1 /* *INDENT-OFF* */ /* keep in sync with glibc */
2 /* Extended regular expression matching and search library,
4 (Implements POSIX draft P1003.2/D11.2, except for some of the
5 internationalization features.)
6 Copyright (C) 1993, 94, 95, 96, 97, 98 Free Software Foundation, Inc.
8 NOTE: The canonical source of this file is maintained with the
9 GNU C Library. Bugs can be reported to bug-glibc@gnu.org.
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation; either version 2, or (at your option) any
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software Foundation,
23 Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
26 /* AIX requires this to be the first thing in the file. */
27 #if defined _AIX && !defined REGEX_MALLOC
39 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
40 # define PARAMS(args) args
42 # define PARAMS(args) ()
44 #endif /* Not PARAMS. */
46 #if defined STDC_HEADERS && !defined emacs
49 /* We need this for `gnu-regex.h', and perhaps for the Emacs include files. */
50 # include <sys/types.h>
53 /* For platform which support the ISO C amendement 1 functionality we
54 support user defined character classes. */
55 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
56 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
61 /* This is for other GNU distributions with internationalized messages. */
62 /* CYGNUS LOCAL: ../intl will handle this for us */
66 # define gettext(msgid) (msgid)
70 /* This define is so xgettext can find the internationalizable
72 # define gettext_noop(String) String
75 /* The `emacs' switch turns on certain matching commands
76 that make sense only in Emacs. */
85 /* If we are not linking with Emacs proper,
86 we can't use the relocating allocator
87 even if config.h says that we can. */
90 # if defined STDC_HEADERS || defined _LIBC
97 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
98 If nothing else has been done, use the method below. */
99 # ifdef INHIBIT_STRING_HEADER
100 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
101 # if !defined bzero && !defined bcopy
102 # undef INHIBIT_STRING_HEADER
107 /* This is the normal way of making sure we have a bcopy and a bzero.
108 This is used in most programs--a few other programs avoid this
109 by defining INHIBIT_STRING_HEADER. */
110 # ifndef INHIBIT_STRING_HEADER
111 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
115 # define bzero(s, n) (memset (s, '\0', n), (s))
117 # define bzero(s, n) __bzero (s, n)
121 # include <strings.h>
123 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
126 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
131 /* Define the syntax stuff for \<, \>, etc. */
133 /* This must be nonzero for the wordchar and notwordchar pattern
134 commands in re_match_2. */
139 # ifdef SWITCH_ENUM_BUG
140 # define SWITCH_ENUM_CAST(x) ((int)(x))
142 # define SWITCH_ENUM_CAST(x) (x)
145 /* How many characters in the character set. */
146 # define CHAR_SET_SIZE 256
148 /* GDB LOCAL: define _REGEX_RE_COMP to get BSD style re_comp and re_exec */
149 #ifndef _REGEX_RE_COMP
150 #define _REGEX_RE_COMP
155 extern char *re_syntax_table
;
157 # else /* not SYNTAX_TABLE */
159 static char re_syntax_table
[CHAR_SET_SIZE
];
170 bzero (re_syntax_table
, sizeof re_syntax_table
);
172 for (c
= 'a'; c
<= 'z'; c
++)
173 re_syntax_table
[c
] = Sword
;
175 for (c
= 'A'; c
<= 'Z'; c
++)
176 re_syntax_table
[c
] = Sword
;
178 for (c
= '0'; c
<= '9'; c
++)
179 re_syntax_table
[c
] = Sword
;
181 re_syntax_table
['_'] = Sword
;
186 # endif /* not SYNTAX_TABLE */
188 # define SYNTAX(c) re_syntax_table[c]
190 #endif /* not emacs */
192 /* Get the interface, including the syntax bits. */
193 /* CYGNUS LOCAL: call it gnu-regex.h, not regex.h, to avoid name conflicts */
194 #include "gnu-regex.h"
196 /* isalpha etc. are used for the character classes. */
199 /* Jim Meyering writes:
201 "... Some ctype macros are valid only for character codes that
202 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
203 using /bin/cc or gcc but without giving an ansi option). So, all
204 ctype uses should be through macros like ISPRINT... If
205 STDC_HEADERS is defined, then autoconf has verified that the ctype
206 macros don't need to be guarded with references to isascii. ...
207 Defining isascii to 1 should let any compiler worth its salt
208 eliminate the && through constant folding."
209 Solaris defines some of these symbols so we must undefine them first. */
212 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
213 # define ISASCII(c) 1
215 # define ISASCII(c) isascii(c)
219 # define ISBLANK(c) (ISASCII (c) && isblank (c))
221 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
224 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
226 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
230 #define ISPRINT(c) (ISASCII (c) && isprint (c))
231 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
232 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
233 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
234 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
235 #define ISLOWER(c) (ISASCII (c) && islower (c))
236 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
237 #define ISSPACE(c) (ISASCII (c) && isspace (c))
238 #define ISUPPER(c) (ISASCII (c) && isupper (c))
239 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
242 # define NULL (void *)0
245 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
246 since ours (we hope) works properly with all combinations of
247 machines, compilers, `char' and `unsigned char' argument types.
248 (Per Bothner suggested the basic approach.) */
249 #undef SIGN_EXTEND_CHAR
251 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
252 #else /* not __STDC__ */
253 /* As in Harbison and Steele. */
254 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
257 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
258 use `alloca' instead of `malloc'. This is because using malloc in
259 re_search* or re_match* could cause memory leaks when C-g is used in
260 Emacs; also, malloc is slower and causes storage fragmentation. On
261 the other hand, malloc is more portable, and easier to debug.
263 Because we sometimes use alloca, some routines have to be macros,
264 not functions -- `alloca'-allocated space disappears at the end of the
265 function it is called in. */
269 # define REGEX_ALLOCATE malloc
270 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
271 # define REGEX_FREE free
273 #else /* not REGEX_MALLOC */
275 /* Emacs already defines alloca, sometimes. */
278 /* Make alloca work the best possible way. */
280 # define alloca __builtin_alloca
281 # else /* not __GNUC__ */
284 # endif /* HAVE_ALLOCA_H */
285 # endif /* not __GNUC__ */
287 # endif /* not alloca */
289 # define REGEX_ALLOCATE alloca
291 /* Assumes a `char *destination' variable. */
292 # define REGEX_REALLOCATE(source, osize, nsize) \
293 (destination = (char *) alloca (nsize), \
294 memcpy (destination, source, osize))
296 /* No need to do anything to free, after alloca. */
297 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
299 #endif /* not REGEX_MALLOC */
301 /* Define how to allocate the failure stack. */
303 #if defined REL_ALLOC && defined REGEX_MALLOC
305 # define REGEX_ALLOCATE_STACK(size) \
306 r_alloc (&failure_stack_ptr, (size))
307 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
308 r_re_alloc (&failure_stack_ptr, (nsize))
309 # define REGEX_FREE_STACK(ptr) \
310 r_alloc_free (&failure_stack_ptr)
312 #else /* not using relocating allocator */
316 # define REGEX_ALLOCATE_STACK malloc
317 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
318 # define REGEX_FREE_STACK free
320 # else /* not REGEX_MALLOC */
322 # define REGEX_ALLOCATE_STACK alloca
324 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
325 REGEX_REALLOCATE (source, osize, nsize)
326 /* No need to explicitly free anything. */
327 # define REGEX_FREE_STACK(arg)
329 # endif /* not REGEX_MALLOC */
330 #endif /* not using relocating allocator */
333 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
334 `string1' or just past its end. This works if PTR is NULL, which is
336 #define FIRST_STRING_P(ptr) \
337 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
339 /* (Re)Allocate N items of type T using malloc, or fail. */
340 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
341 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
342 #define RETALLOC_IF(addr, n, t) \
343 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
344 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
346 #define BYTEWIDTH 8 /* In bits. */
348 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
352 #define MAX(a, b) ((a) > (b) ? (a) : (b))
353 #define MIN(a, b) ((a) < (b) ? (a) : (b))
355 typedef char boolean
;
359 static int re_match_2_internal
PARAMS ((struct re_pattern_buffer
*bufp
,
360 const char *string1
, int size1
,
361 const char *string2
, int size2
,
363 struct re_registers
*regs
,
366 /* These are the command codes that appear in compiled regular
367 expressions. Some opcodes are followed by argument bytes. A
368 command code can specify any interpretation whatsoever for its
369 arguments. Zero bytes may appear in the compiled regular expression. */
375 /* Succeed right away--no more backtracking. */
378 /* Followed by one byte giving n, then by n literal bytes. */
381 /* Matches any (more or less) character. */
384 /* Matches any one char belonging to specified set. First
385 following byte is number of bitmap bytes. Then come bytes
386 for a bitmap saying which chars are in. Bits in each byte
387 are ordered low-bit-first. A character is in the set if its
388 bit is 1. A character too large to have a bit in the map is
389 automatically not in the set. */
392 /* Same parameters as charset, but match any character that is
393 not one of those specified. */
396 /* Start remembering the text that is matched, for storing in a
397 register. Followed by one byte with the register number, in
398 the range 0 to one less than the pattern buffer's re_nsub
399 field. Then followed by one byte with the number of groups
400 inner to this one. (This last has to be part of the
401 start_memory only because we need it in the on_failure_jump
405 /* Stop remembering the text that is matched and store it in a
406 memory register. Followed by one byte with the register
407 number, in the range 0 to one less than `re_nsub' in the
408 pattern buffer, and one byte with the number of inner groups,
409 just like `start_memory'. (We need the number of inner
410 groups here because we don't have any easy way of finding the
411 corresponding start_memory when we're at a stop_memory.) */
414 /* Match a duplicate of something remembered. Followed by one
415 byte containing the register number. */
418 /* Fail unless at beginning of line. */
421 /* Fail unless at end of line. */
424 /* Succeeds if at beginning of buffer (if emacs) or at beginning
425 of string to be matched (if not). */
428 /* Analogously, for end of buffer/string. */
431 /* Followed by two byte relative address to which to jump. */
434 /* Same as jump, but marks the end of an alternative. */
437 /* Followed by two-byte relative address of place to resume at
438 in case of failure. */
441 /* Like on_failure_jump, but pushes a placeholder instead of the
442 current string position when executed. */
443 on_failure_keep_string_jump
,
445 /* Throw away latest failure point and then jump to following
446 two-byte relative address. */
449 /* Change to pop_failure_jump if know won't have to backtrack to
450 match; otherwise change to jump. This is used to jump
451 back to the beginning of a repeat. If what follows this jump
452 clearly won't match what the repeat does, such that we can be
453 sure that there is no use backtracking out of repetitions
454 already matched, then we change it to a pop_failure_jump.
455 Followed by two-byte address. */
458 /* Jump to following two-byte address, and push a dummy failure
459 point. This failure point will be thrown away if an attempt
460 is made to use it for a failure. A `+' construct makes this
461 before the first repeat. Also used as an intermediary kind
462 of jump when compiling an alternative. */
465 /* Push a dummy failure point and continue. Used at the end of
469 /* Followed by two-byte relative address and two-byte number n.
470 After matching N times, jump to the address upon failure. */
473 /* Followed by two-byte relative address, and two-byte number n.
474 Jump to the address N times, then fail. */
477 /* Set the following two-byte relative address to the
478 subsequent two-byte number. The address *includes* the two
482 wordchar
, /* Matches any word-constituent character. */
483 notwordchar
, /* Matches any char that is not a word-constituent. */
485 wordbeg
, /* Succeeds if at word beginning. */
486 wordend
, /* Succeeds if at word end. */
488 wordbound
, /* Succeeds if at a word boundary. */
489 notwordbound
/* Succeeds if not at a word boundary. */
492 ,before_dot
, /* Succeeds if before point. */
493 at_dot
, /* Succeeds if at point. */
494 after_dot
, /* Succeeds if after point. */
496 /* Matches any character whose syntax is specified. Followed by
497 a byte which contains a syntax code, e.g., Sword. */
500 /* Matches any character whose syntax is not that specified. */
505 /* Common operations on the compiled pattern. */
507 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
509 #define STORE_NUMBER(destination, number) \
511 (destination)[0] = (number) & 0377; \
512 (destination)[1] = (number) >> 8; \
515 /* Same as STORE_NUMBER, except increment DESTINATION to
516 the byte after where the number is stored. Therefore, DESTINATION
517 must be an lvalue. */
519 #define STORE_NUMBER_AND_INCR(destination, number) \
521 STORE_NUMBER (destination, number); \
522 (destination) += 2; \
525 /* Put into DESTINATION a number stored in two contiguous bytes starting
528 #define EXTRACT_NUMBER(destination, source) \
530 (destination) = *(source) & 0377; \
531 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
535 static void extract_number
_RE_ARGS ((int *dest
, unsigned char *source
));
537 extract_number (dest
, source
)
539 unsigned char *source
;
541 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
542 *dest
= *source
& 0377;
546 # ifndef EXTRACT_MACROS /* To debug the macros. */
547 # undef EXTRACT_NUMBER
548 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
549 # endif /* not EXTRACT_MACROS */
553 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
554 SOURCE must be an lvalue. */
556 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
558 EXTRACT_NUMBER (destination, source); \
563 static void extract_number_and_incr
_RE_ARGS ((int *destination
,
564 unsigned char **source
));
566 extract_number_and_incr (destination
, source
)
568 unsigned char **source
;
570 extract_number (destination
, *source
);
574 # ifndef EXTRACT_MACROS
575 # undef EXTRACT_NUMBER_AND_INCR
576 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
577 extract_number_and_incr (&dest, &src)
578 # endif /* not EXTRACT_MACROS */
582 /* If DEBUG is defined, Regex prints many voluminous messages about what
583 it is doing (if the variable `debug' is nonzero). If linked with the
584 main program in `iregex.c', you can enter patterns and strings
585 interactively. And if linked with the main program in `main.c' and
586 the other test files, you can run the already-written tests. */
590 /* We use standard I/O for debugging. */
593 /* It is useful to test things that ``must'' be true when debugging. */
596 static int debug
= 0;
598 # define DEBUG_STATEMENT(e) e
599 # define DEBUG_PRINT1(x) if (debug) printf (x)
600 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
601 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
602 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
603 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
604 if (debug) print_partial_compiled_pattern (s, e)
605 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
606 if (debug) print_double_string (w, s1, sz1, s2, sz2)
609 /* Print the fastmap in human-readable form. */
612 print_fastmap (fastmap
)
615 unsigned was_a_range
= 0;
618 while (i
< (1 << BYTEWIDTH
))
624 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
640 /* Print a compiled pattern string in human-readable form, starting at
641 the START pointer into it and ending just before the pointer END. */
644 print_partial_compiled_pattern (start
, end
)
645 unsigned char *start
;
650 unsigned char *p
= start
;
651 unsigned char *pend
= end
;
659 /* Loop over pattern commands. */
662 printf ("%d:\t", p
- start
);
664 switch ((re_opcode_t
) *p
++)
672 printf ("/exactn/%d", mcnt
);
683 printf ("/start_memory/%d/%d", mcnt
, *p
++);
688 printf ("/stop_memory/%d/%d", mcnt
, *p
++);
692 printf ("/duplicate/%d", *p
++);
702 register int c
, last
= -100;
703 register int in_range
= 0;
705 printf ("/charset [%s",
706 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
708 assert (p
+ *p
< pend
);
710 for (c
= 0; c
< 256; c
++)
712 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
714 /* Are we starting a range? */
715 if (last
+ 1 == c
&& ! in_range
)
720 /* Have we broken a range? */
721 else if (last
+ 1 != c
&& in_range
)
750 case on_failure_jump
:
751 extract_number_and_incr (&mcnt
, &p
);
752 printf ("/on_failure_jump to %d", p
+ mcnt
- start
);
755 case on_failure_keep_string_jump
:
756 extract_number_and_incr (&mcnt
, &p
);
757 printf ("/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
760 case dummy_failure_jump
:
761 extract_number_and_incr (&mcnt
, &p
);
762 printf ("/dummy_failure_jump to %d", p
+ mcnt
- start
);
765 case push_dummy_failure
:
766 printf ("/push_dummy_failure");
770 extract_number_and_incr (&mcnt
, &p
);
771 printf ("/maybe_pop_jump to %d", p
+ mcnt
- start
);
774 case pop_failure_jump
:
775 extract_number_and_incr (&mcnt
, &p
);
776 printf ("/pop_failure_jump to %d", p
+ mcnt
- start
);
780 extract_number_and_incr (&mcnt
, &p
);
781 printf ("/jump_past_alt to %d", p
+ mcnt
- start
);
785 extract_number_and_incr (&mcnt
, &p
);
786 printf ("/jump to %d", p
+ mcnt
- start
);
790 extract_number_and_incr (&mcnt
, &p
);
792 extract_number_and_incr (&mcnt2
, &p
);
793 printf ("/succeed_n to %d, %d times", p1
- start
, mcnt2
);
797 extract_number_and_incr (&mcnt
, &p
);
799 extract_number_and_incr (&mcnt2
, &p
);
800 printf ("/jump_n to %d, %d times", p1
- start
, mcnt2
);
804 extract_number_and_incr (&mcnt
, &p
);
806 extract_number_and_incr (&mcnt2
, &p
);
807 printf ("/set_number_at location %d to %d", p1
- start
, mcnt2
);
811 printf ("/wordbound");
815 printf ("/notwordbound");
827 printf ("/before_dot");
835 printf ("/after_dot");
839 printf ("/syntaxspec");
841 printf ("/%d", mcnt
);
845 printf ("/notsyntaxspec");
847 printf ("/%d", mcnt
);
852 printf ("/wordchar");
856 printf ("/notwordchar");
868 printf ("?%d", *(p
-1));
874 printf ("%d:\tend of pattern.\n", p
- start
);
879 print_compiled_pattern (bufp
)
880 struct re_pattern_buffer
*bufp
;
882 unsigned char *buffer
= bufp
->buffer
;
884 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
885 printf ("%ld bytes used/%ld bytes allocated.\n",
886 bufp
->used
, bufp
->allocated
);
888 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
890 printf ("fastmap: ");
891 print_fastmap (bufp
->fastmap
);
894 printf ("re_nsub: %d\t", bufp
->re_nsub
);
895 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
896 printf ("can_be_null: %d\t", bufp
->can_be_null
);
897 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
898 printf ("no_sub: %d\t", bufp
->no_sub
);
899 printf ("not_bol: %d\t", bufp
->not_bol
);
900 printf ("not_eol: %d\t", bufp
->not_eol
);
901 printf ("syntax: %lx\n", bufp
->syntax
);
902 /* Perhaps we should print the translate table? */
907 print_double_string (where
, string1
, size1
, string2
, size2
)
920 if (FIRST_STRING_P (where
))
922 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
923 putchar (string1
[this_char
]);
928 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
929 putchar (string2
[this_char
]);
940 #else /* not DEBUG */
945 # define DEBUG_STATEMENT(e)
946 # define DEBUG_PRINT1(x)
947 # define DEBUG_PRINT2(x1, x2)
948 # define DEBUG_PRINT3(x1, x2, x3)
949 # define DEBUG_PRINT4(x1, x2, x3, x4)
950 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
951 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
953 #endif /* not DEBUG */
955 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
956 also be assigned to arbitrarily: each pattern buffer stores its own
957 syntax, so it can be changed between regex compilations. */
958 /* This has no initializer because initialized variables in Emacs
959 become read-only after dumping. */
960 reg_syntax_t re_syntax_options
;
963 /* Specify the precise syntax of regexps for compilation. This provides
964 for compatibility for various utilities which historically have
965 different, incompatible syntaxes.
967 The argument SYNTAX is a bit mask comprised of the various bits
968 defined in gnu-regex.h. We return the old syntax. */
971 re_set_syntax (syntax
)
974 reg_syntax_t ret
= re_syntax_options
;
976 re_syntax_options
= syntax
;
978 if (syntax
& RE_DEBUG
)
980 else if (debug
) /* was on but now is not */
986 weak_alias (__re_set_syntax
, re_set_syntax
)
989 /* This table gives an error message for each of the error codes listed
990 in gnu-regex.h. Obviously the order here has to be same as there.
991 POSIX doesn't require that we do anything for REG_NOERROR,
992 but why not be nice? */
994 static const char *re_error_msgid
[] =
996 gettext_noop ("Success"), /* REG_NOERROR */
997 gettext_noop ("No match"), /* REG_NOMATCH */
998 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
999 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1000 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1001 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1002 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1003 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1004 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1005 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1006 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1007 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1008 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1009 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1010 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1011 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1012 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1015 /* Avoiding alloca during matching, to placate r_alloc. */
1017 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1018 searching and matching functions should not call alloca. On some
1019 systems, alloca is implemented in terms of malloc, and if we're
1020 using the relocating allocator routines, then malloc could cause a
1021 relocation, which might (if the strings being searched are in the
1022 ralloc heap) shift the data out from underneath the regexp
1025 Here's another reason to avoid allocation: Emacs
1026 processes input from X in a signal handler; processing X input may
1027 call malloc; if input arrives while a matching routine is calling
1028 malloc, then we're scrod. But Emacs can't just block input while
1029 calling matching routines; then we don't notice interrupts when
1030 they come in. So, Emacs blocks input around all regexp calls
1031 except the matching calls, which it leaves unprotected, in the
1032 faith that they will not malloc. */
1034 /* Normally, this is fine. */
1035 #define MATCH_MAY_ALLOCATE
1037 /* When using GNU C, we are not REALLY using the C alloca, no matter
1038 what config.h may say. So don't take precautions for it. */
1043 /* The match routines may not allocate if (1) they would do it with malloc
1044 and (2) it's not safe for them to use malloc.
1045 Note that if REL_ALLOC is defined, matching would not use malloc for the
1046 failure stack, but we would still use it for the register vectors;
1047 so REL_ALLOC should not affect this. */
1048 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1049 # undef MATCH_MAY_ALLOCATE
1053 /* Failure stack declarations and macros; both re_compile_fastmap and
1054 re_match_2 use a failure stack. These have to be macros because of
1055 REGEX_ALLOCATE_STACK. */
1058 /* Number of failure points for which to initially allocate space
1059 when matching. If this number is exceeded, we allocate more
1060 space, so it is not a hard limit. */
1061 #ifndef INIT_FAILURE_ALLOC
1062 # define INIT_FAILURE_ALLOC 5
1065 /* Roughly the maximum number of failure points on the stack. Would be
1066 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1067 This is a variable only so users of regex can assign to it; we never
1068 change it ourselves. */
1072 # if defined MATCH_MAY_ALLOCATE
1073 /* 4400 was enough to cause a crash on Alpha OSF/1,
1074 whose default stack limit is 2mb. */
1075 long int re_max_failures
= 4000;
1077 long int re_max_failures
= 2000;
1080 union fail_stack_elt
1082 unsigned char *pointer
;
1086 typedef union fail_stack_elt fail_stack_elt_t
;
1090 fail_stack_elt_t
*stack
;
1091 unsigned long int size
;
1092 unsigned long int avail
; /* Offset of next open position. */
1095 #else /* not INT_IS_16BIT */
1097 # if defined MATCH_MAY_ALLOCATE
1098 /* 4400 was enough to cause a crash on Alpha OSF/1,
1099 whose default stack limit is 2mb. */
1100 int re_max_failures
= 20000;
1102 int re_max_failures
= 2000;
1105 union fail_stack_elt
1107 unsigned char *pointer
;
1111 typedef union fail_stack_elt fail_stack_elt_t
;
1115 fail_stack_elt_t
*stack
;
1117 unsigned avail
; /* Offset of next open position. */
1120 #endif /* INT_IS_16BIT */
1122 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1123 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1124 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1127 /* Define macros to initialize and free the failure stack.
1128 Do `return -2' if the alloc fails. */
1130 #ifdef MATCH_MAY_ALLOCATE
1131 # define INIT_FAIL_STACK() \
1133 fail_stack.stack = (fail_stack_elt_t *) \
1134 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1136 if (fail_stack.stack == NULL) \
1139 fail_stack.size = INIT_FAILURE_ALLOC; \
1140 fail_stack.avail = 0; \
1143 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1145 # define INIT_FAIL_STACK() \
1147 fail_stack.avail = 0; \
1150 # define RESET_FAIL_STACK()
1154 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1156 Return 1 if succeeds, and 0 if either ran out of memory
1157 allocating space for it or it was already too large.
1159 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1161 #define DOUBLE_FAIL_STACK(fail_stack) \
1162 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1164 : ((fail_stack).stack = (fail_stack_elt_t *) \
1165 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1166 (fail_stack).size * sizeof (fail_stack_elt_t), \
1167 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1169 (fail_stack).stack == NULL \
1171 : ((fail_stack).size <<= 1, \
1175 /* Push pointer POINTER on FAIL_STACK.
1176 Return 1 if was able to do so and 0 if ran out of memory allocating
1178 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1179 ((FAIL_STACK_FULL () \
1180 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1182 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1185 /* Push a pointer value onto the failure stack.
1186 Assumes the variable `fail_stack'. Probably should only
1187 be called from within `PUSH_FAILURE_POINT'. */
1188 #define PUSH_FAILURE_POINTER(item) \
1189 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1191 /* This pushes an integer-valued item onto the failure stack.
1192 Assumes the variable `fail_stack'. Probably should only
1193 be called from within `PUSH_FAILURE_POINT'. */
1194 #define PUSH_FAILURE_INT(item) \
1195 fail_stack.stack[fail_stack.avail++].integer = (item)
1197 /* Push a fail_stack_elt_t value onto the failure stack.
1198 Assumes the variable `fail_stack'. Probably should only
1199 be called from within `PUSH_FAILURE_POINT'. */
1200 #define PUSH_FAILURE_ELT(item) \
1201 fail_stack.stack[fail_stack.avail++] = (item)
1203 /* These three POP... operations complement the three PUSH... operations.
1204 All assume that `fail_stack' is nonempty. */
1205 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1206 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1207 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1209 /* Used to omit pushing failure point id's when we're not debugging. */
1211 # define DEBUG_PUSH PUSH_FAILURE_INT
1212 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1214 # define DEBUG_PUSH(item)
1215 # define DEBUG_POP(item_addr)
1219 /* Push the information about the state we will need
1220 if we ever fail back to it.
1222 Requires variables fail_stack, regstart, regend, reg_info, and
1223 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1226 Does `return FAILURE_CODE' if runs out of memory. */
1228 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1230 char *destination; \
1231 /* Must be int, so when we don't save any registers, the arithmetic \
1232 of 0 + -1 isn't done as unsigned. */ \
1233 /* Can't be int, since there is not a shred of a guarantee that int \
1234 is wide enough to hold a value of something to which pointer can \
1236 active_reg_t this_reg; \
1238 DEBUG_STATEMENT (failure_id++); \
1239 DEBUG_STATEMENT (nfailure_points_pushed++); \
1240 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1241 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1242 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1244 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1245 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1247 /* Ensure we have enough space allocated for what we will push. */ \
1248 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1250 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1251 return failure_code; \
1253 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1254 (fail_stack).size); \
1255 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1258 /* Push the info, starting with the registers. */ \
1259 DEBUG_PRINT1 ("\n"); \
1262 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1265 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1266 DEBUG_STATEMENT (num_regs_pushed++); \
1268 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1269 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1271 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1272 PUSH_FAILURE_POINTER (regend[this_reg]); \
1274 DEBUG_PRINT2 (" info: %p\n ", \
1275 reg_info[this_reg].word.pointer); \
1276 DEBUG_PRINT2 (" match_null=%d", \
1277 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1278 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1279 DEBUG_PRINT2 (" matched_something=%d", \
1280 MATCHED_SOMETHING (reg_info[this_reg])); \
1281 DEBUG_PRINT2 (" ever_matched=%d", \
1282 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1283 DEBUG_PRINT1 ("\n"); \
1284 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1287 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1288 PUSH_FAILURE_INT (lowest_active_reg); \
1290 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1291 PUSH_FAILURE_INT (highest_active_reg); \
1293 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1294 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1295 PUSH_FAILURE_POINTER (pattern_place); \
1297 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1298 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1300 DEBUG_PRINT1 ("'\n"); \
1301 PUSH_FAILURE_POINTER (string_place); \
1303 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1304 DEBUG_PUSH (failure_id); \
1307 /* This is the number of items that are pushed and popped on the stack
1308 for each register. */
1309 #define NUM_REG_ITEMS 3
1311 /* Individual items aside from the registers. */
1313 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1315 # define NUM_NONREG_ITEMS 4
1318 /* We push at most this many items on the stack. */
1319 /* We used to use (num_regs - 1), which is the number of registers
1320 this regexp will save; but that was changed to 5
1321 to avoid stack overflow for a regexp with lots of parens. */
1322 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1324 /* We actually push this many items. */
1325 #define NUM_FAILURE_ITEMS \
1327 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1331 /* How many items can still be added to the stack without overflowing it. */
1332 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1335 /* Pops what PUSH_FAIL_STACK pushes.
1337 We restore into the parameters, all of which should be lvalues:
1338 STR -- the saved data position.
1339 PAT -- the saved pattern position.
1340 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1341 REGSTART, REGEND -- arrays of string positions.
1342 REG_INFO -- array of information about each subexpression.
1344 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1345 `pend', `string1', `size1', `string2', and `size2'. */
1347 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1349 DEBUG_STATEMENT (unsigned failure_id;) \
1350 active_reg_t this_reg; \
1351 const unsigned char *string_temp; \
1353 assert (!FAIL_STACK_EMPTY ()); \
1355 /* Remove failure points and point to how many regs pushed. */ \
1356 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1357 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1358 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1360 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1362 DEBUG_POP (&failure_id); \
1363 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1365 /* If the saved string location is NULL, it came from an \
1366 on_failure_keep_string_jump opcode, and we want to throw away the \
1367 saved NULL, thus retaining our current position in the string. */ \
1368 string_temp = POP_FAILURE_POINTER (); \
1369 if (string_temp != NULL) \
1370 str = (const char *) string_temp; \
1372 DEBUG_PRINT2 (" Popping string %p: `", str); \
1373 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1374 DEBUG_PRINT1 ("'\n"); \
1376 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1377 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1378 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1380 /* Restore register info. */ \
1381 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1382 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1384 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1385 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1388 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1390 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1392 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1393 DEBUG_PRINT2 (" info: %p\n", \
1394 reg_info[this_reg].word.pointer); \
1396 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1397 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1399 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1400 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1404 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1406 reg_info[this_reg].word.integer = 0; \
1407 regend[this_reg] = 0; \
1408 regstart[this_reg] = 0; \
1410 highest_active_reg = high_reg; \
1413 set_regs_matched_done = 0; \
1414 DEBUG_STATEMENT (nfailure_points_popped++); \
1415 } /* POP_FAILURE_POINT */
1419 /* Structure for per-register (a.k.a. per-group) information.
1420 Other register information, such as the
1421 starting and ending positions (which are addresses), and the list of
1422 inner groups (which is a bits list) are maintained in separate
1425 We are making a (strictly speaking) nonportable assumption here: that
1426 the compiler will pack our bit fields into something that fits into
1427 the type of `word', i.e., is something that fits into one item on the
1431 /* Declarations and macros for re_match_2. */
1435 fail_stack_elt_t word
;
1438 /* This field is one if this group can match the empty string,
1439 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1440 #define MATCH_NULL_UNSET_VALUE 3
1441 unsigned match_null_string_p
: 2;
1442 unsigned is_active
: 1;
1443 unsigned matched_something
: 1;
1444 unsigned ever_matched_something
: 1;
1446 } register_info_type
;
1448 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1449 #define IS_ACTIVE(R) ((R).bits.is_active)
1450 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1451 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1454 /* Call this when have matched a real character; it sets `matched' flags
1455 for the subexpressions which we are currently inside. Also records
1456 that those subexprs have matched. */
1457 #define SET_REGS_MATCHED() \
1460 if (!set_regs_matched_done) \
1463 set_regs_matched_done = 1; \
1464 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1466 MATCHED_SOMETHING (reg_info[r]) \
1467 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1474 /* Registers are set to a sentinel when they haven't yet matched. */
1475 static char reg_unset_dummy
;
1476 #define REG_UNSET_VALUE (®_unset_dummy)
1477 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1479 /* Subroutine declarations and macros for regex_compile. */
1481 static reg_errcode_t regex_compile
_RE_ARGS ((const char *pattern
, size_t size
,
1482 reg_syntax_t syntax
,
1483 struct re_pattern_buffer
*bufp
));
1484 static void store_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
, int arg
));
1485 static void store_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1486 int arg1
, int arg2
));
1487 static void insert_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1488 int arg
, unsigned char *end
));
1489 static void insert_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1490 int arg1
, int arg2
, unsigned char *end
));
1491 static boolean at_begline_loc_p
_RE_ARGS ((const char *pattern
, const char *p
,
1492 reg_syntax_t syntax
));
1493 static boolean at_endline_loc_p
_RE_ARGS ((const char *p
, const char *pend
,
1494 reg_syntax_t syntax
));
1495 static reg_errcode_t compile_range
_RE_ARGS ((const char **p_ptr
,
1498 reg_syntax_t syntax
,
1501 /* Fetch the next character in the uncompiled pattern---translating it
1502 if necessary. Also cast from a signed character in the constant
1503 string passed to us by the user to an unsigned char that we can use
1504 as an array index (in, e.g., `translate'). */
1506 # define PATFETCH(c) \
1507 do {if (p == pend) return REG_EEND; \
1508 c = (unsigned char) *p++; \
1509 if (translate) c = (unsigned char) translate[c]; \
1513 /* Fetch the next character in the uncompiled pattern, with no
1515 #define PATFETCH_RAW(c) \
1516 do {if (p == pend) return REG_EEND; \
1517 c = (unsigned char) *p++; \
1520 /* Go backwards one character in the pattern. */
1521 #define PATUNFETCH p--
1524 /* If `translate' is non-null, return translate[D], else just D. We
1525 cast the subscript to translate because some data is declared as
1526 `char *', to avoid warnings when a string constant is passed. But
1527 when we use a character as a subscript we must make it unsigned. */
1529 # define TRANSLATE(d) \
1530 (translate ? (char) translate[(unsigned char) (d)] : (d))
1534 /* Macros for outputting the compiled pattern into `buffer'. */
1536 /* If the buffer isn't allocated when it comes in, use this. */
1537 #define INIT_BUF_SIZE 32
1539 /* Make sure we have at least N more bytes of space in buffer. */
1540 #define GET_BUFFER_SPACE(n) \
1541 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1544 /* Make sure we have one more byte of buffer space and then add C to it. */
1545 #define BUF_PUSH(c) \
1547 GET_BUFFER_SPACE (1); \
1548 *b++ = (unsigned char) (c); \
1552 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1553 #define BUF_PUSH_2(c1, c2) \
1555 GET_BUFFER_SPACE (2); \
1556 *b++ = (unsigned char) (c1); \
1557 *b++ = (unsigned char) (c2); \
1561 /* As with BUF_PUSH_2, except for three bytes. */
1562 #define BUF_PUSH_3(c1, c2, c3) \
1564 GET_BUFFER_SPACE (3); \
1565 *b++ = (unsigned char) (c1); \
1566 *b++ = (unsigned char) (c2); \
1567 *b++ = (unsigned char) (c3); \
1571 /* Store a jump with opcode OP at LOC to location TO. We store a
1572 relative address offset by the three bytes the jump itself occupies. */
1573 #define STORE_JUMP(op, loc, to) \
1574 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1576 /* Likewise, for a two-argument jump. */
1577 #define STORE_JUMP2(op, loc, to, arg) \
1578 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1580 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1581 #define INSERT_JUMP(op, loc, to) \
1582 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1584 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1585 #define INSERT_JUMP2(op, loc, to, arg) \
1586 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1589 /* This is not an arbitrary limit: the arguments which represent offsets
1590 into the pattern are two bytes long. So if 2^16 bytes turns out to
1591 be too small, many things would have to change. */
1592 /* Any other compiler which, like MSC, has allocation limit below 2^16
1593 bytes will have to use approach similar to what was done below for
1594 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1595 reallocating to 0 bytes. Such thing is not going to work too well.
1596 You have been warned!! */
1597 #if defined _MSC_VER && !defined WIN32
1598 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1599 The REALLOC define eliminates a flurry of conversion warnings,
1600 but is not required. */
1601 # define MAX_BUF_SIZE 65500L
1602 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1604 # define MAX_BUF_SIZE (1L << 16)
1605 # define REALLOC(p,s) realloc ((p), (s))
1608 /* Extend the buffer by twice its current size via realloc and
1609 reset the pointers that pointed into the old block to point to the
1610 correct places in the new one. If extending the buffer results in it
1611 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1612 #define EXTEND_BUFFER() \
1614 unsigned char *old_buffer = bufp->buffer; \
1615 if (bufp->allocated == MAX_BUF_SIZE) \
1617 bufp->allocated <<= 1; \
1618 if (bufp->allocated > MAX_BUF_SIZE) \
1619 bufp->allocated = MAX_BUF_SIZE; \
1620 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1621 if (bufp->buffer == NULL) \
1622 return REG_ESPACE; \
1623 /* If the buffer moved, move all the pointers into it. */ \
1624 if (old_buffer != bufp->buffer) \
1626 b = (b - old_buffer) + bufp->buffer; \
1627 begalt = (begalt - old_buffer) + bufp->buffer; \
1628 if (fixup_alt_jump) \
1629 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1631 laststart = (laststart - old_buffer) + bufp->buffer; \
1632 if (pending_exact) \
1633 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1638 /* Since we have one byte reserved for the register number argument to
1639 {start,stop}_memory, the maximum number of groups we can report
1640 things about is what fits in that byte. */
1641 #define MAX_REGNUM 255
1643 /* But patterns can have more than `MAX_REGNUM' registers. We just
1644 ignore the excess. */
1645 typedef unsigned regnum_t
;
1648 /* Macros for the compile stack. */
1650 /* Since offsets can go either forwards or backwards, this type needs to
1651 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1652 /* int may be not enough when sizeof(int) == 2. */
1653 typedef long pattern_offset_t
;
1657 pattern_offset_t begalt_offset
;
1658 pattern_offset_t fixup_alt_jump
;
1659 pattern_offset_t inner_group_offset
;
1660 pattern_offset_t laststart_offset
;
1662 } compile_stack_elt_t
;
1667 compile_stack_elt_t
*stack
;
1669 unsigned avail
; /* Offset of next open position. */
1670 } compile_stack_type
;
1673 #define INIT_COMPILE_STACK_SIZE 32
1675 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1676 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1678 /* The next available element. */
1679 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1682 /* Set the bit for character C in a list. */
1683 #define SET_LIST_BIT(c) \
1684 (b[((unsigned char) (c)) / BYTEWIDTH] \
1685 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1688 /* Get the next unsigned number in the uncompiled pattern. */
1689 #define GET_UNSIGNED_NUMBER(num) \
1693 while (ISDIGIT (c)) \
1697 num = num * 10 + c - '0'; \
1705 /* Use this only if they have btowc(), since wctype() is used below
1706 together with btowc(). btowc() is defined in the 1994 Amendment 1
1707 to ISO C and may not be present on systems where we have wchar.h
1709 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_BTOWC)
1710 /* The GNU C library provides support for user-defined character classes
1711 and the functions from ISO C amendement 1. */
1712 # ifdef CHARCLASS_NAME_MAX
1713 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1715 /* This shouldn't happen but some implementation might still have this
1716 problem. Use a reasonable default value. */
1717 # define CHAR_CLASS_MAX_LENGTH 256
1721 # define IS_CHAR_CLASS(string) __wctype (string)
1723 # define IS_CHAR_CLASS(string) wctype (string)
1726 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1728 # define IS_CHAR_CLASS(string) \
1729 (STREQ (string, "alpha") || STREQ (string, "upper") \
1730 || STREQ (string, "lower") || STREQ (string, "digit") \
1731 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1732 || STREQ (string, "space") || STREQ (string, "print") \
1733 || STREQ (string, "punct") || STREQ (string, "graph") \
1734 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1737 #ifndef MATCH_MAY_ALLOCATE
1739 /* If we cannot allocate large objects within re_match_2_internal,
1740 we make the fail stack and register vectors global.
1741 The fail stack, we grow to the maximum size when a regexp
1743 The register vectors, we adjust in size each time we
1744 compile a regexp, according to the number of registers it needs. */
1746 static fail_stack_type fail_stack
;
1748 /* Size with which the following vectors are currently allocated.
1749 That is so we can make them bigger as needed,
1750 but never make them smaller. */
1751 static int regs_allocated_size
;
1753 static const char ** regstart
, ** regend
;
1754 static const char ** old_regstart
, ** old_regend
;
1755 static const char **best_regstart
, **best_regend
;
1756 static register_info_type
*reg_info
;
1757 static const char **reg_dummy
;
1758 static register_info_type
*reg_info_dummy
;
1760 /* Make the register vectors big enough for NUM_REGS registers,
1761 but don't make them smaller. */
1764 regex_grow_registers (num_regs
)
1767 if (num_regs
> regs_allocated_size
)
1769 RETALLOC_IF (regstart
, num_regs
, const char *);
1770 RETALLOC_IF (regend
, num_regs
, const char *);
1771 RETALLOC_IF (old_regstart
, num_regs
, const char *);
1772 RETALLOC_IF (old_regend
, num_regs
, const char *);
1773 RETALLOC_IF (best_regstart
, num_regs
, const char *);
1774 RETALLOC_IF (best_regend
, num_regs
, const char *);
1775 RETALLOC_IF (reg_info
, num_regs
, register_info_type
);
1776 RETALLOC_IF (reg_dummy
, num_regs
, const char *);
1777 RETALLOC_IF (reg_info_dummy
, num_regs
, register_info_type
);
1779 regs_allocated_size
= num_regs
;
1783 #endif /* not MATCH_MAY_ALLOCATE */
1785 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
1789 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1790 Returns one of error codes defined in `gnu-regex.h', or zero for success.
1792 Assumes the `allocated' (and perhaps `buffer') and `translate'
1793 fields are set in BUFP on entry.
1795 If it succeeds, results are put in BUFP (if it returns an error, the
1796 contents of BUFP are undefined):
1797 `buffer' is the compiled pattern;
1798 `syntax' is set to SYNTAX;
1799 `used' is set to the length of the compiled pattern;
1800 `fastmap_accurate' is zero;
1801 `re_nsub' is the number of subexpressions in PATTERN;
1802 `not_bol' and `not_eol' are zero;
1804 The `fastmap' and `newline_anchor' fields are neither
1805 examined nor set. */
1807 /* Return, freeing storage we allocated. */
1808 #define FREE_STACK_RETURN(value) \
1809 return (free (compile_stack.stack), value)
1811 static reg_errcode_t
1812 regex_compile (pattern
, size
, syntax
, bufp
)
1813 const char *pattern
;
1815 reg_syntax_t syntax
;
1816 struct re_pattern_buffer
*bufp
;
1818 /* We fetch characters from PATTERN here. Even though PATTERN is
1819 `char *' (i.e., signed), we declare these variables as unsigned, so
1820 they can be reliably used as array indices. */
1821 register unsigned char c
, c1
;
1823 /* A random temporary spot in PATTERN. */
1826 /* Points to the end of the buffer, where we should append. */
1827 register unsigned char *b
;
1829 /* Keeps track of unclosed groups. */
1830 compile_stack_type compile_stack
;
1832 /* Points to the current (ending) position in the pattern. */
1833 const char *p
= pattern
;
1834 const char *pend
= pattern
+ size
;
1836 /* How to translate the characters in the pattern. */
1837 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
1839 /* Address of the count-byte of the most recently inserted `exactn'
1840 command. This makes it possible to tell if a new exact-match
1841 character can be added to that command or if the character requires
1842 a new `exactn' command. */
1843 unsigned char *pending_exact
= 0;
1845 /* Address of start of the most recently finished expression.
1846 This tells, e.g., postfix * where to find the start of its
1847 operand. Reset at the beginning of groups and alternatives. */
1848 unsigned char *laststart
= 0;
1850 /* Address of beginning of regexp, or inside of last group. */
1851 unsigned char *begalt
;
1853 /* Place in the uncompiled pattern (i.e., the {) to
1854 which to go back if the interval is invalid. */
1855 const char *beg_interval
;
1857 /* Address of the place where a forward jump should go to the end of
1858 the containing expression. Each alternative of an `or' -- except the
1859 last -- ends with a forward jump of this sort. */
1860 unsigned char *fixup_alt_jump
= 0;
1862 /* Counts open-groups as they are encountered. Remembered for the
1863 matching close-group on the compile stack, so the same register
1864 number is put in the stop_memory as the start_memory. */
1865 regnum_t regnum
= 0;
1868 DEBUG_PRINT1 ("\nCompiling pattern: ");
1871 unsigned debug_count
;
1873 for (debug_count
= 0; debug_count
< size
; debug_count
++)
1874 putchar (pattern
[debug_count
]);
1879 /* Initialize the compile stack. */
1880 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
1881 if (compile_stack
.stack
== NULL
)
1884 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
1885 compile_stack
.avail
= 0;
1887 /* Initialize the pattern buffer. */
1888 bufp
->syntax
= syntax
;
1889 bufp
->fastmap_accurate
= 0;
1890 bufp
->not_bol
= bufp
->not_eol
= 0;
1892 /* Set `used' to zero, so that if we return an error, the pattern
1893 printer (for debugging) will think there's no pattern. We reset it
1897 /* Always count groups, whether or not bufp->no_sub is set. */
1900 #if !defined emacs && !defined SYNTAX_TABLE
1901 /* Initialize the syntax table. */
1902 init_syntax_once ();
1905 if (bufp
->allocated
== 0)
1908 { /* If zero allocated, but buffer is non-null, try to realloc
1909 enough space. This loses if buffer's address is bogus, but
1910 that is the user's responsibility. */
1911 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
1914 { /* Caller did not allocate a buffer. Do it for them. */
1915 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
1917 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
1919 bufp
->allocated
= INIT_BUF_SIZE
;
1922 begalt
= b
= bufp
->buffer
;
1924 /* Loop through the uncompiled pattern until we're at the end. */
1933 if ( /* If at start of pattern, it's an operator. */
1935 /* If context independent, it's an operator. */
1936 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1937 /* Otherwise, depends on what's come before. */
1938 || at_begline_loc_p (pattern
, p
, syntax
))
1948 if ( /* If at end of pattern, it's an operator. */
1950 /* If context independent, it's an operator. */
1951 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1952 /* Otherwise, depends on what's next. */
1953 || at_endline_loc_p (p
, pend
, syntax
))
1963 if ((syntax
& RE_BK_PLUS_QM
)
1964 || (syntax
& RE_LIMITED_OPS
))
1968 /* If there is no previous pattern... */
1971 if (syntax
& RE_CONTEXT_INVALID_OPS
)
1972 FREE_STACK_RETURN (REG_BADRPT
);
1973 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
1978 /* Are we optimizing this jump? */
1979 boolean keep_string_p
= false;
1981 /* 1 means zero (many) matches is allowed. */
1982 char zero_times_ok
= 0, many_times_ok
= 0;
1984 /* If there is a sequence of repetition chars, collapse it
1985 down to just one (the right one). We can't combine
1986 interval operators with these because of, e.g., `a{2}*',
1987 which should only match an even number of `a's. */
1991 zero_times_ok
|= c
!= '+';
1992 many_times_ok
|= c
!= '?';
2000 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
2003 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
2005 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2008 if (!(c1
== '+' || c1
== '?'))
2023 /* If we get here, we found another repeat character. */
2026 /* Star, etc. applied to an empty pattern is equivalent
2027 to an empty pattern. */
2031 /* Now we know whether or not zero matches is allowed
2032 and also whether or not two or more matches is allowed. */
2034 { /* More than one repetition is allowed, so put in at the
2035 end a backward relative jump from `b' to before the next
2036 jump we're going to put in below (which jumps from
2037 laststart to after this jump).
2039 But if we are at the `*' in the exact sequence `.*\n',
2040 insert an unconditional jump backwards to the .,
2041 instead of the beginning of the loop. This way we only
2042 push a failure point once, instead of every time
2043 through the loop. */
2044 assert (p
- 1 > pattern
);
2046 /* Allocate the space for the jump. */
2047 GET_BUFFER_SPACE (3);
2049 /* We know we are not at the first character of the pattern,
2050 because laststart was nonzero. And we've already
2051 incremented `p', by the way, to be the character after
2052 the `*'. Do we have to do something analogous here
2053 for null bytes, because of RE_DOT_NOT_NULL? */
2054 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
2056 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
2057 && !(syntax
& RE_DOT_NEWLINE
))
2058 { /* We have .*\n. */
2059 STORE_JUMP (jump
, b
, laststart
);
2060 keep_string_p
= true;
2063 /* Anything else. */
2064 STORE_JUMP (maybe_pop_jump
, b
, laststart
- 3);
2066 /* We've added more stuff to the buffer. */
2070 /* On failure, jump from laststart to b + 3, which will be the
2071 end of the buffer after this jump is inserted. */
2072 GET_BUFFER_SPACE (3);
2073 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
2081 /* At least one repetition is required, so insert a
2082 `dummy_failure_jump' before the initial
2083 `on_failure_jump' instruction of the loop. This
2084 effects a skip over that instruction the first time
2085 we hit that loop. */
2086 GET_BUFFER_SPACE (3);
2087 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+ 6);
2102 boolean had_char_class
= false;
2104 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2106 /* Ensure that we have enough space to push a charset: the
2107 opcode, the length count, and the bitset; 34 bytes in all. */
2108 GET_BUFFER_SPACE (34);
2112 /* We test `*p == '^' twice, instead of using an if
2113 statement, so we only need one BUF_PUSH. */
2114 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2118 /* Remember the first position in the bracket expression. */
2121 /* Push the number of bytes in the bitmap. */
2122 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2124 /* Clear the whole map. */
2125 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2127 /* charset_not matches newline according to a syntax bit. */
2128 if ((re_opcode_t
) b
[-2] == charset_not
2129 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2130 SET_LIST_BIT ('\n');
2132 /* Read in characters and ranges, setting map bits. */
2135 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2139 /* \ might escape characters inside [...] and [^...]. */
2140 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2142 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2149 /* Could be the end of the bracket expression. If it's
2150 not (i.e., when the bracket expression is `[]' so
2151 far), the ']' character bit gets set way below. */
2152 if (c
== ']' && p
!= p1
+ 1)
2155 /* Look ahead to see if it's a range when the last thing
2156 was a character class. */
2157 if (had_char_class
&& c
== '-' && *p
!= ']')
2158 FREE_STACK_RETURN (REG_ERANGE
);
2160 /* Look ahead to see if it's a range when the last thing
2161 was a character: if this is a hyphen not at the
2162 beginning or the end of a list, then it's the range
2165 && !(p
- 2 >= pattern
&& p
[-2] == '[')
2166 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
2170 = compile_range (&p
, pend
, translate
, syntax
, b
);
2171 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2174 else if (p
[0] == '-' && p
[1] != ']')
2175 { /* This handles ranges made up of characters only. */
2178 /* Move past the `-'. */
2181 ret
= compile_range (&p
, pend
, translate
, syntax
, b
);
2182 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2185 /* See if we're at the beginning of a possible character
2188 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2189 { /* Leave room for the null. */
2190 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2195 /* If pattern is `[[:'. */
2196 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2201 if ((c
== ':' && *p
== ']') || p
== pend
2202 || c1
== CHAR_CLASS_MAX_LENGTH
)
2208 /* If isn't a word bracketed by `[:' and `:]':
2209 undo the ending character, the letters, and leave
2210 the leading `:' and `[' (but set bits for them). */
2211 if (c
== ':' && *p
== ']')
2213 /* CYGNUS LOCAL: Skip this code if we don't have btowc(). btowc() is */
2214 /* defined in the 1994 Amendment 1 to ISO C and may not be present on */
2215 /* systems where we have wchar.h and wctype.h. */
2216 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_BTOWC)
2217 boolean is_lower
= STREQ (str
, "lower");
2218 boolean is_upper
= STREQ (str
, "upper");
2222 wt
= IS_CHAR_CLASS (str
);
2224 FREE_STACK_RETURN (REG_ECTYPE
);
2226 /* Throw away the ] at the end of the character
2230 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2232 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
2235 if (__iswctype (__btowc (ch
), wt
))
2238 if (iswctype (btowc (ch
), wt
))
2242 if (translate
&& (is_upper
|| is_lower
)
2243 && (ISUPPER (ch
) || ISLOWER (ch
)))
2247 had_char_class
= true;
2250 boolean is_alnum
= STREQ (str
, "alnum");
2251 boolean is_alpha
= STREQ (str
, "alpha");
2252 boolean is_blank
= STREQ (str
, "blank");
2253 boolean is_cntrl
= STREQ (str
, "cntrl");
2254 boolean is_digit
= STREQ (str
, "digit");
2255 boolean is_graph
= STREQ (str
, "graph");
2256 boolean is_lower
= STREQ (str
, "lower");
2257 boolean is_print
= STREQ (str
, "print");
2258 boolean is_punct
= STREQ (str
, "punct");
2259 boolean is_space
= STREQ (str
, "space");
2260 boolean is_upper
= STREQ (str
, "upper");
2261 boolean is_xdigit
= STREQ (str
, "xdigit");
2263 if (!IS_CHAR_CLASS (str
))
2264 FREE_STACK_RETURN (REG_ECTYPE
);
2266 /* Throw away the ] at the end of the character
2270 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2272 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
2274 /* This was split into 3 if's to
2275 avoid an arbitrary limit in some compiler. */
2276 if ( (is_alnum
&& ISALNUM (ch
))
2277 || (is_alpha
&& ISALPHA (ch
))
2278 || (is_blank
&& ISBLANK (ch
))
2279 || (is_cntrl
&& ISCNTRL (ch
)))
2281 if ( (is_digit
&& ISDIGIT (ch
))
2282 || (is_graph
&& ISGRAPH (ch
))
2283 || (is_lower
&& ISLOWER (ch
))
2284 || (is_print
&& ISPRINT (ch
)))
2286 if ( (is_punct
&& ISPUNCT (ch
))
2287 || (is_space
&& ISSPACE (ch
))
2288 || (is_upper
&& ISUPPER (ch
))
2289 || (is_xdigit
&& ISXDIGIT (ch
)))
2291 if ( translate
&& (is_upper
|| is_lower
)
2292 && (ISUPPER (ch
) || ISLOWER (ch
)))
2295 had_char_class
= true;
2296 #endif /* libc || wctype.h */
2305 had_char_class
= false;
2310 had_char_class
= false;
2315 /* Discard any (non)matching list bytes that are all 0 at the
2316 end of the map. Decrease the map-length byte too. */
2317 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
2325 if (syntax
& RE_NO_BK_PARENS
)
2332 if (syntax
& RE_NO_BK_PARENS
)
2339 if (syntax
& RE_NEWLINE_ALT
)
2346 if (syntax
& RE_NO_BK_VBAR
)
2353 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
2354 goto handle_interval
;
2360 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2362 /* Do not translate the character after the \, so that we can
2363 distinguish, e.g., \B from \b, even if we normally would
2364 translate, e.g., B to b. */
2370 if (syntax
& RE_NO_BK_PARENS
)
2371 goto normal_backslash
;
2377 if (COMPILE_STACK_FULL
)
2379 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
2380 compile_stack_elt_t
);
2381 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
2383 compile_stack
.size
<<= 1;
2386 /* These are the values to restore when we hit end of this
2387 group. They are all relative offsets, so that if the
2388 whole pattern moves because of realloc, they will still
2390 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
2391 COMPILE_STACK_TOP
.fixup_alt_jump
2392 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
2393 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
2394 COMPILE_STACK_TOP
.regnum
= regnum
;
2396 /* We will eventually replace the 0 with the number of
2397 groups inner to this one. But do not push a
2398 start_memory for groups beyond the last one we can
2399 represent in the compiled pattern. */
2400 if (regnum
<= MAX_REGNUM
)
2402 COMPILE_STACK_TOP
.inner_group_offset
= b
- bufp
->buffer
+ 2;
2403 BUF_PUSH_3 (start_memory
, regnum
, 0);
2406 compile_stack
.avail
++;
2411 /* If we've reached MAX_REGNUM groups, then this open
2412 won't actually generate any code, so we'll have to
2413 clear pending_exact explicitly. */
2419 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
2421 if (COMPILE_STACK_EMPTY
)
2423 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2424 goto normal_backslash
;
2426 FREE_STACK_RETURN (REG_ERPAREN
);
2431 { /* Push a dummy failure point at the end of the
2432 alternative for a possible future
2433 `pop_failure_jump' to pop. See comments at
2434 `push_dummy_failure' in `re_match_2'. */
2435 BUF_PUSH (push_dummy_failure
);
2437 /* We allocated space for this jump when we assigned
2438 to `fixup_alt_jump', in the `handle_alt' case below. */
2439 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
2442 /* See similar code for backslashed left paren above. */
2443 if (COMPILE_STACK_EMPTY
)
2445 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2448 FREE_STACK_RETURN (REG_ERPAREN
);
2451 /* Since we just checked for an empty stack above, this
2452 ``can't happen''. */
2453 assert (compile_stack
.avail
!= 0);
2455 /* We don't just want to restore into `regnum', because
2456 later groups should continue to be numbered higher,
2457 as in `(ab)c(de)' -- the second group is #2. */
2458 regnum_t this_group_regnum
;
2460 compile_stack
.avail
--;
2461 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
2463 = COMPILE_STACK_TOP
.fixup_alt_jump
2464 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
2466 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
2467 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
2468 /* If we've reached MAX_REGNUM groups, then this open
2469 won't actually generate any code, so we'll have to
2470 clear pending_exact explicitly. */
2473 /* We're at the end of the group, so now we know how many
2474 groups were inside this one. */
2475 if (this_group_regnum
<= MAX_REGNUM
)
2477 unsigned char *inner_group_loc
2478 = bufp
->buffer
+ COMPILE_STACK_TOP
.inner_group_offset
;
2480 *inner_group_loc
= regnum
- this_group_regnum
;
2481 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
2482 regnum
- this_group_regnum
);
2488 case '|': /* `\|'. */
2489 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
2490 goto normal_backslash
;
2492 if (syntax
& RE_LIMITED_OPS
)
2495 /* Insert before the previous alternative a jump which
2496 jumps to this alternative if the former fails. */
2497 GET_BUFFER_SPACE (3);
2498 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
2502 /* The alternative before this one has a jump after it
2503 which gets executed if it gets matched. Adjust that
2504 jump so it will jump to this alternative's analogous
2505 jump (put in below, which in turn will jump to the next
2506 (if any) alternative's such jump, etc.). The last such
2507 jump jumps to the correct final destination. A picture:
2513 If we are at `b', then fixup_alt_jump right now points to a
2514 three-byte space after `a'. We'll put in the jump, set
2515 fixup_alt_jump to right after `b', and leave behind three
2516 bytes which we'll fill in when we get to after `c'. */
2519 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2521 /* Mark and leave space for a jump after this alternative,
2522 to be filled in later either by next alternative or
2523 when know we're at the end of a series of alternatives. */
2525 GET_BUFFER_SPACE (3);
2534 /* If \{ is a literal. */
2535 if (!(syntax
& RE_INTERVALS
)
2536 /* If we're at `\{' and it's not the open-interval
2538 || ((syntax
& RE_INTERVALS
) && (syntax
& RE_NO_BK_BRACES
))
2539 || (p
- 2 == pattern
&& p
== pend
))
2540 goto normal_backslash
;
2544 /* If got here, then the syntax allows intervals. */
2546 /* At least (most) this many matches must be made. */
2547 int lower_bound
= -1, upper_bound
= -1;
2549 beg_interval
= p
- 1;
2553 if (syntax
& RE_NO_BK_BRACES
)
2554 goto unfetch_interval
;
2556 FREE_STACK_RETURN (REG_EBRACE
);
2559 GET_UNSIGNED_NUMBER (lower_bound
);
2563 GET_UNSIGNED_NUMBER (upper_bound
);
2564 if (upper_bound
< 0) upper_bound
= RE_DUP_MAX
;
2567 /* Interval such as `{1}' => match exactly once. */
2568 upper_bound
= lower_bound
;
2570 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
2571 || lower_bound
> upper_bound
)
2573 if (syntax
& RE_NO_BK_BRACES
)
2574 goto unfetch_interval
;
2576 FREE_STACK_RETURN (REG_BADBR
);
2579 if (!(syntax
& RE_NO_BK_BRACES
))
2581 if (c
!= '\\') FREE_STACK_RETURN (REG_EBRACE
);
2588 if (syntax
& RE_NO_BK_BRACES
)
2589 goto unfetch_interval
;
2591 FREE_STACK_RETURN (REG_BADBR
);
2594 /* We just parsed a valid interval. */
2596 /* If it's invalid to have no preceding re. */
2599 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2600 FREE_STACK_RETURN (REG_BADRPT
);
2601 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
2604 goto unfetch_interval
;
2607 /* If the upper bound is zero, don't want to succeed at
2608 all; jump from `laststart' to `b + 3', which will be
2609 the end of the buffer after we insert the jump. */
2610 if (upper_bound
== 0)
2612 GET_BUFFER_SPACE (3);
2613 INSERT_JUMP (jump
, laststart
, b
+ 3);
2617 /* Otherwise, we have a nontrivial interval. When
2618 we're all done, the pattern will look like:
2619 set_number_at <jump count> <upper bound>
2620 set_number_at <succeed_n count> <lower bound>
2621 succeed_n <after jump addr> <succeed_n count>
2623 jump_n <succeed_n addr> <jump count>
2624 (The upper bound and `jump_n' are omitted if
2625 `upper_bound' is 1, though.) */
2627 { /* If the upper bound is > 1, we need to insert
2628 more at the end of the loop. */
2629 unsigned nbytes
= 10 + (upper_bound
> 1) * 10;
2631 GET_BUFFER_SPACE (nbytes
);
2633 /* Initialize lower bound of the `succeed_n', even
2634 though it will be set during matching by its
2635 attendant `set_number_at' (inserted next),
2636 because `re_compile_fastmap' needs to know.
2637 Jump to the `jump_n' we might insert below. */
2638 INSERT_JUMP2 (succeed_n
, laststart
,
2639 b
+ 5 + (upper_bound
> 1) * 5,
2643 /* Code to initialize the lower bound. Insert
2644 before the `succeed_n'. The `5' is the last two
2645 bytes of this `set_number_at', plus 3 bytes of
2646 the following `succeed_n'. */
2647 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
2650 if (upper_bound
> 1)
2651 { /* More than one repetition is allowed, so
2652 append a backward jump to the `succeed_n'
2653 that starts this interval.
2655 When we've reached this during matching,
2656 we'll have matched the interval once, so
2657 jump back only `upper_bound - 1' times. */
2658 STORE_JUMP2 (jump_n
, b
, laststart
+ 5,
2662 /* The location we want to set is the second
2663 parameter of the `jump_n'; that is `b-2' as
2664 an absolute address. `laststart' will be
2665 the `set_number_at' we're about to insert;
2666 `laststart+3' the number to set, the source
2667 for the relative address. But we are
2668 inserting into the middle of the pattern --
2669 so everything is getting moved up by 5.
2670 Conclusion: (b - 2) - (laststart + 3) + 5,
2671 i.e., b - laststart.
2673 We insert this at the beginning of the loop
2674 so that if we fail during matching, we'll
2675 reinitialize the bounds. */
2676 insert_op2 (set_number_at
, laststart
, b
- laststart
,
2677 upper_bound
- 1, b
);
2682 beg_interval
= NULL
;
2687 /* If an invalid interval, match the characters as literals. */
2688 assert (beg_interval
);
2690 beg_interval
= NULL
;
2692 /* normal_char and normal_backslash need `c'. */
2695 if (!(syntax
& RE_NO_BK_BRACES
))
2697 if (p
> pattern
&& p
[-1] == '\\')
2698 goto normal_backslash
;
2703 /* There is no way to specify the before_dot and after_dot
2704 operators. rms says this is ok. --karl */
2712 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
2718 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
2724 if (syntax
& RE_NO_GNU_OPS
)
2727 BUF_PUSH (wordchar
);
2732 if (syntax
& RE_NO_GNU_OPS
)
2735 BUF_PUSH (notwordchar
);
2740 if (syntax
& RE_NO_GNU_OPS
)
2746 if (syntax
& RE_NO_GNU_OPS
)
2752 if (syntax
& RE_NO_GNU_OPS
)
2754 BUF_PUSH (wordbound
);
2758 if (syntax
& RE_NO_GNU_OPS
)
2760 BUF_PUSH (notwordbound
);
2764 if (syntax
& RE_NO_GNU_OPS
)
2770 if (syntax
& RE_NO_GNU_OPS
)
2775 case '1': case '2': case '3': case '4': case '5':
2776 case '6': case '7': case '8': case '9':
2777 if (syntax
& RE_NO_BK_REFS
)
2783 FREE_STACK_RETURN (REG_ESUBREG
);
2785 /* Can't back reference to a subexpression if inside of it. */
2786 if (group_in_compile_stack (compile_stack
, (regnum_t
) c1
))
2790 BUF_PUSH_2 (duplicate
, c1
);
2796 if (syntax
& RE_BK_PLUS_QM
)
2799 goto normal_backslash
;
2803 /* You might think it would be useful for \ to mean
2804 not to translate; but if we don't translate it
2805 it will never match anything. */
2813 /* Expects the character in `c'. */
2815 /* If no exactn currently being built. */
2818 /* If last exactn not at current position. */
2819 || pending_exact
+ *pending_exact
+ 1 != b
2821 /* We have only one byte following the exactn for the count. */
2822 || *pending_exact
== (1 << BYTEWIDTH
) - 1
2824 /* If followed by a repetition operator. */
2825 || *p
== '*' || *p
== '^'
2826 || ((syntax
& RE_BK_PLUS_QM
)
2827 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
2828 : (*p
== '+' || *p
== '?'))
2829 || ((syntax
& RE_INTERVALS
)
2830 && ((syntax
& RE_NO_BK_BRACES
)
2832 : (p
[0] == '\\' && p
[1] == '{'))))
2834 /* Start building a new exactn. */
2838 BUF_PUSH_2 (exactn
, 0);
2839 pending_exact
= b
- 1;
2846 } /* while p != pend */
2849 /* Through the pattern now. */
2852 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2854 if (!COMPILE_STACK_EMPTY
)
2855 FREE_STACK_RETURN (REG_EPAREN
);
2857 /* If we don't want backtracking, force success
2858 the first time we reach the end of the compiled pattern. */
2859 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
2862 free (compile_stack
.stack
);
2864 /* We have succeeded; set the length of the buffer. */
2865 bufp
->used
= b
- bufp
->buffer
;
2870 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2871 print_compiled_pattern (bufp
);
2875 #ifndef MATCH_MAY_ALLOCATE
2876 /* Initialize the failure stack to the largest possible stack. This
2877 isn't necessary unless we're trying to avoid calling alloca in
2878 the search and match routines. */
2880 int num_regs
= bufp
->re_nsub
+ 1;
2882 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2883 is strictly greater than re_max_failures, the largest possible stack
2884 is 2 * re_max_failures failure points. */
2885 if (fail_stack
.size
< (2 * re_max_failures
* MAX_FAILURE_ITEMS
))
2887 fail_stack
.size
= (2 * re_max_failures
* MAX_FAILURE_ITEMS
);
2890 if (! fail_stack
.stack
)
2892 = (fail_stack_elt_t
*) xmalloc (fail_stack
.size
2893 * sizeof (fail_stack_elt_t
));
2896 = (fail_stack_elt_t
*) xrealloc (fail_stack
.stack
,
2898 * sizeof (fail_stack_elt_t
)));
2899 # else /* not emacs */
2900 if (! fail_stack
.stack
)
2902 = (fail_stack_elt_t
*) malloc (fail_stack
.size
2903 * sizeof (fail_stack_elt_t
));
2906 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
2908 * sizeof (fail_stack_elt_t
)));
2909 # endif /* not emacs */
2912 regex_grow_registers (num_regs
);
2914 #endif /* not MATCH_MAY_ALLOCATE */
2917 } /* regex_compile */
2919 /* Subroutines for `regex_compile'. */
2921 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2924 store_op1 (op
, loc
, arg
)
2929 *loc
= (unsigned char) op
;
2930 STORE_NUMBER (loc
+ 1, arg
);
2934 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2937 store_op2 (op
, loc
, arg1
, arg2
)
2942 *loc
= (unsigned char) op
;
2943 STORE_NUMBER (loc
+ 1, arg1
);
2944 STORE_NUMBER (loc
+ 3, arg2
);
2948 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2949 for OP followed by two-byte integer parameter ARG. */
2952 insert_op1 (op
, loc
, arg
, end
)
2958 register unsigned char *pfrom
= end
;
2959 register unsigned char *pto
= end
+ 3;
2961 while (pfrom
!= loc
)
2964 store_op1 (op
, loc
, arg
);
2968 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2971 insert_op2 (op
, loc
, arg1
, arg2
, end
)
2977 register unsigned char *pfrom
= end
;
2978 register unsigned char *pto
= end
+ 5;
2980 while (pfrom
!= loc
)
2983 store_op2 (op
, loc
, arg1
, arg2
);
2987 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2988 after an alternative or a begin-subexpression. We assume there is at
2989 least one character before the ^. */
2992 at_begline_loc_p (pattern
, p
, syntax
)
2993 const char *pattern
, *p
;
2994 reg_syntax_t syntax
;
2996 const char *prev
= p
- 2;
2997 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
3000 /* After a subexpression? */
3001 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
3002 /* After an alternative? */
3003 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
3007 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3008 at least one character after the $, i.e., `P < PEND'. */
3011 at_endline_loc_p (p
, pend
, syntax
)
3012 const char *p
, *pend
;
3013 reg_syntax_t syntax
;
3015 const char *next
= p
;
3016 boolean next_backslash
= *next
== '\\';
3017 const char *next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3020 /* Before a subexpression? */
3021 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3022 : next_backslash
&& next_next
&& *next_next
== ')')
3023 /* Before an alternative? */
3024 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3025 : next_backslash
&& next_next
&& *next_next
== '|');
3029 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3030 false if it's not. */
3033 group_in_compile_stack (compile_stack
, regnum
)
3034 compile_stack_type compile_stack
;
3039 for (this_element
= compile_stack
.avail
- 1;
3042 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3049 /* Read the ending character of a range (in a bracket expression) from the
3050 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3051 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3052 Then we set the translation of all bits between the starting and
3053 ending characters (inclusive) in the compiled pattern B.
3055 Return an error code.
3057 We use these short variable names so we can use the same macros as
3058 `regex_compile' itself. */
3060 static reg_errcode_t
3061 compile_range (p_ptr
, pend
, translate
, syntax
, b
)
3062 const char **p_ptr
, *pend
;
3063 RE_TRANSLATE_TYPE translate
;
3064 reg_syntax_t syntax
;
3069 const char *p
= *p_ptr
;
3070 unsigned int range_start
, range_end
;
3075 /* Even though the pattern is a signed `char *', we need to fetch
3076 with unsigned char *'s; if the high bit of the pattern character
3077 is set, the range endpoints will be negative if we fetch using a
3080 We also want to fetch the endpoints without translating them; the
3081 appropriate translation is done in the bit-setting loop below. */
3082 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3083 range_start
= ((const unsigned char *) p
)[-2];
3084 range_end
= ((const unsigned char *) p
)[0];
3086 /* Have to increment the pointer into the pattern string, so the
3087 caller isn't still at the ending character. */
3090 /* If the start is after the end, the range is empty. */
3091 if (range_start
> range_end
)
3092 return syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
3094 /* Here we see why `this_char' has to be larger than an `unsigned
3095 char' -- the range is inclusive, so if `range_end' == 0xff
3096 (assuming 8-bit characters), we would otherwise go into an infinite
3097 loop, since all characters <= 0xff. */
3098 for (this_char
= range_start
; this_char
<= range_end
; this_char
++)
3100 SET_LIST_BIT (TRANSLATE (this_char
));
3106 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3107 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3108 characters can start a string that matches the pattern. This fastmap
3109 is used by re_search to skip quickly over impossible starting points.
3111 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3112 area as BUFP->fastmap.
3114 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3117 Returns 0 if we succeed, -2 if an internal error. */
3120 re_compile_fastmap (bufp
)
3121 struct re_pattern_buffer
*bufp
;
3124 #ifdef MATCH_MAY_ALLOCATE
3125 fail_stack_type fail_stack
;
3127 #ifndef REGEX_MALLOC
3131 register char *fastmap
= bufp
->fastmap
;
3132 unsigned char *pattern
= bufp
->buffer
;
3133 unsigned char *p
= pattern
;
3134 register unsigned char *pend
= pattern
+ bufp
->used
;
3137 /* This holds the pointer to the failure stack, when
3138 it is allocated relocatably. */
3139 fail_stack_elt_t
*failure_stack_ptr
;
3142 /* Assume that each path through the pattern can be null until
3143 proven otherwise. We set this false at the bottom of switch
3144 statement, to which we get only if a particular path doesn't
3145 match the empty string. */
3146 boolean path_can_be_null
= true;
3148 /* We aren't doing a `succeed_n' to begin with. */
3149 boolean succeed_n_p
= false;
3151 assert (fastmap
!= NULL
&& p
!= NULL
);
3154 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
3155 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
3156 bufp
->can_be_null
= 0;
3160 if (p
== pend
|| *p
== succeed
)
3162 /* We have reached the (effective) end of pattern. */
3163 if (!FAIL_STACK_EMPTY ())
3165 bufp
->can_be_null
|= path_can_be_null
;
3167 /* Reset for next path. */
3168 path_can_be_null
= true;
3170 p
= fail_stack
.stack
[--fail_stack
.avail
].pointer
;
3178 /* We should never be about to go beyond the end of the pattern. */
3181 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
3184 /* I guess the idea here is to simply not bother with a fastmap
3185 if a backreference is used, since it's too hard to figure out
3186 the fastmap for the corresponding group. Setting
3187 `can_be_null' stops `re_search_2' from using the fastmap, so
3188 that is all we do. */
3190 bufp
->can_be_null
= 1;
3194 /* Following are the cases which match a character. These end
3203 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
3204 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
3210 /* Chars beyond end of map must be allowed. */
3211 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
3214 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
3215 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
3221 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3222 if (SYNTAX (j
) == Sword
)
3228 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3229 if (SYNTAX (j
) != Sword
)
3236 int fastmap_newline
= fastmap
['\n'];
3238 /* `.' matches anything ... */
3239 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3242 /* ... except perhaps newline. */
3243 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
3244 fastmap
['\n'] = fastmap_newline
;
3246 /* Return if we have already set `can_be_null'; if we have,
3247 then the fastmap is irrelevant. Something's wrong here. */
3248 else if (bufp
->can_be_null
)
3251 /* Otherwise, have to check alternative paths. */
3258 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3259 if (SYNTAX (j
) == (enum syntaxcode
) k
)
3266 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3267 if (SYNTAX (j
) != (enum syntaxcode
) k
)
3272 /* All cases after this match the empty string. These end with
3292 case push_dummy_failure
:
3297 case pop_failure_jump
:
3298 case maybe_pop_jump
:
3301 case dummy_failure_jump
:
3302 EXTRACT_NUMBER_AND_INCR (j
, p
);
3307 /* Jump backward implies we just went through the body of a
3308 loop and matched nothing. Opcode jumped to should be
3309 `on_failure_jump' or `succeed_n'. Just treat it like an
3310 ordinary jump. For a * loop, it has pushed its failure
3311 point already; if so, discard that as redundant. */
3312 if ((re_opcode_t
) *p
!= on_failure_jump
3313 && (re_opcode_t
) *p
!= succeed_n
)
3317 EXTRACT_NUMBER_AND_INCR (j
, p
);
3320 /* If what's on the stack is where we are now, pop it. */
3321 if (!FAIL_STACK_EMPTY ()
3322 && fail_stack
.stack
[fail_stack
.avail
- 1].pointer
== p
)
3328 case on_failure_jump
:
3329 case on_failure_keep_string_jump
:
3330 handle_on_failure_jump
:
3331 EXTRACT_NUMBER_AND_INCR (j
, p
);
3333 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3334 end of the pattern. We don't want to push such a point,
3335 since when we restore it above, entering the switch will
3336 increment `p' past the end of the pattern. We don't need
3337 to push such a point since we obviously won't find any more
3338 fastmap entries beyond `pend'. Such a pattern can match
3339 the null string, though. */
3342 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
3344 RESET_FAIL_STACK ();
3349 bufp
->can_be_null
= 1;
3353 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
3354 succeed_n_p
= false;
3361 /* Get to the number of times to succeed. */
3364 /* Increment p past the n for when k != 0. */
3365 EXTRACT_NUMBER_AND_INCR (k
, p
);
3369 succeed_n_p
= true; /* Spaghetti code alert. */
3370 goto handle_on_failure_jump
;
3387 abort (); /* We have listed all the cases. */
3390 /* Getting here means we have found the possible starting
3391 characters for one path of the pattern -- and that the empty
3392 string does not match. We need not follow this path further.
3393 Instead, look at the next alternative (remembered on the
3394 stack), or quit if no more. The test at the top of the loop
3395 does these things. */
3396 path_can_be_null
= false;
3400 /* Set `can_be_null' for the last path (also the first path, if the
3401 pattern is empty). */
3402 bufp
->can_be_null
|= path_can_be_null
;
3405 RESET_FAIL_STACK ();
3407 } /* re_compile_fastmap */
3409 weak_alias (__re_compile_fastmap
, re_compile_fastmap
)
3412 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3413 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3414 this memory for recording register information. STARTS and ENDS
3415 must be allocated using the malloc library routine, and must each
3416 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3418 If NUM_REGS == 0, then subsequent matches should allocate their own
3421 Unless this function is called, the first search or match using
3422 PATTERN_BUFFER will allocate its own register data, without
3423 freeing the old data. */
3426 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
3427 struct re_pattern_buffer
*bufp
;
3428 struct re_registers
*regs
;
3430 regoff_t
*starts
, *ends
;
3434 bufp
->regs_allocated
= REGS_REALLOCATE
;
3435 regs
->num_regs
= num_regs
;
3436 regs
->start
= starts
;
3441 bufp
->regs_allocated
= REGS_UNALLOCATED
;
3443 regs
->start
= regs
->end
= (regoff_t
*) 0;
3447 weak_alias (__re_set_registers
, re_set_registers
)
3450 /* Searching routines. */
3452 /* Like re_search_2, below, but only one string is specified, and
3453 doesn't let you say where to stop matching. */
3456 re_search (bufp
, string
, size
, startpos
, range
, regs
)
3457 struct re_pattern_buffer
*bufp
;
3459 int size
, startpos
, range
;
3460 struct re_registers
*regs
;
3462 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
3466 weak_alias (__re_search
, re_search
)
3470 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3471 virtual concatenation of STRING1 and STRING2, starting first at index
3472 STARTPOS, then at STARTPOS + 1, and so on.
3474 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3476 RANGE is how far to scan while trying to match. RANGE = 0 means try
3477 only at STARTPOS; in general, the last start tried is STARTPOS +
3480 In REGS, return the indices of the virtual concatenation of STRING1
3481 and STRING2 that matched the entire BUFP->buffer and its contained
3484 Do not consider matching one past the index STOP in the virtual
3485 concatenation of STRING1 and STRING2.
3487 We return either the position in the strings at which the match was
3488 found, -1 if no match, or -2 if error (such as failure
3492 re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
, range
, regs
, stop
)
3493 struct re_pattern_buffer
*bufp
;
3494 const char *string1
, *string2
;
3498 struct re_registers
*regs
;
3502 register char *fastmap
= bufp
->fastmap
;
3503 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
3504 int total_size
= size1
+ size2
;
3505 int endpos
= startpos
+ range
;
3507 /* Check for out-of-range STARTPOS. */
3508 if (startpos
< 0 || startpos
> total_size
)
3511 /* Fix up RANGE if it might eventually take us outside
3512 the virtual concatenation of STRING1 and STRING2.
3513 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3515 range
= 0 - startpos
;
3516 else if (endpos
> total_size
)
3517 range
= total_size
- startpos
;
3519 /* If the search isn't to be a backwards one, don't waste time in a
3520 search for a pattern that must be anchored. */
3521 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
3530 /* In a forward search for something that starts with \=.
3531 don't keep searching past point. */
3532 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
3534 range
= PT
- startpos
;
3540 /* Update the fastmap now if not correct already. */
3541 if (fastmap
&& !bufp
->fastmap_accurate
)
3542 if (re_compile_fastmap (bufp
) == -2)
3545 /* Loop through the string, looking for a place to start matching. */
3548 /* If a fastmap is supplied, skip quickly over characters that
3549 cannot be the start of a match. If the pattern can match the
3550 null string, however, we don't need to skip characters; we want
3551 the first null string. */
3552 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
3554 if (range
> 0) /* Searching forwards. */
3556 register const char *d
;
3557 register int lim
= 0;
3560 if (startpos
< size1
&& startpos
+ range
>= size1
)
3561 lim
= range
- (size1
- startpos
);
3563 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
3565 /* Written out as an if-else to avoid testing `translate'
3569 && !fastmap
[(unsigned char)
3570 translate
[(unsigned char) *d
++]])
3573 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
3576 startpos
+= irange
- range
;
3578 else /* Searching backwards. */
3580 register char c
= (size1
== 0 || startpos
>= size1
3581 ? string2
[startpos
- size1
]
3582 : string1
[startpos
]);
3584 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
3589 /* If can't match the null string, and that's all we have left, fail. */
3590 if (range
>= 0 && startpos
== total_size
&& fastmap
3591 && !bufp
->can_be_null
)
3594 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3595 startpos
, regs
, stop
);
3596 #ifndef REGEX_MALLOC
3625 weak_alias (__re_search_2
, re_search_2
)
3628 /* This converts PTR, a pointer into one of the search strings `string1'
3629 and `string2' into an offset from the beginning of that string. */
3630 #define POINTER_TO_OFFSET(ptr) \
3631 (FIRST_STRING_P (ptr) \
3632 ? ((regoff_t) ((ptr) - string1)) \
3633 : ((regoff_t) ((ptr) - string2 + size1)))
3635 /* Macros for dealing with the split strings in re_match_2. */
3637 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3639 /* Call before fetching a character with *d. This switches over to
3640 string2 if necessary. */
3641 #define PREFETCH() \
3644 /* End of string2 => fail. */ \
3645 if (dend == end_match_2) \
3647 /* End of string1 => advance to string2. */ \
3649 dend = end_match_2; \
3653 /* Test if at very beginning or at very end of the virtual concatenation
3654 of `string1' and `string2'. If only one string, it's `string2'. */
3655 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3656 #define AT_STRINGS_END(d) ((d) == end2)
3659 /* Test if D points to a character which is word-constituent. We have
3660 two special cases to check for: if past the end of string1, look at
3661 the first character in string2; and if before the beginning of
3662 string2, look at the last character in string1. */
3663 #define WORDCHAR_P(d) \
3664 (SYNTAX ((d) == end1 ? *string2 \
3665 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3668 /* Disabled due to a compiler bug -- see comment at case wordbound */
3670 /* Test if the character before D and the one at D differ with respect
3671 to being word-constituent. */
3672 #define AT_WORD_BOUNDARY(d) \
3673 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3674 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3677 /* Free everything we malloc. */
3678 #ifdef MATCH_MAY_ALLOCATE
3679 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3680 # define FREE_VARIABLES() \
3682 REGEX_FREE_STACK (fail_stack.stack); \
3683 FREE_VAR (regstart); \
3684 FREE_VAR (regend); \
3685 FREE_VAR (old_regstart); \
3686 FREE_VAR (old_regend); \
3687 FREE_VAR (best_regstart); \
3688 FREE_VAR (best_regend); \
3689 FREE_VAR (reg_info); \
3690 FREE_VAR (reg_dummy); \
3691 FREE_VAR (reg_info_dummy); \
3694 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3695 #endif /* not MATCH_MAY_ALLOCATE */
3697 /* These values must meet several constraints. They must not be valid
3698 register values; since we have a limit of 255 registers (because
3699 we use only one byte in the pattern for the register number), we can
3700 use numbers larger than 255. They must differ by 1, because of
3701 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3702 be larger than the value for the highest register, so we do not try
3703 to actually save any registers when none are active. */
3704 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3705 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3707 /* Matching routines. */
3709 #ifndef emacs /* Emacs never uses this. */
3710 /* re_match is like re_match_2 except it takes only a single string. */
3713 re_match (bufp
, string
, size
, pos
, regs
)
3714 struct re_pattern_buffer
*bufp
;
3717 struct re_registers
*regs
;
3719 int result
= re_match_2_internal (bufp
, NULL
, 0, string
, size
,
3721 # ifndef REGEX_MALLOC
3729 weak_alias (__re_match
, re_match
)
3731 #endif /* not emacs */
3733 static boolean group_match_null_string_p
_RE_ARGS ((unsigned char **p
,
3735 register_info_type
*reg_info
));
3736 static boolean alt_match_null_string_p
_RE_ARGS ((unsigned char *p
,
3738 register_info_type
*reg_info
));
3739 static boolean common_op_match_null_string_p
_RE_ARGS ((unsigned char **p
,
3741 register_info_type
*reg_info
));
3742 static int bcmp_translate
_RE_ARGS ((const char *s1
, const char *s2
,
3743 int len
, char *translate
));
3745 /* re_match_2 matches the compiled pattern in BUFP against the
3746 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3747 and SIZE2, respectively). We start matching at POS, and stop
3750 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3751 store offsets for the substring each group matched in REGS. See the
3752 documentation for exactly how many groups we fill.
3754 We return -1 if no match, -2 if an internal error (such as the
3755 failure stack overflowing). Otherwise, we return the length of the
3756 matched substring. */
3759 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3760 struct re_pattern_buffer
*bufp
;
3761 const char *string1
, *string2
;
3764 struct re_registers
*regs
;
3767 int result
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3769 #ifndef REGEX_MALLOC
3777 weak_alias (__re_match_2
, re_match_2
)
3780 /* This is a separate function so that we can force an alloca cleanup
3783 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3784 struct re_pattern_buffer
*bufp
;
3785 const char *string1
, *string2
;
3788 struct re_registers
*regs
;
3791 /* General temporaries. */
3795 /* Just past the end of the corresponding string. */
3796 const char *end1
, *end2
;
3798 /* Pointers into string1 and string2, just past the last characters in
3799 each to consider matching. */
3800 const char *end_match_1
, *end_match_2
;
3802 /* Where we are in the data, and the end of the current string. */
3803 const char *d
, *dend
;
3805 /* Where we are in the pattern, and the end of the pattern. */
3806 unsigned char *p
= bufp
->buffer
;
3807 register unsigned char *pend
= p
+ bufp
->used
;
3809 /* Mark the opcode just after a start_memory, so we can test for an
3810 empty subpattern when we get to the stop_memory. */
3811 unsigned char *just_past_start_mem
= 0;
3813 /* We use this to map every character in the string. */
3814 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
3816 /* Failure point stack. Each place that can handle a failure further
3817 down the line pushes a failure point on this stack. It consists of
3818 restart, regend, and reg_info for all registers corresponding to
3819 the subexpressions we're currently inside, plus the number of such
3820 registers, and, finally, two char *'s. The first char * is where
3821 to resume scanning the pattern; the second one is where to resume
3822 scanning the strings. If the latter is zero, the failure point is
3823 a ``dummy''; if a failure happens and the failure point is a dummy,
3824 it gets discarded and the next next one is tried. */
3825 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3826 fail_stack_type fail_stack
;
3829 static unsigned failure_id
= 0;
3830 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
3834 /* This holds the pointer to the failure stack, when
3835 it is allocated relocatably. */
3836 fail_stack_elt_t
*failure_stack_ptr
;
3839 /* We fill all the registers internally, independent of what we
3840 return, for use in backreferences. The number here includes
3841 an element for register zero. */
3842 size_t num_regs
= bufp
->re_nsub
+ 1;
3844 /* The currently active registers. */
3845 active_reg_t lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3846 active_reg_t highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3848 /* Information on the contents of registers. These are pointers into
3849 the input strings; they record just what was matched (on this
3850 attempt) by a subexpression part of the pattern, that is, the
3851 regnum-th regstart pointer points to where in the pattern we began
3852 matching and the regnum-th regend points to right after where we
3853 stopped matching the regnum-th subexpression. (The zeroth register
3854 keeps track of what the whole pattern matches.) */
3855 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3856 const char **regstart
, **regend
;
3859 /* If a group that's operated upon by a repetition operator fails to
3860 match anything, then the register for its start will need to be
3861 restored because it will have been set to wherever in the string we
3862 are when we last see its open-group operator. Similarly for a
3864 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3865 const char **old_regstart
, **old_regend
;
3868 /* The is_active field of reg_info helps us keep track of which (possibly
3869 nested) subexpressions we are currently in. The matched_something
3870 field of reg_info[reg_num] helps us tell whether or not we have
3871 matched any of the pattern so far this time through the reg_num-th
3872 subexpression. These two fields get reset each time through any
3873 loop their register is in. */
3874 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3875 register_info_type
*reg_info
;
3878 /* The following record the register info as found in the above
3879 variables when we find a match better than any we've seen before.
3880 This happens as we backtrack through the failure points, which in
3881 turn happens only if we have not yet matched the entire string. */
3882 unsigned best_regs_set
= false;
3883 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3884 const char **best_regstart
, **best_regend
;
3887 /* Logically, this is `best_regend[0]'. But we don't want to have to
3888 allocate space for that if we're not allocating space for anything
3889 else (see below). Also, we never need info about register 0 for
3890 any of the other register vectors, and it seems rather a kludge to
3891 treat `best_regend' differently than the rest. So we keep track of
3892 the end of the best match so far in a separate variable. We
3893 initialize this to NULL so that when we backtrack the first time
3894 and need to test it, it's not garbage. */
3895 const char *match_end
= NULL
;
3897 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3898 int set_regs_matched_done
= 0;
3900 /* Used when we pop values we don't care about. */
3901 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3902 const char **reg_dummy
;
3903 register_info_type
*reg_info_dummy
;
3907 /* Counts the total number of registers pushed. */
3908 unsigned num_regs_pushed
= 0;
3911 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3915 #ifdef MATCH_MAY_ALLOCATE
3916 /* Do not bother to initialize all the register variables if there are
3917 no groups in the pattern, as it takes a fair amount of time. If
3918 there are groups, we include space for register 0 (the whole
3919 pattern), even though we never use it, since it simplifies the
3920 array indexing. We should fix this. */
3923 regstart
= REGEX_TALLOC (num_regs
, const char *);
3924 regend
= REGEX_TALLOC (num_regs
, const char *);
3925 old_regstart
= REGEX_TALLOC (num_regs
, const char *);
3926 old_regend
= REGEX_TALLOC (num_regs
, const char *);
3927 best_regstart
= REGEX_TALLOC (num_regs
, const char *);
3928 best_regend
= REGEX_TALLOC (num_regs
, const char *);
3929 reg_info
= REGEX_TALLOC (num_regs
, register_info_type
);
3930 reg_dummy
= REGEX_TALLOC (num_regs
, const char *);
3931 reg_info_dummy
= REGEX_TALLOC (num_regs
, register_info_type
);
3933 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
3934 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
3942 /* We must initialize all our variables to NULL, so that
3943 `FREE_VARIABLES' doesn't try to free them. */
3944 regstart
= regend
= old_regstart
= old_regend
= best_regstart
3945 = best_regend
= reg_dummy
= NULL
;
3946 reg_info
= reg_info_dummy
= (register_info_type
*) NULL
;
3948 #endif /* MATCH_MAY_ALLOCATE */
3950 /* The starting position is bogus. */
3951 if (pos
< 0 || pos
> size1
+ size2
)
3957 /* Initialize subexpression text positions to -1 to mark ones that no
3958 start_memory/stop_memory has been seen for. Also initialize the
3959 register information struct. */
3960 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
3962 regstart
[mcnt
] = regend
[mcnt
]
3963 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
3965 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
3966 IS_ACTIVE (reg_info
[mcnt
]) = 0;
3967 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3968 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3971 /* We move `string1' into `string2' if the latter's empty -- but not if
3972 `string1' is null. */
3973 if (size2
== 0 && string1
!= NULL
)
3980 end1
= string1
+ size1
;
3981 end2
= string2
+ size2
;
3983 /* Compute where to stop matching, within the two strings. */
3986 end_match_1
= string1
+ stop
;
3987 end_match_2
= string2
;
3992 end_match_2
= string2
+ stop
- size1
;
3995 /* `p' scans through the pattern as `d' scans through the data.
3996 `dend' is the end of the input string that `d' points within. `d'
3997 is advanced into the following input string whenever necessary, but
3998 this happens before fetching; therefore, at the beginning of the
3999 loop, `d' can be pointing at the end of a string, but it cannot
4001 if (size1
> 0 && pos
<= size1
)
4008 d
= string2
+ pos
- size1
;
4012 DEBUG_PRINT1 ("The compiled pattern is:\n");
4013 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
4014 DEBUG_PRINT1 ("The string to match is: `");
4015 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
4016 DEBUG_PRINT1 ("'\n");
4018 /* This loops over pattern commands. It exits by returning from the
4019 function if the match is complete, or it drops through if the match
4020 fails at this starting point in the input data. */
4024 DEBUG_PRINT2 ("\n%p: ", p
);
4026 DEBUG_PRINT2 ("\n0x%x: ", p
);
4030 { /* End of pattern means we might have succeeded. */
4031 DEBUG_PRINT1 ("end of pattern ... ");
4033 /* If we haven't matched the entire string, and we want the
4034 longest match, try backtracking. */
4035 if (d
!= end_match_2
)
4037 /* 1 if this match ends in the same string (string1 or string2)
4038 as the best previous match. */
4039 boolean same_str_p
= (FIRST_STRING_P (match_end
)
4040 == MATCHING_IN_FIRST_STRING
);
4041 /* 1 if this match is the best seen so far. */
4042 boolean best_match_p
;
4044 /* AIX compiler got confused when this was combined
4045 with the previous declaration. */
4047 best_match_p
= d
> match_end
;
4049 best_match_p
= !MATCHING_IN_FIRST_STRING
;
4051 DEBUG_PRINT1 ("backtracking.\n");
4053 if (!FAIL_STACK_EMPTY ())
4054 { /* More failure points to try. */
4056 /* If exceeds best match so far, save it. */
4057 if (!best_regs_set
|| best_match_p
)
4059 best_regs_set
= true;
4062 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4064 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
4066 best_regstart
[mcnt
] = regstart
[mcnt
];
4067 best_regend
[mcnt
] = regend
[mcnt
];
4073 /* If no failure points, don't restore garbage. And if
4074 last match is real best match, don't restore second
4076 else if (best_regs_set
&& !best_match_p
)
4079 /* Restore best match. It may happen that `dend ==
4080 end_match_1' while the restored d is in string2.
4081 For example, the pattern `x.*y.*z' against the
4082 strings `x-' and `y-z-', if the two strings are
4083 not consecutive in memory. */
4084 DEBUG_PRINT1 ("Restoring best registers.\n");
4087 dend
= ((d
>= string1
&& d
<= end1
)
4088 ? end_match_1
: end_match_2
);
4090 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
4092 regstart
[mcnt
] = best_regstart
[mcnt
];
4093 regend
[mcnt
] = best_regend
[mcnt
];
4096 } /* d != end_match_2 */
4099 DEBUG_PRINT1 ("Accepting match.\n");
4101 /* If caller wants register contents data back, do it. */
4102 if (regs
&& !bufp
->no_sub
)
4104 /* Have the register data arrays been allocated? */
4105 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
4106 { /* No. So allocate them with malloc. We need one
4107 extra element beyond `num_regs' for the `-1' marker
4109 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
4110 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
4111 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
4112 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4117 bufp
->regs_allocated
= REGS_REALLOCATE
;
4119 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
4120 { /* Yes. If we need more elements than were already
4121 allocated, reallocate them. If we need fewer, just
4123 if (regs
->num_regs
< num_regs
+ 1)
4125 regs
->num_regs
= num_regs
+ 1;
4126 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
4127 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
4128 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4137 /* These braces fend off a "empty body in an else-statement"
4138 warning under GCC when assert expands to nothing. */
4139 assert (bufp
->regs_allocated
== REGS_FIXED
);
4142 /* Convert the pointer data in `regstart' and `regend' to
4143 indices. Register zero has to be set differently,
4144 since we haven't kept track of any info for it. */
4145 if (regs
->num_regs
> 0)
4147 regs
->start
[0] = pos
;
4148 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
4149 ? ((regoff_t
) (d
- string1
))
4150 : ((regoff_t
) (d
- string2
+ size1
)));
4153 /* Go through the first `min (num_regs, regs->num_regs)'
4154 registers, since that is all we initialized. */
4155 for (mcnt
= 1; (unsigned) mcnt
< MIN (num_regs
, regs
->num_regs
);
4158 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
4159 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
4163 = (regoff_t
) POINTER_TO_OFFSET (regstart
[mcnt
]);
4165 = (regoff_t
) POINTER_TO_OFFSET (regend
[mcnt
]);
4169 /* If the regs structure we return has more elements than
4170 were in the pattern, set the extra elements to -1. If
4171 we (re)allocated the registers, this is the case,
4172 because we always allocate enough to have at least one
4174 for (mcnt
= num_regs
; (unsigned) mcnt
< regs
->num_regs
; mcnt
++)
4175 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
4176 } /* regs && !bufp->no_sub */
4178 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4179 nfailure_points_pushed
, nfailure_points_popped
,
4180 nfailure_points_pushed
- nfailure_points_popped
);
4181 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
4183 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
4187 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
4193 /* Otherwise match next pattern command. */
4194 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4196 /* Ignore these. Used to ignore the n of succeed_n's which
4197 currently have n == 0. */
4199 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4203 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4206 /* Match the next n pattern characters exactly. The following
4207 byte in the pattern defines n, and the n bytes after that
4208 are the characters to match. */
4211 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
4213 /* This is written out as an if-else so we don't waste time
4214 testing `translate' inside the loop. */
4220 if ((unsigned char) translate
[(unsigned char) *d
++]
4221 != (unsigned char) *p
++)
4231 if (*d
++ != (char) *p
++) goto fail
;
4235 SET_REGS_MATCHED ();
4239 /* Match any character except possibly a newline or a null. */
4241 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4245 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
4246 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
4249 SET_REGS_MATCHED ();
4250 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
4258 register unsigned char c
;
4259 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
4261 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4264 c
= TRANSLATE (*d
); /* The character to match. */
4266 /* Cast to `unsigned' instead of `unsigned char' in case the
4267 bit list is a full 32 bytes long. */
4268 if (c
< (unsigned) (*p
* BYTEWIDTH
)
4269 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4274 if (!not) goto fail
;
4276 SET_REGS_MATCHED ();
4282 /* The beginning of a group is represented by start_memory.
4283 The arguments are the register number in the next byte, and the
4284 number of groups inner to this one in the next. The text
4285 matched within the group is recorded (in the internal
4286 registers data structure) under the register number. */
4288 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p
, p
[1]);
4290 /* Find out if this group can match the empty string. */
4291 p1
= p
; /* To send to group_match_null_string_p. */
4293 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
4294 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4295 = group_match_null_string_p (&p1
, pend
, reg_info
);
4297 /* Save the position in the string where we were the last time
4298 we were at this open-group operator in case the group is
4299 operated upon by a repetition operator, e.g., with `(a*)*b'
4300 against `ab'; then we want to ignore where we are now in
4301 the string in case this attempt to match fails. */
4302 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4303 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
4305 DEBUG_PRINT2 (" old_regstart: %d\n",
4306 POINTER_TO_OFFSET (old_regstart
[*p
]));
4309 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
4311 IS_ACTIVE (reg_info
[*p
]) = 1;
4312 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
4314 /* Clear this whenever we change the register activity status. */
4315 set_regs_matched_done
= 0;
4317 /* This is the new highest active register. */
4318 highest_active_reg
= *p
;
4320 /* If nothing was active before, this is the new lowest active
4322 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4323 lowest_active_reg
= *p
;
4325 /* Move past the register number and inner group count. */
4327 just_past_start_mem
= p
;
4332 /* The stop_memory opcode represents the end of a group. Its
4333 arguments are the same as start_memory's: the register
4334 number, and the number of inner groups. */
4336 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p
, p
[1]);
4338 /* We need to save the string position the last time we were at
4339 this close-group operator in case the group is operated
4340 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4341 against `aba'; then we want to ignore where we are now in
4342 the string in case this attempt to match fails. */
4343 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4344 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
4346 DEBUG_PRINT2 (" old_regend: %d\n",
4347 POINTER_TO_OFFSET (old_regend
[*p
]));
4350 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
4352 /* This register isn't active anymore. */
4353 IS_ACTIVE (reg_info
[*p
]) = 0;
4355 /* Clear this whenever we change the register activity status. */
4356 set_regs_matched_done
= 0;
4358 /* If this was the only register active, nothing is active
4360 if (lowest_active_reg
== highest_active_reg
)
4362 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
4363 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
4366 { /* We must scan for the new highest active register, since
4367 it isn't necessarily one less than now: consider
4368 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4369 new highest active register is 1. */
4370 unsigned char r
= *p
- 1;
4371 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
4374 /* If we end up at register zero, that means that we saved
4375 the registers as the result of an `on_failure_jump', not
4376 a `start_memory', and we jumped to past the innermost
4377 `stop_memory'. For example, in ((.)*) we save
4378 registers 1 and 2 as a result of the *, but when we pop
4379 back to the second ), we are at the stop_memory 1.
4380 Thus, nothing is active. */
4383 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
4384 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
4387 highest_active_reg
= r
;
4390 /* If just failed to match something this time around with a
4391 group that's operated on by a repetition operator, try to
4392 force exit from the ``loop'', and restore the register
4393 information for this group that we had before trying this
4395 if ((!MATCHED_SOMETHING (reg_info
[*p
])
4396 || just_past_start_mem
== p
- 1)
4399 boolean is_a_jump_n
= false;
4403 switch ((re_opcode_t
) *p1
++)
4407 case pop_failure_jump
:
4408 case maybe_pop_jump
:
4410 case dummy_failure_jump
:
4411 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4421 /* If the next operation is a jump backwards in the pattern
4422 to an on_failure_jump right before the start_memory
4423 corresponding to this stop_memory, exit from the loop
4424 by forcing a failure after pushing on the stack the
4425 on_failure_jump's jump in the pattern, and d. */
4426 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
4427 && (re_opcode_t
) p1
[3] == start_memory
&& p1
[4] == *p
)
4429 /* If this group ever matched anything, then restore
4430 what its registers were before trying this last
4431 failed match, e.g., with `(a*)*b' against `ab' for
4432 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4433 against `aba' for regend[3].
4435 Also restore the registers for inner groups for,
4436 e.g., `((a*)(b*))*' against `aba' (register 3 would
4437 otherwise get trashed). */
4439 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
4443 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
4445 /* Restore this and inner groups' (if any) registers. */
4446 for (r
= *p
; r
< (unsigned) *p
+ (unsigned) *(p
+ 1);
4449 regstart
[r
] = old_regstart
[r
];
4451 /* xx why this test? */
4452 if (old_regend
[r
] >= regstart
[r
])
4453 regend
[r
] = old_regend
[r
];
4457 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4458 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
4464 /* Move past the register number and the inner group count. */
4469 /* \<digit> has been turned into a `duplicate' command which is
4470 followed by the numeric value of <digit> as the register number. */
4473 register const char *d2
, *dend2
;
4474 int regno
= *p
++; /* Get which register to match against. */
4475 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
4477 /* Can't back reference a group which we've never matched. */
4478 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
4481 /* Where in input to try to start matching. */
4482 d2
= regstart
[regno
];
4484 /* Where to stop matching; if both the place to start and
4485 the place to stop matching are in the same string, then
4486 set to the place to stop, otherwise, for now have to use
4487 the end of the first string. */
4489 dend2
= ((FIRST_STRING_P (regstart
[regno
])
4490 == FIRST_STRING_P (regend
[regno
]))
4491 ? regend
[regno
] : end_match_1
);
4494 /* If necessary, advance to next segment in register
4498 if (dend2
== end_match_2
) break;
4499 if (dend2
== regend
[regno
]) break;
4501 /* End of string1 => advance to string2. */
4503 dend2
= regend
[regno
];
4505 /* At end of register contents => success */
4506 if (d2
== dend2
) break;
4508 /* If necessary, advance to next segment in data. */
4511 /* How many characters left in this segment to match. */
4514 /* Want how many consecutive characters we can match in
4515 one shot, so, if necessary, adjust the count. */
4516 if (mcnt
> dend2
- d2
)
4519 /* Compare that many; failure if mismatch, else move
4522 ? bcmp_translate (d
, d2
, mcnt
, translate
)
4523 : memcmp (d
, d2
, mcnt
))
4525 d
+= mcnt
, d2
+= mcnt
;
4527 /* Do this because we've match some characters. */
4528 SET_REGS_MATCHED ();
4534 /* begline matches the empty string at the beginning of the string
4535 (unless `not_bol' is set in `bufp'), and, if
4536 `newline_anchor' is set, after newlines. */
4538 DEBUG_PRINT1 ("EXECUTING begline.\n");
4540 if (AT_STRINGS_BEG (d
))
4542 if (!bufp
->not_bol
) break;
4544 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
4548 /* In all other cases, we fail. */
4552 /* endline is the dual of begline. */
4554 DEBUG_PRINT1 ("EXECUTING endline.\n");
4556 if (AT_STRINGS_END (d
))
4558 if (!bufp
->not_eol
) break;
4561 /* We have to ``prefetch'' the next character. */
4562 else if ((d
== end1
? *string2
: *d
) == '\n'
4563 && bufp
->newline_anchor
)
4570 /* Match at the very beginning of the data. */
4572 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4573 if (AT_STRINGS_BEG (d
))
4578 /* Match at the very end of the data. */
4580 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4581 if (AT_STRINGS_END (d
))
4586 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4587 pushes NULL as the value for the string on the stack. Then
4588 `pop_failure_point' will keep the current value for the
4589 string, instead of restoring it. To see why, consider
4590 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4591 then the . fails against the \n. But the next thing we want
4592 to do is match the \n against the \n; if we restored the
4593 string value, we would be back at the foo.
4595 Because this is used only in specific cases, we don't need to
4596 check all the things that `on_failure_jump' does, to make
4597 sure the right things get saved on the stack. Hence we don't
4598 share its code. The only reason to push anything on the
4599 stack at all is that otherwise we would have to change
4600 `anychar's code to do something besides goto fail in this
4601 case; that seems worse than this. */
4602 case on_failure_keep_string_jump
:
4603 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4605 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4607 DEBUG_PRINT3 (" %d (to %p):\n", mcnt
, p
+ mcnt
);
4609 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
4612 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
4616 /* Uses of on_failure_jump:
4618 Each alternative starts with an on_failure_jump that points
4619 to the beginning of the next alternative. Each alternative
4620 except the last ends with a jump that in effect jumps past
4621 the rest of the alternatives. (They really jump to the
4622 ending jump of the following alternative, because tensioning
4623 these jumps is a hassle.)
4625 Repeats start with an on_failure_jump that points past both
4626 the repetition text and either the following jump or
4627 pop_failure_jump back to this on_failure_jump. */
4628 case on_failure_jump
:
4630 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4632 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4634 DEBUG_PRINT3 (" %d (to %p)", mcnt
, p
+ mcnt
);
4636 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
4639 /* If this on_failure_jump comes right before a group (i.e.,
4640 the original * applied to a group), save the information
4641 for that group and all inner ones, so that if we fail back
4642 to this point, the group's information will be correct.
4643 For example, in \(a*\)*\1, we need the preceding group,
4644 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4646 /* We can't use `p' to check ahead because we push
4647 a failure point to `p + mcnt' after we do this. */
4650 /* We need to skip no_op's before we look for the
4651 start_memory in case this on_failure_jump is happening as
4652 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4654 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
4657 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
4659 /* We have a new highest active register now. This will
4660 get reset at the start_memory we are about to get to,
4661 but we will have saved all the registers relevant to
4662 this repetition op, as described above. */
4663 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
4664 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4665 lowest_active_reg
= *(p1
+ 1);
4668 DEBUG_PRINT1 (":\n");
4669 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
4673 /* A smart repeat ends with `maybe_pop_jump'.
4674 We change it to either `pop_failure_jump' or `jump'. */
4675 case maybe_pop_jump
:
4676 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4677 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
4679 register unsigned char *p2
= p
;
4681 /* Compare the beginning of the repeat with what in the
4682 pattern follows its end. If we can establish that there
4683 is nothing that they would both match, i.e., that we
4684 would have to backtrack because of (as in, e.g., `a*a')
4685 then we can change to pop_failure_jump, because we'll
4686 never have to backtrack.
4688 This is not true in the case of alternatives: in
4689 `(a|ab)*' we do need to backtrack to the `ab' alternative
4690 (e.g., if the string was `ab'). But instead of trying to
4691 detect that here, the alternative has put on a dummy
4692 failure point which is what we will end up popping. */
4694 /* Skip over open/close-group commands.
4695 If what follows this loop is a ...+ construct,
4696 look at what begins its body, since we will have to
4697 match at least one of that. */
4701 && ((re_opcode_t
) *p2
== stop_memory
4702 || (re_opcode_t
) *p2
== start_memory
))
4704 else if (p2
+ 6 < pend
4705 && (re_opcode_t
) *p2
== dummy_failure_jump
)
4712 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4713 to the `maybe_finalize_jump' of this case. Examine what
4716 /* If we're at the end of the pattern, we can change. */
4719 /* Consider what happens when matching ":\(.*\)"
4720 against ":/". I don't really understand this code
4722 p
[-3] = (unsigned char) pop_failure_jump
;
4724 (" End of pattern: change to `pop_failure_jump'.\n");
4727 else if ((re_opcode_t
) *p2
== exactn
4728 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
4730 register unsigned char c
4731 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4733 if ((re_opcode_t
) p1
[3] == exactn
&& p1
[5] != c
)
4735 p
[-3] = (unsigned char) pop_failure_jump
;
4736 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4740 else if ((re_opcode_t
) p1
[3] == charset
4741 || (re_opcode_t
) p1
[3] == charset_not
)
4743 int not = (re_opcode_t
) p1
[3] == charset_not
;
4745 if (c
< (unsigned char) (p1
[4] * BYTEWIDTH
)
4746 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4749 /* `not' is equal to 1 if c would match, which means
4750 that we can't change to pop_failure_jump. */
4753 p
[-3] = (unsigned char) pop_failure_jump
;
4754 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4758 else if ((re_opcode_t
) *p2
== charset
)
4761 register unsigned char c
4762 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4766 if ((re_opcode_t
) p1
[3] == exactn
4767 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[5]
4768 && (p2
[2 + p1
[5] / BYTEWIDTH
]
4769 & (1 << (p1
[5] % BYTEWIDTH
)))))
4771 if ((re_opcode_t
) p1
[3] == exactn
4772 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[4]
4773 && (p2
[2 + p1
[4] / BYTEWIDTH
]
4774 & (1 << (p1
[4] % BYTEWIDTH
)))))
4777 p
[-3] = (unsigned char) pop_failure_jump
;
4778 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4782 else if ((re_opcode_t
) p1
[3] == charset_not
)
4785 /* We win if the charset_not inside the loop
4786 lists every character listed in the charset after. */
4787 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4788 if (! (p2
[2 + idx
] == 0
4789 || (idx
< (int) p1
[4]
4790 && ((p2
[2 + idx
] & ~ p1
[5 + idx
]) == 0))))
4795 p
[-3] = (unsigned char) pop_failure_jump
;
4796 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4799 else if ((re_opcode_t
) p1
[3] == charset
)
4802 /* We win if the charset inside the loop
4803 has no overlap with the one after the loop. */
4805 idx
< (int) p2
[1] && idx
< (int) p1
[4];
4807 if ((p2
[2 + idx
] & p1
[5 + idx
]) != 0)
4810 if (idx
== p2
[1] || idx
== p1
[4])
4812 p
[-3] = (unsigned char) pop_failure_jump
;
4813 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4818 p
-= 2; /* Point at relative address again. */
4819 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
4821 p
[-1] = (unsigned char) jump
;
4822 DEBUG_PRINT1 (" Match => jump.\n");
4823 goto unconditional_jump
;
4825 /* Note fall through. */
4828 /* The end of a simple repeat has a pop_failure_jump back to
4829 its matching on_failure_jump, where the latter will push a
4830 failure point. The pop_failure_jump takes off failure
4831 points put on by this pop_failure_jump's matching
4832 on_failure_jump; we got through the pattern to here from the
4833 matching on_failure_jump, so didn't fail. */
4834 case pop_failure_jump
:
4836 /* We need to pass separate storage for the lowest and
4837 highest registers, even though we don't care about the
4838 actual values. Otherwise, we will restore only one
4839 register from the stack, since lowest will == highest in
4840 `pop_failure_point'. */
4841 active_reg_t dummy_low_reg
, dummy_high_reg
;
4842 unsigned char *pdummy
;
4845 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4846 POP_FAILURE_POINT (sdummy
, pdummy
,
4847 dummy_low_reg
, dummy_high_reg
,
4848 reg_dummy
, reg_dummy
, reg_info_dummy
);
4850 /* Note fall through. */
4854 DEBUG_PRINT2 ("\n%p: ", p
);
4856 DEBUG_PRINT2 ("\n0x%x: ", p
);
4858 /* Note fall through. */
4860 /* Unconditionally jump (without popping any failure points). */
4862 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
4863 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
4864 p
+= mcnt
; /* Do the jump. */
4866 DEBUG_PRINT2 ("(to %p).\n", p
);
4868 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
4873 /* We need this opcode so we can detect where alternatives end
4874 in `group_match_null_string_p' et al. */
4876 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4877 goto unconditional_jump
;
4880 /* Normally, the on_failure_jump pushes a failure point, which
4881 then gets popped at pop_failure_jump. We will end up at
4882 pop_failure_jump, also, and with a pattern of, say, `a+', we
4883 are skipping over the on_failure_jump, so we have to push
4884 something meaningless for pop_failure_jump to pop. */
4885 case dummy_failure_jump
:
4886 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4887 /* It doesn't matter what we push for the string here. What
4888 the code at `fail' tests is the value for the pattern. */
4889 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
4890 goto unconditional_jump
;
4893 /* At the end of an alternative, we need to push a dummy failure
4894 point in case we are followed by a `pop_failure_jump', because
4895 we don't want the failure point for the alternative to be
4896 popped. For example, matching `(a|ab)*' against `aab'
4897 requires that we match the `ab' alternative. */
4898 case push_dummy_failure
:
4899 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4900 /* See comments just above at `dummy_failure_jump' about the
4902 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
4905 /* Have to succeed matching what follows at least n times.
4906 After that, handle like `on_failure_jump'. */
4908 EXTRACT_NUMBER (mcnt
, p
+ 2);
4909 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
4912 /* Originally, this is how many times we HAVE to succeed. */
4917 STORE_NUMBER_AND_INCR (p
, mcnt
);
4919 DEBUG_PRINT3 (" Setting %p to %d.\n", p
- 2, mcnt
);
4921 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
- 2, mcnt
);
4927 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p
+2);
4929 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p
+2);
4931 p
[2] = (unsigned char) no_op
;
4932 p
[3] = (unsigned char) no_op
;
4938 EXTRACT_NUMBER (mcnt
, p
+ 2);
4939 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
4941 /* Originally, this is how many times we CAN jump. */
4945 STORE_NUMBER (p
+ 2, mcnt
);
4947 DEBUG_PRINT3 (" Setting %p to %d.\n", p
+ 2, mcnt
);
4949 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
+ 2, mcnt
);
4951 goto unconditional_jump
;
4953 /* If don't have to jump any more, skip over the rest of command. */
4960 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4962 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4964 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4966 DEBUG_PRINT3 (" Setting %p to %d.\n", p1
, mcnt
);
4968 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
4970 STORE_NUMBER (p1
, mcnt
);
4975 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4976 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4977 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4978 macro and introducing temporary variables works around the bug. */
4981 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4982 if (AT_WORD_BOUNDARY (d
))
4987 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4988 if (AT_WORD_BOUNDARY (d
))
4994 boolean prevchar
, thischar
;
4996 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4997 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5000 prevchar
= WORDCHAR_P (d
- 1);
5001 thischar
= WORDCHAR_P (d
);
5002 if (prevchar
!= thischar
)
5009 boolean prevchar
, thischar
;
5011 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5012 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5015 prevchar
= WORDCHAR_P (d
- 1);
5016 thischar
= WORDCHAR_P (d
);
5017 if (prevchar
!= thischar
)
5024 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5025 if (WORDCHAR_P (d
) && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
5030 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5031 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
5032 && (!WORDCHAR_P (d
) || AT_STRINGS_END (d
)))
5038 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5039 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
5044 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5045 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
5050 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5051 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
5056 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
5061 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5065 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5067 if (SYNTAX (d
[-1]) != (enum syntaxcode
) mcnt
)
5069 SET_REGS_MATCHED ();
5073 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
5075 goto matchnotsyntax
;
5078 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5082 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5084 if (SYNTAX (d
[-1]) == (enum syntaxcode
) mcnt
)
5086 SET_REGS_MATCHED ();
5089 #else /* not emacs */
5091 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5093 if (!WORDCHAR_P (d
))
5095 SET_REGS_MATCHED ();
5100 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5104 SET_REGS_MATCHED ();
5107 #endif /* not emacs */
5112 continue; /* Successfully executed one pattern command; keep going. */
5115 /* We goto here if a matching operation fails. */
5117 if (!FAIL_STACK_EMPTY ())
5118 { /* A restart point is known. Restore to that state. */
5119 DEBUG_PRINT1 ("\nFAIL:\n");
5120 POP_FAILURE_POINT (d
, p
,
5121 lowest_active_reg
, highest_active_reg
,
5122 regstart
, regend
, reg_info
);
5124 /* If this failure point is a dummy, try the next one. */
5128 /* If we failed to the end of the pattern, don't examine *p. */
5132 boolean is_a_jump_n
= false;
5134 /* If failed to a backwards jump that's part of a repetition
5135 loop, need to pop this failure point and use the next one. */
5136 switch ((re_opcode_t
) *p
)
5140 case maybe_pop_jump
:
5141 case pop_failure_jump
:
5144 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5147 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
5149 && (re_opcode_t
) *p1
== on_failure_jump
))
5157 if (d
>= string1
&& d
<= end1
)
5161 break; /* Matching at this starting point really fails. */
5165 goto restore_best_regs
;
5169 return -1; /* Failure to match. */
5172 /* Subroutine definitions for re_match_2. */
5175 /* We are passed P pointing to a register number after a start_memory.
5177 Return true if the pattern up to the corresponding stop_memory can
5178 match the empty string, and false otherwise.
5180 If we find the matching stop_memory, sets P to point to one past its number.
5181 Otherwise, sets P to an undefined byte less than or equal to END.
5183 We don't handle duplicates properly (yet). */
5186 group_match_null_string_p (p
, end
, reg_info
)
5187 unsigned char **p
, *end
;
5188 register_info_type
*reg_info
;
5191 /* Point to after the args to the start_memory. */
5192 unsigned char *p1
= *p
+ 2;
5196 /* Skip over opcodes that can match nothing, and return true or
5197 false, as appropriate, when we get to one that can't, or to the
5198 matching stop_memory. */
5200 switch ((re_opcode_t
) *p1
)
5202 /* Could be either a loop or a series of alternatives. */
5203 case on_failure_jump
:
5205 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5207 /* If the next operation is not a jump backwards in the
5212 /* Go through the on_failure_jumps of the alternatives,
5213 seeing if any of the alternatives cannot match nothing.
5214 The last alternative starts with only a jump,
5215 whereas the rest start with on_failure_jump and end
5216 with a jump, e.g., here is the pattern for `a|b|c':
5218 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5219 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5222 So, we have to first go through the first (n-1)
5223 alternatives and then deal with the last one separately. */
5226 /* Deal with the first (n-1) alternatives, which start
5227 with an on_failure_jump (see above) that jumps to right
5228 past a jump_past_alt. */
5230 while ((re_opcode_t
) p1
[mcnt
-3] == jump_past_alt
)
5232 /* `mcnt' holds how many bytes long the alternative
5233 is, including the ending `jump_past_alt' and
5236 if (!alt_match_null_string_p (p1
, p1
+ mcnt
- 3,
5240 /* Move to right after this alternative, including the
5244 /* Break if it's the beginning of an n-th alternative
5245 that doesn't begin with an on_failure_jump. */
5246 if ((re_opcode_t
) *p1
!= on_failure_jump
)
5249 /* Still have to check that it's not an n-th
5250 alternative that starts with an on_failure_jump. */
5252 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5253 if ((re_opcode_t
) p1
[mcnt
-3] != jump_past_alt
)
5255 /* Get to the beginning of the n-th alternative. */
5261 /* Deal with the last alternative: go back and get number
5262 of the `jump_past_alt' just before it. `mcnt' contains
5263 the length of the alternative. */
5264 EXTRACT_NUMBER (mcnt
, p1
- 2);
5266 if (!alt_match_null_string_p (p1
, p1
+ mcnt
, reg_info
))
5269 p1
+= mcnt
; /* Get past the n-th alternative. */
5275 assert (p1
[1] == **p
);
5281 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
5284 } /* while p1 < end */
5287 } /* group_match_null_string_p */
5290 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5291 It expects P to be the first byte of a single alternative and END one
5292 byte past the last. The alternative can contain groups. */
5295 alt_match_null_string_p (p
, end
, reg_info
)
5296 unsigned char *p
, *end
;
5297 register_info_type
*reg_info
;
5300 unsigned char *p1
= p
;
5304 /* Skip over opcodes that can match nothing, and break when we get
5305 to one that can't. */
5307 switch ((re_opcode_t
) *p1
)
5310 case on_failure_jump
:
5312 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5317 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
5320 } /* while p1 < end */
5323 } /* alt_match_null_string_p */
5326 /* Deals with the ops common to group_match_null_string_p and
5327 alt_match_null_string_p.
5329 Sets P to one after the op and its arguments, if any. */
5332 common_op_match_null_string_p (p
, end
, reg_info
)
5333 unsigned char **p
, *end
;
5334 register_info_type
*reg_info
;
5339 unsigned char *p1
= *p
;
5341 switch ((re_opcode_t
) *p1
++)
5361 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
5362 ret
= group_match_null_string_p (&p1
, end
, reg_info
);
5364 /* Have to set this here in case we're checking a group which
5365 contains a group and a back reference to it. */
5367 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
5368 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
5374 /* If this is an optimized succeed_n for zero times, make the jump. */
5376 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5384 /* Get to the number of times to succeed. */
5386 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5391 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5399 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
5407 /* All other opcodes mean we cannot match the empty string. */
5413 } /* common_op_match_null_string_p */
5416 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5417 bytes; nonzero otherwise. */
5420 bcmp_translate (s1
, s2
, len
, translate
)
5421 const char *s1
, *s2
;
5423 RE_TRANSLATE_TYPE translate
;
5425 register const unsigned char *p1
= (const unsigned char *) s1
;
5426 register const unsigned char *p2
= (const unsigned char *) s2
;
5429 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
5435 /* Entry points for GNU code. */
5437 /* re_compile_pattern is the GNU regular expression compiler: it
5438 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5439 Returns 0 if the pattern was valid, otherwise an error string.
5441 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5442 are set in BUFP on entry.
5444 We call regex_compile to do the actual compilation. */
5447 re_compile_pattern (pattern
, length
, bufp
)
5448 const char *pattern
;
5450 struct re_pattern_buffer
*bufp
;
5454 /* GNU code is written to assume at least RE_NREGS registers will be set
5455 (and at least one extra will be -1). */
5456 bufp
->regs_allocated
= REGS_UNALLOCATED
;
5458 /* And GNU code determines whether or not to get register information
5459 by passing null for the REGS argument to re_match, etc., not by
5463 /* Match anchors at newline. */
5464 bufp
->newline_anchor
= 1;
5466 ret
= regex_compile (pattern
, length
, re_syntax_options
, bufp
);
5470 return gettext (re_error_msgid
[(int) ret
]);
5473 weak_alias (__re_compile_pattern
, re_compile_pattern
)
5476 /* Entry points compatible with 4.2 BSD regex library. We don't define
5477 them unless specifically requested. */
5479 #if defined _REGEX_RE_COMP || defined _LIBC
5481 /* BSD has one and only one pattern buffer. */
5482 static struct re_pattern_buffer re_comp_buf
;
5486 /* Make these definitions weak in libc, so POSIX programs can redefine
5487 these names if they don't use our functions, and still use
5488 regcomp/regexec below without link errors. */
5498 if (!re_comp_buf
.buffer
)
5499 return gettext ("No previous regular expression");
5503 if (!re_comp_buf
.buffer
)
5505 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
5506 if (re_comp_buf
.buffer
== NULL
)
5507 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
5508 re_comp_buf
.allocated
= 200;
5510 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
5511 if (re_comp_buf
.fastmap
== NULL
)
5512 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
5515 /* Since `re_exec' always passes NULL for the `regs' argument, we
5516 don't need to initialize the pattern buffer fields which affect it. */
5518 /* Match anchors at newlines. */
5519 re_comp_buf
.newline_anchor
= 1;
5521 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
5526 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5527 return (char *) gettext (re_error_msgid
[(int) ret
]);
5538 const int len
= strlen (s
);
5540 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
5543 #endif /* _REGEX_RE_COMP */
5545 /* POSIX.2 functions. Don't define these for Emacs. */
5549 /* regcomp takes a regular expression as a string and compiles it.
5551 PREG is a regex_t *. We do not expect any fields to be initialized,
5552 since POSIX says we shouldn't. Thus, we set
5554 `buffer' to the compiled pattern;
5555 `used' to the length of the compiled pattern;
5556 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5557 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5558 RE_SYNTAX_POSIX_BASIC;
5559 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5560 `fastmap' and `fastmap_accurate' to zero;
5561 `re_nsub' to the number of subexpressions in PATTERN.
5563 PATTERN is the address of the pattern string.
5565 CFLAGS is a series of bits which affect compilation.
5567 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5568 use POSIX basic syntax.
5570 If REG_NEWLINE is set, then . and [^...] don't match newline.
5571 Also, regexec will try a match beginning after every newline.
5573 If REG_ICASE is set, then we considers upper- and lowercase
5574 versions of letters to be equivalent when matching.
5576 If REG_NOSUB is set, then when PREG is passed to regexec, that
5577 routine will report only success or failure, and nothing about the
5580 It returns 0 if it succeeds, nonzero if it doesn't. (See gnu-regex.h for
5581 the return codes and their meanings.) */
5584 regcomp (preg
, pattern
, cflags
)
5586 const char *pattern
;
5591 = (cflags
& REG_EXTENDED
) ?
5592 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
5594 /* regex_compile will allocate the space for the compiled pattern. */
5596 preg
->allocated
= 0;
5599 /* Don't bother to use a fastmap when searching. This simplifies the
5600 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5601 characters after newlines into the fastmap. This way, we just try
5605 if (cflags
& REG_ICASE
)
5610 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
5611 * sizeof (*(RE_TRANSLATE_TYPE
)0));
5612 if (preg
->translate
== NULL
)
5613 return (int) REG_ESPACE
;
5615 /* Map uppercase characters to corresponding lowercase ones. */
5616 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
5617 preg
->translate
[i
] = ISUPPER (i
) ? tolower (i
) : i
;
5620 preg
->translate
= NULL
;
5622 /* If REG_NEWLINE is set, newlines are treated differently. */
5623 if (cflags
& REG_NEWLINE
)
5624 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5625 syntax
&= ~RE_DOT_NEWLINE
;
5626 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
5627 /* It also changes the matching behavior. */
5628 preg
->newline_anchor
= 1;
5631 preg
->newline_anchor
= 0;
5633 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
5635 /* POSIX says a null character in the pattern terminates it, so we
5636 can use strlen here in compiling the pattern. */
5637 ret
= regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
5639 /* POSIX doesn't distinguish between an unmatched open-group and an
5640 unmatched close-group: both are REG_EPAREN. */
5641 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
5646 weak_alias (__regcomp
, regcomp
)
5650 /* regexec searches for a given pattern, specified by PREG, in the
5653 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5654 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5655 least NMATCH elements, and we set them to the offsets of the
5656 corresponding matched substrings.
5658 EFLAGS specifies `execution flags' which affect matching: if
5659 REG_NOTBOL is set, then ^ does not match at the beginning of the
5660 string; if REG_NOTEOL is set, then $ does not match at the end.
5662 We return 0 if we find a match and REG_NOMATCH if not. */
5665 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
5666 const regex_t
*preg
;
5669 regmatch_t pmatch
[];
5673 struct re_registers regs
;
5674 regex_t private_preg
;
5675 int len
= strlen (string
);
5676 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
5678 private_preg
= *preg
;
5680 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
5681 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
5683 /* The user has told us exactly how many registers to return
5684 information about, via `nmatch'. We have to pass that on to the
5685 matching routines. */
5686 private_preg
.regs_allocated
= REGS_FIXED
;
5690 regs
.num_regs
= nmatch
;
5691 regs
.start
= TALLOC (nmatch
, regoff_t
);
5692 regs
.end
= TALLOC (nmatch
, regoff_t
);
5693 if (regs
.start
== NULL
|| regs
.end
== NULL
)
5694 return (int) REG_NOMATCH
;
5697 /* Perform the searching operation. */
5698 ret
= re_search (&private_preg
, string
, len
,
5699 /* start: */ 0, /* range: */ len
,
5700 want_reg_info
? ®s
: (struct re_registers
*) 0);
5702 /* Copy the register information to the POSIX structure. */
5709 for (r
= 0; r
< nmatch
; r
++)
5711 pmatch
[r
].rm_so
= regs
.start
[r
];
5712 pmatch
[r
].rm_eo
= regs
.end
[r
];
5716 /* If we needed the temporary register info, free the space now. */
5721 /* We want zero return to mean success, unlike `re_search'. */
5722 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
5725 weak_alias (__regexec
, regexec
)
5729 /* Returns a message corresponding to an error code, ERRCODE, returned
5730 from either regcomp or regexec. We don't use PREG here. */
5733 regerror (errcode
, preg
, errbuf
, errbuf_size
)
5735 const regex_t
*preg
;
5743 || errcode
>= (int) (sizeof (re_error_msgid
)
5744 / sizeof (re_error_msgid
[0])))
5745 /* Only error codes returned by the rest of the code should be passed
5746 to this routine. If we are given anything else, or if other regex
5747 code generates an invalid error code, then the program has a bug.
5748 Dump core so we can fix it. */
5751 msg
= gettext (re_error_msgid
[errcode
]);
5753 msg_size
= strlen (msg
) + 1; /* Includes the null. */
5755 if (errbuf_size
!= 0)
5757 if (msg_size
> errbuf_size
)
5759 #if defined HAVE_MEMPCPY || defined _LIBC
5760 *((char *) __mempcpy (errbuf
, msg
, errbuf_size
- 1)) = '\0';
5762 memcpy (errbuf
, msg
, errbuf_size
- 1);
5763 errbuf
[errbuf_size
- 1] = 0;
5767 memcpy (errbuf
, msg
, msg_size
);
5773 weak_alias (__regerror
, regerror
)
5777 /* Free dynamically allocated space used by PREG. */
5783 if (preg
->buffer
!= NULL
)
5784 free (preg
->buffer
);
5785 preg
->buffer
= NULL
;
5787 preg
->allocated
= 0;
5790 if (preg
->fastmap
!= NULL
)
5791 free (preg
->fastmap
);
5792 preg
->fastmap
= NULL
;
5793 preg
->fastmap_accurate
= 0;
5795 if (preg
->translate
!= NULL
)
5796 free (preg
->translate
);
5797 preg
->translate
= NULL
;
5800 weak_alias (__regfree
, regfree
)
5803 #endif /* not emacs */