import gdb-1999-07-07 pre reformat
[deliverable/binutils-gdb.git] / gdb / gnu-regex.c
1 /* *INDENT-OFF* */ /* keep in sync with glibc */
2 /* Extended regular expression matching and search library,
3 version 0.12.
4 (Implements POSIX draft P1003.2/D11.2, except for some of the
5 internationalization features.)
6 Copyright (C) 1993, 94, 95, 96, 97, 98 Free Software Foundation, Inc.
7
8 NOTE: The canonical source of this file is maintained with the
9 GNU C Library. Bugs can be reported to bug-glibc@prep.ai.mit.edu.
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation; either version 2, or (at your option) any
14 later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software Foundation,
23 Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24
25 /* AIX requires this to be the first thing in the file. */
26 #if defined _AIX && !defined REGEX_MALLOC
27 #pragma alloca
28 #endif
29
30 #undef _GNU_SOURCE
31 #define _GNU_SOURCE
32
33 #ifdef HAVE_CONFIG_H
34 # include <config.h>
35 #endif
36
37 #ifndef PARAMS
38 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
39 # define PARAMS(args) args
40 # else
41 # define PARAMS(args) ()
42 # endif /* GCC. */
43 #endif /* Not PARAMS. */
44
45 #if defined STDC_HEADERS && !defined emacs
46 # include <stddef.h>
47 #else
48 /* We need this for `gnu-regex.h', and perhaps for the Emacs include files. */
49 # include <sys/types.h>
50 #endif
51
52 /* For platform which support the ISO C amendement 1 functionality we
53 support user defined character classes. */
54 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
55 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
56 # include <wchar.h>
57 # include <wctype.h>
58 #endif
59
60 /* This is for other GNU distributions with internationalized messages. */
61 /* CYGNUS LOCAL: ../intl will handle this for us */
62 #ifdef ENABLE_NLS
63 # include <libintl.h>
64 #else
65 # define gettext(msgid) (msgid)
66 #endif
67
68 #ifndef gettext_noop
69 /* This define is so xgettext can find the internationalizable
70 strings. */
71 # define gettext_noop(String) String
72 #endif
73
74 /* The `emacs' switch turns on certain matching commands
75 that make sense only in Emacs. */
76 #ifdef emacs
77
78 # include "lisp.h"
79 # include "buffer.h"
80 # include "syntax.h"
81
82 #else /* not emacs */
83
84 /* If we are not linking with Emacs proper,
85 we can't use the relocating allocator
86 even if config.h says that we can. */
87 # undef REL_ALLOC
88
89 # if defined STDC_HEADERS || defined _LIBC
90 # include <stdlib.h>
91 # else
92 char *malloc ();
93 char *realloc ();
94 # endif
95
96 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
97 If nothing else has been done, use the method below. */
98 # ifdef INHIBIT_STRING_HEADER
99 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
100 # if !defined bzero && !defined bcopy
101 # undef INHIBIT_STRING_HEADER
102 # endif
103 # endif
104 # endif
105
106 /* This is the normal way of making sure we have a bcopy and a bzero.
107 This is used in most programs--a few other programs avoid this
108 by defining INHIBIT_STRING_HEADER. */
109 # ifndef INHIBIT_STRING_HEADER
110 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
111 # include <string.h>
112 # ifndef bzero
113 # ifndef _LIBC
114 # define bzero(s, n) (memset (s, '\0', n), (s))
115 # else
116 # define bzero(s, n) __bzero (s, n)
117 # endif
118 # endif
119 # else
120 # include <strings.h>
121 # ifndef memcmp
122 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
123 # endif
124 # ifndef memcpy
125 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
126 # endif
127 # endif
128 # endif
129
130 /* Define the syntax stuff for \<, \>, etc. */
131
132 /* This must be nonzero for the wordchar and notwordchar pattern
133 commands in re_match_2. */
134 # ifndef Sword
135 # define Sword 1
136 # endif
137
138 # ifdef SWITCH_ENUM_BUG
139 # define SWITCH_ENUM_CAST(x) ((int)(x))
140 # else
141 # define SWITCH_ENUM_CAST(x) (x)
142 # endif
143
144 /* How many characters in the character set. */
145 # define CHAR_SET_SIZE 256
146
147 /* GDB LOCAL: define _REGEX_RE_COMP to get BSD style re_comp and re_exec */
148 #ifndef _REGEX_RE_COMP
149 #define _REGEX_RE_COMP
150 #endif
151
152 # ifdef SYNTAX_TABLE
153
154 extern char *re_syntax_table;
155
156 # else /* not SYNTAX_TABLE */
157
158 static char re_syntax_table[CHAR_SET_SIZE];
159
160 static void
161 init_syntax_once ()
162 {
163 register int c;
164 static int done = 0;
165
166 if (done)
167 return;
168
169 bzero (re_syntax_table, sizeof re_syntax_table);
170
171 for (c = 'a'; c <= 'z'; c++)
172 re_syntax_table[c] = Sword;
173
174 for (c = 'A'; c <= 'Z'; c++)
175 re_syntax_table[c] = Sword;
176
177 for (c = '0'; c <= '9'; c++)
178 re_syntax_table[c] = Sword;
179
180 re_syntax_table['_'] = Sword;
181
182 done = 1;
183 }
184
185 # endif /* not SYNTAX_TABLE */
186
187 # define SYNTAX(c) re_syntax_table[c]
188
189 #endif /* not emacs */
190 \f
191 /* Get the interface, including the syntax bits. */
192 /* CYGNUS LOCAL: call it gnu-regex.h, not regex.h, to avoid name conflicts */
193 #include "gnu-regex.h"
194
195 /* isalpha etc. are used for the character classes. */
196 #include <ctype.h>
197
198 /* Jim Meyering writes:
199
200 "... Some ctype macros are valid only for character codes that
201 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
202 using /bin/cc or gcc but without giving an ansi option). So, all
203 ctype uses should be through macros like ISPRINT... If
204 STDC_HEADERS is defined, then autoconf has verified that the ctype
205 macros don't need to be guarded with references to isascii. ...
206 Defining isascii to 1 should let any compiler worth its salt
207 eliminate the && through constant folding."
208 Solaris defines some of these symbols so we must undefine them first. */
209
210 #undef ISASCII
211 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
212 # define ISASCII(c) 1
213 #else
214 # define ISASCII(c) isascii(c)
215 #endif
216
217 #ifdef isblank
218 # define ISBLANK(c) (ISASCII (c) && isblank (c))
219 #else
220 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
221 #endif
222 #ifdef isgraph
223 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
224 #else
225 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
226 #endif
227
228 #undef ISPRINT
229 #define ISPRINT(c) (ISASCII (c) && isprint (c))
230 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
231 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
232 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
233 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
234 #define ISLOWER(c) (ISASCII (c) && islower (c))
235 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
236 #define ISSPACE(c) (ISASCII (c) && isspace (c))
237 #define ISUPPER(c) (ISASCII (c) && isupper (c))
238 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
239
240 #ifndef NULL
241 # define NULL (void *)0
242 #endif
243
244 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
245 since ours (we hope) works properly with all combinations of
246 machines, compilers, `char' and `unsigned char' argument types.
247 (Per Bothner suggested the basic approach.) */
248 #undef SIGN_EXTEND_CHAR
249 #if __STDC__
250 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
251 #else /* not __STDC__ */
252 /* As in Harbison and Steele. */
253 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
254 #endif
255 \f
256 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
257 use `alloca' instead of `malloc'. This is because using malloc in
258 re_search* or re_match* could cause memory leaks when C-g is used in
259 Emacs; also, malloc is slower and causes storage fragmentation. On
260 the other hand, malloc is more portable, and easier to debug.
261
262 Because we sometimes use alloca, some routines have to be macros,
263 not functions -- `alloca'-allocated space disappears at the end of the
264 function it is called in. */
265
266 #ifdef REGEX_MALLOC
267
268 # define REGEX_ALLOCATE malloc
269 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
270 # define REGEX_FREE free
271
272 #else /* not REGEX_MALLOC */
273
274 /* Emacs already defines alloca, sometimes. */
275 # ifndef alloca
276
277 /* Make alloca work the best possible way. */
278 # ifdef __GNUC__
279 # define alloca __builtin_alloca
280 # else /* not __GNUC__ */
281 # if HAVE_ALLOCA_H
282 # include <alloca.h>
283 # endif /* HAVE_ALLOCA_H */
284 # endif /* not __GNUC__ */
285
286 # endif /* not alloca */
287
288 # define REGEX_ALLOCATE alloca
289
290 /* Assumes a `char *destination' variable. */
291 # define REGEX_REALLOCATE(source, osize, nsize) \
292 (destination = (char *) alloca (nsize), \
293 memcpy (destination, source, osize))
294
295 /* No need to do anything to free, after alloca. */
296 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
297
298 #endif /* not REGEX_MALLOC */
299
300 /* Define how to allocate the failure stack. */
301
302 #if defined REL_ALLOC && defined REGEX_MALLOC
303
304 # define REGEX_ALLOCATE_STACK(size) \
305 r_alloc (&failure_stack_ptr, (size))
306 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
307 r_re_alloc (&failure_stack_ptr, (nsize))
308 # define REGEX_FREE_STACK(ptr) \
309 r_alloc_free (&failure_stack_ptr)
310
311 #else /* not using relocating allocator */
312
313 # ifdef REGEX_MALLOC
314
315 # define REGEX_ALLOCATE_STACK malloc
316 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
317 # define REGEX_FREE_STACK free
318
319 # else /* not REGEX_MALLOC */
320
321 # define REGEX_ALLOCATE_STACK alloca
322
323 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
324 REGEX_REALLOCATE (source, osize, nsize)
325 /* No need to explicitly free anything. */
326 # define REGEX_FREE_STACK(arg)
327
328 # endif /* not REGEX_MALLOC */
329 #endif /* not using relocating allocator */
330
331
332 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
333 `string1' or just past its end. This works if PTR is NULL, which is
334 a good thing. */
335 #define FIRST_STRING_P(ptr) \
336 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
337
338 /* (Re)Allocate N items of type T using malloc, or fail. */
339 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
340 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
341 #define RETALLOC_IF(addr, n, t) \
342 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
343 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
344
345 #define BYTEWIDTH 8 /* In bits. */
346
347 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
348
349 #undef MAX
350 #undef MIN
351 #define MAX(a, b) ((a) > (b) ? (a) : (b))
352 #define MIN(a, b) ((a) < (b) ? (a) : (b))
353
354 typedef char boolean;
355 #define false 0
356 #define true 1
357
358 static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
359 const char *string1, int size1,
360 const char *string2, int size2,
361 int pos,
362 struct re_registers *regs,
363 int stop));
364 \f
365 /* These are the command codes that appear in compiled regular
366 expressions. Some opcodes are followed by argument bytes. A
367 command code can specify any interpretation whatsoever for its
368 arguments. Zero bytes may appear in the compiled regular expression. */
369
370 typedef enum
371 {
372 no_op = 0,
373
374 /* Succeed right away--no more backtracking. */
375 succeed,
376
377 /* Followed by one byte giving n, then by n literal bytes. */
378 exactn,
379
380 /* Matches any (more or less) character. */
381 anychar,
382
383 /* Matches any one char belonging to specified set. First
384 following byte is number of bitmap bytes. Then come bytes
385 for a bitmap saying which chars are in. Bits in each byte
386 are ordered low-bit-first. A character is in the set if its
387 bit is 1. A character too large to have a bit in the map is
388 automatically not in the set. */
389 charset,
390
391 /* Same parameters as charset, but match any character that is
392 not one of those specified. */
393 charset_not,
394
395 /* Start remembering the text that is matched, for storing in a
396 register. Followed by one byte with the register number, in
397 the range 0 to one less than the pattern buffer's re_nsub
398 field. Then followed by one byte with the number of groups
399 inner to this one. (This last has to be part of the
400 start_memory only because we need it in the on_failure_jump
401 of re_match_2.) */
402 start_memory,
403
404 /* Stop remembering the text that is matched and store it in a
405 memory register. Followed by one byte with the register
406 number, in the range 0 to one less than `re_nsub' in the
407 pattern buffer, and one byte with the number of inner groups,
408 just like `start_memory'. (We need the number of inner
409 groups here because we don't have any easy way of finding the
410 corresponding start_memory when we're at a stop_memory.) */
411 stop_memory,
412
413 /* Match a duplicate of something remembered. Followed by one
414 byte containing the register number. */
415 duplicate,
416
417 /* Fail unless at beginning of line. */
418 begline,
419
420 /* Fail unless at end of line. */
421 endline,
422
423 /* Succeeds if at beginning of buffer (if emacs) or at beginning
424 of string to be matched (if not). */
425 begbuf,
426
427 /* Analogously, for end of buffer/string. */
428 endbuf,
429
430 /* Followed by two byte relative address to which to jump. */
431 jump,
432
433 /* Same as jump, but marks the end of an alternative. */
434 jump_past_alt,
435
436 /* Followed by two-byte relative address of place to resume at
437 in case of failure. */
438 on_failure_jump,
439
440 /* Like on_failure_jump, but pushes a placeholder instead of the
441 current string position when executed. */
442 on_failure_keep_string_jump,
443
444 /* Throw away latest failure point and then jump to following
445 two-byte relative address. */
446 pop_failure_jump,
447
448 /* Change to pop_failure_jump if know won't have to backtrack to
449 match; otherwise change to jump. This is used to jump
450 back to the beginning of a repeat. If what follows this jump
451 clearly won't match what the repeat does, such that we can be
452 sure that there is no use backtracking out of repetitions
453 already matched, then we change it to a pop_failure_jump.
454 Followed by two-byte address. */
455 maybe_pop_jump,
456
457 /* Jump to following two-byte address, and push a dummy failure
458 point. This failure point will be thrown away if an attempt
459 is made to use it for a failure. A `+' construct makes this
460 before the first repeat. Also used as an intermediary kind
461 of jump when compiling an alternative. */
462 dummy_failure_jump,
463
464 /* Push a dummy failure point and continue. Used at the end of
465 alternatives. */
466 push_dummy_failure,
467
468 /* Followed by two-byte relative address and two-byte number n.
469 After matching N times, jump to the address upon failure. */
470 succeed_n,
471
472 /* Followed by two-byte relative address, and two-byte number n.
473 Jump to the address N times, then fail. */
474 jump_n,
475
476 /* Set the following two-byte relative address to the
477 subsequent two-byte number. The address *includes* the two
478 bytes of number. */
479 set_number_at,
480
481 wordchar, /* Matches any word-constituent character. */
482 notwordchar, /* Matches any char that is not a word-constituent. */
483
484 wordbeg, /* Succeeds if at word beginning. */
485 wordend, /* Succeeds if at word end. */
486
487 wordbound, /* Succeeds if at a word boundary. */
488 notwordbound /* Succeeds if not at a word boundary. */
489
490 #ifdef emacs
491 ,before_dot, /* Succeeds if before point. */
492 at_dot, /* Succeeds if at point. */
493 after_dot, /* Succeeds if after point. */
494
495 /* Matches any character whose syntax is specified. Followed by
496 a byte which contains a syntax code, e.g., Sword. */
497 syntaxspec,
498
499 /* Matches any character whose syntax is not that specified. */
500 notsyntaxspec
501 #endif /* emacs */
502 } re_opcode_t;
503 \f
504 /* Common operations on the compiled pattern. */
505
506 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
507
508 #define STORE_NUMBER(destination, number) \
509 do { \
510 (destination)[0] = (number) & 0377; \
511 (destination)[1] = (number) >> 8; \
512 } while (0)
513
514 /* Same as STORE_NUMBER, except increment DESTINATION to
515 the byte after where the number is stored. Therefore, DESTINATION
516 must be an lvalue. */
517
518 #define STORE_NUMBER_AND_INCR(destination, number) \
519 do { \
520 STORE_NUMBER (destination, number); \
521 (destination) += 2; \
522 } while (0)
523
524 /* Put into DESTINATION a number stored in two contiguous bytes starting
525 at SOURCE. */
526
527 #define EXTRACT_NUMBER(destination, source) \
528 do { \
529 (destination) = *(source) & 0377; \
530 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
531 } while (0)
532
533 #ifdef DEBUG
534 static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
535 static void
536 extract_number (dest, source)
537 int *dest;
538 unsigned char *source;
539 {
540 int temp = SIGN_EXTEND_CHAR (*(source + 1));
541 *dest = *source & 0377;
542 *dest += temp << 8;
543 }
544
545 # ifndef EXTRACT_MACROS /* To debug the macros. */
546 # undef EXTRACT_NUMBER
547 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
548 # endif /* not EXTRACT_MACROS */
549
550 #endif /* DEBUG */
551
552 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
553 SOURCE must be an lvalue. */
554
555 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
556 do { \
557 EXTRACT_NUMBER (destination, source); \
558 (source) += 2; \
559 } while (0)
560
561 #ifdef DEBUG
562 static void extract_number_and_incr _RE_ARGS ((int *destination,
563 unsigned char **source));
564 static void
565 extract_number_and_incr (destination, source)
566 int *destination;
567 unsigned char **source;
568 {
569 extract_number (destination, *source);
570 *source += 2;
571 }
572
573 # ifndef EXTRACT_MACROS
574 # undef EXTRACT_NUMBER_AND_INCR
575 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
576 extract_number_and_incr (&dest, &src)
577 # endif /* not EXTRACT_MACROS */
578
579 #endif /* DEBUG */
580 \f
581 /* If DEBUG is defined, Regex prints many voluminous messages about what
582 it is doing (if the variable `debug' is nonzero). If linked with the
583 main program in `iregex.c', you can enter patterns and strings
584 interactively. And if linked with the main program in `main.c' and
585 the other test files, you can run the already-written tests. */
586
587 #ifdef DEBUG
588
589 /* We use standard I/O for debugging. */
590 # include <stdio.h>
591
592 /* It is useful to test things that ``must'' be true when debugging. */
593 # include <assert.h>
594
595 static int debug = 0;
596
597 # define DEBUG_STATEMENT(e) e
598 # define DEBUG_PRINT1(x) if (debug) printf (x)
599 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
600 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
601 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
602 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
603 if (debug) print_partial_compiled_pattern (s, e)
604 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
605 if (debug) print_double_string (w, s1, sz1, s2, sz2)
606
607
608 /* Print the fastmap in human-readable form. */
609
610 void
611 print_fastmap (fastmap)
612 char *fastmap;
613 {
614 unsigned was_a_range = 0;
615 unsigned i = 0;
616
617 while (i < (1 << BYTEWIDTH))
618 {
619 if (fastmap[i++])
620 {
621 was_a_range = 0;
622 putchar (i - 1);
623 while (i < (1 << BYTEWIDTH) && fastmap[i])
624 {
625 was_a_range = 1;
626 i++;
627 }
628 if (was_a_range)
629 {
630 printf ("-");
631 putchar (i - 1);
632 }
633 }
634 }
635 putchar ('\n');
636 }
637
638
639 /* Print a compiled pattern string in human-readable form, starting at
640 the START pointer into it and ending just before the pointer END. */
641
642 void
643 print_partial_compiled_pattern (start, end)
644 unsigned char *start;
645 unsigned char *end;
646 {
647 int mcnt, mcnt2;
648 unsigned char *p1;
649 unsigned char *p = start;
650 unsigned char *pend = end;
651
652 if (start == NULL)
653 {
654 printf ("(null)\n");
655 return;
656 }
657
658 /* Loop over pattern commands. */
659 while (p < pend)
660 {
661 printf ("%d:\t", p - start);
662
663 switch ((re_opcode_t) *p++)
664 {
665 case no_op:
666 printf ("/no_op");
667 break;
668
669 case exactn:
670 mcnt = *p++;
671 printf ("/exactn/%d", mcnt);
672 do
673 {
674 putchar ('/');
675 putchar (*p++);
676 }
677 while (--mcnt);
678 break;
679
680 case start_memory:
681 mcnt = *p++;
682 printf ("/start_memory/%d/%d", mcnt, *p++);
683 break;
684
685 case stop_memory:
686 mcnt = *p++;
687 printf ("/stop_memory/%d/%d", mcnt, *p++);
688 break;
689
690 case duplicate:
691 printf ("/duplicate/%d", *p++);
692 break;
693
694 case anychar:
695 printf ("/anychar");
696 break;
697
698 case charset:
699 case charset_not:
700 {
701 register int c, last = -100;
702 register int in_range = 0;
703
704 printf ("/charset [%s",
705 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
706
707 assert (p + *p < pend);
708
709 for (c = 0; c < 256; c++)
710 if (c / 8 < *p
711 && (p[1 + (c/8)] & (1 << (c % 8))))
712 {
713 /* Are we starting a range? */
714 if (last + 1 == c && ! in_range)
715 {
716 putchar ('-');
717 in_range = 1;
718 }
719 /* Have we broken a range? */
720 else if (last + 1 != c && in_range)
721 {
722 putchar (last);
723 in_range = 0;
724 }
725
726 if (! in_range)
727 putchar (c);
728
729 last = c;
730 }
731
732 if (in_range)
733 putchar (last);
734
735 putchar (']');
736
737 p += 1 + *p;
738 }
739 break;
740
741 case begline:
742 printf ("/begline");
743 break;
744
745 case endline:
746 printf ("/endline");
747 break;
748
749 case on_failure_jump:
750 extract_number_and_incr (&mcnt, &p);
751 printf ("/on_failure_jump to %d", p + mcnt - start);
752 break;
753
754 case on_failure_keep_string_jump:
755 extract_number_and_incr (&mcnt, &p);
756 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
757 break;
758
759 case dummy_failure_jump:
760 extract_number_and_incr (&mcnt, &p);
761 printf ("/dummy_failure_jump to %d", p + mcnt - start);
762 break;
763
764 case push_dummy_failure:
765 printf ("/push_dummy_failure");
766 break;
767
768 case maybe_pop_jump:
769 extract_number_and_incr (&mcnt, &p);
770 printf ("/maybe_pop_jump to %d", p + mcnt - start);
771 break;
772
773 case pop_failure_jump:
774 extract_number_and_incr (&mcnt, &p);
775 printf ("/pop_failure_jump to %d", p + mcnt - start);
776 break;
777
778 case jump_past_alt:
779 extract_number_and_incr (&mcnt, &p);
780 printf ("/jump_past_alt to %d", p + mcnt - start);
781 break;
782
783 case jump:
784 extract_number_and_incr (&mcnt, &p);
785 printf ("/jump to %d", p + mcnt - start);
786 break;
787
788 case succeed_n:
789 extract_number_and_incr (&mcnt, &p);
790 p1 = p + mcnt;
791 extract_number_and_incr (&mcnt2, &p);
792 printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
793 break;
794
795 case jump_n:
796 extract_number_and_incr (&mcnt, &p);
797 p1 = p + mcnt;
798 extract_number_and_incr (&mcnt2, &p);
799 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
800 break;
801
802 case set_number_at:
803 extract_number_and_incr (&mcnt, &p);
804 p1 = p + mcnt;
805 extract_number_and_incr (&mcnt2, &p);
806 printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
807 break;
808
809 case wordbound:
810 printf ("/wordbound");
811 break;
812
813 case notwordbound:
814 printf ("/notwordbound");
815 break;
816
817 case wordbeg:
818 printf ("/wordbeg");
819 break;
820
821 case wordend:
822 printf ("/wordend");
823
824 # ifdef emacs
825 case before_dot:
826 printf ("/before_dot");
827 break;
828
829 case at_dot:
830 printf ("/at_dot");
831 break;
832
833 case after_dot:
834 printf ("/after_dot");
835 break;
836
837 case syntaxspec:
838 printf ("/syntaxspec");
839 mcnt = *p++;
840 printf ("/%d", mcnt);
841 break;
842
843 case notsyntaxspec:
844 printf ("/notsyntaxspec");
845 mcnt = *p++;
846 printf ("/%d", mcnt);
847 break;
848 # endif /* emacs */
849
850 case wordchar:
851 printf ("/wordchar");
852 break;
853
854 case notwordchar:
855 printf ("/notwordchar");
856 break;
857
858 case begbuf:
859 printf ("/begbuf");
860 break;
861
862 case endbuf:
863 printf ("/endbuf");
864 break;
865
866 default:
867 printf ("?%d", *(p-1));
868 }
869
870 putchar ('\n');
871 }
872
873 printf ("%d:\tend of pattern.\n", p - start);
874 }
875
876
877 void
878 print_compiled_pattern (bufp)
879 struct re_pattern_buffer *bufp;
880 {
881 unsigned char *buffer = bufp->buffer;
882
883 print_partial_compiled_pattern (buffer, buffer + bufp->used);
884 printf ("%ld bytes used/%ld bytes allocated.\n",
885 bufp->used, bufp->allocated);
886
887 if (bufp->fastmap_accurate && bufp->fastmap)
888 {
889 printf ("fastmap: ");
890 print_fastmap (bufp->fastmap);
891 }
892
893 printf ("re_nsub: %d\t", bufp->re_nsub);
894 printf ("regs_alloc: %d\t", bufp->regs_allocated);
895 printf ("can_be_null: %d\t", bufp->can_be_null);
896 printf ("newline_anchor: %d\n", bufp->newline_anchor);
897 printf ("no_sub: %d\t", bufp->no_sub);
898 printf ("not_bol: %d\t", bufp->not_bol);
899 printf ("not_eol: %d\t", bufp->not_eol);
900 printf ("syntax: %lx\n", bufp->syntax);
901 /* Perhaps we should print the translate table? */
902 }
903
904
905 void
906 print_double_string (where, string1, size1, string2, size2)
907 const char *where;
908 const char *string1;
909 const char *string2;
910 int size1;
911 int size2;
912 {
913 int this_char;
914
915 if (where == NULL)
916 printf ("(null)");
917 else
918 {
919 if (FIRST_STRING_P (where))
920 {
921 for (this_char = where - string1; this_char < size1; this_char++)
922 putchar (string1[this_char]);
923
924 where = string2;
925 }
926
927 for (this_char = where - string2; this_char < size2; this_char++)
928 putchar (string2[this_char]);
929 }
930 }
931
932 void
933 printchar (c)
934 int c;
935 {
936 putc (c, stderr);
937 }
938
939 #else /* not DEBUG */
940
941 # undef assert
942 # define assert(e)
943
944 # define DEBUG_STATEMENT(e)
945 # define DEBUG_PRINT1(x)
946 # define DEBUG_PRINT2(x1, x2)
947 # define DEBUG_PRINT3(x1, x2, x3)
948 # define DEBUG_PRINT4(x1, x2, x3, x4)
949 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
950 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
951
952 #endif /* not DEBUG */
953 \f
954 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
955 also be assigned to arbitrarily: each pattern buffer stores its own
956 syntax, so it can be changed between regex compilations. */
957 /* This has no initializer because initialized variables in Emacs
958 become read-only after dumping. */
959 reg_syntax_t re_syntax_options;
960
961
962 /* Specify the precise syntax of regexps for compilation. This provides
963 for compatibility for various utilities which historically have
964 different, incompatible syntaxes.
965
966 The argument SYNTAX is a bit mask comprised of the various bits
967 defined in gnu-regex.h. We return the old syntax. */
968
969 reg_syntax_t
970 re_set_syntax (syntax)
971 reg_syntax_t syntax;
972 {
973 reg_syntax_t ret = re_syntax_options;
974
975 re_syntax_options = syntax;
976 #ifdef DEBUG
977 if (syntax & RE_DEBUG)
978 debug = 1;
979 else if (debug) /* was on but now is not */
980 debug = 0;
981 #endif /* DEBUG */
982 return ret;
983 }
984 #ifdef _LIBC
985 weak_alias (__re_set_syntax, re_set_syntax)
986 #endif
987 \f
988 /* This table gives an error message for each of the error codes listed
989 in gnu-regex.h. Obviously the order here has to be same as there.
990 POSIX doesn't require that we do anything for REG_NOERROR,
991 but why not be nice? */
992
993 static const char *re_error_msgid[] =
994 {
995 gettext_noop ("Success"), /* REG_NOERROR */
996 gettext_noop ("No match"), /* REG_NOMATCH */
997 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
998 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
999 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1000 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1001 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1002 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1003 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1004 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1005 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1006 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1007 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1008 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1009 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1010 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1011 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1012 };
1013 \f
1014 /* Avoiding alloca during matching, to placate r_alloc. */
1015
1016 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1017 searching and matching functions should not call alloca. On some
1018 systems, alloca is implemented in terms of malloc, and if we're
1019 using the relocating allocator routines, then malloc could cause a
1020 relocation, which might (if the strings being searched are in the
1021 ralloc heap) shift the data out from underneath the regexp
1022 routines.
1023
1024 Here's another reason to avoid allocation: Emacs
1025 processes input from X in a signal handler; processing X input may
1026 call malloc; if input arrives while a matching routine is calling
1027 malloc, then we're scrod. But Emacs can't just block input while
1028 calling matching routines; then we don't notice interrupts when
1029 they come in. So, Emacs blocks input around all regexp calls
1030 except the matching calls, which it leaves unprotected, in the
1031 faith that they will not malloc. */
1032
1033 /* Normally, this is fine. */
1034 #define MATCH_MAY_ALLOCATE
1035
1036 /* When using GNU C, we are not REALLY using the C alloca, no matter
1037 what config.h may say. So don't take precautions for it. */
1038 #ifdef __GNUC__
1039 # undef C_ALLOCA
1040 #endif
1041
1042 /* The match routines may not allocate if (1) they would do it with malloc
1043 and (2) it's not safe for them to use malloc.
1044 Note that if REL_ALLOC is defined, matching would not use malloc for the
1045 failure stack, but we would still use it for the register vectors;
1046 so REL_ALLOC should not affect this. */
1047 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1048 # undef MATCH_MAY_ALLOCATE
1049 #endif
1050
1051 \f
1052 /* Failure stack declarations and macros; both re_compile_fastmap and
1053 re_match_2 use a failure stack. These have to be macros because of
1054 REGEX_ALLOCATE_STACK. */
1055
1056
1057 /* Number of failure points for which to initially allocate space
1058 when matching. If this number is exceeded, we allocate more
1059 space, so it is not a hard limit. */
1060 #ifndef INIT_FAILURE_ALLOC
1061 # define INIT_FAILURE_ALLOC 5
1062 #endif
1063
1064 /* Roughly the maximum number of failure points on the stack. Would be
1065 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1066 This is a variable only so users of regex can assign to it; we never
1067 change it ourselves. */
1068
1069 #ifdef INT_IS_16BIT
1070
1071 # if defined MATCH_MAY_ALLOCATE
1072 /* 4400 was enough to cause a crash on Alpha OSF/1,
1073 whose default stack limit is 2mb. */
1074 long int re_max_failures = 4000;
1075 # else
1076 long int re_max_failures = 2000;
1077 # endif
1078
1079 union fail_stack_elt
1080 {
1081 unsigned char *pointer;
1082 long int integer;
1083 };
1084
1085 typedef union fail_stack_elt fail_stack_elt_t;
1086
1087 typedef struct
1088 {
1089 fail_stack_elt_t *stack;
1090 unsigned long int size;
1091 unsigned long int avail; /* Offset of next open position. */
1092 } fail_stack_type;
1093
1094 #else /* not INT_IS_16BIT */
1095
1096 # if defined MATCH_MAY_ALLOCATE
1097 /* 4400 was enough to cause a crash on Alpha OSF/1,
1098 whose default stack limit is 2mb. */
1099 int re_max_failures = 20000;
1100 # else
1101 int re_max_failures = 2000;
1102 # endif
1103
1104 union fail_stack_elt
1105 {
1106 unsigned char *pointer;
1107 int integer;
1108 };
1109
1110 typedef union fail_stack_elt fail_stack_elt_t;
1111
1112 typedef struct
1113 {
1114 fail_stack_elt_t *stack;
1115 unsigned size;
1116 unsigned avail; /* Offset of next open position. */
1117 } fail_stack_type;
1118
1119 #endif /* INT_IS_16BIT */
1120
1121 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1122 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1123 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1124
1125
1126 /* Define macros to initialize and free the failure stack.
1127 Do `return -2' if the alloc fails. */
1128
1129 #ifdef MATCH_MAY_ALLOCATE
1130 # define INIT_FAIL_STACK() \
1131 do { \
1132 fail_stack.stack = (fail_stack_elt_t *) \
1133 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1134 \
1135 if (fail_stack.stack == NULL) \
1136 return -2; \
1137 \
1138 fail_stack.size = INIT_FAILURE_ALLOC; \
1139 fail_stack.avail = 0; \
1140 } while (0)
1141
1142 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1143 #else
1144 # define INIT_FAIL_STACK() \
1145 do { \
1146 fail_stack.avail = 0; \
1147 } while (0)
1148
1149 # define RESET_FAIL_STACK()
1150 #endif
1151
1152
1153 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1154
1155 Return 1 if succeeds, and 0 if either ran out of memory
1156 allocating space for it or it was already too large.
1157
1158 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1159
1160 #define DOUBLE_FAIL_STACK(fail_stack) \
1161 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1162 ? 0 \
1163 : ((fail_stack).stack = (fail_stack_elt_t *) \
1164 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1165 (fail_stack).size * sizeof (fail_stack_elt_t), \
1166 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1167 \
1168 (fail_stack).stack == NULL \
1169 ? 0 \
1170 : ((fail_stack).size <<= 1, \
1171 1)))
1172
1173
1174 /* Push pointer POINTER on FAIL_STACK.
1175 Return 1 if was able to do so and 0 if ran out of memory allocating
1176 space to do so. */
1177 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1178 ((FAIL_STACK_FULL () \
1179 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1180 ? 0 \
1181 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1182 1))
1183
1184 /* Push a pointer value onto the failure stack.
1185 Assumes the variable `fail_stack'. Probably should only
1186 be called from within `PUSH_FAILURE_POINT'. */
1187 #define PUSH_FAILURE_POINTER(item) \
1188 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1189
1190 /* This pushes an integer-valued item onto the failure stack.
1191 Assumes the variable `fail_stack'. Probably should only
1192 be called from within `PUSH_FAILURE_POINT'. */
1193 #define PUSH_FAILURE_INT(item) \
1194 fail_stack.stack[fail_stack.avail++].integer = (item)
1195
1196 /* Push a fail_stack_elt_t value onto the failure stack.
1197 Assumes the variable `fail_stack'. Probably should only
1198 be called from within `PUSH_FAILURE_POINT'. */
1199 #define PUSH_FAILURE_ELT(item) \
1200 fail_stack.stack[fail_stack.avail++] = (item)
1201
1202 /* These three POP... operations complement the three PUSH... operations.
1203 All assume that `fail_stack' is nonempty. */
1204 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1205 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1206 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1207
1208 /* Used to omit pushing failure point id's when we're not debugging. */
1209 #ifdef DEBUG
1210 # define DEBUG_PUSH PUSH_FAILURE_INT
1211 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1212 #else
1213 # define DEBUG_PUSH(item)
1214 # define DEBUG_POP(item_addr)
1215 #endif
1216
1217
1218 /* Push the information about the state we will need
1219 if we ever fail back to it.
1220
1221 Requires variables fail_stack, regstart, regend, reg_info, and
1222 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1223 be declared.
1224
1225 Does `return FAILURE_CODE' if runs out of memory. */
1226
1227 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1228 do { \
1229 char *destination; \
1230 /* Must be int, so when we don't save any registers, the arithmetic \
1231 of 0 + -1 isn't done as unsigned. */ \
1232 /* Can't be int, since there is not a shred of a guarantee that int \
1233 is wide enough to hold a value of something to which pointer can \
1234 be assigned */ \
1235 active_reg_t this_reg; \
1236 \
1237 DEBUG_STATEMENT (failure_id++); \
1238 DEBUG_STATEMENT (nfailure_points_pushed++); \
1239 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1240 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1241 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1242 \
1243 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1244 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1245 \
1246 /* Ensure we have enough space allocated for what we will push. */ \
1247 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1248 { \
1249 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1250 return failure_code; \
1251 \
1252 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1253 (fail_stack).size); \
1254 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1255 } \
1256 \
1257 /* Push the info, starting with the registers. */ \
1258 DEBUG_PRINT1 ("\n"); \
1259 \
1260 if (1) \
1261 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1262 this_reg++) \
1263 { \
1264 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1265 DEBUG_STATEMENT (num_regs_pushed++); \
1266 \
1267 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1268 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1269 \
1270 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1271 PUSH_FAILURE_POINTER (regend[this_reg]); \
1272 \
1273 DEBUG_PRINT2 (" info: %p\n ", \
1274 reg_info[this_reg].word.pointer); \
1275 DEBUG_PRINT2 (" match_null=%d", \
1276 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1277 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1278 DEBUG_PRINT2 (" matched_something=%d", \
1279 MATCHED_SOMETHING (reg_info[this_reg])); \
1280 DEBUG_PRINT2 (" ever_matched=%d", \
1281 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1282 DEBUG_PRINT1 ("\n"); \
1283 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1284 } \
1285 \
1286 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1287 PUSH_FAILURE_INT (lowest_active_reg); \
1288 \
1289 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1290 PUSH_FAILURE_INT (highest_active_reg); \
1291 \
1292 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1293 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1294 PUSH_FAILURE_POINTER (pattern_place); \
1295 \
1296 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1297 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1298 size2); \
1299 DEBUG_PRINT1 ("'\n"); \
1300 PUSH_FAILURE_POINTER (string_place); \
1301 \
1302 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1303 DEBUG_PUSH (failure_id); \
1304 } while (0)
1305
1306 /* This is the number of items that are pushed and popped on the stack
1307 for each register. */
1308 #define NUM_REG_ITEMS 3
1309
1310 /* Individual items aside from the registers. */
1311 #ifdef DEBUG
1312 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1313 #else
1314 # define NUM_NONREG_ITEMS 4
1315 #endif
1316
1317 /* We push at most this many items on the stack. */
1318 /* We used to use (num_regs - 1), which is the number of registers
1319 this regexp will save; but that was changed to 5
1320 to avoid stack overflow for a regexp with lots of parens. */
1321 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1322
1323 /* We actually push this many items. */
1324 #define NUM_FAILURE_ITEMS \
1325 (((0 \
1326 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1327 * NUM_REG_ITEMS) \
1328 + NUM_NONREG_ITEMS)
1329
1330 /* How many items can still be added to the stack without overflowing it. */
1331 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1332
1333
1334 /* Pops what PUSH_FAIL_STACK pushes.
1335
1336 We restore into the parameters, all of which should be lvalues:
1337 STR -- the saved data position.
1338 PAT -- the saved pattern position.
1339 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1340 REGSTART, REGEND -- arrays of string positions.
1341 REG_INFO -- array of information about each subexpression.
1342
1343 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1344 `pend', `string1', `size1', `string2', and `size2'. */
1345
1346 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1347 { \
1348 DEBUG_STATEMENT (unsigned failure_id;) \
1349 active_reg_t this_reg; \
1350 const unsigned char *string_temp; \
1351 \
1352 assert (!FAIL_STACK_EMPTY ()); \
1353 \
1354 /* Remove failure points and point to how many regs pushed. */ \
1355 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1356 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1357 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1358 \
1359 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1360 \
1361 DEBUG_POP (&failure_id); \
1362 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1363 \
1364 /* If the saved string location is NULL, it came from an \
1365 on_failure_keep_string_jump opcode, and we want to throw away the \
1366 saved NULL, thus retaining our current position in the string. */ \
1367 string_temp = POP_FAILURE_POINTER (); \
1368 if (string_temp != NULL) \
1369 str = (const char *) string_temp; \
1370 \
1371 DEBUG_PRINT2 (" Popping string %p: `", str); \
1372 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1373 DEBUG_PRINT1 ("'\n"); \
1374 \
1375 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1376 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1377 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1378 \
1379 /* Restore register info. */ \
1380 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1381 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1382 \
1383 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1384 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1385 \
1386 if (1) \
1387 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1388 { \
1389 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1390 \
1391 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1392 DEBUG_PRINT2 (" info: %p\n", \
1393 reg_info[this_reg].word.pointer); \
1394 \
1395 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1396 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1397 \
1398 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1399 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1400 } \
1401 else \
1402 { \
1403 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1404 { \
1405 reg_info[this_reg].word.integer = 0; \
1406 regend[this_reg] = 0; \
1407 regstart[this_reg] = 0; \
1408 } \
1409 highest_active_reg = high_reg; \
1410 } \
1411 \
1412 set_regs_matched_done = 0; \
1413 DEBUG_STATEMENT (nfailure_points_popped++); \
1414 } /* POP_FAILURE_POINT */
1415
1416
1417 \f
1418 /* Structure for per-register (a.k.a. per-group) information.
1419 Other register information, such as the
1420 starting and ending positions (which are addresses), and the list of
1421 inner groups (which is a bits list) are maintained in separate
1422 variables.
1423
1424 We are making a (strictly speaking) nonportable assumption here: that
1425 the compiler will pack our bit fields into something that fits into
1426 the type of `word', i.e., is something that fits into one item on the
1427 failure stack. */
1428
1429
1430 /* Declarations and macros for re_match_2. */
1431
1432 typedef union
1433 {
1434 fail_stack_elt_t word;
1435 struct
1436 {
1437 /* This field is one if this group can match the empty string,
1438 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1439 #define MATCH_NULL_UNSET_VALUE 3
1440 unsigned match_null_string_p : 2;
1441 unsigned is_active : 1;
1442 unsigned matched_something : 1;
1443 unsigned ever_matched_something : 1;
1444 } bits;
1445 } register_info_type;
1446
1447 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1448 #define IS_ACTIVE(R) ((R).bits.is_active)
1449 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1450 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1451
1452
1453 /* Call this when have matched a real character; it sets `matched' flags
1454 for the subexpressions which we are currently inside. Also records
1455 that those subexprs have matched. */
1456 #define SET_REGS_MATCHED() \
1457 do \
1458 { \
1459 if (!set_regs_matched_done) \
1460 { \
1461 active_reg_t r; \
1462 set_regs_matched_done = 1; \
1463 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1464 { \
1465 MATCHED_SOMETHING (reg_info[r]) \
1466 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1467 = 1; \
1468 } \
1469 } \
1470 } \
1471 while (0)
1472
1473 /* Registers are set to a sentinel when they haven't yet matched. */
1474 static char reg_unset_dummy;
1475 #define REG_UNSET_VALUE (&reg_unset_dummy)
1476 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1477 \f
1478 /* Subroutine declarations and macros for regex_compile. */
1479
1480 static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1481 reg_syntax_t syntax,
1482 struct re_pattern_buffer *bufp));
1483 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1484 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1485 int arg1, int arg2));
1486 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1487 int arg, unsigned char *end));
1488 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1489 int arg1, int arg2, unsigned char *end));
1490 static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1491 reg_syntax_t syntax));
1492 static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1493 reg_syntax_t syntax));
1494 static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1495 const char *pend,
1496 char *translate,
1497 reg_syntax_t syntax,
1498 unsigned char *b));
1499
1500 /* Fetch the next character in the uncompiled pattern---translating it
1501 if necessary. Also cast from a signed character in the constant
1502 string passed to us by the user to an unsigned char that we can use
1503 as an array index (in, e.g., `translate'). */
1504 #ifndef PATFETCH
1505 # define PATFETCH(c) \
1506 do {if (p == pend) return REG_EEND; \
1507 c = (unsigned char) *p++; \
1508 if (translate) c = (unsigned char) translate[c]; \
1509 } while (0)
1510 #endif
1511
1512 /* Fetch the next character in the uncompiled pattern, with no
1513 translation. */
1514 #define PATFETCH_RAW(c) \
1515 do {if (p == pend) return REG_EEND; \
1516 c = (unsigned char) *p++; \
1517 } while (0)
1518
1519 /* Go backwards one character in the pattern. */
1520 #define PATUNFETCH p--
1521
1522
1523 /* If `translate' is non-null, return translate[D], else just D. We
1524 cast the subscript to translate because some data is declared as
1525 `char *', to avoid warnings when a string constant is passed. But
1526 when we use a character as a subscript we must make it unsigned. */
1527 #ifndef TRANSLATE
1528 # define TRANSLATE(d) \
1529 (translate ? (char) translate[(unsigned char) (d)] : (d))
1530 #endif
1531
1532
1533 /* Macros for outputting the compiled pattern into `buffer'. */
1534
1535 /* If the buffer isn't allocated when it comes in, use this. */
1536 #define INIT_BUF_SIZE 32
1537
1538 /* Make sure we have at least N more bytes of space in buffer. */
1539 #define GET_BUFFER_SPACE(n) \
1540 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1541 EXTEND_BUFFER ()
1542
1543 /* Make sure we have one more byte of buffer space and then add C to it. */
1544 #define BUF_PUSH(c) \
1545 do { \
1546 GET_BUFFER_SPACE (1); \
1547 *b++ = (unsigned char) (c); \
1548 } while (0)
1549
1550
1551 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1552 #define BUF_PUSH_2(c1, c2) \
1553 do { \
1554 GET_BUFFER_SPACE (2); \
1555 *b++ = (unsigned char) (c1); \
1556 *b++ = (unsigned char) (c2); \
1557 } while (0)
1558
1559
1560 /* As with BUF_PUSH_2, except for three bytes. */
1561 #define BUF_PUSH_3(c1, c2, c3) \
1562 do { \
1563 GET_BUFFER_SPACE (3); \
1564 *b++ = (unsigned char) (c1); \
1565 *b++ = (unsigned char) (c2); \
1566 *b++ = (unsigned char) (c3); \
1567 } while (0)
1568
1569
1570 /* Store a jump with opcode OP at LOC to location TO. We store a
1571 relative address offset by the three bytes the jump itself occupies. */
1572 #define STORE_JUMP(op, loc, to) \
1573 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1574
1575 /* Likewise, for a two-argument jump. */
1576 #define STORE_JUMP2(op, loc, to, arg) \
1577 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1578
1579 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1580 #define INSERT_JUMP(op, loc, to) \
1581 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1582
1583 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1584 #define INSERT_JUMP2(op, loc, to, arg) \
1585 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1586
1587
1588 /* This is not an arbitrary limit: the arguments which represent offsets
1589 into the pattern are two bytes long. So if 2^16 bytes turns out to
1590 be too small, many things would have to change. */
1591 /* Any other compiler which, like MSC, has allocation limit below 2^16
1592 bytes will have to use approach similar to what was done below for
1593 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1594 reallocating to 0 bytes. Such thing is not going to work too well.
1595 You have been warned!! */
1596 #if defined _MSC_VER && !defined WIN32
1597 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1598 The REALLOC define eliminates a flurry of conversion warnings,
1599 but is not required. */
1600 # define MAX_BUF_SIZE 65500L
1601 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1602 #else
1603 # define MAX_BUF_SIZE (1L << 16)
1604 # define REALLOC(p,s) realloc ((p), (s))
1605 #endif
1606
1607 /* Extend the buffer by twice its current size via realloc and
1608 reset the pointers that pointed into the old block to point to the
1609 correct places in the new one. If extending the buffer results in it
1610 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1611 #define EXTEND_BUFFER() \
1612 do { \
1613 unsigned char *old_buffer = bufp->buffer; \
1614 if (bufp->allocated == MAX_BUF_SIZE) \
1615 return REG_ESIZE; \
1616 bufp->allocated <<= 1; \
1617 if (bufp->allocated > MAX_BUF_SIZE) \
1618 bufp->allocated = MAX_BUF_SIZE; \
1619 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1620 if (bufp->buffer == NULL) \
1621 return REG_ESPACE; \
1622 /* If the buffer moved, move all the pointers into it. */ \
1623 if (old_buffer != bufp->buffer) \
1624 { \
1625 b = (b - old_buffer) + bufp->buffer; \
1626 begalt = (begalt - old_buffer) + bufp->buffer; \
1627 if (fixup_alt_jump) \
1628 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1629 if (laststart) \
1630 laststart = (laststart - old_buffer) + bufp->buffer; \
1631 if (pending_exact) \
1632 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1633 } \
1634 } while (0)
1635
1636
1637 /* Since we have one byte reserved for the register number argument to
1638 {start,stop}_memory, the maximum number of groups we can report
1639 things about is what fits in that byte. */
1640 #define MAX_REGNUM 255
1641
1642 /* But patterns can have more than `MAX_REGNUM' registers. We just
1643 ignore the excess. */
1644 typedef unsigned regnum_t;
1645
1646
1647 /* Macros for the compile stack. */
1648
1649 /* Since offsets can go either forwards or backwards, this type needs to
1650 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1651 /* int may be not enough when sizeof(int) == 2. */
1652 typedef long pattern_offset_t;
1653
1654 typedef struct
1655 {
1656 pattern_offset_t begalt_offset;
1657 pattern_offset_t fixup_alt_jump;
1658 pattern_offset_t inner_group_offset;
1659 pattern_offset_t laststart_offset;
1660 regnum_t regnum;
1661 } compile_stack_elt_t;
1662
1663
1664 typedef struct
1665 {
1666 compile_stack_elt_t *stack;
1667 unsigned size;
1668 unsigned avail; /* Offset of next open position. */
1669 } compile_stack_type;
1670
1671
1672 #define INIT_COMPILE_STACK_SIZE 32
1673
1674 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1675 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1676
1677 /* The next available element. */
1678 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1679
1680
1681 /* Set the bit for character C in a list. */
1682 #define SET_LIST_BIT(c) \
1683 (b[((unsigned char) (c)) / BYTEWIDTH] \
1684 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1685
1686
1687 /* Get the next unsigned number in the uncompiled pattern. */
1688 #define GET_UNSIGNED_NUMBER(num) \
1689 { if (p != pend) \
1690 { \
1691 PATFETCH (c); \
1692 while (ISDIGIT (c)) \
1693 { \
1694 if (num < 0) \
1695 num = 0; \
1696 num = num * 10 + c - '0'; \
1697 if (p == pend) \
1698 break; \
1699 PATFETCH (c); \
1700 } \
1701 } \
1702 }
1703
1704 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
1705 /* The GNU C library provides support for user-defined character classes
1706 and the functions from ISO C amendement 1. */
1707 # ifdef CHARCLASS_NAME_MAX
1708 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1709 # else
1710 /* This shouldn't happen but some implementation might still have this
1711 problem. Use a reasonable default value. */
1712 # define CHAR_CLASS_MAX_LENGTH 256
1713 # endif
1714
1715 # ifdef _LIBC
1716 # define IS_CHAR_CLASS(string) __wctype (string)
1717 # else
1718 # define IS_CHAR_CLASS(string) wctype (string)
1719 # endif
1720 #else
1721 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1722
1723 # define IS_CHAR_CLASS(string) \
1724 (STREQ (string, "alpha") || STREQ (string, "upper") \
1725 || STREQ (string, "lower") || STREQ (string, "digit") \
1726 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1727 || STREQ (string, "space") || STREQ (string, "print") \
1728 || STREQ (string, "punct") || STREQ (string, "graph") \
1729 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1730 #endif
1731 \f
1732 #ifndef MATCH_MAY_ALLOCATE
1733
1734 /* If we cannot allocate large objects within re_match_2_internal,
1735 we make the fail stack and register vectors global.
1736 The fail stack, we grow to the maximum size when a regexp
1737 is compiled.
1738 The register vectors, we adjust in size each time we
1739 compile a regexp, according to the number of registers it needs. */
1740
1741 static fail_stack_type fail_stack;
1742
1743 /* Size with which the following vectors are currently allocated.
1744 That is so we can make them bigger as needed,
1745 but never make them smaller. */
1746 static int regs_allocated_size;
1747
1748 static const char ** regstart, ** regend;
1749 static const char ** old_regstart, ** old_regend;
1750 static const char **best_regstart, **best_regend;
1751 static register_info_type *reg_info;
1752 static const char **reg_dummy;
1753 static register_info_type *reg_info_dummy;
1754
1755 /* Make the register vectors big enough for NUM_REGS registers,
1756 but don't make them smaller. */
1757
1758 static
1759 regex_grow_registers (num_regs)
1760 int num_regs;
1761 {
1762 if (num_regs > regs_allocated_size)
1763 {
1764 RETALLOC_IF (regstart, num_regs, const char *);
1765 RETALLOC_IF (regend, num_regs, const char *);
1766 RETALLOC_IF (old_regstart, num_regs, const char *);
1767 RETALLOC_IF (old_regend, num_regs, const char *);
1768 RETALLOC_IF (best_regstart, num_regs, const char *);
1769 RETALLOC_IF (best_regend, num_regs, const char *);
1770 RETALLOC_IF (reg_info, num_regs, register_info_type);
1771 RETALLOC_IF (reg_dummy, num_regs, const char *);
1772 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1773
1774 regs_allocated_size = num_regs;
1775 }
1776 }
1777
1778 #endif /* not MATCH_MAY_ALLOCATE */
1779 \f
1780 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1781 compile_stack,
1782 regnum_t regnum));
1783
1784 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1785 Returns one of error codes defined in `gnu-regex.h', or zero for success.
1786
1787 Assumes the `allocated' (and perhaps `buffer') and `translate'
1788 fields are set in BUFP on entry.
1789
1790 If it succeeds, results are put in BUFP (if it returns an error, the
1791 contents of BUFP are undefined):
1792 `buffer' is the compiled pattern;
1793 `syntax' is set to SYNTAX;
1794 `used' is set to the length of the compiled pattern;
1795 `fastmap_accurate' is zero;
1796 `re_nsub' is the number of subexpressions in PATTERN;
1797 `not_bol' and `not_eol' are zero;
1798
1799 The `fastmap' and `newline_anchor' fields are neither
1800 examined nor set. */
1801
1802 /* Return, freeing storage we allocated. */
1803 #define FREE_STACK_RETURN(value) \
1804 return (free (compile_stack.stack), value)
1805
1806 static reg_errcode_t
1807 regex_compile (pattern, size, syntax, bufp)
1808 const char *pattern;
1809 size_t size;
1810 reg_syntax_t syntax;
1811 struct re_pattern_buffer *bufp;
1812 {
1813 /* We fetch characters from PATTERN here. Even though PATTERN is
1814 `char *' (i.e., signed), we declare these variables as unsigned, so
1815 they can be reliably used as array indices. */
1816 register unsigned char c, c1;
1817
1818 /* A random temporary spot in PATTERN. */
1819 const char *p1;
1820
1821 /* Points to the end of the buffer, where we should append. */
1822 register unsigned char *b;
1823
1824 /* Keeps track of unclosed groups. */
1825 compile_stack_type compile_stack;
1826
1827 /* Points to the current (ending) position in the pattern. */
1828 const char *p = pattern;
1829 const char *pend = pattern + size;
1830
1831 /* How to translate the characters in the pattern. */
1832 RE_TRANSLATE_TYPE translate = bufp->translate;
1833
1834 /* Address of the count-byte of the most recently inserted `exactn'
1835 command. This makes it possible to tell if a new exact-match
1836 character can be added to that command or if the character requires
1837 a new `exactn' command. */
1838 unsigned char *pending_exact = 0;
1839
1840 /* Address of start of the most recently finished expression.
1841 This tells, e.g., postfix * where to find the start of its
1842 operand. Reset at the beginning of groups and alternatives. */
1843 unsigned char *laststart = 0;
1844
1845 /* Address of beginning of regexp, or inside of last group. */
1846 unsigned char *begalt;
1847
1848 /* Place in the uncompiled pattern (i.e., the {) to
1849 which to go back if the interval is invalid. */
1850 const char *beg_interval;
1851
1852 /* Address of the place where a forward jump should go to the end of
1853 the containing expression. Each alternative of an `or' -- except the
1854 last -- ends with a forward jump of this sort. */
1855 unsigned char *fixup_alt_jump = 0;
1856
1857 /* Counts open-groups as they are encountered. Remembered for the
1858 matching close-group on the compile stack, so the same register
1859 number is put in the stop_memory as the start_memory. */
1860 regnum_t regnum = 0;
1861
1862 #ifdef DEBUG
1863 DEBUG_PRINT1 ("\nCompiling pattern: ");
1864 if (debug)
1865 {
1866 unsigned debug_count;
1867
1868 for (debug_count = 0; debug_count < size; debug_count++)
1869 putchar (pattern[debug_count]);
1870 putchar ('\n');
1871 }
1872 #endif /* DEBUG */
1873
1874 /* Initialize the compile stack. */
1875 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1876 if (compile_stack.stack == NULL)
1877 return REG_ESPACE;
1878
1879 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1880 compile_stack.avail = 0;
1881
1882 /* Initialize the pattern buffer. */
1883 bufp->syntax = syntax;
1884 bufp->fastmap_accurate = 0;
1885 bufp->not_bol = bufp->not_eol = 0;
1886
1887 /* Set `used' to zero, so that if we return an error, the pattern
1888 printer (for debugging) will think there's no pattern. We reset it
1889 at the end. */
1890 bufp->used = 0;
1891
1892 /* Always count groups, whether or not bufp->no_sub is set. */
1893 bufp->re_nsub = 0;
1894
1895 #if !defined emacs && !defined SYNTAX_TABLE
1896 /* Initialize the syntax table. */
1897 init_syntax_once ();
1898 #endif
1899
1900 if (bufp->allocated == 0)
1901 {
1902 if (bufp->buffer)
1903 { /* If zero allocated, but buffer is non-null, try to realloc
1904 enough space. This loses if buffer's address is bogus, but
1905 that is the user's responsibility. */
1906 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1907 }
1908 else
1909 { /* Caller did not allocate a buffer. Do it for them. */
1910 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1911 }
1912 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1913
1914 bufp->allocated = INIT_BUF_SIZE;
1915 }
1916
1917 begalt = b = bufp->buffer;
1918
1919 /* Loop through the uncompiled pattern until we're at the end. */
1920 while (p != pend)
1921 {
1922 PATFETCH (c);
1923
1924 switch (c)
1925 {
1926 case '^':
1927 {
1928 if ( /* If at start of pattern, it's an operator. */
1929 p == pattern + 1
1930 /* If context independent, it's an operator. */
1931 || syntax & RE_CONTEXT_INDEP_ANCHORS
1932 /* Otherwise, depends on what's come before. */
1933 || at_begline_loc_p (pattern, p, syntax))
1934 BUF_PUSH (begline);
1935 else
1936 goto normal_char;
1937 }
1938 break;
1939
1940
1941 case '$':
1942 {
1943 if ( /* If at end of pattern, it's an operator. */
1944 p == pend
1945 /* If context independent, it's an operator. */
1946 || syntax & RE_CONTEXT_INDEP_ANCHORS
1947 /* Otherwise, depends on what's next. */
1948 || at_endline_loc_p (p, pend, syntax))
1949 BUF_PUSH (endline);
1950 else
1951 goto normal_char;
1952 }
1953 break;
1954
1955
1956 case '+':
1957 case '?':
1958 if ((syntax & RE_BK_PLUS_QM)
1959 || (syntax & RE_LIMITED_OPS))
1960 goto normal_char;
1961 handle_plus:
1962 case '*':
1963 /* If there is no previous pattern... */
1964 if (!laststart)
1965 {
1966 if (syntax & RE_CONTEXT_INVALID_OPS)
1967 FREE_STACK_RETURN (REG_BADRPT);
1968 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1969 goto normal_char;
1970 }
1971
1972 {
1973 /* Are we optimizing this jump? */
1974 boolean keep_string_p = false;
1975
1976 /* 1 means zero (many) matches is allowed. */
1977 char zero_times_ok = 0, many_times_ok = 0;
1978
1979 /* If there is a sequence of repetition chars, collapse it
1980 down to just one (the right one). We can't combine
1981 interval operators with these because of, e.g., `a{2}*',
1982 which should only match an even number of `a's. */
1983
1984 for (;;)
1985 {
1986 zero_times_ok |= c != '+';
1987 many_times_ok |= c != '?';
1988
1989 if (p == pend)
1990 break;
1991
1992 PATFETCH (c);
1993
1994 if (c == '*'
1995 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1996 ;
1997
1998 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1999 {
2000 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2001
2002 PATFETCH (c1);
2003 if (!(c1 == '+' || c1 == '?'))
2004 {
2005 PATUNFETCH;
2006 PATUNFETCH;
2007 break;
2008 }
2009
2010 c = c1;
2011 }
2012 else
2013 {
2014 PATUNFETCH;
2015 break;
2016 }
2017
2018 /* If we get here, we found another repeat character. */
2019 }
2020
2021 /* Star, etc. applied to an empty pattern is equivalent
2022 to an empty pattern. */
2023 if (!laststart)
2024 break;
2025
2026 /* Now we know whether or not zero matches is allowed
2027 and also whether or not two or more matches is allowed. */
2028 if (many_times_ok)
2029 { /* More than one repetition is allowed, so put in at the
2030 end a backward relative jump from `b' to before the next
2031 jump we're going to put in below (which jumps from
2032 laststart to after this jump).
2033
2034 But if we are at the `*' in the exact sequence `.*\n',
2035 insert an unconditional jump backwards to the .,
2036 instead of the beginning of the loop. This way we only
2037 push a failure point once, instead of every time
2038 through the loop. */
2039 assert (p - 1 > pattern);
2040
2041 /* Allocate the space for the jump. */
2042 GET_BUFFER_SPACE (3);
2043
2044 /* We know we are not at the first character of the pattern,
2045 because laststart was nonzero. And we've already
2046 incremented `p', by the way, to be the character after
2047 the `*'. Do we have to do something analogous here
2048 for null bytes, because of RE_DOT_NOT_NULL? */
2049 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2050 && zero_times_ok
2051 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2052 && !(syntax & RE_DOT_NEWLINE))
2053 { /* We have .*\n. */
2054 STORE_JUMP (jump, b, laststart);
2055 keep_string_p = true;
2056 }
2057 else
2058 /* Anything else. */
2059 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2060
2061 /* We've added more stuff to the buffer. */
2062 b += 3;
2063 }
2064
2065 /* On failure, jump from laststart to b + 3, which will be the
2066 end of the buffer after this jump is inserted. */
2067 GET_BUFFER_SPACE (3);
2068 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2069 : on_failure_jump,
2070 laststart, b + 3);
2071 pending_exact = 0;
2072 b += 3;
2073
2074 if (!zero_times_ok)
2075 {
2076 /* At least one repetition is required, so insert a
2077 `dummy_failure_jump' before the initial
2078 `on_failure_jump' instruction of the loop. This
2079 effects a skip over that instruction the first time
2080 we hit that loop. */
2081 GET_BUFFER_SPACE (3);
2082 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2083 b += 3;
2084 }
2085 }
2086 break;
2087
2088
2089 case '.':
2090 laststart = b;
2091 BUF_PUSH (anychar);
2092 break;
2093
2094
2095 case '[':
2096 {
2097 boolean had_char_class = false;
2098
2099 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2100
2101 /* Ensure that we have enough space to push a charset: the
2102 opcode, the length count, and the bitset; 34 bytes in all. */
2103 GET_BUFFER_SPACE (34);
2104
2105 laststart = b;
2106
2107 /* We test `*p == '^' twice, instead of using an if
2108 statement, so we only need one BUF_PUSH. */
2109 BUF_PUSH (*p == '^' ? charset_not : charset);
2110 if (*p == '^')
2111 p++;
2112
2113 /* Remember the first position in the bracket expression. */
2114 p1 = p;
2115
2116 /* Push the number of bytes in the bitmap. */
2117 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2118
2119 /* Clear the whole map. */
2120 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2121
2122 /* charset_not matches newline according to a syntax bit. */
2123 if ((re_opcode_t) b[-2] == charset_not
2124 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2125 SET_LIST_BIT ('\n');
2126
2127 /* Read in characters and ranges, setting map bits. */
2128 for (;;)
2129 {
2130 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2131
2132 PATFETCH (c);
2133
2134 /* \ might escape characters inside [...] and [^...]. */
2135 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2136 {
2137 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2138
2139 PATFETCH (c1);
2140 SET_LIST_BIT (c1);
2141 continue;
2142 }
2143
2144 /* Could be the end of the bracket expression. If it's
2145 not (i.e., when the bracket expression is `[]' so
2146 far), the ']' character bit gets set way below. */
2147 if (c == ']' && p != p1 + 1)
2148 break;
2149
2150 /* Look ahead to see if it's a range when the last thing
2151 was a character class. */
2152 if (had_char_class && c == '-' && *p != ']')
2153 FREE_STACK_RETURN (REG_ERANGE);
2154
2155 /* Look ahead to see if it's a range when the last thing
2156 was a character: if this is a hyphen not at the
2157 beginning or the end of a list, then it's the range
2158 operator. */
2159 if (c == '-'
2160 && !(p - 2 >= pattern && p[-2] == '[')
2161 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2162 && *p != ']')
2163 {
2164 reg_errcode_t ret
2165 = compile_range (&p, pend, translate, syntax, b);
2166 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2167 }
2168
2169 else if (p[0] == '-' && p[1] != ']')
2170 { /* This handles ranges made up of characters only. */
2171 reg_errcode_t ret;
2172
2173 /* Move past the `-'. */
2174 PATFETCH (c1);
2175
2176 ret = compile_range (&p, pend, translate, syntax, b);
2177 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2178 }
2179
2180 /* See if we're at the beginning of a possible character
2181 class. */
2182
2183 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2184 { /* Leave room for the null. */
2185 char str[CHAR_CLASS_MAX_LENGTH + 1];
2186
2187 PATFETCH (c);
2188 c1 = 0;
2189
2190 /* If pattern is `[[:'. */
2191 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2192
2193 for (;;)
2194 {
2195 PATFETCH (c);
2196 if ((c == ':' && *p == ']') || p == pend
2197 || c1 == CHAR_CLASS_MAX_LENGTH)
2198 break;
2199 str[c1++] = c;
2200 }
2201 str[c1] = '\0';
2202
2203 /* If isn't a word bracketed by `[:' and `:]':
2204 undo the ending character, the letters, and leave
2205 the leading `:' and `[' (but set bits for them). */
2206 if (c == ':' && *p == ']')
2207 {
2208 /* CYGNUS LOCAL: Skip this code if we don't have btowc(). btowc() is */
2209 /* defined in the 1994 Amendment 1 to ISO C and may not be present on */
2210 /* systems where we have wchar.h and wctype.h. */
2211 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_BTOWC)
2212 boolean is_lower = STREQ (str, "lower");
2213 boolean is_upper = STREQ (str, "upper");
2214 wctype_t wt;
2215 int ch;
2216
2217 wt = IS_CHAR_CLASS (str);
2218 if (wt == 0)
2219 FREE_STACK_RETURN (REG_ECTYPE);
2220
2221 /* Throw away the ] at the end of the character
2222 class. */
2223 PATFETCH (c);
2224
2225 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2226
2227 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2228 {
2229 # ifdef _LIBC
2230 if (__iswctype (__btowc (ch), wt))
2231 SET_LIST_BIT (ch);
2232 #else
2233 if (iswctype (btowc (ch), wt))
2234 SET_LIST_BIT (ch);
2235 #endif
2236
2237 if (translate && (is_upper || is_lower)
2238 && (ISUPPER (ch) || ISLOWER (ch)))
2239 SET_LIST_BIT (ch);
2240 }
2241
2242 had_char_class = true;
2243 #else
2244 int ch;
2245 boolean is_alnum = STREQ (str, "alnum");
2246 boolean is_alpha = STREQ (str, "alpha");
2247 boolean is_blank = STREQ (str, "blank");
2248 boolean is_cntrl = STREQ (str, "cntrl");
2249 boolean is_digit = STREQ (str, "digit");
2250 boolean is_graph = STREQ (str, "graph");
2251 boolean is_lower = STREQ (str, "lower");
2252 boolean is_print = STREQ (str, "print");
2253 boolean is_punct = STREQ (str, "punct");
2254 boolean is_space = STREQ (str, "space");
2255 boolean is_upper = STREQ (str, "upper");
2256 boolean is_xdigit = STREQ (str, "xdigit");
2257
2258 if (!IS_CHAR_CLASS (str))
2259 FREE_STACK_RETURN (REG_ECTYPE);
2260
2261 /* Throw away the ] at the end of the character
2262 class. */
2263 PATFETCH (c);
2264
2265 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2266
2267 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2268 {
2269 /* This was split into 3 if's to
2270 avoid an arbitrary limit in some compiler. */
2271 if ( (is_alnum && ISALNUM (ch))
2272 || (is_alpha && ISALPHA (ch))
2273 || (is_blank && ISBLANK (ch))
2274 || (is_cntrl && ISCNTRL (ch)))
2275 SET_LIST_BIT (ch);
2276 if ( (is_digit && ISDIGIT (ch))
2277 || (is_graph && ISGRAPH (ch))
2278 || (is_lower && ISLOWER (ch))
2279 || (is_print && ISPRINT (ch)))
2280 SET_LIST_BIT (ch);
2281 if ( (is_punct && ISPUNCT (ch))
2282 || (is_space && ISSPACE (ch))
2283 || (is_upper && ISUPPER (ch))
2284 || (is_xdigit && ISXDIGIT (ch)))
2285 SET_LIST_BIT (ch);
2286 if ( translate && (is_upper || is_lower)
2287 && (ISUPPER (ch) || ISLOWER (ch)))
2288 SET_LIST_BIT (ch);
2289 }
2290 had_char_class = true;
2291 #endif /* libc || wctype.h */
2292 }
2293 else
2294 {
2295 c1++;
2296 while (c1--)
2297 PATUNFETCH;
2298 SET_LIST_BIT ('[');
2299 SET_LIST_BIT (':');
2300 had_char_class = false;
2301 }
2302 }
2303 else
2304 {
2305 had_char_class = false;
2306 SET_LIST_BIT (c);
2307 }
2308 }
2309
2310 /* Discard any (non)matching list bytes that are all 0 at the
2311 end of the map. Decrease the map-length byte too. */
2312 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2313 b[-1]--;
2314 b += b[-1];
2315 }
2316 break;
2317
2318
2319 case '(':
2320 if (syntax & RE_NO_BK_PARENS)
2321 goto handle_open;
2322 else
2323 goto normal_char;
2324
2325
2326 case ')':
2327 if (syntax & RE_NO_BK_PARENS)
2328 goto handle_close;
2329 else
2330 goto normal_char;
2331
2332
2333 case '\n':
2334 if (syntax & RE_NEWLINE_ALT)
2335 goto handle_alt;
2336 else
2337 goto normal_char;
2338
2339
2340 case '|':
2341 if (syntax & RE_NO_BK_VBAR)
2342 goto handle_alt;
2343 else
2344 goto normal_char;
2345
2346
2347 case '{':
2348 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2349 goto handle_interval;
2350 else
2351 goto normal_char;
2352
2353
2354 case '\\':
2355 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2356
2357 /* Do not translate the character after the \, so that we can
2358 distinguish, e.g., \B from \b, even if we normally would
2359 translate, e.g., B to b. */
2360 PATFETCH_RAW (c);
2361
2362 switch (c)
2363 {
2364 case '(':
2365 if (syntax & RE_NO_BK_PARENS)
2366 goto normal_backslash;
2367
2368 handle_open:
2369 bufp->re_nsub++;
2370 regnum++;
2371
2372 if (COMPILE_STACK_FULL)
2373 {
2374 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2375 compile_stack_elt_t);
2376 if (compile_stack.stack == NULL) return REG_ESPACE;
2377
2378 compile_stack.size <<= 1;
2379 }
2380
2381 /* These are the values to restore when we hit end of this
2382 group. They are all relative offsets, so that if the
2383 whole pattern moves because of realloc, they will still
2384 be valid. */
2385 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2386 COMPILE_STACK_TOP.fixup_alt_jump
2387 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2388 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2389 COMPILE_STACK_TOP.regnum = regnum;
2390
2391 /* We will eventually replace the 0 with the number of
2392 groups inner to this one. But do not push a
2393 start_memory for groups beyond the last one we can
2394 represent in the compiled pattern. */
2395 if (regnum <= MAX_REGNUM)
2396 {
2397 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2398 BUF_PUSH_3 (start_memory, regnum, 0);
2399 }
2400
2401 compile_stack.avail++;
2402
2403 fixup_alt_jump = 0;
2404 laststart = 0;
2405 begalt = b;
2406 /* If we've reached MAX_REGNUM groups, then this open
2407 won't actually generate any code, so we'll have to
2408 clear pending_exact explicitly. */
2409 pending_exact = 0;
2410 break;
2411
2412
2413 case ')':
2414 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2415
2416 if (COMPILE_STACK_EMPTY)
2417 {
2418 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2419 goto normal_backslash;
2420 else
2421 FREE_STACK_RETURN (REG_ERPAREN);
2422 }
2423
2424 handle_close:
2425 if (fixup_alt_jump)
2426 { /* Push a dummy failure point at the end of the
2427 alternative for a possible future
2428 `pop_failure_jump' to pop. See comments at
2429 `push_dummy_failure' in `re_match_2'. */
2430 BUF_PUSH (push_dummy_failure);
2431
2432 /* We allocated space for this jump when we assigned
2433 to `fixup_alt_jump', in the `handle_alt' case below. */
2434 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2435 }
2436
2437 /* See similar code for backslashed left paren above. */
2438 if (COMPILE_STACK_EMPTY)
2439 {
2440 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2441 goto normal_char;
2442 else
2443 FREE_STACK_RETURN (REG_ERPAREN);
2444 }
2445
2446 /* Since we just checked for an empty stack above, this
2447 ``can't happen''. */
2448 assert (compile_stack.avail != 0);
2449 {
2450 /* We don't just want to restore into `regnum', because
2451 later groups should continue to be numbered higher,
2452 as in `(ab)c(de)' -- the second group is #2. */
2453 regnum_t this_group_regnum;
2454
2455 compile_stack.avail--;
2456 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2457 fixup_alt_jump
2458 = COMPILE_STACK_TOP.fixup_alt_jump
2459 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2460 : 0;
2461 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2462 this_group_regnum = COMPILE_STACK_TOP.regnum;
2463 /* If we've reached MAX_REGNUM groups, then this open
2464 won't actually generate any code, so we'll have to
2465 clear pending_exact explicitly. */
2466 pending_exact = 0;
2467
2468 /* We're at the end of the group, so now we know how many
2469 groups were inside this one. */
2470 if (this_group_regnum <= MAX_REGNUM)
2471 {
2472 unsigned char *inner_group_loc
2473 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2474
2475 *inner_group_loc = regnum - this_group_regnum;
2476 BUF_PUSH_3 (stop_memory, this_group_regnum,
2477 regnum - this_group_regnum);
2478 }
2479 }
2480 break;
2481
2482
2483 case '|': /* `\|'. */
2484 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2485 goto normal_backslash;
2486 handle_alt:
2487 if (syntax & RE_LIMITED_OPS)
2488 goto normal_char;
2489
2490 /* Insert before the previous alternative a jump which
2491 jumps to this alternative if the former fails. */
2492 GET_BUFFER_SPACE (3);
2493 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2494 pending_exact = 0;
2495 b += 3;
2496
2497 /* The alternative before this one has a jump after it
2498 which gets executed if it gets matched. Adjust that
2499 jump so it will jump to this alternative's analogous
2500 jump (put in below, which in turn will jump to the next
2501 (if any) alternative's such jump, etc.). The last such
2502 jump jumps to the correct final destination. A picture:
2503 _____ _____
2504 | | | |
2505 | v | v
2506 a | b | c
2507
2508 If we are at `b', then fixup_alt_jump right now points to a
2509 three-byte space after `a'. We'll put in the jump, set
2510 fixup_alt_jump to right after `b', and leave behind three
2511 bytes which we'll fill in when we get to after `c'. */
2512
2513 if (fixup_alt_jump)
2514 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2515
2516 /* Mark and leave space for a jump after this alternative,
2517 to be filled in later either by next alternative or
2518 when know we're at the end of a series of alternatives. */
2519 fixup_alt_jump = b;
2520 GET_BUFFER_SPACE (3);
2521 b += 3;
2522
2523 laststart = 0;
2524 begalt = b;
2525 break;
2526
2527
2528 case '{':
2529 /* If \{ is a literal. */
2530 if (!(syntax & RE_INTERVALS)
2531 /* If we're at `\{' and it's not the open-interval
2532 operator. */
2533 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2534 || (p - 2 == pattern && p == pend))
2535 goto normal_backslash;
2536
2537 handle_interval:
2538 {
2539 /* If got here, then the syntax allows intervals. */
2540
2541 /* At least (most) this many matches must be made. */
2542 int lower_bound = -1, upper_bound = -1;
2543
2544 beg_interval = p - 1;
2545
2546 if (p == pend)
2547 {
2548 if (syntax & RE_NO_BK_BRACES)
2549 goto unfetch_interval;
2550 else
2551 FREE_STACK_RETURN (REG_EBRACE);
2552 }
2553
2554 GET_UNSIGNED_NUMBER (lower_bound);
2555
2556 if (c == ',')
2557 {
2558 GET_UNSIGNED_NUMBER (upper_bound);
2559 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2560 }
2561 else
2562 /* Interval such as `{1}' => match exactly once. */
2563 upper_bound = lower_bound;
2564
2565 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2566 || lower_bound > upper_bound)
2567 {
2568 if (syntax & RE_NO_BK_BRACES)
2569 goto unfetch_interval;
2570 else
2571 FREE_STACK_RETURN (REG_BADBR);
2572 }
2573
2574 if (!(syntax & RE_NO_BK_BRACES))
2575 {
2576 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2577
2578 PATFETCH (c);
2579 }
2580
2581 if (c != '}')
2582 {
2583 if (syntax & RE_NO_BK_BRACES)
2584 goto unfetch_interval;
2585 else
2586 FREE_STACK_RETURN (REG_BADBR);
2587 }
2588
2589 /* We just parsed a valid interval. */
2590
2591 /* If it's invalid to have no preceding re. */
2592 if (!laststart)
2593 {
2594 if (syntax & RE_CONTEXT_INVALID_OPS)
2595 FREE_STACK_RETURN (REG_BADRPT);
2596 else if (syntax & RE_CONTEXT_INDEP_OPS)
2597 laststart = b;
2598 else
2599 goto unfetch_interval;
2600 }
2601
2602 /* If the upper bound is zero, don't want to succeed at
2603 all; jump from `laststart' to `b + 3', which will be
2604 the end of the buffer after we insert the jump. */
2605 if (upper_bound == 0)
2606 {
2607 GET_BUFFER_SPACE (3);
2608 INSERT_JUMP (jump, laststart, b + 3);
2609 b += 3;
2610 }
2611
2612 /* Otherwise, we have a nontrivial interval. When
2613 we're all done, the pattern will look like:
2614 set_number_at <jump count> <upper bound>
2615 set_number_at <succeed_n count> <lower bound>
2616 succeed_n <after jump addr> <succeed_n count>
2617 <body of loop>
2618 jump_n <succeed_n addr> <jump count>
2619 (The upper bound and `jump_n' are omitted if
2620 `upper_bound' is 1, though.) */
2621 else
2622 { /* If the upper bound is > 1, we need to insert
2623 more at the end of the loop. */
2624 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2625
2626 GET_BUFFER_SPACE (nbytes);
2627
2628 /* Initialize lower bound of the `succeed_n', even
2629 though it will be set during matching by its
2630 attendant `set_number_at' (inserted next),
2631 because `re_compile_fastmap' needs to know.
2632 Jump to the `jump_n' we might insert below. */
2633 INSERT_JUMP2 (succeed_n, laststart,
2634 b + 5 + (upper_bound > 1) * 5,
2635 lower_bound);
2636 b += 5;
2637
2638 /* Code to initialize the lower bound. Insert
2639 before the `succeed_n'. The `5' is the last two
2640 bytes of this `set_number_at', plus 3 bytes of
2641 the following `succeed_n'. */
2642 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2643 b += 5;
2644
2645 if (upper_bound > 1)
2646 { /* More than one repetition is allowed, so
2647 append a backward jump to the `succeed_n'
2648 that starts this interval.
2649
2650 When we've reached this during matching,
2651 we'll have matched the interval once, so
2652 jump back only `upper_bound - 1' times. */
2653 STORE_JUMP2 (jump_n, b, laststart + 5,
2654 upper_bound - 1);
2655 b += 5;
2656
2657 /* The location we want to set is the second
2658 parameter of the `jump_n'; that is `b-2' as
2659 an absolute address. `laststart' will be
2660 the `set_number_at' we're about to insert;
2661 `laststart+3' the number to set, the source
2662 for the relative address. But we are
2663 inserting into the middle of the pattern --
2664 so everything is getting moved up by 5.
2665 Conclusion: (b - 2) - (laststart + 3) + 5,
2666 i.e., b - laststart.
2667
2668 We insert this at the beginning of the loop
2669 so that if we fail during matching, we'll
2670 reinitialize the bounds. */
2671 insert_op2 (set_number_at, laststart, b - laststart,
2672 upper_bound - 1, b);
2673 b += 5;
2674 }
2675 }
2676 pending_exact = 0;
2677 beg_interval = NULL;
2678 }
2679 break;
2680
2681 unfetch_interval:
2682 /* If an invalid interval, match the characters as literals. */
2683 assert (beg_interval);
2684 p = beg_interval;
2685 beg_interval = NULL;
2686
2687 /* normal_char and normal_backslash need `c'. */
2688 PATFETCH (c);
2689
2690 if (!(syntax & RE_NO_BK_BRACES))
2691 {
2692 if (p > pattern && p[-1] == '\\')
2693 goto normal_backslash;
2694 }
2695 goto normal_char;
2696
2697 #ifdef emacs
2698 /* There is no way to specify the before_dot and after_dot
2699 operators. rms says this is ok. --karl */
2700 case '=':
2701 BUF_PUSH (at_dot);
2702 break;
2703
2704 case 's':
2705 laststart = b;
2706 PATFETCH (c);
2707 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2708 break;
2709
2710 case 'S':
2711 laststart = b;
2712 PATFETCH (c);
2713 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2714 break;
2715 #endif /* emacs */
2716
2717
2718 case 'w':
2719 if (syntax & RE_NO_GNU_OPS)
2720 goto normal_char;
2721 laststart = b;
2722 BUF_PUSH (wordchar);
2723 break;
2724
2725
2726 case 'W':
2727 if (syntax & RE_NO_GNU_OPS)
2728 goto normal_char;
2729 laststart = b;
2730 BUF_PUSH (notwordchar);
2731 break;
2732
2733
2734 case '<':
2735 if (syntax & RE_NO_GNU_OPS)
2736 goto normal_char;
2737 BUF_PUSH (wordbeg);
2738 break;
2739
2740 case '>':
2741 if (syntax & RE_NO_GNU_OPS)
2742 goto normal_char;
2743 BUF_PUSH (wordend);
2744 break;
2745
2746 case 'b':
2747 if (syntax & RE_NO_GNU_OPS)
2748 goto normal_char;
2749 BUF_PUSH (wordbound);
2750 break;
2751
2752 case 'B':
2753 if (syntax & RE_NO_GNU_OPS)
2754 goto normal_char;
2755 BUF_PUSH (notwordbound);
2756 break;
2757
2758 case '`':
2759 if (syntax & RE_NO_GNU_OPS)
2760 goto normal_char;
2761 BUF_PUSH (begbuf);
2762 break;
2763
2764 case '\'':
2765 if (syntax & RE_NO_GNU_OPS)
2766 goto normal_char;
2767 BUF_PUSH (endbuf);
2768 break;
2769
2770 case '1': case '2': case '3': case '4': case '5':
2771 case '6': case '7': case '8': case '9':
2772 if (syntax & RE_NO_BK_REFS)
2773 goto normal_char;
2774
2775 c1 = c - '0';
2776
2777 if (c1 > regnum)
2778 FREE_STACK_RETURN (REG_ESUBREG);
2779
2780 /* Can't back reference to a subexpression if inside of it. */
2781 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2782 goto normal_char;
2783
2784 laststart = b;
2785 BUF_PUSH_2 (duplicate, c1);
2786 break;
2787
2788
2789 case '+':
2790 case '?':
2791 if (syntax & RE_BK_PLUS_QM)
2792 goto handle_plus;
2793 else
2794 goto normal_backslash;
2795
2796 default:
2797 normal_backslash:
2798 /* You might think it would be useful for \ to mean
2799 not to translate; but if we don't translate it
2800 it will never match anything. */
2801 c = TRANSLATE (c);
2802 goto normal_char;
2803 }
2804 break;
2805
2806
2807 default:
2808 /* Expects the character in `c'. */
2809 normal_char:
2810 /* If no exactn currently being built. */
2811 if (!pending_exact
2812
2813 /* If last exactn not at current position. */
2814 || pending_exact + *pending_exact + 1 != b
2815
2816 /* We have only one byte following the exactn for the count. */
2817 || *pending_exact == (1 << BYTEWIDTH) - 1
2818
2819 /* If followed by a repetition operator. */
2820 || *p == '*' || *p == '^'
2821 || ((syntax & RE_BK_PLUS_QM)
2822 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2823 : (*p == '+' || *p == '?'))
2824 || ((syntax & RE_INTERVALS)
2825 && ((syntax & RE_NO_BK_BRACES)
2826 ? *p == '{'
2827 : (p[0] == '\\' && p[1] == '{'))))
2828 {
2829 /* Start building a new exactn. */
2830
2831 laststart = b;
2832
2833 BUF_PUSH_2 (exactn, 0);
2834 pending_exact = b - 1;
2835 }
2836
2837 BUF_PUSH (c);
2838 (*pending_exact)++;
2839 break;
2840 } /* switch (c) */
2841 } /* while p != pend */
2842
2843
2844 /* Through the pattern now. */
2845
2846 if (fixup_alt_jump)
2847 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2848
2849 if (!COMPILE_STACK_EMPTY)
2850 FREE_STACK_RETURN (REG_EPAREN);
2851
2852 /* If we don't want backtracking, force success
2853 the first time we reach the end of the compiled pattern. */
2854 if (syntax & RE_NO_POSIX_BACKTRACKING)
2855 BUF_PUSH (succeed);
2856
2857 free (compile_stack.stack);
2858
2859 /* We have succeeded; set the length of the buffer. */
2860 bufp->used = b - bufp->buffer;
2861
2862 #ifdef DEBUG
2863 if (debug)
2864 {
2865 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2866 print_compiled_pattern (bufp);
2867 }
2868 #endif /* DEBUG */
2869
2870 #ifndef MATCH_MAY_ALLOCATE
2871 /* Initialize the failure stack to the largest possible stack. This
2872 isn't necessary unless we're trying to avoid calling alloca in
2873 the search and match routines. */
2874 {
2875 int num_regs = bufp->re_nsub + 1;
2876
2877 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2878 is strictly greater than re_max_failures, the largest possible stack
2879 is 2 * re_max_failures failure points. */
2880 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2881 {
2882 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2883
2884 # ifdef emacs
2885 if (! fail_stack.stack)
2886 fail_stack.stack
2887 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2888 * sizeof (fail_stack_elt_t));
2889 else
2890 fail_stack.stack
2891 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2892 (fail_stack.size
2893 * sizeof (fail_stack_elt_t)));
2894 # else /* not emacs */
2895 if (! fail_stack.stack)
2896 fail_stack.stack
2897 = (fail_stack_elt_t *) malloc (fail_stack.size
2898 * sizeof (fail_stack_elt_t));
2899 else
2900 fail_stack.stack
2901 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2902 (fail_stack.size
2903 * sizeof (fail_stack_elt_t)));
2904 # endif /* not emacs */
2905 }
2906
2907 regex_grow_registers (num_regs);
2908 }
2909 #endif /* not MATCH_MAY_ALLOCATE */
2910
2911 return REG_NOERROR;
2912 } /* regex_compile */
2913 \f
2914 /* Subroutines for `regex_compile'. */
2915
2916 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2917
2918 static void
2919 store_op1 (op, loc, arg)
2920 re_opcode_t op;
2921 unsigned char *loc;
2922 int arg;
2923 {
2924 *loc = (unsigned char) op;
2925 STORE_NUMBER (loc + 1, arg);
2926 }
2927
2928
2929 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2930
2931 static void
2932 store_op2 (op, loc, arg1, arg2)
2933 re_opcode_t op;
2934 unsigned char *loc;
2935 int arg1, arg2;
2936 {
2937 *loc = (unsigned char) op;
2938 STORE_NUMBER (loc + 1, arg1);
2939 STORE_NUMBER (loc + 3, arg2);
2940 }
2941
2942
2943 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2944 for OP followed by two-byte integer parameter ARG. */
2945
2946 static void
2947 insert_op1 (op, loc, arg, end)
2948 re_opcode_t op;
2949 unsigned char *loc;
2950 int arg;
2951 unsigned char *end;
2952 {
2953 register unsigned char *pfrom = end;
2954 register unsigned char *pto = end + 3;
2955
2956 while (pfrom != loc)
2957 *--pto = *--pfrom;
2958
2959 store_op1 (op, loc, arg);
2960 }
2961
2962
2963 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2964
2965 static void
2966 insert_op2 (op, loc, arg1, arg2, end)
2967 re_opcode_t op;
2968 unsigned char *loc;
2969 int arg1, arg2;
2970 unsigned char *end;
2971 {
2972 register unsigned char *pfrom = end;
2973 register unsigned char *pto = end + 5;
2974
2975 while (pfrom != loc)
2976 *--pto = *--pfrom;
2977
2978 store_op2 (op, loc, arg1, arg2);
2979 }
2980
2981
2982 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2983 after an alternative or a begin-subexpression. We assume there is at
2984 least one character before the ^. */
2985
2986 static boolean
2987 at_begline_loc_p (pattern, p, syntax)
2988 const char *pattern, *p;
2989 reg_syntax_t syntax;
2990 {
2991 const char *prev = p - 2;
2992 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2993
2994 return
2995 /* After a subexpression? */
2996 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2997 /* After an alternative? */
2998 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2999 }
3000
3001
3002 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3003 at least one character after the $, i.e., `P < PEND'. */
3004
3005 static boolean
3006 at_endline_loc_p (p, pend, syntax)
3007 const char *p, *pend;
3008 reg_syntax_t syntax;
3009 {
3010 const char *next = p;
3011 boolean next_backslash = *next == '\\';
3012 const char *next_next = p + 1 < pend ? p + 1 : 0;
3013
3014 return
3015 /* Before a subexpression? */
3016 (syntax & RE_NO_BK_PARENS ? *next == ')'
3017 : next_backslash && next_next && *next_next == ')')
3018 /* Before an alternative? */
3019 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3020 : next_backslash && next_next && *next_next == '|');
3021 }
3022
3023
3024 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3025 false if it's not. */
3026
3027 static boolean
3028 group_in_compile_stack (compile_stack, regnum)
3029 compile_stack_type compile_stack;
3030 regnum_t regnum;
3031 {
3032 int this_element;
3033
3034 for (this_element = compile_stack.avail - 1;
3035 this_element >= 0;
3036 this_element--)
3037 if (compile_stack.stack[this_element].regnum == regnum)
3038 return true;
3039
3040 return false;
3041 }
3042
3043
3044 /* Read the ending character of a range (in a bracket expression) from the
3045 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3046 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3047 Then we set the translation of all bits between the starting and
3048 ending characters (inclusive) in the compiled pattern B.
3049
3050 Return an error code.
3051
3052 We use these short variable names so we can use the same macros as
3053 `regex_compile' itself. */
3054
3055 static reg_errcode_t
3056 compile_range (p_ptr, pend, translate, syntax, b)
3057 const char **p_ptr, *pend;
3058 RE_TRANSLATE_TYPE translate;
3059 reg_syntax_t syntax;
3060 unsigned char *b;
3061 {
3062 unsigned this_char;
3063
3064 const char *p = *p_ptr;
3065 unsigned int range_start, range_end;
3066
3067 if (p == pend)
3068 return REG_ERANGE;
3069
3070 /* Even though the pattern is a signed `char *', we need to fetch
3071 with unsigned char *'s; if the high bit of the pattern character
3072 is set, the range endpoints will be negative if we fetch using a
3073 signed char *.
3074
3075 We also want to fetch the endpoints without translating them; the
3076 appropriate translation is done in the bit-setting loop below. */
3077 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3078 range_start = ((const unsigned char *) p)[-2];
3079 range_end = ((const unsigned char *) p)[0];
3080
3081 /* Have to increment the pointer into the pattern string, so the
3082 caller isn't still at the ending character. */
3083 (*p_ptr)++;
3084
3085 /* If the start is after the end, the range is empty. */
3086 if (range_start > range_end)
3087 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3088
3089 /* Here we see why `this_char' has to be larger than an `unsigned
3090 char' -- the range is inclusive, so if `range_end' == 0xff
3091 (assuming 8-bit characters), we would otherwise go into an infinite
3092 loop, since all characters <= 0xff. */
3093 for (this_char = range_start; this_char <= range_end; this_char++)
3094 {
3095 SET_LIST_BIT (TRANSLATE (this_char));
3096 }
3097
3098 return REG_NOERROR;
3099 }
3100 \f
3101 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3102 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3103 characters can start a string that matches the pattern. This fastmap
3104 is used by re_search to skip quickly over impossible starting points.
3105
3106 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3107 area as BUFP->fastmap.
3108
3109 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3110 the pattern buffer.
3111
3112 Returns 0 if we succeed, -2 if an internal error. */
3113
3114 int
3115 re_compile_fastmap (bufp)
3116 struct re_pattern_buffer *bufp;
3117 {
3118 int j, k;
3119 #ifdef MATCH_MAY_ALLOCATE
3120 fail_stack_type fail_stack;
3121 #endif
3122 #ifndef REGEX_MALLOC
3123 char *destination;
3124 #endif
3125
3126 register char *fastmap = bufp->fastmap;
3127 unsigned char *pattern = bufp->buffer;
3128 unsigned char *p = pattern;
3129 register unsigned char *pend = pattern + bufp->used;
3130
3131 #ifdef REL_ALLOC
3132 /* This holds the pointer to the failure stack, when
3133 it is allocated relocatably. */
3134 fail_stack_elt_t *failure_stack_ptr;
3135 #endif
3136
3137 /* Assume that each path through the pattern can be null until
3138 proven otherwise. We set this false at the bottom of switch
3139 statement, to which we get only if a particular path doesn't
3140 match the empty string. */
3141 boolean path_can_be_null = true;
3142
3143 /* We aren't doing a `succeed_n' to begin with. */
3144 boolean succeed_n_p = false;
3145
3146 assert (fastmap != NULL && p != NULL);
3147
3148 INIT_FAIL_STACK ();
3149 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3150 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3151 bufp->can_be_null = 0;
3152
3153 while (1)
3154 {
3155 if (p == pend || *p == succeed)
3156 {
3157 /* We have reached the (effective) end of pattern. */
3158 if (!FAIL_STACK_EMPTY ())
3159 {
3160 bufp->can_be_null |= path_can_be_null;
3161
3162 /* Reset for next path. */
3163 path_can_be_null = true;
3164
3165 p = fail_stack.stack[--fail_stack.avail].pointer;
3166
3167 continue;
3168 }
3169 else
3170 break;
3171 }
3172
3173 /* We should never be about to go beyond the end of the pattern. */
3174 assert (p < pend);
3175
3176 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3177 {
3178
3179 /* I guess the idea here is to simply not bother with a fastmap
3180 if a backreference is used, since it's too hard to figure out
3181 the fastmap for the corresponding group. Setting
3182 `can_be_null' stops `re_search_2' from using the fastmap, so
3183 that is all we do. */
3184 case duplicate:
3185 bufp->can_be_null = 1;
3186 goto done;
3187
3188
3189 /* Following are the cases which match a character. These end
3190 with `break'. */
3191
3192 case exactn:
3193 fastmap[p[1]] = 1;
3194 break;
3195
3196
3197 case charset:
3198 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3199 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3200 fastmap[j] = 1;
3201 break;
3202
3203
3204 case charset_not:
3205 /* Chars beyond end of map must be allowed. */
3206 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3207 fastmap[j] = 1;
3208
3209 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3210 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3211 fastmap[j] = 1;
3212 break;
3213
3214
3215 case wordchar:
3216 for (j = 0; j < (1 << BYTEWIDTH); j++)
3217 if (SYNTAX (j) == Sword)
3218 fastmap[j] = 1;
3219 break;
3220
3221
3222 case notwordchar:
3223 for (j = 0; j < (1 << BYTEWIDTH); j++)
3224 if (SYNTAX (j) != Sword)
3225 fastmap[j] = 1;
3226 break;
3227
3228
3229 case anychar:
3230 {
3231 int fastmap_newline = fastmap['\n'];
3232
3233 /* `.' matches anything ... */
3234 for (j = 0; j < (1 << BYTEWIDTH); j++)
3235 fastmap[j] = 1;
3236
3237 /* ... except perhaps newline. */
3238 if (!(bufp->syntax & RE_DOT_NEWLINE))
3239 fastmap['\n'] = fastmap_newline;
3240
3241 /* Return if we have already set `can_be_null'; if we have,
3242 then the fastmap is irrelevant. Something's wrong here. */
3243 else if (bufp->can_be_null)
3244 goto done;
3245
3246 /* Otherwise, have to check alternative paths. */
3247 break;
3248 }
3249
3250 #ifdef emacs
3251 case syntaxspec:
3252 k = *p++;
3253 for (j = 0; j < (1 << BYTEWIDTH); j++)
3254 if (SYNTAX (j) == (enum syntaxcode) k)
3255 fastmap[j] = 1;
3256 break;
3257
3258
3259 case notsyntaxspec:
3260 k = *p++;
3261 for (j = 0; j < (1 << BYTEWIDTH); j++)
3262 if (SYNTAX (j) != (enum syntaxcode) k)
3263 fastmap[j] = 1;
3264 break;
3265
3266
3267 /* All cases after this match the empty string. These end with
3268 `continue'. */
3269
3270
3271 case before_dot:
3272 case at_dot:
3273 case after_dot:
3274 continue;
3275 #endif /* emacs */
3276
3277
3278 case no_op:
3279 case begline:
3280 case endline:
3281 case begbuf:
3282 case endbuf:
3283 case wordbound:
3284 case notwordbound:
3285 case wordbeg:
3286 case wordend:
3287 case push_dummy_failure:
3288 continue;
3289
3290
3291 case jump_n:
3292 case pop_failure_jump:
3293 case maybe_pop_jump:
3294 case jump:
3295 case jump_past_alt:
3296 case dummy_failure_jump:
3297 EXTRACT_NUMBER_AND_INCR (j, p);
3298 p += j;
3299 if (j > 0)
3300 continue;
3301
3302 /* Jump backward implies we just went through the body of a
3303 loop and matched nothing. Opcode jumped to should be
3304 `on_failure_jump' or `succeed_n'. Just treat it like an
3305 ordinary jump. For a * loop, it has pushed its failure
3306 point already; if so, discard that as redundant. */
3307 if ((re_opcode_t) *p != on_failure_jump
3308 && (re_opcode_t) *p != succeed_n)
3309 continue;
3310
3311 p++;
3312 EXTRACT_NUMBER_AND_INCR (j, p);
3313 p += j;
3314
3315 /* If what's on the stack is where we are now, pop it. */
3316 if (!FAIL_STACK_EMPTY ()
3317 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3318 fail_stack.avail--;
3319
3320 continue;
3321
3322
3323 case on_failure_jump:
3324 case on_failure_keep_string_jump:
3325 handle_on_failure_jump:
3326 EXTRACT_NUMBER_AND_INCR (j, p);
3327
3328 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3329 end of the pattern. We don't want to push such a point,
3330 since when we restore it above, entering the switch will
3331 increment `p' past the end of the pattern. We don't need
3332 to push such a point since we obviously won't find any more
3333 fastmap entries beyond `pend'. Such a pattern can match
3334 the null string, though. */
3335 if (p + j < pend)
3336 {
3337 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3338 {
3339 RESET_FAIL_STACK ();
3340 return -2;
3341 }
3342 }
3343 else
3344 bufp->can_be_null = 1;
3345
3346 if (succeed_n_p)
3347 {
3348 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3349 succeed_n_p = false;
3350 }
3351
3352 continue;
3353
3354
3355 case succeed_n:
3356 /* Get to the number of times to succeed. */
3357 p += 2;
3358
3359 /* Increment p past the n for when k != 0. */
3360 EXTRACT_NUMBER_AND_INCR (k, p);
3361 if (k == 0)
3362 {
3363 p -= 4;
3364 succeed_n_p = true; /* Spaghetti code alert. */
3365 goto handle_on_failure_jump;
3366 }
3367 continue;
3368
3369
3370 case set_number_at:
3371 p += 4;
3372 continue;
3373
3374
3375 case start_memory:
3376 case stop_memory:
3377 p += 2;
3378 continue;
3379
3380
3381 default:
3382 abort (); /* We have listed all the cases. */
3383 } /* switch *p++ */
3384
3385 /* Getting here means we have found the possible starting
3386 characters for one path of the pattern -- and that the empty
3387 string does not match. We need not follow this path further.
3388 Instead, look at the next alternative (remembered on the
3389 stack), or quit if no more. The test at the top of the loop
3390 does these things. */
3391 path_can_be_null = false;
3392 p = pend;
3393 } /* while p */
3394
3395 /* Set `can_be_null' for the last path (also the first path, if the
3396 pattern is empty). */
3397 bufp->can_be_null |= path_can_be_null;
3398
3399 done:
3400 RESET_FAIL_STACK ();
3401 return 0;
3402 } /* re_compile_fastmap */
3403 #ifdef _LIBC
3404 weak_alias (__re_compile_fastmap, re_compile_fastmap)
3405 #endif
3406 \f
3407 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3408 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3409 this memory for recording register information. STARTS and ENDS
3410 must be allocated using the malloc library routine, and must each
3411 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3412
3413 If NUM_REGS == 0, then subsequent matches should allocate their own
3414 register data.
3415
3416 Unless this function is called, the first search or match using
3417 PATTERN_BUFFER will allocate its own register data, without
3418 freeing the old data. */
3419
3420 void
3421 re_set_registers (bufp, regs, num_regs, starts, ends)
3422 struct re_pattern_buffer *bufp;
3423 struct re_registers *regs;
3424 unsigned num_regs;
3425 regoff_t *starts, *ends;
3426 {
3427 if (num_regs)
3428 {
3429 bufp->regs_allocated = REGS_REALLOCATE;
3430 regs->num_regs = num_regs;
3431 regs->start = starts;
3432 regs->end = ends;
3433 }
3434 else
3435 {
3436 bufp->regs_allocated = REGS_UNALLOCATED;
3437 regs->num_regs = 0;
3438 regs->start = regs->end = (regoff_t *) 0;
3439 }
3440 }
3441 #ifdef _LIBC
3442 weak_alias (__re_set_registers, re_set_registers)
3443 #endif
3444 \f
3445 /* Searching routines. */
3446
3447 /* Like re_search_2, below, but only one string is specified, and
3448 doesn't let you say where to stop matching. */
3449
3450 int
3451 re_search (bufp, string, size, startpos, range, regs)
3452 struct re_pattern_buffer *bufp;
3453 const char *string;
3454 int size, startpos, range;
3455 struct re_registers *regs;
3456 {
3457 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3458 regs, size);
3459 }
3460 #ifdef _LIBC
3461 weak_alias (__re_search, re_search)
3462 #endif
3463
3464
3465 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3466 virtual concatenation of STRING1 and STRING2, starting first at index
3467 STARTPOS, then at STARTPOS + 1, and so on.
3468
3469 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3470
3471 RANGE is how far to scan while trying to match. RANGE = 0 means try
3472 only at STARTPOS; in general, the last start tried is STARTPOS +
3473 RANGE.
3474
3475 In REGS, return the indices of the virtual concatenation of STRING1
3476 and STRING2 that matched the entire BUFP->buffer and its contained
3477 subexpressions.
3478
3479 Do not consider matching one past the index STOP in the virtual
3480 concatenation of STRING1 and STRING2.
3481
3482 We return either the position in the strings at which the match was
3483 found, -1 if no match, or -2 if error (such as failure
3484 stack overflow). */
3485
3486 int
3487 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3488 struct re_pattern_buffer *bufp;
3489 const char *string1, *string2;
3490 int size1, size2;
3491 int startpos;
3492 int range;
3493 struct re_registers *regs;
3494 int stop;
3495 {
3496 int val;
3497 register char *fastmap = bufp->fastmap;
3498 register RE_TRANSLATE_TYPE translate = bufp->translate;
3499 int total_size = size1 + size2;
3500 int endpos = startpos + range;
3501
3502 /* Check for out-of-range STARTPOS. */
3503 if (startpos < 0 || startpos > total_size)
3504 return -1;
3505
3506 /* Fix up RANGE if it might eventually take us outside
3507 the virtual concatenation of STRING1 and STRING2.
3508 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3509 if (endpos < 0)
3510 range = 0 - startpos;
3511 else if (endpos > total_size)
3512 range = total_size - startpos;
3513
3514 /* If the search isn't to be a backwards one, don't waste time in a
3515 search for a pattern that must be anchored. */
3516 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3517 {
3518 if (startpos > 0)
3519 return -1;
3520 else
3521 range = 1;
3522 }
3523
3524 #ifdef emacs
3525 /* In a forward search for something that starts with \=.
3526 don't keep searching past point. */
3527 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3528 {
3529 range = PT - startpos;
3530 if (range <= 0)
3531 return -1;
3532 }
3533 #endif /* emacs */
3534
3535 /* Update the fastmap now if not correct already. */
3536 if (fastmap && !bufp->fastmap_accurate)
3537 if (re_compile_fastmap (bufp) == -2)
3538 return -2;
3539
3540 /* Loop through the string, looking for a place to start matching. */
3541 for (;;)
3542 {
3543 /* If a fastmap is supplied, skip quickly over characters that
3544 cannot be the start of a match. If the pattern can match the
3545 null string, however, we don't need to skip characters; we want
3546 the first null string. */
3547 if (fastmap && startpos < total_size && !bufp->can_be_null)
3548 {
3549 if (range > 0) /* Searching forwards. */
3550 {
3551 register const char *d;
3552 register int lim = 0;
3553 int irange = range;
3554
3555 if (startpos < size1 && startpos + range >= size1)
3556 lim = range - (size1 - startpos);
3557
3558 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3559
3560 /* Written out as an if-else to avoid testing `translate'
3561 inside the loop. */
3562 if (translate)
3563 while (range > lim
3564 && !fastmap[(unsigned char)
3565 translate[(unsigned char) *d++]])
3566 range--;
3567 else
3568 while (range > lim && !fastmap[(unsigned char) *d++])
3569 range--;
3570
3571 startpos += irange - range;
3572 }
3573 else /* Searching backwards. */
3574 {
3575 register char c = (size1 == 0 || startpos >= size1
3576 ? string2[startpos - size1]
3577 : string1[startpos]);
3578
3579 if (!fastmap[(unsigned char) TRANSLATE (c)])
3580 goto advance;
3581 }
3582 }
3583
3584 /* If can't match the null string, and that's all we have left, fail. */
3585 if (range >= 0 && startpos == total_size && fastmap
3586 && !bufp->can_be_null)
3587 return -1;
3588
3589 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3590 startpos, regs, stop);
3591 #ifndef REGEX_MALLOC
3592 # ifdef C_ALLOCA
3593 alloca (0);
3594 # endif
3595 #endif
3596
3597 if (val >= 0)
3598 return startpos;
3599
3600 if (val == -2)
3601 return -2;
3602
3603 advance:
3604 if (!range)
3605 break;
3606 else if (range > 0)
3607 {
3608 range--;
3609 startpos++;
3610 }
3611 else
3612 {
3613 range++;
3614 startpos--;
3615 }
3616 }
3617 return -1;
3618 } /* re_search_2 */
3619 #ifdef _LIBC
3620 weak_alias (__re_search_2, re_search_2)
3621 #endif
3622 \f
3623 /* This converts PTR, a pointer into one of the search strings `string1'
3624 and `string2' into an offset from the beginning of that string. */
3625 #define POINTER_TO_OFFSET(ptr) \
3626 (FIRST_STRING_P (ptr) \
3627 ? ((regoff_t) ((ptr) - string1)) \
3628 : ((regoff_t) ((ptr) - string2 + size1)))
3629
3630 /* Macros for dealing with the split strings in re_match_2. */
3631
3632 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3633
3634 /* Call before fetching a character with *d. This switches over to
3635 string2 if necessary. */
3636 #define PREFETCH() \
3637 while (d == dend) \
3638 { \
3639 /* End of string2 => fail. */ \
3640 if (dend == end_match_2) \
3641 goto fail; \
3642 /* End of string1 => advance to string2. */ \
3643 d = string2; \
3644 dend = end_match_2; \
3645 }
3646
3647
3648 /* Test if at very beginning or at very end of the virtual concatenation
3649 of `string1' and `string2'. If only one string, it's `string2'. */
3650 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3651 #define AT_STRINGS_END(d) ((d) == end2)
3652
3653
3654 /* Test if D points to a character which is word-constituent. We have
3655 two special cases to check for: if past the end of string1, look at
3656 the first character in string2; and if before the beginning of
3657 string2, look at the last character in string1. */
3658 #define WORDCHAR_P(d) \
3659 (SYNTAX ((d) == end1 ? *string2 \
3660 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3661 == Sword)
3662
3663 /* Disabled due to a compiler bug -- see comment at case wordbound */
3664 #if 0
3665 /* Test if the character before D and the one at D differ with respect
3666 to being word-constituent. */
3667 #define AT_WORD_BOUNDARY(d) \
3668 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3669 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3670 #endif
3671
3672 /* Free everything we malloc. */
3673 #ifdef MATCH_MAY_ALLOCATE
3674 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3675 # define FREE_VARIABLES() \
3676 do { \
3677 REGEX_FREE_STACK (fail_stack.stack); \
3678 FREE_VAR (regstart); \
3679 FREE_VAR (regend); \
3680 FREE_VAR (old_regstart); \
3681 FREE_VAR (old_regend); \
3682 FREE_VAR (best_regstart); \
3683 FREE_VAR (best_regend); \
3684 FREE_VAR (reg_info); \
3685 FREE_VAR (reg_dummy); \
3686 FREE_VAR (reg_info_dummy); \
3687 } while (0)
3688 #else
3689 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3690 #endif /* not MATCH_MAY_ALLOCATE */
3691
3692 /* These values must meet several constraints. They must not be valid
3693 register values; since we have a limit of 255 registers (because
3694 we use only one byte in the pattern for the register number), we can
3695 use numbers larger than 255. They must differ by 1, because of
3696 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3697 be larger than the value for the highest register, so we do not try
3698 to actually save any registers when none are active. */
3699 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3700 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3701 \f
3702 /* Matching routines. */
3703
3704 #ifndef emacs /* Emacs never uses this. */
3705 /* re_match is like re_match_2 except it takes only a single string. */
3706
3707 int
3708 re_match (bufp, string, size, pos, regs)
3709 struct re_pattern_buffer *bufp;
3710 const char *string;
3711 int size, pos;
3712 struct re_registers *regs;
3713 {
3714 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3715 pos, regs, size);
3716 # ifndef REGEX_MALLOC
3717 # ifdef C_ALLOCA
3718 alloca (0);
3719 # endif
3720 # endif
3721 return result;
3722 }
3723 # ifdef _LIBC
3724 weak_alias (__re_match, re_match)
3725 # endif
3726 #endif /* not emacs */
3727
3728 static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3729 unsigned char *end,
3730 register_info_type *reg_info));
3731 static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3732 unsigned char *end,
3733 register_info_type *reg_info));
3734 static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3735 unsigned char *end,
3736 register_info_type *reg_info));
3737 static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3738 int len, char *translate));
3739
3740 /* re_match_2 matches the compiled pattern in BUFP against the
3741 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3742 and SIZE2, respectively). We start matching at POS, and stop
3743 matching at STOP.
3744
3745 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3746 store offsets for the substring each group matched in REGS. See the
3747 documentation for exactly how many groups we fill.
3748
3749 We return -1 if no match, -2 if an internal error (such as the
3750 failure stack overflowing). Otherwise, we return the length of the
3751 matched substring. */
3752
3753 int
3754 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3755 struct re_pattern_buffer *bufp;
3756 const char *string1, *string2;
3757 int size1, size2;
3758 int pos;
3759 struct re_registers *regs;
3760 int stop;
3761 {
3762 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3763 pos, regs, stop);
3764 #ifndef REGEX_MALLOC
3765 # ifdef C_ALLOCA
3766 alloca (0);
3767 # endif
3768 #endif
3769 return result;
3770 }
3771 #ifdef _LIBC
3772 weak_alias (__re_match_2, re_match_2)
3773 #endif
3774
3775 /* This is a separate function so that we can force an alloca cleanup
3776 afterwards. */
3777 static int
3778 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3779 struct re_pattern_buffer *bufp;
3780 const char *string1, *string2;
3781 int size1, size2;
3782 int pos;
3783 struct re_registers *regs;
3784 int stop;
3785 {
3786 /* General temporaries. */
3787 int mcnt;
3788 unsigned char *p1;
3789
3790 /* Just past the end of the corresponding string. */
3791 const char *end1, *end2;
3792
3793 /* Pointers into string1 and string2, just past the last characters in
3794 each to consider matching. */
3795 const char *end_match_1, *end_match_2;
3796
3797 /* Where we are in the data, and the end of the current string. */
3798 const char *d, *dend;
3799
3800 /* Where we are in the pattern, and the end of the pattern. */
3801 unsigned char *p = bufp->buffer;
3802 register unsigned char *pend = p + bufp->used;
3803
3804 /* Mark the opcode just after a start_memory, so we can test for an
3805 empty subpattern when we get to the stop_memory. */
3806 unsigned char *just_past_start_mem = 0;
3807
3808 /* We use this to map every character in the string. */
3809 RE_TRANSLATE_TYPE translate = bufp->translate;
3810
3811 /* Failure point stack. Each place that can handle a failure further
3812 down the line pushes a failure point on this stack. It consists of
3813 restart, regend, and reg_info for all registers corresponding to
3814 the subexpressions we're currently inside, plus the number of such
3815 registers, and, finally, two char *'s. The first char * is where
3816 to resume scanning the pattern; the second one is where to resume
3817 scanning the strings. If the latter is zero, the failure point is
3818 a ``dummy''; if a failure happens and the failure point is a dummy,
3819 it gets discarded and the next next one is tried. */
3820 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3821 fail_stack_type fail_stack;
3822 #endif
3823 #ifdef DEBUG
3824 static unsigned failure_id = 0;
3825 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3826 #endif
3827
3828 #ifdef REL_ALLOC
3829 /* This holds the pointer to the failure stack, when
3830 it is allocated relocatably. */
3831 fail_stack_elt_t *failure_stack_ptr;
3832 #endif
3833
3834 /* We fill all the registers internally, independent of what we
3835 return, for use in backreferences. The number here includes
3836 an element for register zero. */
3837 size_t num_regs = bufp->re_nsub + 1;
3838
3839 /* The currently active registers. */
3840 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3841 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3842
3843 /* Information on the contents of registers. These are pointers into
3844 the input strings; they record just what was matched (on this
3845 attempt) by a subexpression part of the pattern, that is, the
3846 regnum-th regstart pointer points to where in the pattern we began
3847 matching and the regnum-th regend points to right after where we
3848 stopped matching the regnum-th subexpression. (The zeroth register
3849 keeps track of what the whole pattern matches.) */
3850 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3851 const char **regstart, **regend;
3852 #endif
3853
3854 /* If a group that's operated upon by a repetition operator fails to
3855 match anything, then the register for its start will need to be
3856 restored because it will have been set to wherever in the string we
3857 are when we last see its open-group operator. Similarly for a
3858 register's end. */
3859 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3860 const char **old_regstart, **old_regend;
3861 #endif
3862
3863 /* The is_active field of reg_info helps us keep track of which (possibly
3864 nested) subexpressions we are currently in. The matched_something
3865 field of reg_info[reg_num] helps us tell whether or not we have
3866 matched any of the pattern so far this time through the reg_num-th
3867 subexpression. These two fields get reset each time through any
3868 loop their register is in. */
3869 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3870 register_info_type *reg_info;
3871 #endif
3872
3873 /* The following record the register info as found in the above
3874 variables when we find a match better than any we've seen before.
3875 This happens as we backtrack through the failure points, which in
3876 turn happens only if we have not yet matched the entire string. */
3877 unsigned best_regs_set = false;
3878 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3879 const char **best_regstart, **best_regend;
3880 #endif
3881
3882 /* Logically, this is `best_regend[0]'. But we don't want to have to
3883 allocate space for that if we're not allocating space for anything
3884 else (see below). Also, we never need info about register 0 for
3885 any of the other register vectors, and it seems rather a kludge to
3886 treat `best_regend' differently than the rest. So we keep track of
3887 the end of the best match so far in a separate variable. We
3888 initialize this to NULL so that when we backtrack the first time
3889 and need to test it, it's not garbage. */
3890 const char *match_end = NULL;
3891
3892 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3893 int set_regs_matched_done = 0;
3894
3895 /* Used when we pop values we don't care about. */
3896 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3897 const char **reg_dummy;
3898 register_info_type *reg_info_dummy;
3899 #endif
3900
3901 #ifdef DEBUG
3902 /* Counts the total number of registers pushed. */
3903 unsigned num_regs_pushed = 0;
3904 #endif
3905
3906 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3907
3908 INIT_FAIL_STACK ();
3909
3910 #ifdef MATCH_MAY_ALLOCATE
3911 /* Do not bother to initialize all the register variables if there are
3912 no groups in the pattern, as it takes a fair amount of time. If
3913 there are groups, we include space for register 0 (the whole
3914 pattern), even though we never use it, since it simplifies the
3915 array indexing. We should fix this. */
3916 if (bufp->re_nsub)
3917 {
3918 regstart = REGEX_TALLOC (num_regs, const char *);
3919 regend = REGEX_TALLOC (num_regs, const char *);
3920 old_regstart = REGEX_TALLOC (num_regs, const char *);
3921 old_regend = REGEX_TALLOC (num_regs, const char *);
3922 best_regstart = REGEX_TALLOC (num_regs, const char *);
3923 best_regend = REGEX_TALLOC (num_regs, const char *);
3924 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3925 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3926 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3927
3928 if (!(regstart && regend && old_regstart && old_regend && reg_info
3929 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3930 {
3931 FREE_VARIABLES ();
3932 return -2;
3933 }
3934 }
3935 else
3936 {
3937 /* We must initialize all our variables to NULL, so that
3938 `FREE_VARIABLES' doesn't try to free them. */
3939 regstart = regend = old_regstart = old_regend = best_regstart
3940 = best_regend = reg_dummy = NULL;
3941 reg_info = reg_info_dummy = (register_info_type *) NULL;
3942 }
3943 #endif /* MATCH_MAY_ALLOCATE */
3944
3945 /* The starting position is bogus. */
3946 if (pos < 0 || pos > size1 + size2)
3947 {
3948 FREE_VARIABLES ();
3949 return -1;
3950 }
3951
3952 /* Initialize subexpression text positions to -1 to mark ones that no
3953 start_memory/stop_memory has been seen for. Also initialize the
3954 register information struct. */
3955 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
3956 {
3957 regstart[mcnt] = regend[mcnt]
3958 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3959
3960 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3961 IS_ACTIVE (reg_info[mcnt]) = 0;
3962 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3963 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3964 }
3965
3966 /* We move `string1' into `string2' if the latter's empty -- but not if
3967 `string1' is null. */
3968 if (size2 == 0 && string1 != NULL)
3969 {
3970 string2 = string1;
3971 size2 = size1;
3972 string1 = 0;
3973 size1 = 0;
3974 }
3975 end1 = string1 + size1;
3976 end2 = string2 + size2;
3977
3978 /* Compute where to stop matching, within the two strings. */
3979 if (stop <= size1)
3980 {
3981 end_match_1 = string1 + stop;
3982 end_match_2 = string2;
3983 }
3984 else
3985 {
3986 end_match_1 = end1;
3987 end_match_2 = string2 + stop - size1;
3988 }
3989
3990 /* `p' scans through the pattern as `d' scans through the data.
3991 `dend' is the end of the input string that `d' points within. `d'
3992 is advanced into the following input string whenever necessary, but
3993 this happens before fetching; therefore, at the beginning of the
3994 loop, `d' can be pointing at the end of a string, but it cannot
3995 equal `string2'. */
3996 if (size1 > 0 && pos <= size1)
3997 {
3998 d = string1 + pos;
3999 dend = end_match_1;
4000 }
4001 else
4002 {
4003 d = string2 + pos - size1;
4004 dend = end_match_2;
4005 }
4006
4007 DEBUG_PRINT1 ("The compiled pattern is:\n");
4008 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4009 DEBUG_PRINT1 ("The string to match is: `");
4010 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4011 DEBUG_PRINT1 ("'\n");
4012
4013 /* This loops over pattern commands. It exits by returning from the
4014 function if the match is complete, or it drops through if the match
4015 fails at this starting point in the input data. */
4016 for (;;)
4017 {
4018 #ifdef _LIBC
4019 DEBUG_PRINT2 ("\n%p: ", p);
4020 #else
4021 DEBUG_PRINT2 ("\n0x%x: ", p);
4022 #endif
4023
4024 if (p == pend)
4025 { /* End of pattern means we might have succeeded. */
4026 DEBUG_PRINT1 ("end of pattern ... ");
4027
4028 /* If we haven't matched the entire string, and we want the
4029 longest match, try backtracking. */
4030 if (d != end_match_2)
4031 {
4032 /* 1 if this match ends in the same string (string1 or string2)
4033 as the best previous match. */
4034 boolean same_str_p = (FIRST_STRING_P (match_end)
4035 == MATCHING_IN_FIRST_STRING);
4036 /* 1 if this match is the best seen so far. */
4037 boolean best_match_p;
4038
4039 /* AIX compiler got confused when this was combined
4040 with the previous declaration. */
4041 if (same_str_p)
4042 best_match_p = d > match_end;
4043 else
4044 best_match_p = !MATCHING_IN_FIRST_STRING;
4045
4046 DEBUG_PRINT1 ("backtracking.\n");
4047
4048 if (!FAIL_STACK_EMPTY ())
4049 { /* More failure points to try. */
4050
4051 /* If exceeds best match so far, save it. */
4052 if (!best_regs_set || best_match_p)
4053 {
4054 best_regs_set = true;
4055 match_end = d;
4056
4057 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4058
4059 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4060 {
4061 best_regstart[mcnt] = regstart[mcnt];
4062 best_regend[mcnt] = regend[mcnt];
4063 }
4064 }
4065 goto fail;
4066 }
4067
4068 /* If no failure points, don't restore garbage. And if
4069 last match is real best match, don't restore second
4070 best one. */
4071 else if (best_regs_set && !best_match_p)
4072 {
4073 restore_best_regs:
4074 /* Restore best match. It may happen that `dend ==
4075 end_match_1' while the restored d is in string2.
4076 For example, the pattern `x.*y.*z' against the
4077 strings `x-' and `y-z-', if the two strings are
4078 not consecutive in memory. */
4079 DEBUG_PRINT1 ("Restoring best registers.\n");
4080
4081 d = match_end;
4082 dend = ((d >= string1 && d <= end1)
4083 ? end_match_1 : end_match_2);
4084
4085 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4086 {
4087 regstart[mcnt] = best_regstart[mcnt];
4088 regend[mcnt] = best_regend[mcnt];
4089 }
4090 }
4091 } /* d != end_match_2 */
4092
4093 succeed_label:
4094 DEBUG_PRINT1 ("Accepting match.\n");
4095
4096 /* If caller wants register contents data back, do it. */
4097 if (regs && !bufp->no_sub)
4098 {
4099 /* Have the register data arrays been allocated? */
4100 if (bufp->regs_allocated == REGS_UNALLOCATED)
4101 { /* No. So allocate them with malloc. We need one
4102 extra element beyond `num_regs' for the `-1' marker
4103 GNU code uses. */
4104 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4105 regs->start = TALLOC (regs->num_regs, regoff_t);
4106 regs->end = TALLOC (regs->num_regs, regoff_t);
4107 if (regs->start == NULL || regs->end == NULL)
4108 {
4109 FREE_VARIABLES ();
4110 return -2;
4111 }
4112 bufp->regs_allocated = REGS_REALLOCATE;
4113 }
4114 else if (bufp->regs_allocated == REGS_REALLOCATE)
4115 { /* Yes. If we need more elements than were already
4116 allocated, reallocate them. If we need fewer, just
4117 leave it alone. */
4118 if (regs->num_regs < num_regs + 1)
4119 {
4120 regs->num_regs = num_regs + 1;
4121 RETALLOC (regs->start, regs->num_regs, regoff_t);
4122 RETALLOC (regs->end, regs->num_regs, regoff_t);
4123 if (regs->start == NULL || regs->end == NULL)
4124 {
4125 FREE_VARIABLES ();
4126 return -2;
4127 }
4128 }
4129 }
4130 else
4131 {
4132 /* These braces fend off a "empty body in an else-statement"
4133 warning under GCC when assert expands to nothing. */
4134 assert (bufp->regs_allocated == REGS_FIXED);
4135 }
4136
4137 /* Convert the pointer data in `regstart' and `regend' to
4138 indices. Register zero has to be set differently,
4139 since we haven't kept track of any info for it. */
4140 if (regs->num_regs > 0)
4141 {
4142 regs->start[0] = pos;
4143 regs->end[0] = (MATCHING_IN_FIRST_STRING
4144 ? ((regoff_t) (d - string1))
4145 : ((regoff_t) (d - string2 + size1)));
4146 }
4147
4148 /* Go through the first `min (num_regs, regs->num_regs)'
4149 registers, since that is all we initialized. */
4150 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4151 mcnt++)
4152 {
4153 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4154 regs->start[mcnt] = regs->end[mcnt] = -1;
4155 else
4156 {
4157 regs->start[mcnt]
4158 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4159 regs->end[mcnt]
4160 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4161 }
4162 }
4163
4164 /* If the regs structure we return has more elements than
4165 were in the pattern, set the extra elements to -1. If
4166 we (re)allocated the registers, this is the case,
4167 because we always allocate enough to have at least one
4168 -1 at the end. */
4169 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4170 regs->start[mcnt] = regs->end[mcnt] = -1;
4171 } /* regs && !bufp->no_sub */
4172
4173 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4174 nfailure_points_pushed, nfailure_points_popped,
4175 nfailure_points_pushed - nfailure_points_popped);
4176 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4177
4178 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4179 ? string1
4180 : string2 - size1);
4181
4182 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4183
4184 FREE_VARIABLES ();
4185 return mcnt;
4186 }
4187
4188 /* Otherwise match next pattern command. */
4189 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4190 {
4191 /* Ignore these. Used to ignore the n of succeed_n's which
4192 currently have n == 0. */
4193 case no_op:
4194 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4195 break;
4196
4197 case succeed:
4198 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4199 goto succeed_label;
4200
4201 /* Match the next n pattern characters exactly. The following
4202 byte in the pattern defines n, and the n bytes after that
4203 are the characters to match. */
4204 case exactn:
4205 mcnt = *p++;
4206 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4207
4208 /* This is written out as an if-else so we don't waste time
4209 testing `translate' inside the loop. */
4210 if (translate)
4211 {
4212 do
4213 {
4214 PREFETCH ();
4215 if ((unsigned char) translate[(unsigned char) *d++]
4216 != (unsigned char) *p++)
4217 goto fail;
4218 }
4219 while (--mcnt);
4220 }
4221 else
4222 {
4223 do
4224 {
4225 PREFETCH ();
4226 if (*d++ != (char) *p++) goto fail;
4227 }
4228 while (--mcnt);
4229 }
4230 SET_REGS_MATCHED ();
4231 break;
4232
4233
4234 /* Match any character except possibly a newline or a null. */
4235 case anychar:
4236 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4237
4238 PREFETCH ();
4239
4240 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4241 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4242 goto fail;
4243
4244 SET_REGS_MATCHED ();
4245 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4246 d++;
4247 break;
4248
4249
4250 case charset:
4251 case charset_not:
4252 {
4253 register unsigned char c;
4254 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4255
4256 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4257
4258 PREFETCH ();
4259 c = TRANSLATE (*d); /* The character to match. */
4260
4261 /* Cast to `unsigned' instead of `unsigned char' in case the
4262 bit list is a full 32 bytes long. */
4263 if (c < (unsigned) (*p * BYTEWIDTH)
4264 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4265 not = !not;
4266
4267 p += 1 + *p;
4268
4269 if (!not) goto fail;
4270
4271 SET_REGS_MATCHED ();
4272 d++;
4273 break;
4274 }
4275
4276
4277 /* The beginning of a group is represented by start_memory.
4278 The arguments are the register number in the next byte, and the
4279 number of groups inner to this one in the next. The text
4280 matched within the group is recorded (in the internal
4281 registers data structure) under the register number. */
4282 case start_memory:
4283 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4284
4285 /* Find out if this group can match the empty string. */
4286 p1 = p; /* To send to group_match_null_string_p. */
4287
4288 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4289 REG_MATCH_NULL_STRING_P (reg_info[*p])
4290 = group_match_null_string_p (&p1, pend, reg_info);
4291
4292 /* Save the position in the string where we were the last time
4293 we were at this open-group operator in case the group is
4294 operated upon by a repetition operator, e.g., with `(a*)*b'
4295 against `ab'; then we want to ignore where we are now in
4296 the string in case this attempt to match fails. */
4297 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4298 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4299 : regstart[*p];
4300 DEBUG_PRINT2 (" old_regstart: %d\n",
4301 POINTER_TO_OFFSET (old_regstart[*p]));
4302
4303 regstart[*p] = d;
4304 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4305
4306 IS_ACTIVE (reg_info[*p]) = 1;
4307 MATCHED_SOMETHING (reg_info[*p]) = 0;
4308
4309 /* Clear this whenever we change the register activity status. */
4310 set_regs_matched_done = 0;
4311
4312 /* This is the new highest active register. */
4313 highest_active_reg = *p;
4314
4315 /* If nothing was active before, this is the new lowest active
4316 register. */
4317 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4318 lowest_active_reg = *p;
4319
4320 /* Move past the register number and inner group count. */
4321 p += 2;
4322 just_past_start_mem = p;
4323
4324 break;
4325
4326
4327 /* The stop_memory opcode represents the end of a group. Its
4328 arguments are the same as start_memory's: the register
4329 number, and the number of inner groups. */
4330 case stop_memory:
4331 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4332
4333 /* We need to save the string position the last time we were at
4334 this close-group operator in case the group is operated
4335 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4336 against `aba'; then we want to ignore where we are now in
4337 the string in case this attempt to match fails. */
4338 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4339 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4340 : regend[*p];
4341 DEBUG_PRINT2 (" old_regend: %d\n",
4342 POINTER_TO_OFFSET (old_regend[*p]));
4343
4344 regend[*p] = d;
4345 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4346
4347 /* This register isn't active anymore. */
4348 IS_ACTIVE (reg_info[*p]) = 0;
4349
4350 /* Clear this whenever we change the register activity status. */
4351 set_regs_matched_done = 0;
4352
4353 /* If this was the only register active, nothing is active
4354 anymore. */
4355 if (lowest_active_reg == highest_active_reg)
4356 {
4357 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4358 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4359 }
4360 else
4361 { /* We must scan for the new highest active register, since
4362 it isn't necessarily one less than now: consider
4363 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4364 new highest active register is 1. */
4365 unsigned char r = *p - 1;
4366 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4367 r--;
4368
4369 /* If we end up at register zero, that means that we saved
4370 the registers as the result of an `on_failure_jump', not
4371 a `start_memory', and we jumped to past the innermost
4372 `stop_memory'. For example, in ((.)*) we save
4373 registers 1 and 2 as a result of the *, but when we pop
4374 back to the second ), we are at the stop_memory 1.
4375 Thus, nothing is active. */
4376 if (r == 0)
4377 {
4378 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4379 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4380 }
4381 else
4382 highest_active_reg = r;
4383 }
4384
4385 /* If just failed to match something this time around with a
4386 group that's operated on by a repetition operator, try to
4387 force exit from the ``loop'', and restore the register
4388 information for this group that we had before trying this
4389 last match. */
4390 if ((!MATCHED_SOMETHING (reg_info[*p])
4391 || just_past_start_mem == p - 1)
4392 && (p + 2) < pend)
4393 {
4394 boolean is_a_jump_n = false;
4395
4396 p1 = p + 2;
4397 mcnt = 0;
4398 switch ((re_opcode_t) *p1++)
4399 {
4400 case jump_n:
4401 is_a_jump_n = true;
4402 case pop_failure_jump:
4403 case maybe_pop_jump:
4404 case jump:
4405 case dummy_failure_jump:
4406 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4407 if (is_a_jump_n)
4408 p1 += 2;
4409 break;
4410
4411 default:
4412 /* do nothing */ ;
4413 }
4414 p1 += mcnt;
4415
4416 /* If the next operation is a jump backwards in the pattern
4417 to an on_failure_jump right before the start_memory
4418 corresponding to this stop_memory, exit from the loop
4419 by forcing a failure after pushing on the stack the
4420 on_failure_jump's jump in the pattern, and d. */
4421 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4422 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4423 {
4424 /* If this group ever matched anything, then restore
4425 what its registers were before trying this last
4426 failed match, e.g., with `(a*)*b' against `ab' for
4427 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4428 against `aba' for regend[3].
4429
4430 Also restore the registers for inner groups for,
4431 e.g., `((a*)(b*))*' against `aba' (register 3 would
4432 otherwise get trashed). */
4433
4434 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4435 {
4436 unsigned r;
4437
4438 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4439
4440 /* Restore this and inner groups' (if any) registers. */
4441 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4442 r++)
4443 {
4444 regstart[r] = old_regstart[r];
4445
4446 /* xx why this test? */
4447 if (old_regend[r] >= regstart[r])
4448 regend[r] = old_regend[r];
4449 }
4450 }
4451 p1++;
4452 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4453 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4454
4455 goto fail;
4456 }
4457 }
4458
4459 /* Move past the register number and the inner group count. */
4460 p += 2;
4461 break;
4462
4463
4464 /* \<digit> has been turned into a `duplicate' command which is
4465 followed by the numeric value of <digit> as the register number. */
4466 case duplicate:
4467 {
4468 register const char *d2, *dend2;
4469 int regno = *p++; /* Get which register to match against. */
4470 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4471
4472 /* Can't back reference a group which we've never matched. */
4473 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4474 goto fail;
4475
4476 /* Where in input to try to start matching. */
4477 d2 = regstart[regno];
4478
4479 /* Where to stop matching; if both the place to start and
4480 the place to stop matching are in the same string, then
4481 set to the place to stop, otherwise, for now have to use
4482 the end of the first string. */
4483
4484 dend2 = ((FIRST_STRING_P (regstart[regno])
4485 == FIRST_STRING_P (regend[regno]))
4486 ? regend[regno] : end_match_1);
4487 for (;;)
4488 {
4489 /* If necessary, advance to next segment in register
4490 contents. */
4491 while (d2 == dend2)
4492 {
4493 if (dend2 == end_match_2) break;
4494 if (dend2 == regend[regno]) break;
4495
4496 /* End of string1 => advance to string2. */
4497 d2 = string2;
4498 dend2 = regend[regno];
4499 }
4500 /* At end of register contents => success */
4501 if (d2 == dend2) break;
4502
4503 /* If necessary, advance to next segment in data. */
4504 PREFETCH ();
4505
4506 /* How many characters left in this segment to match. */
4507 mcnt = dend - d;
4508
4509 /* Want how many consecutive characters we can match in
4510 one shot, so, if necessary, adjust the count. */
4511 if (mcnt > dend2 - d2)
4512 mcnt = dend2 - d2;
4513
4514 /* Compare that many; failure if mismatch, else move
4515 past them. */
4516 if (translate
4517 ? bcmp_translate (d, d2, mcnt, translate)
4518 : memcmp (d, d2, mcnt))
4519 goto fail;
4520 d += mcnt, d2 += mcnt;
4521
4522 /* Do this because we've match some characters. */
4523 SET_REGS_MATCHED ();
4524 }
4525 }
4526 break;
4527
4528
4529 /* begline matches the empty string at the beginning of the string
4530 (unless `not_bol' is set in `bufp'), and, if
4531 `newline_anchor' is set, after newlines. */
4532 case begline:
4533 DEBUG_PRINT1 ("EXECUTING begline.\n");
4534
4535 if (AT_STRINGS_BEG (d))
4536 {
4537 if (!bufp->not_bol) break;
4538 }
4539 else if (d[-1] == '\n' && bufp->newline_anchor)
4540 {
4541 break;
4542 }
4543 /* In all other cases, we fail. */
4544 goto fail;
4545
4546
4547 /* endline is the dual of begline. */
4548 case endline:
4549 DEBUG_PRINT1 ("EXECUTING endline.\n");
4550
4551 if (AT_STRINGS_END (d))
4552 {
4553 if (!bufp->not_eol) break;
4554 }
4555
4556 /* We have to ``prefetch'' the next character. */
4557 else if ((d == end1 ? *string2 : *d) == '\n'
4558 && bufp->newline_anchor)
4559 {
4560 break;
4561 }
4562 goto fail;
4563
4564
4565 /* Match at the very beginning of the data. */
4566 case begbuf:
4567 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4568 if (AT_STRINGS_BEG (d))
4569 break;
4570 goto fail;
4571
4572
4573 /* Match at the very end of the data. */
4574 case endbuf:
4575 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4576 if (AT_STRINGS_END (d))
4577 break;
4578 goto fail;
4579
4580
4581 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4582 pushes NULL as the value for the string on the stack. Then
4583 `pop_failure_point' will keep the current value for the
4584 string, instead of restoring it. To see why, consider
4585 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4586 then the . fails against the \n. But the next thing we want
4587 to do is match the \n against the \n; if we restored the
4588 string value, we would be back at the foo.
4589
4590 Because this is used only in specific cases, we don't need to
4591 check all the things that `on_failure_jump' does, to make
4592 sure the right things get saved on the stack. Hence we don't
4593 share its code. The only reason to push anything on the
4594 stack at all is that otherwise we would have to change
4595 `anychar's code to do something besides goto fail in this
4596 case; that seems worse than this. */
4597 case on_failure_keep_string_jump:
4598 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4599
4600 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4601 #ifdef _LIBC
4602 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4603 #else
4604 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4605 #endif
4606
4607 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4608 break;
4609
4610
4611 /* Uses of on_failure_jump:
4612
4613 Each alternative starts with an on_failure_jump that points
4614 to the beginning of the next alternative. Each alternative
4615 except the last ends with a jump that in effect jumps past
4616 the rest of the alternatives. (They really jump to the
4617 ending jump of the following alternative, because tensioning
4618 these jumps is a hassle.)
4619
4620 Repeats start with an on_failure_jump that points past both
4621 the repetition text and either the following jump or
4622 pop_failure_jump back to this on_failure_jump. */
4623 case on_failure_jump:
4624 on_failure:
4625 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4626
4627 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4628 #ifdef _LIBC
4629 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4630 #else
4631 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4632 #endif
4633
4634 /* If this on_failure_jump comes right before a group (i.e.,
4635 the original * applied to a group), save the information
4636 for that group and all inner ones, so that if we fail back
4637 to this point, the group's information will be correct.
4638 For example, in \(a*\)*\1, we need the preceding group,
4639 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4640
4641 /* We can't use `p' to check ahead because we push
4642 a failure point to `p + mcnt' after we do this. */
4643 p1 = p;
4644
4645 /* We need to skip no_op's before we look for the
4646 start_memory in case this on_failure_jump is happening as
4647 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4648 against aba. */
4649 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4650 p1++;
4651
4652 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4653 {
4654 /* We have a new highest active register now. This will
4655 get reset at the start_memory we are about to get to,
4656 but we will have saved all the registers relevant to
4657 this repetition op, as described above. */
4658 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4659 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4660 lowest_active_reg = *(p1 + 1);
4661 }
4662
4663 DEBUG_PRINT1 (":\n");
4664 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4665 break;
4666
4667
4668 /* A smart repeat ends with `maybe_pop_jump'.
4669 We change it to either `pop_failure_jump' or `jump'. */
4670 case maybe_pop_jump:
4671 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4672 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4673 {
4674 register unsigned char *p2 = p;
4675
4676 /* Compare the beginning of the repeat with what in the
4677 pattern follows its end. If we can establish that there
4678 is nothing that they would both match, i.e., that we
4679 would have to backtrack because of (as in, e.g., `a*a')
4680 then we can change to pop_failure_jump, because we'll
4681 never have to backtrack.
4682
4683 This is not true in the case of alternatives: in
4684 `(a|ab)*' we do need to backtrack to the `ab' alternative
4685 (e.g., if the string was `ab'). But instead of trying to
4686 detect that here, the alternative has put on a dummy
4687 failure point which is what we will end up popping. */
4688
4689 /* Skip over open/close-group commands.
4690 If what follows this loop is a ...+ construct,
4691 look at what begins its body, since we will have to
4692 match at least one of that. */
4693 while (1)
4694 {
4695 if (p2 + 2 < pend
4696 && ((re_opcode_t) *p2 == stop_memory
4697 || (re_opcode_t) *p2 == start_memory))
4698 p2 += 3;
4699 else if (p2 + 6 < pend
4700 && (re_opcode_t) *p2 == dummy_failure_jump)
4701 p2 += 6;
4702 else
4703 break;
4704 }
4705
4706 p1 = p + mcnt;
4707 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4708 to the `maybe_finalize_jump' of this case. Examine what
4709 follows. */
4710
4711 /* If we're at the end of the pattern, we can change. */
4712 if (p2 == pend)
4713 {
4714 /* Consider what happens when matching ":\(.*\)"
4715 against ":/". I don't really understand this code
4716 yet. */
4717 p[-3] = (unsigned char) pop_failure_jump;
4718 DEBUG_PRINT1
4719 (" End of pattern: change to `pop_failure_jump'.\n");
4720 }
4721
4722 else if ((re_opcode_t) *p2 == exactn
4723 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4724 {
4725 register unsigned char c
4726 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4727
4728 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4729 {
4730 p[-3] = (unsigned char) pop_failure_jump;
4731 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4732 c, p1[5]);
4733 }
4734
4735 else if ((re_opcode_t) p1[3] == charset
4736 || (re_opcode_t) p1[3] == charset_not)
4737 {
4738 int not = (re_opcode_t) p1[3] == charset_not;
4739
4740 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4741 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4742 not = !not;
4743
4744 /* `not' is equal to 1 if c would match, which means
4745 that we can't change to pop_failure_jump. */
4746 if (!not)
4747 {
4748 p[-3] = (unsigned char) pop_failure_jump;
4749 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4750 }
4751 }
4752 }
4753 else if ((re_opcode_t) *p2 == charset)
4754 {
4755 #ifdef DEBUG
4756 register unsigned char c
4757 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4758 #endif
4759
4760 #if 0
4761 if ((re_opcode_t) p1[3] == exactn
4762 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4763 && (p2[2 + p1[5] / BYTEWIDTH]
4764 & (1 << (p1[5] % BYTEWIDTH)))))
4765 #else
4766 if ((re_opcode_t) p1[3] == exactn
4767 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4768 && (p2[2 + p1[4] / BYTEWIDTH]
4769 & (1 << (p1[4] % BYTEWIDTH)))))
4770 #endif
4771 {
4772 p[-3] = (unsigned char) pop_failure_jump;
4773 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4774 c, p1[5]);
4775 }
4776
4777 else if ((re_opcode_t) p1[3] == charset_not)
4778 {
4779 int idx;
4780 /* We win if the charset_not inside the loop
4781 lists every character listed in the charset after. */
4782 for (idx = 0; idx < (int) p2[1]; idx++)
4783 if (! (p2[2 + idx] == 0
4784 || (idx < (int) p1[4]
4785 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4786 break;
4787
4788 if (idx == p2[1])
4789 {
4790 p[-3] = (unsigned char) pop_failure_jump;
4791 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4792 }
4793 }
4794 else if ((re_opcode_t) p1[3] == charset)
4795 {
4796 int idx;
4797 /* We win if the charset inside the loop
4798 has no overlap with the one after the loop. */
4799 for (idx = 0;
4800 idx < (int) p2[1] && idx < (int) p1[4];
4801 idx++)
4802 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4803 break;
4804
4805 if (idx == p2[1] || idx == p1[4])
4806 {
4807 p[-3] = (unsigned char) pop_failure_jump;
4808 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4809 }
4810 }
4811 }
4812 }
4813 p -= 2; /* Point at relative address again. */
4814 if ((re_opcode_t) p[-1] != pop_failure_jump)
4815 {
4816 p[-1] = (unsigned char) jump;
4817 DEBUG_PRINT1 (" Match => jump.\n");
4818 goto unconditional_jump;
4819 }
4820 /* Note fall through. */
4821
4822
4823 /* The end of a simple repeat has a pop_failure_jump back to
4824 its matching on_failure_jump, where the latter will push a
4825 failure point. The pop_failure_jump takes off failure
4826 points put on by this pop_failure_jump's matching
4827 on_failure_jump; we got through the pattern to here from the
4828 matching on_failure_jump, so didn't fail. */
4829 case pop_failure_jump:
4830 {
4831 /* We need to pass separate storage for the lowest and
4832 highest registers, even though we don't care about the
4833 actual values. Otherwise, we will restore only one
4834 register from the stack, since lowest will == highest in
4835 `pop_failure_point'. */
4836 active_reg_t dummy_low_reg, dummy_high_reg;
4837 unsigned char *pdummy;
4838 const char *sdummy;
4839
4840 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4841 POP_FAILURE_POINT (sdummy, pdummy,
4842 dummy_low_reg, dummy_high_reg,
4843 reg_dummy, reg_dummy, reg_info_dummy);
4844 }
4845 /* Note fall through. */
4846
4847 unconditional_jump:
4848 #ifdef _LIBC
4849 DEBUG_PRINT2 ("\n%p: ", p);
4850 #else
4851 DEBUG_PRINT2 ("\n0x%x: ", p);
4852 #endif
4853 /* Note fall through. */
4854
4855 /* Unconditionally jump (without popping any failure points). */
4856 case jump:
4857 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4858 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4859 p += mcnt; /* Do the jump. */
4860 #ifdef _LIBC
4861 DEBUG_PRINT2 ("(to %p).\n", p);
4862 #else
4863 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4864 #endif
4865 break;
4866
4867
4868 /* We need this opcode so we can detect where alternatives end
4869 in `group_match_null_string_p' et al. */
4870 case jump_past_alt:
4871 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4872 goto unconditional_jump;
4873
4874
4875 /* Normally, the on_failure_jump pushes a failure point, which
4876 then gets popped at pop_failure_jump. We will end up at
4877 pop_failure_jump, also, and with a pattern of, say, `a+', we
4878 are skipping over the on_failure_jump, so we have to push
4879 something meaningless for pop_failure_jump to pop. */
4880 case dummy_failure_jump:
4881 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4882 /* It doesn't matter what we push for the string here. What
4883 the code at `fail' tests is the value for the pattern. */
4884 PUSH_FAILURE_POINT (NULL, NULL, -2);
4885 goto unconditional_jump;
4886
4887
4888 /* At the end of an alternative, we need to push a dummy failure
4889 point in case we are followed by a `pop_failure_jump', because
4890 we don't want the failure point for the alternative to be
4891 popped. For example, matching `(a|ab)*' against `aab'
4892 requires that we match the `ab' alternative. */
4893 case push_dummy_failure:
4894 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4895 /* See comments just above at `dummy_failure_jump' about the
4896 two zeroes. */
4897 PUSH_FAILURE_POINT (NULL, NULL, -2);
4898 break;
4899
4900 /* Have to succeed matching what follows at least n times.
4901 After that, handle like `on_failure_jump'. */
4902 case succeed_n:
4903 EXTRACT_NUMBER (mcnt, p + 2);
4904 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4905
4906 assert (mcnt >= 0);
4907 /* Originally, this is how many times we HAVE to succeed. */
4908 if (mcnt > 0)
4909 {
4910 mcnt--;
4911 p += 2;
4912 STORE_NUMBER_AND_INCR (p, mcnt);
4913 #ifdef _LIBC
4914 DEBUG_PRINT3 (" Setting %p to %d.\n", p - 2, mcnt);
4915 #else
4916 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - 2, mcnt);
4917 #endif
4918 }
4919 else if (mcnt == 0)
4920 {
4921 #ifdef _LIBC
4922 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2);
4923 #else
4924 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4925 #endif
4926 p[2] = (unsigned char) no_op;
4927 p[3] = (unsigned char) no_op;
4928 goto on_failure;
4929 }
4930 break;
4931
4932 case jump_n:
4933 EXTRACT_NUMBER (mcnt, p + 2);
4934 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4935
4936 /* Originally, this is how many times we CAN jump. */
4937 if (mcnt)
4938 {
4939 mcnt--;
4940 STORE_NUMBER (p + 2, mcnt);
4941 #ifdef _LIBC
4942 DEBUG_PRINT3 (" Setting %p to %d.\n", p + 2, mcnt);
4943 #else
4944 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + 2, mcnt);
4945 #endif
4946 goto unconditional_jump;
4947 }
4948 /* If don't have to jump any more, skip over the rest of command. */
4949 else
4950 p += 4;
4951 break;
4952
4953 case set_number_at:
4954 {
4955 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4956
4957 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4958 p1 = p + mcnt;
4959 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4960 #ifdef _LIBC
4961 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
4962 #else
4963 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4964 #endif
4965 STORE_NUMBER (p1, mcnt);
4966 break;
4967 }
4968
4969 #if 0
4970 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4971 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4972 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4973 macro and introducing temporary variables works around the bug. */
4974
4975 case wordbound:
4976 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4977 if (AT_WORD_BOUNDARY (d))
4978 break;
4979 goto fail;
4980
4981 case notwordbound:
4982 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4983 if (AT_WORD_BOUNDARY (d))
4984 goto fail;
4985 break;
4986 #else
4987 case wordbound:
4988 {
4989 boolean prevchar, thischar;
4990
4991 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4992 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4993 break;
4994
4995 prevchar = WORDCHAR_P (d - 1);
4996 thischar = WORDCHAR_P (d);
4997 if (prevchar != thischar)
4998 break;
4999 goto fail;
5000 }
5001
5002 case notwordbound:
5003 {
5004 boolean prevchar, thischar;
5005
5006 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5007 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5008 goto fail;
5009
5010 prevchar = WORDCHAR_P (d - 1);
5011 thischar = WORDCHAR_P (d);
5012 if (prevchar != thischar)
5013 goto fail;
5014 break;
5015 }
5016 #endif
5017
5018 case wordbeg:
5019 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5020 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
5021 break;
5022 goto fail;
5023
5024 case wordend:
5025 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5026 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
5027 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
5028 break;
5029 goto fail;
5030
5031 #ifdef emacs
5032 case before_dot:
5033 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5034 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
5035 goto fail;
5036 break;
5037
5038 case at_dot:
5039 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5040 if (PTR_CHAR_POS ((unsigned char *) d) != point)
5041 goto fail;
5042 break;
5043
5044 case after_dot:
5045 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5046 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5047 goto fail;
5048 break;
5049
5050 case syntaxspec:
5051 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5052 mcnt = *p++;
5053 goto matchsyntax;
5054
5055 case wordchar:
5056 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5057 mcnt = (int) Sword;
5058 matchsyntax:
5059 PREFETCH ();
5060 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5061 d++;
5062 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5063 goto fail;
5064 SET_REGS_MATCHED ();
5065 break;
5066
5067 case notsyntaxspec:
5068 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5069 mcnt = *p++;
5070 goto matchnotsyntax;
5071
5072 case notwordchar:
5073 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5074 mcnt = (int) Sword;
5075 matchnotsyntax:
5076 PREFETCH ();
5077 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5078 d++;
5079 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5080 goto fail;
5081 SET_REGS_MATCHED ();
5082 break;
5083
5084 #else /* not emacs */
5085 case wordchar:
5086 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5087 PREFETCH ();
5088 if (!WORDCHAR_P (d))
5089 goto fail;
5090 SET_REGS_MATCHED ();
5091 d++;
5092 break;
5093
5094 case notwordchar:
5095 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5096 PREFETCH ();
5097 if (WORDCHAR_P (d))
5098 goto fail;
5099 SET_REGS_MATCHED ();
5100 d++;
5101 break;
5102 #endif /* not emacs */
5103
5104 default:
5105 abort ();
5106 }
5107 continue; /* Successfully executed one pattern command; keep going. */
5108
5109
5110 /* We goto here if a matching operation fails. */
5111 fail:
5112 if (!FAIL_STACK_EMPTY ())
5113 { /* A restart point is known. Restore to that state. */
5114 DEBUG_PRINT1 ("\nFAIL:\n");
5115 POP_FAILURE_POINT (d, p,
5116 lowest_active_reg, highest_active_reg,
5117 regstart, regend, reg_info);
5118
5119 /* If this failure point is a dummy, try the next one. */
5120 if (!p)
5121 goto fail;
5122
5123 /* If we failed to the end of the pattern, don't examine *p. */
5124 assert (p <= pend);
5125 if (p < pend)
5126 {
5127 boolean is_a_jump_n = false;
5128
5129 /* If failed to a backwards jump that's part of a repetition
5130 loop, need to pop this failure point and use the next one. */
5131 switch ((re_opcode_t) *p)
5132 {
5133 case jump_n:
5134 is_a_jump_n = true;
5135 case maybe_pop_jump:
5136 case pop_failure_jump:
5137 case jump:
5138 p1 = p + 1;
5139 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5140 p1 += mcnt;
5141
5142 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5143 || (!is_a_jump_n
5144 && (re_opcode_t) *p1 == on_failure_jump))
5145 goto fail;
5146 break;
5147 default:
5148 /* do nothing */ ;
5149 }
5150 }
5151
5152 if (d >= string1 && d <= end1)
5153 dend = end_match_1;
5154 }
5155 else
5156 break; /* Matching at this starting point really fails. */
5157 } /* for (;;) */
5158
5159 if (best_regs_set)
5160 goto restore_best_regs;
5161
5162 FREE_VARIABLES ();
5163
5164 return -1; /* Failure to match. */
5165 } /* re_match_2 */
5166 \f
5167 /* Subroutine definitions for re_match_2. */
5168
5169
5170 /* We are passed P pointing to a register number after a start_memory.
5171
5172 Return true if the pattern up to the corresponding stop_memory can
5173 match the empty string, and false otherwise.
5174
5175 If we find the matching stop_memory, sets P to point to one past its number.
5176 Otherwise, sets P to an undefined byte less than or equal to END.
5177
5178 We don't handle duplicates properly (yet). */
5179
5180 static boolean
5181 group_match_null_string_p (p, end, reg_info)
5182 unsigned char **p, *end;
5183 register_info_type *reg_info;
5184 {
5185 int mcnt;
5186 /* Point to after the args to the start_memory. */
5187 unsigned char *p1 = *p + 2;
5188
5189 while (p1 < end)
5190 {
5191 /* Skip over opcodes that can match nothing, and return true or
5192 false, as appropriate, when we get to one that can't, or to the
5193 matching stop_memory. */
5194
5195 switch ((re_opcode_t) *p1)
5196 {
5197 /* Could be either a loop or a series of alternatives. */
5198 case on_failure_jump:
5199 p1++;
5200 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5201
5202 /* If the next operation is not a jump backwards in the
5203 pattern. */
5204
5205 if (mcnt >= 0)
5206 {
5207 /* Go through the on_failure_jumps of the alternatives,
5208 seeing if any of the alternatives cannot match nothing.
5209 The last alternative starts with only a jump,
5210 whereas the rest start with on_failure_jump and end
5211 with a jump, e.g., here is the pattern for `a|b|c':
5212
5213 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5214 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5215 /exactn/1/c
5216
5217 So, we have to first go through the first (n-1)
5218 alternatives and then deal with the last one separately. */
5219
5220
5221 /* Deal with the first (n-1) alternatives, which start
5222 with an on_failure_jump (see above) that jumps to right
5223 past a jump_past_alt. */
5224
5225 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5226 {
5227 /* `mcnt' holds how many bytes long the alternative
5228 is, including the ending `jump_past_alt' and
5229 its number. */
5230
5231 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5232 reg_info))
5233 return false;
5234
5235 /* Move to right after this alternative, including the
5236 jump_past_alt. */
5237 p1 += mcnt;
5238
5239 /* Break if it's the beginning of an n-th alternative
5240 that doesn't begin with an on_failure_jump. */
5241 if ((re_opcode_t) *p1 != on_failure_jump)
5242 break;
5243
5244 /* Still have to check that it's not an n-th
5245 alternative that starts with an on_failure_jump. */
5246 p1++;
5247 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5248 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5249 {
5250 /* Get to the beginning of the n-th alternative. */
5251 p1 -= 3;
5252 break;
5253 }
5254 }
5255
5256 /* Deal with the last alternative: go back and get number
5257 of the `jump_past_alt' just before it. `mcnt' contains
5258 the length of the alternative. */
5259 EXTRACT_NUMBER (mcnt, p1 - 2);
5260
5261 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5262 return false;
5263
5264 p1 += mcnt; /* Get past the n-th alternative. */
5265 } /* if mcnt > 0 */
5266 break;
5267
5268
5269 case stop_memory:
5270 assert (p1[1] == **p);
5271 *p = p1 + 2;
5272 return true;
5273
5274
5275 default:
5276 if (!common_op_match_null_string_p (&p1, end, reg_info))
5277 return false;
5278 }
5279 } /* while p1 < end */
5280
5281 return false;
5282 } /* group_match_null_string_p */
5283
5284
5285 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5286 It expects P to be the first byte of a single alternative and END one
5287 byte past the last. The alternative can contain groups. */
5288
5289 static boolean
5290 alt_match_null_string_p (p, end, reg_info)
5291 unsigned char *p, *end;
5292 register_info_type *reg_info;
5293 {
5294 int mcnt;
5295 unsigned char *p1 = p;
5296
5297 while (p1 < end)
5298 {
5299 /* Skip over opcodes that can match nothing, and break when we get
5300 to one that can't. */
5301
5302 switch ((re_opcode_t) *p1)
5303 {
5304 /* It's a loop. */
5305 case on_failure_jump:
5306 p1++;
5307 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5308 p1 += mcnt;
5309 break;
5310
5311 default:
5312 if (!common_op_match_null_string_p (&p1, end, reg_info))
5313 return false;
5314 }
5315 } /* while p1 < end */
5316
5317 return true;
5318 } /* alt_match_null_string_p */
5319
5320
5321 /* Deals with the ops common to group_match_null_string_p and
5322 alt_match_null_string_p.
5323
5324 Sets P to one after the op and its arguments, if any. */
5325
5326 static boolean
5327 common_op_match_null_string_p (p, end, reg_info)
5328 unsigned char **p, *end;
5329 register_info_type *reg_info;
5330 {
5331 int mcnt;
5332 boolean ret;
5333 int reg_no;
5334 unsigned char *p1 = *p;
5335
5336 switch ((re_opcode_t) *p1++)
5337 {
5338 case no_op:
5339 case begline:
5340 case endline:
5341 case begbuf:
5342 case endbuf:
5343 case wordbeg:
5344 case wordend:
5345 case wordbound:
5346 case notwordbound:
5347 #ifdef emacs
5348 case before_dot:
5349 case at_dot:
5350 case after_dot:
5351 #endif
5352 break;
5353
5354 case start_memory:
5355 reg_no = *p1;
5356 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5357 ret = group_match_null_string_p (&p1, end, reg_info);
5358
5359 /* Have to set this here in case we're checking a group which
5360 contains a group and a back reference to it. */
5361
5362 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5363 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5364
5365 if (!ret)
5366 return false;
5367 break;
5368
5369 /* If this is an optimized succeed_n for zero times, make the jump. */
5370 case jump:
5371 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5372 if (mcnt >= 0)
5373 p1 += mcnt;
5374 else
5375 return false;
5376 break;
5377
5378 case succeed_n:
5379 /* Get to the number of times to succeed. */
5380 p1 += 2;
5381 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5382
5383 if (mcnt == 0)
5384 {
5385 p1 -= 4;
5386 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5387 p1 += mcnt;
5388 }
5389 else
5390 return false;
5391 break;
5392
5393 case duplicate:
5394 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5395 return false;
5396 break;
5397
5398 case set_number_at:
5399 p1 += 4;
5400
5401 default:
5402 /* All other opcodes mean we cannot match the empty string. */
5403 return false;
5404 }
5405
5406 *p = p1;
5407 return true;
5408 } /* common_op_match_null_string_p */
5409
5410
5411 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5412 bytes; nonzero otherwise. */
5413
5414 static int
5415 bcmp_translate (s1, s2, len, translate)
5416 const char *s1, *s2;
5417 register int len;
5418 RE_TRANSLATE_TYPE translate;
5419 {
5420 register const unsigned char *p1 = (const unsigned char *) s1;
5421 register const unsigned char *p2 = (const unsigned char *) s2;
5422 while (len)
5423 {
5424 if (translate[*p1++] != translate[*p2++]) return 1;
5425 len--;
5426 }
5427 return 0;
5428 }
5429 \f
5430 /* Entry points for GNU code. */
5431
5432 /* re_compile_pattern is the GNU regular expression compiler: it
5433 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5434 Returns 0 if the pattern was valid, otherwise an error string.
5435
5436 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5437 are set in BUFP on entry.
5438
5439 We call regex_compile to do the actual compilation. */
5440
5441 const char *
5442 re_compile_pattern (pattern, length, bufp)
5443 const char *pattern;
5444 size_t length;
5445 struct re_pattern_buffer *bufp;
5446 {
5447 reg_errcode_t ret;
5448
5449 /* GNU code is written to assume at least RE_NREGS registers will be set
5450 (and at least one extra will be -1). */
5451 bufp->regs_allocated = REGS_UNALLOCATED;
5452
5453 /* And GNU code determines whether or not to get register information
5454 by passing null for the REGS argument to re_match, etc., not by
5455 setting no_sub. */
5456 bufp->no_sub = 0;
5457
5458 /* Match anchors at newline. */
5459 bufp->newline_anchor = 1;
5460
5461 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5462
5463 if (!ret)
5464 return NULL;
5465 return gettext (re_error_msgid[(int) ret]);
5466 }
5467 #ifdef _LIBC
5468 weak_alias (__re_compile_pattern, re_compile_pattern)
5469 #endif
5470 \f
5471 /* Entry points compatible with 4.2 BSD regex library. We don't define
5472 them unless specifically requested. */
5473
5474 #if defined _REGEX_RE_COMP || defined _LIBC
5475
5476 /* BSD has one and only one pattern buffer. */
5477 static struct re_pattern_buffer re_comp_buf;
5478
5479 char *
5480 #ifdef _LIBC
5481 /* Make these definitions weak in libc, so POSIX programs can redefine
5482 these names if they don't use our functions, and still use
5483 regcomp/regexec below without link errors. */
5484 weak_function
5485 #endif
5486 re_comp (s)
5487 const char *s;
5488 {
5489 reg_errcode_t ret;
5490
5491 if (!s)
5492 {
5493 if (!re_comp_buf.buffer)
5494 return gettext ("No previous regular expression");
5495 return 0;
5496 }
5497
5498 if (!re_comp_buf.buffer)
5499 {
5500 re_comp_buf.buffer = (unsigned char *) malloc (200);
5501 if (re_comp_buf.buffer == NULL)
5502 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5503 re_comp_buf.allocated = 200;
5504
5505 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5506 if (re_comp_buf.fastmap == NULL)
5507 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5508 }
5509
5510 /* Since `re_exec' always passes NULL for the `regs' argument, we
5511 don't need to initialize the pattern buffer fields which affect it. */
5512
5513 /* Match anchors at newlines. */
5514 re_comp_buf.newline_anchor = 1;
5515
5516 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5517
5518 if (!ret)
5519 return NULL;
5520
5521 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5522 return (char *) gettext (re_error_msgid[(int) ret]);
5523 }
5524
5525
5526 int
5527 #ifdef _LIBC
5528 weak_function
5529 #endif
5530 re_exec (s)
5531 const char *s;
5532 {
5533 const int len = strlen (s);
5534 return
5535 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5536 }
5537
5538 #endif /* _REGEX_RE_COMP */
5539 \f
5540 /* POSIX.2 functions. Don't define these for Emacs. */
5541
5542 #ifndef emacs
5543
5544 /* regcomp takes a regular expression as a string and compiles it.
5545
5546 PREG is a regex_t *. We do not expect any fields to be initialized,
5547 since POSIX says we shouldn't. Thus, we set
5548
5549 `buffer' to the compiled pattern;
5550 `used' to the length of the compiled pattern;
5551 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5552 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5553 RE_SYNTAX_POSIX_BASIC;
5554 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5555 `fastmap' and `fastmap_accurate' to zero;
5556 `re_nsub' to the number of subexpressions in PATTERN.
5557
5558 PATTERN is the address of the pattern string.
5559
5560 CFLAGS is a series of bits which affect compilation.
5561
5562 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5563 use POSIX basic syntax.
5564
5565 If REG_NEWLINE is set, then . and [^...] don't match newline.
5566 Also, regexec will try a match beginning after every newline.
5567
5568 If REG_ICASE is set, then we considers upper- and lowercase
5569 versions of letters to be equivalent when matching.
5570
5571 If REG_NOSUB is set, then when PREG is passed to regexec, that
5572 routine will report only success or failure, and nothing about the
5573 registers.
5574
5575 It returns 0 if it succeeds, nonzero if it doesn't. (See gnu-regex.h for
5576 the return codes and their meanings.) */
5577
5578 int
5579 regcomp (preg, pattern, cflags)
5580 regex_t *preg;
5581 const char *pattern;
5582 int cflags;
5583 {
5584 reg_errcode_t ret;
5585 reg_syntax_t syntax
5586 = (cflags & REG_EXTENDED) ?
5587 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5588
5589 /* regex_compile will allocate the space for the compiled pattern. */
5590 preg->buffer = 0;
5591 preg->allocated = 0;
5592 preg->used = 0;
5593
5594 /* Don't bother to use a fastmap when searching. This simplifies the
5595 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5596 characters after newlines into the fastmap. This way, we just try
5597 every character. */
5598 preg->fastmap = 0;
5599
5600 if (cflags & REG_ICASE)
5601 {
5602 unsigned i;
5603
5604 preg->translate
5605 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5606 * sizeof (*(RE_TRANSLATE_TYPE)0));
5607 if (preg->translate == NULL)
5608 return (int) REG_ESPACE;
5609
5610 /* Map uppercase characters to corresponding lowercase ones. */
5611 for (i = 0; i < CHAR_SET_SIZE; i++)
5612 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5613 }
5614 else
5615 preg->translate = NULL;
5616
5617 /* If REG_NEWLINE is set, newlines are treated differently. */
5618 if (cflags & REG_NEWLINE)
5619 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5620 syntax &= ~RE_DOT_NEWLINE;
5621 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5622 /* It also changes the matching behavior. */
5623 preg->newline_anchor = 1;
5624 }
5625 else
5626 preg->newline_anchor = 0;
5627
5628 preg->no_sub = !!(cflags & REG_NOSUB);
5629
5630 /* POSIX says a null character in the pattern terminates it, so we
5631 can use strlen here in compiling the pattern. */
5632 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5633
5634 /* POSIX doesn't distinguish between an unmatched open-group and an
5635 unmatched close-group: both are REG_EPAREN. */
5636 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5637
5638 return (int) ret;
5639 }
5640 #ifdef _LIBC
5641 weak_alias (__regcomp, regcomp)
5642 #endif
5643
5644
5645 /* regexec searches for a given pattern, specified by PREG, in the
5646 string STRING.
5647
5648 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5649 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5650 least NMATCH elements, and we set them to the offsets of the
5651 corresponding matched substrings.
5652
5653 EFLAGS specifies `execution flags' which affect matching: if
5654 REG_NOTBOL is set, then ^ does not match at the beginning of the
5655 string; if REG_NOTEOL is set, then $ does not match at the end.
5656
5657 We return 0 if we find a match and REG_NOMATCH if not. */
5658
5659 int
5660 regexec (preg, string, nmatch, pmatch, eflags)
5661 const regex_t *preg;
5662 const char *string;
5663 size_t nmatch;
5664 regmatch_t pmatch[];
5665 int eflags;
5666 {
5667 int ret;
5668 struct re_registers regs;
5669 regex_t private_preg;
5670 int len = strlen (string);
5671 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5672
5673 private_preg = *preg;
5674
5675 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5676 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5677
5678 /* The user has told us exactly how many registers to return
5679 information about, via `nmatch'. We have to pass that on to the
5680 matching routines. */
5681 private_preg.regs_allocated = REGS_FIXED;
5682
5683 if (want_reg_info)
5684 {
5685 regs.num_regs = nmatch;
5686 regs.start = TALLOC (nmatch, regoff_t);
5687 regs.end = TALLOC (nmatch, regoff_t);
5688 if (regs.start == NULL || regs.end == NULL)
5689 return (int) REG_NOMATCH;
5690 }
5691
5692 /* Perform the searching operation. */
5693 ret = re_search (&private_preg, string, len,
5694 /* start: */ 0, /* range: */ len,
5695 want_reg_info ? &regs : (struct re_registers *) 0);
5696
5697 /* Copy the register information to the POSIX structure. */
5698 if (want_reg_info)
5699 {
5700 if (ret >= 0)
5701 {
5702 unsigned r;
5703
5704 for (r = 0; r < nmatch; r++)
5705 {
5706 pmatch[r].rm_so = regs.start[r];
5707 pmatch[r].rm_eo = regs.end[r];
5708 }
5709 }
5710
5711 /* If we needed the temporary register info, free the space now. */
5712 free (regs.start);
5713 free (regs.end);
5714 }
5715
5716 /* We want zero return to mean success, unlike `re_search'. */
5717 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5718 }
5719 #ifdef _LIBC
5720 weak_alias (__regexec, regexec)
5721 #endif
5722
5723
5724 /* Returns a message corresponding to an error code, ERRCODE, returned
5725 from either regcomp or regexec. We don't use PREG here. */
5726
5727 size_t
5728 __regerror (errcode, preg, errbuf, errbuf_size)
5729 int errcode;
5730 const regex_t *preg;
5731 char *errbuf;
5732 size_t errbuf_size;
5733 {
5734 const char *msg;
5735 size_t msg_size;
5736
5737 if (errcode < 0
5738 || errcode >= (int) (sizeof (re_error_msgid)
5739 / sizeof (re_error_msgid[0])))
5740 /* Only error codes returned by the rest of the code should be passed
5741 to this routine. If we are given anything else, or if other regex
5742 code generates an invalid error code, then the program has a bug.
5743 Dump core so we can fix it. */
5744 abort ();
5745
5746 msg = gettext (re_error_msgid[errcode]);
5747
5748 msg_size = strlen (msg) + 1; /* Includes the null. */
5749
5750 if (errbuf_size != 0)
5751 {
5752 if (msg_size > errbuf_size)
5753 {
5754 #if defined HAVE_MEMPCPY || defined _LIBC
5755 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
5756 #else
5757 memcpy (errbuf, msg, errbuf_size - 1);
5758 errbuf[errbuf_size - 1] = 0;
5759 #endif
5760 }
5761 else
5762 memcpy (errbuf, msg, msg_size);
5763 }
5764
5765 return msg_size;
5766 }
5767 #ifdef _LIBC
5768 weak_alias (__regerror, regerror)
5769 #endif
5770
5771
5772 /* Free dynamically allocated space used by PREG. */
5773
5774 void
5775 regfree (preg)
5776 regex_t *preg;
5777 {
5778 if (preg->buffer != NULL)
5779 free (preg->buffer);
5780 preg->buffer = NULL;
5781
5782 preg->allocated = 0;
5783 preg->used = 0;
5784
5785 if (preg->fastmap != NULL)
5786 free (preg->fastmap);
5787 preg->fastmap = NULL;
5788 preg->fastmap_accurate = 0;
5789
5790 if (preg->translate != NULL)
5791 free (preg->translate);
5792 preg->translate = NULL;
5793 }
5794 #ifdef _LIBC
5795 weak_alias (__regfree, regfree)
5796 #endif
5797
5798 #endif /* not emacs */
This page took 0.141038 seconds and 5 git commands to generate.