622 {
623 was_a_range = 0;
624 putchar (i - 1);
625 while (i < (1 << BYTEWIDTH) && fastmap[i])
626 {
627 was_a_range = 1;
628 i++;
629 }
630 if (was_a_range)
631 {
632 printf ("-");
633 putchar (i - 1);
634 }
635 }
636 }
637 putchar ('\n');
638 }
639
640
641 /* Print a compiled pattern string in human-readable form, starting at
642 the START pointer into it and ending just before the pointer END. */
643
644 void
645 print_partial_compiled_pattern (start, end)
646 unsigned char *start;
647 unsigned char *end;
648 {
649 int mcnt, mcnt2;
650 unsigned char *p1;
651 unsigned char *p = start;
652 unsigned char *pend = end;
653
654 if (start == NULL)
655 {
656 printf ("(null)\n");
657 return;
658 }
659
660 /* Loop over pattern commands. */
661 while (p < pend)
662 {
663 printf ("%d:\t", p - start);
664
665 switch ((re_opcode_t) *p++)
666 {
667 case no_op:
668 printf ("/no_op");
669 break;
670
671 case exactn:
672 mcnt = *p++;
673 printf ("/exactn/%d", mcnt);
674 do
675 {
676 putchar ('/');
677 putchar (*p++);
678 }
679 while (--mcnt);
680 break;
681
682 case start_memory:
683 mcnt = *p++;
684 printf ("/start_memory/%d/%d", mcnt, *p++);
685 break;
686
687 case stop_memory:
688 mcnt = *p++;
689 printf ("/stop_memory/%d/%d", mcnt, *p++);
690 break;
691
692 case duplicate:
693 printf ("/duplicate/%d", *p++);
694 break;
695
696 case anychar:
697 printf ("/anychar");
698 break;
699
700 case charset:
701 case charset_not:
702 {
703 register int c, last = -100;
704 register int in_range = 0;
705
706 printf ("/charset [%s",
707 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
708
709 assert (p + *p < pend);
710
711 for (c = 0; c < 256; c++)
712 if (c / 8 < *p
713 && (p[1 + (c/8)] & (1 << (c % 8))))
714 {
715 /* Are we starting a range? */
716 if (last + 1 == c && ! in_range)
717 {
718 putchar ('-');
719 in_range = 1;
720 }
721 /* Have we broken a range? */
722 else if (last + 1 != c && in_range)
723 {
724 putchar (last);
725 in_range = 0;
726 }
727
728 if (! in_range)
729 putchar (c);
730
731 last = c;
732 }
733
734 if (in_range)
735 putchar (last);
736
737 putchar (']');
738
739 p += 1 + *p;
740 }
741 break;
742
743 case begline:
744 printf ("/begline");
745 break;
746
747 case endline:
748 printf ("/endline");
749 break;
750
751 case on_failure_jump:
752 extract_number_and_incr (&mcnt, &p);
753 printf ("/on_failure_jump to %d", p + mcnt - start);
754 break;
755
756 case on_failure_keep_string_jump:
757 extract_number_and_incr (&mcnt, &p);
758 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
759 break;
760
761 case dummy_failure_jump:
762 extract_number_and_incr (&mcnt, &p);
763 printf ("/dummy_failure_jump to %d", p + mcnt - start);
764 break;
765
766 case push_dummy_failure:
767 printf ("/push_dummy_failure");
768 break;
769
770 case maybe_pop_jump:
771 extract_number_and_incr (&mcnt, &p);
772 printf ("/maybe_pop_jump to %d", p + mcnt - start);
773 break;
774
775 case pop_failure_jump:
776 extract_number_and_incr (&mcnt, &p);
777 printf ("/pop_failure_jump to %d", p + mcnt - start);
778 break;
779
780 case jump_past_alt:
781 extract_number_and_incr (&mcnt, &p);
782 printf ("/jump_past_alt to %d", p + mcnt - start);
783 break;
784
785 case jump:
786 extract_number_and_incr (&mcnt, &p);
787 printf ("/jump to %d", p + mcnt - start);
788 break;
789
790 case succeed_n:
791 extract_number_and_incr (&mcnt, &p);
792 p1 = p + mcnt;
793 extract_number_and_incr (&mcnt2, &p);
794 printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
795 break;
796
797 case jump_n:
798 extract_number_and_incr (&mcnt, &p);
799 p1 = p + mcnt;
800 extract_number_and_incr (&mcnt2, &p);
801 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
802 break;
803
804 case set_number_at:
805 extract_number_and_incr (&mcnt, &p);
806 p1 = p + mcnt;
807 extract_number_and_incr (&mcnt2, &p);
808 printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
809 break;
810
811 case wordbound:
812 printf ("/wordbound");
813 break;
814
815 case notwordbound:
816 printf ("/notwordbound");
817 break;
818
819 case wordbeg:
820 printf ("/wordbeg");
821 break;
822
823 case wordend:
824 printf ("/wordend");
825
826 # ifdef emacs
827 case before_dot:
828 printf ("/before_dot");
829 break;
830
831 case at_dot:
832 printf ("/at_dot");
833 break;
834
835 case after_dot:
836 printf ("/after_dot");
837 break;
838
839 case syntaxspec:
840 printf ("/syntaxspec");
841 mcnt = *p++;
842 printf ("/%d", mcnt);
843 break;
844
845 case notsyntaxspec:
846 printf ("/notsyntaxspec");
847 mcnt = *p++;
848 printf ("/%d", mcnt);
849 break;
850 # endif /* emacs */
851
852 case wordchar:
853 printf ("/wordchar");
854 break;
855
856 case notwordchar:
857 printf ("/notwordchar");
858 break;
859
860 case begbuf:
861 printf ("/begbuf");
862 break;
863
864 case endbuf:
865 printf ("/endbuf");
866 break;
867
868 default:
869 printf ("?%d", *(p-1));
870 }
871
872 putchar ('\n');
873 }
874
875 printf ("%d:\tend of pattern.\n", p - start);
876 }
877
878
879 void
880 print_compiled_pattern (bufp)
881 struct re_pattern_buffer *bufp;
882 {
883 unsigned char *buffer = bufp->buffer;
884
885 print_partial_compiled_pattern (buffer, buffer + bufp->used);
886 printf ("%ld bytes used/%ld bytes allocated.\n",
887 bufp->used, bufp->allocated);
888
889 if (bufp->fastmap_accurate && bufp->fastmap)
890 {
891 printf ("fastmap: ");
892 print_fastmap (bufp->fastmap);
893 }
894
895 printf ("re_nsub: %d\t", bufp->re_nsub);
896 printf ("regs_alloc: %d\t", bufp->regs_allocated);
897 printf ("can_be_null: %d\t", bufp->can_be_null);
898 printf ("newline_anchor: %d\n", bufp->newline_anchor);
899 printf ("no_sub: %d\t", bufp->no_sub);
900 printf ("not_bol: %d\t", bufp->not_bol);
901 printf ("not_eol: %d\t", bufp->not_eol);
902 printf ("syntax: %lx\n", bufp->syntax);
903 /* Perhaps we should print the translate table? */
904 }
905
906
907 void
908 print_double_string (where, string1, size1, string2, size2)
909 const char *where;
910 const char *string1;
911 const char *string2;
912 int size1;
913 int size2;
914 {
915 int this_char;
916
917 if (where == NULL)
918 printf ("(null)");
919 else
920 {
921 if (FIRST_STRING_P (where))
922 {
923 for (this_char = where - string1; this_char < size1; this_char++)
924 putchar (string1[this_char]);
925
926 where = string2;
927 }
928
929 for (this_char = where - string2; this_char < size2; this_char++)
930 putchar (string2[this_char]);
931 }
932 }
933
934 void
935 printchar (c)
936 int c;
937 {
938 putc (c, stderr);
939 }
940
941 #else /* not DEBUG */
942
943 # undef assert
944 # define assert(e)
945
946 # define DEBUG_STATEMENT(e)
947 # define DEBUG_PRINT1(x)
948 # define DEBUG_PRINT2(x1, x2)
949 # define DEBUG_PRINT3(x1, x2, x3)
950 # define DEBUG_PRINT4(x1, x2, x3, x4)
951 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
952 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
953
954 #endif /* not DEBUG */
955 \f
956 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
957 also be assigned to arbitrarily: each pattern buffer stores its own
958 syntax, so it can be changed between regex compilations. */
959 /* This has no initializer because initialized variables in Emacs
960 become read-only after dumping. */
961 reg_syntax_t re_syntax_options;
962
963
964 /* Specify the precise syntax of regexps for compilation. This provides
965 for compatibility for various utilities which historically have
966 different, incompatible syntaxes.
967
968 The argument SYNTAX is a bit mask comprised of the various bits
969 defined in gnu-regex.h. We return the old syntax. */
970
971 reg_syntax_t
972 re_set_syntax (syntax)
973 reg_syntax_t syntax;
974 {
975 reg_syntax_t ret = re_syntax_options;
976
977 re_syntax_options = syntax;
978 #ifdef DEBUG
979 if (syntax & RE_DEBUG)
980 debug = 1;
981 else if (debug) /* was on but now is not */
982 debug = 0;
983 #endif /* DEBUG */
984 return ret;
985 }
986 #ifdef _LIBC
987 weak_alias (__re_set_syntax, re_set_syntax)
988 #endif
989 \f
990 /* This table gives an error message for each of the error codes listed
991 in gnu-regex.h. Obviously the order here has to be same as there.
992 POSIX doesn't require that we do anything for REG_NOERROR,
993 but why not be nice? */
994
995 static const char *re_error_msgid[] =
996 {
997 gettext_noop ("Success"), /* REG_NOERROR */
998 gettext_noop ("No match"), /* REG_NOMATCH */
999 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1000 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1001 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1002 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1003 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1004 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1005 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1006 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1007 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1008 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1009 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1010 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1011 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1012 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1013 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1014 };
1015 \f
1016 /* Avoiding alloca during matching, to placate r_alloc. */
1017
1018 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1019 searching and matching functions should not call alloca. On some
1020 systems, alloca is implemented in terms of malloc, and if we're
1021 using the relocating allocator routines, then malloc could cause a
1022 relocation, which might (if the strings being searched are in the
1023 ralloc heap) shift the data out from underneath the regexp
1024 routines.
1025
1026 Here's another reason to avoid allocation: Emacs
1027 processes input from X in a signal handler; processing X input may
1028 call malloc; if input arrives while a matching routine is calling
1029 malloc, then we're scrod. But Emacs can't just block input while
1030 calling matching routines; then we don't notice interrupts when
1031 they come in. So, Emacs blocks input around all regexp calls
1032 except the matching calls, which it leaves unprotected, in the
1033 faith that they will not malloc. */
1034
1035 /* Normally, this is fine. */
1036 #define MATCH_MAY_ALLOCATE
1037
1038 /* When using GNU C, we are not REALLY using the C alloca, no matter
1039 what config.h may say. So don't take precautions for it. */
1040 #ifdef __GNUC__
1041 # undef C_ALLOCA
1042 #endif
1043
1044 /* The match routines may not allocate if (1) they would do it with malloc
1045 and (2) it's not safe for them to use malloc.
1046 Note that if REL_ALLOC is defined, matching would not use malloc for the
1047 failure stack, but we would still use it for the register vectors;
1048 so REL_ALLOC should not affect this. */
1049 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1050 # undef MATCH_MAY_ALLOCATE
1051 #endif
1052
1053 \f
1054 /* Failure stack declarations and macros; both re_compile_fastmap and
1055 re_match_2 use a failure stack. These have to be macros because of
1056 REGEX_ALLOCATE_STACK. */
1057
1058
1059 /* Number of failure points for which to initially allocate space
1060 when matching. If this number is exceeded, we allocate more
1061 space, so it is not a hard limit. */
1062 #ifndef INIT_FAILURE_ALLOC
1063 # define INIT_FAILURE_ALLOC 5
1064 #endif
1065
1066 /* Roughly the maximum number of failure points on the stack. Would be
1067 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1068 This is a variable only so users of regex can assign to it; we never
1069 change it ourselves. */
1070
1071 #ifdef INT_IS_16BIT
1072
1073 # if defined MATCH_MAY_ALLOCATE
1074 /* 4400 was enough to cause a crash on Alpha OSF/1,
1075 whose default stack limit is 2mb. */
1076 long int re_max_failures = 4000;
1077 # else
1078 long int re_max_failures = 2000;
1079 # endif
1080
1081 union fail_stack_elt
1082 {
1083 unsigned char *pointer;
1084 long int integer;
1085 };
1086
1087 typedef union fail_stack_elt fail_stack_elt_t;
1088
1089 typedef struct
1090 {
1091 fail_stack_elt_t *stack;
1092 unsigned long int size;
1093 unsigned long int avail; /* Offset of next open position. */
1094 } fail_stack_type;
1095
1096 #else /* not INT_IS_16BIT */
1097
1098 # if defined MATCH_MAY_ALLOCATE
1099 /* 4400 was enough to cause a crash on Alpha OSF/1,
1100 whose default stack limit is 2mb. */
1101 int re_max_failures = 20000;
1102 # else
1103 int re_max_failures = 2000;
1104 # endif
1105
1106 union fail_stack_elt
1107 {
1108 unsigned char *pointer;
1109 int integer;
1110 };
1111
1112 typedef union fail_stack_elt fail_stack_elt_t;
1113
1114 typedef struct
1115 {
1116 fail_stack_elt_t *stack;
1117 unsigned size;
1118 unsigned avail; /* Offset of next open position. */
1119 } fail_stack_type;
1120
1121 #endif /* INT_IS_16BIT */
1122
1123 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1124 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1125 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1126
1127
1128 /* Define macros to initialize and free the failure stack.
1129 Do `return -2' if the alloc fails. */
1130
1131 #ifdef MATCH_MAY_ALLOCATE
1132 # define INIT_FAIL_STACK() \
1133 do { \
1134 fail_stack.stack = (fail_stack_elt_t *) \
1135 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1136 \
1137 if (fail_stack.stack == NULL) \
1138 return -2; \
1139 \
1140 fail_stack.size = INIT_FAILURE_ALLOC; \
1141 fail_stack.avail = 0; \
1142 } while (0)
1143
1144 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1145 #else
1146 # define INIT_FAIL_STACK() \
1147 do { \
1148 fail_stack.avail = 0; \
1149 } while (0)
1150
1151 # define RESET_FAIL_STACK()
1152 #endif
1153
1154
1155 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1156
1157 Return 1 if succeeds, and 0 if either ran out of memory
1158 allocating space for it or it was already too large.
1159
1160 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1161
1162 #define DOUBLE_FAIL_STACK(fail_stack) \
1163 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1164 ? 0 \
1165 : ((fail_stack).stack = (fail_stack_elt_t *) \
1166 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1167 (fail_stack).size * sizeof (fail_stack_elt_t), \
1168 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1169 \
1170 (fail_stack).stack == NULL \
1171 ? 0 \
1172 : ((fail_stack).size <<= 1, \
1173 1)))
1174
1175
1176 /* Push pointer POINTER on FAIL_STACK.
1177 Return 1 if was able to do so and 0 if ran out of memory allocating
1178 space to do so. */
1179 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1180 ((FAIL_STACK_FULL () \
1181 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1182 ? 0 \
1183 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1184 1))
1185
1186 /* Push a pointer value onto the failure stack.
1187 Assumes the variable `fail_stack'. Probably should only
1188 be called from within `PUSH_FAILURE_POINT'. */
1189 #define PUSH_FAILURE_POINTER(item) \
1190 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1191
1192 /* This pushes an integer-valued item onto the failure stack.
1193 Assumes the variable `fail_stack'. Probably should only
1194 be called from within `PUSH_FAILURE_POINT'. */
1195 #define PUSH_FAILURE_INT(item) \
1196 fail_stack.stack[fail_stack.avail++].integer = (item)
1197
1198 /* Push a fail_stack_elt_t value onto the failure stack.
1199 Assumes the variable `fail_stack'. Probably should only
1200 be called from within `PUSH_FAILURE_POINT'. */
1201 #define PUSH_FAILURE_ELT(item) \
1202 fail_stack.stack[fail_stack.avail++] = (item)
1203
1204 /* These three POP... operations complement the three PUSH... operations.
1205 All assume that `fail_stack' is nonempty. */
1206 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1207 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1208 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1209
1210 /* Used to omit pushing failure point id's when we're not debugging. */
1211 #ifdef DEBUG
1212 # define DEBUG_PUSH PUSH_FAILURE_INT
1213 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1214 #else
1215 # define DEBUG_PUSH(item)
1216 # define DEBUG_POP(item_addr)
1217 #endif
1218
1219
1220 /* Push the information about the state we will need
1221 if we ever fail back to it.
1222
1223 Requires variables fail_stack, regstart, regend, reg_info, and
1224 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1225 be declared.
1226
1227 Does `return FAILURE_CODE' if runs out of memory. */
1228
1229 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1230 do { \
1231 char *destination; \
1232 /* Must be int, so when we don't save any registers, the arithmetic \
1233 of 0 + -1 isn't done as unsigned. */ \
1234 /* Can't be int, since there is not a shred of a guarantee that int \
1235 is wide enough to hold a value of something to which pointer can \
1236 be assigned */ \
1237 active_reg_t this_reg; \
1238 \
1239 DEBUG_STATEMENT (failure_id++); \
1240 DEBUG_STATEMENT (nfailure_points_pushed++); \
1241 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1242 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1243 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1244 \
1245 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1246 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1247 \
1248 /* Ensure we have enough space allocated for what we will push. */ \
1249 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1250 { \
1251 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1252 return failure_code; \
1253 \
1254 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1255 (fail_stack).size); \
1256 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1257 } \
1258 \
1259 /* Push the info, starting with the registers. */ \
1260 DEBUG_PRINT1 ("\n"); \
1261 \
1262 if (1) \
1263 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1264 this_reg++) \
1265 { \
1266 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1267 DEBUG_STATEMENT (num_regs_pushed++); \
1268 \
1269 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1270 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1271 \
1272 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1273 PUSH_FAILURE_POINTER (regend[this_reg]); \
1274 \
1275 DEBUG_PRINT2 (" info: %p\n ", \
1276 reg_info[this_reg].word.pointer); \
1277 DEBUG_PRINT2 (" match_null=%d", \
1278 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1279 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1280 DEBUG_PRINT2 (" matched_something=%d", \
1281 MATCHED_SOMETHING (reg_info[this_reg])); \
1282 DEBUG_PRINT2 (" ever_matched=%d", \
1283 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1284 DEBUG_PRINT1 ("\n"); \
1285 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1286 } \
1287 \
1288 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1289 PUSH_FAILURE_INT (lowest_active_reg); \
1290 \
1291 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1292 PUSH_FAILURE_INT (highest_active_reg); \
1293 \
1294 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1295 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1296 PUSH_FAILURE_POINTER (pattern_place); \
1297 \
1298 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1299 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1300 size2); \
1301 DEBUG_PRINT1 ("'\n"); \
1302 PUSH_FAILURE_POINTER (string_place); \
1303 \
1304 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1305 DEBUG_PUSH (failure_id); \
1306 } while (0)
1307
1308 /* This is the number of items that are pushed and popped on the stack
1309 for each register. */
1310 #define NUM_REG_ITEMS 3
1311
1312 /* Individual items aside from the registers. */
1313 #ifdef DEBUG
1314 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1315 #else
1316 # define NUM_NONREG_ITEMS 4
1317 #endif
1318
1319 /* We push at most this many items on the stack. */
1320 /* We used to use (num_regs - 1), which is the number of registers
1321 this regexp will save; but that was changed to 5
1322 to avoid stack overflow for a regexp with lots of parens. */
1323 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1324
1325 /* We actually push this many items. */
1326 #define NUM_FAILURE_ITEMS \
1327 (((0 \
1328 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1329 * NUM_REG_ITEMS) \
1330 + NUM_NONREG_ITEMS)
1331
1332 /* How many items can still be added to the stack without overflowing it. */
1333 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1334
1335
1336 /* Pops what PUSH_FAIL_STACK pushes.
1337
1338 We restore into the parameters, all of which should be lvalues:
1339 STR -- the saved data position.
1340 PAT -- the saved pattern position.
1341 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1342 REGSTART, REGEND -- arrays of string positions.
1343 REG_INFO -- array of information about each subexpression.
1344
1345 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1346 `pend', `string1', `size1', `string2', and `size2'. */
1347
1348 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1349 { \
1350 DEBUG_STATEMENT (unsigned failure_id;) \
1351 active_reg_t this_reg; \
1352 const unsigned char *string_temp; \
1353 \
1354 assert (!FAIL_STACK_EMPTY ()); \
1355 \
1356 /* Remove failure points and point to how many regs pushed. */ \
1357 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1358 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1359 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1360 \
1361 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1362 \
1363 DEBUG_POP (&failure_id); \
1364 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1365 \
1366 /* If the saved string location is NULL, it came from an \
1367 on_failure_keep_string_jump opcode, and we want to throw away the \
1368 saved NULL, thus retaining our current position in the string. */ \
1369 string_temp = POP_FAILURE_POINTER (); \
1370 if (string_temp != NULL) \
1371 str = (const char *) string_temp; \
1372 \
1373 DEBUG_PRINT2 (" Popping string %p: `", str); \
1374 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1375 DEBUG_PRINT1 ("'\n"); \
1376 \
1377 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1378 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1379 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1380 \
1381 /* Restore register info. */ \
1382 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1383 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1384 \
1385 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1386 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1387 \
1388 if (1) \
1389 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1390 { \
1391 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1392 \
1393 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1394 DEBUG_PRINT2 (" info: %p\n", \
1395 reg_info[this_reg].word.pointer); \
1396 \
1397 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1398 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1399 \
1400 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1401 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1402 } \
1403 else \
1404 { \
1405 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1406 { \
1407 reg_info[this_reg].word.integer = 0; \
1408 regend[this_reg] = 0; \
1409 regstart[this_reg] = 0; \
1410 } \
1411 highest_active_reg = high_reg; \
1412 } \
1413 \
1414 set_regs_matched_done = 0; \
1415 DEBUG_STATEMENT (nfailure_points_popped++); \
1416 } /* POP_FAILURE_POINT */
1417
1418
1419 \f
1420 /* Structure for per-register (a.k.a. per-group) information.
1421 Other register information, such as the
1422 starting and ending positions (which are addresses), and the list of
1423 inner groups (which is a bits list) are maintained in separate
1424 variables.
1425
1426 We are making a (strictly speaking) nonportable assumption here: that
1427 the compiler will pack our bit fields into something that fits into
1428 the type of `word', i.e., is something that fits into one item on the
1429 failure stack. */
1430
1431
1432 /* Declarations and macros for re_match_2. */
1433
1434 typedef union
1435 {
1436 fail_stack_elt_t word;
1437 struct
1438 {
1439 /* This field is one if this group can match the empty string,
1440 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1441 #define MATCH_NULL_UNSET_VALUE 3
1442 unsigned match_null_string_p : 2;
1443 unsigned is_active : 1;
1444 unsigned matched_something : 1;
1445 unsigned ever_matched_something : 1;
1446 } bits;
1447 } register_info_type;
1448
1449 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1450 #define IS_ACTIVE(R) ((R).bits.is_active)
1451 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1452 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1453
1454
1455 /* Call this when have matched a real character; it sets `matched' flags
1456 for the subexpressions which we are currently inside. Also records
1457 that those subexprs have matched. */
1458 #define SET_REGS_MATCHED() \
1459 do \
1460 { \
1461 if (!set_regs_matched_done) \
1462 { \
1463 active_reg_t r; \
1464 set_regs_matched_done = 1; \
1465 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1466 { \
1467 MATCHED_SOMETHING (reg_info[r]) \
1468 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1469 = 1; \
1470 } \
1471 } \
1472 } \
1473 while (0)
1474
1475 /* Registers are set to a sentinel when they haven't yet matched. */
1476 static char reg_unset_dummy;
1477 #define REG_UNSET_VALUE (&reg_unset_dummy)
1478 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1479 \f
1480 /* Subroutine declarations and macros for regex_compile. */
1481
1482 static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1483 reg_syntax_t syntax,
1484 struct re_pattern_buffer *bufp));
1485 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1486 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1487 int arg1, int arg2));
1488 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1489 int arg, unsigned char *end));
1490 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1491 int arg1, int arg2, unsigned char *end));
1492 static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1493 reg_syntax_t syntax));
1494 static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1495 reg_syntax_t syntax));
1496 static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1497 const char *pend,
1498 char *translate,
1499 reg_syntax_t syntax,
1500 unsigned char *b));
1501
1502 /* Fetch the next character in the uncompiled pattern---translating it
1503 if necessary. Also cast from a signed character in the constant
1504 string passed to us by the user to an unsigned char that we can use
1505 as an array index (in, e.g., `translate'). */
1506 #ifndef PATFETCH
1507 # define PATFETCH(c) \
1508 do {if (p == pend) return REG_EEND; \
1509 c = (unsigned char) *p++; \
1510 if (translate) c = (unsigned char) translate[c]; \
1511 } while (0)
1512 #endif
1513
1514 /* Fetch the next character in the uncompiled pattern, with no
1515 translation. */
1516 #define PATFETCH_RAW(c) \
1517 do {if (p == pend) return REG_EEND; \
1518 c = (unsigned char) *p++; \
1519 } while (0)
1520
1521 /* Go backwards one character in the pattern. */
1522 #define PATUNFETCH p--
1523
1524
1525 /* If `translate' is non-null, return translate[D], else just D. We
1526 cast the subscript to translate because some data is declared as
1527 `char *', to avoid warnings when a string constant is passed. But
1528 when we use a character as a subscript we must make it unsigned. */
1529 #ifndef TRANSLATE
1530 # define TRANSLATE(d) \
1531 (translate ? (char) translate[(unsigned char) (d)] : (d))
1532 #endif
1533
1534
1535 /* Macros for outputting the compiled pattern into `buffer'. */
1536
1537 /* If the buffer isn't allocated when it comes in, use this. */
1538 #define INIT_BUF_SIZE 32
1539
1540 /* Make sure we have at least N more bytes of space in buffer. */
1541 #define GET_BUFFER_SPACE(n) \
1542 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1543 EXTEND_BUFFER ()
1544
1545 /* Make sure we have one more byte of buffer space and then add C to it. */
1546 #define BUF_PUSH(c) \
1547 do { \
1548 GET_BUFFER_SPACE (1); \
1549 *b++ = (unsigned char) (c); \
1550 } while (0)
1551
1552
1553 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1554 #define BUF_PUSH_2(c1, c2) \
1555 do { \
1556 GET_BUFFER_SPACE (2); \
1557 *b++ = (unsigned char) (c1); \
1558 *b++ = (unsigned char) (c2); \
1559 } while (0)
1560
1561
1562 /* As with BUF_PUSH_2, except for three bytes. */
1563 #define BUF_PUSH_3(c1, c2, c3) \
1564 do { \
1565 GET_BUFFER_SPACE (3); \
1566 *b++ = (unsigned char) (c1); \
1567 *b++ = (unsigned char) (c2); \
1568 *b++ = (unsigned char) (c3); \
1569 } while (0)
1570
1571
1572 /* Store a jump with opcode OP at LOC to location TO. We store a
1573 relative address offset by the three bytes the jump itself occupies. */
1574 #define STORE_JUMP(op, loc, to) \
1575 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1576
1577 /* Likewise, for a two-argument jump. */
1578 #define STORE_JUMP2(op, loc, to, arg) \
1579 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1580
1581 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1582 #define INSERT_JUMP(op, loc, to) \
1583 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1584
1585 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1586 #define INSERT_JUMP2(op, loc, to, arg) \
1587 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1588
1589
1590 /* This is not an arbitrary limit: the arguments which represent offsets
1591 into the pattern are two bytes long. So if 2^16 bytes turns out to
1592 be too small, many things would have to change. */
1593 /* Any other compiler which, like MSC, has allocation limit below 2^16
1594 bytes will have to use approach similar to what was done below for
1595 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1596 reallocating to 0 bytes. Such thing is not going to work too well.
1597 You have been warned!! */
1598 #if defined _MSC_VER && !defined WIN32
1599 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1600 The REALLOC define eliminates a flurry of conversion warnings,
1601 but is not required. */
1602 # define MAX_BUF_SIZE 65500L
1603 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1604 #else
1605 # define MAX_BUF_SIZE (1L << 16)
1606 # define REALLOC(p,s) realloc ((p), (s))
1607 #endif
1608
1609 /* Extend the buffer by twice its current size via realloc and
1610 reset the pointers that pointed into the old block to point to the
1611 correct places in the new one. If extending the buffer results in it
1612 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1613 #define EXTEND_BUFFER() \
1614 do { \
1615 unsigned char *old_buffer = bufp->buffer; \
1616 if (bufp->allocated == MAX_BUF_SIZE) \
1617 return REG_ESIZE; \
1618 bufp->allocated <<= 1; \
1619 if (bufp->allocated > MAX_BUF_SIZE) \
1620 bufp->allocated = MAX_BUF_SIZE; \
1621 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1622 if (bufp->buffer == NULL) \
1623 return REG_ESPACE; \
1624 /* If the buffer moved, move all the pointers into it. */ \
1625 if (old_buffer != bufp->buffer) \
1626 { \
1627 b = (b - old_buffer) + bufp->buffer; \
1628 begalt = (begalt - old_buffer) + bufp->buffer; \
1629 if (fixup_alt_jump) \
1630 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1631 if (laststart) \
1632 laststart = (laststart - old_buffer) + bufp->buffer; \
1633 if (pending_exact) \
1634 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1635 } \
1636 } while (0)
1637
1638
1639 /* Since we have one byte reserved for the register number argument to
1640 {start,stop}_memory, the maximum number of groups we can report
1641 things about is what fits in that byte. */
1642 #define MAX_REGNUM 255
1643
1644 /* But patterns can have more than `MAX_REGNUM' registers. We just
1645 ignore the excess. */
1646 typedef unsigned regnum_t;
1647
1648
1649 /* Macros for the compile stack. */
1650
1651 /* Since offsets can go either forwards or backwards, this type needs to
1652 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1653 /* int may be not enough when sizeof(int) == 2. */
1654 typedef long pattern_offset_t;
1655
1656 typedef struct
1657 {
1658 pattern_offset_t begalt_offset;
1659 pattern_offset_t fixup_alt_jump;
1660 pattern_offset_t inner_group_offset;
1661 pattern_offset_t laststart_offset;
1662 regnum_t regnum;
1663 } compile_stack_elt_t;
1664
1665
1666 typedef struct
1667 {
1668 compile_stack_elt_t *stack;
1669 unsigned size;
1670 unsigned avail; /* Offset of next open position. */
1671 } compile_stack_type;
1672
1673
1674 #define INIT_COMPILE_STACK_SIZE 32
1675
1676 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1677 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1678
1679 /* The next available element. */
1680 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1681
1682
1683 /* Set the bit for character C in a list. */
1684 #define SET_LIST_BIT(c) \
1685 (b[((unsigned char) (c)) / BYTEWIDTH] \
1686 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1687
1688
1689 /* Get the next unsigned number in the uncompiled pattern. */
1690 #define GET_UNSIGNED_NUMBER(num) \
1691 { if (p != pend) \
1692 { \
1693 PATFETCH (c); \
1694 while (ISDIGIT (c)) \
1695 { \
1696 if (num < 0) \
1697 num = 0; \
1698 num = num * 10 + c - '0'; \
1699 if (p == pend) \
1700 break; \
1701 PATFETCH (c); \
1702 } \
1703 } \
1704 }
1705
1706 /* Use this only if they have btowc(), since wctype() is used below
1707 together with btowc(). btowc() is defined in the 1994 Amendment 1
1708 to ISO C and may not be present on systems where we have wchar.h
1709 and wctype.h. */
1710 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_BTOWC)
1711 /* The GNU C library provides support for user-defined character classes
1712 and the functions from ISO C amendement 1. */
1713 # ifdef CHARCLASS_NAME_MAX
1714 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1715 # else
1716 /* This shouldn't happen but some implementation might still have this
1717 problem. Use a reasonable default value. */
1718 # define CHAR_CLASS_MAX_LENGTH 256
1719 # endif
1720
1721 # ifdef _LIBC
1722 # define IS_CHAR_CLASS(string) __wctype (string)
1723 # else
1724 # define IS_CHAR_CLASS(string) wctype (string)
1725 # endif
1726 #else
1727 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1728
1729 # define IS_CHAR_CLASS(string) \
1730 (STREQ (string, "alpha") || STREQ (string, "upper") \
1731 || STREQ (string, "lower") || STREQ (string, "digit") \
1732 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1733 || STREQ (string, "space") || STREQ (string, "print") \
1734 || STREQ (string, "punct") || STREQ (string, "graph") \
1735 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1736 #endif
1737 \f
1738 #ifndef MATCH_MAY_ALLOCATE
1739
1740 /* If we cannot allocate large objects within re_match_2_internal,
1741 we make the fail stack and register vectors global.
1742 The fail stack, we grow to the maximum size when a regexp
1743 is compiled.
1744 The register vectors, we adjust in size each time we
1745 compile a regexp, according to the number of registers it needs. */
1746
1747 static fail_stack_type fail_stack;
1748
1749 /* Size with which the following vectors are currently allocated.
1750 That is so we can make them bigger as needed,
1751 but never make them smaller. */
1752 static int regs_allocated_size;
1753
1754 static const char ** regstart, ** regend;
1755 static const char ** old_regstart, ** old_regend;
1756 static const char **best_regstart, **best_regend;
1757 static register_info_type *reg_info;
1758 static const char **reg_dummy;
1759 static register_info_type *reg_info_dummy;
1760
1761 /* Make the register vectors big enough for NUM_REGS registers,
1762 but don't make them smaller. */
1763
1764 static
1765 regex_grow_registers (num_regs)
1766 int num_regs;
1767 {
1768 if (num_regs > regs_allocated_size)
1769 {
1770 RETALLOC_IF (regstart, num_regs, const char *);
1771 RETALLOC_IF (regend, num_regs, const char *);
1772 RETALLOC_IF (old_regstart, num_regs, const char *);
1773 RETALLOC_IF (old_regend, num_regs, const char *);
1774 RETALLOC_IF (best_regstart, num_regs, const char *);
1775 RETALLOC_IF (best_regend, num_regs, const char *);
1776 RETALLOC_IF (reg_info, num_regs, register_info_type);
1777 RETALLOC_IF (reg_dummy, num_regs, const char *);
1778 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1779
1780 regs_allocated_size = num_regs;
1781 }
1782 }
1783
1784 #endif /* not MATCH_MAY_ALLOCATE */
1785 \f
1786 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1787 compile_stack,
1788 regnum_t regnum));
1789
1790 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1791 Returns one of error codes defined in `gnu-regex.h', or zero for success.
1792
1793 Assumes the `allocated' (and perhaps `buffer') and `translate'
1794 fields are set in BUFP on entry.
1795
1796 If it succeeds, results are put in BUFP (if it returns an error, the
1797 contents of BUFP are undefined):
1798 `buffer' is the compiled pattern;
1799 `syntax' is set to SYNTAX;
1800 `used' is set to the length of the compiled pattern;
1801 `fastmap_accurate' is zero;
1802 `re_nsub' is the number of subexpressions in PATTERN;
1803 `not_bol' and `not_eol' are zero;
1804
1805 The `fastmap' and `newline_anchor' fields are neither
1806 examined nor set. */
1807
1808 /* Return, freeing storage we allocated. */
1809 #define FREE_STACK_RETURN(value) \
1810 return (free (compile_stack.stack), value)
1811
1812 static reg_errcode_t
1813 regex_compile (pattern, size, syntax, bufp)
1814 const char *pattern;
1815 size_t size;
1816 reg_syntax_t syntax;
1817 struct re_pattern_buffer *bufp;
1818 {
1819 /* We fetch characters from PATTERN here. Even though PATTERN is
1820 `char *' (i.e., signed), we declare these variables as unsigned, so
1821 they can be reliably used as array indices. */
1822 register unsigned char c, c1;
1823
1824 /* A random temporary spot in PATTERN. */
1825 const char *p1;
1826
1827 /* Points to the end of the buffer, where we should append. */
1828 register unsigned char *b;
1829
1830 /* Keeps track of unclosed groups. */
1831 compile_stack_type compile_stack;
1832
1833 /* Points to the current (ending) position in the pattern. */
1834 const char *p = pattern;
1835 const char *pend = pattern + size;
1836
1837 /* How to translate the characters in the pattern. */
1838 RE_TRANSLATE_TYPE translate = bufp->translate;
1839
1840 /* Address of the count-byte of the most recently inserted `exactn'
1841 command. This makes it possible to tell if a new exact-match
1842 character can be added to that command or if the character requires
1843 a new `exactn' command. */
1844 unsigned char *pending_exact = 0;
1845
1846 /* Address of start of the most recently finished expression.
1847 This tells, e.g., postfix * where to find the start of its
1848 operand. Reset at the beginning of groups and alternatives. */
1849 unsigned char *laststart = 0;
1850
1851 /* Address of beginning of regexp, or inside of last group. */
1852 unsigned char *begalt;
1853
1854 /* Place in the uncompiled pattern (i.e., the {) to
1855 which to go back if the interval is invalid. */
1856 const char *beg_interval;
1857
1858 /* Address of the place where a forward jump should go to the end of
1859 the containing expression. Each alternative of an `or' -- except the
1860 last -- ends with a forward jump of this sort. */
1861 unsigned char *fixup_alt_jump = 0;
1862
1863 /* Counts open-groups as they are encountered. Remembered for the
1864 matching close-group on the compile stack, so the same register
1865 number is put in the stop_memory as the start_memory. */
1866 regnum_t regnum = 0;
1867
1868 #ifdef DEBUG
1869 DEBUG_PRINT1 ("\nCompiling pattern: ");
1870 if (debug)
1871 {
1872 unsigned debug_count;
1873
1874 for (debug_count = 0; debug_count < size; debug_count++)
1875 putchar (pattern[debug_count]);
1876 putchar ('\n');
1877 }
1878 #endif /* DEBUG */
1879
1880 /* Initialize the compile stack. */
1881 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1882 if (compile_stack.stack == NULL)
1883 return REG_ESPACE;
1884
1885 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1886 compile_stack.avail = 0;
1887
1888 /* Initialize the pattern buffer. */
1889 bufp->syntax = syntax;
1890 bufp->fastmap_accurate = 0;
1891 bufp->not_bol = bufp->not_eol = 0;
1892
1893 /* Set `used' to zero, so that if we return an error, the pattern
1894 printer (for debugging) will think there's no pattern. We reset it
1895 at the end. */
1896 bufp->used = 0;
1897
1898 /* Always count groups, whether or not bufp->no_sub is set. */
1899 bufp->re_nsub = 0;
1900
1901 #if !defined emacs && !defined SYNTAX_TABLE
1902 /* Initialize the syntax table. */
1903 init_syntax_once ();
1904 #endif
1905
1906 if (bufp->allocated == 0)
1907 {
1908 if (bufp->buffer)
1909 { /* If zero allocated, but buffer is non-null, try to realloc
1910 enough space. This loses if buffer's address is bogus, but
1911 that is the user's responsibility. */
1912 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1913 }
1914 else
1915 { /* Caller did not allocate a buffer. Do it for them. */
1916 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1917 }
1918 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1919
1920 bufp->allocated = INIT_BUF_SIZE;
1921 }
1922
1923 begalt = b = bufp->buffer;
1924
1925 /* Loop through the uncompiled pattern until we're at the end. */
1926 while (p != pend)
1927 {
1928 PATFETCH (c);
1929
1930 switch (c)
1931 {
1932 case '^':
1933 {
1934 if ( /* If at start of pattern, it's an operator. */
1935 p == pattern + 1
1936 /* If context independent, it's an operator. */
1937 || syntax & RE_CONTEXT_INDEP_ANCHORS
1938 /* Otherwise, depends on what's come before. */
1939 || at_begline_loc_p (pattern, p, syntax))
1940 BUF_PUSH (begline);
1941 else
1942 goto normal_char;
1943 }
1944 break;
1945
1946
1947 case '$':
1948 {
1949 if ( /* If at end of pattern, it's an operator. */
1950 p == pend
1951 /* If context independent, it's an operator. */
1952 || syntax & RE_CONTEXT_INDEP_ANCHORS
1953 /* Otherwise, depends on what's next. */
1954 || at_endline_loc_p (p, pend, syntax))
1955 BUF_PUSH (endline);
1956 else
1957 goto normal_char;
1958 }
1959 break;
1960
1961
1962 case '+':
1963 case '?':
1964 if ((syntax & RE_BK_PLUS_QM)
1965 || (syntax & RE_LIMITED_OPS))
1966 goto normal_char;
1967 handle_plus:
1968 case '*':
1969 /* If there is no previous pattern... */
1970 if (!laststart)
1971 {
1972 if (syntax & RE_CONTEXT_INVALID_OPS)
1973 FREE_STACK_RETURN (REG_BADRPT);
1974 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1975 goto normal_char;
1976 }
1977
1978 {
1979 /* Are we optimizing this jump? */
1980 boolean keep_string_p = false;
1981
1982 /* 1 means zero (many) matches is allowed. */
1983 char zero_times_ok = 0, many_times_ok = 0;
1984
1985 /* If there is a sequence of repetition chars, collapse it
1986 down to just one (the right one). We can't combine
1987 interval operators with these because of, e.g., `a{2}*',
1988 which should only match an even number of `a's. */
1989
1990 for (;;)
1991 {
1992 zero_times_ok |= c != '+';
1993 many_times_ok |= c != '?';
1994
1995 if (p == pend)
1996 break;
1997
1998 PATFETCH (c);
1999
2000 if (c == '*'
2001 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2002 ;
2003
2004 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2005 {
2006 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2007
2008 PATFETCH (c1);
2009 if (!(c1 == '+' || c1 == '?'))
2010 {
2011 PATUNFETCH;
2012 PATUNFETCH;
2013 break;
2014 }
2015
2016 c = c1;
2017 }
2018 else
2019 {
2020 PATUNFETCH;
2021 break;
2022 }
2023
2024 /* If we get here, we found another repeat character. */
2025 }
2026
2027 /* Star, etc. applied to an empty pattern is equivalent
2028 to an empty pattern. */
2029 if (!laststart)
2030 break;
2031
2032 /* Now we know whether or not zero matches is allowed
2033 and also whether or not two or more matches is allowed. */
2034 if (many_times_ok)
2035 { /* More than one repetition is allowed, so put in at the
2036 end a backward relative jump from `b' to before the next
2037 jump we're going to put in below (which jumps from
2038 laststart to after this jump).
2039
2040 But if we are at the `*' in the exact sequence `.*\n',
2041 insert an unconditional jump backwards to the .,
2042 instead of the beginning of the loop. This way we only
2043 push a failure point once, instead of every time
2044 through the loop. */
2045 assert (p - 1 > pattern);
2046
2047 /* Allocate the space for the jump. */
2048 GET_BUFFER_SPACE (3);
2049
2050 /* We know we are not at the first character of the pattern,
2051 because laststart was nonzero. And we've already
2052 incremented `p', by the way, to be the character after
2053 the `*'. Do we have to do something analogous here
2054 for null bytes, because of RE_DOT_NOT_NULL? */
2055 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2056 && zero_times_ok
2057 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2058 && !(syntax & RE_DOT_NEWLINE))
2059 { /* We have .*\n. */
2060 STORE_JUMP (jump, b, laststart);
2061 keep_string_p = true;
2062 }
2063 else
2064 /* Anything else. */
2065 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2066
2067 /* We've added more stuff to the buffer. */
2068 b += 3;
2069 }
2070
2071 /* On failure, jump from laststart to b + 3, which will be the
2072 end of the buffer after this jump is inserted. */
2073 GET_BUFFER_SPACE (3);
2074 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2075 : on_failure_jump,
2076 laststart, b + 3);
2077 pending_exact = 0;
2078 b += 3;
2079
2080 if (!zero_times_ok)
2081 {
2082 /* At least one repetition is required, so insert a
2083 `dummy_failure_jump' before the initial
2084 `on_failure_jump' instruction of the loop. This
2085 effects a skip over that instruction the first time
2086 we hit that loop. */
2087 GET_BUFFER_SPACE (3);
2088 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2089 b += 3;
2090 }
2091 }
2092 break;
2093
2094
2095 case '.':
2096 laststart = b;
2097 BUF_PUSH (anychar);
2098 break;
2099
2100
2101 case '[':
2102 {
2103 boolean had_char_class = false;
2104
2105 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2106
2107 /* Ensure that we have enough space to push a charset: the
2108 opcode, the length count, and the bitset; 34 bytes in all. */
2109 GET_BUFFER_SPACE (34);
2110
2111 laststart = b;
2112
2113 /* We test `*p == '^' twice, instead of using an if
2114 statement, so we only need one BUF_PUSH. */
2115 BUF_PUSH (*p == '^' ? charset_not : charset);
2116 if (*p == '^')
2117 p++;
2118
2119 /* Remember the first position in the bracket expression. */
2120 p1 = p;
2121
2122 /* Push the number of bytes in the bitmap. */
2123 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2124
2125 /* Clear the whole map. */
2126 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2127
2128 /* charset_not matches newline according to a syntax bit. */
2129 if ((re_opcode_t) b[-2] == charset_not
2130 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2131 SET_LIST_BIT ('\n');
2132
2133 /* Read in characters and ranges, setting map bits. */
2134 for (;;)
2135 {
2136 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2137
2138 PATFETCH (c);
2139
2140 /* \ might escape characters inside [...] and [^...]. */
2141 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2142 {
2143 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2144
2145 PATFETCH (c1);
2146 SET_LIST_BIT (c1);
2147 continue;
2148 }
2149
2150 /* Could be the end of the bracket expression. If it's
2151 not (i.e., when the bracket expression is `[]' so
2152 far), the ']' character bit gets set way below. */
2153 if (c == ']' && p != p1 + 1)
2154 break;
2155
2156 /* Look ahead to see if it's a range when the last thing
2157 was a character class. */
2158 if (had_char_class && c == '-' && *p != ']')
2159 FREE_STACK_RETURN (REG_ERANGE);
2160
2161 /* Look ahead to see if it's a range when the last thing
2162 was a character: if this is a hyphen not at the
2163 beginning or the end of a list, then it's the range
2164 operator. */
2165 if (c == '-'
2166 && !(p - 2 >= pattern && p[-2] == '[')
2167 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2168 && *p != ']')
2169 {
2170 reg_errcode_t ret
2171 = compile_range (&p, pend, translate, syntax, b);
2172 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2173 }
2174
2175 else if (p[0] == '-' && p[1] != ']')
2176 { /* This handles ranges made up of characters only. */
2177 reg_errcode_t ret;
2178
2179 /* Move past the `-'. */
2180 PATFETCH (c1);
2181
2182 ret = compile_range (&p, pend, translate, syntax, b);
2183 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2184 }
2185
2186 /* See if we're at the beginning of a possible character
2187 class. */
2188
2189 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2190 { /* Leave room for the null. */
2191 char str[CHAR_CLASS_MAX_LENGTH + 1];
2192
2193 PATFETCH (c);
2194 c1 = 0;
2195
2196 /* If pattern is `[[:'. */
2197 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2198
2199 for (;;)
2200 {
2201 PATFETCH (c);
2202 if ((c == ':' && *p == ']') || p == pend
2203 || c1 == CHAR_CLASS_MAX_LENGTH)
2204 break;
2205 str[c1++] = c;
2206 }
2207 str[c1] = '\0';
2208
2209 /* If isn't a word bracketed by `[:' and `:]':
2210 undo the ending character, the letters, and leave
2211 the leading `:' and `[' (but set bits for them). */
2212 if (c == ':' && *p == ']')
2213 {
2214 /* CYGNUS LOCAL: Skip this code if we don't have btowc(). btowc() is */
2215 /* defined in the 1994 Amendment 1 to ISO C and may not be present on */
2216 /* systems where we have wchar.h and wctype.h. */
2217 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_BTOWC)
2218 boolean is_lower = STREQ (str, "lower");
2219 boolean is_upper = STREQ (str, "upper");
2220 wctype_t wt;
2221 int ch;
2222
2223 wt = IS_CHAR_CLASS (str);
2224 if (wt == 0)
2225 FREE_STACK_RETURN (REG_ECTYPE);
2226
2227 /* Throw away the ] at the end of the character
2228 class. */
2229 PATFETCH (c);
2230
2231 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2232
2233 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2234 {
2235 # ifdef _LIBC
2236 if (__iswctype (__btowc (ch), wt))
2237 SET_LIST_BIT (ch);
2238 #else
2239 if (iswctype (btowc (ch), wt))
2240 SET_LIST_BIT (ch);
2241 #endif
2242
2243 if (translate && (is_upper || is_lower)
2244 && (ISUPPER (ch) || ISLOWER (ch)))
2245 SET_LIST_BIT (ch);
2246 }
2247
2248 had_char_class = true;
2249 #else
2250 int ch;
2251 boolean is_alnum = STREQ (str, "alnum");
2252 boolean is_alpha = STREQ (str, "alpha");
2253 boolean is_blank = STREQ (str, "blank");
2254 boolean is_cntrl = STREQ (str, "cntrl");
2255 boolean is_digit = STREQ (str, "digit");
2256 boolean is_graph = STREQ (str, "graph");
2257 boolean is_lower = STREQ (str, "lower");
2258 boolean is_print = STREQ (str, "print");
2259 boolean is_punct = STREQ (str, "punct");
2260 boolean is_space = STREQ (str, "space");
2261 boolean is_upper = STREQ (str, "upper");
2262 boolean is_xdigit = STREQ (str, "xdigit");
2263
2264 if (!IS_CHAR_CLASS (str))
2265 FREE_STACK_RETURN (REG_ECTYPE);
2266
2267 /* Throw away the ] at the end of the character
2268 class. */
2269 PATFETCH (c);
2270
2271 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2272
2273 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2274 {
2275 /* This was split into 3 if's to
2276 avoid an arbitrary limit in some compiler. */
2277 if ( (is_alnum && ISALNUM (ch))
2278 || (is_alpha && ISALPHA (ch))
2279 || (is_blank && ISBLANK (ch))
2280 || (is_cntrl && ISCNTRL (ch)))
2281 SET_LIST_BIT (ch);
2282 if ( (is_digit && ISDIGIT (ch))
2283 || (is_graph && ISGRAPH (ch))
2284 || (is_lower && ISLOWER (ch))
2285 || (is_print && ISPRINT (ch)))
2286 SET_LIST_BIT (ch);
2287 if ( (is_punct && ISPUNCT (ch))
2288 || (is_space && ISSPACE (ch))
2289 || (is_upper && ISUPPER (ch))
2290 || (is_xdigit && ISXDIGIT (ch)))
2291 SET_LIST_BIT (ch);
2292 if ( translate && (is_upper || is_lower)
2293 && (ISUPPER (ch) || ISLOWER (ch)))
2294 SET_LIST_BIT (ch);
2295 }
2296 had_char_class = true;
2297 #endif /* libc || wctype.h */
2298 }
2299 else
2300 {
2301 c1++;
2302 while (c1--)
2303 PATUNFETCH;
2304 SET_LIST_BIT ('[');
2305 SET_LIST_BIT (':');
2306 had_char_class = false;
2307 }
2308 }
2309 else
2310 {
2311 had_char_class = false;
2312 SET_LIST_BIT (c);
2313 }
2314 }
2315
2316 /* Discard any (non)matching list bytes that are all 0 at the
2317 end of the map. Decrease the map-length byte too. */
2318 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2319 b[-1]--;
2320 b += b[-1];
2321 }
2322 break;
2323
2324
2325 case '(':
2326 if (syntax & RE_NO_BK_PARENS)
2327 goto handle_open;
2328 else
2329 goto normal_char;
2330
2331
2332 case ')':
2333 if (syntax & RE_NO_BK_PARENS)
2334 goto handle_close;
2335 else
2336 goto normal_char;
2337
2338
2339 case '\n':
2340 if (syntax & RE_NEWLINE_ALT)
2341 goto handle_alt;
2342 else
2343 goto normal_char;
2344
2345
2346 case '|':
2347 if (syntax & RE_NO_BK_VBAR)
2348 goto handle_alt;
2349 else
2350 goto normal_char;
2351
2352
2353 case '{':
2354 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2355 goto handle_interval;
2356 else
2357 goto normal_char;
2358
2359
2360 case '\\':
2361 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2362
2363 /* Do not translate the character after the \, so that we can
2364 distinguish, e.g., \B from \b, even if we normally would
2365 translate, e.g., B to b. */
2366 PATFETCH_RAW (c);
2367
2368 switch (c)
2369 {
2370 case '(':
2371 if (syntax & RE_NO_BK_PARENS)
2372 goto normal_backslash;
2373
2374 handle_open:
2375 bufp->re_nsub++;
2376 regnum++;
2377
2378 if (COMPILE_STACK_FULL)
2379 {
2380 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2381 compile_stack_elt_t);
2382 if (compile_stack.stack == NULL) return REG_ESPACE;
2383
2384 compile_stack.size <<= 1;
2385 }
2386
2387 /* These are the values to restore when we hit end of this
2388 group. They are all relative offsets, so that if the
2389 whole pattern moves because of realloc, they will still
2390 be valid. */
2391 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2392 COMPILE_STACK_TOP.fixup_alt_jump
2393 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2394 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2395 COMPILE_STACK_TOP.regnum = regnum;
2396
2397 /* We will eventually replace the 0 with the number of
2398 groups inner to this one. But do not push a
2399 start_memory for groups beyond the last one we can
2400 represent in the compiled pattern. */
2401 if (regnum <= MAX_REGNUM)
2402 {
2403 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2404 BUF_PUSH_3 (start_memory, regnum, 0);
2405 }
2406
2407 compile_stack.avail++;
2408
2409 fixup_alt_jump = 0;
2410 laststart = 0;
2411 begalt = b;
2412 /* If we've reached MAX_REGNUM groups, then this open
2413 won't actually generate any code, so we'll have to
2414 clear pending_exact explicitly. */
2415 pending_exact = 0;
2416 break;
2417
2418
2419 case ')':
2420 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2421
2422 if (COMPILE_STACK_EMPTY)
2423 {
2424 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2425 goto normal_backslash;
2426 else
2427 FREE_STACK_RETURN (REG_ERPAREN);
2428 }
2429
2430 handle_close:
2431 if (fixup_alt_jump)
2432 { /* Push a dummy failure point at the end of the
2433 alternative for a possible future
2434 `pop_failure_jump' to pop. See comments at
2435 `push_dummy_failure' in `re_match_2'. */
2436 BUF_PUSH (push_dummy_failure);
2437
2438 /* We allocated space for this jump when we assigned
2439 to `fixup_alt_jump', in the `handle_alt' case below. */
2440 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2441 }
2442
2443 /* See similar code for backslashed left paren above. */
2444 if (COMPILE_STACK_EMPTY)
2445 {
2446 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2447 goto normal_char;
2448 else
2449 FREE_STACK_RETURN (REG_ERPAREN);
2450 }
2451
2452 /* Since we just checked for an empty stack above, this
2453 ``can't happen''. */
2454 assert (compile_stack.avail != 0);
2455 {
2456 /* We don't just want to restore into `regnum', because
2457 later groups should continue to be numbered higher,
2458 as in `(ab)c(de)' -- the second group is #2. */
2459 regnum_t this_group_regnum;
2460
2461 compile_stack.avail--;
2462 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2463 fixup_alt_jump
2464 = COMPILE_STACK_TOP.fixup_alt_jump
2465 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2466 : 0;
2467 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2468 this_group_regnum = COMPILE_STACK_TOP.regnum;
2469 /* If we've reached MAX_REGNUM groups, then this open
2470 won't actually generate any code, so we'll have to
2471 clear pending_exact explicitly. */
2472 pending_exact = 0;
2473
2474 /* We're at the end of the group, so now we know how many
2475 groups were inside this one. */
2476 if (this_group_regnum <= MAX_REGNUM)
2477 {
2478 unsigned char *inner_group_loc
2479 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2480
2481 *inner_group_loc = regnum - this_group_regnum;
2482 BUF_PUSH_3 (stop_memory, this_group_regnum,
2483 regnum - this_group_regnum);
2484 }
2485 }
2486 break;
2487
2488
2489 case '|': /* `\|'. */
2490 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2491 goto normal_backslash;
2492 handle_alt:
2493 if (syntax & RE_LIMITED_OPS)
2494 goto normal_char;
2495
2496 /* Insert before the previous alternative a jump which
2497 jumps to this alternative if the former fails. */
2498 GET_BUFFER_SPACE (3);
2499 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2500 pending_exact = 0;
2501 b += 3;
2502
2503 /* The alternative before this one has a jump after it
2504 which gets executed if it gets matched. Adjust that
2505 jump so it will jump to this alternative's analogous
2506 jump (put in below, which in turn will jump to the next
2507 (if any) alternative's such jump, etc.). The last such
2508 jump jumps to the correct final destination. A picture:
2509 _____ _____
2510 | | | |
2511 | v | v
2512 a | b | c
2513
2514 If we are at `b', then fixup_alt_jump right now points to a
2515 three-byte space after `a'. We'll put in the jump, set
2516 fixup_alt_jump to right after `b', and leave behind three
2517 bytes which we'll fill in when we get to after `c'. */
2518
2519 if (fixup_alt_jump)
2520 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2521
2522 /* Mark and leave space for a jump after this alternative,
2523 to be filled in later either by next alternative or
2524 when know we're at the end of a series of alternatives. */
2525 fixup_alt_jump = b;
2526 GET_BUFFER_SPACE (3);
2527 b += 3;
2528
2529 laststart = 0;
2530 begalt = b;
2531 break;
2532
2533
2534 case '{':
2535 /* If \{ is a literal. */
2536 if (!(syntax & RE_INTERVALS)
2537 /* If we're at `\{' and it's not the open-interval
2538 operator. */
2539 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2540 || (p - 2 == pattern && p == pend))
2541 goto normal_backslash;
2542
2543 handle_interval:
2544 {
2545 /* If got here, then the syntax allows intervals. */
2546
2547 /* At least (most) this many matches must be made. */
2548 int lower_bound = -1, upper_bound = -1;
2549
2550 beg_interval = p - 1;
2551
2552 if (p == pend)
2553 {
2554 if (syntax & RE_NO_BK_BRACES)
2555 goto unfetch_interval;
2556 else
2557 FREE_STACK_RETURN (REG_EBRACE);
2558 }
2559
2560 GET_UNSIGNED_NUMBER (lower_bound);
2561
2562 if (c == ',')
2563 {
2564 GET_UNSIGNED_NUMBER (upper_bound);
2565 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2566 }
2567 else
2568 /* Interval such as `{1}' => match exactly once. */
2569 upper_bound = lower_bound;
2570
2571 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2572 || lower_bound > upper_bound)
2573 {
2574 if (syntax & RE_NO_BK_BRACES)
2575 goto unfetch_interval;
2576 else
2577 FREE_STACK_RETURN (REG_BADBR);
2578 }
2579
2580 if (!(syntax & RE_NO_BK_BRACES))
2581 {
2582 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2583
2584 PATFETCH (c);
2585 }
2586
2587 if (c != '}')
2588 {
2589 if (syntax & RE_NO_BK_BRACES)
2590 goto unfetch_interval;
2591 else
2592 FREE_STACK_RETURN (REG_BADBR);
2593 }
2594
2595 /* We just parsed a valid interval. */
2596
2597 /* If it's invalid to have no preceding re. */
2598 if (!laststart)
2599 {
2600 if (syntax & RE_CONTEXT_INVALID_OPS)
2601 FREE_STACK_RETURN (REG_BADRPT);
2602 else if (syntax & RE_CONTEXT_INDEP_OPS)
2603 laststart = b;
2604 else
2605 goto unfetch_interval;
2606 }
2607
2608 /* If the upper bound is zero, don't want to succeed at
2609 all; jump from `laststart' to `b + 3', which will be
2610 the end of the buffer after we insert the jump. */
2611 if (upper_bound == 0)
2612 {
2613 GET_BUFFER_SPACE (3);
2614 INSERT_JUMP (jump, laststart, b + 3);
2615 b += 3;
2616 }
2617
2618 /* Otherwise, we have a nontrivial interval. When
2619 we're all done, the pattern will look like:
2620 set_number_at <jump count> <upper bound>
2621 set_number_at <succeed_n count> <lower bound>
2622 succeed_n <after jump addr> <succeed_n count>
2623 <body of loop>
2624 jump_n <succeed_n addr> <jump count>
2625 (The upper bound and `jump_n' are omitted if
2626 `upper_bound' is 1, though.) */
2627 else
2628 { /* If the upper bound is > 1, we need to insert
2629 more at the end of the loop. */
2630 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2631
2632 GET_BUFFER_SPACE (nbytes);
2633
2634 /* Initialize lower bound of the `succeed_n', even
2635 though it will be set during matching by its
2636 attendant `set_number_at' (inserted next),
2637 because `re_compile_fastmap' needs to know.
2638 Jump to the `jump_n' we might insert below. */
2639 INSERT_JUMP2 (succeed_n, laststart,
2640 b + 5 + (upper_bound > 1) * 5,
2641 lower_bound);
2642 b += 5;
2643
2644 /* Code to initialize the lower bound. Insert
2645 before the `succeed_n'. The `5' is the last two
2646 bytes of this `set_number_at', plus 3 bytes of
2647 the following `succeed_n'. */
2648 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2649 b += 5;
2650
2651 if (upper_bound > 1)
2652 { /* More than one repetition is allowed, so
2653 append a backward jump to the `succeed_n'
2654 that starts this interval.
2655
2656 When we've reached this during matching,
2657 we'll have matched the interval once, so
2658 jump back only `upper_bound - 1' times. */
2659 STORE_JUMP2 (jump_n, b, laststart + 5,
2660 upper_bound - 1);
2661 b += 5;
2662
2663 /* The location we want to set is the second
2664 parameter of the `jump_n'; that is `b-2' as
2665 an absolute address. `laststart' will be
2666 the `set_number_at' we're about to insert;
2667 `laststart+3' the number to set, the source
2668 for the relative address. But we are
2669 inserting into the middle of the pattern --
2670 so everything is getting moved up by 5.
2671 Conclusion: (b - 2) - (laststart + 3) + 5,
2672 i.e., b - laststart.
2673
2674 We insert this at the beginning of the loop
2675 so that if we fail during matching, we'll
2676 reinitialize the bounds. */
2677 insert_op2 (set_number_at, laststart, b - laststart,
2678 upper_bound - 1, b);
2679 b += 5;
2680 }
2681 }
2682 pending_exact = 0;
2683 beg_interval = NULL;
2684 }
2685 break;
2686
2687 unfetch_interval:
2688 /* If an invalid interval, match the characters as literals. */
2689 assert (beg_interval);
2690 p = beg_interval;
2691 beg_interval = NULL;
2692
2693 /* normal_char and normal_backslash need `c'. */
2694 PATFETCH (c);
2695
2696 if (!(syntax & RE_NO_BK_BRACES))
2697 {
2698 if (p > pattern && p[-1] == '\\')
2699 goto normal_backslash;
2700 }
2701 goto normal_char;
2702
2703 #ifdef emacs
2704 /* There is no way to specify the before_dot and after_dot
2705 operators. rms says this is ok. --karl */
2706 case '=':
2707 BUF_PUSH (at_dot);
2708 break;
2709
2710 case 's':
2711 laststart = b;
2712 PATFETCH (c);
2713 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2714 break;
2715
2716 case 'S':
2717 laststart = b;
2718 PATFETCH (c);
2719 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2720 break;
2721 #endif /* emacs */
2722
2723
2724 case 'w':
2725 if (syntax & RE_NO_GNU_OPS)
2726 goto normal_char;
2727 laststart = b;
2728 BUF_PUSH (wordchar);
2729 break;
2730
2731
2732 case 'W':
2733 if (syntax & RE_NO_GNU_OPS)
2734 goto normal_char;
2735 laststart = b;
2736 BUF_PUSH (notwordchar);
2737 break;
2738
2739
2740 case '<':
2741 if (syntax & RE_NO_GNU_OPS)
2742 goto normal_char;
2743 BUF_PUSH (wordbeg);
2744 break;
2745
2746 case '>':
2747 if (syntax & RE_NO_GNU_OPS)
2748 goto normal_char;
2749 BUF_PUSH (wordend);
2750 break;
2751
2752 case 'b':
2753 if (syntax & RE_NO_GNU_OPS)
2754 goto normal_char;
2755 BUF_PUSH (wordbound);
2756 break;
2757
2758 case 'B':
2759 if (syntax & RE_NO_GNU_OPS)
2760 goto normal_char;
2761 BUF_PUSH (notwordbound);
2762 break;
2763
2764 case '`':
2765 if (syntax & RE_NO_GNU_OPS)
2766 goto normal_char;
2767 BUF_PUSH (begbuf);
2768 break;
2769
2770 case '\'':
2771 if (syntax & RE_NO_GNU_OPS)
2772 goto normal_char;
2773 BUF_PUSH (endbuf);
2774 break;
2775
2776 case '1': case '2': case '3': case '4': case '5':
2777 case '6': case '7': case '8': case '9':
2778 if (syntax & RE_NO_BK_REFS)
2779 goto normal_char;
2780
2781 c1 = c - '0';
2782
2783 if (c1 > regnum)
2784 FREE_STACK_RETURN (REG_ESUBREG);
2785
2786 /* Can't back reference to a subexpression if inside of it. */
2787 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2788 goto normal_char;
2789
2790 laststart = b;
2791 BUF_PUSH_2 (duplicate, c1);
2792 break;
2793
2794
2795 case '+':
2796 case '?':
2797 if (syntax & RE_BK_PLUS_QM)
2798 goto handle_plus;
2799 else
2800 goto normal_backslash;
2801
2802 default:
2803 normal_backslash:
2804 /* You might think it would be useful for \ to mean
2805 not to translate; but if we don't translate it
2806 it will never match anything. */
2807 c = TRANSLATE (c);
2808 goto normal_char;
2809 }
2810 break;
2811
2812
2813 default:
2814 /* Expects the character in `c'. */
2815 normal_char:
2816 /* If no exactn currently being built. */
2817 if (!pending_exact
2818
2819 /* If last exactn not at current position. */
2820 || pending_exact + *pending_exact + 1 != b
2821
2822 /* We have only one byte following the exactn for the count. */
2823 || *pending_exact == (1 << BYTEWIDTH) - 1
2824
2825 /* If followed by a repetition operator. */
2826 || *p == '*' || *p == '^'
2827 || ((syntax & RE_BK_PLUS_QM)
2828 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2829 : (*p == '+' || *p == '?'))
2830 || ((syntax & RE_INTERVALS)
2831 && ((syntax & RE_NO_BK_BRACES)
2832 ? *p == '{'
2833 : (p[0] == '\\' && p[1] == '{'))))
2834 {
2835 /* Start building a new exactn. */
2836
2837 laststart = b;
2838
2839 BUF_PUSH_2 (exactn, 0);
2840 pending_exact = b - 1;
2841 }
2842
2843 BUF_PUSH (c);
2844 (*pending_exact)++;
2845 break;
2846 } /* switch (c) */
2847 } /* while p != pend */
2848
2849
2850 /* Through the pattern now. */
2851
2852 if (fixup_alt_jump)
2853 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2854
2855 if (!COMPILE_STACK_EMPTY)
2856 FREE_STACK_RETURN (REG_EPAREN);
2857
2858 /* If we don't want backtracking, force success
2859 the first time we reach the end of the compiled pattern. */
2860 if (syntax & RE_NO_POSIX_BACKTRACKING)
2861 BUF_PUSH (succeed);
2862
2863 free (compile_stack.stack);
2864
2865 /* We have succeeded; set the length of the buffer. */
2866 bufp->used = b - bufp->buffer;
2867
2868 #ifdef DEBUG
2869 if (debug)
2870 {
2871 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2872 print_compiled_pattern (bufp);
2873 }
2874 #endif /* DEBUG */
2875
2876 #ifndef MATCH_MAY_ALLOCATE
2877 /* Initialize the failure stack to the largest possible stack. This
2878 isn't necessary unless we're trying to avoid calling alloca in
2879 the search and match routines. */
2880 {
2881 int num_regs = bufp->re_nsub + 1;
2882
2883 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2884 is strictly greater than re_max_failures, the largest possible stack
2885 is 2 * re_max_failures failure points. */
2886 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2887 {
2888 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2889
2890 # ifdef emacs
2891 if (! fail_stack.stack)
2892 fail_stack.stack
2893 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2894 * sizeof (fail_stack_elt_t));
2895 else
2896 fail_stack.stack
2897 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2898 (fail_stack.size
2899 * sizeof (fail_stack_elt_t)));
2900 # else /* not emacs */
2901 if (! fail_stack.stack)
2902 fail_stack.stack
2903 = (fail_stack_elt_t *) malloc (fail_stack.size
2904 * sizeof (fail_stack_elt_t));
2905 else
2906 fail_stack.stack
2907 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2908 (fail_stack.size
2909 * sizeof (fail_stack_elt_t)));
2910 # endif /* not emacs */
2911 }
2912
2913 regex_grow_registers (num_regs);
2914 }
2915 #endif /* not MATCH_MAY_ALLOCATE */
2916
2917 return REG_NOERROR;
2918 } /* regex_compile */
2919 \f
2920 /* Subroutines for `regex_compile'. */
2921
2922 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2923
2924 static void
2925 store_op1 (op, loc, arg)
2926 re_opcode_t op;
2927 unsigned char *loc;
2928 int arg;
2929 {
2930 *loc = (unsigned char) op;
2931 STORE_NUMBER (loc + 1, arg);
2932 }
2933
2934
2935 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2936
2937 static void
2938 store_op2 (op, loc, arg1, arg2)
2939 re_opcode_t op;
2940 unsigned char *loc;
2941 int arg1, arg2;
2942 {
2943 *loc = (unsigned char) op;
2944 STORE_NUMBER (loc + 1, arg1);
2945 STORE_NUMBER (loc + 3, arg2);
2946 }
2947
2948
2949 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2950 for OP followed by two-byte integer parameter ARG. */
2951
2952 static void
2953 insert_op1 (op, loc, arg, end)
2954 re_opcode_t op;
2955 unsigned char *loc;
2956 int arg;
2957 unsigned char *end;
2958 {
2959 register unsigned char *pfrom = end;
2960 register unsigned char *pto = end + 3;
2961
2962 while (pfrom != loc)
2963 *--pto = *--pfrom;
2964
2965 store_op1 (op, loc, arg);
2966 }
2967
2968
2969 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2970
2971 static void
2972 insert_op2 (op, loc, arg1, arg2, end)
2973 re_opcode_t op;
2974 unsigned char *loc;
2975 int arg1, arg2;
2976 unsigned char *end;
2977 {
2978 register unsigned char *pfrom = end;
2979 register unsigned char *pto = end + 5;
2980
2981 while (pfrom != loc)
2982 *--pto = *--pfrom;
2983
2984 store_op2 (op, loc, arg1, arg2);
2985 }
2986
2987
2988 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2989 after an alternative or a begin-subexpression. We assume there is at
2990 least one character before the ^. */
2991
2992 static boolean
2993 at_begline_loc_p (pattern, p, syntax)
2994 const char *pattern, *p;
2995 reg_syntax_t syntax;
2996 {
2997 const char *prev = p - 2;
2998 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2999
3000 return
3001 /* After a subexpression? */
3002 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3003 /* After an alternative? */
3004 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3005 }
3006
3007
3008 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3009 at least one character after the $, i.e., `P < PEND'. */
3010
3011 static boolean
3012 at_endline_loc_p (p, pend, syntax)
3013 const char *p, *pend;
3014 reg_syntax_t syntax;
3015 {
3016 const char *next = p;
3017 boolean next_backslash = *next == '\\';
3018 const char *next_next = p + 1 < pend ? p + 1 : 0;
3019
3020 return
3021 /* Before a subexpression? */
3022 (syntax & RE_NO_BK_PARENS ? *next == ')'
3023 : next_backslash && next_next && *next_next == ')')
3024 /* Before an alternative? */
3025 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3026 : next_backslash && next_next && *next_next == '|');
3027 }
3028
3029
3030 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3031 false if it's not. */
3032
3033 static boolean
3034 group_in_compile_stack (compile_stack, regnum)
3035 compile_stack_type compile_stack;
3036 regnum_t regnum;
3037 {
3038 int this_element;
3039
3040 for (this_element = compile_stack.avail - 1;
3041 this_element >= 0;
3042 this_element--)
3043 if (compile_stack.stack[this_element].regnum == regnum)
3044 return true;
3045
3046 return false;
3047 }
3048
3049
3050 /* Read the ending character of a range (in a bracket expression) from the
3051 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3052 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3053 Then we set the translation of all bits between the starting and
3054 ending characters (inclusive) in the compiled pattern B.
3055
3056 Return an error code.
3057
3058 We use these short variable names so we can use the same macros as
3059 `regex_compile' itself. */
3060
3061 static reg_errcode_t
3062 compile_range (p_ptr, pend, translate, syntax, b)
3063 const char **p_ptr, *pend;
3064 RE_TRANSLATE_TYPE translate;
3065 reg_syntax_t syntax;
3066 unsigned char *b;
3067 {
3068 unsigned this_char;
3069
3070 const char *p = *p_ptr;
3071 unsigned int range_start, range_end;
3072
3073 if (p == pend)
3074 return REG_ERANGE;
3075
3076 /* Even though the pattern is a signed `char *', we need to fetch
3077 with unsigned char *'s; if the high bit of the pattern character
3078 is set, the range endpoints will be negative if we fetch using a
3079 signed char *.
3080
3081 We also want to fetch the endpoints without translating them; the
3082 appropriate translation is done in the bit-setting loop below. */
3083 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3084 range_start = ((const unsigned char *) p)[-2];
3085 range_end = ((const unsigned char *) p)[0];
3086
3087 /* Have to increment the pointer into the pattern string, so the
3088 caller isn't still at the ending character. */
3089 (*p_ptr)++;
3090
3091 /* If the start is after the end, the range is empty. */
3092 if (range_start > range_end)
3093 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3094
3095 /* Here we see why `this_char' has to be larger than an `unsigned
3096 char' -- the range is inclusive, so if `range_end' == 0xff
3097 (assuming 8-bit characters), we would otherwise go into an infinite
3098 loop, since all characters <= 0xff. */
3099 for (this_char = range_start; this_char <= range_end; this_char++)
3100 {
3101 SET_LIST_BIT (TRANSLATE (this_char));
3102 }
3103
3104 return REG_NOERROR;
3105 }
3106 \f
3107 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3108 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3109 characters can start a string that matches the pattern. This fastmap
3110 is used by re_search to skip quickly over impossible starting points.
3111
3112 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3113 area as BUFP->fastmap.
3114
3115 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3116 the pattern buffer.
3117
3118 Returns 0 if we succeed, -2 if an internal error. */
3119
3120 int
3121 re_compile_fastmap (bufp)
3122 struct re_pattern_buffer *bufp;
3123 {
3124 int j, k;
3125 #ifdef MATCH_MAY_ALLOCATE
3126 fail_stack_type fail_stack;
3127 #endif
3128 #ifndef REGEX_MALLOC
3129 char *destination;
3130 #endif
3131
3132 register char *fastmap = bufp->fastmap;
3133 unsigned char *pattern = bufp->buffer;
3134 unsigned char *p = pattern;
3135 register unsigned char *pend = pattern + bufp->used;
3136
3137 #ifdef REL_ALLOC
3138 /* This holds the pointer to the failure stack, when
3139 it is allocated relocatably. */
3140 fail_stack_elt_t *failure_stack_ptr;
3141 #endif
3142
3143 /* Assume that each path through the pattern can be null until
3144 proven otherwise. We set this false at the bottom of switch
3145 statement, to which we get only if a particular path doesn't
3146 match the empty string. */
3147 boolean path_can_be_null = true;
3148
3149 /* We aren't doing a `succeed_n' to begin with. */
3150 boolean succeed_n_p = false;
3151
3152 assert (fastmap != NULL && p != NULL);
3153
3154 INIT_FAIL_STACK ();
3155 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3156 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3157 bufp->can_be_null = 0;
3158
3159 while (1)
3160 {
3161 if (p == pend || *p == succeed)
3162 {
3163 /* We have reached the (effective) end of pattern. */
3164 if (!FAIL_STACK_EMPTY ())
3165 {
3166 bufp->can_be_null |= path_can_be_null;
3167
3168 /* Reset for next path. */
3169 path_can_be_null = true;
3170
3171 p = fail_stack.stack[--fail_stack.avail].pointer;
3172
3173 continue;
3174 }
3175 else
3176 break;
3177 }
3178
3179 /* We should never be about to go beyond the end of the pattern. */
3180 assert (p < pend);
3181
3182 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3183 {
3184
3185 /* I guess the idea here is to simply not bother with a fastmap
3186 if a backreference is used, since it's too hard to figure out
3187 the fastmap for the corresponding group. Setting
3188 `can_be_null' stops `re_search_2' from using the fastmap, so
3189 that is all we do. */
3190 case duplicate:
3191 bufp->can_be_null = 1;
3192 goto done;
3193
3194
3195 /* Following are the cases which match a character. These end
3196 with `break'. */
3197
3198 case exactn:
3199 fastmap[p[1]] = 1;
3200 break;
3201
3202
3203 case charset:
3204 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3205 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3206 fastmap[j] = 1;
3207 break;
3208
3209
3210 case charset_not:
3211 /* Chars beyond end of map must be allowed. */
3212 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3213 fastmap[j] = 1;
3214
3215 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3216 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3217 fastmap[j] = 1;
3218 break;
3219
3220
3221 case wordchar:
3222 for (j = 0; j < (1 << BYTEWIDTH); j++)
3223 if (SYNTAX (j) == Sword)
3224 fastmap[j] = 1;
3225 break;
3226
3227
3228 case notwordchar:
3229 for (j = 0; j < (1 << BYTEWIDTH); j++)
3230 if (SYNTAX (j) != Sword)
3231 fastmap[j] = 1;
3232 break;
3233
3234
3235 case anychar:
3236 {
3237 int fastmap_newline = fastmap['\n'];
3238
3239 /* `.' matches anything ... */
3240 for (j = 0; j < (1 << BYTEWIDTH); j++)
3241 fastmap[j] = 1;
3242
3243 /* ... except perhaps newline. */
3244 if (!(bufp->syntax & RE_DOT_NEWLINE))
3245 fastmap['\n'] = fastmap_newline;
3246
3247 /* Return if we have already set `can_be_null'; if we have,
3248 then the fastmap is irrelevant. Something's wrong here. */
3249 else if (bufp->can_be_null)
3250 goto done;
3251
3252 /* Otherwise, have to check alternative paths. */
3253 break;
3254 }
3255
3256 #ifdef emacs
3257 case syntaxspec:
3258 k = *p++;
3259 for (j = 0; j < (1 << BYTEWIDTH); j++)
3260 if (SYNTAX (j) == (enum syntaxcode) k)
3261 fastmap[j] = 1;
3262 break;
3263
3264
3265 case notsyntaxspec:
3266 k = *p++;
3267 for (j = 0; j < (1 << BYTEWIDTH); j++)
3268 if (SYNTAX (j) != (enum syntaxcode) k)
3269 fastmap[j] = 1;
3270 break;
3271
3272
3273 /* All cases after this match the empty string. These end with
3274 `continue'. */
3275
3276
3277 case before_dot:
3278 case at_dot:
3279 case after_dot:
3280 continue;
3281 #endif /* emacs */
3282
3283
3284 case no_op:
3285 case begline:
3286 case endline:
3287 case begbuf:
3288 case endbuf:
3289 case wordbound:
3290 case notwordbound:
3291 case wordbeg:
3292 case wordend:
3293 case push_dummy_failure:
3294 continue;
3295
3296
3297 case jump_n:
3298 case pop_failure_jump:
3299 case maybe_pop_jump:
3300 case jump:
3301 case jump_past_alt:
3302 case dummy_failure_jump:
3303 EXTRACT_NUMBER_AND_INCR (j, p);
3304 p += j;
3305 if (j > 0)
3306 continue;
3307
3308 /* Jump backward implies we just went through the body of a
3309 loop and matched nothing. Opcode jumped to should be
3310 `on_failure_jump' or `succeed_n'. Just treat it like an
3311 ordinary jump. For a * loop, it has pushed its failure
3312 point already; if so, discard that as redundant. */
3313 if ((re_opcode_t) *p != on_failure_jump
3314 && (re_opcode_t) *p != succeed_n)
3315 continue;
3316
3317 p++;
3318 EXTRACT_NUMBER_AND_INCR (j, p);
3319 p += j;
3320
3321 /* If what's on the stack is where we are now, pop it. */
3322 if (!FAIL_STACK_EMPTY ()
3323 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3324 fail_stack.avail--;
3325
3326 continue;
3327
3328
3329 case on_failure_jump:
3330 case on_failure_keep_string_jump:
3331 handle_on_failure_jump:
3332 EXTRACT_NUMBER_AND_INCR (j, p);
3333
3334 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3335 end of the pattern. We don't want to push such a point,
3336 since when we restore it above, entering the switch will
3337 increment `p' past the end of the pattern. We don't need
3338 to push such a point since we obviously won't find any more
3339 fastmap entries beyond `pend'. Such a pattern can match
3340 the null string, though. */
3341 if (p + j < pend)
3342 {
3343 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3344 {
3345 RESET_FAIL_STACK ();
3346 return -2;
3347 }
3348 }
3349 else
3350 bufp->can_be_null = 1;
3351
3352 if (succeed_n_p)
3353 {
3354 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3355 succeed_n_p = false;
3356 }
3357
3358 continue;
3359
3360
3361 case succeed_n:
3362 /* Get to the number of times to succeed. */
3363 p += 2;
3364
3365 /* Increment p past the n for when k != 0. */
3366 EXTRACT_NUMBER_AND_INCR (k, p);
3367 if (k == 0)
3368 {
3369 p -= 4;
3370 succeed_n_p = true; /* Spaghetti code alert. */
3371 goto handle_on_failure_jump;
3372 }
3373 continue;
3374
3375
3376 case set_number_at:
3377 p += 4;
3378 continue;
3379
3380
3381 case start_memory:
3382 case stop_memory:
3383 p += 2;
3384 continue;
3385
3386
3387 default:
3388 abort (); /* We have listed all the cases. */
3389 } /* switch *p++ */
3390
3391 /* Getting here means we have found the possible starting
3392 characters for one path of the pattern -- and that the empty
3393 string does not match. We need not follow this path further.
3394 Instead, look at the next alternative (remembered on the
3395 stack), or quit if no more. The test at the top of the loop
3396 does these things. */
3397 path_can_be_null = false;
3398 p = pend;
3399 } /* while p */
3400
3401 /* Set `can_be_null' for the last path (also the first path, if the
3402 pattern is empty). */
3403 bufp->can_be_null |= path_can_be_null;
3404
3405 done:
3406 RESET_FAIL_STACK ();
3407 return 0;
3408 } /* re_compile_fastmap */
3409 #ifdef _LIBC
3410 weak_alias (__re_compile_fastmap, re_compile_fastmap)
3411 #endif
3412 \f
3413 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3414 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3415 this memory for recording register information. STARTS and ENDS
3416 must be allocated using the malloc library routine, and must each
3417 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3418
3419 If NUM_REGS == 0, then subsequent matches should allocate their own
3420 register data.
3421
3422 Unless this function is called, the first search or match using
3423 PATTERN_BUFFER will allocate its own register data, without
3424 freeing the old data. */
3425
3426 void
3427 re_set_registers (bufp, regs, num_regs, starts, ends)
3428 struct re_pattern_buffer *bufp;
3429 struct re_registers *regs;
3430 unsigned num_regs;
3431 regoff_t *starts, *ends;
3432 {
3433 if (num_regs)
3434 {
3435 bufp->regs_allocated = REGS_REALLOCATE;
3436 regs->num_regs = num_regs;
3437 regs->start = starts;
3438 regs->end = ends;
3439 }
3440 else
3441 {
3442 bufp->regs_allocated = REGS_UNALLOCATED;
3443 regs->num_regs = 0;
3444 regs->start = regs->end = (regoff_t *) 0;
3445 }
3446 }
3447 #ifdef _LIBC
3448 weak_alias (__re_set_registers, re_set_registers)
3449 #endif
3450 \f
3451 /* Searching routines. */
3452
3453 /* Like re_search_2, below, but only one string is specified, and
3454 doesn't let you say where to stop matching. */
3455
3456 int
3457 re_search (bufp, string, size, startpos, range, regs)
3458 struct re_pattern_buffer *bufp;
3459 const char *string;
3460 int size, startpos, range;
3461 struct re_registers *regs;
3462 {
3463 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3464 regs, size);
3465 }
3466 #ifdef _LIBC
3467 weak_alias (__re_search, re_search)
3468 #endif
3469
3470
3471 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3472 virtual concatenation of STRING1 and STRING2, starting first at index
3473 STARTPOS, then at STARTPOS + 1, and so on.
3474
3475 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3476
3477 RANGE is how far to scan while trying to match. RANGE = 0 means try
3478 only at STARTPOS; in general, the last start tried is STARTPOS +
3479 RANGE.
3480
3481 In REGS, return the indices of the virtual concatenation of STRING1
3482 and STRING2 that matched the entire BUFP->buffer and its contained
3483 subexpressions.
3484
3485 Do not consider matching one past the index STOP in the virtual
3486 concatenation of STRING1 and STRING2.
3487
3488 We return either the position in the strings at which the match was
3489 found, -1 if no match, or -2 if error (such as failure
3490 stack overflow). */
3491
3492 int
3493 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3494 struct re_pattern_buffer *bufp;
3495 const char *string1, *string2;
3496 int size1, size2;
3497 int startpos;
3498 int range;
3499 struct re_registers *regs;
3500 int stop;
3501 {
3502 int val;
3503 register char *fastmap = bufp->fastmap;
3504 register RE_TRANSLATE_TYPE translate = bufp->translate;
3505 int total_size = size1 + size2;
3506 int endpos = startpos + range;
3507
3508 /* Check for out-of-range STARTPOS. */
3509 if (startpos < 0 || startpos > total_size)
3510 return -1;
3511
3512 /* Fix up RANGE if it might eventually take us outside
3513 the virtual concatenation of STRING1 and STRING2.
3514 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3515 if (endpos < 0)
3516 range = 0 - startpos;
3517 else if (endpos > total_size)
3518 range = total_size - startpos;
3519
3520 /* If the search isn't to be a backwards one, don't waste time in a
3521 search for a pattern that must be anchored. */
3522 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3523 {
3524 if (startpos > 0)
3525 return -1;
3526 else
3527 range = 1;
3528 }
3529
3530 #ifdef emacs
3531 /* In a forward search for something that starts with \=.
3532 don't keep searching past point. */
3533 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3534 {
3535 range = PT - startpos;
3536 if (range <= 0)
3537 return -1;
3538 }
3539 #endif /* emacs */
3540
3541 /* Update the fastmap now if not correct already. */
3542 if (fastmap && !bufp->fastmap_accurate)
3543 if (re_compile_fastmap (bufp) == -2)
3544 return -2;
3545
3546 /* Loop through the string, looking for a place to start matching. */
3547 for (;;)
3548 {
3549 /* If a fastmap is supplied, skip quickly over characters that
3550 cannot be the start of a match. If the pattern can match the
3551 null string, however, we don't need to skip characters; we want
3552 the first null string. */
3553 if (fastmap && startpos < total_size && !bufp->can_be_null)
3554 {
3555 if (range > 0) /* Searching forwards. */
3556 {
3557 register const char *d;
3558 register int lim = 0;
3559 int irange = range;
3560
3561 if (startpos < size1 && startpos + range >= size1)
3562 lim = range - (size1 - startpos);
3563
3564 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3565
3566 /* Written out as an if-else to avoid testing `translate'
3567 inside the loop. */
3568 if (translate)
3569 while (range > lim
3570 && !fastmap[(unsigned char)
3571 translate[(unsigned char) *d++]])
3572 range--;
3573 else
3574 while (range > lim && !fastmap[(unsigned char) *d++])
3575 range--;
3576
3577 startpos += irange - range;
3578 }
3579 else /* Searching backwards. */
3580 {
3581 register char c = (size1 == 0 || startpos >= size1
3582 ? string2[startpos - size1]
3583 : string1[startpos]);
3584
3585 if (!fastmap[(unsigned char) TRANSLATE (c)])
3586 goto advance;
3587 }
3588 }
3589
3590 /* If can't match the null string, and that's all we have left, fail. */
3591 if (range >= 0 && startpos == total_size && fastmap
3592 && !bufp->can_be_null)
3593 return -1;
3594
3595 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3596 startpos, regs, stop);
3597 #ifndef REGEX_MALLOC
3598 # ifdef C_ALLOCA
3599 alloca (0);
3600 # endif
3601 #endif
3602
3603 if (val >= 0)
3604 return startpos;
3605
3606 if (val == -2)
3607 return -2;
3608
3609 advance:
3610 if (!range)
3611 break;
3612 else if (range > 0)
3613 {
3614 range--;
3615 startpos++;
3616 }
3617 else
3618 {
3619 range++;
3620 startpos--;
3621 }
3622 }
3623 return -1;
3624 } /* re_search_2 */
3625 #ifdef _LIBC
3626 weak_alias (__re_search_2, re_search_2)
3627 #endif
3628 \f
3629 /* This converts PTR, a pointer into one of the search strings `string1'
3630 and `string2' into an offset from the beginning of that string. */
3631 #define POINTER_TO_OFFSET(ptr) \
3632 (FIRST_STRING_P (ptr) \
3633 ? ((regoff_t) ((ptr) - string1)) \
3634 : ((regoff_t) ((ptr) - string2 + size1)))
3635
3636 /* Macros for dealing with the split strings in re_match_2. */
3637
3638 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3639
3640 /* Call before fetching a character with *d. This switches over to
3641 string2 if necessary. */
3642 #define PREFETCH() \
3643 while (d == dend) \
3644 { \
3645 /* End of string2 => fail. */ \
3646 if (dend == end_match_2) \
3647 goto fail; \
3648 /* End of string1 => advance to string2. */ \
3649 d = string2; \
3650 dend = end_match_2; \
3651 }
3652
3653
3654 /* Test if at very beginning or at very end of the virtual concatenation
3655 of `string1' and `string2'. If only one string, it's `string2'. */
3656 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3657 #define AT_STRINGS_END(d) ((d) == end2)
3658
3659
3660 /* Test if D points to a character which is word-constituent. We have
3661 two special cases to check for: if past the end of string1, look at
3662 the first character in string2; and if before the beginning of
3663 string2, look at the last character in string1. */
3664 #define WORDCHAR_P(d) \
3665 (SYNTAX ((d) == end1 ? *string2 \
3666 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3667 == Sword)
3668
3669 /* Disabled due to a compiler bug -- see comment at case wordbound */
3670 #if 0
3671 /* Test if the character before D and the one at D differ with respect
3672 to being word-constituent. */
3673 #define AT_WORD_BOUNDARY(d) \
3674 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3675 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3676 #endif
3677
3678 /* Free everything we malloc. */
3679 #ifdef MATCH_MAY_ALLOCATE
3680 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3681 # define FREE_VARIABLES() \
3682 do { \
3683 REGEX_FREE_STACK (fail_stack.stack); \
3684 FREE_VAR (regstart); \
3685 FREE_VAR (regend); \
3686 FREE_VAR (old_regstart); \
3687 FREE_VAR (old_regend); \
3688 FREE_VAR (best_regstart); \
3689 FREE_VAR (best_regend); \
3690 FREE_VAR (reg_info); \
3691 FREE_VAR (reg_dummy); \
3692 FREE_VAR (reg_info_dummy); \
3693 } while (0)
3694 #else
3695 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3696 #endif /* not MATCH_MAY_ALLOCATE */
3697
3698 /* These values must meet several constraints. They must not be valid
3699 register values; since we have a limit of 255 registers (because
3700 we use only one byte in the pattern for the register number), we can
3701 use numbers larger than 255. They must differ by 1, because of
3702 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3703 be larger than the value for the highest register, so we do not try
3704 to actually save any registers when none are active. */
3705 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3706 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3707 \f
3708 /* Matching routines. */
3709
3710 #ifndef emacs /* Emacs never uses this. */
3711 /* re_match is like re_match_2 except it takes only a single string. */
3712
3713 int
3714 re_match (bufp, string, size, pos, regs)
3715 struct re_pattern_buffer *bufp;
3716 const char *string;
3717 int size, pos;
3718 struct re_registers *regs;
3719 {
3720 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3721 pos, regs, size);
3722 # ifndef REGEX_MALLOC
3723 # ifdef C_ALLOCA
3724 alloca (0);
3725 # endif
3726 # endif
3727 return result;
3728 }
3729 # ifdef _LIBC
3730 weak_alias (__re_match, re_match)
3731 # endif
3732 #endif /* not emacs */
3733
3734 static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3735 unsigned char *end,
3736 register_info_type *reg_info));
3737 static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3738 unsigned char *end,
3739 register_info_type *reg_info));
3740 static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3741 unsigned char *end,
3742 register_info_type *reg_info));
3743 static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3744 int len, char *translate));
3745
3746 /* re_match_2 matches the compiled pattern in BUFP against the
3747 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3748 and SIZE2, respectively). We start matching at POS, and stop
3749 matching at STOP.
3750
3751 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3752 store offsets for the substring each group matched in REGS. See the
3753 documentation for exactly how many groups we fill.
3754
3755 We return -1 if no match, -2 if an internal error (such as the
3756 failure stack overflowing). Otherwise, we return the length of the
3757 matched substring. */
3758
3759 int
3760 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3761 struct re_pattern_buffer *bufp;
3762 const char *string1, *string2;
3763 int size1, size2;
3764 int pos;
3765 struct re_registers *regs;
3766 int stop;
3767 {
3768 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3769 pos, regs, stop);
3770 #ifndef REGEX_MALLOC
3771 # ifdef C_ALLOCA
3772 alloca (0);
3773 # endif
3774 #endif
3775 return result;
3776 }
3777 #ifdef _LIBC
3778 weak_alias (__re_match_2, re_match_2)
3779 #endif
3780
3781 /* This is a separate function so that we can force an alloca cleanup
3782 afterwards. */
3783 static int
3784 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3785 struct re_pattern_buffer *bufp;
3786 const char *string1, *string2;
3787 int size1, size2;
3788 int pos;
3789 struct re_registers *regs;
3790 int stop;
3791 {
3792 /* General temporaries. */
3793 int mcnt;
3794 unsigned char *p1;
3795
3796 /* Just past the end of the corresponding string. */
3797 const char *end1, *end2;
3798
3799 /* Pointers into string1 and string2, just past the last characters in
3800 each to consider matching. */
3801 const char *end_match_1, *end_match_2;
3802
3803 /* Where we are in the data, and the end of the current string. */
3804 const char *d, *dend;
3805
3806 /* Where we are in the pattern, and the end of the pattern. */
3807 unsigned char *p = bufp->buffer;
3808 register unsigned char *pend = p + bufp->used;
3809
3810 /* Mark the opcode just after a start_memory, so we can test for an
3811 empty subpattern when we get to the stop_memory. */
3812 unsigned char *just_past_start_mem = 0;
3813
3814 /* We use this to map every character in the string. */
3815 RE_TRANSLATE_TYPE translate = bufp->translate;
3816
3817 /* Failure point stack. Each place that can handle a failure further
3818 down the line pushes a failure point on this stack. It consists of
3819 restart, regend, and reg_info for all registers corresponding to
3820 the subexpressions we're currently inside, plus the number of such
3821 registers, and, finally, two char *'s. The first char * is where
3822 to resume scanning the pattern; the second one is where to resume
3823 scanning the strings. If the latter is zero, the failure point is
3824 a ``dummy''; if a failure happens and the failure point is a dummy,
3825 it gets discarded and the next next one is tried. */
3826 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3827 fail_stack_type fail_stack;
3828 #endif
3829 #ifdef DEBUG
3830 static unsigned failure_id = 0;
3831 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3832 #endif
3833
3834 #ifdef REL_ALLOC
3835 /* This holds the pointer to the failure stack, when
3836 it is allocated relocatably. */
3837 fail_stack_elt_t *failure_stack_ptr;
3838 #endif
3839
3840 /* We fill all the registers internally, independent of what we
3841 return, for use in backreferences. The number here includes
3842 an element for register zero. */
3843 size_t num_regs = bufp->re_nsub + 1;
3844
3845 /* The currently active registers. */
3846 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3847 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3848
3849 /* Information on the contents of registers. These are pointers into
3850 the input strings; they record just what was matched (on this
3851 attempt) by a subexpression part of the pattern, that is, the
3852 regnum-th regstart pointer points to where in the pattern we began
3853 matching and the regnum-th regend points to right after where we
3854 stopped matching the regnum-th subexpression. (The zeroth register
3855 keeps track of what the whole pattern matches.) */
3856 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3857 const char **regstart, **regend;
3858 #endif
3859
3860 /* If a group that's operated upon by a repetition operator fails to
3861 match anything, then the register for its start will need to be
3862 restored because it will have been set to wherever in the string we
3863 are when we last see its open-group operator. Similarly for a
3864 register's end. */
3865 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3866 const char **old_regstart, **old_regend;
3867 #endif
3868
3869 /* The is_active field of reg_info helps us keep track of which (possibly
3870 nested) subexpressions we are currently in. The matched_something
3871 field of reg_info[reg_num] helps us tell whether or not we have
3872 matched any of the pattern so far this time through the reg_num-th
3873 subexpression. These two fields get reset each time through any
3874 loop their register is in. */
3875 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3876 register_info_type *reg_info;
3877 #endif
3878
3879 /* The following record the register info as found in the above
3880 variables when we find a match better than any we've seen before.
3881 This happens as we backtrack through the failure points, which in
3882 turn happens only if we have not yet matched the entire string. */
3883 unsigned best_regs_set = false;
3884 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3885 const char **best_regstart, **best_regend;
3886 #endif
3887
3888 /* Logically, this is `best_regend[0]'. But we don't want to have to
3889 allocate space for that if we're not allocating space for anything
3890 else (see below). Also, we never need info about register 0 for
3891 any of the other register vectors, and it seems rather a kludge to
3892 treat `best_regend' differently than the rest. So we keep track of
3893 the end of the best match so far in a separate variable. We
3894 initialize this to NULL so that when we backtrack the first time
3895 and need to test it, it's not garbage. */
3896 const char *match_end = NULL;
3897
3898 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3899 int set_regs_matched_done = 0;
3900
3901 /* Used when we pop values we don't care about. */
3902 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3903 const char **reg_dummy;
3904 register_info_type *reg_info_dummy;
3905 #endif
3906
3907 #ifdef DEBUG
3908 /* Counts the total number of registers pushed. */
3909 unsigned num_regs_pushed = 0;
3910 #endif
3911
3912 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3913
3914 INIT_FAIL_STACK ();
3915
3916 #ifdef MATCH_MAY_ALLOCATE
3917 /* Do not bother to initialize all the register variables if there are
3918 no groups in the pattern, as it takes a fair amount of time. If
3919 there are groups, we include space for register 0 (the whole
3920 pattern), even though we never use it, since it simplifies the
3921 array indexing. We should fix this. */
3922 if (bufp->re_nsub)
3923 {
3924 regstart = REGEX_TALLOC (num_regs, const char *);
3925 regend = REGEX_TALLOC (num_regs, const char *);
3926 old_regstart = REGEX_TALLOC (num_regs, const char *);
3927 old_regend = REGEX_TALLOC (num_regs, const char *);
3928 best_regstart = REGEX_TALLOC (num_regs, const char *);
3929 best_regend = REGEX_TALLOC (num_regs, const char *);
3930 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3931 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3932 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3933
3934 if (!(regstart && regend && old_regstart && old_regend && reg_info
3935 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3936 {
3937 FREE_VARIABLES ();
3938 return -2;
3939 }
3940 }
3941 else
3942 {
3943 /* We must initialize all our variables to NULL, so that
3944 `FREE_VARIABLES' doesn't try to free them. */
3945 regstart = regend = old_regstart = old_regend = best_regstart
3946 = best_regend = reg_dummy = NULL;
3947 reg_info = reg_info_dummy = (register_info_type *) NULL;
3948 }
3949 #endif /* MATCH_MAY_ALLOCATE */
3950
3951 /* The starting position is bogus. */
3952 if (pos < 0 || pos > size1 + size2)
3953 {
3954 FREE_VARIABLES ();
3955 return -1;
3956 }
3957
3958 /* Initialize subexpression text positions to -1 to mark ones that no
3959 start_memory/stop_memory has been seen for. Also initialize the
3960 register information struct. */
3961 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
3962 {
3963 regstart[mcnt] = regend[mcnt]
3964 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3965
3966 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3967 IS_ACTIVE (reg_info[mcnt]) = 0;
3968 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3969 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3970 }
3971
3972 /* We move `string1' into `string2' if the latter's empty -- but not if
3973 `string1' is null. */
3974 if (size2 == 0 && string1 != NULL)
3975 {
3976 string2 = string1;
3977 size2 = size1;
3978 string1 = 0;
3979 size1 = 0;
3980 }
3981 end1 = string1 + size1;
3982 end2 = string2 + size2;
3983
3984 /* Compute where to stop matching, within the two strings. */
3985 if (stop <= size1)
3986 {
3987 end_match_1 = string1 + stop;
3988 end_match_2 = string2;
3989 }
3990 else
3991 {
3992 end_match_1 = end1;
3993 end_match_2 = string2 + stop - size1;
3994 }
3995
3996 /* `p' scans through the pattern as `d' scans through the data.
3997 `dend' is the end of the input string that `d' points within. `d'
3998 is advanced into the following input string whenever necessary, but
3999 this happens before fetching; therefore, at the beginning of the
4000 loop, `d' can be pointing at the end of a string, but it cannot
4001 equal `string2'. */
4002 if (size1 > 0 && pos <= size1)
4003 {
4004 d = string1 + pos;
4005 dend = end_match_1;
4006 }
4007 else
4008 {
4009 d = string2 + pos - size1;
4010 dend = end_match_2;
4011 }
4012
4013 DEBUG_PRINT1 ("The compiled pattern is:\n");
4014 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4015 DEBUG_PRINT1 ("The string to match is: `");
4016 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4017 DEBUG_PRINT1 ("'\n");
4018
4019 /* This loops over pattern commands. It exits by returning from the
4020 function if the match is complete, or it drops through if the match
4021 fails at this starting point in the input data. */
4022 for (;;)
4023 {
4024 #ifdef _LIBC
4025 DEBUG_PRINT2 ("\n%p: ", p);
4026 #else
4027 DEBUG_PRINT2 ("\n0x%x: ", p);
4028 #endif
4029
4030 if (p == pend)
4031 { /* End of pattern means we might have succeeded. */
4032 DEBUG_PRINT1 ("end of pattern ... ");
4033
4034 /* If we haven't matched the entire string, and we want the
4035 longest match, try backtracking. */
4036 if (d != end_match_2)
4037 {
4038 /* 1 if this match ends in the same string (string1 or string2)
4039 as the best previous match. */
4040 boolean same_str_p = (FIRST_STRING_P (match_end)
4041 == MATCHING_IN_FIRST_STRING);
4042 /* 1 if this match is the best seen so far. */
4043 boolean best_match_p;
4044
4045 /* AIX compiler got confused when this was combined
4046 with the previous declaration. */
4047 if (same_str_p)
4048 best_match_p = d > match_end;
4049 else
4050 best_match_p = !MATCHING_IN_FIRST_STRING;
4051
4052 DEBUG_PRINT1 ("backtracking.\n");
4053
4054 if (!FAIL_STACK_EMPTY ())
4055 { /* More failure points to try. */
4056
4057 /* If exceeds best match so far, save it. */
4058 if (!best_regs_set || best_match_p)
4059 {
4060 best_regs_set = true;
4061 match_end = d;
4062
4063 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4064
4065 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4066 {
4067 best_regstart[mcnt] = regstart[mcnt];
4068 best_regend[mcnt] = regend[mcnt];
4069 }
4070 }
4071 goto fail;
4072 }
4073
4074 /* If no failure points, don't restore garbage. And if
4075 last match is real best match, don't restore second
4076 best one. */
4077 else if (best_regs_set && !best_match_p)
4078 {
4079 restore_best_regs:
4080 /* Restore best match. It may happen that `dend ==
4081 end_match_1' while the restored d is in string2.
4082 For example, the pattern `x.*y.*z' against the
4083 strings `x-' and `y-z-', if the two strings are
4084 not consecutive in memory. */
4085 DEBUG_PRINT1 ("Restoring best registers.\n");
4086
4087 d = match_end;
4088 dend = ((d >= string1 && d <= end1)
4089 ? end_match_1 : end_match_2);
4090
4091 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4092 {
4093 regstart[mcnt] = best_regstart[mcnt];
4094 regend[mcnt] = best_regend[mcnt];
4095 }
4096 }
4097 } /* d != end_match_2 */
4098
4099 succeed_label:
4100 DEBUG_PRINT1 ("Accepting match.\n");
4101
4102 /* If caller wants register contents data back, do it. */
4103 if (regs && !bufp->no_sub)
4104 {
4105 /* Have the register data arrays been allocated? */
4106 if (bufp->regs_allocated == REGS_UNALLOCATED)
4107 { /* No. So allocate them with malloc. We need one
4108 extra element beyond `num_regs' for the `-1' marker
4109 GNU code uses. */
4110 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4111 regs->start = TALLOC (regs->num_regs, regoff_t);
4112 regs->end = TALLOC (regs->num_regs, regoff_t);
4113 if (regs->start == NULL || regs->end == NULL)
4114 {
4115 FREE_VARIABLES ();
4116 return -2;
4117 }
4118 bufp->regs_allocated = REGS_REALLOCATE;
4119 }
4120 else if (bufp->regs_allocated == REGS_REALLOCATE)
4121 { /* Yes. If we need more elements than were already
4122 allocated, reallocate them. If we need fewer, just
4123 leave it alone. */
4124 if (regs->num_regs < num_regs + 1)
4125 {
4126 regs->num_regs = num_regs + 1;
4127 RETALLOC (regs->start, regs->num_regs, regoff_t);
4128 RETALLOC (regs->end, regs->num_regs, regoff_t);
4129 if (regs->start == NULL || regs->end == NULL)
4130 {
4131 FREE_VARIABLES ();
4132 return -2;
4133 }
4134 }
4135 }
4136 else
4137 {
4138 /* These braces fend off a "empty body in an else-statement"
4139 warning under GCC when assert expands to nothing. */
4140 assert (bufp->regs_allocated == REGS_FIXED);
4141 }
4142
4143 /* Convert the pointer data in `regstart' and `regend' to
4144 indices. Register zero has to be set differently,
4145 since we haven't kept track of any info for it. */
4146 if (regs->num_regs > 0)
4147 {
4148 regs->start[0] = pos;
4149 regs->end[0] = (MATCHING_IN_FIRST_STRING
4150 ? ((regoff_t) (d - string1))
4151 : ((regoff_t) (d - string2 + size1)));
4152 }
4153
4154 /* Go through the first `min (num_regs, regs->num_regs)'
4155 registers, since that is all we initialized. */
4156 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4157 mcnt++)
4158 {
4159 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4160 regs->start[mcnt] = regs->end[mcnt] = -1;
4161 else
4162 {
4163 regs->start[mcnt]
4164 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4165 regs->end[mcnt]
4166 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4167 }
4168 }
4169
4170 /* If the regs structure we return has more elements than
4171 were in the pattern, set the extra elements to -1. If
4172 we (re)allocated the registers, this is the case,
4173 because we always allocate enough to have at least one
4174 -1 at the end. */
4175 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4176 regs->start[mcnt] = regs->end[mcnt] = -1;
4177 } /* regs && !bufp->no_sub */
4178
4179 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4180 nfailure_points_pushed, nfailure_points_popped,
4181 nfailure_points_pushed - nfailure_points_popped);
4182 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4183
4184 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4185 ? string1
4186 : string2 - size1);
4187
4188 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4189
4190 FREE_VARIABLES ();
4191 return mcnt;
4192 }
4193
4194 /* Otherwise match next pattern command. */
4195 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4196 {
4197 /* Ignore these. Used to ignore the n of succeed_n's which
4198 currently have n == 0. */
4199 case no_op:
4200 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4201 break;
4202
4203 case succeed:
4204 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4205 goto succeed_label;
4206
4207 /* Match the next n pattern characters exactly. The following
4208 byte in the pattern defines n, and the n bytes after that
4209 are the characters to match. */
4210 case exactn:
4211 mcnt = *p++;
4212 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4213
4214 /* This is written out as an if-else so we don't waste time
4215 testing `translate' inside the loop. */
4216 if (translate)
4217 {
4218 do
4219 {
4220 PREFETCH ();
4221 if ((unsigned char) translate[(unsigned char) *d++]
4222 != (unsigned char) *p++)
4223 goto fail;
4224 }
4225 while (--mcnt);
4226 }
4227 else
4228 {
4229 do
4230 {
4231 PREFETCH ();
4232 if (*d++ != (char) *p++) goto fail;
4233 }
4234 while (--mcnt);
4235 }
4236 SET_REGS_MATCHED ();
4237 break;
4238
4239
4240 /* Match any character except possibly a newline or a null. */
4241 case anychar:
4242 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4243
4244 PREFETCH ();
4245
4246 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4247 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4248 goto fail;
4249
4250 SET_REGS_MATCHED ();
4251 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4252 d++;
4253 break;
4254
4255
4256 case charset:
4257 case charset_not:
4258 {
4259 register unsigned char c;
4260 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4261
4262 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4263
4264 PREFETCH ();
4265 c = TRANSLATE (*d); /* The character to match. */
4266
4267 /* Cast to `unsigned' instead of `unsigned char' in case the
4268 bit list is a full 32 bytes long. */
4269 if (c < (unsigned) (*p * BYTEWIDTH)
4270 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4271 not = !not;
4272
4273 p += 1 + *p;
4274
4275 if (!not) goto fail;
4276
4277 SET_REGS_MATCHED ();
4278 d++;
4279 break;
4280 }
4281
4282
4283 /* The beginning of a group is represented by start_memory.
4284 The arguments are the register number in the next byte, and the
4285 number of groups inner to this one in the next. The text
4286 matched within the group is recorded (in the internal
4287 registers data structure) under the register number. */
4288 case start_memory:
4289 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4290
4291 /* Find out if this group can match the empty string. */
4292 p1 = p; /* To send to group_match_null_string_p. */
4293
4294 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4295 REG_MATCH_NULL_STRING_P (reg_info[*p])
4296 = group_match_null_string_p (&p1, pend, reg_info);
4297
4298 /* Save the position in the string where we were the last time
4299 we were at this open-group operator in case the group is
4300 operated upon by a repetition operator, e.g., with `(a*)*b'
4301 against `ab'; then we want to ignore where we are now in
4302 the string in case this attempt to match fails. */
4303 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4304 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4305 : regstart[*p];
4306 DEBUG_PRINT2 (" old_regstart: %d\n",
4307 POINTER_TO_OFFSET (old_regstart[*p]));
4308
4309 regstart[*p] = d;
4310 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4311
4312 IS_ACTIVE (reg_info[*p]) = 1;
4313 MATCHED_SOMETHING (reg_info[*p]) = 0;
4314
4315 /* Clear this whenever we change the register activity status. */
4316 set_regs_matched_done = 0;
4317
4318 /* This is the new highest active register. */
4319 highest_active_reg = *p;
4320
4321 /* If nothing was active before, this is the new lowest active
4322 register. */
4323 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4324 lowest_active_reg = *p;
4325
4326 /* Move past the register number and inner group count. */
4327 p += 2;
4328 just_past_start_mem = p;
4329
4330 break;
4331
4332
4333 /* The stop_memory opcode represents the end of a group. Its
4334 arguments are the same as start_memory's: the register
4335 number, and the number of inner groups. */
4336 case stop_memory:
4337 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4338
4339 /* We need to save the string position the last time we were at
4340 this close-group operator in case the group is operated
4341 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4342 against `aba'; then we want to ignore where we are now in
4343 the string in case this attempt to match fails. */
4344 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4345 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4346 : regend[*p];
4347 DEBUG_PRINT2 (" old_regend: %d\n",
4348 POINTER_TO_OFFSET (old_regend[*p]));
4349
4350 regend[*p] = d;
4351 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4352
4353 /* This register isn't active anymore. */
4354 IS_ACTIVE (reg_info[*p]) = 0;
4355
4356 /* Clear this whenever we change the register activity status. */
4357 set_regs_matched_done = 0;
4358
4359 /* If this was the only register active, nothing is active
4360 anymore. */
4361 if (lowest_active_reg == highest_active_reg)
4362 {
4363 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4364 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4365 }
4366 else
4367 { /* We must scan for the new highest active register, since
4368 it isn't necessarily one less than now: consider
4369 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4370 new highest active register is 1. */
4371 unsigned char r = *p - 1;
4372 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4373 r--;
4374
4375 /* If we end up at register zero, that means that we saved
4376 the registers as the result of an `on_failure_jump', not
4377 a `start_memory', and we jumped to past the innermost
4378 `stop_memory'. For example, in ((.)*) we save
4379 registers 1 and 2 as a result of the *, but when we pop
4380 back to the second ), we are at the stop_memory 1.
4381 Thus, nothing is active. */
4382 if (r == 0)
4383 {
4384 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4385 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4386 }
4387 else
4388 highest_active_reg = r;
4389 }
4390
4391 /* If just failed to match something this time around with a
4392 group that's operated on by a repetition operator, try to
4393 force exit from the ``loop'', and restore the register
4394 information for this group that we had before trying this
4395 last match. */
4396 if ((!MATCHED_SOMETHING (reg_info[*p])
4397 || just_past_start_mem == p - 1)
4398 && (p + 2) < pend)
4399 {
4400 boolean is_a_jump_n = false;
4401
4402 p1 = p + 2;
4403 mcnt = 0;
4404 switch ((re_opcode_t) *p1++)
4405 {
4406 case jump_n:
4407 is_a_jump_n = true;
4408 case pop_failure_jump:
4409 case maybe_pop_jump:
4410 case jump:
4411 case dummy_failure_jump:
4412 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4413 if (is_a_jump_n)
4414 p1 += 2;
4415 break;
4416
4417 default:
4418 /* do nothing */ ;
4419 }
4420 p1 += mcnt;
4421
4422 /* If the next operation is a jump backwards in the pattern
4423 to an on_failure_jump right before the start_memory
4424 corresponding to this stop_memory, exit from the loop
4425 by forcing a failure after pushing on the stack the
4426 on_failure_jump's jump in the pattern, and d. */
4427 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4428 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4429 {
4430 /* If this group ever matched anything, then restore
4431 what its registers were before trying this last
4432 failed match, e.g., with `(a*)*b' against `ab' for
4433 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4434 against `aba' for regend[3].
4435
4436 Also restore the registers for inner groups for,
4437 e.g., `((a*)(b*))*' against `aba' (register 3 would
4438 otherwise get trashed). */
4439
4440 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4441 {
4442 unsigned r;
4443
4444 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4445
4446 /* Restore this and inner groups' (if any) registers. */
4447 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4448 r++)
4449 {
4450 regstart[r] = old_regstart[r];
4451
4452 /* xx why this test? */
4453 if (old_regend[r] >= regstart[r])
4454 regend[r] = old_regend[r];
4455 }
4456 }
4457 p1++;
4458 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4459 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4460
4461 goto fail;
4462 }
4463 }
4464
4465 /* Move past the register number and the inner group count. */
4466 p += 2;
4467 break;
4468
4469
4470 /* \<digit> has been turned into a `duplicate' command which is
4471 followed by the numeric value of <digit> as the register number. */
4472 case duplicate:
4473 {
4474 register const char *d2, *dend2;
4475 int regno = *p++; /* Get which register to match against. */
4476 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4477
4478 /* Can't back reference a group which we've never matched. */
4479 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4480 goto fail;
4481
4482 /* Where in input to try to start matching. */
4483 d2 = regstart[regno];
4484
4485 /* Where to stop matching; if both the place to start and
4486 the place to stop matching are in the same string, then
4487 set to the place to stop, otherwise, for now have to use
4488 the end of the first string. */
4489
4490 dend2 = ((FIRST_STRING_P (regstart[regno])
4491 == FIRST_STRING_P (regend[regno]))
4492 ? regend[regno] : end_match_1);
4493 for (;;)
4494 {
4495 /* If necessary, advance to next segment in register
4496 contents. */
4497 while (d2 == dend2)
4498 {
4499 if (dend2 == end_match_2) break;
4500 if (dend2 == regend[regno]) break;
4501
4502 /* End of string1 => advance to string2. */
4503 d2 = string2;
4504 dend2 = regend[regno];
4505 }
4506 /* At end of register contents => success */
4507 if (d2 == dend2) break;
4508
4509 /* If necessary, advance to next segment in data. */
4510 PREFETCH ();
4511
4512 /* How many characters left in this segment to match. */
4513 mcnt = dend - d;
4514
4515 /* Want how many consecutive characters we can match in
4516 one shot, so, if necessary, adjust the count. */
4517 if (mcnt > dend2 - d2)
4518 mcnt = dend2 - d2;
4519
4520 /* Compare that many; failure if mismatch, else move
4521 past them. */
4522 if (translate
4523 ? bcmp_translate (d, d2, mcnt, translate)
4524 : memcmp (d, d2, mcnt))
4525 goto fail;
4526 d += mcnt, d2 += mcnt;
4527
4528 /* Do this because we've match some characters. */
4529 SET_REGS_MATCHED ();
4530 }
4531 }
4532 break;
4533
4534
4535 /* begline matches the empty string at the beginning of the string
4536 (unless `not_bol' is set in `bufp'), and, if
4537 `newline_anchor' is set, after newlines. */
4538 case begline:
4539 DEBUG_PRINT1 ("EXECUTING begline.\n");
4540
4541 if (AT_STRINGS_BEG (d))
4542 {
4543 if (!bufp->not_bol) break;
4544 }
4545 else if (d[-1] == '\n' && bufp->newline_anchor)
4546 {
4547 break;
4548 }
4549 /* In all other cases, we fail. */
4550 goto fail;
4551
4552
4553 /* endline is the dual of begline. */
4554 case endline:
4555 DEBUG_PRINT1 ("EXECUTING endline.\n");
4556
4557 if (AT_STRINGS_END (d))
4558 {
4559 if (!bufp->not_eol) break;
4560 }
4561
4562 /* We have to ``prefetch'' the next character. */
4563 else if ((d == end1 ? *string2 : *d) == '\n'
4564 && bufp->newline_anchor)
4565 {
4566 break;
4567 }
4568 goto fail;
4569
4570
4571 /* Match at the very beginning of the data. */
4572 case begbuf:
4573 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4574 if (AT_STRINGS_BEG (d))
4575 break;
4576 goto fail;
4577
4578
4579 /* Match at the very end of the data. */
4580 case endbuf:
4581 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4582 if (AT_STRINGS_END (d))
4583 break;
4584 goto fail;
4585
4586
4587 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4588 pushes NULL as the value for the string on the stack. Then
4589 `pop_failure_point' will keep the current value for the
4590 string, instead of restoring it. To see why, consider
4591 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4592 then the . fails against the \n. But the next thing we want
4593 to do is match the \n against the \n; if we restored the
4594 string value, we would be back at the foo.
4595
4596 Because this is used only in specific cases, we don't need to
4597 check all the things that `on_failure_jump' does, to make
4598 sure the right things get saved on the stack. Hence we don't
4599 share its code. The only reason to push anything on the
4600 stack at all is that otherwise we would have to change
4601 `anychar's code to do something besides goto fail in this
4602 case; that seems worse than this. */
4603 case on_failure_keep_string_jump:
4604 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4605
4606 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4607 #ifdef _LIBC
4608 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4609 #else
4610 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4611 #endif
4612
4613 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4614 break;
4615
4616
4617 /* Uses of on_failure_jump:
4618
4619 Each alternative starts with an on_failure_jump that points
4620 to the beginning of the next alternative. Each alternative
4621 except the last ends with a jump that in effect jumps past
4622 the rest of the alternatives. (They really jump to the
4623 ending jump of the following alternative, because tensioning
4624 these jumps is a hassle.)
4625
4626 Repeats start with an on_failure_jump that points past both
4627 the repetition text and either the following jump or
4628 pop_failure_jump back to this on_failure_jump. */
4629 case on_failure_jump:
4630 on_failure:
4631 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4632
4633 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4634 #ifdef _LIBC
4635 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4636 #else
4637 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4638 #endif
4639
4640 /* If this on_failure_jump comes right before a group (i.e.,
4641 the original * applied to a group), save the information
4642 for that group and all inner ones, so that if we fail back
4643 to this point, the group's information will be correct.
4644 For example, in \(a*\)*\1, we need the preceding group,
4645 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4646
4647 /* We can't use `p' to check ahead because we push
4648 a failure point to `p + mcnt' after we do this. */
4649 p1 = p;
4650
4651 /* We need to skip no_op's before we look for the
4652 start_memory in case this on_failure_jump is happening as
4653 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4654 against aba. */
4655 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4656 p1++;
4657
4658 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4659 {
4660 /* We have a new highest active register now. This will
4661 get reset at the start_memory we are about to get to,
4662 but we will have saved all the registers relevant to
4663 this repetition op, as described above. */
4664 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4665 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4666 lowest_active_reg = *(p1 + 1);
4667 }
4668
4669 DEBUG_PRINT1 (":\n");
4670 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4671 break;
4672
4673
4674 /* A smart repeat ends with `maybe_pop_jump'.
4675 We change it to either `pop_failure_jump' or `jump'. */
4676 case maybe_pop_jump:
4677 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4678 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4679 {
4680 register unsigned char *p2 = p;
4681
4682 /* Compare the beginning of the repeat with what in the
4683 pattern follows its end. If we can establish that there
4684 is nothing that they would both match, i.e., that we
4685 would have to backtrack because of (as in, e.g., `a*a')
4686 then we can change to pop_failure_jump, because we'll
4687 never have to backtrack.
4688
4689 This is not true in the case of alternatives: in
4690 `(a|ab)*' we do need to backtrack to the `ab' alternative
4691 (e.g., if the string was `ab'). But instead of trying to
4692 detect that here, the alternative has put on a dummy
4693 failure point which is what we will end up popping. */
4694
4695 /* Skip over open/close-group commands.
4696 If what follows this loop is a ...+ construct,
4697 look at what begins its body, since we will have to
4698 match at least one of that. */
4699 while (1)
4700 {
4701 if (p2 + 2 < pend
4702 && ((re_opcode_t) *p2 == stop_memory
4703 || (re_opcode_t) *p2 == start_memory))
4704 p2 += 3;
4705 else if (p2 + 6 < pend
4706 && (re_opcode_t) *p2 == dummy_failure_jump)
4707 p2 += 6;
4708 else
4709 break;
4710 }
4711
4712 p1 = p + mcnt;
4713 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4714 to the `maybe_finalize_jump' of this case. Examine what
4715 follows. */
4716
4717 /* If we're at the end of the pattern, we can change. */
4718 if (p2 == pend)
4719 {
4720 /* Consider what happens when matching ":\(.*\)"
4721 against ":/". I don't really understand this code
4722 yet. */
4723 p[-3] = (unsigned char) pop_failure_jump;
4724 DEBUG_PRINT1
4725 (" End of pattern: change to `pop_failure_jump'.\n");
4726 }
4727
4728 else if ((re_opcode_t) *p2 == exactn
4729 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4730 {
4731 register unsigned char c
4732 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4733
4734 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4735 {
4736 p[-3] = (unsigned char) pop_failure_jump;
4737 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4738 c, p1[5]);
4739 }
4740
4741 else if ((re_opcode_t) p1[3] == charset
4742 || (re_opcode_t) p1[3] == charset_not)
4743 {
4744 int not = (re_opcode_t) p1[3] == charset_not;
4745
4746 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4747 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4748 not = !not;
4749
4750 /* `not' is equal to 1 if c would match, which means
4751 that we can't change to pop_failure_jump. */
4752 if (!not)
4753 {
4754 p[-3] = (unsigned char) pop_failure_jump;
4755 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4756 }
4757 }
4758 }
4759 else if ((re_opcode_t) *p2 == charset)
4760 {
4761 #ifdef DEBUG
4762 register unsigned char c
4763 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4764 #endif
4765
4766 #if 0
4767 if ((re_opcode_t) p1[3] == exactn
4768 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4769 && (p2[2 + p1[5] / BYTEWIDTH]
4770 & (1 << (p1[5] % BYTEWIDTH)))))
4771 #else
4772 if ((re_opcode_t) p1[3] == exactn
4773 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4774 && (p2[2 + p1[4] / BYTEWIDTH]
4775 & (1 << (p1[4] % BYTEWIDTH)))))
4776 #endif
4777 {
4778 p[-3] = (unsigned char) pop_failure_jump;
4779 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4780 c, p1[5]);
4781 }
4782
4783 else if ((re_opcode_t) p1[3] == charset_not)
4784 {
4785 int idx;
4786 /* We win if the charset_not inside the loop
4787 lists every character listed in the charset after. */
4788 for (idx = 0; idx < (int) p2[1]; idx++)
4789 if (! (p2[2 + idx] == 0
4790 || (idx < (int) p1[4]
4791 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4792 break;
4793
4794 if (idx == p2[1])
4795 {
4796 p[-3] = (unsigned char) pop_failure_jump;
4797 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4798 }
4799 }
4800 else if ((re_opcode_t) p1[3] == charset)
4801 {
4802 int idx;
4803 /* We win if the charset inside the loop
4804 has no overlap with the one after the loop. */
4805 for (idx = 0;
4806 idx < (int) p2[1] && idx < (int) p1[4];
4807 idx++)
4808 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4809 break;
4810
4811 if (idx == p2[1] || idx == p1[4])
4812 {
4813 p[-3] = (unsigned char) pop_failure_jump;
4814 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4815 }
4816 }
4817 }
4818 }
4819 p -= 2; /* Point at relative address again. */
4820 if ((re_opcode_t) p[-1] != pop_failure_jump)
4821 {
4822 p[-1] = (unsigned char) jump;
4823 DEBUG_PRINT1 (" Match => jump.\n");
4824 goto unconditional_jump;
4825 }
4826 /* Note fall through. */
4827
4828
4829 /* The end of a simple repeat has a pop_failure_jump back to
4830 its matching on_failure_jump, where the latter will push a
4831 failure point. The pop_failure_jump takes off failure
4832 points put on by this pop_failure_jump's matching
4833 on_failure_jump; we got through the pattern to here from the
4834 matching on_failure_jump, so didn't fail. */
4835 case pop_failure_jump:
4836 {
4837 /* We need to pass separate storage for the lowest and
4838 highest registers, even though we don't care about the
4839 actual values. Otherwise, we will restore only one
4840 register from the stack, since lowest will == highest in
4841 `pop_failure_point'. */
4842 active_reg_t dummy_low_reg, dummy_high_reg;
4843 unsigned char *pdummy;
4844 const char *sdummy;
4845
4846 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4847 POP_FAILURE_POINT (sdummy, pdummy,
4848 dummy_low_reg, dummy_high_reg,
4849 reg_dummy, reg_dummy, reg_info_dummy);
4850 }
4851 /* Note fall through. */
4852
4853 unconditional_jump:
4854 #ifdef _LIBC
4855 DEBUG_PRINT2 ("\n%p: ", p);
4856 #else
4857 DEBUG_PRINT2 ("\n0x%x: ", p);
4858 #endif
4859 /* Note fall through. */
4860
4861 /* Unconditionally jump (without popping any failure points). */
4862 case jump:
4863 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4864 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4865 p += mcnt; /* Do the jump. */
4866 #ifdef _LIBC
4867 DEBUG_PRINT2 ("(to %p).\n", p);
4868 #else
4869 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4870 #endif
4871 break;
4872
4873
4874 /* We need this opcode so we can detect where alternatives end
4875 in `group_match_null_string_p' et al. */
4876 case jump_past_alt:
4877 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4878 goto unconditional_jump;
4879
4880
4881 /* Normally, the on_failure_jump pushes a failure point, which
4882 then gets popped at pop_failure_jump. We will end up at
4883 pop_failure_jump, also, and with a pattern of, say, `a+', we
4884 are skipping over the on_failure_jump, so we have to push
4885 something meaningless for pop_failure_jump to pop. */
4886 case dummy_failure_jump:
4887 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4888 /* It doesn't matter what we push for the string here. What
4889 the code at `fail' tests is the value for the pattern. */
4890 PUSH_FAILURE_POINT (NULL, NULL, -2);
4891 goto unconditional_jump;
4892
4893
4894 /* At the end of an alternative, we need to push a dummy failure
4895 point in case we are followed by a `pop_failure_jump', because
4896 we don't want the failure point for the alternative to be
4897 popped. For example, matching `(a|ab)*' against `aab'
4898 requires that we match the `ab' alternative. */
4899 case push_dummy_failure:
4900 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4901 /* See comments just above at `dummy_failure_jump' about the
4902 two zeroes. */
4903 PUSH_FAILURE_POINT (NULL, NULL, -2);
4904 break;
4905
4906 /* Have to succeed matching what follows at least n times.
4907 After that, handle like `on_failure_jump'. */
4908 case succeed_n:
4909 EXTRACT_NUMBER (mcnt, p + 2);
4910 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4911
4912 assert (mcnt >= 0);
4913 /* Originally, this is how many times we HAVE to succeed. */
4914 if (mcnt > 0)
4915 {
4916 mcnt--;
4917 p += 2;
4918 STORE_NUMBER_AND_INCR (p, mcnt);
4919 #ifdef _LIBC
4920 DEBUG_PRINT3 (" Setting %p to %d.\n", p - 2, mcnt);
4921 #else
4922 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - 2, mcnt);
4923 #endif
4924 }
4925 else if (mcnt == 0)
4926 {
4927 #ifdef _LIBC
4928 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2);
4929 #else
4930 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4931 #endif
4932 p[2] = (unsigned char) no_op;
4933 p[3] = (unsigned char) no_op;
4934 goto on_failure;
4935 }
4936 break;
4937
4938 case jump_n:
4939 EXTRACT_NUMBER (mcnt, p + 2);
4940 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4941
4942 /* Originally, this is how many times we CAN jump. */
4943 if (mcnt)
4944 {
4945 mcnt--;
4946 STORE_NUMBER (p + 2, mcnt);
4947 #ifdef _LIBC
4948 DEBUG_PRINT3 (" Setting %p to %d.\n", p + 2, mcnt);
4949 #else
4950 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + 2, mcnt);
4951 #endif
4952 goto unconditional_jump;
4953 }
4954 /* If don't have to jump any more, skip over the rest of command. */
4955 else
4956 p += 4;
4957 break;
4958
4959 case set_number_at:
4960 {
4961 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4962
4963 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4964 p1 = p + mcnt;
4965 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4966 #ifdef _LIBC
4967 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
4968 #else
4969 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4970 #endif
4971 STORE_NUMBER (p1, mcnt);
4972 break;
4973 }
4974
4975 #if 0
4976 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4977 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4978 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4979 macro and introducing temporary variables works around the bug. */
4980
4981 case wordbound:
4982 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4983 if (AT_WORD_BOUNDARY (d))
4984 break;
4985 goto fail;
4986
4987 case notwordbound:
4988 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4989 if (AT_WORD_BOUNDARY (d))
4990 goto fail;
4991 break;
4992 #else
4993 case wordbound:
4994 {
4995 boolean prevchar, thischar;
4996
4997 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4998 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4999 break;
5000
5001 prevchar = WORDCHAR_P (d - 1);
5002 thischar = WORDCHAR_P (d);
5003 if (prevchar != thischar)
5004 break;
5005 goto fail;
5006 }
5007
5008 case notwordbound:
5009 {
5010 boolean prevchar, thischar;
5011
5012 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5013 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5014 goto fail;
5015
5016 prevchar = WORDCHAR_P (d - 1);
5017 thischar = WORDCHAR_P (d);
5018 if (prevchar != thischar)
5019 goto fail;
5020 break;
5021 }
5022 #endif
5023
5024 case wordbeg:
5025 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5026 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
5027 break;
5028 goto fail;
5029
5030 case wordend:
5031 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5032 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
5033 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
5034 break;
5035 goto fail;
5036
5037 #ifdef emacs
5038 case before_dot:
5039 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5040 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
5041 goto fail;
5042 break;
5043
5044 case at_dot:
5045 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5046 if (PTR_CHAR_POS ((unsigned char *) d) != point)
5047 goto fail;
5048 break;
5049
5050 case after_dot:
5051 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5052 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5053 goto fail;
5054 break;
5055
5056 case syntaxspec:
5057 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5058 mcnt = *p++;
5059 goto matchsyntax;
5060
5061 case wordchar:
5062 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5063 mcnt = (int) Sword;
5064 matchsyntax:
5065 PREFETCH ();
5066 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5067 d++;
5068 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5069 goto fail;
5070 SET_REGS_MATCHED ();
5071 break;
5072
5073 case notsyntaxspec:
5074 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5075 mcnt = *p++;
5076 goto matchnotsyntax;
5077
5078 case notwordchar:
5079 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5080 mcnt = (int) Sword;
5081 matchnotsyntax:
5082 PREFETCH ();
5083 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5084 d++;
5085 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5086 goto fail;
5087 SET_REGS_MATCHED ();
5088 break;
5089
5090 #else /* not emacs */
5091 case wordchar:
5092 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5093 PREFETCH ();
5094 if (!WORDCHAR_P (d))
5095 goto fail;
5096 SET_REGS_MATCHED ();
5097 d++;
5098 break;
5099
5100 case notwordchar:
5101 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5102 PREFETCH ();
5103 if (WORDCHAR_P (d))
5104 goto fail;
5105 SET_REGS_MATCHED ();
5106 d++;
5107 break;
5108 #endif /* not emacs */
5109
5110 default:
5111 abort ();
5112 }
5113 continue; /* Successfully executed one pattern command; keep going. */
5114
5115
5116 /* We goto here if a matching operation fails. */
5117 fail:
5118 if (!FAIL_STACK_EMPTY ())
5119 { /* A restart point is known. Restore to that state. */
5120 DEBUG_PRINT1 ("\nFAIL:\n");
5121 POP_FAILURE_POINT (d, p,
5122 lowest_active_reg, highest_active_reg,
5123 regstart, regend, reg_info);
5124
5125 /* If this failure point is a dummy, try the next one. */
5126 if (!p)
5127 goto fail;
5128
5129 /* If we failed to the end of the pattern, don't examine *p. */
5130 assert (p <= pend);
5131 if (p < pend)
5132 {
5133 boolean is_a_jump_n = false;
5134
5135 /* If failed to a backwards jump that's part of a repetition
5136 loop, need to pop this failure point and use the next one. */
5137 switch ((re_opcode_t) *p)
5138 {
5139 case jump_n:
5140 is_a_jump_n = true;
5141 case maybe_pop_jump:
5142 case pop_failure_jump:
5143 case jump:
5144 p1 = p + 1;
5145 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5146 p1 += mcnt;
5147
5148 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5149 || (!is_a_jump_n
5150 && (re_opcode_t) *p1 == on_failure_jump))
5151 goto fail;
5152 break;
5153 default:
5154 /* do nothing */ ;
5155 }
5156 }
5157
5158 if (d >= string1 && d <= end1)
5159 dend = end_match_1;
5160 }
5161 else
5162 break; /* Matching at this starting point really fails. */
5163 } /* for (;;) */
5164
5165 if (best_regs_set)
5166 goto restore_best_regs;
5167
5168 FREE_VARIABLES ();
5169
5170 return -1; /* Failure to match. */
5171 } /* re_match_2 */
5172 \f
5173 /* Subroutine definitions for re_match_2. */
5174
5175
5176 /* We are passed P pointing to a register number after a start_memory.
5177
5178 Return true if the pattern up to the corresponding stop_memory can
5179 match the empty string, and false otherwise.
5180
5181 If we find the matching stop_memory, sets P to point to one past its number.
5182 Otherwise, sets P to an undefined byte less than or equal to END.
5183
5184 We don't handle duplicates properly (yet). */
5185
5186 static boolean
5187 group_match_null_string_p (p, end, reg_info)
5188 unsigned char **p, *end;
5189 register_info_type *reg_info;
5190 {
5191 int mcnt;
5192 /* Point to after the args to the start_memory. */
5193 unsigned char *p1 = *p + 2;
5194
5195 while (p1 < end)
5196 {
5197 /* Skip over opcodes that can match nothing, and return true or
5198 false, as appropriate, when we get to one that can't, or to the
5199 matching stop_memory. */
5200
5201 switch ((re_opcode_t) *p1)
5202 {
5203 /* Could be either a loop or a series of alternatives. */
5204 case on_failure_jump:
5205 p1++;
5206 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5207
5208 /* If the next operation is not a jump backwards in the
5209 pattern. */
5210
5211 if (mcnt >= 0)
5212 {
5213 /* Go through the on_failure_jumps of the alternatives,
5214 seeing if any of the alternatives cannot match nothing.
5215 The last alternative starts with only a jump,
5216 whereas the rest start with on_failure_jump and end
5217 with a jump, e.g., here is the pattern for `a|b|c':
5218
5219 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5220 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5221 /exactn/1/c
5222
5223 So, we have to first go through the first (n-1)
5224 alternatives and then deal with the last one separately. */
5225
5226
5227 /* Deal with the first (n-1) alternatives, which start
5228 with an on_failure_jump (see above) that jumps to right
5229 past a jump_past_alt. */
5230
5231 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5232 {
5233 /* `mcnt' holds how many bytes long the alternative
5234 is, including the ending `jump_past_alt' and
5235 its number. */
5236
5237 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5238 reg_info))
5239 return false;
5240
5241 /* Move to right after this alternative, including the
5242 jump_past_alt. */
5243 p1 += mcnt;
5244
5245 /* Break if it's the beginning of an n-th alternative
5246 that doesn't begin with an on_failure_jump. */
5247 if ((re_opcode_t) *p1 != on_failure_jump)
5248 break;
5249
5250 /* Still have to check that it's not an n-th
5251 alternative that starts with an on_failure_jump. */
5252 p1++;
5253 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5254 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5255 {
5256 /* Get to the beginning of the n-th alternative. */
5257 p1 -= 3;
5258 break;
5259 }
5260 }
5261
5262 /* Deal with the last alternative: go back and get number
5263 of the `jump_past_alt' just before it. `mcnt' contains
5264 the length of the alternative. */
5265 EXTRACT_NUMBER (mcnt, p1 - 2);
5266
5267 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5268 return false;
5269
5270 p1 += mcnt; /* Get past the n-th alternative. */
5271 } /* if mcnt > 0 */
5272 break;
5273
5274
5275 case stop_memory:
5276 assert (p1[1] == **p);
5277 *p = p1 + 2;
5278 return true;
5279
5280
5281 default:
5282 if (!common_op_match_null_string_p (&p1, end, reg_info))
5283 return false;
5284 }
5285 } /* while p1 < end */
5286
5287 return false;
5288 } /* group_match_null_string_p */
5289
5290
5291 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5292 It expects P to be the first byte of a single alternative and END one
5293 byte past the last. The alternative can contain groups. */
5294
5295 static boolean
5296 alt_match_null_string_p (p, end, reg_info)
5297 unsigned char *p, *end;
5298 register_info_type *reg_info;
5299 {
5300 int mcnt;
5301 unsigned char *p1 = p;
5302
5303 while (p1 < end)
5304 {
5305 /* Skip over opcodes that can match nothing, and break when we get
5306 to one that can't. */
5307
5308 switch ((re_opcode_t) *p1)
5309 {
5310 /* It's a loop. */
5311 case on_failure_jump:
5312 p1++;
5313 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5314 p1 += mcnt;
5315 break;
5316
5317 default:
5318 if (!common_op_match_null_string_p (&p1, end, reg_info))
5319 return false;
5320 }
5321 } /* while p1 < end */
5322
5323 return true;
5324 } /* alt_match_null_string_p */
5325
5326
5327 /* Deals with the ops common to group_match_null_string_p and
5328 alt_match_null_string_p.
5329
5330 Sets P to one after the op and its arguments, if any. */
5331
5332 static boolean
5333 common_op_match_null_string_p (p, end, reg_info)
5334 unsigned char **p, *end;
5335 register_info_type *reg_info;
5336 {
5337 int mcnt;
5338 boolean ret;
5339 int reg_no;
5340 unsigned char *p1 = *p;
5341
5342 switch ((re_opcode_t) *p1++)
5343 {
5344 case no_op:
5345 case begline:
5346 case endline:
5347 case begbuf:
5348 case endbuf:
5349 case wordbeg:
5350 case wordend:
5351 case wordbound:
5352 case notwordbound:
5353 #ifdef emacs
5354 case before_dot:
5355 case at_dot:
5356 case after_dot:
5357 #endif
5358 break;
5359
5360 case start_memory:
5361 reg_no = *p1;
5362 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5363 ret = group_match_null_string_p (&p1, end, reg_info);
5364
5365 /* Have to set this here in case we're checking a group which
5366 contains a group and a back reference to it. */
5367
5368 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5369 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5370
5371 if (!ret)
5372 return false;
5373 break;
5374
5375 /* If this is an optimized succeed_n for zero times, make the jump. */
5376 case jump:
5377 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5378 if (mcnt >= 0)
5379 p1 += mcnt;
5380 else
5381 return false;
5382 break;
5383
5384 case succeed_n:
5385 /* Get to the number of times to succeed. */
5386 p1 += 2;
5387 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5388
5389 if (mcnt == 0)
5390 {
5391 p1 -= 4;
5392 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5393 p1 += mcnt;
5394 }
5395 else
5396 return false;
5397 break;
5398
5399 case duplicate:
5400 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5401 return false;
5402 break;
5403
5404 case set_number_at:
5405 p1 += 4;
5406
5407 default:
5408 /* All other opcodes mean we cannot match the empty string. */
5409 return false;
5410 }
5411
5412 *p = p1;
5413 return true;
5414 } /* common_op_match_null_string_p */
5415
5416
5417 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5418 bytes; nonzero otherwise. */
5419
5420 static int
5421 bcmp_translate (s1, s2, len, translate)
5422 const char *s1, *s2;
5423 register int len;
5424 RE_TRANSLATE_TYPE translate;
5425 {
5426 register const unsigned char *p1 = (const unsigned char *) s1;
5427 register const unsigned char *p2 = (const unsigned char *) s2;
5428 while (len)
5429 {
5430 if (translate[*p1++] != translate[*p2++]) return 1;
5431 len--;
5432 }
5433 return 0;
5434 }
5435 \f
5436 /* Entry points for GNU code. */
5437
5438 /* re_compile_pattern is the GNU regular expression compiler: it
5439 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5440 Returns 0 if the pattern was valid, otherwise an error string.
5441
5442 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5443 are set in BUFP on entry.
5444
5445 We call regex_compile to do the actual compilation. */
5446
5447 const char *
5448 re_compile_pattern (pattern, length, bufp)
5449 const char *pattern;
5450 size_t length;
5451 struct re_pattern_buffer *bufp;
5452 {
5453 reg_errcode_t ret;
5454
5455 /* GNU code is written to assume at least RE_NREGS registers will be set
5456 (and at least one extra will be -1). */
5457 bufp->regs_allocated = REGS_UNALLOCATED;
5458
5459 /* And GNU code determines whether or not to get register information
5460 by passing null for the REGS argument to re_match, etc., not by
5461 setting no_sub. */
5462 bufp->no_sub = 0;
5463
5464 /* Match anchors at newline. */
5465 bufp->newline_anchor = 1;
5466
5467 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5468
5469 if (!ret)
5470 return NULL;
5471 return gettext (re_error_msgid[(int) ret]);
5472 }
5473 #ifdef _LIBC
5474 weak_alias (__re_compile_pattern, re_compile_pattern)
5475 #endif
5476 \f
5477 /* Entry points compatible with 4.2 BSD regex library. We don't define
5478 them unless specifically requested. */
5479
5480 #if defined _REGEX_RE_COMP || defined _LIBC
5481
5482 /* BSD has one and only one pattern buffer. */
5483 static struct re_pattern_buffer re_comp_buf;
5484
5485 char *
5486 #ifdef _LIBC
5487 /* Make these definitions weak in libc, so POSIX programs can redefine
5488 these names if they don't use our functions, and still use
5489 regcomp/regexec below without link errors. */
5490 weak_function
5491 #endif
5492 re_comp (s)
5493 const char *s;
5494 {
5495 reg_errcode_t ret;
5496
5497 if (!s)
5498 {
5499 if (!re_comp_buf.buffer)
5500 return gettext ("No previous regular expression");
5501 return 0;
5502 }
5503
5504 if (!re_comp_buf.buffer)
5505 {
5506 re_comp_buf.buffer = (unsigned char *) malloc (200);
5507 if (re_comp_buf.buffer == NULL)
5508 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5509 re_comp_buf.allocated = 200;
5510
5511 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5512 if (re_comp_buf.fastmap == NULL)
5513 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5514 }
5515
5516 /* Since `re_exec' always passes NULL for the `regs' argument, we
5517 don't need to initialize the pattern buffer fields which affect it. */
5518
5519 /* Match anchors at newlines. */
5520 re_comp_buf.newline_anchor = 1;
5521
5522 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5523
5524 if (!ret)
5525 return NULL;
5526
5527 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5528 return (char *) gettext (re_error_msgid[(int) ret]);
5529 }
5530
5531
5532 int
5533 #ifdef _LIBC
5534 weak_function
5535 #endif
5536 re_exec (s)
5537 const char *s;
5538 {
5539 const int len = strlen (s);
5540 return
5541 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5542 }
5543
5544 #endif /* _REGEX_RE_COMP */
5545 \f
5546 /* POSIX.2 functions. Don't define these for Emacs. */
5547
5548 #ifndef emacs
5549
5550 /* regcomp takes a regular expression as a string and compiles it.
5551
5552 PREG is a regex_t *. We do not expect any fields to be initialized,
5553 since POSIX says we shouldn't. Thus, we set
5554
5555 `buffer' to the compiled pattern;
5556 `used' to the length of the compiled pattern;
5557 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5558 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5559 RE_SYNTAX_POSIX_BASIC;
5560 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5561 `fastmap' and `fastmap_accurate' to zero;
5562 `re_nsub' to the number of subexpressions in PATTERN.
5563
5564 PATTERN is the address of the pattern string.
5565
5566 CFLAGS is a series of bits which affect compilation.
5567
5568 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5569 use POSIX basic syntax.
5570
5571 If REG_NEWLINE is set, then . and [^...] don't match newline.
5572 Also, regexec will try a match beginning after every newline.
5573
5574 If REG_ICASE is set, then we considers upper- and lowercase
5575 versions of letters to be equivalent when matching.
5576
5577 If REG_NOSUB is set, then when PREG is passed to regexec, that
5578 routine will report only success or failure, and nothing about the
5579 registers.
5580
5581 It returns 0 if it succeeds, nonzero if it doesn't. (See gnu-regex.h for
5582 the return codes and their meanings.) */
5583
5584 int
5585 regcomp (preg, pattern, cflags)
5586 regex_t *preg;
5587 const char *pattern;
5588 int cflags;
5589 {
5590 reg_errcode_t ret;
5591 reg_syntax_t syntax
5592 = (cflags & REG_EXTENDED) ?
5593 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5594
5595 /* regex_compile will allocate the space for the compiled pattern. */
5596 preg->buffer = 0;
5597 preg->allocated = 0;
5598 preg->used = 0;
5599
5600 /* Don't bother to use a fastmap when searching. This simplifies the
5601 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5602 characters after newlines into the fastmap. This way, we just try
5603 every character. */
5604 preg->fastmap = 0;
5605
5606 if (cflags & REG_ICASE)
5607 {
5608 unsigned i;
5609
5610 preg->translate
5611 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5612 * sizeof (*(RE_TRANSLATE_TYPE)0));
5613 if (preg->translate == NULL)
5614 return (int) REG_ESPACE;
5615
5616 /* Map uppercase characters to corresponding lowercase ones. */
5617 for (i = 0; i < CHAR_SET_SIZE; i++)
5618 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5619 }
5620 else
5621 preg->translate = NULL;
5622
5623 /* If REG_NEWLINE is set, newlines are treated differently. */
5624 if (cflags & REG_NEWLINE)
5625 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5626 syntax &= ~RE_DOT_NEWLINE;
5627 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5628 /* It also changes the matching behavior. */
5629 preg->newline_anchor = 1;
5630 }
5631 else
5632 preg->newline_anchor = 0;
5633
5634 preg->no_sub = !!(cflags & REG_NOSUB);
5635
5636 /* POSIX says a null character in the pattern terminates it, so we
5637 can use strlen here in compiling the pattern. */
5638 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5639
5640 /* POSIX doesn't distinguish between an unmatched open-group and an
5641 unmatched close-group: both are REG_EPAREN. */
5642 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5643
5644 return (int) ret;
5645 }
5646 #ifdef _LIBC
5647 weak_alias (__regcomp, regcomp)
5648 #endif
5649
5650
5651 /* regexec searches for a given pattern, specified by PREG, in the
5652 string STRING.
5653
5654 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5655 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5656 least NMATCH elements, and we set them to the offsets of the
5657 corresponding matched substrings.
5658
5659 EFLAGS specifies `execution flags' which affect matching: if
5660 REG_NOTBOL is set, then ^ does not match at the beginning of the
5661 string; if REG_NOTEOL is set, then $ does not match at the end.
5662
5663 We return 0 if we find a match and REG_NOMATCH if not. */
5664
5665 int
5666 regexec (preg, string, nmatch, pmatch, eflags)
5667 const regex_t *preg;
5668 const char *string;
5669 size_t nmatch;
5670 regmatch_t pmatch[];
5671 int eflags;
5672 {
5673 int ret;
5674 struct re_registers regs;
5675 regex_t private_preg;
5676 int len = strlen (string);
5677 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5678
5679 private_preg = *preg;
5680
5681 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5682 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5683
5684 /* The user has told us exactly how many registers to return
5685 information about, via `nmatch'. We have to pass that on to the
5686 matching routines. */
5687 private_preg.regs_allocated = REGS_FIXED;
5688
5689 if (want_reg_info)
5690 {
5691 regs.num_regs = nmatch;
5692 regs.start = TALLOC (nmatch, regoff_t);
5693 regs.end = TALLOC (nmatch, regoff_t);
5694 if (regs.start == NULL || regs.end == NULL)
5695 return (int) REG_NOMATCH;
5696 }
5697
5698 /* Perform the searching operation. */
5699 ret = re_search (&private_preg, string, len,
5700 /* start: */ 0, /* range: */ len,
5701 want_reg_info ? &regs : (struct re_registers *) 0);
5702
5703 /* Copy the register information to the POSIX structure. */
5704 if (want_reg_info)
5705 {
5706 if (ret >= 0)
5707 {
5708 unsigned r;
5709
5710 for (r = 0; r < nmatch; r++)
5711 {
5712 pmatch[r].rm_so = regs.start[r];
5713 pmatch[r].rm_eo = regs.end[r];
5714 }
5715 }
5716
5717 /* If we needed the temporary register info, free the space now. */
5718 free (regs.start);
5719 free (regs.end);
5720 }
5721
5722 /* We want zero return to mean success, unlike `re_search'. */
5723 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5724 }
5725 #ifdef _LIBC
5726 weak_alias (__regexec, regexec)
5727 #endif
5728
5729
5730 /* Returns a message corresponding to an error code, ERRCODE, returned
5731 from either regcomp or regexec. We don't use PREG here. */
5732
5733 size_t
5734 regerror (errcode, preg, errbuf, errbuf_size)
5735 int errcode;
5736 const regex_t *preg;
5737 char *errbuf;
5738 size_t errbuf_size;
5739 {
5740 const char *msg;
5741 size_t msg_size;
5742
5743 if (errcode < 0
5744 || errcode >= (int) (sizeof (re_error_msgid)
5745 / sizeof (re_error_msgid[0])))
5746 /* Only error codes returned by the rest of the code should be passed
5747 to this routine. If we are given anything else, or if other regex
5748 code generates an invalid error code, then the program has a bug.
5749 Dump core so we can fix it. */
5750 abort ();
5751
5752 msg = gettext (re_error_msgid[errcode]);
5753
5754 msg_size = strlen (msg) + 1; /* Includes the null. */
5755
5756 if (errbuf_size != 0)
5757 {
5758 if (msg_size > errbuf_size)
5759 {
5760 #if defined HAVE_MEMPCPY || defined _LIBC
5761 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
5762 #else
5763 memcpy (errbuf, msg, errbuf_size - 1);
5764 errbuf[errbuf_size - 1] = 0;
5765 #endif
5766 }
5767 else
5768 memcpy (errbuf, msg, msg_size);
5769 }
5770
5771 return msg_size;
5772 }
5773 #ifdef _LIBC
5774 weak_alias (__regerror, regerror)
5775 #endif
5776
5777
5778 /* Free dynamically allocated space used by PREG. */
5779
5780 void
5781 regfree (preg)
5782 regex_t *preg;
5783 {
5784 if (preg->buffer != NULL)
5785 free (preg->buffer);
5786 preg->buffer = NULL;
5787
5788 preg->allocated = 0;
5789 preg->used = 0;
5790
5791 if (preg->fastmap != NULL)
5792 free (preg->fastmap);
5793 preg->fastmap = NULL;
5794 preg->fastmap_accurate = 0;
5795
5796 if (preg->translate != NULL)
5797 free (preg->translate);
5798 preg->translate = NULL;
5799 }
5800 #ifdef _LIBC
5801 weak_alias (__regfree, regfree)
5802 #endif
5803
5804 #endif /* not emacs */
This page took 0.228727 seconds and 4 git commands to generate.