Wed Jun 10 14:06:05 1998 Jason Molenda (crash@bugshack.cygnus.com)
[deliverable/binutils-gdb.git] / gdb / gnu-regex.c
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993, 94, 95, 96, 97, 98 Free Software Foundation, Inc.
6
7 NOTE: The canonical source of this file is maintained with the
8 GNU C Library. Bugs can be reported to bug-glibc@prep.ai.mit.edu.
9
10 This program is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 2, or (at your option) any
13 later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software Foundation,
22 Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 /* AIX requires this to be the first thing in the file. */
25 #if defined _AIX && !defined REGEX_MALLOC
26 #pragma alloca
27 #endif
28
29 #undef _GNU_SOURCE
30 #define _GNU_SOURCE
31
32 #ifdef HAVE_CONFIG_H
33 # include <config.h>
34 #endif
35
36 #ifndef PARAMS
37 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
38 # define PARAMS(args) args
39 # else
40 # define PARAMS(args) ()
41 # endif /* GCC. */
42 #endif /* Not PARAMS. */
43
44 #if defined STDC_HEADERS && !defined emacs
45 # include <stddef.h>
46 #else
47 /* We need this for `gnu-regex.h', and perhaps for the Emacs include files. */
48 # include <sys/types.h>
49 #endif
50
51 /* For platform which support the ISO C amendement 1 functionality we
52 support user defined character classes. */
53 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
54 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
55 # include <wchar.h>
56 # include <wctype.h>
57 #endif
58
59 /* This is for other GNU distributions with internationalized messages. */
60 #if HAVE_LIBINTL_H || defined _LIBC
61 # include <libintl.h>
62 #else
63 # define gettext(msgid) (msgid)
64 #endif
65
66 #ifndef gettext_noop
67 /* This define is so xgettext can find the internationalizable
68 strings. */
69 # define gettext_noop(String) String
70 #endif
71
72 /* The `emacs' switch turns on certain matching commands
73 that make sense only in Emacs. */
74 #ifdef emacs
75
76 # include "lisp.h"
77 # include "buffer.h"
78 # include "syntax.h"
79
80 #else /* not emacs */
81
82 /* If we are not linking with Emacs proper,
83 we can't use the relocating allocator
84 even if config.h says that we can. */
85 # undef REL_ALLOC
86
87 # if defined STDC_HEADERS || defined _LIBC
88 # include <stdlib.h>
89 # else
90 char *malloc ();
91 char *realloc ();
92 # endif
93
94 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
95 If nothing else has been done, use the method below. */
96 # ifdef INHIBIT_STRING_HEADER
97 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
98 # if !defined bzero && !defined bcopy
99 # undef INHIBIT_STRING_HEADER
100 # endif
101 # endif
102 # endif
103
104 /* This is the normal way of making sure we have a bcopy and a bzero.
105 This is used in most programs--a few other programs avoid this
106 by defining INHIBIT_STRING_HEADER. */
107 # ifndef INHIBIT_STRING_HEADER
108 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
109 # include <string.h>
110 # ifndef bzero
111 # ifndef _LIBC
112 # define bzero(s, n) (memset (s, '\0', n), (s))
113 # else
114 # define bzero(s, n) __bzero (s, n)
115 # endif
116 # endif
117 # else
118 # include <strings.h>
119 # ifndef memcmp
120 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
121 # endif
122 # ifndef memcpy
123 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
124 # endif
125 # endif
126 # endif
127
128 /* Define the syntax stuff for \<, \>, etc. */
129
130 /* This must be nonzero for the wordchar and notwordchar pattern
131 commands in re_match_2. */
132 # ifndef Sword
133 # define Sword 1
134 # endif
135
136 # ifdef SWITCH_ENUM_BUG
137 # define SWITCH_ENUM_CAST(x) ((int)(x))
138 # else
139 # define SWITCH_ENUM_CAST(x) (x)
140 # endif
141
142 /* How many characters in the character set. */
143 # define CHAR_SET_SIZE 256
144
145 # ifdef SYNTAX_TABLE
146
147 extern char *re_syntax_table;
148
149 # else /* not SYNTAX_TABLE */
150
151 static char re_syntax_table[CHAR_SET_SIZE];
152
153 static void
154 init_syntax_once ()
155 {
156 register int c;
157 static int done = 0;
158
159 if (done)
160 return;
161
162 bzero (re_syntax_table, sizeof re_syntax_table);
163
164 for (c = 'a'; c <= 'z'; c++)
165 re_syntax_table[c] = Sword;
166
167 for (c = 'A'; c <= 'Z'; c++)
168 re_syntax_table[c] = Sword;
169
170 for (c = '0'; c <= '9'; c++)
171 re_syntax_table[c] = Sword;
172
173 re_syntax_table['_'] = Sword;
174
175 done = 1;
176 }
177
178 # endif /* not SYNTAX_TABLE */
179
180 # define SYNTAX(c) re_syntax_table[c]
181
182 #endif /* not emacs */
183 \f
184 /* Get the interface, including the syntax bits. */
185 /* CYGNUS LOCAL: call it gnu-regex.h, not regex.h, to avoid name conflicts */
186 #include "gnu-regex.h"
187
188 /* isalpha etc. are used for the character classes. */
189 #include <ctype.h>
190
191 /* Jim Meyering writes:
192
193 "... Some ctype macros are valid only for character codes that
194 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
195 using /bin/cc or gcc but without giving an ansi option). So, all
196 ctype uses should be through macros like ISPRINT... If
197 STDC_HEADERS is defined, then autoconf has verified that the ctype
198 macros don't need to be guarded with references to isascii. ...
199 Defining isascii to 1 should let any compiler worth its salt
200 eliminate the && through constant folding."
201 Solaris defines some of these symbols so we must undefine them first. */
202
203 #undef ISASCII
204 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
205 # define ISASCII(c) 1
206 #else
207 # define ISASCII(c) isascii(c)
208 #endif
209
210 #ifdef isblank
211 # define ISBLANK(c) (ISASCII (c) && isblank (c))
212 #else
213 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
214 #endif
215 #ifdef isgraph
216 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
217 #else
218 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
219 #endif
220
221 #undef ISPRINT
222 #define ISPRINT(c) (ISASCII (c) && isprint (c))
223 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
224 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
225 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
226 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
227 #define ISLOWER(c) (ISASCII (c) && islower (c))
228 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
229 #define ISSPACE(c) (ISASCII (c) && isspace (c))
230 #define ISUPPER(c) (ISASCII (c) && isupper (c))
231 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
232
233 #ifndef NULL
234 # define NULL (void *)0
235 #endif
236
237 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
238 since ours (we hope) works properly with all combinations of
239 machines, compilers, `char' and `unsigned char' argument types.
240 (Per Bothner suggested the basic approach.) */
241 #undef SIGN_EXTEND_CHAR
242 #if __STDC__
243 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
244 #else /* not __STDC__ */
245 /* As in Harbison and Steele. */
246 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
247 #endif
248 \f
249 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
250 use `alloca' instead of `malloc'. This is because using malloc in
251 re_search* or re_match* could cause memory leaks when C-g is used in
252 Emacs; also, malloc is slower and causes storage fragmentation. On
253 the other hand, malloc is more portable, and easier to debug.
254
255 Because we sometimes use alloca, some routines have to be macros,
256 not functions -- `alloca'-allocated space disappears at the end of the
257 function it is called in. */
258
259 #ifdef REGEX_MALLOC
260
261 # define REGEX_ALLOCATE malloc
262 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
263 # define REGEX_FREE free
264
265 #else /* not REGEX_MALLOC */
266
267 /* Emacs already defines alloca, sometimes. */
268 # ifndef alloca
269
270 /* Make alloca work the best possible way. */
271 # ifdef __GNUC__
272 # define alloca __builtin_alloca
273 # else /* not __GNUC__ */
274 # if HAVE_ALLOCA_H
275 # include <alloca.h>
276 # endif /* HAVE_ALLOCA_H */
277 # endif /* not __GNUC__ */
278
279 # endif /* not alloca */
280
281 # define REGEX_ALLOCATE alloca
282
283 /* Assumes a `char *destination' variable. */
284 # define REGEX_REALLOCATE(source, osize, nsize) \
285 (destination = (char *) alloca (nsize), \
286 memcpy (destination, source, osize))
287
288 /* No need to do anything to free, after alloca. */
289 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
290
291 #endif /* not REGEX_MALLOC */
292
293 /* Define how to allocate the failure stack. */
294
295 #if defined REL_ALLOC && defined REGEX_MALLOC
296
297 # define REGEX_ALLOCATE_STACK(size) \
298 r_alloc (&failure_stack_ptr, (size))
299 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
300 r_re_alloc (&failure_stack_ptr, (nsize))
301 # define REGEX_FREE_STACK(ptr) \
302 r_alloc_free (&failure_stack_ptr)
303
304 #else /* not using relocating allocator */
305
306 # ifdef REGEX_MALLOC
307
308 # define REGEX_ALLOCATE_STACK malloc
309 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
310 # define REGEX_FREE_STACK free
311
312 # else /* not REGEX_MALLOC */
313
314 # define REGEX_ALLOCATE_STACK alloca
315
316 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
317 REGEX_REALLOCATE (source, osize, nsize)
318 /* No need to explicitly free anything. */
319 # define REGEX_FREE_STACK(arg)
320
321 # endif /* not REGEX_MALLOC */
322 #endif /* not using relocating allocator */
323
324
325 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
326 `string1' or just past its end. This works if PTR is NULL, which is
327 a good thing. */
328 #define FIRST_STRING_P(ptr) \
329 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
330
331 /* (Re)Allocate N items of type T using malloc, or fail. */
332 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
333 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
334 #define RETALLOC_IF(addr, n, t) \
335 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
336 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
337
338 #define BYTEWIDTH 8 /* In bits. */
339
340 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
341
342 #undef MAX
343 #undef MIN
344 #define MAX(a, b) ((a) > (b) ? (a) : (b))
345 #define MIN(a, b) ((a) < (b) ? (a) : (b))
346
347 typedef char boolean;
348 #define false 0
349 #define true 1
350
351 static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
352 const char *string1, int size1,
353 const char *string2, int size2,
354 int pos,
355 struct re_registers *regs,
356 int stop));
357 \f
358 /* These are the command codes that appear in compiled regular
359 expressions. Some opcodes are followed by argument bytes. A
360 command code can specify any interpretation whatsoever for its
361 arguments. Zero bytes may appear in the compiled regular expression. */
362
363 typedef enum
364 {
365 no_op = 0,
366
367 /* Succeed right away--no more backtracking. */
368 succeed,
369
370 /* Followed by one byte giving n, then by n literal bytes. */
371 exactn,
372
373 /* Matches any (more or less) character. */
374 anychar,
375
376 /* Matches any one char belonging to specified set. First
377 following byte is number of bitmap bytes. Then come bytes
378 for a bitmap saying which chars are in. Bits in each byte
379 are ordered low-bit-first. A character is in the set if its
380 bit is 1. A character too large to have a bit in the map is
381 automatically not in the set. */
382 charset,
383
384 /* Same parameters as charset, but match any character that is
385 not one of those specified. */
386 charset_not,
387
388 /* Start remembering the text that is matched, for storing in a
389 register. Followed by one byte with the register number, in
390 the range 0 to one less than the pattern buffer's re_nsub
391 field. Then followed by one byte with the number of groups
392 inner to this one. (This last has to be part of the
393 start_memory only because we need it in the on_failure_jump
394 of re_match_2.) */
395 start_memory,
396
397 /* Stop remembering the text that is matched and store it in a
398 memory register. Followed by one byte with the register
399 number, in the range 0 to one less than `re_nsub' in the
400 pattern buffer, and one byte with the number of inner groups,
401 just like `start_memory'. (We need the number of inner
402 groups here because we don't have any easy way of finding the
403 corresponding start_memory when we're at a stop_memory.) */
404 stop_memory,
405
406 /* Match a duplicate of something remembered. Followed by one
407 byte containing the register number. */
408 duplicate,
409
410 /* Fail unless at beginning of line. */
411 begline,
412
413 /* Fail unless at end of line. */
414 endline,
415
416 /* Succeeds if at beginning of buffer (if emacs) or at beginning
417 of string to be matched (if not). */
418 begbuf,
419
420 /* Analogously, for end of buffer/string. */
421 endbuf,
422
423 /* Followed by two byte relative address to which to jump. */
424 jump,
425
426 /* Same as jump, but marks the end of an alternative. */
427 jump_past_alt,
428
429 /* Followed by two-byte relative address of place to resume at
430 in case of failure. */
431 on_failure_jump,
432
433 /* Like on_failure_jump, but pushes a placeholder instead of the
434 current string position when executed. */
435 on_failure_keep_string_jump,
436
437 /* Throw away latest failure point and then jump to following
438 two-byte relative address. */
439 pop_failure_jump,
440
441 /* Change to pop_failure_jump if know won't have to backtrack to
442 match; otherwise change to jump. This is used to jump
443 back to the beginning of a repeat. If what follows this jump
444 clearly won't match what the repeat does, such that we can be
445 sure that there is no use backtracking out of repetitions
446 already matched, then we change it to a pop_failure_jump.
447 Followed by two-byte address. */
448 maybe_pop_jump,
449
450 /* Jump to following two-byte address, and push a dummy failure
451 point. This failure point will be thrown away if an attempt
452 is made to use it for a failure. A `+' construct makes this
453 before the first repeat. Also used as an intermediary kind
454 of jump when compiling an alternative. */
455 dummy_failure_jump,
456
457 /* Push a dummy failure point and continue. Used at the end of
458 alternatives. */
459 push_dummy_failure,
460
461 /* Followed by two-byte relative address and two-byte number n.
462 After matching N times, jump to the address upon failure. */
463 succeed_n,
464
465 /* Followed by two-byte relative address, and two-byte number n.
466 Jump to the address N times, then fail. */
467 jump_n,
468
469 /* Set the following two-byte relative address to the
470 subsequent two-byte number. The address *includes* the two
471 bytes of number. */
472 set_number_at,
473
474 wordchar, /* Matches any word-constituent character. */
475 notwordchar, /* Matches any char that is not a word-constituent. */
476
477 wordbeg, /* Succeeds if at word beginning. */
478 wordend, /* Succeeds if at word end. */
479
480 wordbound, /* Succeeds if at a word boundary. */
481 notwordbound /* Succeeds if not at a word boundary. */
482
483 #ifdef emacs
484 ,before_dot, /* Succeeds if before point. */
485 at_dot, /* Succeeds if at point. */
486 after_dot, /* Succeeds if after point. */
487
488 /* Matches any character whose syntax is specified. Followed by
489 a byte which contains a syntax code, e.g., Sword. */
490 syntaxspec,
491
492 /* Matches any character whose syntax is not that specified. */
493 notsyntaxspec
494 #endif /* emacs */
495 } re_opcode_t;
496 \f
497 /* Common operations on the compiled pattern. */
498
499 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
500
501 #define STORE_NUMBER(destination, number) \
502 do { \
503 (destination)[0] = (number) & 0377; \
504 (destination)[1] = (number) >> 8; \
505 } while (0)
506
507 /* Same as STORE_NUMBER, except increment DESTINATION to
508 the byte after where the number is stored. Therefore, DESTINATION
509 must be an lvalue. */
510
511 #define STORE_NUMBER_AND_INCR(destination, number) \
512 do { \
513 STORE_NUMBER (destination, number); \
514 (destination) += 2; \
515 } while (0)
516
517 /* Put into DESTINATION a number stored in two contiguous bytes starting
518 at SOURCE. */
519
520 #define EXTRACT_NUMBER(destination, source) \
521 do { \
522 (destination) = *(source) & 0377; \
523 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
524 } while (0)
525
526 #ifdef DEBUG
527 static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
528 static void
529 extract_number (dest, source)
530 int *dest;
531 unsigned char *source;
532 {
533 int temp = SIGN_EXTEND_CHAR (*(source + 1));
534 *dest = *source & 0377;
535 *dest += temp << 8;
536 }
537
538 # ifndef EXTRACT_MACROS /* To debug the macros. */
539 # undef EXTRACT_NUMBER
540 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
541 # endif /* not EXTRACT_MACROS */
542
543 #endif /* DEBUG */
544
545 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
546 SOURCE must be an lvalue. */
547
548 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
549 do { \
550 EXTRACT_NUMBER (destination, source); \
551 (source) += 2; \
552 } while (0)
553
554 #ifdef DEBUG
555 static void extract_number_and_incr _RE_ARGS ((int *destination,
556 unsigned char **source));
557 static void
558 extract_number_and_incr (destination, source)
559 int *destination;
560 unsigned char **source;
561 {
562 extract_number (destination, *source);
563 *source += 2;
564 }
565
566 # ifndef EXTRACT_MACROS
567 # undef EXTRACT_NUMBER_AND_INCR
568 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
569 extract_number_and_incr (&dest, &src)
570 # endif /* not EXTRACT_MACROS */
571
572 #endif /* DEBUG */
573 \f
574 /* If DEBUG is defined, Regex prints many voluminous messages about what
575 it is doing (if the variable `debug' is nonzero). If linked with the
576 main program in `iregex.c', you can enter patterns and strings
577 interactively. And if linked with the main program in `main.c' and
578 the other test files, you can run the already-written tests. */
579
580 #ifdef DEBUG
581
582 /* We use standard I/O for debugging. */
583 # include <stdio.h>
584
585 /* It is useful to test things that ``must'' be true when debugging. */
586 # include <assert.h>
587
588 static int debug = 0;
589
590 # define DEBUG_STATEMENT(e) e
591 # define DEBUG_PRINT1(x) if (debug) printf (x)
592 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
593 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
594 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
595 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
596 if (debug) print_partial_compiled_pattern (s, e)
597 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
598 if (debug) print_double_string (w, s1, sz1, s2, sz2)
599
600
601 /* Print the fastmap in human-readable form. */
602
603 void
604 print_fastmap (fastmap)
605 char *fastmap;
606 {
607 unsigned was_a_range = 0;
608 unsigned i = 0;
609
610 while (i < (1 << BYTEWIDTH))
611 {
612 if (fastmap[i++])
613 {
614 was_a_range = 0;
615 putchar (i - 1);
616 while (i < (1 << BYTEWIDTH) && fastmap[i])
617 {
618 was_a_range = 1;
619 i++;
620 }
621 if (was_a_range)
622 {
623 printf ("-");
624 putchar (i - 1);
625 }
626 }
627 }
628 putchar ('\n');
629 }
630
631
632 /* Print a compiled pattern string in human-readable form, starting at
633 the START pointer into it and ending just before the pointer END. */
634
635 void
636 print_partial_compiled_pattern (start, end)
637 unsigned char *start;
638 unsigned char *end;
639 {
640 int mcnt, mcnt2;
641 unsigned char *p1;
642 unsigned char *p = start;
643 unsigned char *pend = end;
644
645 if (start == NULL)
646 {
647 printf ("(null)\n");
648 return;
649 }
650
651 /* Loop over pattern commands. */
652 while (p < pend)
653 {
654 printf ("%d:\t", p - start);
655
656 switch ((re_opcode_t) *p++)
657 {
658 case no_op:
659 printf ("/no_op");
660 break;
661
662 case exactn:
663 mcnt = *p++;
664 printf ("/exactn/%d", mcnt);
665 do
666 {
667 putchar ('/');
668 putchar (*p++);
669 }
670 while (--mcnt);
671 break;
672
673 case start_memory:
674 mcnt = *p++;
675 printf ("/start_memory/%d/%d", mcnt, *p++);
676 break;
677
678 case stop_memory:
679 mcnt = *p++;
680 printf ("/stop_memory/%d/%d", mcnt, *p++);
681 break;
682
683 case duplicate:
684 printf ("/duplicate/%d", *p++);
685 break;
686
687 case anychar:
688 printf ("/anychar");
689 break;
690
691 case charset:
692 case charset_not:
693 {
694 register int c, last = -100;
695 register int in_range = 0;
696
697 printf ("/charset [%s",
698 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
699
700 assert (p + *p < pend);
701
702 for (c = 0; c < 256; c++)
703 if (c / 8 < *p
704 && (p[1 + (c/8)] & (1 << (c % 8))))
705 {
706 /* Are we starting a range? */
707 if (last + 1 == c && ! in_range)
708 {
709 putchar ('-');
710 in_range = 1;
711 }
712 /* Have we broken a range? */
713 else if (last + 1 != c && in_range)
714 {
715 putchar (last);
716 in_range = 0;
717 }
718
719 if (! in_range)
720 putchar (c);
721
722 last = c;
723 }
724
725 if (in_range)
726 putchar (last);
727
728 putchar (']');
729
730 p += 1 + *p;
731 }
732 break;
733
734 case begline:
735 printf ("/begline");
736 break;
737
738 case endline:
739 printf ("/endline");
740 break;
741
742 case on_failure_jump:
743 extract_number_and_incr (&mcnt, &p);
744 printf ("/on_failure_jump to %d", p + mcnt - start);
745 break;
746
747 case on_failure_keep_string_jump:
748 extract_number_and_incr (&mcnt, &p);
749 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
750 break;
751
752 case dummy_failure_jump:
753 extract_number_and_incr (&mcnt, &p);
754 printf ("/dummy_failure_jump to %d", p + mcnt - start);
755 break;
756
757 case push_dummy_failure:
758 printf ("/push_dummy_failure");
759 break;
760
761 case maybe_pop_jump:
762 extract_number_and_incr (&mcnt, &p);
763 printf ("/maybe_pop_jump to %d", p + mcnt - start);
764 break;
765
766 case pop_failure_jump:
767 extract_number_and_incr (&mcnt, &p);
768 printf ("/pop_failure_jump to %d", p + mcnt - start);
769 break;
770
771 case jump_past_alt:
772 extract_number_and_incr (&mcnt, &p);
773 printf ("/jump_past_alt to %d", p + mcnt - start);
774 break;
775
776 case jump:
777 extract_number_and_incr (&mcnt, &p);
778 printf ("/jump to %d", p + mcnt - start);
779 break;
780
781 case succeed_n:
782 extract_number_and_incr (&mcnt, &p);
783 p1 = p + mcnt;
784 extract_number_and_incr (&mcnt2, &p);
785 printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
786 break;
787
788 case jump_n:
789 extract_number_and_incr (&mcnt, &p);
790 p1 = p + mcnt;
791 extract_number_and_incr (&mcnt2, &p);
792 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
793 break;
794
795 case set_number_at:
796 extract_number_and_incr (&mcnt, &p);
797 p1 = p + mcnt;
798 extract_number_and_incr (&mcnt2, &p);
799 printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
800 break;
801
802 case wordbound:
803 printf ("/wordbound");
804 break;
805
806 case notwordbound:
807 printf ("/notwordbound");
808 break;
809
810 case wordbeg:
811 printf ("/wordbeg");
812 break;
813
814 case wordend:
815 printf ("/wordend");
816
817 # ifdef emacs
818 case before_dot:
819 printf ("/before_dot");
820 break;
821
822 case at_dot:
823 printf ("/at_dot");
824 break;
825
826 case after_dot:
827 printf ("/after_dot");
828 break;
829
830 case syntaxspec:
831 printf ("/syntaxspec");
832 mcnt = *p++;
833 printf ("/%d", mcnt);
834 break;
835
836 case notsyntaxspec:
837 printf ("/notsyntaxspec");
838 mcnt = *p++;
839 printf ("/%d", mcnt);
840 break;
841 # endif /* emacs */
842
843 case wordchar:
844 printf ("/wordchar");
845 break;
846
847 case notwordchar:
848 printf ("/notwordchar");
849 break;
850
851 case begbuf:
852 printf ("/begbuf");
853 break;
854
855 case endbuf:
856 printf ("/endbuf");
857 break;
858
859 default:
860 printf ("?%d", *(p-1));
861 }
862
863 putchar ('\n');
864 }
865
866 printf ("%d:\tend of pattern.\n", p - start);
867 }
868
869
870 void
871 print_compiled_pattern (bufp)
872 struct re_pattern_buffer *bufp;
873 {
874 unsigned char *buffer = bufp->buffer;
875
876 print_partial_compiled_pattern (buffer, buffer + bufp->used);
877 printf ("%ld bytes used/%ld bytes allocated.\n",
878 bufp->used, bufp->allocated);
879
880 if (bufp->fastmap_accurate && bufp->fastmap)
881 {
882 printf ("fastmap: ");
883 print_fastmap (bufp->fastmap);
884 }
885
886 printf ("re_nsub: %d\t", bufp->re_nsub);
887 printf ("regs_alloc: %d\t", bufp->regs_allocated);
888 printf ("can_be_null: %d\t", bufp->can_be_null);
889 printf ("newline_anchor: %d\n", bufp->newline_anchor);
890 printf ("no_sub: %d\t", bufp->no_sub);
891 printf ("not_bol: %d\t", bufp->not_bol);
892 printf ("not_eol: %d\t", bufp->not_eol);
893 printf ("syntax: %lx\n", bufp->syntax);
894 /* Perhaps we should print the translate table? */
895 }
896
897
898 void
899 print_double_string (where, string1, size1, string2, size2)
900 const char *where;
901 const char *string1;
902 const char *string2;
903 int size1;
904 int size2;
905 {
906 int this_char;
907
908 if (where == NULL)
909 printf ("(null)");
910 else
911 {
912 if (FIRST_STRING_P (where))
913 {
914 for (this_char = where - string1; this_char < size1; this_char++)
915 putchar (string1[this_char]);
916
917 where = string2;
918 }
919
920 for (this_char = where - string2; this_char < size2; this_char++)
921 putchar (string2[this_char]);
922 }
923 }
924
925 void
926 printchar (c)
927 int c;
928 {
929 putc (c, stderr);
930 }
931
932 #else /* not DEBUG */
933
934 # undef assert
935 # define assert(e)
936
937 # define DEBUG_STATEMENT(e)
938 # define DEBUG_PRINT1(x)
939 # define DEBUG_PRINT2(x1, x2)
940 # define DEBUG_PRINT3(x1, x2, x3)
941 # define DEBUG_PRINT4(x1, x2, x3, x4)
942 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
943 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
944
945 #endif /* not DEBUG */
946 \f
947 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
948 also be assigned to arbitrarily: each pattern buffer stores its own
949 syntax, so it can be changed between regex compilations. */
950 /* This has no initializer because initialized variables in Emacs
951 become read-only after dumping. */
952 reg_syntax_t re_syntax_options;
953
954
955 /* Specify the precise syntax of regexps for compilation. This provides
956 for compatibility for various utilities which historically have
957 different, incompatible syntaxes.
958
959 The argument SYNTAX is a bit mask comprised of the various bits
960 defined in gnu-regex.h. We return the old syntax. */
961
962 reg_syntax_t
963 re_set_syntax (syntax)
964 reg_syntax_t syntax;
965 {
966 reg_syntax_t ret = re_syntax_options;
967
968 re_syntax_options = syntax;
969 #ifdef DEBUG
970 if (syntax & RE_DEBUG)
971 debug = 1;
972 else if (debug) /* was on but now is not */
973 debug = 0;
974 #endif /* DEBUG */
975 return ret;
976 }
977 #ifdef _LIBC
978 weak_alias (__re_set_syntax, re_set_syntax)
979 #endif
980 \f
981 /* This table gives an error message for each of the error codes listed
982 in gnu-regex.h. Obviously the order here has to be same as there.
983 POSIX doesn't require that we do anything for REG_NOERROR,
984 but why not be nice? */
985
986 static const char *re_error_msgid[] =
987 {
988 gettext_noop ("Success"), /* REG_NOERROR */
989 gettext_noop ("No match"), /* REG_NOMATCH */
990 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
991 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
992 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
993 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
994 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
995 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
996 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
997 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
998 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
999 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1000 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1001 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1002 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1003 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1004 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1005 };
1006 \f
1007 /* Avoiding alloca during matching, to placate r_alloc. */
1008
1009 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1010 searching and matching functions should not call alloca. On some
1011 systems, alloca is implemented in terms of malloc, and if we're
1012 using the relocating allocator routines, then malloc could cause a
1013 relocation, which might (if the strings being searched are in the
1014 ralloc heap) shift the data out from underneath the regexp
1015 routines.
1016
1017 Here's another reason to avoid allocation: Emacs
1018 processes input from X in a signal handler; processing X input may
1019 call malloc; if input arrives while a matching routine is calling
1020 malloc, then we're scrod. But Emacs can't just block input while
1021 calling matching routines; then we don't notice interrupts when
1022 they come in. So, Emacs blocks input around all regexp calls
1023 except the matching calls, which it leaves unprotected, in the
1024 faith that they will not malloc. */
1025
1026 /* Normally, this is fine. */
1027 #define MATCH_MAY_ALLOCATE
1028
1029 /* When using GNU C, we are not REALLY using the C alloca, no matter
1030 what config.h may say. So don't take precautions for it. */
1031 #ifdef __GNUC__
1032 # undef C_ALLOCA
1033 #endif
1034
1035 /* The match routines may not allocate if (1) they would do it with malloc
1036 and (2) it's not safe for them to use malloc.
1037 Note that if REL_ALLOC is defined, matching would not use malloc for the
1038 failure stack, but we would still use it for the register vectors;
1039 so REL_ALLOC should not affect this. */
1040 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1041 # undef MATCH_MAY_ALLOCATE
1042 #endif
1043
1044 \f
1045 /* Failure stack declarations and macros; both re_compile_fastmap and
1046 re_match_2 use a failure stack. These have to be macros because of
1047 REGEX_ALLOCATE_STACK. */
1048
1049
1050 /* Number of failure points for which to initially allocate space
1051 when matching. If this number is exceeded, we allocate more
1052 space, so it is not a hard limit. */
1053 #ifndef INIT_FAILURE_ALLOC
1054 # define INIT_FAILURE_ALLOC 5
1055 #endif
1056
1057 /* Roughly the maximum number of failure points on the stack. Would be
1058 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1059 This is a variable only so users of regex can assign to it; we never
1060 change it ourselves. */
1061
1062 #ifdef INT_IS_16BIT
1063
1064 # if defined MATCH_MAY_ALLOCATE
1065 /* 4400 was enough to cause a crash on Alpha OSF/1,
1066 whose default stack limit is 2mb. */
1067 long int re_max_failures = 4000;
1068 # else
1069 long int re_max_failures = 2000;
1070 # endif
1071
1072 union fail_stack_elt
1073 {
1074 unsigned char *pointer;
1075 long int integer;
1076 };
1077
1078 typedef union fail_stack_elt fail_stack_elt_t;
1079
1080 typedef struct
1081 {
1082 fail_stack_elt_t *stack;
1083 unsigned long int size;
1084 unsigned long int avail; /* Offset of next open position. */
1085 } fail_stack_type;
1086
1087 #else /* not INT_IS_16BIT */
1088
1089 # if defined MATCH_MAY_ALLOCATE
1090 /* 4400 was enough to cause a crash on Alpha OSF/1,
1091 whose default stack limit is 2mb. */
1092 int re_max_failures = 20000;
1093 # else
1094 int re_max_failures = 2000;
1095 # endif
1096
1097 union fail_stack_elt
1098 {
1099 unsigned char *pointer;
1100 int integer;
1101 };
1102
1103 typedef union fail_stack_elt fail_stack_elt_t;
1104
1105 typedef struct
1106 {
1107 fail_stack_elt_t *stack;
1108 unsigned size;
1109 unsigned avail; /* Offset of next open position. */
1110 } fail_stack_type;
1111
1112 #endif /* INT_IS_16BIT */
1113
1114 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1115 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1116 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1117
1118
1119 /* Define macros to initialize and free the failure stack.
1120 Do `return -2' if the alloc fails. */
1121
1122 #ifdef MATCH_MAY_ALLOCATE
1123 # define INIT_FAIL_STACK() \
1124 do { \
1125 fail_stack.stack = (fail_stack_elt_t *) \
1126 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1127 \
1128 if (fail_stack.stack == NULL) \
1129 return -2; \
1130 \
1131 fail_stack.size = INIT_FAILURE_ALLOC; \
1132 fail_stack.avail = 0; \
1133 } while (0)
1134
1135 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1136 #else
1137 # define INIT_FAIL_STACK() \
1138 do { \
1139 fail_stack.avail = 0; \
1140 } while (0)
1141
1142 # define RESET_FAIL_STACK()
1143 #endif
1144
1145
1146 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1147
1148 Return 1 if succeeds, and 0 if either ran out of memory
1149 allocating space for it or it was already too large.
1150
1151 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1152
1153 #define DOUBLE_FAIL_STACK(fail_stack) \
1154 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1155 ? 0 \
1156 : ((fail_stack).stack = (fail_stack_elt_t *) \
1157 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1158 (fail_stack).size * sizeof (fail_stack_elt_t), \
1159 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1160 \
1161 (fail_stack).stack == NULL \
1162 ? 0 \
1163 : ((fail_stack).size <<= 1, \
1164 1)))
1165
1166
1167 /* Push pointer POINTER on FAIL_STACK.
1168 Return 1 if was able to do so and 0 if ran out of memory allocating
1169 space to do so. */
1170 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1171 ((FAIL_STACK_FULL () \
1172 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1173 ? 0 \
1174 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1175 1))
1176
1177 /* Push a pointer value onto the failure stack.
1178 Assumes the variable `fail_stack'. Probably should only
1179 be called from within `PUSH_FAILURE_POINT'. */
1180 #define PUSH_FAILURE_POINTER(item) \
1181 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1182
1183 /* This pushes an integer-valued item onto the failure stack.
1184 Assumes the variable `fail_stack'. Probably should only
1185 be called from within `PUSH_FAILURE_POINT'. */
1186 #define PUSH_FAILURE_INT(item) \
1187 fail_stack.stack[fail_stack.avail++].integer = (item)
1188
1189 /* Push a fail_stack_elt_t value onto the failure stack.
1190 Assumes the variable `fail_stack'. Probably should only
1191 be called from within `PUSH_FAILURE_POINT'. */
1192 #define PUSH_FAILURE_ELT(item) \
1193 fail_stack.stack[fail_stack.avail++] = (item)
1194
1195 /* These three POP... operations complement the three PUSH... operations.
1196 All assume that `fail_stack' is nonempty. */
1197 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1198 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1199 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1200
1201 /* Used to omit pushing failure point id's when we're not debugging. */
1202 #ifdef DEBUG
1203 # define DEBUG_PUSH PUSH_FAILURE_INT
1204 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1205 #else
1206 # define DEBUG_PUSH(item)
1207 # define DEBUG_POP(item_addr)
1208 #endif
1209
1210
1211 /* Push the information about the state we will need
1212 if we ever fail back to it.
1213
1214 Requires variables fail_stack, regstart, regend, reg_info, and
1215 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1216 be declared.
1217
1218 Does `return FAILURE_CODE' if runs out of memory. */
1219
1220 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1221 do { \
1222 char *destination; \
1223 /* Must be int, so when we don't save any registers, the arithmetic \
1224 of 0 + -1 isn't done as unsigned. */ \
1225 /* Can't be int, since there is not a shred of a guarantee that int \
1226 is wide enough to hold a value of something to which pointer can \
1227 be assigned */ \
1228 active_reg_t this_reg; \
1229 \
1230 DEBUG_STATEMENT (failure_id++); \
1231 DEBUG_STATEMENT (nfailure_points_pushed++); \
1232 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1233 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1234 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1235 \
1236 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1237 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1238 \
1239 /* Ensure we have enough space allocated for what we will push. */ \
1240 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1241 { \
1242 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1243 return failure_code; \
1244 \
1245 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1246 (fail_stack).size); \
1247 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1248 } \
1249 \
1250 /* Push the info, starting with the registers. */ \
1251 DEBUG_PRINT1 ("\n"); \
1252 \
1253 if (1) \
1254 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1255 this_reg++) \
1256 { \
1257 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1258 DEBUG_STATEMENT (num_regs_pushed++); \
1259 \
1260 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1261 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1262 \
1263 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1264 PUSH_FAILURE_POINTER (regend[this_reg]); \
1265 \
1266 DEBUG_PRINT2 (" info: %p\n ", \
1267 reg_info[this_reg].word.pointer); \
1268 DEBUG_PRINT2 (" match_null=%d", \
1269 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1270 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1271 DEBUG_PRINT2 (" matched_something=%d", \
1272 MATCHED_SOMETHING (reg_info[this_reg])); \
1273 DEBUG_PRINT2 (" ever_matched=%d", \
1274 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1275 DEBUG_PRINT1 ("\n"); \
1276 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1277 } \
1278 \
1279 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1280 PUSH_FAILURE_INT (lowest_active_reg); \
1281 \
1282 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1283 PUSH_FAILURE_INT (highest_active_reg); \
1284 \
1285 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1286 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1287 PUSH_FAILURE_POINTER (pattern_place); \
1288 \
1289 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1290 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1291 size2); \
1292 DEBUG_PRINT1 ("'\n"); \
1293 PUSH_FAILURE_POINTER (string_place); \
1294 \
1295 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1296 DEBUG_PUSH (failure_id); \
1297 } while (0)
1298
1299 /* This is the number of items that are pushed and popped on the stack
1300 for each register. */
1301 #define NUM_REG_ITEMS 3
1302
1303 /* Individual items aside from the registers. */
1304 #ifdef DEBUG
1305 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1306 #else
1307 # define NUM_NONREG_ITEMS 4
1308 #endif
1309
1310 /* We push at most this many items on the stack. */
1311 /* We used to use (num_regs - 1), which is the number of registers
1312 this regexp will save; but that was changed to 5
1313 to avoid stack overflow for a regexp with lots of parens. */
1314 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1315
1316 /* We actually push this many items. */
1317 #define NUM_FAILURE_ITEMS \
1318 (((0 \
1319 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1320 * NUM_REG_ITEMS) \
1321 + NUM_NONREG_ITEMS)
1322
1323 /* How many items can still be added to the stack without overflowing it. */
1324 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1325
1326
1327 /* Pops what PUSH_FAIL_STACK pushes.
1328
1329 We restore into the parameters, all of which should be lvalues:
1330 STR -- the saved data position.
1331 PAT -- the saved pattern position.
1332 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1333 REGSTART, REGEND -- arrays of string positions.
1334 REG_INFO -- array of information about each subexpression.
1335
1336 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1337 `pend', `string1', `size1', `string2', and `size2'. */
1338
1339 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1340 { \
1341 DEBUG_STATEMENT (unsigned failure_id;) \
1342 active_reg_t this_reg; \
1343 const unsigned char *string_temp; \
1344 \
1345 assert (!FAIL_STACK_EMPTY ()); \
1346 \
1347 /* Remove failure points and point to how many regs pushed. */ \
1348 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1349 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1350 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1351 \
1352 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1353 \
1354 DEBUG_POP (&failure_id); \
1355 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1356 \
1357 /* If the saved string location is NULL, it came from an \
1358 on_failure_keep_string_jump opcode, and we want to throw away the \
1359 saved NULL, thus retaining our current position in the string. */ \
1360 string_temp = POP_FAILURE_POINTER (); \
1361 if (string_temp != NULL) \
1362 str = (const char *) string_temp; \
1363 \
1364 DEBUG_PRINT2 (" Popping string %p: `", str); \
1365 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1366 DEBUG_PRINT1 ("'\n"); \
1367 \
1368 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1369 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1370 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1371 \
1372 /* Restore register info. */ \
1373 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1374 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1375 \
1376 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1377 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1378 \
1379 if (1) \
1380 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1381 { \
1382 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1383 \
1384 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1385 DEBUG_PRINT2 (" info: %p\n", \
1386 reg_info[this_reg].word.pointer); \
1387 \
1388 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1389 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1390 \
1391 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1392 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1393 } \
1394 else \
1395 { \
1396 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1397 { \
1398 reg_info[this_reg].word.integer = 0; \
1399 regend[this_reg] = 0; \
1400 regstart[this_reg] = 0; \
1401 } \
1402 highest_active_reg = high_reg; \
1403 } \
1404 \
1405 set_regs_matched_done = 0; \
1406 DEBUG_STATEMENT (nfailure_points_popped++); \
1407 } /* POP_FAILURE_POINT */
1408
1409
1410 \f
1411 /* Structure for per-register (a.k.a. per-group) information.
1412 Other register information, such as the
1413 starting and ending positions (which are addresses), and the list of
1414 inner groups (which is a bits list) are maintained in separate
1415 variables.
1416
1417 We are making a (strictly speaking) nonportable assumption here: that
1418 the compiler will pack our bit fields into something that fits into
1419 the type of `word', i.e., is something that fits into one item on the
1420 failure stack. */
1421
1422
1423 /* Declarations and macros for re_match_2. */
1424
1425 typedef union
1426 {
1427 fail_stack_elt_t word;
1428 struct
1429 {
1430 /* This field is one if this group can match the empty string,
1431 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1432 #define MATCH_NULL_UNSET_VALUE 3
1433 unsigned match_null_string_p : 2;
1434 unsigned is_active : 1;
1435 unsigned matched_something : 1;
1436 unsigned ever_matched_something : 1;
1437 } bits;
1438 } register_info_type;
1439
1440 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1441 #define IS_ACTIVE(R) ((R).bits.is_active)
1442 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1443 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1444
1445
1446 /* Call this when have matched a real character; it sets `matched' flags
1447 for the subexpressions which we are currently inside. Also records
1448 that those subexprs have matched. */
1449 #define SET_REGS_MATCHED() \
1450 do \
1451 { \
1452 if (!set_regs_matched_done) \
1453 { \
1454 active_reg_t r; \
1455 set_regs_matched_done = 1; \
1456 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1457 { \
1458 MATCHED_SOMETHING (reg_info[r]) \
1459 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1460 = 1; \
1461 } \
1462 } \
1463 } \
1464 while (0)
1465
1466 /* Registers are set to a sentinel when they haven't yet matched. */
1467 static char reg_unset_dummy;
1468 #define REG_UNSET_VALUE (&reg_unset_dummy)
1469 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1470 \f
1471 /* Subroutine declarations and macros for regex_compile. */
1472
1473 static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1474 reg_syntax_t syntax,
1475 struct re_pattern_buffer *bufp));
1476 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1477 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1478 int arg1, int arg2));
1479 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1480 int arg, unsigned char *end));
1481 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1482 int arg1, int arg2, unsigned char *end));
1483 static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1484 reg_syntax_t syntax));
1485 static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1486 reg_syntax_t syntax));
1487 static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1488 const char *pend,
1489 char *translate,
1490 reg_syntax_t syntax,
1491 unsigned char *b));
1492
1493 /* Fetch the next character in the uncompiled pattern---translating it
1494 if necessary. Also cast from a signed character in the constant
1495 string passed to us by the user to an unsigned char that we can use
1496 as an array index (in, e.g., `translate'). */
1497 #ifndef PATFETCH
1498 # define PATFETCH(c) \
1499 do {if (p == pend) return REG_EEND; \
1500 c = (unsigned char) *p++; \
1501 if (translate) c = (unsigned char) translate[c]; \
1502 } while (0)
1503 #endif
1504
1505 /* Fetch the next character in the uncompiled pattern, with no
1506 translation. */
1507 #define PATFETCH_RAW(c) \
1508 do {if (p == pend) return REG_EEND; \
1509 c = (unsigned char) *p++; \
1510 } while (0)
1511
1512 /* Go backwards one character in the pattern. */
1513 #define PATUNFETCH p--
1514
1515
1516 /* If `translate' is non-null, return translate[D], else just D. We
1517 cast the subscript to translate because some data is declared as
1518 `char *', to avoid warnings when a string constant is passed. But
1519 when we use a character as a subscript we must make it unsigned. */
1520 #ifndef TRANSLATE
1521 # define TRANSLATE(d) \
1522 (translate ? (char) translate[(unsigned char) (d)] : (d))
1523 #endif
1524
1525
1526 /* Macros for outputting the compiled pattern into `buffer'. */
1527
1528 /* If the buffer isn't allocated when it comes in, use this. */
1529 #define INIT_BUF_SIZE 32
1530
1531 /* Make sure we have at least N more bytes of space in buffer. */
1532 #define GET_BUFFER_SPACE(n) \
1533 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1534 EXTEND_BUFFER ()
1535
1536 /* Make sure we have one more byte of buffer space and then add C to it. */
1537 #define BUF_PUSH(c) \
1538 do { \
1539 GET_BUFFER_SPACE (1); \
1540 *b++ = (unsigned char) (c); \
1541 } while (0)
1542
1543
1544 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1545 #define BUF_PUSH_2(c1, c2) \
1546 do { \
1547 GET_BUFFER_SPACE (2); \
1548 *b++ = (unsigned char) (c1); \
1549 *b++ = (unsigned char) (c2); \
1550 } while (0)
1551
1552
1553 /* As with BUF_PUSH_2, except for three bytes. */
1554 #define BUF_PUSH_3(c1, c2, c3) \
1555 do { \
1556 GET_BUFFER_SPACE (3); \
1557 *b++ = (unsigned char) (c1); \
1558 *b++ = (unsigned char) (c2); \
1559 *b++ = (unsigned char) (c3); \
1560 } while (0)
1561
1562
1563 /* Store a jump with opcode OP at LOC to location TO. We store a
1564 relative address offset by the three bytes the jump itself occupies. */
1565 #define STORE_JUMP(op, loc, to) \
1566 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1567
1568 /* Likewise, for a two-argument jump. */
1569 #define STORE_JUMP2(op, loc, to, arg) \
1570 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1571
1572 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1573 #define INSERT_JUMP(op, loc, to) \
1574 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1575
1576 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1577 #define INSERT_JUMP2(op, loc, to, arg) \
1578 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1579
1580
1581 /* This is not an arbitrary limit: the arguments which represent offsets
1582 into the pattern are two bytes long. So if 2^16 bytes turns out to
1583 be too small, many things would have to change. */
1584 /* Any other compiler which, like MSC, has allocation limit below 2^16
1585 bytes will have to use approach similar to what was done below for
1586 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1587 reallocating to 0 bytes. Such thing is not going to work too well.
1588 You have been warned!! */
1589 #if defined _MSC_VER && !defined WIN32
1590 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1591 The REALLOC define eliminates a flurry of conversion warnings,
1592 but is not required. */
1593 # define MAX_BUF_SIZE 65500L
1594 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1595 #else
1596 # define MAX_BUF_SIZE (1L << 16)
1597 # define REALLOC(p,s) realloc ((p), (s))
1598 #endif
1599
1600 /* Extend the buffer by twice its current size via realloc and
1601 reset the pointers that pointed into the old block to point to the
1602 correct places in the new one. If extending the buffer results in it
1603 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1604 #define EXTEND_BUFFER() \
1605 do { \
1606 unsigned char *old_buffer = bufp->buffer; \
1607 if (bufp->allocated == MAX_BUF_SIZE) \
1608 return REG_ESIZE; \
1609 bufp->allocated <<= 1; \
1610 if (bufp->allocated > MAX_BUF_SIZE) \
1611 bufp->allocated = MAX_BUF_SIZE; \
1612 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1613 if (bufp->buffer == NULL) \
1614 return REG_ESPACE; \
1615 /* If the buffer moved, move all the pointers into it. */ \
1616 if (old_buffer != bufp->buffer) \
1617 { \
1618 b = (b - old_buffer) + bufp->buffer; \
1619 begalt = (begalt - old_buffer) + bufp->buffer; \
1620 if (fixup_alt_jump) \
1621 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1622 if (laststart) \
1623 laststart = (laststart - old_buffer) + bufp->buffer; \
1624 if (pending_exact) \
1625 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1626 } \
1627 } while (0)
1628
1629
1630 /* Since we have one byte reserved for the register number argument to
1631 {start,stop}_memory, the maximum number of groups we can report
1632 things about is what fits in that byte. */
1633 #define MAX_REGNUM 255
1634
1635 /* But patterns can have more than `MAX_REGNUM' registers. We just
1636 ignore the excess. */
1637 typedef unsigned regnum_t;
1638
1639
1640 /* Macros for the compile stack. */
1641
1642 /* Since offsets can go either forwards or backwards, this type needs to
1643 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1644 /* int may be not enough when sizeof(int) == 2. */
1645 typedef long pattern_offset_t;
1646
1647 typedef struct
1648 {
1649 pattern_offset_t begalt_offset;
1650 pattern_offset_t fixup_alt_jump;
1651 pattern_offset_t inner_group_offset;
1652 pattern_offset_t laststart_offset;
1653 regnum_t regnum;
1654 } compile_stack_elt_t;
1655
1656
1657 typedef struct
1658 {
1659 compile_stack_elt_t *stack;
1660 unsigned size;
1661 unsigned avail; /* Offset of next open position. */
1662 } compile_stack_type;
1663
1664
1665 #define INIT_COMPILE_STACK_SIZE 32
1666
1667 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1668 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1669
1670 /* The next available element. */
1671 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1672
1673
1674 /* Set the bit for character C in a list. */
1675 #define SET_LIST_BIT(c) \
1676 (b[((unsigned char) (c)) / BYTEWIDTH] \
1677 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1678
1679
1680 /* Get the next unsigned number in the uncompiled pattern. */
1681 #define GET_UNSIGNED_NUMBER(num) \
1682 { if (p != pend) \
1683 { \
1684 PATFETCH (c); \
1685 while (ISDIGIT (c)) \
1686 { \
1687 if (num < 0) \
1688 num = 0; \
1689 num = num * 10 + c - '0'; \
1690 if (p == pend) \
1691 break; \
1692 PATFETCH (c); \
1693 } \
1694 } \
1695 }
1696
1697 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
1698 /* The GNU C library provides support for user-defined character classes
1699 and the functions from ISO C amendement 1. */
1700 # ifdef CHARCLASS_NAME_MAX
1701 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1702 # else
1703 /* This shouldn't happen but some implementation might still have this
1704 problem. Use a reasonable default value. */
1705 # define CHAR_CLASS_MAX_LENGTH 256
1706 # endif
1707
1708 # ifdef _LIBC
1709 # define IS_CHAR_CLASS(string) __wctype (string)
1710 # else
1711 # define IS_CHAR_CLASS(string) wctype (string)
1712 # endif
1713 #else
1714 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1715
1716 # define IS_CHAR_CLASS(string) \
1717 (STREQ (string, "alpha") || STREQ (string, "upper") \
1718 || STREQ (string, "lower") || STREQ (string, "digit") \
1719 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1720 || STREQ (string, "space") || STREQ (string, "print") \
1721 || STREQ (string, "punct") || STREQ (string, "graph") \
1722 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1723 #endif
1724 \f
1725 #ifndef MATCH_MAY_ALLOCATE
1726
1727 /* If we cannot allocate large objects within re_match_2_internal,
1728 we make the fail stack and register vectors global.
1729 The fail stack, we grow to the maximum size when a regexp
1730 is compiled.
1731 The register vectors, we adjust in size each time we
1732 compile a regexp, according to the number of registers it needs. */
1733
1734 static fail_stack_type fail_stack;
1735
1736 /* Size with which the following vectors are currently allocated.
1737 That is so we can make them bigger as needed,
1738 but never make them smaller. */
1739 static int regs_allocated_size;
1740
1741 static const char ** regstart, ** regend;
1742 static const char ** old_regstart, ** old_regend;
1743 static const char **best_regstart, **best_regend;
1744 static register_info_type *reg_info;
1745 static const char **reg_dummy;
1746 static register_info_type *reg_info_dummy;
1747
1748 /* Make the register vectors big enough for NUM_REGS registers,
1749 but don't make them smaller. */
1750
1751 static
1752 regex_grow_registers (num_regs)
1753 int num_regs;
1754 {
1755 if (num_regs > regs_allocated_size)
1756 {
1757 RETALLOC_IF (regstart, num_regs, const char *);
1758 RETALLOC_IF (regend, num_regs, const char *);
1759 RETALLOC_IF (old_regstart, num_regs, const char *);
1760 RETALLOC_IF (old_regend, num_regs, const char *);
1761 RETALLOC_IF (best_regstart, num_regs, const char *);
1762 RETALLOC_IF (best_regend, num_regs, const char *);
1763 RETALLOC_IF (reg_info, num_regs, register_info_type);
1764 RETALLOC_IF (reg_dummy, num_regs, const char *);
1765 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1766
1767 regs_allocated_size = num_regs;
1768 }
1769 }
1770
1771 #endif /* not MATCH_MAY_ALLOCATE */
1772 \f
1773 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1774 compile_stack,
1775 regnum_t regnum));
1776
1777 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1778 Returns one of error codes defined in `gnu-regex.h', or zero for success.
1779
1780 Assumes the `allocated' (and perhaps `buffer') and `translate'
1781 fields are set in BUFP on entry.
1782
1783 If it succeeds, results are put in BUFP (if it returns an error, the
1784 contents of BUFP are undefined):
1785 `buffer' is the compiled pattern;
1786 `syntax' is set to SYNTAX;
1787 `used' is set to the length of the compiled pattern;
1788 `fastmap_accurate' is zero;
1789 `re_nsub' is the number of subexpressions in PATTERN;
1790 `not_bol' and `not_eol' are zero;
1791
1792 The `fastmap' and `newline_anchor' fields are neither
1793 examined nor set. */
1794
1795 /* Return, freeing storage we allocated. */
1796 #define FREE_STACK_RETURN(value) \
1797 return (free (compile_stack.stack), value)
1798
1799 static reg_errcode_t
1800 regex_compile (pattern, size, syntax, bufp)
1801 const char *pattern;
1802 size_t size;
1803 reg_syntax_t syntax;
1804 struct re_pattern_buffer *bufp;
1805 {
1806 /* We fetch characters from PATTERN here. Even though PATTERN is
1807 `char *' (i.e., signed), we declare these variables as unsigned, so
1808 they can be reliably used as array indices. */
1809 register unsigned char c, c1;
1810
1811 /* A random temporary spot in PATTERN. */
1812 const char *p1;
1813
1814 /* Points to the end of the buffer, where we should append. */
1815 register unsigned char *b;
1816
1817 /* Keeps track of unclosed groups. */
1818 compile_stack_type compile_stack;
1819
1820 /* Points to the current (ending) position in the pattern. */
1821 const char *p = pattern;
1822 const char *pend = pattern + size;
1823
1824 /* How to translate the characters in the pattern. */
1825 RE_TRANSLATE_TYPE translate = bufp->translate;
1826
1827 /* Address of the count-byte of the most recently inserted `exactn'
1828 command. This makes it possible to tell if a new exact-match
1829 character can be added to that command or if the character requires
1830 a new `exactn' command. */
1831 unsigned char *pending_exact = 0;
1832
1833 /* Address of start of the most recently finished expression.
1834 This tells, e.g., postfix * where to find the start of its
1835 operand. Reset at the beginning of groups and alternatives. */
1836 unsigned char *laststart = 0;
1837
1838 /* Address of beginning of regexp, or inside of last group. */
1839 unsigned char *begalt;
1840
1841 /* Place in the uncompiled pattern (i.e., the {) to
1842 which to go back if the interval is invalid. */
1843 const char *beg_interval;
1844
1845 /* Address of the place where a forward jump should go to the end of
1846 the containing expression. Each alternative of an `or' -- except the
1847 last -- ends with a forward jump of this sort. */
1848 unsigned char *fixup_alt_jump = 0;
1849
1850 /* Counts open-groups as they are encountered. Remembered for the
1851 matching close-group on the compile stack, so the same register
1852 number is put in the stop_memory as the start_memory. */
1853 regnum_t regnum = 0;
1854
1855 #ifdef DEBUG
1856 DEBUG_PRINT1 ("\nCompiling pattern: ");
1857 if (debug)
1858 {
1859 unsigned debug_count;
1860
1861 for (debug_count = 0; debug_count < size; debug_count++)
1862 putchar (pattern[debug_count]);
1863 putchar ('\n');
1864 }
1865 #endif /* DEBUG */
1866
1867 /* Initialize the compile stack. */
1868 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1869 if (compile_stack.stack == NULL)
1870 return REG_ESPACE;
1871
1872 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1873 compile_stack.avail = 0;
1874
1875 /* Initialize the pattern buffer. */
1876 bufp->syntax = syntax;
1877 bufp->fastmap_accurate = 0;
1878 bufp->not_bol = bufp->not_eol = 0;
1879
1880 /* Set `used' to zero, so that if we return an error, the pattern
1881 printer (for debugging) will think there's no pattern. We reset it
1882 at the end. */
1883 bufp->used = 0;
1884
1885 /* Always count groups, whether or not bufp->no_sub is set. */
1886 bufp->re_nsub = 0;
1887
1888 #if !defined emacs && !defined SYNTAX_TABLE
1889 /* Initialize the syntax table. */
1890 init_syntax_once ();
1891 #endif
1892
1893 if (bufp->allocated == 0)
1894 {
1895 if (bufp->buffer)
1896 { /* If zero allocated, but buffer is non-null, try to realloc
1897 enough space. This loses if buffer's address is bogus, but
1898 that is the user's responsibility. */
1899 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1900 }
1901 else
1902 { /* Caller did not allocate a buffer. Do it for them. */
1903 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1904 }
1905 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1906
1907 bufp->allocated = INIT_BUF_SIZE;
1908 }
1909
1910 begalt = b = bufp->buffer;
1911
1912 /* Loop through the uncompiled pattern until we're at the end. */
1913 while (p != pend)
1914 {
1915 PATFETCH (c);
1916
1917 switch (c)
1918 {
1919 case '^':
1920 {
1921 if ( /* If at start of pattern, it's an operator. */
1922 p == pattern + 1
1923 /* If context independent, it's an operator. */
1924 || syntax & RE_CONTEXT_INDEP_ANCHORS
1925 /* Otherwise, depends on what's come before. */
1926 || at_begline_loc_p (pattern, p, syntax))
1927 BUF_PUSH (begline);
1928 else
1929 goto normal_char;
1930 }
1931 break;
1932
1933
1934 case '$':
1935 {
1936 if ( /* If at end of pattern, it's an operator. */
1937 p == pend
1938 /* If context independent, it's an operator. */
1939 || syntax & RE_CONTEXT_INDEP_ANCHORS
1940 /* Otherwise, depends on what's next. */
1941 || at_endline_loc_p (p, pend, syntax))
1942 BUF_PUSH (endline);
1943 else
1944 goto normal_char;
1945 }
1946 break;
1947
1948
1949 case '+':
1950 case '?':
1951 if ((syntax & RE_BK_PLUS_QM)
1952 || (syntax & RE_LIMITED_OPS))
1953 goto normal_char;
1954 handle_plus:
1955 case '*':
1956 /* If there is no previous pattern... */
1957 if (!laststart)
1958 {
1959 if (syntax & RE_CONTEXT_INVALID_OPS)
1960 FREE_STACK_RETURN (REG_BADRPT);
1961 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1962 goto normal_char;
1963 }
1964
1965 {
1966 /* Are we optimizing this jump? */
1967 boolean keep_string_p = false;
1968
1969 /* 1 means zero (many) matches is allowed. */
1970 char zero_times_ok = 0, many_times_ok = 0;
1971
1972 /* If there is a sequence of repetition chars, collapse it
1973 down to just one (the right one). We can't combine
1974 interval operators with these because of, e.g., `a{2}*',
1975 which should only match an even number of `a's. */
1976
1977 for (;;)
1978 {
1979 zero_times_ok |= c != '+';
1980 many_times_ok |= c != '?';
1981
1982 if (p == pend)
1983 break;
1984
1985 PATFETCH (c);
1986
1987 if (c == '*'
1988 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1989 ;
1990
1991 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1992 {
1993 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1994
1995 PATFETCH (c1);
1996 if (!(c1 == '+' || c1 == '?'))
1997 {
1998 PATUNFETCH;
1999 PATUNFETCH;
2000 break;
2001 }
2002
2003 c = c1;
2004 }
2005 else
2006 {
2007 PATUNFETCH;
2008 break;
2009 }
2010
2011 /* If we get here, we found another repeat character. */
2012 }
2013
2014 /* Star, etc. applied to an empty pattern is equivalent
2015 to an empty pattern. */
2016 if (!laststart)
2017 break;
2018
2019 /* Now we know whether or not zero matches is allowed
2020 and also whether or not two or more matches is allowed. */
2021 if (many_times_ok)
2022 { /* More than one repetition is allowed, so put in at the
2023 end a backward relative jump from `b' to before the next
2024 jump we're going to put in below (which jumps from
2025 laststart to after this jump).
2026
2027 But if we are at the `*' in the exact sequence `.*\n',
2028 insert an unconditional jump backwards to the .,
2029 instead of the beginning of the loop. This way we only
2030 push a failure point once, instead of every time
2031 through the loop. */
2032 assert (p - 1 > pattern);
2033
2034 /* Allocate the space for the jump. */
2035 GET_BUFFER_SPACE (3);
2036
2037 /* We know we are not at the first character of the pattern,
2038 because laststart was nonzero. And we've already
2039 incremented `p', by the way, to be the character after
2040 the `*'. Do we have to do something analogous here
2041 for null bytes, because of RE_DOT_NOT_NULL? */
2042 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2043 && zero_times_ok
2044 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2045 && !(syntax & RE_DOT_NEWLINE))
2046 { /* We have .*\n. */
2047 STORE_JUMP (jump, b, laststart);
2048 keep_string_p = true;
2049 }
2050 else
2051 /* Anything else. */
2052 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2053
2054 /* We've added more stuff to the buffer. */
2055 b += 3;
2056 }
2057
2058 /* On failure, jump from laststart to b + 3, which will be the
2059 end of the buffer after this jump is inserted. */
2060 GET_BUFFER_SPACE (3);
2061 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2062 : on_failure_jump,
2063 laststart, b + 3);
2064 pending_exact = 0;
2065 b += 3;
2066
2067 if (!zero_times_ok)
2068 {
2069 /* At least one repetition is required, so insert a
2070 `dummy_failure_jump' before the initial
2071 `on_failure_jump' instruction of the loop. This
2072 effects a skip over that instruction the first time
2073 we hit that loop. */
2074 GET_BUFFER_SPACE (3);
2075 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2076 b += 3;
2077 }
2078 }
2079 break;
2080
2081
2082 case '.':
2083 laststart = b;
2084 BUF_PUSH (anychar);
2085 break;
2086
2087
2088 case '[':
2089 {
2090 boolean had_char_class = false;
2091
2092 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2093
2094 /* Ensure that we have enough space to push a charset: the
2095 opcode, the length count, and the bitset; 34 bytes in all. */
2096 GET_BUFFER_SPACE (34);
2097
2098 laststart = b;
2099
2100 /* We test `*p == '^' twice, instead of using an if
2101 statement, so we only need one BUF_PUSH. */
2102 BUF_PUSH (*p == '^' ? charset_not : charset);
2103 if (*p == '^')
2104 p++;
2105
2106 /* Remember the first position in the bracket expression. */
2107 p1 = p;
2108
2109 /* Push the number of bytes in the bitmap. */
2110 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2111
2112 /* Clear the whole map. */
2113 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2114
2115 /* charset_not matches newline according to a syntax bit. */
2116 if ((re_opcode_t) b[-2] == charset_not
2117 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2118 SET_LIST_BIT ('\n');
2119
2120 /* Read in characters and ranges, setting map bits. */
2121 for (;;)
2122 {
2123 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2124
2125 PATFETCH (c);
2126
2127 /* \ might escape characters inside [...] and [^...]. */
2128 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2129 {
2130 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2131
2132 PATFETCH (c1);
2133 SET_LIST_BIT (c1);
2134 continue;
2135 }
2136
2137 /* Could be the end of the bracket expression. If it's
2138 not (i.e., when the bracket expression is `[]' so
2139 far), the ']' character bit gets set way below. */
2140 if (c == ']' && p != p1 + 1)
2141 break;
2142
2143 /* Look ahead to see if it's a range when the last thing
2144 was a character class. */
2145 if (had_char_class && c == '-' && *p != ']')
2146 FREE_STACK_RETURN (REG_ERANGE);
2147
2148 /* Look ahead to see if it's a range when the last thing
2149 was a character: if this is a hyphen not at the
2150 beginning or the end of a list, then it's the range
2151 operator. */
2152 if (c == '-'
2153 && !(p - 2 >= pattern && p[-2] == '[')
2154 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2155 && *p != ']')
2156 {
2157 reg_errcode_t ret
2158 = compile_range (&p, pend, translate, syntax, b);
2159 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2160 }
2161
2162 else if (p[0] == '-' && p[1] != ']')
2163 { /* This handles ranges made up of characters only. */
2164 reg_errcode_t ret;
2165
2166 /* Move past the `-'. */
2167 PATFETCH (c1);
2168
2169 ret = compile_range (&p, pend, translate, syntax, b);
2170 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2171 }
2172
2173 /* See if we're at the beginning of a possible character
2174 class. */
2175
2176 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2177 { /* Leave room for the null. */
2178 char str[CHAR_CLASS_MAX_LENGTH + 1];
2179
2180 PATFETCH (c);
2181 c1 = 0;
2182
2183 /* If pattern is `[[:'. */
2184 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2185
2186 for (;;)
2187 {
2188 PATFETCH (c);
2189 if ((c == ':' && *p == ']') || p == pend
2190 || c1 == CHAR_CLASS_MAX_LENGTH)
2191 break;
2192 str[c1++] = c;
2193 }
2194 str[c1] = '\0';
2195
2196 /* If isn't a word bracketed by `[:' and `:]':
2197 undo the ending character, the letters, and leave
2198 the leading `:' and `[' (but set bits for them). */
2199 if (c == ':' && *p == ']')
2200 {
2201 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
2202 boolean is_lower = STREQ (str, "lower");
2203 boolean is_upper = STREQ (str, "upper");
2204 wctype_t wt;
2205 int ch;
2206
2207 wt = IS_CHAR_CLASS (str);
2208 if (wt == 0)
2209 FREE_STACK_RETURN (REG_ECTYPE);
2210
2211 /* Throw away the ] at the end of the character
2212 class. */
2213 PATFETCH (c);
2214
2215 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2216
2217 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2218 {
2219 # ifdef _LIBC
2220 if (__iswctype (__btowc (ch), wt))
2221 SET_LIST_BIT (ch);
2222 #else
2223 if (iswctype (btowc (ch), wt))
2224 SET_LIST_BIT (ch);
2225 #endif
2226
2227 if (translate && (is_upper || is_lower)
2228 && (ISUPPER (ch) || ISLOWER (ch)))
2229 SET_LIST_BIT (ch);
2230 }
2231
2232 had_char_class = true;
2233 #else
2234 int ch;
2235 boolean is_alnum = STREQ (str, "alnum");
2236 boolean is_alpha = STREQ (str, "alpha");
2237 boolean is_blank = STREQ (str, "blank");
2238 boolean is_cntrl = STREQ (str, "cntrl");
2239 boolean is_digit = STREQ (str, "digit");
2240 boolean is_graph = STREQ (str, "graph");
2241 boolean is_lower = STREQ (str, "lower");
2242 boolean is_print = STREQ (str, "print");
2243 boolean is_punct = STREQ (str, "punct");
2244 boolean is_space = STREQ (str, "space");
2245 boolean is_upper = STREQ (str, "upper");
2246 boolean is_xdigit = STREQ (str, "xdigit");
2247
2248 if (!IS_CHAR_CLASS (str))
2249 FREE_STACK_RETURN (REG_ECTYPE);
2250
2251 /* Throw away the ] at the end of the character
2252 class. */
2253 PATFETCH (c);
2254
2255 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2256
2257 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2258 {
2259 /* This was split into 3 if's to
2260 avoid an arbitrary limit in some compiler. */
2261 if ( (is_alnum && ISALNUM (ch))
2262 || (is_alpha && ISALPHA (ch))
2263 || (is_blank && ISBLANK (ch))
2264 || (is_cntrl && ISCNTRL (ch)))
2265 SET_LIST_BIT (ch);
2266 if ( (is_digit && ISDIGIT (ch))
2267 || (is_graph && ISGRAPH (ch))
2268 || (is_lower && ISLOWER (ch))
2269 || (is_print && ISPRINT (ch)))
2270 SET_LIST_BIT (ch);
2271 if ( (is_punct && ISPUNCT (ch))
2272 || (is_space && ISSPACE (ch))
2273 || (is_upper && ISUPPER (ch))
2274 || (is_xdigit && ISXDIGIT (ch)))
2275 SET_LIST_BIT (ch);
2276 if ( translate && (is_upper || is_lower)
2277 && (ISUPPER (ch) || ISLOWER (ch)))
2278 SET_LIST_BIT (ch);
2279 }
2280 had_char_class = true;
2281 #endif /* libc || wctype.h */
2282 }
2283 else
2284 {
2285 c1++;
2286 while (c1--)
2287 PATUNFETCH;
2288 SET_LIST_BIT ('[');
2289 SET_LIST_BIT (':');
2290 had_char_class = false;
2291 }
2292 }
2293 else
2294 {
2295 had_char_class = false;
2296 SET_LIST_BIT (c);
2297 }
2298 }
2299
2300 /* Discard any (non)matching list bytes that are all 0 at the
2301 end of the map. Decrease the map-length byte too. */
2302 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2303 b[-1]--;
2304 b += b[-1];
2305 }
2306 break;
2307
2308
2309 case '(':
2310 if (syntax & RE_NO_BK_PARENS)
2311 goto handle_open;
2312 else
2313 goto normal_char;
2314
2315
2316 case ')':
2317 if (syntax & RE_NO_BK_PARENS)
2318 goto handle_close;
2319 else
2320 goto normal_char;
2321
2322
2323 case '\n':
2324 if (syntax & RE_NEWLINE_ALT)
2325 goto handle_alt;
2326 else
2327 goto normal_char;
2328
2329
2330 case '|':
2331 if (syntax & RE_NO_BK_VBAR)
2332 goto handle_alt;
2333 else
2334 goto normal_char;
2335
2336
2337 case '{':
2338 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2339 goto handle_interval;
2340 else
2341 goto normal_char;
2342
2343
2344 case '\\':
2345 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2346
2347 /* Do not translate the character after the \, so that we can
2348 distinguish, e.g., \B from \b, even if we normally would
2349 translate, e.g., B to b. */
2350 PATFETCH_RAW (c);
2351
2352 switch (c)
2353 {
2354 case '(':
2355 if (syntax & RE_NO_BK_PARENS)
2356 goto normal_backslash;
2357
2358 handle_open:
2359 bufp->re_nsub++;
2360 regnum++;
2361
2362 if (COMPILE_STACK_FULL)
2363 {
2364 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2365 compile_stack_elt_t);
2366 if (compile_stack.stack == NULL) return REG_ESPACE;
2367
2368 compile_stack.size <<= 1;
2369 }
2370
2371 /* These are the values to restore when we hit end of this
2372 group. They are all relative offsets, so that if the
2373 whole pattern moves because of realloc, they will still
2374 be valid. */
2375 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2376 COMPILE_STACK_TOP.fixup_alt_jump
2377 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2378 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2379 COMPILE_STACK_TOP.regnum = regnum;
2380
2381 /* We will eventually replace the 0 with the number of
2382 groups inner to this one. But do not push a
2383 start_memory for groups beyond the last one we can
2384 represent in the compiled pattern. */
2385 if (regnum <= MAX_REGNUM)
2386 {
2387 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2388 BUF_PUSH_3 (start_memory, regnum, 0);
2389 }
2390
2391 compile_stack.avail++;
2392
2393 fixup_alt_jump = 0;
2394 laststart = 0;
2395 begalt = b;
2396 /* If we've reached MAX_REGNUM groups, then this open
2397 won't actually generate any code, so we'll have to
2398 clear pending_exact explicitly. */
2399 pending_exact = 0;
2400 break;
2401
2402
2403 case ')':
2404 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2405
2406 if (COMPILE_STACK_EMPTY)
2407 {
2408 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2409 goto normal_backslash;
2410 else
2411 FREE_STACK_RETURN (REG_ERPAREN);
2412 }
2413
2414 handle_close:
2415 if (fixup_alt_jump)
2416 { /* Push a dummy failure point at the end of the
2417 alternative for a possible future
2418 `pop_failure_jump' to pop. See comments at
2419 `push_dummy_failure' in `re_match_2'. */
2420 BUF_PUSH (push_dummy_failure);
2421
2422 /* We allocated space for this jump when we assigned
2423 to `fixup_alt_jump', in the `handle_alt' case below. */
2424 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2425 }
2426
2427 /* See similar code for backslashed left paren above. */
2428 if (COMPILE_STACK_EMPTY)
2429 {
2430 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2431 goto normal_char;
2432 else
2433 FREE_STACK_RETURN (REG_ERPAREN);
2434 }
2435
2436 /* Since we just checked for an empty stack above, this
2437 ``can't happen''. */
2438 assert (compile_stack.avail != 0);
2439 {
2440 /* We don't just want to restore into `regnum', because
2441 later groups should continue to be numbered higher,
2442 as in `(ab)c(de)' -- the second group is #2. */
2443 regnum_t this_group_regnum;
2444
2445 compile_stack.avail--;
2446 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2447 fixup_alt_jump
2448 = COMPILE_STACK_TOP.fixup_alt_jump
2449 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2450 : 0;
2451 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2452 this_group_regnum = COMPILE_STACK_TOP.regnum;
2453 /* If we've reached MAX_REGNUM groups, then this open
2454 won't actually generate any code, so we'll have to
2455 clear pending_exact explicitly. */
2456 pending_exact = 0;
2457
2458 /* We're at the end of the group, so now we know how many
2459 groups were inside this one. */
2460 if (this_group_regnum <= MAX_REGNUM)
2461 {
2462 unsigned char *inner_group_loc
2463 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2464
2465 *inner_group_loc = regnum - this_group_regnum;
2466 BUF_PUSH_3 (stop_memory, this_group_regnum,
2467 regnum - this_group_regnum);
2468 }
2469 }
2470 break;
2471
2472
2473 case '|': /* `\|'. */
2474 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2475 goto normal_backslash;
2476 handle_alt:
2477 if (syntax & RE_LIMITED_OPS)
2478 goto normal_char;
2479
2480 /* Insert before the previous alternative a jump which
2481 jumps to this alternative if the former fails. */
2482 GET_BUFFER_SPACE (3);
2483 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2484 pending_exact = 0;
2485 b += 3;
2486
2487 /* The alternative before this one has a jump after it
2488 which gets executed if it gets matched. Adjust that
2489 jump so it will jump to this alternative's analogous
2490 jump (put in below, which in turn will jump to the next
2491 (if any) alternative's such jump, etc.). The last such
2492 jump jumps to the correct final destination. A picture:
2493 _____ _____
2494 | | | |
2495 | v | v
2496 a | b | c
2497
2498 If we are at `b', then fixup_alt_jump right now points to a
2499 three-byte space after `a'. We'll put in the jump, set
2500 fixup_alt_jump to right after `b', and leave behind three
2501 bytes which we'll fill in when we get to after `c'. */
2502
2503 if (fixup_alt_jump)
2504 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2505
2506 /* Mark and leave space for a jump after this alternative,
2507 to be filled in later either by next alternative or
2508 when know we're at the end of a series of alternatives. */
2509 fixup_alt_jump = b;
2510 GET_BUFFER_SPACE (3);
2511 b += 3;
2512
2513 laststart = 0;
2514 begalt = b;
2515 break;
2516
2517
2518 case '{':
2519 /* If \{ is a literal. */
2520 if (!(syntax & RE_INTERVALS)
2521 /* If we're at `\{' and it's not the open-interval
2522 operator. */
2523 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2524 || (p - 2 == pattern && p == pend))
2525 goto normal_backslash;
2526
2527 handle_interval:
2528 {
2529 /* If got here, then the syntax allows intervals. */
2530
2531 /* At least (most) this many matches must be made. */
2532 int lower_bound = -1, upper_bound = -1;
2533
2534 beg_interval = p - 1;
2535
2536 if (p == pend)
2537 {
2538 if (syntax & RE_NO_BK_BRACES)
2539 goto unfetch_interval;
2540 else
2541 FREE_STACK_RETURN (REG_EBRACE);
2542 }
2543
2544 GET_UNSIGNED_NUMBER (lower_bound);
2545
2546 if (c == ',')
2547 {
2548 GET_UNSIGNED_NUMBER (upper_bound);
2549 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2550 }
2551 else
2552 /* Interval such as `{1}' => match exactly once. */
2553 upper_bound = lower_bound;
2554
2555 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2556 || lower_bound > upper_bound)
2557 {
2558 if (syntax & RE_NO_BK_BRACES)
2559 goto unfetch_interval;
2560 else
2561 FREE_STACK_RETURN (REG_BADBR);
2562 }
2563
2564 if (!(syntax & RE_NO_BK_BRACES))
2565 {
2566 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2567
2568 PATFETCH (c);
2569 }
2570
2571 if (c != '}')
2572 {
2573 if (syntax & RE_NO_BK_BRACES)
2574 goto unfetch_interval;
2575 else
2576 FREE_STACK_RETURN (REG_BADBR);
2577 }
2578
2579 /* We just parsed a valid interval. */
2580
2581 /* If it's invalid to have no preceding re. */
2582 if (!laststart)
2583 {
2584 if (syntax & RE_CONTEXT_INVALID_OPS)
2585 FREE_STACK_RETURN (REG_BADRPT);
2586 else if (syntax & RE_CONTEXT_INDEP_OPS)
2587 laststart = b;
2588 else
2589 goto unfetch_interval;
2590 }
2591
2592 /* If the upper bound is zero, don't want to succeed at
2593 all; jump from `laststart' to `b + 3', which will be
2594 the end of the buffer after we insert the jump. */
2595 if (upper_bound == 0)
2596 {
2597 GET_BUFFER_SPACE (3);
2598 INSERT_JUMP (jump, laststart, b + 3);
2599 b += 3;
2600 }
2601
2602 /* Otherwise, we have a nontrivial interval. When
2603 we're all done, the pattern will look like:
2604 set_number_at <jump count> <upper bound>
2605 set_number_at <succeed_n count> <lower bound>
2606 succeed_n <after jump addr> <succeed_n count>
2607 <body of loop>
2608 jump_n <succeed_n addr> <jump count>
2609 (The upper bound and `jump_n' are omitted if
2610 `upper_bound' is 1, though.) */
2611 else
2612 { /* If the upper bound is > 1, we need to insert
2613 more at the end of the loop. */
2614 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2615
2616 GET_BUFFER_SPACE (nbytes);
2617
2618 /* Initialize lower bound of the `succeed_n', even
2619 though it will be set during matching by its
2620 attendant `set_number_at' (inserted next),
2621 because `re_compile_fastmap' needs to know.
2622 Jump to the `jump_n' we might insert below. */
2623 INSERT_JUMP2 (succeed_n, laststart,
2624 b + 5 + (upper_bound > 1) * 5,
2625 lower_bound);
2626 b += 5;
2627
2628 /* Code to initialize the lower bound. Insert
2629 before the `succeed_n'. The `5' is the last two
2630 bytes of this `set_number_at', plus 3 bytes of
2631 the following `succeed_n'. */
2632 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2633 b += 5;
2634
2635 if (upper_bound > 1)
2636 { /* More than one repetition is allowed, so
2637 append a backward jump to the `succeed_n'
2638 that starts this interval.
2639
2640 When we've reached this during matching,
2641 we'll have matched the interval once, so
2642 jump back only `upper_bound - 1' times. */
2643 STORE_JUMP2 (jump_n, b, laststart + 5,
2644 upper_bound - 1);
2645 b += 5;
2646
2647 /* The location we want to set is the second
2648 parameter of the `jump_n'; that is `b-2' as
2649 an absolute address. `laststart' will be
2650 the `set_number_at' we're about to insert;
2651 `laststart+3' the number to set, the source
2652 for the relative address. But we are
2653 inserting into the middle of the pattern --
2654 so everything is getting moved up by 5.
2655 Conclusion: (b - 2) - (laststart + 3) + 5,
2656 i.e., b - laststart.
2657
2658 We insert this at the beginning of the loop
2659 so that if we fail during matching, we'll
2660 reinitialize the bounds. */
2661 insert_op2 (set_number_at, laststart, b - laststart,
2662 upper_bound - 1, b);
2663 b += 5;
2664 }
2665 }
2666 pending_exact = 0;
2667 beg_interval = NULL;
2668 }
2669 break;
2670
2671 unfetch_interval:
2672 /* If an invalid interval, match the characters as literals. */
2673 assert (beg_interval);
2674 p = beg_interval;
2675 beg_interval = NULL;
2676
2677 /* normal_char and normal_backslash need `c'. */
2678 PATFETCH (c);
2679
2680 if (!(syntax & RE_NO_BK_BRACES))
2681 {
2682 if (p > pattern && p[-1] == '\\')
2683 goto normal_backslash;
2684 }
2685 goto normal_char;
2686
2687 #ifdef emacs
2688 /* There is no way to specify the before_dot and after_dot
2689 operators. rms says this is ok. --karl */
2690 case '=':
2691 BUF_PUSH (at_dot);
2692 break;
2693
2694 case 's':
2695 laststart = b;
2696 PATFETCH (c);
2697 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2698 break;
2699
2700 case 'S':
2701 laststart = b;
2702 PATFETCH (c);
2703 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2704 break;
2705 #endif /* emacs */
2706
2707
2708 case 'w':
2709 if (syntax & RE_NO_GNU_OPS)
2710 goto normal_char;
2711 laststart = b;
2712 BUF_PUSH (wordchar);
2713 break;
2714
2715
2716 case 'W':
2717 if (syntax & RE_NO_GNU_OPS)
2718 goto normal_char;
2719 laststart = b;
2720 BUF_PUSH (notwordchar);
2721 break;
2722
2723
2724 case '<':
2725 if (syntax & RE_NO_GNU_OPS)
2726 goto normal_char;
2727 BUF_PUSH (wordbeg);
2728 break;
2729
2730 case '>':
2731 if (syntax & RE_NO_GNU_OPS)
2732 goto normal_char;
2733 BUF_PUSH (wordend);
2734 break;
2735
2736 case 'b':
2737 if (syntax & RE_NO_GNU_OPS)
2738 goto normal_char;
2739 BUF_PUSH (wordbound);
2740 break;
2741
2742 case 'B':
2743 if (syntax & RE_NO_GNU_OPS)
2744 goto normal_char;
2745 BUF_PUSH (notwordbound);
2746 break;
2747
2748 case '`':
2749 if (syntax & RE_NO_GNU_OPS)
2750 goto normal_char;
2751 BUF_PUSH (begbuf);
2752 break;
2753
2754 case '\'':
2755 if (syntax & RE_NO_GNU_OPS)
2756 goto normal_char;
2757 BUF_PUSH (endbuf);
2758 break;
2759
2760 case '1': case '2': case '3': case '4': case '5':
2761 case '6': case '7': case '8': case '9':
2762 if (syntax & RE_NO_BK_REFS)
2763 goto normal_char;
2764
2765 c1 = c - '0';
2766
2767 if (c1 > regnum)
2768 FREE_STACK_RETURN (REG_ESUBREG);
2769
2770 /* Can't back reference to a subexpression if inside of it. */
2771 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2772 goto normal_char;
2773
2774 laststart = b;
2775 BUF_PUSH_2 (duplicate, c1);
2776 break;
2777
2778
2779 case '+':
2780 case '?':
2781 if (syntax & RE_BK_PLUS_QM)
2782 goto handle_plus;
2783 else
2784 goto normal_backslash;
2785
2786 default:
2787 normal_backslash:
2788 /* You might think it would be useful for \ to mean
2789 not to translate; but if we don't translate it
2790 it will never match anything. */
2791 c = TRANSLATE (c);
2792 goto normal_char;
2793 }
2794 break;
2795
2796
2797 default:
2798 /* Expects the character in `c'. */
2799 normal_char:
2800 /* If no exactn currently being built. */
2801 if (!pending_exact
2802
2803 /* If last exactn not at current position. */
2804 || pending_exact + *pending_exact + 1 != b
2805
2806 /* We have only one byte following the exactn for the count. */
2807 || *pending_exact == (1 << BYTEWIDTH) - 1
2808
2809 /* If followed by a repetition operator. */
2810 || *p == '*' || *p == '^'
2811 || ((syntax & RE_BK_PLUS_QM)
2812 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2813 : (*p == '+' || *p == '?'))
2814 || ((syntax & RE_INTERVALS)
2815 && ((syntax & RE_NO_BK_BRACES)
2816 ? *p == '{'
2817 : (p[0] == '\\' && p[1] == '{'))))
2818 {
2819 /* Start building a new exactn. */
2820
2821 laststart = b;
2822
2823 BUF_PUSH_2 (exactn, 0);
2824 pending_exact = b - 1;
2825 }
2826
2827 BUF_PUSH (c);
2828 (*pending_exact)++;
2829 break;
2830 } /* switch (c) */
2831 } /* while p != pend */
2832
2833
2834 /* Through the pattern now. */
2835
2836 if (fixup_alt_jump)
2837 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2838
2839 if (!COMPILE_STACK_EMPTY)
2840 FREE_STACK_RETURN (REG_EPAREN);
2841
2842 /* If we don't want backtracking, force success
2843 the first time we reach the end of the compiled pattern. */
2844 if (syntax & RE_NO_POSIX_BACKTRACKING)
2845 BUF_PUSH (succeed);
2846
2847 free (compile_stack.stack);
2848
2849 /* We have succeeded; set the length of the buffer. */
2850 bufp->used = b - bufp->buffer;
2851
2852 #ifdef DEBUG
2853 if (debug)
2854 {
2855 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2856 print_compiled_pattern (bufp);
2857 }
2858 #endif /* DEBUG */
2859
2860 #ifndef MATCH_MAY_ALLOCATE
2861 /* Initialize the failure stack to the largest possible stack. This
2862 isn't necessary unless we're trying to avoid calling alloca in
2863 the search and match routines. */
2864 {
2865 int num_regs = bufp->re_nsub + 1;
2866
2867 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2868 is strictly greater than re_max_failures, the largest possible stack
2869 is 2 * re_max_failures failure points. */
2870 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2871 {
2872 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2873
2874 # ifdef emacs
2875 if (! fail_stack.stack)
2876 fail_stack.stack
2877 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2878 * sizeof (fail_stack_elt_t));
2879 else
2880 fail_stack.stack
2881 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2882 (fail_stack.size
2883 * sizeof (fail_stack_elt_t)));
2884 # else /* not emacs */
2885 if (! fail_stack.stack)
2886 fail_stack.stack
2887 = (fail_stack_elt_t *) malloc (fail_stack.size
2888 * sizeof (fail_stack_elt_t));
2889 else
2890 fail_stack.stack
2891 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2892 (fail_stack.size
2893 * sizeof (fail_stack_elt_t)));
2894 # endif /* not emacs */
2895 }
2896
2897 regex_grow_registers (num_regs);
2898 }
2899 #endif /* not MATCH_MAY_ALLOCATE */
2900
2901 return REG_NOERROR;
2902 } /* regex_compile */
2903 \f
2904 /* Subroutines for `regex_compile'. */
2905
2906 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2907
2908 static void
2909 store_op1 (op, loc, arg)
2910 re_opcode_t op;
2911 unsigned char *loc;
2912 int arg;
2913 {
2914 *loc = (unsigned char) op;
2915 STORE_NUMBER (loc + 1, arg);
2916 }
2917
2918
2919 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2920
2921 static void
2922 store_op2 (op, loc, arg1, arg2)
2923 re_opcode_t op;
2924 unsigned char *loc;
2925 int arg1, arg2;
2926 {
2927 *loc = (unsigned char) op;
2928 STORE_NUMBER (loc + 1, arg1);
2929 STORE_NUMBER (loc + 3, arg2);
2930 }
2931
2932
2933 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2934 for OP followed by two-byte integer parameter ARG. */
2935
2936 static void
2937 insert_op1 (op, loc, arg, end)
2938 re_opcode_t op;
2939 unsigned char *loc;
2940 int arg;
2941 unsigned char *end;
2942 {
2943 register unsigned char *pfrom = end;
2944 register unsigned char *pto = end + 3;
2945
2946 while (pfrom != loc)
2947 *--pto = *--pfrom;
2948
2949 store_op1 (op, loc, arg);
2950 }
2951
2952
2953 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2954
2955 static void
2956 insert_op2 (op, loc, arg1, arg2, end)
2957 re_opcode_t op;
2958 unsigned char *loc;
2959 int arg1, arg2;
2960 unsigned char *end;
2961 {
2962 register unsigned char *pfrom = end;
2963 register unsigned char *pto = end + 5;
2964
2965 while (pfrom != loc)
2966 *--pto = *--pfrom;
2967
2968 store_op2 (op, loc, arg1, arg2);
2969 }
2970
2971
2972 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2973 after an alternative or a begin-subexpression. We assume there is at
2974 least one character before the ^. */
2975
2976 static boolean
2977 at_begline_loc_p (pattern, p, syntax)
2978 const char *pattern, *p;
2979 reg_syntax_t syntax;
2980 {
2981 const char *prev = p - 2;
2982 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2983
2984 return
2985 /* After a subexpression? */
2986 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2987 /* After an alternative? */
2988 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2989 }
2990
2991
2992 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2993 at least one character after the $, i.e., `P < PEND'. */
2994
2995 static boolean
2996 at_endline_loc_p (p, pend, syntax)
2997 const char *p, *pend;
2998 reg_syntax_t syntax;
2999 {
3000 const char *next = p;
3001 boolean next_backslash = *next == '\\';
3002 const char *next_next = p + 1 < pend ? p + 1 : 0;
3003
3004 return
3005 /* Before a subexpression? */
3006 (syntax & RE_NO_BK_PARENS ? *next == ')'
3007 : next_backslash && next_next && *next_next == ')')
3008 /* Before an alternative? */
3009 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3010 : next_backslash && next_next && *next_next == '|');
3011 }
3012
3013
3014 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3015 false if it's not. */
3016
3017 static boolean
3018 group_in_compile_stack (compile_stack, regnum)
3019 compile_stack_type compile_stack;
3020 regnum_t regnum;
3021 {
3022 int this_element;
3023
3024 for (this_element = compile_stack.avail - 1;
3025 this_element >= 0;
3026 this_element--)
3027 if (compile_stack.stack[this_element].regnum == regnum)
3028 return true;
3029
3030 return false;
3031 }
3032
3033
3034 /* Read the ending character of a range (in a bracket expression) from the
3035 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3036 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3037 Then we set the translation of all bits between the starting and
3038 ending characters (inclusive) in the compiled pattern B.
3039
3040 Return an error code.
3041
3042 We use these short variable names so we can use the same macros as
3043 `regex_compile' itself. */
3044
3045 static reg_errcode_t
3046 compile_range (p_ptr, pend, translate, syntax, b)
3047 const char **p_ptr, *pend;
3048 RE_TRANSLATE_TYPE translate;
3049 reg_syntax_t syntax;
3050 unsigned char *b;
3051 {
3052 unsigned this_char;
3053
3054 const char *p = *p_ptr;
3055 unsigned int range_start, range_end;
3056
3057 if (p == pend)
3058 return REG_ERANGE;
3059
3060 /* Even though the pattern is a signed `char *', we need to fetch
3061 with unsigned char *'s; if the high bit of the pattern character
3062 is set, the range endpoints will be negative if we fetch using a
3063 signed char *.
3064
3065 We also want to fetch the endpoints without translating them; the
3066 appropriate translation is done in the bit-setting loop below. */
3067 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3068 range_start = ((const unsigned char *) p)[-2];
3069 range_end = ((const unsigned char *) p)[0];
3070
3071 /* Have to increment the pointer into the pattern string, so the
3072 caller isn't still at the ending character. */
3073 (*p_ptr)++;
3074
3075 /* If the start is after the end, the range is empty. */
3076 if (range_start > range_end)
3077 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3078
3079 /* Here we see why `this_char' has to be larger than an `unsigned
3080 char' -- the range is inclusive, so if `range_end' == 0xff
3081 (assuming 8-bit characters), we would otherwise go into an infinite
3082 loop, since all characters <= 0xff. */
3083 for (this_char = range_start; this_char <= range_end; this_char++)
3084 {
3085 SET_LIST_BIT (TRANSLATE (this_char));
3086 }
3087
3088 return REG_NOERROR;
3089 }
3090 \f
3091 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3092 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3093 characters can start a string that matches the pattern. This fastmap
3094 is used by re_search to skip quickly over impossible starting points.
3095
3096 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3097 area as BUFP->fastmap.
3098
3099 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3100 the pattern buffer.
3101
3102 Returns 0 if we succeed, -2 if an internal error. */
3103
3104 int
3105 re_compile_fastmap (bufp)
3106 struct re_pattern_buffer *bufp;
3107 {
3108 int j, k;
3109 #ifdef MATCH_MAY_ALLOCATE
3110 fail_stack_type fail_stack;
3111 #endif
3112 #ifndef REGEX_MALLOC
3113 char *destination;
3114 #endif
3115
3116 register char *fastmap = bufp->fastmap;
3117 unsigned char *pattern = bufp->buffer;
3118 unsigned char *p = pattern;
3119 register unsigned char *pend = pattern + bufp->used;
3120
3121 #ifdef REL_ALLOC
3122 /* This holds the pointer to the failure stack, when
3123 it is allocated relocatably. */
3124 fail_stack_elt_t *failure_stack_ptr;
3125 #endif
3126
3127 /* Assume that each path through the pattern can be null until
3128 proven otherwise. We set this false at the bottom of switch
3129 statement, to which we get only if a particular path doesn't
3130 match the empty string. */
3131 boolean path_can_be_null = true;
3132
3133 /* We aren't doing a `succeed_n' to begin with. */
3134 boolean succeed_n_p = false;
3135
3136 assert (fastmap != NULL && p != NULL);
3137
3138 INIT_FAIL_STACK ();
3139 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3140 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3141 bufp->can_be_null = 0;
3142
3143 while (1)
3144 {
3145 if (p == pend || *p == succeed)
3146 {
3147 /* We have reached the (effective) end of pattern. */
3148 if (!FAIL_STACK_EMPTY ())
3149 {
3150 bufp->can_be_null |= path_can_be_null;
3151
3152 /* Reset for next path. */
3153 path_can_be_null = true;
3154
3155 p = fail_stack.stack[--fail_stack.avail].pointer;
3156
3157 continue;
3158 }
3159 else
3160 break;
3161 }
3162
3163 /* We should never be about to go beyond the end of the pattern. */
3164 assert (p < pend);
3165
3166 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3167 {
3168
3169 /* I guess the idea here is to simply not bother with a fastmap
3170 if a backreference is used, since it's too hard to figure out
3171 the fastmap for the corresponding group. Setting
3172 `can_be_null' stops `re_search_2' from using the fastmap, so
3173 that is all we do. */
3174 case duplicate:
3175 bufp->can_be_null = 1;
3176 goto done;
3177
3178
3179 /* Following are the cases which match a character. These end
3180 with `break'. */
3181
3182 case exactn:
3183 fastmap[p[1]] = 1;
3184 break;
3185
3186
3187 case charset:
3188 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3189 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3190 fastmap[j] = 1;
3191 break;
3192
3193
3194 case charset_not:
3195 /* Chars beyond end of map must be allowed. */
3196 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3197 fastmap[j] = 1;
3198
3199 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3200 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3201 fastmap[j] = 1;
3202 break;
3203
3204
3205 case wordchar:
3206 for (j = 0; j < (1 << BYTEWIDTH); j++)
3207 if (SYNTAX (j) == Sword)
3208 fastmap[j] = 1;
3209 break;
3210
3211
3212 case notwordchar:
3213 for (j = 0; j < (1 << BYTEWIDTH); j++)
3214 if (SYNTAX (j) != Sword)
3215 fastmap[j] = 1;
3216 break;
3217
3218
3219 case anychar:
3220 {
3221 int fastmap_newline = fastmap['\n'];
3222
3223 /* `.' matches anything ... */
3224 for (j = 0; j < (1 << BYTEWIDTH); j++)
3225 fastmap[j] = 1;
3226
3227 /* ... except perhaps newline. */
3228 if (!(bufp->syntax & RE_DOT_NEWLINE))
3229 fastmap['\n'] = fastmap_newline;
3230
3231 /* Return if we have already set `can_be_null'; if we have,
3232 then the fastmap is irrelevant. Something's wrong here. */
3233 else if (bufp->can_be_null)
3234 goto done;
3235
3236 /* Otherwise, have to check alternative paths. */
3237 break;
3238 }
3239
3240 #ifdef emacs
3241 case syntaxspec:
3242 k = *p++;
3243 for (j = 0; j < (1 << BYTEWIDTH); j++)
3244 if (SYNTAX (j) == (enum syntaxcode) k)
3245 fastmap[j] = 1;
3246 break;
3247
3248
3249 case notsyntaxspec:
3250 k = *p++;
3251 for (j = 0; j < (1 << BYTEWIDTH); j++)
3252 if (SYNTAX (j) != (enum syntaxcode) k)
3253 fastmap[j] = 1;
3254 break;
3255
3256
3257 /* All cases after this match the empty string. These end with
3258 `continue'. */
3259
3260
3261 case before_dot:
3262 case at_dot:
3263 case after_dot:
3264 continue;
3265 #endif /* emacs */
3266
3267
3268 case no_op:
3269 case begline:
3270 case endline:
3271 case begbuf:
3272 case endbuf:
3273 case wordbound:
3274 case notwordbound:
3275 case wordbeg:
3276 case wordend:
3277 case push_dummy_failure:
3278 continue;
3279
3280
3281 case jump_n:
3282 case pop_failure_jump:
3283 case maybe_pop_jump:
3284 case jump:
3285 case jump_past_alt:
3286 case dummy_failure_jump:
3287 EXTRACT_NUMBER_AND_INCR (j, p);
3288 p += j;
3289 if (j > 0)
3290 continue;
3291
3292 /* Jump backward implies we just went through the body of a
3293 loop and matched nothing. Opcode jumped to should be
3294 `on_failure_jump' or `succeed_n'. Just treat it like an
3295 ordinary jump. For a * loop, it has pushed its failure
3296 point already; if so, discard that as redundant. */
3297 if ((re_opcode_t) *p != on_failure_jump
3298 && (re_opcode_t) *p != succeed_n)
3299 continue;
3300
3301 p++;
3302 EXTRACT_NUMBER_AND_INCR (j, p);
3303 p += j;
3304
3305 /* If what's on the stack is where we are now, pop it. */
3306 if (!FAIL_STACK_EMPTY ()
3307 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3308 fail_stack.avail--;
3309
3310 continue;
3311
3312
3313 case on_failure_jump:
3314 case on_failure_keep_string_jump:
3315 handle_on_failure_jump:
3316 EXTRACT_NUMBER_AND_INCR (j, p);
3317
3318 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3319 end of the pattern. We don't want to push such a point,
3320 since when we restore it above, entering the switch will
3321 increment `p' past the end of the pattern. We don't need
3322 to push such a point since we obviously won't find any more
3323 fastmap entries beyond `pend'. Such a pattern can match
3324 the null string, though. */
3325 if (p + j < pend)
3326 {
3327 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3328 {
3329 RESET_FAIL_STACK ();
3330 return -2;
3331 }
3332 }
3333 else
3334 bufp->can_be_null = 1;
3335
3336 if (succeed_n_p)
3337 {
3338 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3339 succeed_n_p = false;
3340 }
3341
3342 continue;
3343
3344
3345 case succeed_n:
3346 /* Get to the number of times to succeed. */
3347 p += 2;
3348
3349 /* Increment p past the n for when k != 0. */
3350 EXTRACT_NUMBER_AND_INCR (k, p);
3351 if (k == 0)
3352 {
3353 p -= 4;
3354 succeed_n_p = true; /* Spaghetti code alert. */
3355 goto handle_on_failure_jump;
3356 }
3357 continue;
3358
3359
3360 case set_number_at:
3361 p += 4;
3362 continue;
3363
3364
3365 case start_memory:
3366 case stop_memory:
3367 p += 2;
3368 continue;
3369
3370
3371 default:
3372 abort (); /* We have listed all the cases. */
3373 } /* switch *p++ */
3374
3375 /* Getting here means we have found the possible starting
3376 characters for one path of the pattern -- and that the empty
3377 string does not match. We need not follow this path further.
3378 Instead, look at the next alternative (remembered on the
3379 stack), or quit if no more. The test at the top of the loop
3380 does these things. */
3381 path_can_be_null = false;
3382 p = pend;
3383 } /* while p */
3384
3385 /* Set `can_be_null' for the last path (also the first path, if the
3386 pattern is empty). */
3387 bufp->can_be_null |= path_can_be_null;
3388
3389 done:
3390 RESET_FAIL_STACK ();
3391 return 0;
3392 } /* re_compile_fastmap */
3393 #ifdef _LIBC
3394 weak_alias (__re_compile_fastmap, re_compile_fastmap)
3395 #endif
3396 \f
3397 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3398 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3399 this memory for recording register information. STARTS and ENDS
3400 must be allocated using the malloc library routine, and must each
3401 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3402
3403 If NUM_REGS == 0, then subsequent matches should allocate their own
3404 register data.
3405
3406 Unless this function is called, the first search or match using
3407 PATTERN_BUFFER will allocate its own register data, without
3408 freeing the old data. */
3409
3410 void
3411 re_set_registers (bufp, regs, num_regs, starts, ends)
3412 struct re_pattern_buffer *bufp;
3413 struct re_registers *regs;
3414 unsigned num_regs;
3415 regoff_t *starts, *ends;
3416 {
3417 if (num_regs)
3418 {
3419 bufp->regs_allocated = REGS_REALLOCATE;
3420 regs->num_regs = num_regs;
3421 regs->start = starts;
3422 regs->end = ends;
3423 }
3424 else
3425 {
3426 bufp->regs_allocated = REGS_UNALLOCATED;
3427 regs->num_regs = 0;
3428 regs->start = regs->end = (regoff_t *) 0;
3429 }
3430 }
3431 #ifdef _LIBC
3432 weak_alias (__re_set_registers, re_set_registers)
3433 #endif
3434 \f
3435 /* Searching routines. */
3436
3437 /* Like re_search_2, below, but only one string is specified, and
3438 doesn't let you say where to stop matching. */
3439
3440 int
3441 re_search (bufp, string, size, startpos, range, regs)
3442 struct re_pattern_buffer *bufp;
3443 const char *string;
3444 int size, startpos, range;
3445 struct re_registers *regs;
3446 {
3447 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3448 regs, size);
3449 }
3450 #ifdef _LIBC
3451 weak_alias (__re_search, re_search)
3452 #endif
3453
3454
3455 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3456 virtual concatenation of STRING1 and STRING2, starting first at index
3457 STARTPOS, then at STARTPOS + 1, and so on.
3458
3459 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3460
3461 RANGE is how far to scan while trying to match. RANGE = 0 means try
3462 only at STARTPOS; in general, the last start tried is STARTPOS +
3463 RANGE.
3464
3465 In REGS, return the indices of the virtual concatenation of STRING1
3466 and STRING2 that matched the entire BUFP->buffer and its contained
3467 subexpressions.
3468
3469 Do not consider matching one past the index STOP in the virtual
3470 concatenation of STRING1 and STRING2.
3471
3472 We return either the position in the strings at which the match was
3473 found, -1 if no match, or -2 if error (such as failure
3474 stack overflow). */
3475
3476 int
3477 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3478 struct re_pattern_buffer *bufp;
3479 const char *string1, *string2;
3480 int size1, size2;
3481 int startpos;
3482 int range;
3483 struct re_registers *regs;
3484 int stop;
3485 {
3486 int val;
3487 register char *fastmap = bufp->fastmap;
3488 register RE_TRANSLATE_TYPE translate = bufp->translate;
3489 int total_size = size1 + size2;
3490 int endpos = startpos + range;
3491
3492 /* Check for out-of-range STARTPOS. */
3493 if (startpos < 0 || startpos > total_size)
3494 return -1;
3495
3496 /* Fix up RANGE if it might eventually take us outside
3497 the virtual concatenation of STRING1 and STRING2.
3498 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3499 if (endpos < 0)
3500 range = 0 - startpos;
3501 else if (endpos > total_size)
3502 range = total_size - startpos;
3503
3504 /* If the search isn't to be a backwards one, don't waste time in a
3505 search for a pattern that must be anchored. */
3506 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3507 {
3508 if (startpos > 0)
3509 return -1;
3510 else
3511 range = 1;
3512 }
3513
3514 #ifdef emacs
3515 /* In a forward search for something that starts with \=.
3516 don't keep searching past point. */
3517 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3518 {
3519 range = PT - startpos;
3520 if (range <= 0)
3521 return -1;
3522 }
3523 #endif /* emacs */
3524
3525 /* Update the fastmap now if not correct already. */
3526 if (fastmap && !bufp->fastmap_accurate)
3527 if (re_compile_fastmap (bufp) == -2)
3528 return -2;
3529
3530 /* Loop through the string, looking for a place to start matching. */
3531 for (;;)
3532 {
3533 /* If a fastmap is supplied, skip quickly over characters that
3534 cannot be the start of a match. If the pattern can match the
3535 null string, however, we don't need to skip characters; we want
3536 the first null string. */
3537 if (fastmap && startpos < total_size && !bufp->can_be_null)
3538 {
3539 if (range > 0) /* Searching forwards. */
3540 {
3541 register const char *d;
3542 register int lim = 0;
3543 int irange = range;
3544
3545 if (startpos < size1 && startpos + range >= size1)
3546 lim = range - (size1 - startpos);
3547
3548 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3549
3550 /* Written out as an if-else to avoid testing `translate'
3551 inside the loop. */
3552 if (translate)
3553 while (range > lim
3554 && !fastmap[(unsigned char)
3555 translate[(unsigned char) *d++]])
3556 range--;
3557 else
3558 while (range > lim && !fastmap[(unsigned char) *d++])
3559 range--;
3560
3561 startpos += irange - range;
3562 }
3563 else /* Searching backwards. */
3564 {
3565 register char c = (size1 == 0 || startpos >= size1
3566 ? string2[startpos - size1]
3567 : string1[startpos]);
3568
3569 if (!fastmap[(unsigned char) TRANSLATE (c)])
3570 goto advance;
3571 }
3572 }
3573
3574 /* If can't match the null string, and that's all we have left, fail. */
3575 if (range >= 0 && startpos == total_size && fastmap
3576 && !bufp->can_be_null)
3577 return -1;
3578
3579 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3580 startpos, regs, stop);
3581 #ifndef REGEX_MALLOC
3582 # ifdef C_ALLOCA
3583 alloca (0);
3584 # endif
3585 #endif
3586
3587 if (val >= 0)
3588 return startpos;
3589
3590 if (val == -2)
3591 return -2;
3592
3593 advance:
3594 if (!range)
3595 break;
3596 else if (range > 0)
3597 {
3598 range--;
3599 startpos++;
3600 }
3601 else
3602 {
3603 range++;
3604 startpos--;
3605 }
3606 }
3607 return -1;
3608 } /* re_search_2 */
3609 #ifdef _LIBC
3610 weak_alias (__re_search_2, re_search_2)
3611 #endif
3612 \f
3613 /* This converts PTR, a pointer into one of the search strings `string1'
3614 and `string2' into an offset from the beginning of that string. */
3615 #define POINTER_TO_OFFSET(ptr) \
3616 (FIRST_STRING_P (ptr) \
3617 ? ((regoff_t) ((ptr) - string1)) \
3618 : ((regoff_t) ((ptr) - string2 + size1)))
3619
3620 /* Macros for dealing with the split strings in re_match_2. */
3621
3622 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3623
3624 /* Call before fetching a character with *d. This switches over to
3625 string2 if necessary. */
3626 #define PREFETCH() \
3627 while (d == dend) \
3628 { \
3629 /* End of string2 => fail. */ \
3630 if (dend == end_match_2) \
3631 goto fail; \
3632 /* End of string1 => advance to string2. */ \
3633 d = string2; \
3634 dend = end_match_2; \
3635 }
3636
3637
3638 /* Test if at very beginning or at very end of the virtual concatenation
3639 of `string1' and `string2'. If only one string, it's `string2'. */
3640 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3641 #define AT_STRINGS_END(d) ((d) == end2)
3642
3643
3644 /* Test if D points to a character which is word-constituent. We have
3645 two special cases to check for: if past the end of string1, look at
3646 the first character in string2; and if before the beginning of
3647 string2, look at the last character in string1. */
3648 #define WORDCHAR_P(d) \
3649 (SYNTAX ((d) == end1 ? *string2 \
3650 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3651 == Sword)
3652
3653 /* Disabled due to a compiler bug -- see comment at case wordbound */
3654 #if 0
3655 /* Test if the character before D and the one at D differ with respect
3656 to being word-constituent. */
3657 #define AT_WORD_BOUNDARY(d) \
3658 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3659 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3660 #endif
3661
3662 /* Free everything we malloc. */
3663 #ifdef MATCH_MAY_ALLOCATE
3664 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3665 # define FREE_VARIABLES() \
3666 do { \
3667 REGEX_FREE_STACK (fail_stack.stack); \
3668 FREE_VAR (regstart); \
3669 FREE_VAR (regend); \
3670 FREE_VAR (old_regstart); \
3671 FREE_VAR (old_regend); \
3672 FREE_VAR (best_regstart); \
3673 FREE_VAR (best_regend); \
3674 FREE_VAR (reg_info); \
3675 FREE_VAR (reg_dummy); \
3676 FREE_VAR (reg_info_dummy); \
3677 } while (0)
3678 #else
3679 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3680 #endif /* not MATCH_MAY_ALLOCATE */
3681
3682 /* These values must meet several constraints. They must not be valid
3683 register values; since we have a limit of 255 registers (because
3684 we use only one byte in the pattern for the register number), we can
3685 use numbers larger than 255. They must differ by 1, because of
3686 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3687 be larger than the value for the highest register, so we do not try
3688 to actually save any registers when none are active. */
3689 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3690 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3691 \f
3692 /* Matching routines. */
3693
3694 #ifndef emacs /* Emacs never uses this. */
3695 /* re_match is like re_match_2 except it takes only a single string. */
3696
3697 int
3698 re_match (bufp, string, size, pos, regs)
3699 struct re_pattern_buffer *bufp;
3700 const char *string;
3701 int size, pos;
3702 struct re_registers *regs;
3703 {
3704 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3705 pos, regs, size);
3706 # ifndef REGEX_MALLOC
3707 # ifdef C_ALLOCA
3708 alloca (0);
3709 # endif
3710 # endif
3711 return result;
3712 }
3713 # ifdef _LIBC
3714 weak_alias (__re_match, re_match)
3715 # endif
3716 #endif /* not emacs */
3717
3718 static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3719 unsigned char *end,
3720 register_info_type *reg_info));
3721 static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3722 unsigned char *end,
3723 register_info_type *reg_info));
3724 static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3725 unsigned char *end,
3726 register_info_type *reg_info));
3727 static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3728 int len, char *translate));
3729
3730 /* re_match_2 matches the compiled pattern in BUFP against the
3731 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3732 and SIZE2, respectively). We start matching at POS, and stop
3733 matching at STOP.
3734
3735 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3736 store offsets for the substring each group matched in REGS. See the
3737 documentation for exactly how many groups we fill.
3738
3739 We return -1 if no match, -2 if an internal error (such as the
3740 failure stack overflowing). Otherwise, we return the length of the
3741 matched substring. */
3742
3743 int
3744 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3745 struct re_pattern_buffer *bufp;
3746 const char *string1, *string2;
3747 int size1, size2;
3748 int pos;
3749 struct re_registers *regs;
3750 int stop;
3751 {
3752 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3753 pos, regs, stop);
3754 #ifndef REGEX_MALLOC
3755 # ifdef C_ALLOCA
3756 alloca (0);
3757 # endif
3758 #endif
3759 return result;
3760 }
3761 #ifdef _LIBC
3762 weak_alias (__re_match_2, re_match_2)
3763 #endif
3764
3765 /* This is a separate function so that we can force an alloca cleanup
3766 afterwards. */
3767 static int
3768 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3769 struct re_pattern_buffer *bufp;
3770 const char *string1, *string2;
3771 int size1, size2;
3772 int pos;
3773 struct re_registers *regs;
3774 int stop;
3775 {
3776 /* General temporaries. */
3777 int mcnt;
3778 unsigned char *p1;
3779
3780 /* Just past the end of the corresponding string. */
3781 const char *end1, *end2;
3782
3783 /* Pointers into string1 and string2, just past the last characters in
3784 each to consider matching. */
3785 const char *end_match_1, *end_match_2;
3786
3787 /* Where we are in the data, and the end of the current string. */
3788 const char *d, *dend;
3789
3790 /* Where we are in the pattern, and the end of the pattern. */
3791 unsigned char *p = bufp->buffer;
3792 register unsigned char *pend = p + bufp->used;
3793
3794 /* Mark the opcode just after a start_memory, so we can test for an
3795 empty subpattern when we get to the stop_memory. */
3796 unsigned char *just_past_start_mem = 0;
3797
3798 /* We use this to map every character in the string. */
3799 RE_TRANSLATE_TYPE translate = bufp->translate;
3800
3801 /* Failure point stack. Each place that can handle a failure further
3802 down the line pushes a failure point on this stack. It consists of
3803 restart, regend, and reg_info for all registers corresponding to
3804 the subexpressions we're currently inside, plus the number of such
3805 registers, and, finally, two char *'s. The first char * is where
3806 to resume scanning the pattern; the second one is where to resume
3807 scanning the strings. If the latter is zero, the failure point is
3808 a ``dummy''; if a failure happens and the failure point is a dummy,
3809 it gets discarded and the next next one is tried. */
3810 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3811 fail_stack_type fail_stack;
3812 #endif
3813 #ifdef DEBUG
3814 static unsigned failure_id = 0;
3815 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3816 #endif
3817
3818 #ifdef REL_ALLOC
3819 /* This holds the pointer to the failure stack, when
3820 it is allocated relocatably. */
3821 fail_stack_elt_t *failure_stack_ptr;
3822 #endif
3823
3824 /* We fill all the registers internally, independent of what we
3825 return, for use in backreferences. The number here includes
3826 an element for register zero. */
3827 size_t num_regs = bufp->re_nsub + 1;
3828
3829 /* The currently active registers. */
3830 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3831 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3832
3833 /* Information on the contents of registers. These are pointers into
3834 the input strings; they record just what was matched (on this
3835 attempt) by a subexpression part of the pattern, that is, the
3836 regnum-th regstart pointer points to where in the pattern we began
3837 matching and the regnum-th regend points to right after where we
3838 stopped matching the regnum-th subexpression. (The zeroth register
3839 keeps track of what the whole pattern matches.) */
3840 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3841 const char **regstart, **regend;
3842 #endif
3843
3844 /* If a group that's operated upon by a repetition operator fails to
3845 match anything, then the register for its start will need to be
3846 restored because it will have been set to wherever in the string we
3847 are when we last see its open-group operator. Similarly for a
3848 register's end. */
3849 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3850 const char **old_regstart, **old_regend;
3851 #endif
3852
3853 /* The is_active field of reg_info helps us keep track of which (possibly
3854 nested) subexpressions we are currently in. The matched_something
3855 field of reg_info[reg_num] helps us tell whether or not we have
3856 matched any of the pattern so far this time through the reg_num-th
3857 subexpression. These two fields get reset each time through any
3858 loop their register is in. */
3859 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3860 register_info_type *reg_info;
3861 #endif
3862
3863 /* The following record the register info as found in the above
3864 variables when we find a match better than any we've seen before.
3865 This happens as we backtrack through the failure points, which in
3866 turn happens only if we have not yet matched the entire string. */
3867 unsigned best_regs_set = false;
3868 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3869 const char **best_regstart, **best_regend;
3870 #endif
3871
3872 /* Logically, this is `best_regend[0]'. But we don't want to have to
3873 allocate space for that if we're not allocating space for anything
3874 else (see below). Also, we never need info about register 0 for
3875 any of the other register vectors, and it seems rather a kludge to
3876 treat `best_regend' differently than the rest. So we keep track of
3877 the end of the best match so far in a separate variable. We
3878 initialize this to NULL so that when we backtrack the first time
3879 and need to test it, it's not garbage. */
3880 const char *match_end = NULL;
3881
3882 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3883 int set_regs_matched_done = 0;
3884
3885 /* Used when we pop values we don't care about. */
3886 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3887 const char **reg_dummy;
3888 register_info_type *reg_info_dummy;
3889 #endif
3890
3891 #ifdef DEBUG
3892 /* Counts the total number of registers pushed. */
3893 unsigned num_regs_pushed = 0;
3894 #endif
3895
3896 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3897
3898 INIT_FAIL_STACK ();
3899
3900 #ifdef MATCH_MAY_ALLOCATE
3901 /* Do not bother to initialize all the register variables if there are
3902 no groups in the pattern, as it takes a fair amount of time. If
3903 there are groups, we include space for register 0 (the whole
3904 pattern), even though we never use it, since it simplifies the
3905 array indexing. We should fix this. */
3906 if (bufp->re_nsub)
3907 {
3908 regstart = REGEX_TALLOC (num_regs, const char *);
3909 regend = REGEX_TALLOC (num_regs, const char *);
3910 old_regstart = REGEX_TALLOC (num_regs, const char *);
3911 old_regend = REGEX_TALLOC (num_regs, const char *);
3912 best_regstart = REGEX_TALLOC (num_regs, const char *);
3913 best_regend = REGEX_TALLOC (num_regs, const char *);
3914 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3915 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3916 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3917
3918 if (!(regstart && regend && old_regstart && old_regend && reg_info
3919 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3920 {
3921 FREE_VARIABLES ();
3922 return -2;
3923 }
3924 }
3925 else
3926 {
3927 /* We must initialize all our variables to NULL, so that
3928 `FREE_VARIABLES' doesn't try to free them. */
3929 regstart = regend = old_regstart = old_regend = best_regstart
3930 = best_regend = reg_dummy = NULL;
3931 reg_info = reg_info_dummy = (register_info_type *) NULL;
3932 }
3933 #endif /* MATCH_MAY_ALLOCATE */
3934
3935 /* The starting position is bogus. */
3936 if (pos < 0 || pos > size1 + size2)
3937 {
3938 FREE_VARIABLES ();
3939 return -1;
3940 }
3941
3942 /* Initialize subexpression text positions to -1 to mark ones that no
3943 start_memory/stop_memory has been seen for. Also initialize the
3944 register information struct. */
3945 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
3946 {
3947 regstart[mcnt] = regend[mcnt]
3948 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3949
3950 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3951 IS_ACTIVE (reg_info[mcnt]) = 0;
3952 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3953 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3954 }
3955
3956 /* We move `string1' into `string2' if the latter's empty -- but not if
3957 `string1' is null. */
3958 if (size2 == 0 && string1 != NULL)
3959 {
3960 string2 = string1;
3961 size2 = size1;
3962 string1 = 0;
3963 size1 = 0;
3964 }
3965 end1 = string1 + size1;
3966 end2 = string2 + size2;
3967
3968 /* Compute where to stop matching, within the two strings. */
3969 if (stop <= size1)
3970 {
3971 end_match_1 = string1 + stop;
3972 end_match_2 = string2;
3973 }
3974 else
3975 {
3976 end_match_1 = end1;
3977 end_match_2 = string2 + stop - size1;
3978 }
3979
3980 /* `p' scans through the pattern as `d' scans through the data.
3981 `dend' is the end of the input string that `d' points within. `d'
3982 is advanced into the following input string whenever necessary, but
3983 this happens before fetching; therefore, at the beginning of the
3984 loop, `d' can be pointing at the end of a string, but it cannot
3985 equal `string2'. */
3986 if (size1 > 0 && pos <= size1)
3987 {
3988 d = string1 + pos;
3989 dend = end_match_1;
3990 }
3991 else
3992 {
3993 d = string2 + pos - size1;
3994 dend = end_match_2;
3995 }
3996
3997 DEBUG_PRINT1 ("The compiled pattern is:\n");
3998 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3999 DEBUG_PRINT1 ("The string to match is: `");
4000 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4001 DEBUG_PRINT1 ("'\n");
4002
4003 /* This loops over pattern commands. It exits by returning from the
4004 function if the match is complete, or it drops through if the match
4005 fails at this starting point in the input data. */
4006 for (;;)
4007 {
4008 #ifdef _LIBC
4009 DEBUG_PRINT2 ("\n%p: ", p);
4010 #else
4011 DEBUG_PRINT2 ("\n0x%x: ", p);
4012 #endif
4013
4014 if (p == pend)
4015 { /* End of pattern means we might have succeeded. */
4016 DEBUG_PRINT1 ("end of pattern ... ");
4017
4018 /* If we haven't matched the entire string, and we want the
4019 longest match, try backtracking. */
4020 if (d != end_match_2)
4021 {
4022 /* 1 if this match ends in the same string (string1 or string2)
4023 as the best previous match. */
4024 boolean same_str_p = (FIRST_STRING_P (match_end)
4025 == MATCHING_IN_FIRST_STRING);
4026 /* 1 if this match is the best seen so far. */
4027 boolean best_match_p;
4028
4029 /* AIX compiler got confused when this was combined
4030 with the previous declaration. */
4031 if (same_str_p)
4032 best_match_p = d > match_end;
4033 else
4034 best_match_p = !MATCHING_IN_FIRST_STRING;
4035
4036 DEBUG_PRINT1 ("backtracking.\n");
4037
4038 if (!FAIL_STACK_EMPTY ())
4039 { /* More failure points to try. */
4040
4041 /* If exceeds best match so far, save it. */
4042 if (!best_regs_set || best_match_p)
4043 {
4044 best_regs_set = true;
4045 match_end = d;
4046
4047 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4048
4049 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4050 {
4051 best_regstart[mcnt] = regstart[mcnt];
4052 best_regend[mcnt] = regend[mcnt];
4053 }
4054 }
4055 goto fail;
4056 }
4057
4058 /* If no failure points, don't restore garbage. And if
4059 last match is real best match, don't restore second
4060 best one. */
4061 else if (best_regs_set && !best_match_p)
4062 {
4063 restore_best_regs:
4064 /* Restore best match. It may happen that `dend ==
4065 end_match_1' while the restored d is in string2.
4066 For example, the pattern `x.*y.*z' against the
4067 strings `x-' and `y-z-', if the two strings are
4068 not consecutive in memory. */
4069 DEBUG_PRINT1 ("Restoring best registers.\n");
4070
4071 d = match_end;
4072 dend = ((d >= string1 && d <= end1)
4073 ? end_match_1 : end_match_2);
4074
4075 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4076 {
4077 regstart[mcnt] = best_regstart[mcnt];
4078 regend[mcnt] = best_regend[mcnt];
4079 }
4080 }
4081 } /* d != end_match_2 */
4082
4083 succeed_label:
4084 DEBUG_PRINT1 ("Accepting match.\n");
4085
4086 /* If caller wants register contents data back, do it. */
4087 if (regs && !bufp->no_sub)
4088 {
4089 /* Have the register data arrays been allocated? */
4090 if (bufp->regs_allocated == REGS_UNALLOCATED)
4091 { /* No. So allocate them with malloc. We need one
4092 extra element beyond `num_regs' for the `-1' marker
4093 GNU code uses. */
4094 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4095 regs->start = TALLOC (regs->num_regs, regoff_t);
4096 regs->end = TALLOC (regs->num_regs, regoff_t);
4097 if (regs->start == NULL || regs->end == NULL)
4098 {
4099 FREE_VARIABLES ();
4100 return -2;
4101 }
4102 bufp->regs_allocated = REGS_REALLOCATE;
4103 }
4104 else if (bufp->regs_allocated == REGS_REALLOCATE)
4105 { /* Yes. If we need more elements than were already
4106 allocated, reallocate them. If we need fewer, just
4107 leave it alone. */
4108 if (regs->num_regs < num_regs + 1)
4109 {
4110 regs->num_regs = num_regs + 1;
4111 RETALLOC (regs->start, regs->num_regs, regoff_t);
4112 RETALLOC (regs->end, regs->num_regs, regoff_t);
4113 if (regs->start == NULL || regs->end == NULL)
4114 {
4115 FREE_VARIABLES ();
4116 return -2;
4117 }
4118 }
4119 }
4120 else
4121 {
4122 /* These braces fend off a "empty body in an else-statement"
4123 warning under GCC when assert expands to nothing. */
4124 assert (bufp->regs_allocated == REGS_FIXED);
4125 }
4126
4127 /* Convert the pointer data in `regstart' and `regend' to
4128 indices. Register zero has to be set differently,
4129 since we haven't kept track of any info for it. */
4130 if (regs->num_regs > 0)
4131 {
4132 regs->start[0] = pos;
4133 regs->end[0] = (MATCHING_IN_FIRST_STRING
4134 ? ((regoff_t) (d - string1))
4135 : ((regoff_t) (d - string2 + size1)));
4136 }
4137
4138 /* Go through the first `min (num_regs, regs->num_regs)'
4139 registers, since that is all we initialized. */
4140 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4141 mcnt++)
4142 {
4143 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4144 regs->start[mcnt] = regs->end[mcnt] = -1;
4145 else
4146 {
4147 regs->start[mcnt]
4148 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4149 regs->end[mcnt]
4150 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4151 }
4152 }
4153
4154 /* If the regs structure we return has more elements than
4155 were in the pattern, set the extra elements to -1. If
4156 we (re)allocated the registers, this is the case,
4157 because we always allocate enough to have at least one
4158 -1 at the end. */
4159 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4160 regs->start[mcnt] = regs->end[mcnt] = -1;
4161 } /* regs && !bufp->no_sub */
4162
4163 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4164 nfailure_points_pushed, nfailure_points_popped,
4165 nfailure_points_pushed - nfailure_points_popped);
4166 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4167
4168 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4169 ? string1
4170 : string2 - size1);
4171
4172 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4173
4174 FREE_VARIABLES ();
4175 return mcnt;
4176 }
4177
4178 /* Otherwise match next pattern command. */
4179 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4180 {
4181 /* Ignore these. Used to ignore the n of succeed_n's which
4182 currently have n == 0. */
4183 case no_op:
4184 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4185 break;
4186
4187 case succeed:
4188 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4189 goto succeed_label;
4190
4191 /* Match the next n pattern characters exactly. The following
4192 byte in the pattern defines n, and the n bytes after that
4193 are the characters to match. */
4194 case exactn:
4195 mcnt = *p++;
4196 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4197
4198 /* This is written out as an if-else so we don't waste time
4199 testing `translate' inside the loop. */
4200 if (translate)
4201 {
4202 do
4203 {
4204 PREFETCH ();
4205 if ((unsigned char) translate[(unsigned char) *d++]
4206 != (unsigned char) *p++)
4207 goto fail;
4208 }
4209 while (--mcnt);
4210 }
4211 else
4212 {
4213 do
4214 {
4215 PREFETCH ();
4216 if (*d++ != (char) *p++) goto fail;
4217 }
4218 while (--mcnt);
4219 }
4220 SET_REGS_MATCHED ();
4221 break;
4222
4223
4224 /* Match any character except possibly a newline or a null. */
4225 case anychar:
4226 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4227
4228 PREFETCH ();
4229
4230 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4231 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4232 goto fail;
4233
4234 SET_REGS_MATCHED ();
4235 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4236 d++;
4237 break;
4238
4239
4240 case charset:
4241 case charset_not:
4242 {
4243 register unsigned char c;
4244 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4245
4246 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4247
4248 PREFETCH ();
4249 c = TRANSLATE (*d); /* The character to match. */
4250
4251 /* Cast to `unsigned' instead of `unsigned char' in case the
4252 bit list is a full 32 bytes long. */
4253 if (c < (unsigned) (*p * BYTEWIDTH)
4254 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4255 not = !not;
4256
4257 p += 1 + *p;
4258
4259 if (!not) goto fail;
4260
4261 SET_REGS_MATCHED ();
4262 d++;
4263 break;
4264 }
4265
4266
4267 /* The beginning of a group is represented by start_memory.
4268 The arguments are the register number in the next byte, and the
4269 number of groups inner to this one in the next. The text
4270 matched within the group is recorded (in the internal
4271 registers data structure) under the register number. */
4272 case start_memory:
4273 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4274
4275 /* Find out if this group can match the empty string. */
4276 p1 = p; /* To send to group_match_null_string_p. */
4277
4278 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4279 REG_MATCH_NULL_STRING_P (reg_info[*p])
4280 = group_match_null_string_p (&p1, pend, reg_info);
4281
4282 /* Save the position in the string where we were the last time
4283 we were at this open-group operator in case the group is
4284 operated upon by a repetition operator, e.g., with `(a*)*b'
4285 against `ab'; then we want to ignore where we are now in
4286 the string in case this attempt to match fails. */
4287 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4288 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4289 : regstart[*p];
4290 DEBUG_PRINT2 (" old_regstart: %d\n",
4291 POINTER_TO_OFFSET (old_regstart[*p]));
4292
4293 regstart[*p] = d;
4294 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4295
4296 IS_ACTIVE (reg_info[*p]) = 1;
4297 MATCHED_SOMETHING (reg_info[*p]) = 0;
4298
4299 /* Clear this whenever we change the register activity status. */
4300 set_regs_matched_done = 0;
4301
4302 /* This is the new highest active register. */
4303 highest_active_reg = *p;
4304
4305 /* If nothing was active before, this is the new lowest active
4306 register. */
4307 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4308 lowest_active_reg = *p;
4309
4310 /* Move past the register number and inner group count. */
4311 p += 2;
4312 just_past_start_mem = p;
4313
4314 break;
4315
4316
4317 /* The stop_memory opcode represents the end of a group. Its
4318 arguments are the same as start_memory's: the register
4319 number, and the number of inner groups. */
4320 case stop_memory:
4321 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4322
4323 /* We need to save the string position the last time we were at
4324 this close-group operator in case the group is operated
4325 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4326 against `aba'; then we want to ignore where we are now in
4327 the string in case this attempt to match fails. */
4328 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4329 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4330 : regend[*p];
4331 DEBUG_PRINT2 (" old_regend: %d\n",
4332 POINTER_TO_OFFSET (old_regend[*p]));
4333
4334 regend[*p] = d;
4335 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4336
4337 /* This register isn't active anymore. */
4338 IS_ACTIVE (reg_info[*p]) = 0;
4339
4340 /* Clear this whenever we change the register activity status. */
4341 set_regs_matched_done = 0;
4342
4343 /* If this was the only register active, nothing is active
4344 anymore. */
4345 if (lowest_active_reg == highest_active_reg)
4346 {
4347 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4348 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4349 }
4350 else
4351 { /* We must scan for the new highest active register, since
4352 it isn't necessarily one less than now: consider
4353 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4354 new highest active register is 1. */
4355 unsigned char r = *p - 1;
4356 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4357 r--;
4358
4359 /* If we end up at register zero, that means that we saved
4360 the registers as the result of an `on_failure_jump', not
4361 a `start_memory', and we jumped to past the innermost
4362 `stop_memory'. For example, in ((.)*) we save
4363 registers 1 and 2 as a result of the *, but when we pop
4364 back to the second ), we are at the stop_memory 1.
4365 Thus, nothing is active. */
4366 if (r == 0)
4367 {
4368 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4369 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4370 }
4371 else
4372 highest_active_reg = r;
4373 }
4374
4375 /* If just failed to match something this time around with a
4376 group that's operated on by a repetition operator, try to
4377 force exit from the ``loop'', and restore the register
4378 information for this group that we had before trying this
4379 last match. */
4380 if ((!MATCHED_SOMETHING (reg_info[*p])
4381 || just_past_start_mem == p - 1)
4382 && (p + 2) < pend)
4383 {
4384 boolean is_a_jump_n = false;
4385
4386 p1 = p + 2;
4387 mcnt = 0;
4388 switch ((re_opcode_t) *p1++)
4389 {
4390 case jump_n:
4391 is_a_jump_n = true;
4392 case pop_failure_jump:
4393 case maybe_pop_jump:
4394 case jump:
4395 case dummy_failure_jump:
4396 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4397 if (is_a_jump_n)
4398 p1 += 2;
4399 break;
4400
4401 default:
4402 /* do nothing */ ;
4403 }
4404 p1 += mcnt;
4405
4406 /* If the next operation is a jump backwards in the pattern
4407 to an on_failure_jump right before the start_memory
4408 corresponding to this stop_memory, exit from the loop
4409 by forcing a failure after pushing on the stack the
4410 on_failure_jump's jump in the pattern, and d. */
4411 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4412 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4413 {
4414 /* If this group ever matched anything, then restore
4415 what its registers were before trying this last
4416 failed match, e.g., with `(a*)*b' against `ab' for
4417 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4418 against `aba' for regend[3].
4419
4420 Also restore the registers for inner groups for,
4421 e.g., `((a*)(b*))*' against `aba' (register 3 would
4422 otherwise get trashed). */
4423
4424 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4425 {
4426 unsigned r;
4427
4428 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4429
4430 /* Restore this and inner groups' (if any) registers. */
4431 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4432 r++)
4433 {
4434 regstart[r] = old_regstart[r];
4435
4436 /* xx why this test? */
4437 if (old_regend[r] >= regstart[r])
4438 regend[r] = old_regend[r];
4439 }
4440 }
4441 p1++;
4442 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4443 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4444
4445 goto fail;
4446 }
4447 }
4448
4449 /* Move past the register number and the inner group count. */
4450 p += 2;
4451 break;
4452
4453
4454 /* \<digit> has been turned into a `duplicate' command which is
4455 followed by the numeric value of <digit> as the register number. */
4456 case duplicate:
4457 {
4458 register const char *d2, *dend2;
4459 int regno = *p++; /* Get which register to match against. */
4460 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4461
4462 /* Can't back reference a group which we've never matched. */
4463 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4464 goto fail;
4465
4466 /* Where in input to try to start matching. */
4467 d2 = regstart[regno];
4468
4469 /* Where to stop matching; if both the place to start and
4470 the place to stop matching are in the same string, then
4471 set to the place to stop, otherwise, for now have to use
4472 the end of the first string. */
4473
4474 dend2 = ((FIRST_STRING_P (regstart[regno])
4475 == FIRST_STRING_P (regend[regno]))
4476 ? regend[regno] : end_match_1);
4477 for (;;)
4478 {
4479 /* If necessary, advance to next segment in register
4480 contents. */
4481 while (d2 == dend2)
4482 {
4483 if (dend2 == end_match_2) break;
4484 if (dend2 == regend[regno]) break;
4485
4486 /* End of string1 => advance to string2. */
4487 d2 = string2;
4488 dend2 = regend[regno];
4489 }
4490 /* At end of register contents => success */
4491 if (d2 == dend2) break;
4492
4493 /* If necessary, advance to next segment in data. */
4494 PREFETCH ();
4495
4496 /* How many characters left in this segment to match. */
4497 mcnt = dend - d;
4498
4499 /* Want how many consecutive characters we can match in
4500 one shot, so, if necessary, adjust the count. */
4501 if (mcnt > dend2 - d2)
4502 mcnt = dend2 - d2;
4503
4504 /* Compare that many; failure if mismatch, else move
4505 past them. */
4506 if (translate
4507 ? bcmp_translate (d, d2, mcnt, translate)
4508 : memcmp (d, d2, mcnt))
4509 goto fail;
4510 d += mcnt, d2 += mcnt;
4511
4512 /* Do this because we've match some characters. */
4513 SET_REGS_MATCHED ();
4514 }
4515 }
4516 break;
4517
4518
4519 /* begline matches the empty string at the beginning of the string
4520 (unless `not_bol' is set in `bufp'), and, if
4521 `newline_anchor' is set, after newlines. */
4522 case begline:
4523 DEBUG_PRINT1 ("EXECUTING begline.\n");
4524
4525 if (AT_STRINGS_BEG (d))
4526 {
4527 if (!bufp->not_bol) break;
4528 }
4529 else if (d[-1] == '\n' && bufp->newline_anchor)
4530 {
4531 break;
4532 }
4533 /* In all other cases, we fail. */
4534 goto fail;
4535
4536
4537 /* endline is the dual of begline. */
4538 case endline:
4539 DEBUG_PRINT1 ("EXECUTING endline.\n");
4540
4541 if (AT_STRINGS_END (d))
4542 {
4543 if (!bufp->not_eol) break;
4544 }
4545
4546 /* We have to ``prefetch'' the next character. */
4547 else if ((d == end1 ? *string2 : *d) == '\n'
4548 && bufp->newline_anchor)
4549 {
4550 break;
4551 }
4552 goto fail;
4553
4554
4555 /* Match at the very beginning of the data. */
4556 case begbuf:
4557 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4558 if (AT_STRINGS_BEG (d))
4559 break;
4560 goto fail;
4561
4562
4563 /* Match at the very end of the data. */
4564 case endbuf:
4565 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4566 if (AT_STRINGS_END (d))
4567 break;
4568 goto fail;
4569
4570
4571 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4572 pushes NULL as the value for the string on the stack. Then
4573 `pop_failure_point' will keep the current value for the
4574 string, instead of restoring it. To see why, consider
4575 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4576 then the . fails against the \n. But the next thing we want
4577 to do is match the \n against the \n; if we restored the
4578 string value, we would be back at the foo.
4579
4580 Because this is used only in specific cases, we don't need to
4581 check all the things that `on_failure_jump' does, to make
4582 sure the right things get saved on the stack. Hence we don't
4583 share its code. The only reason to push anything on the
4584 stack at all is that otherwise we would have to change
4585 `anychar's code to do something besides goto fail in this
4586 case; that seems worse than this. */
4587 case on_failure_keep_string_jump:
4588 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4589
4590 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4591 #ifdef _LIBC
4592 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4593 #else
4594 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4595 #endif
4596
4597 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4598 break;
4599
4600
4601 /* Uses of on_failure_jump:
4602
4603 Each alternative starts with an on_failure_jump that points
4604 to the beginning of the next alternative. Each alternative
4605 except the last ends with a jump that in effect jumps past
4606 the rest of the alternatives. (They really jump to the
4607 ending jump of the following alternative, because tensioning
4608 these jumps is a hassle.)
4609
4610 Repeats start with an on_failure_jump that points past both
4611 the repetition text and either the following jump or
4612 pop_failure_jump back to this on_failure_jump. */
4613 case on_failure_jump:
4614 on_failure:
4615 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4616
4617 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4618 #ifdef _LIBC
4619 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4620 #else
4621 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4622 #endif
4623
4624 /* If this on_failure_jump comes right before a group (i.e.,
4625 the original * applied to a group), save the information
4626 for that group and all inner ones, so that if we fail back
4627 to this point, the group's information will be correct.
4628 For example, in \(a*\)*\1, we need the preceding group,
4629 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4630
4631 /* We can't use `p' to check ahead because we push
4632 a failure point to `p + mcnt' after we do this. */
4633 p1 = p;
4634
4635 /* We need to skip no_op's before we look for the
4636 start_memory in case this on_failure_jump is happening as
4637 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4638 against aba. */
4639 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4640 p1++;
4641
4642 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4643 {
4644 /* We have a new highest active register now. This will
4645 get reset at the start_memory we are about to get to,
4646 but we will have saved all the registers relevant to
4647 this repetition op, as described above. */
4648 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4649 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4650 lowest_active_reg = *(p1 + 1);
4651 }
4652
4653 DEBUG_PRINT1 (":\n");
4654 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4655 break;
4656
4657
4658 /* A smart repeat ends with `maybe_pop_jump'.
4659 We change it to either `pop_failure_jump' or `jump'. */
4660 case maybe_pop_jump:
4661 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4662 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4663 {
4664 register unsigned char *p2 = p;
4665
4666 /* Compare the beginning of the repeat with what in the
4667 pattern follows its end. If we can establish that there
4668 is nothing that they would both match, i.e., that we
4669 would have to backtrack because of (as in, e.g., `a*a')
4670 then we can change to pop_failure_jump, because we'll
4671 never have to backtrack.
4672
4673 This is not true in the case of alternatives: in
4674 `(a|ab)*' we do need to backtrack to the `ab' alternative
4675 (e.g., if the string was `ab'). But instead of trying to
4676 detect that here, the alternative has put on a dummy
4677 failure point which is what we will end up popping. */
4678
4679 /* Skip over open/close-group commands.
4680 If what follows this loop is a ...+ construct,
4681 look at what begins its body, since we will have to
4682 match at least one of that. */
4683 while (1)
4684 {
4685 if (p2 + 2 < pend
4686 && ((re_opcode_t) *p2 == stop_memory
4687 || (re_opcode_t) *p2 == start_memory))
4688 p2 += 3;
4689 else if (p2 + 6 < pend
4690 && (re_opcode_t) *p2 == dummy_failure_jump)
4691 p2 += 6;
4692 else
4693 break;
4694 }
4695
4696 p1 = p + mcnt;
4697 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4698 to the `maybe_finalize_jump' of this case. Examine what
4699 follows. */
4700
4701 /* If we're at the end of the pattern, we can change. */
4702 if (p2 == pend)
4703 {
4704 /* Consider what happens when matching ":\(.*\)"
4705 against ":/". I don't really understand this code
4706 yet. */
4707 p[-3] = (unsigned char) pop_failure_jump;
4708 DEBUG_PRINT1
4709 (" End of pattern: change to `pop_failure_jump'.\n");
4710 }
4711
4712 else if ((re_opcode_t) *p2 == exactn
4713 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4714 {
4715 register unsigned char c
4716 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4717
4718 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4719 {
4720 p[-3] = (unsigned char) pop_failure_jump;
4721 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4722 c, p1[5]);
4723 }
4724
4725 else if ((re_opcode_t) p1[3] == charset
4726 || (re_opcode_t) p1[3] == charset_not)
4727 {
4728 int not = (re_opcode_t) p1[3] == charset_not;
4729
4730 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4731 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4732 not = !not;
4733
4734 /* `not' is equal to 1 if c would match, which means
4735 that we can't change to pop_failure_jump. */
4736 if (!not)
4737 {
4738 p[-3] = (unsigned char) pop_failure_jump;
4739 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4740 }
4741 }
4742 }
4743 else if ((re_opcode_t) *p2 == charset)
4744 {
4745 #ifdef DEBUG
4746 register unsigned char c
4747 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4748 #endif
4749
4750 #if 0
4751 if ((re_opcode_t) p1[3] == exactn
4752 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4753 && (p2[2 + p1[5] / BYTEWIDTH]
4754 & (1 << (p1[5] % BYTEWIDTH)))))
4755 #else
4756 if ((re_opcode_t) p1[3] == exactn
4757 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4758 && (p2[2 + p1[4] / BYTEWIDTH]
4759 & (1 << (p1[4] % BYTEWIDTH)))))
4760 #endif
4761 {
4762 p[-3] = (unsigned char) pop_failure_jump;
4763 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4764 c, p1[5]);
4765 }
4766
4767 else if ((re_opcode_t) p1[3] == charset_not)
4768 {
4769 int idx;
4770 /* We win if the charset_not inside the loop
4771 lists every character listed in the charset after. */
4772 for (idx = 0; idx < (int) p2[1]; idx++)
4773 if (! (p2[2 + idx] == 0
4774 || (idx < (int) p1[4]
4775 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4776 break;
4777
4778 if (idx == p2[1])
4779 {
4780 p[-3] = (unsigned char) pop_failure_jump;
4781 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4782 }
4783 }
4784 else if ((re_opcode_t) p1[3] == charset)
4785 {
4786 int idx;
4787 /* We win if the charset inside the loop
4788 has no overlap with the one after the loop. */
4789 for (idx = 0;
4790 idx < (int) p2[1] && idx < (int) p1[4];
4791 idx++)
4792 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4793 break;
4794
4795 if (idx == p2[1] || idx == p1[4])
4796 {
4797 p[-3] = (unsigned char) pop_failure_jump;
4798 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4799 }
4800 }
4801 }
4802 }
4803 p -= 2; /* Point at relative address again. */
4804 if ((re_opcode_t) p[-1] != pop_failure_jump)
4805 {
4806 p[-1] = (unsigned char) jump;
4807 DEBUG_PRINT1 (" Match => jump.\n");
4808 goto unconditional_jump;
4809 }
4810 /* Note fall through. */
4811
4812
4813 /* The end of a simple repeat has a pop_failure_jump back to
4814 its matching on_failure_jump, where the latter will push a
4815 failure point. The pop_failure_jump takes off failure
4816 points put on by this pop_failure_jump's matching
4817 on_failure_jump; we got through the pattern to here from the
4818 matching on_failure_jump, so didn't fail. */
4819 case pop_failure_jump:
4820 {
4821 /* We need to pass separate storage for the lowest and
4822 highest registers, even though we don't care about the
4823 actual values. Otherwise, we will restore only one
4824 register from the stack, since lowest will == highest in
4825 `pop_failure_point'. */
4826 active_reg_t dummy_low_reg, dummy_high_reg;
4827 unsigned char *pdummy;
4828 const char *sdummy;
4829
4830 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4831 POP_FAILURE_POINT (sdummy, pdummy,
4832 dummy_low_reg, dummy_high_reg,
4833 reg_dummy, reg_dummy, reg_info_dummy);
4834 }
4835 /* Note fall through. */
4836
4837 unconditional_jump:
4838 #ifdef _LIBC
4839 DEBUG_PRINT2 ("\n%p: ", p);
4840 #else
4841 DEBUG_PRINT2 ("\n0x%x: ", p);
4842 #endif
4843 /* Note fall through. */
4844
4845 /* Unconditionally jump (without popping any failure points). */
4846 case jump:
4847 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4848 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4849 p += mcnt; /* Do the jump. */
4850 #ifdef _LIBC
4851 DEBUG_PRINT2 ("(to %p).\n", p);
4852 #else
4853 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4854 #endif
4855 break;
4856
4857
4858 /* We need this opcode so we can detect where alternatives end
4859 in `group_match_null_string_p' et al. */
4860 case jump_past_alt:
4861 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4862 goto unconditional_jump;
4863
4864
4865 /* Normally, the on_failure_jump pushes a failure point, which
4866 then gets popped at pop_failure_jump. We will end up at
4867 pop_failure_jump, also, and with a pattern of, say, `a+', we
4868 are skipping over the on_failure_jump, so we have to push
4869 something meaningless for pop_failure_jump to pop. */
4870 case dummy_failure_jump:
4871 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4872 /* It doesn't matter what we push for the string here. What
4873 the code at `fail' tests is the value for the pattern. */
4874 PUSH_FAILURE_POINT (NULL, NULL, -2);
4875 goto unconditional_jump;
4876
4877
4878 /* At the end of an alternative, we need to push a dummy failure
4879 point in case we are followed by a `pop_failure_jump', because
4880 we don't want the failure point for the alternative to be
4881 popped. For example, matching `(a|ab)*' against `aab'
4882 requires that we match the `ab' alternative. */
4883 case push_dummy_failure:
4884 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4885 /* See comments just above at `dummy_failure_jump' about the
4886 two zeroes. */
4887 PUSH_FAILURE_POINT (NULL, NULL, -2);
4888 break;
4889
4890 /* Have to succeed matching what follows at least n times.
4891 After that, handle like `on_failure_jump'. */
4892 case succeed_n:
4893 EXTRACT_NUMBER (mcnt, p + 2);
4894 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4895
4896 assert (mcnt >= 0);
4897 /* Originally, this is how many times we HAVE to succeed. */
4898 if (mcnt > 0)
4899 {
4900 mcnt--;
4901 p += 2;
4902 STORE_NUMBER_AND_INCR (p, mcnt);
4903 #ifdef _LIBC
4904 DEBUG_PRINT3 (" Setting %p to %d.\n", p - 2, mcnt);
4905 #else
4906 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - 2, mcnt);
4907 #endif
4908 }
4909 else if (mcnt == 0)
4910 {
4911 #ifdef _LIBC
4912 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2);
4913 #else
4914 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4915 #endif
4916 p[2] = (unsigned char) no_op;
4917 p[3] = (unsigned char) no_op;
4918 goto on_failure;
4919 }
4920 break;
4921
4922 case jump_n:
4923 EXTRACT_NUMBER (mcnt, p + 2);
4924 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4925
4926 /* Originally, this is how many times we CAN jump. */
4927 if (mcnt)
4928 {
4929 mcnt--;
4930 STORE_NUMBER (p + 2, mcnt);
4931 #ifdef _LIBC
4932 DEBUG_PRINT3 (" Setting %p to %d.\n", p + 2, mcnt);
4933 #else
4934 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + 2, mcnt);
4935 #endif
4936 goto unconditional_jump;
4937 }
4938 /* If don't have to jump any more, skip over the rest of command. */
4939 else
4940 p += 4;
4941 break;
4942
4943 case set_number_at:
4944 {
4945 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4946
4947 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4948 p1 = p + mcnt;
4949 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4950 #ifdef _LIBC
4951 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
4952 #else
4953 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4954 #endif
4955 STORE_NUMBER (p1, mcnt);
4956 break;
4957 }
4958
4959 #if 0
4960 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4961 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4962 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4963 macro and introducing temporary variables works around the bug. */
4964
4965 case wordbound:
4966 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4967 if (AT_WORD_BOUNDARY (d))
4968 break;
4969 goto fail;
4970
4971 case notwordbound:
4972 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4973 if (AT_WORD_BOUNDARY (d))
4974 goto fail;
4975 break;
4976 #else
4977 case wordbound:
4978 {
4979 boolean prevchar, thischar;
4980
4981 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4982 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4983 break;
4984
4985 prevchar = WORDCHAR_P (d - 1);
4986 thischar = WORDCHAR_P (d);
4987 if (prevchar != thischar)
4988 break;
4989 goto fail;
4990 }
4991
4992 case notwordbound:
4993 {
4994 boolean prevchar, thischar;
4995
4996 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4997 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4998 goto fail;
4999
5000 prevchar = WORDCHAR_P (d - 1);
5001 thischar = WORDCHAR_P (d);
5002 if (prevchar != thischar)
5003 goto fail;
5004 break;
5005 }
5006 #endif
5007
5008 case wordbeg:
5009 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5010 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
5011 break;
5012 goto fail;
5013
5014 case wordend:
5015 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5016 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
5017 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
5018 break;
5019 goto fail;
5020
5021 #ifdef emacs
5022 case before_dot:
5023 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5024 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
5025 goto fail;
5026 break;
5027
5028 case at_dot:
5029 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5030 if (PTR_CHAR_POS ((unsigned char *) d) != point)
5031 goto fail;
5032 break;
5033
5034 case after_dot:
5035 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5036 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5037 goto fail;
5038 break;
5039
5040 case syntaxspec:
5041 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5042 mcnt = *p++;
5043 goto matchsyntax;
5044
5045 case wordchar:
5046 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5047 mcnt = (int) Sword;
5048 matchsyntax:
5049 PREFETCH ();
5050 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5051 d++;
5052 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5053 goto fail;
5054 SET_REGS_MATCHED ();
5055 break;
5056
5057 case notsyntaxspec:
5058 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5059 mcnt = *p++;
5060 goto matchnotsyntax;
5061
5062 case notwordchar:
5063 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5064 mcnt = (int) Sword;
5065 matchnotsyntax:
5066 PREFETCH ();
5067 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5068 d++;
5069 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5070 goto fail;
5071 SET_REGS_MATCHED ();
5072 break;
5073
5074 #else /* not emacs */
5075 case wordchar:
5076 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5077 PREFETCH ();
5078 if (!WORDCHAR_P (d))
5079 goto fail;
5080 SET_REGS_MATCHED ();
5081 d++;
5082 break;
5083
5084 case notwordchar:
5085 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5086 PREFETCH ();
5087 if (WORDCHAR_P (d))
5088 goto fail;
5089 SET_REGS_MATCHED ();
5090 d++;
5091 break;
5092 #endif /* not emacs */
5093
5094 default:
5095 abort ();
5096 }
5097 continue; /* Successfully executed one pattern command; keep going. */
5098
5099
5100 /* We goto here if a matching operation fails. */
5101 fail:
5102 if (!FAIL_STACK_EMPTY ())
5103 { /* A restart point is known. Restore to that state. */
5104 DEBUG_PRINT1 ("\nFAIL:\n");
5105 POP_FAILURE_POINT (d, p,
5106 lowest_active_reg, highest_active_reg,
5107 regstart, regend, reg_info);
5108
5109 /* If this failure point is a dummy, try the next one. */
5110 if (!p)
5111 goto fail;
5112
5113 /* If we failed to the end of the pattern, don't examine *p. */
5114 assert (p <= pend);
5115 if (p < pend)
5116 {
5117 boolean is_a_jump_n = false;
5118
5119 /* If failed to a backwards jump that's part of a repetition
5120 loop, need to pop this failure point and use the next one. */
5121 switch ((re_opcode_t) *p)
5122 {
5123 case jump_n:
5124 is_a_jump_n = true;
5125 case maybe_pop_jump:
5126 case pop_failure_jump:
5127 case jump:
5128 p1 = p + 1;
5129 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5130 p1 += mcnt;
5131
5132 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5133 || (!is_a_jump_n
5134 && (re_opcode_t) *p1 == on_failure_jump))
5135 goto fail;
5136 break;
5137 default:
5138 /* do nothing */ ;
5139 }
5140 }
5141
5142 if (d >= string1 && d <= end1)
5143 dend = end_match_1;
5144 }
5145 else
5146 break; /* Matching at this starting point really fails. */
5147 } /* for (;;) */
5148
5149 if (best_regs_set)
5150 goto restore_best_regs;
5151
5152 FREE_VARIABLES ();
5153
5154 return -1; /* Failure to match. */
5155 } /* re_match_2 */
5156 \f
5157 /* Subroutine definitions for re_match_2. */
5158
5159
5160 /* We are passed P pointing to a register number after a start_memory.
5161
5162 Return true if the pattern up to the corresponding stop_memory can
5163 match the empty string, and false otherwise.
5164
5165 If we find the matching stop_memory, sets P to point to one past its number.
5166 Otherwise, sets P to an undefined byte less than or equal to END.
5167
5168 We don't handle duplicates properly (yet). */
5169
5170 static boolean
5171 group_match_null_string_p (p, end, reg_info)
5172 unsigned char **p, *end;
5173 register_info_type *reg_info;
5174 {
5175 int mcnt;
5176 /* Point to after the args to the start_memory. */
5177 unsigned char *p1 = *p + 2;
5178
5179 while (p1 < end)
5180 {
5181 /* Skip over opcodes that can match nothing, and return true or
5182 false, as appropriate, when we get to one that can't, or to the
5183 matching stop_memory. */
5184
5185 switch ((re_opcode_t) *p1)
5186 {
5187 /* Could be either a loop or a series of alternatives. */
5188 case on_failure_jump:
5189 p1++;
5190 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5191
5192 /* If the next operation is not a jump backwards in the
5193 pattern. */
5194
5195 if (mcnt >= 0)
5196 {
5197 /* Go through the on_failure_jumps of the alternatives,
5198 seeing if any of the alternatives cannot match nothing.
5199 The last alternative starts with only a jump,
5200 whereas the rest start with on_failure_jump and end
5201 with a jump, e.g., here is the pattern for `a|b|c':
5202
5203 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5204 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5205 /exactn/1/c
5206
5207 So, we have to first go through the first (n-1)
5208 alternatives and then deal with the last one separately. */
5209
5210
5211 /* Deal with the first (n-1) alternatives, which start
5212 with an on_failure_jump (see above) that jumps to right
5213 past a jump_past_alt. */
5214
5215 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5216 {
5217 /* `mcnt' holds how many bytes long the alternative
5218 is, including the ending `jump_past_alt' and
5219 its number. */
5220
5221 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5222 reg_info))
5223 return false;
5224
5225 /* Move to right after this alternative, including the
5226 jump_past_alt. */
5227 p1 += mcnt;
5228
5229 /* Break if it's the beginning of an n-th alternative
5230 that doesn't begin with an on_failure_jump. */
5231 if ((re_opcode_t) *p1 != on_failure_jump)
5232 break;
5233
5234 /* Still have to check that it's not an n-th
5235 alternative that starts with an on_failure_jump. */
5236 p1++;
5237 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5238 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5239 {
5240 /* Get to the beginning of the n-th alternative. */
5241 p1 -= 3;
5242 break;
5243 }
5244 }
5245
5246 /* Deal with the last alternative: go back and get number
5247 of the `jump_past_alt' just before it. `mcnt' contains
5248 the length of the alternative. */
5249 EXTRACT_NUMBER (mcnt, p1 - 2);
5250
5251 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5252 return false;
5253
5254 p1 += mcnt; /* Get past the n-th alternative. */
5255 } /* if mcnt > 0 */
5256 break;
5257
5258
5259 case stop_memory:
5260 assert (p1[1] == **p);
5261 *p = p1 + 2;
5262 return true;
5263
5264
5265 default:
5266 if (!common_op_match_null_string_p (&p1, end, reg_info))
5267 return false;
5268 }
5269 } /* while p1 < end */
5270
5271 return false;
5272 } /* group_match_null_string_p */
5273
5274
5275 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5276 It expects P to be the first byte of a single alternative and END one
5277 byte past the last. The alternative can contain groups. */
5278
5279 static boolean
5280 alt_match_null_string_p (p, end, reg_info)
5281 unsigned char *p, *end;
5282 register_info_type *reg_info;
5283 {
5284 int mcnt;
5285 unsigned char *p1 = p;
5286
5287 while (p1 < end)
5288 {
5289 /* Skip over opcodes that can match nothing, and break when we get
5290 to one that can't. */
5291
5292 switch ((re_opcode_t) *p1)
5293 {
5294 /* It's a loop. */
5295 case on_failure_jump:
5296 p1++;
5297 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5298 p1 += mcnt;
5299 break;
5300
5301 default:
5302 if (!common_op_match_null_string_p (&p1, end, reg_info))
5303 return false;
5304 }
5305 } /* while p1 < end */
5306
5307 return true;
5308 } /* alt_match_null_string_p */
5309
5310
5311 /* Deals with the ops common to group_match_null_string_p and
5312 alt_match_null_string_p.
5313
5314 Sets P to one after the op and its arguments, if any. */
5315
5316 static boolean
5317 common_op_match_null_string_p (p, end, reg_info)
5318 unsigned char **p, *end;
5319 register_info_type *reg_info;
5320 {
5321 int mcnt;
5322 boolean ret;
5323 int reg_no;
5324 unsigned char *p1 = *p;
5325
5326 switch ((re_opcode_t) *p1++)
5327 {
5328 case no_op:
5329 case begline:
5330 case endline:
5331 case begbuf:
5332 case endbuf:
5333 case wordbeg:
5334 case wordend:
5335 case wordbound:
5336 case notwordbound:
5337 #ifdef emacs
5338 case before_dot:
5339 case at_dot:
5340 case after_dot:
5341 #endif
5342 break;
5343
5344 case start_memory:
5345 reg_no = *p1;
5346 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5347 ret = group_match_null_string_p (&p1, end, reg_info);
5348
5349 /* Have to set this here in case we're checking a group which
5350 contains a group and a back reference to it. */
5351
5352 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5353 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5354
5355 if (!ret)
5356 return false;
5357 break;
5358
5359 /* If this is an optimized succeed_n for zero times, make the jump. */
5360 case jump:
5361 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5362 if (mcnt >= 0)
5363 p1 += mcnt;
5364 else
5365 return false;
5366 break;
5367
5368 case succeed_n:
5369 /* Get to the number of times to succeed. */
5370 p1 += 2;
5371 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5372
5373 if (mcnt == 0)
5374 {
5375 p1 -= 4;
5376 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5377 p1 += mcnt;
5378 }
5379 else
5380 return false;
5381 break;
5382
5383 case duplicate:
5384 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5385 return false;
5386 break;
5387
5388 case set_number_at:
5389 p1 += 4;
5390
5391 default:
5392 /* All other opcodes mean we cannot match the empty string. */
5393 return false;
5394 }
5395
5396 *p = p1;
5397 return true;
5398 } /* common_op_match_null_string_p */
5399
5400
5401 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5402 bytes; nonzero otherwise. */
5403
5404 static int
5405 bcmp_translate (s1, s2, len, translate)
5406 const char *s1, *s2;
5407 register int len;
5408 RE_TRANSLATE_TYPE translate;
5409 {
5410 register const unsigned char *p1 = (const unsigned char *) s1;
5411 register const unsigned char *p2 = (const unsigned char *) s2;
5412 while (len)
5413 {
5414 if (translate[*p1++] != translate[*p2++]) return 1;
5415 len--;
5416 }
5417 return 0;
5418 }
5419 \f
5420 /* Entry points for GNU code. */
5421
5422 /* re_compile_pattern is the GNU regular expression compiler: it
5423 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5424 Returns 0 if the pattern was valid, otherwise an error string.
5425
5426 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5427 are set in BUFP on entry.
5428
5429 We call regex_compile to do the actual compilation. */
5430
5431 const char *
5432 re_compile_pattern (pattern, length, bufp)
5433 const char *pattern;
5434 size_t length;
5435 struct re_pattern_buffer *bufp;
5436 {
5437 reg_errcode_t ret;
5438
5439 /* GNU code is written to assume at least RE_NREGS registers will be set
5440 (and at least one extra will be -1). */
5441 bufp->regs_allocated = REGS_UNALLOCATED;
5442
5443 /* And GNU code determines whether or not to get register information
5444 by passing null for the REGS argument to re_match, etc., not by
5445 setting no_sub. */
5446 bufp->no_sub = 0;
5447
5448 /* Match anchors at newline. */
5449 bufp->newline_anchor = 1;
5450
5451 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5452
5453 if (!ret)
5454 return NULL;
5455 return gettext (re_error_msgid[(int) ret]);
5456 }
5457 #ifdef _LIBC
5458 weak_alias (__re_compile_pattern, re_compile_pattern)
5459 #endif
5460 \f
5461 /* Entry points compatible with 4.2 BSD regex library. We don't define
5462 them unless specifically requested. */
5463
5464 #if defined _REGEX_RE_COMP || defined _LIBC
5465
5466 /* BSD has one and only one pattern buffer. */
5467 static struct re_pattern_buffer re_comp_buf;
5468
5469 char *
5470 #ifdef _LIBC
5471 /* Make these definitions weak in libc, so POSIX programs can redefine
5472 these names if they don't use our functions, and still use
5473 regcomp/regexec below without link errors. */
5474 weak_function
5475 #endif
5476 re_comp (s)
5477 const char *s;
5478 {
5479 reg_errcode_t ret;
5480
5481 if (!s)
5482 {
5483 if (!re_comp_buf.buffer)
5484 return gettext ("No previous regular expression");
5485 return 0;
5486 }
5487
5488 if (!re_comp_buf.buffer)
5489 {
5490 re_comp_buf.buffer = (unsigned char *) malloc (200);
5491 if (re_comp_buf.buffer == NULL)
5492 return gettext (re_error_msgid[(int) REG_ESPACE]);
5493 re_comp_buf.allocated = 200;
5494
5495 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5496 if (re_comp_buf.fastmap == NULL)
5497 return gettext (re_error_msgid[(int) REG_ESPACE]);
5498 }
5499
5500 /* Since `re_exec' always passes NULL for the `regs' argument, we
5501 don't need to initialize the pattern buffer fields which affect it. */
5502
5503 /* Match anchors at newlines. */
5504 re_comp_buf.newline_anchor = 1;
5505
5506 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5507
5508 if (!ret)
5509 return NULL;
5510
5511 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5512 return (char *) gettext (re_error_msgid[(int) ret]);
5513 }
5514
5515
5516 int
5517 #ifdef _LIBC
5518 weak_function
5519 #endif
5520 re_exec (s)
5521 const char *s;
5522 {
5523 const int len = strlen (s);
5524 return
5525 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5526 }
5527
5528 #endif /* _REGEX_RE_COMP */
5529 \f
5530 /* POSIX.2 functions. Don't define these for Emacs. */
5531
5532 #ifndef emacs
5533
5534 /* regcomp takes a regular expression as a string and compiles it.
5535
5536 PREG is a regex_t *. We do not expect any fields to be initialized,
5537 since POSIX says we shouldn't. Thus, we set
5538
5539 `buffer' to the compiled pattern;
5540 `used' to the length of the compiled pattern;
5541 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5542 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5543 RE_SYNTAX_POSIX_BASIC;
5544 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5545 `fastmap' and `fastmap_accurate' to zero;
5546 `re_nsub' to the number of subexpressions in PATTERN.
5547
5548 PATTERN is the address of the pattern string.
5549
5550 CFLAGS is a series of bits which affect compilation.
5551
5552 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5553 use POSIX basic syntax.
5554
5555 If REG_NEWLINE is set, then . and [^...] don't match newline.
5556 Also, regexec will try a match beginning after every newline.
5557
5558 If REG_ICASE is set, then we considers upper- and lowercase
5559 versions of letters to be equivalent when matching.
5560
5561 If REG_NOSUB is set, then when PREG is passed to regexec, that
5562 routine will report only success or failure, and nothing about the
5563 registers.
5564
5565 It returns 0 if it succeeds, nonzero if it doesn't. (See gnu-regex.h for
5566 the return codes and their meanings.) */
5567
5568 int
5569 regcomp (preg, pattern, cflags)
5570 regex_t *preg;
5571 const char *pattern;
5572 int cflags;
5573 {
5574 reg_errcode_t ret;
5575 reg_syntax_t syntax
5576 = (cflags & REG_EXTENDED) ?
5577 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5578
5579 /* regex_compile will allocate the space for the compiled pattern. */
5580 preg->buffer = 0;
5581 preg->allocated = 0;
5582 preg->used = 0;
5583
5584 /* Don't bother to use a fastmap when searching. This simplifies the
5585 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5586 characters after newlines into the fastmap. This way, we just try
5587 every character. */
5588 preg->fastmap = 0;
5589
5590 if (cflags & REG_ICASE)
5591 {
5592 unsigned i;
5593
5594 preg->translate
5595 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5596 * sizeof (*(RE_TRANSLATE_TYPE)0));
5597 if (preg->translate == NULL)
5598 return (int) REG_ESPACE;
5599
5600 /* Map uppercase characters to corresponding lowercase ones. */
5601 for (i = 0; i < CHAR_SET_SIZE; i++)
5602 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5603 }
5604 else
5605 preg->translate = NULL;
5606
5607 /* If REG_NEWLINE is set, newlines are treated differently. */
5608 if (cflags & REG_NEWLINE)
5609 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5610 syntax &= ~RE_DOT_NEWLINE;
5611 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5612 /* It also changes the matching behavior. */
5613 preg->newline_anchor = 1;
5614 }
5615 else
5616 preg->newline_anchor = 0;
5617
5618 preg->no_sub = !!(cflags & REG_NOSUB);
5619
5620 /* POSIX says a null character in the pattern terminates it, so we
5621 can use strlen here in compiling the pattern. */
5622 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5623
5624 /* POSIX doesn't distinguish between an unmatched open-group and an
5625 unmatched close-group: both are REG_EPAREN. */
5626 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5627
5628 return (int) ret;
5629 }
5630 #ifdef _LIBC
5631 weak_alias (__regcomp, regcomp)
5632 #endif
5633
5634
5635 /* regexec searches for a given pattern, specified by PREG, in the
5636 string STRING.
5637
5638 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5639 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5640 least NMATCH elements, and we set them to the offsets of the
5641 corresponding matched substrings.
5642
5643 EFLAGS specifies `execution flags' which affect matching: if
5644 REG_NOTBOL is set, then ^ does not match at the beginning of the
5645 string; if REG_NOTEOL is set, then $ does not match at the end.
5646
5647 We return 0 if we find a match and REG_NOMATCH if not. */
5648
5649 int
5650 regexec (preg, string, nmatch, pmatch, eflags)
5651 const regex_t *preg;
5652 const char *string;
5653 size_t nmatch;
5654 regmatch_t pmatch[];
5655 int eflags;
5656 {
5657 int ret;
5658 struct re_registers regs;
5659 regex_t private_preg;
5660 int len = strlen (string);
5661 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5662
5663 private_preg = *preg;
5664
5665 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5666 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5667
5668 /* The user has told us exactly how many registers to return
5669 information about, via `nmatch'. We have to pass that on to the
5670 matching routines. */
5671 private_preg.regs_allocated = REGS_FIXED;
5672
5673 if (want_reg_info)
5674 {
5675 regs.num_regs = nmatch;
5676 regs.start = TALLOC (nmatch, regoff_t);
5677 regs.end = TALLOC (nmatch, regoff_t);
5678 if (regs.start == NULL || regs.end == NULL)
5679 return (int) REG_NOMATCH;
5680 }
5681
5682 /* Perform the searching operation. */
5683 ret = re_search (&private_preg, string, len,
5684 /* start: */ 0, /* range: */ len,
5685 want_reg_info ? &regs : (struct re_registers *) 0);
5686
5687 /* Copy the register information to the POSIX structure. */
5688 if (want_reg_info)
5689 {
5690 if (ret >= 0)
5691 {
5692 unsigned r;
5693
5694 for (r = 0; r < nmatch; r++)
5695 {
5696 pmatch[r].rm_so = regs.start[r];
5697 pmatch[r].rm_eo = regs.end[r];
5698 }
5699 }
5700
5701 /* If we needed the temporary register info, free the space now. */
5702 free (regs.start);
5703 free (regs.end);
5704 }
5705
5706 /* We want zero return to mean success, unlike `re_search'. */
5707 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5708 }
5709 #ifdef _LIBC
5710 weak_alias (__regexec, regexec)
5711 #endif
5712
5713
5714 /* Returns a message corresponding to an error code, ERRCODE, returned
5715 from either regcomp or regexec. We don't use PREG here. */
5716
5717 size_t
5718 __regerror (errcode, preg, errbuf, errbuf_size)
5719 int errcode;
5720 const regex_t *preg;
5721 char *errbuf;
5722 size_t errbuf_size;
5723 {
5724 const char *msg;
5725 size_t msg_size;
5726
5727 if (errcode < 0
5728 || errcode >= (int) (sizeof (re_error_msgid)
5729 / sizeof (re_error_msgid[0])))
5730 /* Only error codes returned by the rest of the code should be passed
5731 to this routine. If we are given anything else, or if other regex
5732 code generates an invalid error code, then the program has a bug.
5733 Dump core so we can fix it. */
5734 abort ();
5735
5736 msg = gettext (re_error_msgid[errcode]);
5737
5738 msg_size = strlen (msg) + 1; /* Includes the null. */
5739
5740 if (errbuf_size != 0)
5741 {
5742 if (msg_size > errbuf_size)
5743 {
5744 #if defined HAVE_MEMPCPY || defined _LIBC
5745 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
5746 #else
5747 memcpy (errbuf, msg, errbuf_size - 1);
5748 errbuf[errbuf_size - 1] = 0;
5749 #endif
5750 }
5751 else
5752 memcpy (errbuf, msg, msg_size);
5753 }
5754
5755 return msg_size;
5756 }
5757 #ifdef _LIBC
5758 weak_alias (__regerror, regerror)
5759 #endif
5760
5761
5762 /* Free dynamically allocated space used by PREG. */
5763
5764 void
5765 regfree (preg)
5766 regex_t *preg;
5767 {
5768 if (preg->buffer != NULL)
5769 free (preg->buffer);
5770 preg->buffer = NULL;
5771
5772 preg->allocated = 0;
5773 preg->used = 0;
5774
5775 if (preg->fastmap != NULL)
5776 free (preg->fastmap);
5777 preg->fastmap = NULL;
5778 preg->fastmap_accurate = 0;
5779
5780 if (preg->translate != NULL)
5781 free (preg->translate);
5782 preg->translate = NULL;
5783 }
5784 #ifdef _LIBC
5785 weak_alias (__regfree, regfree)
5786 #endif
5787
5788 #endif /* not emacs */
This page took 0.190105 seconds and 5 git commands to generate.