Mon Jun 29 19:01:18 1998 Jim Wilson <wilson@cygnus.com>
[deliverable/binutils-gdb.git] / gdb / gnu-regex.c
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993, 94, 95, 96, 97, 98 Free Software Foundation, Inc.
6
7 NOTE: The canonical source of this file is maintained with the
8 GNU C Library. Bugs can be reported to bug-glibc@prep.ai.mit.edu.
9
10 This program is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 2, or (at your option) any
13 later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software Foundation,
22 Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 /* AIX requires this to be the first thing in the file. */
25 #if defined _AIX && !defined REGEX_MALLOC
26 #pragma alloca
27 #endif
28
29 #undef _GNU_SOURCE
30 #define _GNU_SOURCE
31
32 #ifdef HAVE_CONFIG_H
33 # include <config.h>
34 #endif
35
36 #ifndef PARAMS
37 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
38 # define PARAMS(args) args
39 # else
40 # define PARAMS(args) ()
41 # endif /* GCC. */
42 #endif /* Not PARAMS. */
43
44 #if defined STDC_HEADERS && !defined emacs
45 # include <stddef.h>
46 #else
47 /* We need this for `gnu-regex.h', and perhaps for the Emacs include files. */
48 # include <sys/types.h>
49 #endif
50
51 /* For platform which support the ISO C amendement 1 functionality we
52 support user defined character classes. */
53 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
54 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
55 # include <wchar.h>
56 # include <wctype.h>
57 #endif
58
59 /* This is for other GNU distributions with internationalized messages. */
60 #if HAVE_LIBINTL_H || defined _LIBC
61 # include <libintl.h>
62 #else
63 # define gettext(msgid) (msgid)
64 #endif
65
66 #ifndef gettext_noop
67 /* This define is so xgettext can find the internationalizable
68 strings. */
69 # define gettext_noop(String) String
70 #endif
71
72 /* The `emacs' switch turns on certain matching commands
73 that make sense only in Emacs. */
74 #ifdef emacs
75
76 # include "lisp.h"
77 # include "buffer.h"
78 # include "syntax.h"
79
80 #else /* not emacs */
81
82 /* If we are not linking with Emacs proper,
83 we can't use the relocating allocator
84 even if config.h says that we can. */
85 # undef REL_ALLOC
86
87 # if defined STDC_HEADERS || defined _LIBC
88 # include <stdlib.h>
89 # else
90 char *malloc ();
91 char *realloc ();
92 # endif
93
94 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
95 If nothing else has been done, use the method below. */
96 # ifdef INHIBIT_STRING_HEADER
97 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
98 # if !defined bzero && !defined bcopy
99 # undef INHIBIT_STRING_HEADER
100 # endif
101 # endif
102 # endif
103
104 /* This is the normal way of making sure we have a bcopy and a bzero.
105 This is used in most programs--a few other programs avoid this
106 by defining INHIBIT_STRING_HEADER. */
107 # ifndef INHIBIT_STRING_HEADER
108 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
109 # include <string.h>
110 # ifndef bzero
111 # ifndef _LIBC
112 # define bzero(s, n) (memset (s, '\0', n), (s))
113 # else
114 # define bzero(s, n) __bzero (s, n)
115 # endif
116 # endif
117 # else
118 # include <strings.h>
119 # ifndef memcmp
120 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
121 # endif
122 # ifndef memcpy
123 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
124 # endif
125 # endif
126 # endif
127
128 /* Define the syntax stuff for \<, \>, etc. */
129
130 /* This must be nonzero for the wordchar and notwordchar pattern
131 commands in re_match_2. */
132 # ifndef Sword
133 # define Sword 1
134 # endif
135
136 # ifdef SWITCH_ENUM_BUG
137 # define SWITCH_ENUM_CAST(x) ((int)(x))
138 # else
139 # define SWITCH_ENUM_CAST(x) (x)
140 # endif
141
142 /* How many characters in the character set. */
143 # define CHAR_SET_SIZE 256
144
145 /* CYGNUS LOCAL: define _REGEX_RE_COMP to get BSD style re_comp and re_exec */
146 #define _REGEX_RE_COMP
147
148 # ifdef SYNTAX_TABLE
149
150 extern char *re_syntax_table;
151
152 # else /* not SYNTAX_TABLE */
153
154 static char re_syntax_table[CHAR_SET_SIZE];
155
156 static void
157 init_syntax_once ()
158 {
159 register int c;
160 static int done = 0;
161
162 if (done)
163 return;
164
165 bzero (re_syntax_table, sizeof re_syntax_table);
166
167 for (c = 'a'; c <= 'z'; c++)
168 re_syntax_table[c] = Sword;
169
170 for (c = 'A'; c <= 'Z'; c++)
171 re_syntax_table[c] = Sword;
172
173 for (c = '0'; c <= '9'; c++)
174 re_syntax_table[c] = Sword;
175
176 re_syntax_table['_'] = Sword;
177
178 done = 1;
179 }
180
181 # endif /* not SYNTAX_TABLE */
182
183 # define SYNTAX(c) re_syntax_table[c]
184
185 #endif /* not emacs */
186 \f
187 /* Get the interface, including the syntax bits. */
188 /* CYGNUS LOCAL: call it gnu-regex.h, not regex.h, to avoid name conflicts */
189 #include "gnu-regex.h"
190
191 /* isalpha etc. are used for the character classes. */
192 #include <ctype.h>
193
194 /* Jim Meyering writes:
195
196 "... Some ctype macros are valid only for character codes that
197 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
198 using /bin/cc or gcc but without giving an ansi option). So, all
199 ctype uses should be through macros like ISPRINT... If
200 STDC_HEADERS is defined, then autoconf has verified that the ctype
201 macros don't need to be guarded with references to isascii. ...
202 Defining isascii to 1 should let any compiler worth its salt
203 eliminate the && through constant folding."
204 Solaris defines some of these symbols so we must undefine them first. */
205
206 #undef ISASCII
207 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
208 # define ISASCII(c) 1
209 #else
210 # define ISASCII(c) isascii(c)
211 #endif
212
213 #ifdef isblank
214 # define ISBLANK(c) (ISASCII (c) && isblank (c))
215 #else
216 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
217 #endif
218 #ifdef isgraph
219 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
220 #else
221 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
222 #endif
223
224 #undef ISPRINT
225 #define ISPRINT(c) (ISASCII (c) && isprint (c))
226 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
227 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
228 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
229 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
230 #define ISLOWER(c) (ISASCII (c) && islower (c))
231 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
232 #define ISSPACE(c) (ISASCII (c) && isspace (c))
233 #define ISUPPER(c) (ISASCII (c) && isupper (c))
234 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
235
236 #ifndef NULL
237 # define NULL (void *)0
238 #endif
239
240 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
241 since ours (we hope) works properly with all combinations of
242 machines, compilers, `char' and `unsigned char' argument types.
243 (Per Bothner suggested the basic approach.) */
244 #undef SIGN_EXTEND_CHAR
245 #if __STDC__
246 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
247 #else /* not __STDC__ */
248 /* As in Harbison and Steele. */
249 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
250 #endif
251 \f
252 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
253 use `alloca' instead of `malloc'. This is because using malloc in
254 re_search* or re_match* could cause memory leaks when C-g is used in
255 Emacs; also, malloc is slower and causes storage fragmentation. On
256 the other hand, malloc is more portable, and easier to debug.
257
258 Because we sometimes use alloca, some routines have to be macros,
259 not functions -- `alloca'-allocated space disappears at the end of the
260 function it is called in. */
261
262 #ifdef REGEX_MALLOC
263
264 # define REGEX_ALLOCATE malloc
265 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
266 # define REGEX_FREE free
267
268 #else /* not REGEX_MALLOC */
269
270 /* Emacs already defines alloca, sometimes. */
271 # ifndef alloca
272
273 /* Make alloca work the best possible way. */
274 # ifdef __GNUC__
275 # define alloca __builtin_alloca
276 # else /* not __GNUC__ */
277 # if HAVE_ALLOCA_H
278 # include <alloca.h>
279 # endif /* HAVE_ALLOCA_H */
280 # endif /* not __GNUC__ */
281
282 # endif /* not alloca */
283
284 # define REGEX_ALLOCATE alloca
285
286 /* Assumes a `char *destination' variable. */
287 # define REGEX_REALLOCATE(source, osize, nsize) \
288 (destination = (char *) alloca (nsize), \
289 memcpy (destination, source, osize))
290
291 /* No need to do anything to free, after alloca. */
292 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
293
294 #endif /* not REGEX_MALLOC */
295
296 /* Define how to allocate the failure stack. */
297
298 #if defined REL_ALLOC && defined REGEX_MALLOC
299
300 # define REGEX_ALLOCATE_STACK(size) \
301 r_alloc (&failure_stack_ptr, (size))
302 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
303 r_re_alloc (&failure_stack_ptr, (nsize))
304 # define REGEX_FREE_STACK(ptr) \
305 r_alloc_free (&failure_stack_ptr)
306
307 #else /* not using relocating allocator */
308
309 # ifdef REGEX_MALLOC
310
311 # define REGEX_ALLOCATE_STACK malloc
312 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
313 # define REGEX_FREE_STACK free
314
315 # else /* not REGEX_MALLOC */
316
317 # define REGEX_ALLOCATE_STACK alloca
318
319 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
320 REGEX_REALLOCATE (source, osize, nsize)
321 /* No need to explicitly free anything. */
322 # define REGEX_FREE_STACK(arg)
323
324 # endif /* not REGEX_MALLOC */
325 #endif /* not using relocating allocator */
326
327
328 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
329 `string1' or just past its end. This works if PTR is NULL, which is
330 a good thing. */
331 #define FIRST_STRING_P(ptr) \
332 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
333
334 /* (Re)Allocate N items of type T using malloc, or fail. */
335 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
336 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
337 #define RETALLOC_IF(addr, n, t) \
338 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
339 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
340
341 #define BYTEWIDTH 8 /* In bits. */
342
343 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
344
345 #undef MAX
346 #undef MIN
347 #define MAX(a, b) ((a) > (b) ? (a) : (b))
348 #define MIN(a, b) ((a) < (b) ? (a) : (b))
349
350 typedef char boolean;
351 #define false 0
352 #define true 1
353
354 static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
355 const char *string1, int size1,
356 const char *string2, int size2,
357 int pos,
358 struct re_registers *regs,
359 int stop));
360 \f
361 /* These are the command codes that appear in compiled regular
362 expressions. Some opcodes are followed by argument bytes. A
363 command code can specify any interpretation whatsoever for its
364 arguments. Zero bytes may appear in the compiled regular expression. */
365
366 typedef enum
367 {
368 no_op = 0,
369
370 /* Succeed right away--no more backtracking. */
371 succeed,
372
373 /* Followed by one byte giving n, then by n literal bytes. */
374 exactn,
375
376 /* Matches any (more or less) character. */
377 anychar,
378
379 /* Matches any one char belonging to specified set. First
380 following byte is number of bitmap bytes. Then come bytes
381 for a bitmap saying which chars are in. Bits in each byte
382 are ordered low-bit-first. A character is in the set if its
383 bit is 1. A character too large to have a bit in the map is
384 automatically not in the set. */
385 charset,
386
387 /* Same parameters as charset, but match any character that is
388 not one of those specified. */
389 charset_not,
390
391 /* Start remembering the text that is matched, for storing in a
392 register. Followed by one byte with the register number, in
393 the range 0 to one less than the pattern buffer's re_nsub
394 field. Then followed by one byte with the number of groups
395 inner to this one. (This last has to be part of the
396 start_memory only because we need it in the on_failure_jump
397 of re_match_2.) */
398 start_memory,
399
400 /* Stop remembering the text that is matched and store it in a
401 memory register. Followed by one byte with the register
402 number, in the range 0 to one less than `re_nsub' in the
403 pattern buffer, and one byte with the number of inner groups,
404 just like `start_memory'. (We need the number of inner
405 groups here because we don't have any easy way of finding the
406 corresponding start_memory when we're at a stop_memory.) */
407 stop_memory,
408
409 /* Match a duplicate of something remembered. Followed by one
410 byte containing the register number. */
411 duplicate,
412
413 /* Fail unless at beginning of line. */
414 begline,
415
416 /* Fail unless at end of line. */
417 endline,
418
419 /* Succeeds if at beginning of buffer (if emacs) or at beginning
420 of string to be matched (if not). */
421 begbuf,
422
423 /* Analogously, for end of buffer/string. */
424 endbuf,
425
426 /* Followed by two byte relative address to which to jump. */
427 jump,
428
429 /* Same as jump, but marks the end of an alternative. */
430 jump_past_alt,
431
432 /* Followed by two-byte relative address of place to resume at
433 in case of failure. */
434 on_failure_jump,
435
436 /* Like on_failure_jump, but pushes a placeholder instead of the
437 current string position when executed. */
438 on_failure_keep_string_jump,
439
440 /* Throw away latest failure point and then jump to following
441 two-byte relative address. */
442 pop_failure_jump,
443
444 /* Change to pop_failure_jump if know won't have to backtrack to
445 match; otherwise change to jump. This is used to jump
446 back to the beginning of a repeat. If what follows this jump
447 clearly won't match what the repeat does, such that we can be
448 sure that there is no use backtracking out of repetitions
449 already matched, then we change it to a pop_failure_jump.
450 Followed by two-byte address. */
451 maybe_pop_jump,
452
453 /* Jump to following two-byte address, and push a dummy failure
454 point. This failure point will be thrown away if an attempt
455 is made to use it for a failure. A `+' construct makes this
456 before the first repeat. Also used as an intermediary kind
457 of jump when compiling an alternative. */
458 dummy_failure_jump,
459
460 /* Push a dummy failure point and continue. Used at the end of
461 alternatives. */
462 push_dummy_failure,
463
464 /* Followed by two-byte relative address and two-byte number n.
465 After matching N times, jump to the address upon failure. */
466 succeed_n,
467
468 /* Followed by two-byte relative address, and two-byte number n.
469 Jump to the address N times, then fail. */
470 jump_n,
471
472 /* Set the following two-byte relative address to the
473 subsequent two-byte number. The address *includes* the two
474 bytes of number. */
475 set_number_at,
476
477 wordchar, /* Matches any word-constituent character. */
478 notwordchar, /* Matches any char that is not a word-constituent. */
479
480 wordbeg, /* Succeeds if at word beginning. */
481 wordend, /* Succeeds if at word end. */
482
483 wordbound, /* Succeeds if at a word boundary. */
484 notwordbound /* Succeeds if not at a word boundary. */
485
486 #ifdef emacs
487 ,before_dot, /* Succeeds if before point. */
488 at_dot, /* Succeeds if at point. */
489 after_dot, /* Succeeds if after point. */
490
491 /* Matches any character whose syntax is specified. Followed by
492 a byte which contains a syntax code, e.g., Sword. */
493 syntaxspec,
494
495 /* Matches any character whose syntax is not that specified. */
496 notsyntaxspec
497 #endif /* emacs */
498 } re_opcode_t;
499 \f
500 /* Common operations on the compiled pattern. */
501
502 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
503
504 #define STORE_NUMBER(destination, number) \
505 do { \
506 (destination)[0] = (number) & 0377; \
507 (destination)[1] = (number) >> 8; \
508 } while (0)
509
510 /* Same as STORE_NUMBER, except increment DESTINATION to
511 the byte after where the number is stored. Therefore, DESTINATION
512 must be an lvalue. */
513
514 #define STORE_NUMBER_AND_INCR(destination, number) \
515 do { \
516 STORE_NUMBER (destination, number); \
517 (destination) += 2; \
518 } while (0)
519
520 /* Put into DESTINATION a number stored in two contiguous bytes starting
521 at SOURCE. */
522
523 #define EXTRACT_NUMBER(destination, source) \
524 do { \
525 (destination) = *(source) & 0377; \
526 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
527 } while (0)
528
529 #ifdef DEBUG
530 static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
531 static void
532 extract_number (dest, source)
533 int *dest;
534 unsigned char *source;
535 {
536 int temp = SIGN_EXTEND_CHAR (*(source + 1));
537 *dest = *source & 0377;
538 *dest += temp << 8;
539 }
540
541 # ifndef EXTRACT_MACROS /* To debug the macros. */
542 # undef EXTRACT_NUMBER
543 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
544 # endif /* not EXTRACT_MACROS */
545
546 #endif /* DEBUG */
547
548 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
549 SOURCE must be an lvalue. */
550
551 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
552 do { \
553 EXTRACT_NUMBER (destination, source); \
554 (source) += 2; \
555 } while (0)
556
557 #ifdef DEBUG
558 static void extract_number_and_incr _RE_ARGS ((int *destination,
559 unsigned char **source));
560 static void
561 extract_number_and_incr (destination, source)
562 int *destination;
563 unsigned char **source;
564 {
565 extract_number (destination, *source);
566 *source += 2;
567 }
568
569 # ifndef EXTRACT_MACROS
570 # undef EXTRACT_NUMBER_AND_INCR
571 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
572 extract_number_and_incr (&dest, &src)
573 # endif /* not EXTRACT_MACROS */
574
575 #endif /* DEBUG */
576 \f
577 /* If DEBUG is defined, Regex prints many voluminous messages about what
578 it is doing (if the variable `debug' is nonzero). If linked with the
579 main program in `iregex.c', you can enter patterns and strings
580 interactively. And if linked with the main program in `main.c' and
581 the other test files, you can run the already-written tests. */
582
583 #ifdef DEBUG
584
585 /* We use standard I/O for debugging. */
586 # include <stdio.h>
587
588 /* It is useful to test things that ``must'' be true when debugging. */
589 # include <assert.h>
590
591 static int debug = 0;
592
593 # define DEBUG_STATEMENT(e) e
594 # define DEBUG_PRINT1(x) if (debug) printf (x)
595 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
596 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
597 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
598 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
599 if (debug) print_partial_compiled_pattern (s, e)
600 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
601 if (debug) print_double_string (w, s1, sz1, s2, sz2)
602
603
604 /* Print the fastmap in human-readable form. */
605
606 void
607 print_fastmap (fastmap)
608 char *fastmap;
609 {
610 unsigned was_a_range = 0;
611 unsigned i = 0;
612
613 while (i < (1 << BYTEWIDTH))
614 {
615 if (fastmap[i++])
616 {
617 was_a_range = 0;
618 putchar (i - 1);
619 while (i < (1 << BYTEWIDTH) && fastmap[i])
620 {
621 was_a_range = 1;
622 i++;
623 }
624 if (was_a_range)
625 {
626 printf ("-");
627 putchar (i - 1);
628 }
629 }
630 }
631 putchar ('\n');
632 }
633
634
635 /* Print a compiled pattern string in human-readable form, starting at
636 the START pointer into it and ending just before the pointer END. */
637
638 void
639 print_partial_compiled_pattern (start, end)
640 unsigned char *start;
641 unsigned char *end;
642 {
643 int mcnt, mcnt2;
644 unsigned char *p1;
645 unsigned char *p = start;
646 unsigned char *pend = end;
647
648 if (start == NULL)
649 {
650 printf ("(null)\n");
651 return;
652 }
653
654 /* Loop over pattern commands. */
655 while (p < pend)
656 {
657 printf ("%d:\t", p - start);
658
659 switch ((re_opcode_t) *p++)
660 {
661 case no_op:
662 printf ("/no_op");
663 break;
664
665 case exactn:
666 mcnt = *p++;
667 printf ("/exactn/%d", mcnt);
668 do
669 {
670 putchar ('/');
671 putchar (*p++);
672 }
673 while (--mcnt);
674 break;
675
676 case start_memory:
677 mcnt = *p++;
678 printf ("/start_memory/%d/%d", mcnt, *p++);
679 break;
680
681 case stop_memory:
682 mcnt = *p++;
683 printf ("/stop_memory/%d/%d", mcnt, *p++);
684 break;
685
686 case duplicate:
687 printf ("/duplicate/%d", *p++);
688 break;
689
690 case anychar:
691 printf ("/anychar");
692 break;
693
694 case charset:
695 case charset_not:
696 {
697 register int c, last = -100;
698 register int in_range = 0;
699
700 printf ("/charset [%s",
701 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
702
703 assert (p + *p < pend);
704
705 for (c = 0; c < 256; c++)
706 if (c / 8 < *p
707 && (p[1 + (c/8)] & (1 << (c % 8))))
708 {
709 /* Are we starting a range? */
710 if (last + 1 == c && ! in_range)
711 {
712 putchar ('-');
713 in_range = 1;
714 }
715 /* Have we broken a range? */
716 else if (last + 1 != c && in_range)
717 {
718 putchar (last);
719 in_range = 0;
720 }
721
722 if (! in_range)
723 putchar (c);
724
725 last = c;
726 }
727
728 if (in_range)
729 putchar (last);
730
731 putchar (']');
732
733 p += 1 + *p;
734 }
735 break;
736
737 case begline:
738 printf ("/begline");
739 break;
740
741 case endline:
742 printf ("/endline");
743 break;
744
745 case on_failure_jump:
746 extract_number_and_incr (&mcnt, &p);
747 printf ("/on_failure_jump to %d", p + mcnt - start);
748 break;
749
750 case on_failure_keep_string_jump:
751 extract_number_and_incr (&mcnt, &p);
752 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
753 break;
754
755 case dummy_failure_jump:
756 extract_number_and_incr (&mcnt, &p);
757 printf ("/dummy_failure_jump to %d", p + mcnt - start);
758 break;
759
760 case push_dummy_failure:
761 printf ("/push_dummy_failure");
762 break;
763
764 case maybe_pop_jump:
765 extract_number_and_incr (&mcnt, &p);
766 printf ("/maybe_pop_jump to %d", p + mcnt - start);
767 break;
768
769 case pop_failure_jump:
770 extract_number_and_incr (&mcnt, &p);
771 printf ("/pop_failure_jump to %d", p + mcnt - start);
772 break;
773
774 case jump_past_alt:
775 extract_number_and_incr (&mcnt, &p);
776 printf ("/jump_past_alt to %d", p + mcnt - start);
777 break;
778
779 case jump:
780 extract_number_and_incr (&mcnt, &p);
781 printf ("/jump to %d", p + mcnt - start);
782 break;
783
784 case succeed_n:
785 extract_number_and_incr (&mcnt, &p);
786 p1 = p + mcnt;
787 extract_number_and_incr (&mcnt2, &p);
788 printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
789 break;
790
791 case jump_n:
792 extract_number_and_incr (&mcnt, &p);
793 p1 = p + mcnt;
794 extract_number_and_incr (&mcnt2, &p);
795 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
796 break;
797
798 case set_number_at:
799 extract_number_and_incr (&mcnt, &p);
800 p1 = p + mcnt;
801 extract_number_and_incr (&mcnt2, &p);
802 printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
803 break;
804
805 case wordbound:
806 printf ("/wordbound");
807 break;
808
809 case notwordbound:
810 printf ("/notwordbound");
811 break;
812
813 case wordbeg:
814 printf ("/wordbeg");
815 break;
816
817 case wordend:
818 printf ("/wordend");
819
820 # ifdef emacs
821 case before_dot:
822 printf ("/before_dot");
823 break;
824
825 case at_dot:
826 printf ("/at_dot");
827 break;
828
829 case after_dot:
830 printf ("/after_dot");
831 break;
832
833 case syntaxspec:
834 printf ("/syntaxspec");
835 mcnt = *p++;
836 printf ("/%d", mcnt);
837 break;
838
839 case notsyntaxspec:
840 printf ("/notsyntaxspec");
841 mcnt = *p++;
842 printf ("/%d", mcnt);
843 break;
844 # endif /* emacs */
845
846 case wordchar:
847 printf ("/wordchar");
848 break;
849
850 case notwordchar:
851 printf ("/notwordchar");
852 break;
853
854 case begbuf:
855 printf ("/begbuf");
856 break;
857
858 case endbuf:
859 printf ("/endbuf");
860 break;
861
862 default:
863 printf ("?%d", *(p-1));
864 }
865
866 putchar ('\n');
867 }
868
869 printf ("%d:\tend of pattern.\n", p - start);
870 }
871
872
873 void
874 print_compiled_pattern (bufp)
875 struct re_pattern_buffer *bufp;
876 {
877 unsigned char *buffer = bufp->buffer;
878
879 print_partial_compiled_pattern (buffer, buffer + bufp->used);
880 printf ("%ld bytes used/%ld bytes allocated.\n",
881 bufp->used, bufp->allocated);
882
883 if (bufp->fastmap_accurate && bufp->fastmap)
884 {
885 printf ("fastmap: ");
886 print_fastmap (bufp->fastmap);
887 }
888
889 printf ("re_nsub: %d\t", bufp->re_nsub);
890 printf ("regs_alloc: %d\t", bufp->regs_allocated);
891 printf ("can_be_null: %d\t", bufp->can_be_null);
892 printf ("newline_anchor: %d\n", bufp->newline_anchor);
893 printf ("no_sub: %d\t", bufp->no_sub);
894 printf ("not_bol: %d\t", bufp->not_bol);
895 printf ("not_eol: %d\t", bufp->not_eol);
896 printf ("syntax: %lx\n", bufp->syntax);
897 /* Perhaps we should print the translate table? */
898 }
899
900
901 void
902 print_double_string (where, string1, size1, string2, size2)
903 const char *where;
904 const char *string1;
905 const char *string2;
906 int size1;
907 int size2;
908 {
909 int this_char;
910
911 if (where == NULL)
912 printf ("(null)");
913 else
914 {
915 if (FIRST_STRING_P (where))
916 {
917 for (this_char = where - string1; this_char < size1; this_char++)
918 putchar (string1[this_char]);
919
920 where = string2;
921 }
922
923 for (this_char = where - string2; this_char < size2; this_char++)
924 putchar (string2[this_char]);
925 }
926 }
927
928 void
929 printchar (c)
930 int c;
931 {
932 putc (c, stderr);
933 }
934
935 #else /* not DEBUG */
936
937 # undef assert
938 # define assert(e)
939
940 # define DEBUG_STATEMENT(e)
941 # define DEBUG_PRINT1(x)
942 # define DEBUG_PRINT2(x1, x2)
943 # define DEBUG_PRINT3(x1, x2, x3)
944 # define DEBUG_PRINT4(x1, x2, x3, x4)
945 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
946 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
947
948 #endif /* not DEBUG */
949 \f
950 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
951 also be assigned to arbitrarily: each pattern buffer stores its own
952 syntax, so it can be changed between regex compilations. */
953 /* This has no initializer because initialized variables in Emacs
954 become read-only after dumping. */
955 reg_syntax_t re_syntax_options;
956
957
958 /* Specify the precise syntax of regexps for compilation. This provides
959 for compatibility for various utilities which historically have
960 different, incompatible syntaxes.
961
962 The argument SYNTAX is a bit mask comprised of the various bits
963 defined in gnu-regex.h. We return the old syntax. */
964
965 reg_syntax_t
966 re_set_syntax (syntax)
967 reg_syntax_t syntax;
968 {
969 reg_syntax_t ret = re_syntax_options;
970
971 re_syntax_options = syntax;
972 #ifdef DEBUG
973 if (syntax & RE_DEBUG)
974 debug = 1;
975 else if (debug) /* was on but now is not */
976 debug = 0;
977 #endif /* DEBUG */
978 return ret;
979 }
980 #ifdef _LIBC
981 weak_alias (__re_set_syntax, re_set_syntax)
982 #endif
983 \f
984 /* This table gives an error message for each of the error codes listed
985 in gnu-regex.h. Obviously the order here has to be same as there.
986 POSIX doesn't require that we do anything for REG_NOERROR,
987 but why not be nice? */
988
989 static const char *re_error_msgid[] =
990 {
991 gettext_noop ("Success"), /* REG_NOERROR */
992 gettext_noop ("No match"), /* REG_NOMATCH */
993 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
994 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
995 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
996 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
997 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
998 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
999 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1000 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1001 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1002 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1003 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1004 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1005 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1006 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1007 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1008 };
1009 \f
1010 /* Avoiding alloca during matching, to placate r_alloc. */
1011
1012 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1013 searching and matching functions should not call alloca. On some
1014 systems, alloca is implemented in terms of malloc, and if we're
1015 using the relocating allocator routines, then malloc could cause a
1016 relocation, which might (if the strings being searched are in the
1017 ralloc heap) shift the data out from underneath the regexp
1018 routines.
1019
1020 Here's another reason to avoid allocation: Emacs
1021 processes input from X in a signal handler; processing X input may
1022 call malloc; if input arrives while a matching routine is calling
1023 malloc, then we're scrod. But Emacs can't just block input while
1024 calling matching routines; then we don't notice interrupts when
1025 they come in. So, Emacs blocks input around all regexp calls
1026 except the matching calls, which it leaves unprotected, in the
1027 faith that they will not malloc. */
1028
1029 /* Normally, this is fine. */
1030 #define MATCH_MAY_ALLOCATE
1031
1032 /* When using GNU C, we are not REALLY using the C alloca, no matter
1033 what config.h may say. So don't take precautions for it. */
1034 #ifdef __GNUC__
1035 # undef C_ALLOCA
1036 #endif
1037
1038 /* The match routines may not allocate if (1) they would do it with malloc
1039 and (2) it's not safe for them to use malloc.
1040 Note that if REL_ALLOC is defined, matching would not use malloc for the
1041 failure stack, but we would still use it for the register vectors;
1042 so REL_ALLOC should not affect this. */
1043 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1044 # undef MATCH_MAY_ALLOCATE
1045 #endif
1046
1047 \f
1048 /* Failure stack declarations and macros; both re_compile_fastmap and
1049 re_match_2 use a failure stack. These have to be macros because of
1050 REGEX_ALLOCATE_STACK. */
1051
1052
1053 /* Number of failure points for which to initially allocate space
1054 when matching. If this number is exceeded, we allocate more
1055 space, so it is not a hard limit. */
1056 #ifndef INIT_FAILURE_ALLOC
1057 # define INIT_FAILURE_ALLOC 5
1058 #endif
1059
1060 /* Roughly the maximum number of failure points on the stack. Would be
1061 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1062 This is a variable only so users of regex can assign to it; we never
1063 change it ourselves. */
1064
1065 #ifdef INT_IS_16BIT
1066
1067 # if defined MATCH_MAY_ALLOCATE
1068 /* 4400 was enough to cause a crash on Alpha OSF/1,
1069 whose default stack limit is 2mb. */
1070 long int re_max_failures = 4000;
1071 # else
1072 long int re_max_failures = 2000;
1073 # endif
1074
1075 union fail_stack_elt
1076 {
1077 unsigned char *pointer;
1078 long int integer;
1079 };
1080
1081 typedef union fail_stack_elt fail_stack_elt_t;
1082
1083 typedef struct
1084 {
1085 fail_stack_elt_t *stack;
1086 unsigned long int size;
1087 unsigned long int avail; /* Offset of next open position. */
1088 } fail_stack_type;
1089
1090 #else /* not INT_IS_16BIT */
1091
1092 # if defined MATCH_MAY_ALLOCATE
1093 /* 4400 was enough to cause a crash on Alpha OSF/1,
1094 whose default stack limit is 2mb. */
1095 int re_max_failures = 20000;
1096 # else
1097 int re_max_failures = 2000;
1098 # endif
1099
1100 union fail_stack_elt
1101 {
1102 unsigned char *pointer;
1103 int integer;
1104 };
1105
1106 typedef union fail_stack_elt fail_stack_elt_t;
1107
1108 typedef struct
1109 {
1110 fail_stack_elt_t *stack;
1111 unsigned size;
1112 unsigned avail; /* Offset of next open position. */
1113 } fail_stack_type;
1114
1115 #endif /* INT_IS_16BIT */
1116
1117 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1118 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1119 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1120
1121
1122 /* Define macros to initialize and free the failure stack.
1123 Do `return -2' if the alloc fails. */
1124
1125 #ifdef MATCH_MAY_ALLOCATE
1126 # define INIT_FAIL_STACK() \
1127 do { \
1128 fail_stack.stack = (fail_stack_elt_t *) \
1129 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1130 \
1131 if (fail_stack.stack == NULL) \
1132 return -2; \
1133 \
1134 fail_stack.size = INIT_FAILURE_ALLOC; \
1135 fail_stack.avail = 0; \
1136 } while (0)
1137
1138 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1139 #else
1140 # define INIT_FAIL_STACK() \
1141 do { \
1142 fail_stack.avail = 0; \
1143 } while (0)
1144
1145 # define RESET_FAIL_STACK()
1146 #endif
1147
1148
1149 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1150
1151 Return 1 if succeeds, and 0 if either ran out of memory
1152 allocating space for it or it was already too large.
1153
1154 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1155
1156 #define DOUBLE_FAIL_STACK(fail_stack) \
1157 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1158 ? 0 \
1159 : ((fail_stack).stack = (fail_stack_elt_t *) \
1160 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1161 (fail_stack).size * sizeof (fail_stack_elt_t), \
1162 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1163 \
1164 (fail_stack).stack == NULL \
1165 ? 0 \
1166 : ((fail_stack).size <<= 1, \
1167 1)))
1168
1169
1170 /* Push pointer POINTER on FAIL_STACK.
1171 Return 1 if was able to do so and 0 if ran out of memory allocating
1172 space to do so. */
1173 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1174 ((FAIL_STACK_FULL () \
1175 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1176 ? 0 \
1177 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1178 1))
1179
1180 /* Push a pointer value onto the failure stack.
1181 Assumes the variable `fail_stack'. Probably should only
1182 be called from within `PUSH_FAILURE_POINT'. */
1183 #define PUSH_FAILURE_POINTER(item) \
1184 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1185
1186 /* This pushes an integer-valued item onto the failure stack.
1187 Assumes the variable `fail_stack'. Probably should only
1188 be called from within `PUSH_FAILURE_POINT'. */
1189 #define PUSH_FAILURE_INT(item) \
1190 fail_stack.stack[fail_stack.avail++].integer = (item)
1191
1192 /* Push a fail_stack_elt_t value onto the failure stack.
1193 Assumes the variable `fail_stack'. Probably should only
1194 be called from within `PUSH_FAILURE_POINT'. */
1195 #define PUSH_FAILURE_ELT(item) \
1196 fail_stack.stack[fail_stack.avail++] = (item)
1197
1198 /* These three POP... operations complement the three PUSH... operations.
1199 All assume that `fail_stack' is nonempty. */
1200 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1201 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1202 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1203
1204 /* Used to omit pushing failure point id's when we're not debugging. */
1205 #ifdef DEBUG
1206 # define DEBUG_PUSH PUSH_FAILURE_INT
1207 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1208 #else
1209 # define DEBUG_PUSH(item)
1210 # define DEBUG_POP(item_addr)
1211 #endif
1212
1213
1214 /* Push the information about the state we will need
1215 if we ever fail back to it.
1216
1217 Requires variables fail_stack, regstart, regend, reg_info, and
1218 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1219 be declared.
1220
1221 Does `return FAILURE_CODE' if runs out of memory. */
1222
1223 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1224 do { \
1225 char *destination; \
1226 /* Must be int, so when we don't save any registers, the arithmetic \
1227 of 0 + -1 isn't done as unsigned. */ \
1228 /* Can't be int, since there is not a shred of a guarantee that int \
1229 is wide enough to hold a value of something to which pointer can \
1230 be assigned */ \
1231 active_reg_t this_reg; \
1232 \
1233 DEBUG_STATEMENT (failure_id++); \
1234 DEBUG_STATEMENT (nfailure_points_pushed++); \
1235 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1236 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1237 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1238 \
1239 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1240 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1241 \
1242 /* Ensure we have enough space allocated for what we will push. */ \
1243 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1244 { \
1245 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1246 return failure_code; \
1247 \
1248 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1249 (fail_stack).size); \
1250 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1251 } \
1252 \
1253 /* Push the info, starting with the registers. */ \
1254 DEBUG_PRINT1 ("\n"); \
1255 \
1256 if (1) \
1257 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1258 this_reg++) \
1259 { \
1260 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1261 DEBUG_STATEMENT (num_regs_pushed++); \
1262 \
1263 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1264 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1265 \
1266 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1267 PUSH_FAILURE_POINTER (regend[this_reg]); \
1268 \
1269 DEBUG_PRINT2 (" info: %p\n ", \
1270 reg_info[this_reg].word.pointer); \
1271 DEBUG_PRINT2 (" match_null=%d", \
1272 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1273 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1274 DEBUG_PRINT2 (" matched_something=%d", \
1275 MATCHED_SOMETHING (reg_info[this_reg])); \
1276 DEBUG_PRINT2 (" ever_matched=%d", \
1277 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1278 DEBUG_PRINT1 ("\n"); \
1279 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1280 } \
1281 \
1282 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1283 PUSH_FAILURE_INT (lowest_active_reg); \
1284 \
1285 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1286 PUSH_FAILURE_INT (highest_active_reg); \
1287 \
1288 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1289 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1290 PUSH_FAILURE_POINTER (pattern_place); \
1291 \
1292 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1293 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1294 size2); \
1295 DEBUG_PRINT1 ("'\n"); \
1296 PUSH_FAILURE_POINTER (string_place); \
1297 \
1298 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1299 DEBUG_PUSH (failure_id); \
1300 } while (0)
1301
1302 /* This is the number of items that are pushed and popped on the stack
1303 for each register. */
1304 #define NUM_REG_ITEMS 3
1305
1306 /* Individual items aside from the registers. */
1307 #ifdef DEBUG
1308 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1309 #else
1310 # define NUM_NONREG_ITEMS 4
1311 #endif
1312
1313 /* We push at most this many items on the stack. */
1314 /* We used to use (num_regs - 1), which is the number of registers
1315 this regexp will save; but that was changed to 5
1316 to avoid stack overflow for a regexp with lots of parens. */
1317 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1318
1319 /* We actually push this many items. */
1320 #define NUM_FAILURE_ITEMS \
1321 (((0 \
1322 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1323 * NUM_REG_ITEMS) \
1324 + NUM_NONREG_ITEMS)
1325
1326 /* How many items can still be added to the stack without overflowing it. */
1327 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1328
1329
1330 /* Pops what PUSH_FAIL_STACK pushes.
1331
1332 We restore into the parameters, all of which should be lvalues:
1333 STR -- the saved data position.
1334 PAT -- the saved pattern position.
1335 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1336 REGSTART, REGEND -- arrays of string positions.
1337 REG_INFO -- array of information about each subexpression.
1338
1339 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1340 `pend', `string1', `size1', `string2', and `size2'. */
1341
1342 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1343 { \
1344 DEBUG_STATEMENT (unsigned failure_id;) \
1345 active_reg_t this_reg; \
1346 const unsigned char *string_temp; \
1347 \
1348 assert (!FAIL_STACK_EMPTY ()); \
1349 \
1350 /* Remove failure points and point to how many regs pushed. */ \
1351 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1352 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1353 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1354 \
1355 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1356 \
1357 DEBUG_POP (&failure_id); \
1358 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1359 \
1360 /* If the saved string location is NULL, it came from an \
1361 on_failure_keep_string_jump opcode, and we want to throw away the \
1362 saved NULL, thus retaining our current position in the string. */ \
1363 string_temp = POP_FAILURE_POINTER (); \
1364 if (string_temp != NULL) \
1365 str = (const char *) string_temp; \
1366 \
1367 DEBUG_PRINT2 (" Popping string %p: `", str); \
1368 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1369 DEBUG_PRINT1 ("'\n"); \
1370 \
1371 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1372 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1373 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1374 \
1375 /* Restore register info. */ \
1376 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1377 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1378 \
1379 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1380 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1381 \
1382 if (1) \
1383 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1384 { \
1385 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1386 \
1387 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1388 DEBUG_PRINT2 (" info: %p\n", \
1389 reg_info[this_reg].word.pointer); \
1390 \
1391 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1392 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1393 \
1394 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1395 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1396 } \
1397 else \
1398 { \
1399 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1400 { \
1401 reg_info[this_reg].word.integer = 0; \
1402 regend[this_reg] = 0; \
1403 regstart[this_reg] = 0; \
1404 } \
1405 highest_active_reg = high_reg; \
1406 } \
1407 \
1408 set_regs_matched_done = 0; \
1409 DEBUG_STATEMENT (nfailure_points_popped++); \
1410 } /* POP_FAILURE_POINT */
1411
1412
1413 \f
1414 /* Structure for per-register (a.k.a. per-group) information.
1415 Other register information, such as the
1416 starting and ending positions (which are addresses), and the list of
1417 inner groups (which is a bits list) are maintained in separate
1418 variables.
1419
1420 We are making a (strictly speaking) nonportable assumption here: that
1421 the compiler will pack our bit fields into something that fits into
1422 the type of `word', i.e., is something that fits into one item on the
1423 failure stack. */
1424
1425
1426 /* Declarations and macros for re_match_2. */
1427
1428 typedef union
1429 {
1430 fail_stack_elt_t word;
1431 struct
1432 {
1433 /* This field is one if this group can match the empty string,
1434 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1435 #define MATCH_NULL_UNSET_VALUE 3
1436 unsigned match_null_string_p : 2;
1437 unsigned is_active : 1;
1438 unsigned matched_something : 1;
1439 unsigned ever_matched_something : 1;
1440 } bits;
1441 } register_info_type;
1442
1443 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1444 #define IS_ACTIVE(R) ((R).bits.is_active)
1445 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1446 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1447
1448
1449 /* Call this when have matched a real character; it sets `matched' flags
1450 for the subexpressions which we are currently inside. Also records
1451 that those subexprs have matched. */
1452 #define SET_REGS_MATCHED() \
1453 do \
1454 { \
1455 if (!set_regs_matched_done) \
1456 { \
1457 active_reg_t r; \
1458 set_regs_matched_done = 1; \
1459 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1460 { \
1461 MATCHED_SOMETHING (reg_info[r]) \
1462 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1463 = 1; \
1464 } \
1465 } \
1466 } \
1467 while (0)
1468
1469 /* Registers are set to a sentinel when they haven't yet matched. */
1470 static char reg_unset_dummy;
1471 #define REG_UNSET_VALUE (&reg_unset_dummy)
1472 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1473 \f
1474 /* Subroutine declarations and macros for regex_compile. */
1475
1476 static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1477 reg_syntax_t syntax,
1478 struct re_pattern_buffer *bufp));
1479 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1480 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1481 int arg1, int arg2));
1482 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1483 int arg, unsigned char *end));
1484 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1485 int arg1, int arg2, unsigned char *end));
1486 static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1487 reg_syntax_t syntax));
1488 static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1489 reg_syntax_t syntax));
1490 static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1491 const char *pend,
1492 char *translate,
1493 reg_syntax_t syntax,
1494 unsigned char *b));
1495
1496 /* Fetch the next character in the uncompiled pattern---translating it
1497 if necessary. Also cast from a signed character in the constant
1498 string passed to us by the user to an unsigned char that we can use
1499 as an array index (in, e.g., `translate'). */
1500 #ifndef PATFETCH
1501 # define PATFETCH(c) \
1502 do {if (p == pend) return REG_EEND; \
1503 c = (unsigned char) *p++; \
1504 if (translate) c = (unsigned char) translate[c]; \
1505 } while (0)
1506 #endif
1507
1508 /* Fetch the next character in the uncompiled pattern, with no
1509 translation. */
1510 #define PATFETCH_RAW(c) \
1511 do {if (p == pend) return REG_EEND; \
1512 c = (unsigned char) *p++; \
1513 } while (0)
1514
1515 /* Go backwards one character in the pattern. */
1516 #define PATUNFETCH p--
1517
1518
1519 /* If `translate' is non-null, return translate[D], else just D. We
1520 cast the subscript to translate because some data is declared as
1521 `char *', to avoid warnings when a string constant is passed. But
1522 when we use a character as a subscript we must make it unsigned. */
1523 #ifndef TRANSLATE
1524 # define TRANSLATE(d) \
1525 (translate ? (char) translate[(unsigned char) (d)] : (d))
1526 #endif
1527
1528
1529 /* Macros for outputting the compiled pattern into `buffer'. */
1530
1531 /* If the buffer isn't allocated when it comes in, use this. */
1532 #define INIT_BUF_SIZE 32
1533
1534 /* Make sure we have at least N more bytes of space in buffer. */
1535 #define GET_BUFFER_SPACE(n) \
1536 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1537 EXTEND_BUFFER ()
1538
1539 /* Make sure we have one more byte of buffer space and then add C to it. */
1540 #define BUF_PUSH(c) \
1541 do { \
1542 GET_BUFFER_SPACE (1); \
1543 *b++ = (unsigned char) (c); \
1544 } while (0)
1545
1546
1547 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1548 #define BUF_PUSH_2(c1, c2) \
1549 do { \
1550 GET_BUFFER_SPACE (2); \
1551 *b++ = (unsigned char) (c1); \
1552 *b++ = (unsigned char) (c2); \
1553 } while (0)
1554
1555
1556 /* As with BUF_PUSH_2, except for three bytes. */
1557 #define BUF_PUSH_3(c1, c2, c3) \
1558 do { \
1559 GET_BUFFER_SPACE (3); \
1560 *b++ = (unsigned char) (c1); \
1561 *b++ = (unsigned char) (c2); \
1562 *b++ = (unsigned char) (c3); \
1563 } while (0)
1564
1565
1566 /* Store a jump with opcode OP at LOC to location TO. We store a
1567 relative address offset by the three bytes the jump itself occupies. */
1568 #define STORE_JUMP(op, loc, to) \
1569 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1570
1571 /* Likewise, for a two-argument jump. */
1572 #define STORE_JUMP2(op, loc, to, arg) \
1573 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1574
1575 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1576 #define INSERT_JUMP(op, loc, to) \
1577 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1578
1579 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1580 #define INSERT_JUMP2(op, loc, to, arg) \
1581 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1582
1583
1584 /* This is not an arbitrary limit: the arguments which represent offsets
1585 into the pattern are two bytes long. So if 2^16 bytes turns out to
1586 be too small, many things would have to change. */
1587 /* Any other compiler which, like MSC, has allocation limit below 2^16
1588 bytes will have to use approach similar to what was done below for
1589 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1590 reallocating to 0 bytes. Such thing is not going to work too well.
1591 You have been warned!! */
1592 #if defined _MSC_VER && !defined WIN32
1593 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1594 The REALLOC define eliminates a flurry of conversion warnings,
1595 but is not required. */
1596 # define MAX_BUF_SIZE 65500L
1597 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1598 #else
1599 # define MAX_BUF_SIZE (1L << 16)
1600 # define REALLOC(p,s) realloc ((p), (s))
1601 #endif
1602
1603 /* Extend the buffer by twice its current size via realloc and
1604 reset the pointers that pointed into the old block to point to the
1605 correct places in the new one. If extending the buffer results in it
1606 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1607 #define EXTEND_BUFFER() \
1608 do { \
1609 unsigned char *old_buffer = bufp->buffer; \
1610 if (bufp->allocated == MAX_BUF_SIZE) \
1611 return REG_ESIZE; \
1612 bufp->allocated <<= 1; \
1613 if (bufp->allocated > MAX_BUF_SIZE) \
1614 bufp->allocated = MAX_BUF_SIZE; \
1615 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1616 if (bufp->buffer == NULL) \
1617 return REG_ESPACE; \
1618 /* If the buffer moved, move all the pointers into it. */ \
1619 if (old_buffer != bufp->buffer) \
1620 { \
1621 b = (b - old_buffer) + bufp->buffer; \
1622 begalt = (begalt - old_buffer) + bufp->buffer; \
1623 if (fixup_alt_jump) \
1624 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1625 if (laststart) \
1626 laststart = (laststart - old_buffer) + bufp->buffer; \
1627 if (pending_exact) \
1628 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1629 } \
1630 } while (0)
1631
1632
1633 /* Since we have one byte reserved for the register number argument to
1634 {start,stop}_memory, the maximum number of groups we can report
1635 things about is what fits in that byte. */
1636 #define MAX_REGNUM 255
1637
1638 /* But patterns can have more than `MAX_REGNUM' registers. We just
1639 ignore the excess. */
1640 typedef unsigned regnum_t;
1641
1642
1643 /* Macros for the compile stack. */
1644
1645 /* Since offsets can go either forwards or backwards, this type needs to
1646 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1647 /* int may be not enough when sizeof(int) == 2. */
1648 typedef long pattern_offset_t;
1649
1650 typedef struct
1651 {
1652 pattern_offset_t begalt_offset;
1653 pattern_offset_t fixup_alt_jump;
1654 pattern_offset_t inner_group_offset;
1655 pattern_offset_t laststart_offset;
1656 regnum_t regnum;
1657 } compile_stack_elt_t;
1658
1659
1660 typedef struct
1661 {
1662 compile_stack_elt_t *stack;
1663 unsigned size;
1664 unsigned avail; /* Offset of next open position. */
1665 } compile_stack_type;
1666
1667
1668 #define INIT_COMPILE_STACK_SIZE 32
1669
1670 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1671 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1672
1673 /* The next available element. */
1674 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1675
1676
1677 /* Set the bit for character C in a list. */
1678 #define SET_LIST_BIT(c) \
1679 (b[((unsigned char) (c)) / BYTEWIDTH] \
1680 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1681
1682
1683 /* Get the next unsigned number in the uncompiled pattern. */
1684 #define GET_UNSIGNED_NUMBER(num) \
1685 { if (p != pend) \
1686 { \
1687 PATFETCH (c); \
1688 while (ISDIGIT (c)) \
1689 { \
1690 if (num < 0) \
1691 num = 0; \
1692 num = num * 10 + c - '0'; \
1693 if (p == pend) \
1694 break; \
1695 PATFETCH (c); \
1696 } \
1697 } \
1698 }
1699
1700 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
1701 /* The GNU C library provides support for user-defined character classes
1702 and the functions from ISO C amendement 1. */
1703 # ifdef CHARCLASS_NAME_MAX
1704 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1705 # else
1706 /* This shouldn't happen but some implementation might still have this
1707 problem. Use a reasonable default value. */
1708 # define CHAR_CLASS_MAX_LENGTH 256
1709 # endif
1710
1711 # ifdef _LIBC
1712 # define IS_CHAR_CLASS(string) __wctype (string)
1713 # else
1714 # define IS_CHAR_CLASS(string) wctype (string)
1715 # endif
1716 #else
1717 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1718
1719 # define IS_CHAR_CLASS(string) \
1720 (STREQ (string, "alpha") || STREQ (string, "upper") \
1721 || STREQ (string, "lower") || STREQ (string, "digit") \
1722 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1723 || STREQ (string, "space") || STREQ (string, "print") \
1724 || STREQ (string, "punct") || STREQ (string, "graph") \
1725 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1726 #endif
1727 \f
1728 #ifndef MATCH_MAY_ALLOCATE
1729
1730 /* If we cannot allocate large objects within re_match_2_internal,
1731 we make the fail stack and register vectors global.
1732 The fail stack, we grow to the maximum size when a regexp
1733 is compiled.
1734 The register vectors, we adjust in size each time we
1735 compile a regexp, according to the number of registers it needs. */
1736
1737 static fail_stack_type fail_stack;
1738
1739 /* Size with which the following vectors are currently allocated.
1740 That is so we can make them bigger as needed,
1741 but never make them smaller. */
1742 static int regs_allocated_size;
1743
1744 static const char ** regstart, ** regend;
1745 static const char ** old_regstart, ** old_regend;
1746 static const char **best_regstart, **best_regend;
1747 static register_info_type *reg_info;
1748 static const char **reg_dummy;
1749 static register_info_type *reg_info_dummy;
1750
1751 /* Make the register vectors big enough for NUM_REGS registers,
1752 but don't make them smaller. */
1753
1754 static
1755 regex_grow_registers (num_regs)
1756 int num_regs;
1757 {
1758 if (num_regs > regs_allocated_size)
1759 {
1760 RETALLOC_IF (regstart, num_regs, const char *);
1761 RETALLOC_IF (regend, num_regs, const char *);
1762 RETALLOC_IF (old_regstart, num_regs, const char *);
1763 RETALLOC_IF (old_regend, num_regs, const char *);
1764 RETALLOC_IF (best_regstart, num_regs, const char *);
1765 RETALLOC_IF (best_regend, num_regs, const char *);
1766 RETALLOC_IF (reg_info, num_regs, register_info_type);
1767 RETALLOC_IF (reg_dummy, num_regs, const char *);
1768 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1769
1770 regs_allocated_size = num_regs;
1771 }
1772 }
1773
1774 #endif /* not MATCH_MAY_ALLOCATE */
1775 \f
1776 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1777 compile_stack,
1778 regnum_t regnum));
1779
1780 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1781 Returns one of error codes defined in `gnu-regex.h', or zero for success.
1782
1783 Assumes the `allocated' (and perhaps `buffer') and `translate'
1784 fields are set in BUFP on entry.
1785
1786 If it succeeds, results are put in BUFP (if it returns an error, the
1787 contents of BUFP are undefined):
1788 `buffer' is the compiled pattern;
1789 `syntax' is set to SYNTAX;
1790 `used' is set to the length of the compiled pattern;
1791 `fastmap_accurate' is zero;
1792 `re_nsub' is the number of subexpressions in PATTERN;
1793 `not_bol' and `not_eol' are zero;
1794
1795 The `fastmap' and `newline_anchor' fields are neither
1796 examined nor set. */
1797
1798 /* Return, freeing storage we allocated. */
1799 #define FREE_STACK_RETURN(value) \
1800 return (free (compile_stack.stack), value)
1801
1802 static reg_errcode_t
1803 regex_compile (pattern, size, syntax, bufp)
1804 const char *pattern;
1805 size_t size;
1806 reg_syntax_t syntax;
1807 struct re_pattern_buffer *bufp;
1808 {
1809 /* We fetch characters from PATTERN here. Even though PATTERN is
1810 `char *' (i.e., signed), we declare these variables as unsigned, so
1811 they can be reliably used as array indices. */
1812 register unsigned char c, c1;
1813
1814 /* A random temporary spot in PATTERN. */
1815 const char *p1;
1816
1817 /* Points to the end of the buffer, where we should append. */
1818 register unsigned char *b;
1819
1820 /* Keeps track of unclosed groups. */
1821 compile_stack_type compile_stack;
1822
1823 /* Points to the current (ending) position in the pattern. */
1824 const char *p = pattern;
1825 const char *pend = pattern + size;
1826
1827 /* How to translate the characters in the pattern. */
1828 RE_TRANSLATE_TYPE translate = bufp->translate;
1829
1830 /* Address of the count-byte of the most recently inserted `exactn'
1831 command. This makes it possible to tell if a new exact-match
1832 character can be added to that command or if the character requires
1833 a new `exactn' command. */
1834 unsigned char *pending_exact = 0;
1835
1836 /* Address of start of the most recently finished expression.
1837 This tells, e.g., postfix * where to find the start of its
1838 operand. Reset at the beginning of groups and alternatives. */
1839 unsigned char *laststart = 0;
1840
1841 /* Address of beginning of regexp, or inside of last group. */
1842 unsigned char *begalt;
1843
1844 /* Place in the uncompiled pattern (i.e., the {) to
1845 which to go back if the interval is invalid. */
1846 const char *beg_interval;
1847
1848 /* Address of the place where a forward jump should go to the end of
1849 the containing expression. Each alternative of an `or' -- except the
1850 last -- ends with a forward jump of this sort. */
1851 unsigned char *fixup_alt_jump = 0;
1852
1853 /* Counts open-groups as they are encountered. Remembered for the
1854 matching close-group on the compile stack, so the same register
1855 number is put in the stop_memory as the start_memory. */
1856 regnum_t regnum = 0;
1857
1858 #ifdef DEBUG
1859 DEBUG_PRINT1 ("\nCompiling pattern: ");
1860 if (debug)
1861 {
1862 unsigned debug_count;
1863
1864 for (debug_count = 0; debug_count < size; debug_count++)
1865 putchar (pattern[debug_count]);
1866 putchar ('\n');
1867 }
1868 #endif /* DEBUG */
1869
1870 /* Initialize the compile stack. */
1871 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1872 if (compile_stack.stack == NULL)
1873 return REG_ESPACE;
1874
1875 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1876 compile_stack.avail = 0;
1877
1878 /* Initialize the pattern buffer. */
1879 bufp->syntax = syntax;
1880 bufp->fastmap_accurate = 0;
1881 bufp->not_bol = bufp->not_eol = 0;
1882
1883 /* Set `used' to zero, so that if we return an error, the pattern
1884 printer (for debugging) will think there's no pattern. We reset it
1885 at the end. */
1886 bufp->used = 0;
1887
1888 /* Always count groups, whether or not bufp->no_sub is set. */
1889 bufp->re_nsub = 0;
1890
1891 #if !defined emacs && !defined SYNTAX_TABLE
1892 /* Initialize the syntax table. */
1893 init_syntax_once ();
1894 #endif
1895
1896 if (bufp->allocated == 0)
1897 {
1898 if (bufp->buffer)
1899 { /* If zero allocated, but buffer is non-null, try to realloc
1900 enough space. This loses if buffer's address is bogus, but
1901 that is the user's responsibility. */
1902 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1903 }
1904 else
1905 { /* Caller did not allocate a buffer. Do it for them. */
1906 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1907 }
1908 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1909
1910 bufp->allocated = INIT_BUF_SIZE;
1911 }
1912
1913 begalt = b = bufp->buffer;
1914
1915 /* Loop through the uncompiled pattern until we're at the end. */
1916 while (p != pend)
1917 {
1918 PATFETCH (c);
1919
1920 switch (c)
1921 {
1922 case '^':
1923 {
1924 if ( /* If at start of pattern, it's an operator. */
1925 p == pattern + 1
1926 /* If context independent, it's an operator. */
1927 || syntax & RE_CONTEXT_INDEP_ANCHORS
1928 /* Otherwise, depends on what's come before. */
1929 || at_begline_loc_p (pattern, p, syntax))
1930 BUF_PUSH (begline);
1931 else
1932 goto normal_char;
1933 }
1934 break;
1935
1936
1937 case '$':
1938 {
1939 if ( /* If at end of pattern, it's an operator. */
1940 p == pend
1941 /* If context independent, it's an operator. */
1942 || syntax & RE_CONTEXT_INDEP_ANCHORS
1943 /* Otherwise, depends on what's next. */
1944 || at_endline_loc_p (p, pend, syntax))
1945 BUF_PUSH (endline);
1946 else
1947 goto normal_char;
1948 }
1949 break;
1950
1951
1952 case '+':
1953 case '?':
1954 if ((syntax & RE_BK_PLUS_QM)
1955 || (syntax & RE_LIMITED_OPS))
1956 goto normal_char;
1957 handle_plus:
1958 case '*':
1959 /* If there is no previous pattern... */
1960 if (!laststart)
1961 {
1962 if (syntax & RE_CONTEXT_INVALID_OPS)
1963 FREE_STACK_RETURN (REG_BADRPT);
1964 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1965 goto normal_char;
1966 }
1967
1968 {
1969 /* Are we optimizing this jump? */
1970 boolean keep_string_p = false;
1971
1972 /* 1 means zero (many) matches is allowed. */
1973 char zero_times_ok = 0, many_times_ok = 0;
1974
1975 /* If there is a sequence of repetition chars, collapse it
1976 down to just one (the right one). We can't combine
1977 interval operators with these because of, e.g., `a{2}*',
1978 which should only match an even number of `a's. */
1979
1980 for (;;)
1981 {
1982 zero_times_ok |= c != '+';
1983 many_times_ok |= c != '?';
1984
1985 if (p == pend)
1986 break;
1987
1988 PATFETCH (c);
1989
1990 if (c == '*'
1991 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1992 ;
1993
1994 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1995 {
1996 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1997
1998 PATFETCH (c1);
1999 if (!(c1 == '+' || c1 == '?'))
2000 {
2001 PATUNFETCH;
2002 PATUNFETCH;
2003 break;
2004 }
2005
2006 c = c1;
2007 }
2008 else
2009 {
2010 PATUNFETCH;
2011 break;
2012 }
2013
2014 /* If we get here, we found another repeat character. */
2015 }
2016
2017 /* Star, etc. applied to an empty pattern is equivalent
2018 to an empty pattern. */
2019 if (!laststart)
2020 break;
2021
2022 /* Now we know whether or not zero matches is allowed
2023 and also whether or not two or more matches is allowed. */
2024 if (many_times_ok)
2025 { /* More than one repetition is allowed, so put in at the
2026 end a backward relative jump from `b' to before the next
2027 jump we're going to put in below (which jumps from
2028 laststart to after this jump).
2029
2030 But if we are at the `*' in the exact sequence `.*\n',
2031 insert an unconditional jump backwards to the .,
2032 instead of the beginning of the loop. This way we only
2033 push a failure point once, instead of every time
2034 through the loop. */
2035 assert (p - 1 > pattern);
2036
2037 /* Allocate the space for the jump. */
2038 GET_BUFFER_SPACE (3);
2039
2040 /* We know we are not at the first character of the pattern,
2041 because laststart was nonzero. And we've already
2042 incremented `p', by the way, to be the character after
2043 the `*'. Do we have to do something analogous here
2044 for null bytes, because of RE_DOT_NOT_NULL? */
2045 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2046 && zero_times_ok
2047 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2048 && !(syntax & RE_DOT_NEWLINE))
2049 { /* We have .*\n. */
2050 STORE_JUMP (jump, b, laststart);
2051 keep_string_p = true;
2052 }
2053 else
2054 /* Anything else. */
2055 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2056
2057 /* We've added more stuff to the buffer. */
2058 b += 3;
2059 }
2060
2061 /* On failure, jump from laststart to b + 3, which will be the
2062 end of the buffer after this jump is inserted. */
2063 GET_BUFFER_SPACE (3);
2064 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2065 : on_failure_jump,
2066 laststart, b + 3);
2067 pending_exact = 0;
2068 b += 3;
2069
2070 if (!zero_times_ok)
2071 {
2072 /* At least one repetition is required, so insert a
2073 `dummy_failure_jump' before the initial
2074 `on_failure_jump' instruction of the loop. This
2075 effects a skip over that instruction the first time
2076 we hit that loop. */
2077 GET_BUFFER_SPACE (3);
2078 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2079 b += 3;
2080 }
2081 }
2082 break;
2083
2084
2085 case '.':
2086 laststart = b;
2087 BUF_PUSH (anychar);
2088 break;
2089
2090
2091 case '[':
2092 {
2093 boolean had_char_class = false;
2094
2095 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2096
2097 /* Ensure that we have enough space to push a charset: the
2098 opcode, the length count, and the bitset; 34 bytes in all. */
2099 GET_BUFFER_SPACE (34);
2100
2101 laststart = b;
2102
2103 /* We test `*p == '^' twice, instead of using an if
2104 statement, so we only need one BUF_PUSH. */
2105 BUF_PUSH (*p == '^' ? charset_not : charset);
2106 if (*p == '^')
2107 p++;
2108
2109 /* Remember the first position in the bracket expression. */
2110 p1 = p;
2111
2112 /* Push the number of bytes in the bitmap. */
2113 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2114
2115 /* Clear the whole map. */
2116 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2117
2118 /* charset_not matches newline according to a syntax bit. */
2119 if ((re_opcode_t) b[-2] == charset_not
2120 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2121 SET_LIST_BIT ('\n');
2122
2123 /* Read in characters and ranges, setting map bits. */
2124 for (;;)
2125 {
2126 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2127
2128 PATFETCH (c);
2129
2130 /* \ might escape characters inside [...] and [^...]. */
2131 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2132 {
2133 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2134
2135 PATFETCH (c1);
2136 SET_LIST_BIT (c1);
2137 continue;
2138 }
2139
2140 /* Could be the end of the bracket expression. If it's
2141 not (i.e., when the bracket expression is `[]' so
2142 far), the ']' character bit gets set way below. */
2143 if (c == ']' && p != p1 + 1)
2144 break;
2145
2146 /* Look ahead to see if it's a range when the last thing
2147 was a character class. */
2148 if (had_char_class && c == '-' && *p != ']')
2149 FREE_STACK_RETURN (REG_ERANGE);
2150
2151 /* Look ahead to see if it's a range when the last thing
2152 was a character: if this is a hyphen not at the
2153 beginning or the end of a list, then it's the range
2154 operator. */
2155 if (c == '-'
2156 && !(p - 2 >= pattern && p[-2] == '[')
2157 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2158 && *p != ']')
2159 {
2160 reg_errcode_t ret
2161 = compile_range (&p, pend, translate, syntax, b);
2162 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2163 }
2164
2165 else if (p[0] == '-' && p[1] != ']')
2166 { /* This handles ranges made up of characters only. */
2167 reg_errcode_t ret;
2168
2169 /* Move past the `-'. */
2170 PATFETCH (c1);
2171
2172 ret = compile_range (&p, pend, translate, syntax, b);
2173 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2174 }
2175
2176 /* See if we're at the beginning of a possible character
2177 class. */
2178
2179 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2180 { /* Leave room for the null. */
2181 char str[CHAR_CLASS_MAX_LENGTH + 1];
2182
2183 PATFETCH (c);
2184 c1 = 0;
2185
2186 /* If pattern is `[[:'. */
2187 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2188
2189 for (;;)
2190 {
2191 PATFETCH (c);
2192 if ((c == ':' && *p == ']') || p == pend
2193 || c1 == CHAR_CLASS_MAX_LENGTH)
2194 break;
2195 str[c1++] = c;
2196 }
2197 str[c1] = '\0';
2198
2199 /* If isn't a word bracketed by `[:' and `:]':
2200 undo the ending character, the letters, and leave
2201 the leading `:' and `[' (but set bits for them). */
2202 if (c == ':' && *p == ']')
2203 {
2204 /* CYGNUS LOCAL: Skip this code if we don't have btowc(). btowc() is */
2205 /* defined in the 1994 Amendment 1 to ISO C and may not be present on */
2206 /* systems where we have wchar.h and wctype.h. */
2207 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_BTOWC)
2208 boolean is_lower = STREQ (str, "lower");
2209 boolean is_upper = STREQ (str, "upper");
2210 wctype_t wt;
2211 int ch;
2212
2213 wt = IS_CHAR_CLASS (str);
2214 if (wt == 0)
2215 FREE_STACK_RETURN (REG_ECTYPE);
2216
2217 /* Throw away the ] at the end of the character
2218 class. */
2219 PATFETCH (c);
2220
2221 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2222
2223 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2224 {
2225 # ifdef _LIBC
2226 if (__iswctype (__btowc (ch), wt))
2227 SET_LIST_BIT (ch);
2228 #else
2229 if (iswctype (btowc (ch), wt))
2230 SET_LIST_BIT (ch);
2231 #endif
2232
2233 if (translate && (is_upper || is_lower)
2234 && (ISUPPER (ch) || ISLOWER (ch)))
2235 SET_LIST_BIT (ch);
2236 }
2237
2238 had_char_class = true;
2239 #else
2240 int ch;
2241 boolean is_alnum = STREQ (str, "alnum");
2242 boolean is_alpha = STREQ (str, "alpha");
2243 boolean is_blank = STREQ (str, "blank");
2244 boolean is_cntrl = STREQ (str, "cntrl");
2245 boolean is_digit = STREQ (str, "digit");
2246 boolean is_graph = STREQ (str, "graph");
2247 boolean is_lower = STREQ (str, "lower");
2248 boolean is_print = STREQ (str, "print");
2249 boolean is_punct = STREQ (str, "punct");
2250 boolean is_space = STREQ (str, "space");
2251 boolean is_upper = STREQ (str, "upper");
2252 boolean is_xdigit = STREQ (str, "xdigit");
2253
2254 if (!IS_CHAR_CLASS (str))
2255 FREE_STACK_RETURN (REG_ECTYPE);
2256
2257 /* Throw away the ] at the end of the character
2258 class. */
2259 PATFETCH (c);
2260
2261 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2262
2263 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2264 {
2265 /* This was split into 3 if's to
2266 avoid an arbitrary limit in some compiler. */
2267 if ( (is_alnum && ISALNUM (ch))
2268 || (is_alpha && ISALPHA (ch))
2269 || (is_blank && ISBLANK (ch))
2270 || (is_cntrl && ISCNTRL (ch)))
2271 SET_LIST_BIT (ch);
2272 if ( (is_digit && ISDIGIT (ch))
2273 || (is_graph && ISGRAPH (ch))
2274 || (is_lower && ISLOWER (ch))
2275 || (is_print && ISPRINT (ch)))
2276 SET_LIST_BIT (ch);
2277 if ( (is_punct && ISPUNCT (ch))
2278 || (is_space && ISSPACE (ch))
2279 || (is_upper && ISUPPER (ch))
2280 || (is_xdigit && ISXDIGIT (ch)))
2281 SET_LIST_BIT (ch);
2282 if ( translate && (is_upper || is_lower)
2283 && (ISUPPER (ch) || ISLOWER (ch)))
2284 SET_LIST_BIT (ch);
2285 }
2286 had_char_class = true;
2287 #endif /* libc || wctype.h */
2288 }
2289 else
2290 {
2291 c1++;
2292 while (c1--)
2293 PATUNFETCH;
2294 SET_LIST_BIT ('[');
2295 SET_LIST_BIT (':');
2296 had_char_class = false;
2297 }
2298 }
2299 else
2300 {
2301 had_char_class = false;
2302 SET_LIST_BIT (c);
2303 }
2304 }
2305
2306 /* Discard any (non)matching list bytes that are all 0 at the
2307 end of the map. Decrease the map-length byte too. */
2308 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2309 b[-1]--;
2310 b += b[-1];
2311 }
2312 break;
2313
2314
2315 case '(':
2316 if (syntax & RE_NO_BK_PARENS)
2317 goto handle_open;
2318 else
2319 goto normal_char;
2320
2321
2322 case ')':
2323 if (syntax & RE_NO_BK_PARENS)
2324 goto handle_close;
2325 else
2326 goto normal_char;
2327
2328
2329 case '\n':
2330 if (syntax & RE_NEWLINE_ALT)
2331 goto handle_alt;
2332 else
2333 goto normal_char;
2334
2335
2336 case '|':
2337 if (syntax & RE_NO_BK_VBAR)
2338 goto handle_alt;
2339 else
2340 goto normal_char;
2341
2342
2343 case '{':
2344 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2345 goto handle_interval;
2346 else
2347 goto normal_char;
2348
2349
2350 case '\\':
2351 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2352
2353 /* Do not translate the character after the \, so that we can
2354 distinguish, e.g., \B from \b, even if we normally would
2355 translate, e.g., B to b. */
2356 PATFETCH_RAW (c);
2357
2358 switch (c)
2359 {
2360 case '(':
2361 if (syntax & RE_NO_BK_PARENS)
2362 goto normal_backslash;
2363
2364 handle_open:
2365 bufp->re_nsub++;
2366 regnum++;
2367
2368 if (COMPILE_STACK_FULL)
2369 {
2370 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2371 compile_stack_elt_t);
2372 if (compile_stack.stack == NULL) return REG_ESPACE;
2373
2374 compile_stack.size <<= 1;
2375 }
2376
2377 /* These are the values to restore when we hit end of this
2378 group. They are all relative offsets, so that if the
2379 whole pattern moves because of realloc, they will still
2380 be valid. */
2381 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2382 COMPILE_STACK_TOP.fixup_alt_jump
2383 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2384 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2385 COMPILE_STACK_TOP.regnum = regnum;
2386
2387 /* We will eventually replace the 0 with the number of
2388 groups inner to this one. But do not push a
2389 start_memory for groups beyond the last one we can
2390 represent in the compiled pattern. */
2391 if (regnum <= MAX_REGNUM)
2392 {
2393 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2394 BUF_PUSH_3 (start_memory, regnum, 0);
2395 }
2396
2397 compile_stack.avail++;
2398
2399 fixup_alt_jump = 0;
2400 laststart = 0;
2401 begalt = b;
2402 /* If we've reached MAX_REGNUM groups, then this open
2403 won't actually generate any code, so we'll have to
2404 clear pending_exact explicitly. */
2405 pending_exact = 0;
2406 break;
2407
2408
2409 case ')':
2410 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2411
2412 if (COMPILE_STACK_EMPTY)
2413 {
2414 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2415 goto normal_backslash;
2416 else
2417 FREE_STACK_RETURN (REG_ERPAREN);
2418 }
2419
2420 handle_close:
2421 if (fixup_alt_jump)
2422 { /* Push a dummy failure point at the end of the
2423 alternative for a possible future
2424 `pop_failure_jump' to pop. See comments at
2425 `push_dummy_failure' in `re_match_2'. */
2426 BUF_PUSH (push_dummy_failure);
2427
2428 /* We allocated space for this jump when we assigned
2429 to `fixup_alt_jump', in the `handle_alt' case below. */
2430 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2431 }
2432
2433 /* See similar code for backslashed left paren above. */
2434 if (COMPILE_STACK_EMPTY)
2435 {
2436 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2437 goto normal_char;
2438 else
2439 FREE_STACK_RETURN (REG_ERPAREN);
2440 }
2441
2442 /* Since we just checked for an empty stack above, this
2443 ``can't happen''. */
2444 assert (compile_stack.avail != 0);
2445 {
2446 /* We don't just want to restore into `regnum', because
2447 later groups should continue to be numbered higher,
2448 as in `(ab)c(de)' -- the second group is #2. */
2449 regnum_t this_group_regnum;
2450
2451 compile_stack.avail--;
2452 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2453 fixup_alt_jump
2454 = COMPILE_STACK_TOP.fixup_alt_jump
2455 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2456 : 0;
2457 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2458 this_group_regnum = COMPILE_STACK_TOP.regnum;
2459 /* If we've reached MAX_REGNUM groups, then this open
2460 won't actually generate any code, so we'll have to
2461 clear pending_exact explicitly. */
2462 pending_exact = 0;
2463
2464 /* We're at the end of the group, so now we know how many
2465 groups were inside this one. */
2466 if (this_group_regnum <= MAX_REGNUM)
2467 {
2468 unsigned char *inner_group_loc
2469 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2470
2471 *inner_group_loc = regnum - this_group_regnum;
2472 BUF_PUSH_3 (stop_memory, this_group_regnum,
2473 regnum - this_group_regnum);
2474 }
2475 }
2476 break;
2477
2478
2479 case '|': /* `\|'. */
2480 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2481 goto normal_backslash;
2482 handle_alt:
2483 if (syntax & RE_LIMITED_OPS)
2484 goto normal_char;
2485
2486 /* Insert before the previous alternative a jump which
2487 jumps to this alternative if the former fails. */
2488 GET_BUFFER_SPACE (3);
2489 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2490 pending_exact = 0;
2491 b += 3;
2492
2493 /* The alternative before this one has a jump after it
2494 which gets executed if it gets matched. Adjust that
2495 jump so it will jump to this alternative's analogous
2496 jump (put in below, which in turn will jump to the next
2497 (if any) alternative's such jump, etc.). The last such
2498 jump jumps to the correct final destination. A picture:
2499 _____ _____
2500 | | | |
2501 | v | v
2502 a | b | c
2503
2504 If we are at `b', then fixup_alt_jump right now points to a
2505 three-byte space after `a'. We'll put in the jump, set
2506 fixup_alt_jump to right after `b', and leave behind three
2507 bytes which we'll fill in when we get to after `c'. */
2508
2509 if (fixup_alt_jump)
2510 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2511
2512 /* Mark and leave space for a jump after this alternative,
2513 to be filled in later either by next alternative or
2514 when know we're at the end of a series of alternatives. */
2515 fixup_alt_jump = b;
2516 GET_BUFFER_SPACE (3);
2517 b += 3;
2518
2519 laststart = 0;
2520 begalt = b;
2521 break;
2522
2523
2524 case '{':
2525 /* If \{ is a literal. */
2526 if (!(syntax & RE_INTERVALS)
2527 /* If we're at `\{' and it's not the open-interval
2528 operator. */
2529 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2530 || (p - 2 == pattern && p == pend))
2531 goto normal_backslash;
2532
2533 handle_interval:
2534 {
2535 /* If got here, then the syntax allows intervals. */
2536
2537 /* At least (most) this many matches must be made. */
2538 int lower_bound = -1, upper_bound = -1;
2539
2540 beg_interval = p - 1;
2541
2542 if (p == pend)
2543 {
2544 if (syntax & RE_NO_BK_BRACES)
2545 goto unfetch_interval;
2546 else
2547 FREE_STACK_RETURN (REG_EBRACE);
2548 }
2549
2550 GET_UNSIGNED_NUMBER (lower_bound);
2551
2552 if (c == ',')
2553 {
2554 GET_UNSIGNED_NUMBER (upper_bound);
2555 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2556 }
2557 else
2558 /* Interval such as `{1}' => match exactly once. */
2559 upper_bound = lower_bound;
2560
2561 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2562 || lower_bound > upper_bound)
2563 {
2564 if (syntax & RE_NO_BK_BRACES)
2565 goto unfetch_interval;
2566 else
2567 FREE_STACK_RETURN (REG_BADBR);
2568 }
2569
2570 if (!(syntax & RE_NO_BK_BRACES))
2571 {
2572 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2573
2574 PATFETCH (c);
2575 }
2576
2577 if (c != '}')
2578 {
2579 if (syntax & RE_NO_BK_BRACES)
2580 goto unfetch_interval;
2581 else
2582 FREE_STACK_RETURN (REG_BADBR);
2583 }
2584
2585 /* We just parsed a valid interval. */
2586
2587 /* If it's invalid to have no preceding re. */
2588 if (!laststart)
2589 {
2590 if (syntax & RE_CONTEXT_INVALID_OPS)
2591 FREE_STACK_RETURN (REG_BADRPT);
2592 else if (syntax & RE_CONTEXT_INDEP_OPS)
2593 laststart = b;
2594 else
2595 goto unfetch_interval;
2596 }
2597
2598 /* If the upper bound is zero, don't want to succeed at
2599 all; jump from `laststart' to `b + 3', which will be
2600 the end of the buffer after we insert the jump. */
2601 if (upper_bound == 0)
2602 {
2603 GET_BUFFER_SPACE (3);
2604 INSERT_JUMP (jump, laststart, b + 3);
2605 b += 3;
2606 }
2607
2608 /* Otherwise, we have a nontrivial interval. When
2609 we're all done, the pattern will look like:
2610 set_number_at <jump count> <upper bound>
2611 set_number_at <succeed_n count> <lower bound>
2612 succeed_n <after jump addr> <succeed_n count>
2613 <body of loop>
2614 jump_n <succeed_n addr> <jump count>
2615 (The upper bound and `jump_n' are omitted if
2616 `upper_bound' is 1, though.) */
2617 else
2618 { /* If the upper bound is > 1, we need to insert
2619 more at the end of the loop. */
2620 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2621
2622 GET_BUFFER_SPACE (nbytes);
2623
2624 /* Initialize lower bound of the `succeed_n', even
2625 though it will be set during matching by its
2626 attendant `set_number_at' (inserted next),
2627 because `re_compile_fastmap' needs to know.
2628 Jump to the `jump_n' we might insert below. */
2629 INSERT_JUMP2 (succeed_n, laststart,
2630 b + 5 + (upper_bound > 1) * 5,
2631 lower_bound);
2632 b += 5;
2633
2634 /* Code to initialize the lower bound. Insert
2635 before the `succeed_n'. The `5' is the last two
2636 bytes of this `set_number_at', plus 3 bytes of
2637 the following `succeed_n'. */
2638 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2639 b += 5;
2640
2641 if (upper_bound > 1)
2642 { /* More than one repetition is allowed, so
2643 append a backward jump to the `succeed_n'
2644 that starts this interval.
2645
2646 When we've reached this during matching,
2647 we'll have matched the interval once, so
2648 jump back only `upper_bound - 1' times. */
2649 STORE_JUMP2 (jump_n, b, laststart + 5,
2650 upper_bound - 1);
2651 b += 5;
2652
2653 /* The location we want to set is the second
2654 parameter of the `jump_n'; that is `b-2' as
2655 an absolute address. `laststart' will be
2656 the `set_number_at' we're about to insert;
2657 `laststart+3' the number to set, the source
2658 for the relative address. But we are
2659 inserting into the middle of the pattern --
2660 so everything is getting moved up by 5.
2661 Conclusion: (b - 2) - (laststart + 3) + 5,
2662 i.e., b - laststart.
2663
2664 We insert this at the beginning of the loop
2665 so that if we fail during matching, we'll
2666 reinitialize the bounds. */
2667 insert_op2 (set_number_at, laststart, b - laststart,
2668 upper_bound - 1, b);
2669 b += 5;
2670 }
2671 }
2672 pending_exact = 0;
2673 beg_interval = NULL;
2674 }
2675 break;
2676
2677 unfetch_interval:
2678 /* If an invalid interval, match the characters as literals. */
2679 assert (beg_interval);
2680 p = beg_interval;
2681 beg_interval = NULL;
2682
2683 /* normal_char and normal_backslash need `c'. */
2684 PATFETCH (c);
2685
2686 if (!(syntax & RE_NO_BK_BRACES))
2687 {
2688 if (p > pattern && p[-1] == '\\')
2689 goto normal_backslash;
2690 }
2691 goto normal_char;
2692
2693 #ifdef emacs
2694 /* There is no way to specify the before_dot and after_dot
2695 operators. rms says this is ok. --karl */
2696 case '=':
2697 BUF_PUSH (at_dot);
2698 break;
2699
2700 case 's':
2701 laststart = b;
2702 PATFETCH (c);
2703 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2704 break;
2705
2706 case 'S':
2707 laststart = b;
2708 PATFETCH (c);
2709 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2710 break;
2711 #endif /* emacs */
2712
2713
2714 case 'w':
2715 if (syntax & RE_NO_GNU_OPS)
2716 goto normal_char;
2717 laststart = b;
2718 BUF_PUSH (wordchar);
2719 break;
2720
2721
2722 case 'W':
2723 if (syntax & RE_NO_GNU_OPS)
2724 goto normal_char;
2725 laststart = b;
2726 BUF_PUSH (notwordchar);
2727 break;
2728
2729
2730 case '<':
2731 if (syntax & RE_NO_GNU_OPS)
2732 goto normal_char;
2733 BUF_PUSH (wordbeg);
2734 break;
2735
2736 case '>':
2737 if (syntax & RE_NO_GNU_OPS)
2738 goto normal_char;
2739 BUF_PUSH (wordend);
2740 break;
2741
2742 case 'b':
2743 if (syntax & RE_NO_GNU_OPS)
2744 goto normal_char;
2745 BUF_PUSH (wordbound);
2746 break;
2747
2748 case 'B':
2749 if (syntax & RE_NO_GNU_OPS)
2750 goto normal_char;
2751 BUF_PUSH (notwordbound);
2752 break;
2753
2754 case '`':
2755 if (syntax & RE_NO_GNU_OPS)
2756 goto normal_char;
2757 BUF_PUSH (begbuf);
2758 break;
2759
2760 case '\'':
2761 if (syntax & RE_NO_GNU_OPS)
2762 goto normal_char;
2763 BUF_PUSH (endbuf);
2764 break;
2765
2766 case '1': case '2': case '3': case '4': case '5':
2767 case '6': case '7': case '8': case '9':
2768 if (syntax & RE_NO_BK_REFS)
2769 goto normal_char;
2770
2771 c1 = c - '0';
2772
2773 if (c1 > regnum)
2774 FREE_STACK_RETURN (REG_ESUBREG);
2775
2776 /* Can't back reference to a subexpression if inside of it. */
2777 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2778 goto normal_char;
2779
2780 laststart = b;
2781 BUF_PUSH_2 (duplicate, c1);
2782 break;
2783
2784
2785 case '+':
2786 case '?':
2787 if (syntax & RE_BK_PLUS_QM)
2788 goto handle_plus;
2789 else
2790 goto normal_backslash;
2791
2792 default:
2793 normal_backslash:
2794 /* You might think it would be useful for \ to mean
2795 not to translate; but if we don't translate it
2796 it will never match anything. */
2797 c = TRANSLATE (c);
2798 goto normal_char;
2799 }
2800 break;
2801
2802
2803 default:
2804 /* Expects the character in `c'. */
2805 normal_char:
2806 /* If no exactn currently being built. */
2807 if (!pending_exact
2808
2809 /* If last exactn not at current position. */
2810 || pending_exact + *pending_exact + 1 != b
2811
2812 /* We have only one byte following the exactn for the count. */
2813 || *pending_exact == (1 << BYTEWIDTH) - 1
2814
2815 /* If followed by a repetition operator. */
2816 || *p == '*' || *p == '^'
2817 || ((syntax & RE_BK_PLUS_QM)
2818 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2819 : (*p == '+' || *p == '?'))
2820 || ((syntax & RE_INTERVALS)
2821 && ((syntax & RE_NO_BK_BRACES)
2822 ? *p == '{'
2823 : (p[0] == '\\' && p[1] == '{'))))
2824 {
2825 /* Start building a new exactn. */
2826
2827 laststart = b;
2828
2829 BUF_PUSH_2 (exactn, 0);
2830 pending_exact = b - 1;
2831 }
2832
2833 BUF_PUSH (c);
2834 (*pending_exact)++;
2835 break;
2836 } /* switch (c) */
2837 } /* while p != pend */
2838
2839
2840 /* Through the pattern now. */
2841
2842 if (fixup_alt_jump)
2843 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2844
2845 if (!COMPILE_STACK_EMPTY)
2846 FREE_STACK_RETURN (REG_EPAREN);
2847
2848 /* If we don't want backtracking, force success
2849 the first time we reach the end of the compiled pattern. */
2850 if (syntax & RE_NO_POSIX_BACKTRACKING)
2851 BUF_PUSH (succeed);
2852
2853 free (compile_stack.stack);
2854
2855 /* We have succeeded; set the length of the buffer. */
2856 bufp->used = b - bufp->buffer;
2857
2858 #ifdef DEBUG
2859 if (debug)
2860 {
2861 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2862 print_compiled_pattern (bufp);
2863 }
2864 #endif /* DEBUG */
2865
2866 #ifndef MATCH_MAY_ALLOCATE
2867 /* Initialize the failure stack to the largest possible stack. This
2868 isn't necessary unless we're trying to avoid calling alloca in
2869 the search and match routines. */
2870 {
2871 int num_regs = bufp->re_nsub + 1;
2872
2873 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2874 is strictly greater than re_max_failures, the largest possible stack
2875 is 2 * re_max_failures failure points. */
2876 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2877 {
2878 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2879
2880 # ifdef emacs
2881 if (! fail_stack.stack)
2882 fail_stack.stack
2883 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2884 * sizeof (fail_stack_elt_t));
2885 else
2886 fail_stack.stack
2887 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2888 (fail_stack.size
2889 * sizeof (fail_stack_elt_t)));
2890 # else /* not emacs */
2891 if (! fail_stack.stack)
2892 fail_stack.stack
2893 = (fail_stack_elt_t *) malloc (fail_stack.size
2894 * sizeof (fail_stack_elt_t));
2895 else
2896 fail_stack.stack
2897 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2898 (fail_stack.size
2899 * sizeof (fail_stack_elt_t)));
2900 # endif /* not emacs */
2901 }
2902
2903 regex_grow_registers (num_regs);
2904 }
2905 #endif /* not MATCH_MAY_ALLOCATE */
2906
2907 return REG_NOERROR;
2908 } /* regex_compile */
2909 \f
2910 /* Subroutines for `regex_compile'. */
2911
2912 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2913
2914 static void
2915 store_op1 (op, loc, arg)
2916 re_opcode_t op;
2917 unsigned char *loc;
2918 int arg;
2919 {
2920 *loc = (unsigned char) op;
2921 STORE_NUMBER (loc + 1, arg);
2922 }
2923
2924
2925 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2926
2927 static void
2928 store_op2 (op, loc, arg1, arg2)
2929 re_opcode_t op;
2930 unsigned char *loc;
2931 int arg1, arg2;
2932 {
2933 *loc = (unsigned char) op;
2934 STORE_NUMBER (loc + 1, arg1);
2935 STORE_NUMBER (loc + 3, arg2);
2936 }
2937
2938
2939 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2940 for OP followed by two-byte integer parameter ARG. */
2941
2942 static void
2943 insert_op1 (op, loc, arg, end)
2944 re_opcode_t op;
2945 unsigned char *loc;
2946 int arg;
2947 unsigned char *end;
2948 {
2949 register unsigned char *pfrom = end;
2950 register unsigned char *pto = end + 3;
2951
2952 while (pfrom != loc)
2953 *--pto = *--pfrom;
2954
2955 store_op1 (op, loc, arg);
2956 }
2957
2958
2959 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2960
2961 static void
2962 insert_op2 (op, loc, arg1, arg2, end)
2963 re_opcode_t op;
2964 unsigned char *loc;
2965 int arg1, arg2;
2966 unsigned char *end;
2967 {
2968 register unsigned char *pfrom = end;
2969 register unsigned char *pto = end + 5;
2970
2971 while (pfrom != loc)
2972 *--pto = *--pfrom;
2973
2974 store_op2 (op, loc, arg1, arg2);
2975 }
2976
2977
2978 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2979 after an alternative or a begin-subexpression. We assume there is at
2980 least one character before the ^. */
2981
2982 static boolean
2983 at_begline_loc_p (pattern, p, syntax)
2984 const char *pattern, *p;
2985 reg_syntax_t syntax;
2986 {
2987 const char *prev = p - 2;
2988 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2989
2990 return
2991 /* After a subexpression? */
2992 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2993 /* After an alternative? */
2994 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2995 }
2996
2997
2998 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2999 at least one character after the $, i.e., `P < PEND'. */
3000
3001 static boolean
3002 at_endline_loc_p (p, pend, syntax)
3003 const char *p, *pend;
3004 reg_syntax_t syntax;
3005 {
3006 const char *next = p;
3007 boolean next_backslash = *next == '\\';
3008 const char *next_next = p + 1 < pend ? p + 1 : 0;
3009
3010 return
3011 /* Before a subexpression? */
3012 (syntax & RE_NO_BK_PARENS ? *next == ')'
3013 : next_backslash && next_next && *next_next == ')')
3014 /* Before an alternative? */
3015 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3016 : next_backslash && next_next && *next_next == '|');
3017 }
3018
3019
3020 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3021 false if it's not. */
3022
3023 static boolean
3024 group_in_compile_stack (compile_stack, regnum)
3025 compile_stack_type compile_stack;
3026 regnum_t regnum;
3027 {
3028 int this_element;
3029
3030 for (this_element = compile_stack.avail - 1;
3031 this_element >= 0;
3032 this_element--)
3033 if (compile_stack.stack[this_element].regnum == regnum)
3034 return true;
3035
3036 return false;
3037 }
3038
3039
3040 /* Read the ending character of a range (in a bracket expression) from the
3041 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3042 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3043 Then we set the translation of all bits between the starting and
3044 ending characters (inclusive) in the compiled pattern B.
3045
3046 Return an error code.
3047
3048 We use these short variable names so we can use the same macros as
3049 `regex_compile' itself. */
3050
3051 static reg_errcode_t
3052 compile_range (p_ptr, pend, translate, syntax, b)
3053 const char **p_ptr, *pend;
3054 RE_TRANSLATE_TYPE translate;
3055 reg_syntax_t syntax;
3056 unsigned char *b;
3057 {
3058 unsigned this_char;
3059
3060 const char *p = *p_ptr;
3061 unsigned int range_start, range_end;
3062
3063 if (p == pend)
3064 return REG_ERANGE;
3065
3066 /* Even though the pattern is a signed `char *', we need to fetch
3067 with unsigned char *'s; if the high bit of the pattern character
3068 is set, the range endpoints will be negative if we fetch using a
3069 signed char *.
3070
3071 We also want to fetch the endpoints without translating them; the
3072 appropriate translation is done in the bit-setting loop below. */
3073 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3074 range_start = ((const unsigned char *) p)[-2];
3075 range_end = ((const unsigned char *) p)[0];
3076
3077 /* Have to increment the pointer into the pattern string, so the
3078 caller isn't still at the ending character. */
3079 (*p_ptr)++;
3080
3081 /* If the start is after the end, the range is empty. */
3082 if (range_start > range_end)
3083 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3084
3085 /* Here we see why `this_char' has to be larger than an `unsigned
3086 char' -- the range is inclusive, so if `range_end' == 0xff
3087 (assuming 8-bit characters), we would otherwise go into an infinite
3088 loop, since all characters <= 0xff. */
3089 for (this_char = range_start; this_char <= range_end; this_char++)
3090 {
3091 SET_LIST_BIT (TRANSLATE (this_char));
3092 }
3093
3094 return REG_NOERROR;
3095 }
3096 \f
3097 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3098 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3099 characters can start a string that matches the pattern. This fastmap
3100 is used by re_search to skip quickly over impossible starting points.
3101
3102 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3103 area as BUFP->fastmap.
3104
3105 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3106 the pattern buffer.
3107
3108 Returns 0 if we succeed, -2 if an internal error. */
3109
3110 int
3111 re_compile_fastmap (bufp)
3112 struct re_pattern_buffer *bufp;
3113 {
3114 int j, k;
3115 #ifdef MATCH_MAY_ALLOCATE
3116 fail_stack_type fail_stack;
3117 #endif
3118 #ifndef REGEX_MALLOC
3119 char *destination;
3120 #endif
3121
3122 register char *fastmap = bufp->fastmap;
3123 unsigned char *pattern = bufp->buffer;
3124 unsigned char *p = pattern;
3125 register unsigned char *pend = pattern + bufp->used;
3126
3127 #ifdef REL_ALLOC
3128 /* This holds the pointer to the failure stack, when
3129 it is allocated relocatably. */
3130 fail_stack_elt_t *failure_stack_ptr;
3131 #endif
3132
3133 /* Assume that each path through the pattern can be null until
3134 proven otherwise. We set this false at the bottom of switch
3135 statement, to which we get only if a particular path doesn't
3136 match the empty string. */
3137 boolean path_can_be_null = true;
3138
3139 /* We aren't doing a `succeed_n' to begin with. */
3140 boolean succeed_n_p = false;
3141
3142 assert (fastmap != NULL && p != NULL);
3143
3144 INIT_FAIL_STACK ();
3145 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3146 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3147 bufp->can_be_null = 0;
3148
3149 while (1)
3150 {
3151 if (p == pend || *p == succeed)
3152 {
3153 /* We have reached the (effective) end of pattern. */
3154 if (!FAIL_STACK_EMPTY ())
3155 {
3156 bufp->can_be_null |= path_can_be_null;
3157
3158 /* Reset for next path. */
3159 path_can_be_null = true;
3160
3161 p = fail_stack.stack[--fail_stack.avail].pointer;
3162
3163 continue;
3164 }
3165 else
3166 break;
3167 }
3168
3169 /* We should never be about to go beyond the end of the pattern. */
3170 assert (p < pend);
3171
3172 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3173 {
3174
3175 /* I guess the idea here is to simply not bother with a fastmap
3176 if a backreference is used, since it's too hard to figure out
3177 the fastmap for the corresponding group. Setting
3178 `can_be_null' stops `re_search_2' from using the fastmap, so
3179 that is all we do. */
3180 case duplicate:
3181 bufp->can_be_null = 1;
3182 goto done;
3183
3184
3185 /* Following are the cases which match a character. These end
3186 with `break'. */
3187
3188 case exactn:
3189 fastmap[p[1]] = 1;
3190 break;
3191
3192
3193 case charset:
3194 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3195 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3196 fastmap[j] = 1;
3197 break;
3198
3199
3200 case charset_not:
3201 /* Chars beyond end of map must be allowed. */
3202 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3203 fastmap[j] = 1;
3204
3205 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3206 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3207 fastmap[j] = 1;
3208 break;
3209
3210
3211 case wordchar:
3212 for (j = 0; j < (1 << BYTEWIDTH); j++)
3213 if (SYNTAX (j) == Sword)
3214 fastmap[j] = 1;
3215 break;
3216
3217
3218 case notwordchar:
3219 for (j = 0; j < (1 << BYTEWIDTH); j++)
3220 if (SYNTAX (j) != Sword)
3221 fastmap[j] = 1;
3222 break;
3223
3224
3225 case anychar:
3226 {
3227 int fastmap_newline = fastmap['\n'];
3228
3229 /* `.' matches anything ... */
3230 for (j = 0; j < (1 << BYTEWIDTH); j++)
3231 fastmap[j] = 1;
3232
3233 /* ... except perhaps newline. */
3234 if (!(bufp->syntax & RE_DOT_NEWLINE))
3235 fastmap['\n'] = fastmap_newline;
3236
3237 /* Return if we have already set `can_be_null'; if we have,
3238 then the fastmap is irrelevant. Something's wrong here. */
3239 else if (bufp->can_be_null)
3240 goto done;
3241
3242 /* Otherwise, have to check alternative paths. */
3243 break;
3244 }
3245
3246 #ifdef emacs
3247 case syntaxspec:
3248 k = *p++;
3249 for (j = 0; j < (1 << BYTEWIDTH); j++)
3250 if (SYNTAX (j) == (enum syntaxcode) k)
3251 fastmap[j] = 1;
3252 break;
3253
3254
3255 case notsyntaxspec:
3256 k = *p++;
3257 for (j = 0; j < (1 << BYTEWIDTH); j++)
3258 if (SYNTAX (j) != (enum syntaxcode) k)
3259 fastmap[j] = 1;
3260 break;
3261
3262
3263 /* All cases after this match the empty string. These end with
3264 `continue'. */
3265
3266
3267 case before_dot:
3268 case at_dot:
3269 case after_dot:
3270 continue;
3271 #endif /* emacs */
3272
3273
3274 case no_op:
3275 case begline:
3276 case endline:
3277 case begbuf:
3278 case endbuf:
3279 case wordbound:
3280 case notwordbound:
3281 case wordbeg:
3282 case wordend:
3283 case push_dummy_failure:
3284 continue;
3285
3286
3287 case jump_n:
3288 case pop_failure_jump:
3289 case maybe_pop_jump:
3290 case jump:
3291 case jump_past_alt:
3292 case dummy_failure_jump:
3293 EXTRACT_NUMBER_AND_INCR (j, p);
3294 p += j;
3295 if (j > 0)
3296 continue;
3297
3298 /* Jump backward implies we just went through the body of a
3299 loop and matched nothing. Opcode jumped to should be
3300 `on_failure_jump' or `succeed_n'. Just treat it like an
3301 ordinary jump. For a * loop, it has pushed its failure
3302 point already; if so, discard that as redundant. */
3303 if ((re_opcode_t) *p != on_failure_jump
3304 && (re_opcode_t) *p != succeed_n)
3305 continue;
3306
3307 p++;
3308 EXTRACT_NUMBER_AND_INCR (j, p);
3309 p += j;
3310
3311 /* If what's on the stack is where we are now, pop it. */
3312 if (!FAIL_STACK_EMPTY ()
3313 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3314 fail_stack.avail--;
3315
3316 continue;
3317
3318
3319 case on_failure_jump:
3320 case on_failure_keep_string_jump:
3321 handle_on_failure_jump:
3322 EXTRACT_NUMBER_AND_INCR (j, p);
3323
3324 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3325 end of the pattern. We don't want to push such a point,
3326 since when we restore it above, entering the switch will
3327 increment `p' past the end of the pattern. We don't need
3328 to push such a point since we obviously won't find any more
3329 fastmap entries beyond `pend'. Such a pattern can match
3330 the null string, though. */
3331 if (p + j < pend)
3332 {
3333 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3334 {
3335 RESET_FAIL_STACK ();
3336 return -2;
3337 }
3338 }
3339 else
3340 bufp->can_be_null = 1;
3341
3342 if (succeed_n_p)
3343 {
3344 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3345 succeed_n_p = false;
3346 }
3347
3348 continue;
3349
3350
3351 case succeed_n:
3352 /* Get to the number of times to succeed. */
3353 p += 2;
3354
3355 /* Increment p past the n for when k != 0. */
3356 EXTRACT_NUMBER_AND_INCR (k, p);
3357 if (k == 0)
3358 {
3359 p -= 4;
3360 succeed_n_p = true; /* Spaghetti code alert. */
3361 goto handle_on_failure_jump;
3362 }
3363 continue;
3364
3365
3366 case set_number_at:
3367 p += 4;
3368 continue;
3369
3370
3371 case start_memory:
3372 case stop_memory:
3373 p += 2;
3374 continue;
3375
3376
3377 default:
3378 abort (); /* We have listed all the cases. */
3379 } /* switch *p++ */
3380
3381 /* Getting here means we have found the possible starting
3382 characters for one path of the pattern -- and that the empty
3383 string does not match. We need not follow this path further.
3384 Instead, look at the next alternative (remembered on the
3385 stack), or quit if no more. The test at the top of the loop
3386 does these things. */
3387 path_can_be_null = false;
3388 p = pend;
3389 } /* while p */
3390
3391 /* Set `can_be_null' for the last path (also the first path, if the
3392 pattern is empty). */
3393 bufp->can_be_null |= path_can_be_null;
3394
3395 done:
3396 RESET_FAIL_STACK ();
3397 return 0;
3398 } /* re_compile_fastmap */
3399 #ifdef _LIBC
3400 weak_alias (__re_compile_fastmap, re_compile_fastmap)
3401 #endif
3402 \f
3403 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3404 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3405 this memory for recording register information. STARTS and ENDS
3406 must be allocated using the malloc library routine, and must each
3407 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3408
3409 If NUM_REGS == 0, then subsequent matches should allocate their own
3410 register data.
3411
3412 Unless this function is called, the first search or match using
3413 PATTERN_BUFFER will allocate its own register data, without
3414 freeing the old data. */
3415
3416 void
3417 re_set_registers (bufp, regs, num_regs, starts, ends)
3418 struct re_pattern_buffer *bufp;
3419 struct re_registers *regs;
3420 unsigned num_regs;
3421 regoff_t *starts, *ends;
3422 {
3423 if (num_regs)
3424 {
3425 bufp->regs_allocated = REGS_REALLOCATE;
3426 regs->num_regs = num_regs;
3427 regs->start = starts;
3428 regs->end = ends;
3429 }
3430 else
3431 {
3432 bufp->regs_allocated = REGS_UNALLOCATED;
3433 regs->num_regs = 0;
3434 regs->start = regs->end = (regoff_t *) 0;
3435 }
3436 }
3437 #ifdef _LIBC
3438 weak_alias (__re_set_registers, re_set_registers)
3439 #endif
3440 \f
3441 /* Searching routines. */
3442
3443 /* Like re_search_2, below, but only one string is specified, and
3444 doesn't let you say where to stop matching. */
3445
3446 int
3447 re_search (bufp, string, size, startpos, range, regs)
3448 struct re_pattern_buffer *bufp;
3449 const char *string;
3450 int size, startpos, range;
3451 struct re_registers *regs;
3452 {
3453 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3454 regs, size);
3455 }
3456 #ifdef _LIBC
3457 weak_alias (__re_search, re_search)
3458 #endif
3459
3460
3461 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3462 virtual concatenation of STRING1 and STRING2, starting first at index
3463 STARTPOS, then at STARTPOS + 1, and so on.
3464
3465 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3466
3467 RANGE is how far to scan while trying to match. RANGE = 0 means try
3468 only at STARTPOS; in general, the last start tried is STARTPOS +
3469 RANGE.
3470
3471 In REGS, return the indices of the virtual concatenation of STRING1
3472 and STRING2 that matched the entire BUFP->buffer and its contained
3473 subexpressions.
3474
3475 Do not consider matching one past the index STOP in the virtual
3476 concatenation of STRING1 and STRING2.
3477
3478 We return either the position in the strings at which the match was
3479 found, -1 if no match, or -2 if error (such as failure
3480 stack overflow). */
3481
3482 int
3483 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3484 struct re_pattern_buffer *bufp;
3485 const char *string1, *string2;
3486 int size1, size2;
3487 int startpos;
3488 int range;
3489 struct re_registers *regs;
3490 int stop;
3491 {
3492 int val;
3493 register char *fastmap = bufp->fastmap;
3494 register RE_TRANSLATE_TYPE translate = bufp->translate;
3495 int total_size = size1 + size2;
3496 int endpos = startpos + range;
3497
3498 /* Check for out-of-range STARTPOS. */
3499 if (startpos < 0 || startpos > total_size)
3500 return -1;
3501
3502 /* Fix up RANGE if it might eventually take us outside
3503 the virtual concatenation of STRING1 and STRING2.
3504 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3505 if (endpos < 0)
3506 range = 0 - startpos;
3507 else if (endpos > total_size)
3508 range = total_size - startpos;
3509
3510 /* If the search isn't to be a backwards one, don't waste time in a
3511 search for a pattern that must be anchored. */
3512 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3513 {
3514 if (startpos > 0)
3515 return -1;
3516 else
3517 range = 1;
3518 }
3519
3520 #ifdef emacs
3521 /* In a forward search for something that starts with \=.
3522 don't keep searching past point. */
3523 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3524 {
3525 range = PT - startpos;
3526 if (range <= 0)
3527 return -1;
3528 }
3529 #endif /* emacs */
3530
3531 /* Update the fastmap now if not correct already. */
3532 if (fastmap && !bufp->fastmap_accurate)
3533 if (re_compile_fastmap (bufp) == -2)
3534 return -2;
3535
3536 /* Loop through the string, looking for a place to start matching. */
3537 for (;;)
3538 {
3539 /* If a fastmap is supplied, skip quickly over characters that
3540 cannot be the start of a match. If the pattern can match the
3541 null string, however, we don't need to skip characters; we want
3542 the first null string. */
3543 if (fastmap && startpos < total_size && !bufp->can_be_null)
3544 {
3545 if (range > 0) /* Searching forwards. */
3546 {
3547 register const char *d;
3548 register int lim = 0;
3549 int irange = range;
3550
3551 if (startpos < size1 && startpos + range >= size1)
3552 lim = range - (size1 - startpos);
3553
3554 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3555
3556 /* Written out as an if-else to avoid testing `translate'
3557 inside the loop. */
3558 if (translate)
3559 while (range > lim
3560 && !fastmap[(unsigned char)
3561 translate[(unsigned char) *d++]])
3562 range--;
3563 else
3564 while (range > lim && !fastmap[(unsigned char) *d++])
3565 range--;
3566
3567 startpos += irange - range;
3568 }
3569 else /* Searching backwards. */
3570 {
3571 register char c = (size1 == 0 || startpos >= size1
3572 ? string2[startpos - size1]
3573 : string1[startpos]);
3574
3575 if (!fastmap[(unsigned char) TRANSLATE (c)])
3576 goto advance;
3577 }
3578 }
3579
3580 /* If can't match the null string, and that's all we have left, fail. */
3581 if (range >= 0 && startpos == total_size && fastmap
3582 && !bufp->can_be_null)
3583 return -1;
3584
3585 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3586 startpos, regs, stop);
3587 #ifndef REGEX_MALLOC
3588 # ifdef C_ALLOCA
3589 alloca (0);
3590 # endif
3591 #endif
3592
3593 if (val >= 0)
3594 return startpos;
3595
3596 if (val == -2)
3597 return -2;
3598
3599 advance:
3600 if (!range)
3601 break;
3602 else if (range > 0)
3603 {
3604 range--;
3605 startpos++;
3606 }
3607 else
3608 {
3609 range++;
3610 startpos--;
3611 }
3612 }
3613 return -1;
3614 } /* re_search_2 */
3615 #ifdef _LIBC
3616 weak_alias (__re_search_2, re_search_2)
3617 #endif
3618 \f
3619 /* This converts PTR, a pointer into one of the search strings `string1'
3620 and `string2' into an offset from the beginning of that string. */
3621 #define POINTER_TO_OFFSET(ptr) \
3622 (FIRST_STRING_P (ptr) \
3623 ? ((regoff_t) ((ptr) - string1)) \
3624 : ((regoff_t) ((ptr) - string2 + size1)))
3625
3626 /* Macros for dealing with the split strings in re_match_2. */
3627
3628 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3629
3630 /* Call before fetching a character with *d. This switches over to
3631 string2 if necessary. */
3632 #define PREFETCH() \
3633 while (d == dend) \
3634 { \
3635 /* End of string2 => fail. */ \
3636 if (dend == end_match_2) \
3637 goto fail; \
3638 /* End of string1 => advance to string2. */ \
3639 d = string2; \
3640 dend = end_match_2; \
3641 }
3642
3643
3644 /* Test if at very beginning or at very end of the virtual concatenation
3645 of `string1' and `string2'. If only one string, it's `string2'. */
3646 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3647 #define AT_STRINGS_END(d) ((d) == end2)
3648
3649
3650 /* Test if D points to a character which is word-constituent. We have
3651 two special cases to check for: if past the end of string1, look at
3652 the first character in string2; and if before the beginning of
3653 string2, look at the last character in string1. */
3654 #define WORDCHAR_P(d) \
3655 (SYNTAX ((d) == end1 ? *string2 \
3656 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3657 == Sword)
3658
3659 /* Disabled due to a compiler bug -- see comment at case wordbound */
3660 #if 0
3661 /* Test if the character before D and the one at D differ with respect
3662 to being word-constituent. */
3663 #define AT_WORD_BOUNDARY(d) \
3664 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3665 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3666 #endif
3667
3668 /* Free everything we malloc. */
3669 #ifdef MATCH_MAY_ALLOCATE
3670 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3671 # define FREE_VARIABLES() \
3672 do { \
3673 REGEX_FREE_STACK (fail_stack.stack); \
3674 FREE_VAR (regstart); \
3675 FREE_VAR (regend); \
3676 FREE_VAR (old_regstart); \
3677 FREE_VAR (old_regend); \
3678 FREE_VAR (best_regstart); \
3679 FREE_VAR (best_regend); \
3680 FREE_VAR (reg_info); \
3681 FREE_VAR (reg_dummy); \
3682 FREE_VAR (reg_info_dummy); \
3683 } while (0)
3684 #else
3685 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3686 #endif /* not MATCH_MAY_ALLOCATE */
3687
3688 /* These values must meet several constraints. They must not be valid
3689 register values; since we have a limit of 255 registers (because
3690 we use only one byte in the pattern for the register number), we can
3691 use numbers larger than 255. They must differ by 1, because of
3692 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3693 be larger than the value for the highest register, so we do not try
3694 to actually save any registers when none are active. */
3695 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3696 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3697 \f
3698 /* Matching routines. */
3699
3700 #ifndef emacs /* Emacs never uses this. */
3701 /* re_match is like re_match_2 except it takes only a single string. */
3702
3703 int
3704 re_match (bufp, string, size, pos, regs)
3705 struct re_pattern_buffer *bufp;
3706 const char *string;
3707 int size, pos;
3708 struct re_registers *regs;
3709 {
3710 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3711 pos, regs, size);
3712 # ifndef REGEX_MALLOC
3713 # ifdef C_ALLOCA
3714 alloca (0);
3715 # endif
3716 # endif
3717 return result;
3718 }
3719 # ifdef _LIBC
3720 weak_alias (__re_match, re_match)
3721 # endif
3722 #endif /* not emacs */
3723
3724 static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3725 unsigned char *end,
3726 register_info_type *reg_info));
3727 static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3728 unsigned char *end,
3729 register_info_type *reg_info));
3730 static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3731 unsigned char *end,
3732 register_info_type *reg_info));
3733 static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3734 int len, char *translate));
3735
3736 /* re_match_2 matches the compiled pattern in BUFP against the
3737 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3738 and SIZE2, respectively). We start matching at POS, and stop
3739 matching at STOP.
3740
3741 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3742 store offsets for the substring each group matched in REGS. See the
3743 documentation for exactly how many groups we fill.
3744
3745 We return -1 if no match, -2 if an internal error (such as the
3746 failure stack overflowing). Otherwise, we return the length of the
3747 matched substring. */
3748
3749 int
3750 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3751 struct re_pattern_buffer *bufp;
3752 const char *string1, *string2;
3753 int size1, size2;
3754 int pos;
3755 struct re_registers *regs;
3756 int stop;
3757 {
3758 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3759 pos, regs, stop);
3760 #ifndef REGEX_MALLOC
3761 # ifdef C_ALLOCA
3762 alloca (0);
3763 # endif
3764 #endif
3765 return result;
3766 }
3767 #ifdef _LIBC
3768 weak_alias (__re_match_2, re_match_2)
3769 #endif
3770
3771 /* This is a separate function so that we can force an alloca cleanup
3772 afterwards. */
3773 static int
3774 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3775 struct re_pattern_buffer *bufp;
3776 const char *string1, *string2;
3777 int size1, size2;
3778 int pos;
3779 struct re_registers *regs;
3780 int stop;
3781 {
3782 /* General temporaries. */
3783 int mcnt;
3784 unsigned char *p1;
3785
3786 /* Just past the end of the corresponding string. */
3787 const char *end1, *end2;
3788
3789 /* Pointers into string1 and string2, just past the last characters in
3790 each to consider matching. */
3791 const char *end_match_1, *end_match_2;
3792
3793 /* Where we are in the data, and the end of the current string. */
3794 const char *d, *dend;
3795
3796 /* Where we are in the pattern, and the end of the pattern. */
3797 unsigned char *p = bufp->buffer;
3798 register unsigned char *pend = p + bufp->used;
3799
3800 /* Mark the opcode just after a start_memory, so we can test for an
3801 empty subpattern when we get to the stop_memory. */
3802 unsigned char *just_past_start_mem = 0;
3803
3804 /* We use this to map every character in the string. */
3805 RE_TRANSLATE_TYPE translate = bufp->translate;
3806
3807 /* Failure point stack. Each place that can handle a failure further
3808 down the line pushes a failure point on this stack. It consists of
3809 restart, regend, and reg_info for all registers corresponding to
3810 the subexpressions we're currently inside, plus the number of such
3811 registers, and, finally, two char *'s. The first char * is where
3812 to resume scanning the pattern; the second one is where to resume
3813 scanning the strings. If the latter is zero, the failure point is
3814 a ``dummy''; if a failure happens and the failure point is a dummy,
3815 it gets discarded and the next next one is tried. */
3816 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3817 fail_stack_type fail_stack;
3818 #endif
3819 #ifdef DEBUG
3820 static unsigned failure_id = 0;
3821 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3822 #endif
3823
3824 #ifdef REL_ALLOC
3825 /* This holds the pointer to the failure stack, when
3826 it is allocated relocatably. */
3827 fail_stack_elt_t *failure_stack_ptr;
3828 #endif
3829
3830 /* We fill all the registers internally, independent of what we
3831 return, for use in backreferences. The number here includes
3832 an element for register zero. */
3833 size_t num_regs = bufp->re_nsub + 1;
3834
3835 /* The currently active registers. */
3836 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3837 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3838
3839 /* Information on the contents of registers. These are pointers into
3840 the input strings; they record just what was matched (on this
3841 attempt) by a subexpression part of the pattern, that is, the
3842 regnum-th regstart pointer points to where in the pattern we began
3843 matching and the regnum-th regend points to right after where we
3844 stopped matching the regnum-th subexpression. (The zeroth register
3845 keeps track of what the whole pattern matches.) */
3846 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3847 const char **regstart, **regend;
3848 #endif
3849
3850 /* If a group that's operated upon by a repetition operator fails to
3851 match anything, then the register for its start will need to be
3852 restored because it will have been set to wherever in the string we
3853 are when we last see its open-group operator. Similarly for a
3854 register's end. */
3855 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3856 const char **old_regstart, **old_regend;
3857 #endif
3858
3859 /* The is_active field of reg_info helps us keep track of which (possibly
3860 nested) subexpressions we are currently in. The matched_something
3861 field of reg_info[reg_num] helps us tell whether or not we have
3862 matched any of the pattern so far this time through the reg_num-th
3863 subexpression. These two fields get reset each time through any
3864 loop their register is in. */
3865 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3866 register_info_type *reg_info;
3867 #endif
3868
3869 /* The following record the register info as found in the above
3870 variables when we find a match better than any we've seen before.
3871 This happens as we backtrack through the failure points, which in
3872 turn happens only if we have not yet matched the entire string. */
3873 unsigned best_regs_set = false;
3874 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3875 const char **best_regstart, **best_regend;
3876 #endif
3877
3878 /* Logically, this is `best_regend[0]'. But we don't want to have to
3879 allocate space for that if we're not allocating space for anything
3880 else (see below). Also, we never need info about register 0 for
3881 any of the other register vectors, and it seems rather a kludge to
3882 treat `best_regend' differently than the rest. So we keep track of
3883 the end of the best match so far in a separate variable. We
3884 initialize this to NULL so that when we backtrack the first time
3885 and need to test it, it's not garbage. */
3886 const char *match_end = NULL;
3887
3888 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3889 int set_regs_matched_done = 0;
3890
3891 /* Used when we pop values we don't care about. */
3892 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3893 const char **reg_dummy;
3894 register_info_type *reg_info_dummy;
3895 #endif
3896
3897 #ifdef DEBUG
3898 /* Counts the total number of registers pushed. */
3899 unsigned num_regs_pushed = 0;
3900 #endif
3901
3902 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3903
3904 INIT_FAIL_STACK ();
3905
3906 #ifdef MATCH_MAY_ALLOCATE
3907 /* Do not bother to initialize all the register variables if there are
3908 no groups in the pattern, as it takes a fair amount of time. If
3909 there are groups, we include space for register 0 (the whole
3910 pattern), even though we never use it, since it simplifies the
3911 array indexing. We should fix this. */
3912 if (bufp->re_nsub)
3913 {
3914 regstart = REGEX_TALLOC (num_regs, const char *);
3915 regend = REGEX_TALLOC (num_regs, const char *);
3916 old_regstart = REGEX_TALLOC (num_regs, const char *);
3917 old_regend = REGEX_TALLOC (num_regs, const char *);
3918 best_regstart = REGEX_TALLOC (num_regs, const char *);
3919 best_regend = REGEX_TALLOC (num_regs, const char *);
3920 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3921 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3922 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3923
3924 if (!(regstart && regend && old_regstart && old_regend && reg_info
3925 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3926 {
3927 FREE_VARIABLES ();
3928 return -2;
3929 }
3930 }
3931 else
3932 {
3933 /* We must initialize all our variables to NULL, so that
3934 `FREE_VARIABLES' doesn't try to free them. */
3935 regstart = regend = old_regstart = old_regend = best_regstart
3936 = best_regend = reg_dummy = NULL;
3937 reg_info = reg_info_dummy = (register_info_type *) NULL;
3938 }
3939 #endif /* MATCH_MAY_ALLOCATE */
3940
3941 /* The starting position is bogus. */
3942 if (pos < 0 || pos > size1 + size2)
3943 {
3944 FREE_VARIABLES ();
3945 return -1;
3946 }
3947
3948 /* Initialize subexpression text positions to -1 to mark ones that no
3949 start_memory/stop_memory has been seen for. Also initialize the
3950 register information struct. */
3951 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
3952 {
3953 regstart[mcnt] = regend[mcnt]
3954 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3955
3956 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3957 IS_ACTIVE (reg_info[mcnt]) = 0;
3958 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3959 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3960 }
3961
3962 /* We move `string1' into `string2' if the latter's empty -- but not if
3963 `string1' is null. */
3964 if (size2 == 0 && string1 != NULL)
3965 {
3966 string2 = string1;
3967 size2 = size1;
3968 string1 = 0;
3969 size1 = 0;
3970 }
3971 end1 = string1 + size1;
3972 end2 = string2 + size2;
3973
3974 /* Compute where to stop matching, within the two strings. */
3975 if (stop <= size1)
3976 {
3977 end_match_1 = string1 + stop;
3978 end_match_2 = string2;
3979 }
3980 else
3981 {
3982 end_match_1 = end1;
3983 end_match_2 = string2 + stop - size1;
3984 }
3985
3986 /* `p' scans through the pattern as `d' scans through the data.
3987 `dend' is the end of the input string that `d' points within. `d'
3988 is advanced into the following input string whenever necessary, but
3989 this happens before fetching; therefore, at the beginning of the
3990 loop, `d' can be pointing at the end of a string, but it cannot
3991 equal `string2'. */
3992 if (size1 > 0 && pos <= size1)
3993 {
3994 d = string1 + pos;
3995 dend = end_match_1;
3996 }
3997 else
3998 {
3999 d = string2 + pos - size1;
4000 dend = end_match_2;
4001 }
4002
4003 DEBUG_PRINT1 ("The compiled pattern is:\n");
4004 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4005 DEBUG_PRINT1 ("The string to match is: `");
4006 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4007 DEBUG_PRINT1 ("'\n");
4008
4009 /* This loops over pattern commands. It exits by returning from the
4010 function if the match is complete, or it drops through if the match
4011 fails at this starting point in the input data. */
4012 for (;;)
4013 {
4014 #ifdef _LIBC
4015 DEBUG_PRINT2 ("\n%p: ", p);
4016 #else
4017 DEBUG_PRINT2 ("\n0x%x: ", p);
4018 #endif
4019
4020 if (p == pend)
4021 { /* End of pattern means we might have succeeded. */
4022 DEBUG_PRINT1 ("end of pattern ... ");
4023
4024 /* If we haven't matched the entire string, and we want the
4025 longest match, try backtracking. */
4026 if (d != end_match_2)
4027 {
4028 /* 1 if this match ends in the same string (string1 or string2)
4029 as the best previous match. */
4030 boolean same_str_p = (FIRST_STRING_P (match_end)
4031 == MATCHING_IN_FIRST_STRING);
4032 /* 1 if this match is the best seen so far. */
4033 boolean best_match_p;
4034
4035 /* AIX compiler got confused when this was combined
4036 with the previous declaration. */
4037 if (same_str_p)
4038 best_match_p = d > match_end;
4039 else
4040 best_match_p = !MATCHING_IN_FIRST_STRING;
4041
4042 DEBUG_PRINT1 ("backtracking.\n");
4043
4044 if (!FAIL_STACK_EMPTY ())
4045 { /* More failure points to try. */
4046
4047 /* If exceeds best match so far, save it. */
4048 if (!best_regs_set || best_match_p)
4049 {
4050 best_regs_set = true;
4051 match_end = d;
4052
4053 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4054
4055 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4056 {
4057 best_regstart[mcnt] = regstart[mcnt];
4058 best_regend[mcnt] = regend[mcnt];
4059 }
4060 }
4061 goto fail;
4062 }
4063
4064 /* If no failure points, don't restore garbage. And if
4065 last match is real best match, don't restore second
4066 best one. */
4067 else if (best_regs_set && !best_match_p)
4068 {
4069 restore_best_regs:
4070 /* Restore best match. It may happen that `dend ==
4071 end_match_1' while the restored d is in string2.
4072 For example, the pattern `x.*y.*z' against the
4073 strings `x-' and `y-z-', if the two strings are
4074 not consecutive in memory. */
4075 DEBUG_PRINT1 ("Restoring best registers.\n");
4076
4077 d = match_end;
4078 dend = ((d >= string1 && d <= end1)
4079 ? end_match_1 : end_match_2);
4080
4081 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4082 {
4083 regstart[mcnt] = best_regstart[mcnt];
4084 regend[mcnt] = best_regend[mcnt];
4085 }
4086 }
4087 } /* d != end_match_2 */
4088
4089 succeed_label:
4090 DEBUG_PRINT1 ("Accepting match.\n");
4091
4092 /* If caller wants register contents data back, do it. */
4093 if (regs && !bufp->no_sub)
4094 {
4095 /* Have the register data arrays been allocated? */
4096 if (bufp->regs_allocated == REGS_UNALLOCATED)
4097 { /* No. So allocate them with malloc. We need one
4098 extra element beyond `num_regs' for the `-1' marker
4099 GNU code uses. */
4100 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4101 regs->start = TALLOC (regs->num_regs, regoff_t);
4102 regs->end = TALLOC (regs->num_regs, regoff_t);
4103 if (regs->start == NULL || regs->end == NULL)
4104 {
4105 FREE_VARIABLES ();
4106 return -2;
4107 }
4108 bufp->regs_allocated = REGS_REALLOCATE;
4109 }
4110 else if (bufp->regs_allocated == REGS_REALLOCATE)
4111 { /* Yes. If we need more elements than were already
4112 allocated, reallocate them. If we need fewer, just
4113 leave it alone. */
4114 if (regs->num_regs < num_regs + 1)
4115 {
4116 regs->num_regs = num_regs + 1;
4117 RETALLOC (regs->start, regs->num_regs, regoff_t);
4118 RETALLOC (regs->end, regs->num_regs, regoff_t);
4119 if (regs->start == NULL || regs->end == NULL)
4120 {
4121 FREE_VARIABLES ();
4122 return -2;
4123 }
4124 }
4125 }
4126 else
4127 {
4128 /* These braces fend off a "empty body in an else-statement"
4129 warning under GCC when assert expands to nothing. */
4130 assert (bufp->regs_allocated == REGS_FIXED);
4131 }
4132
4133 /* Convert the pointer data in `regstart' and `regend' to
4134 indices. Register zero has to be set differently,
4135 since we haven't kept track of any info for it. */
4136 if (regs->num_regs > 0)
4137 {
4138 regs->start[0] = pos;
4139 regs->end[0] = (MATCHING_IN_FIRST_STRING
4140 ? ((regoff_t) (d - string1))
4141 : ((regoff_t) (d - string2 + size1)));
4142 }
4143
4144 /* Go through the first `min (num_regs, regs->num_regs)'
4145 registers, since that is all we initialized. */
4146 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4147 mcnt++)
4148 {
4149 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4150 regs->start[mcnt] = regs->end[mcnt] = -1;
4151 else
4152 {
4153 regs->start[mcnt]
4154 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4155 regs->end[mcnt]
4156 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4157 }
4158 }
4159
4160 /* If the regs structure we return has more elements than
4161 were in the pattern, set the extra elements to -1. If
4162 we (re)allocated the registers, this is the case,
4163 because we always allocate enough to have at least one
4164 -1 at the end. */
4165 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4166 regs->start[mcnt] = regs->end[mcnt] = -1;
4167 } /* regs && !bufp->no_sub */
4168
4169 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4170 nfailure_points_pushed, nfailure_points_popped,
4171 nfailure_points_pushed - nfailure_points_popped);
4172 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4173
4174 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4175 ? string1
4176 : string2 - size1);
4177
4178 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4179
4180 FREE_VARIABLES ();
4181 return mcnt;
4182 }
4183
4184 /* Otherwise match next pattern command. */
4185 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4186 {
4187 /* Ignore these. Used to ignore the n of succeed_n's which
4188 currently have n == 0. */
4189 case no_op:
4190 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4191 break;
4192
4193 case succeed:
4194 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4195 goto succeed_label;
4196
4197 /* Match the next n pattern characters exactly. The following
4198 byte in the pattern defines n, and the n bytes after that
4199 are the characters to match. */
4200 case exactn:
4201 mcnt = *p++;
4202 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4203
4204 /* This is written out as an if-else so we don't waste time
4205 testing `translate' inside the loop. */
4206 if (translate)
4207 {
4208 do
4209 {
4210 PREFETCH ();
4211 if ((unsigned char) translate[(unsigned char) *d++]
4212 != (unsigned char) *p++)
4213 goto fail;
4214 }
4215 while (--mcnt);
4216 }
4217 else
4218 {
4219 do
4220 {
4221 PREFETCH ();
4222 if (*d++ != (char) *p++) goto fail;
4223 }
4224 while (--mcnt);
4225 }
4226 SET_REGS_MATCHED ();
4227 break;
4228
4229
4230 /* Match any character except possibly a newline or a null. */
4231 case anychar:
4232 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4233
4234 PREFETCH ();
4235
4236 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4237 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4238 goto fail;
4239
4240 SET_REGS_MATCHED ();
4241 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4242 d++;
4243 break;
4244
4245
4246 case charset:
4247 case charset_not:
4248 {
4249 register unsigned char c;
4250 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4251
4252 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4253
4254 PREFETCH ();
4255 c = TRANSLATE (*d); /* The character to match. */
4256
4257 /* Cast to `unsigned' instead of `unsigned char' in case the
4258 bit list is a full 32 bytes long. */
4259 if (c < (unsigned) (*p * BYTEWIDTH)
4260 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4261 not = !not;
4262
4263 p += 1 + *p;
4264
4265 if (!not) goto fail;
4266
4267 SET_REGS_MATCHED ();
4268 d++;
4269 break;
4270 }
4271
4272
4273 /* The beginning of a group is represented by start_memory.
4274 The arguments are the register number in the next byte, and the
4275 number of groups inner to this one in the next. The text
4276 matched within the group is recorded (in the internal
4277 registers data structure) under the register number. */
4278 case start_memory:
4279 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4280
4281 /* Find out if this group can match the empty string. */
4282 p1 = p; /* To send to group_match_null_string_p. */
4283
4284 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4285 REG_MATCH_NULL_STRING_P (reg_info[*p])
4286 = group_match_null_string_p (&p1, pend, reg_info);
4287
4288 /* Save the position in the string where we were the last time
4289 we were at this open-group operator in case the group is
4290 operated upon by a repetition operator, e.g., with `(a*)*b'
4291 against `ab'; then we want to ignore where we are now in
4292 the string in case this attempt to match fails. */
4293 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4294 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4295 : regstart[*p];
4296 DEBUG_PRINT2 (" old_regstart: %d\n",
4297 POINTER_TO_OFFSET (old_regstart[*p]));
4298
4299 regstart[*p] = d;
4300 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4301
4302 IS_ACTIVE (reg_info[*p]) = 1;
4303 MATCHED_SOMETHING (reg_info[*p]) = 0;
4304
4305 /* Clear this whenever we change the register activity status. */
4306 set_regs_matched_done = 0;
4307
4308 /* This is the new highest active register. */
4309 highest_active_reg = *p;
4310
4311 /* If nothing was active before, this is the new lowest active
4312 register. */
4313 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4314 lowest_active_reg = *p;
4315
4316 /* Move past the register number and inner group count. */
4317 p += 2;
4318 just_past_start_mem = p;
4319
4320 break;
4321
4322
4323 /* The stop_memory opcode represents the end of a group. Its
4324 arguments are the same as start_memory's: the register
4325 number, and the number of inner groups. */
4326 case stop_memory:
4327 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4328
4329 /* We need to save the string position the last time we were at
4330 this close-group operator in case the group is operated
4331 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4332 against `aba'; then we want to ignore where we are now in
4333 the string in case this attempt to match fails. */
4334 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4335 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4336 : regend[*p];
4337 DEBUG_PRINT2 (" old_regend: %d\n",
4338 POINTER_TO_OFFSET (old_regend[*p]));
4339
4340 regend[*p] = d;
4341 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4342
4343 /* This register isn't active anymore. */
4344 IS_ACTIVE (reg_info[*p]) = 0;
4345
4346 /* Clear this whenever we change the register activity status. */
4347 set_regs_matched_done = 0;
4348
4349 /* If this was the only register active, nothing is active
4350 anymore. */
4351 if (lowest_active_reg == highest_active_reg)
4352 {
4353 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4354 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4355 }
4356 else
4357 { /* We must scan for the new highest active register, since
4358 it isn't necessarily one less than now: consider
4359 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4360 new highest active register is 1. */
4361 unsigned char r = *p - 1;
4362 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4363 r--;
4364
4365 /* If we end up at register zero, that means that we saved
4366 the registers as the result of an `on_failure_jump', not
4367 a `start_memory', and we jumped to past the innermost
4368 `stop_memory'. For example, in ((.)*) we save
4369 registers 1 and 2 as a result of the *, but when we pop
4370 back to the second ), we are at the stop_memory 1.
4371 Thus, nothing is active. */
4372 if (r == 0)
4373 {
4374 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4375 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4376 }
4377 else
4378 highest_active_reg = r;
4379 }
4380
4381 /* If just failed to match something this time around with a
4382 group that's operated on by a repetition operator, try to
4383 force exit from the ``loop'', and restore the register
4384 information for this group that we had before trying this
4385 last match. */
4386 if ((!MATCHED_SOMETHING (reg_info[*p])
4387 || just_past_start_mem == p - 1)
4388 && (p + 2) < pend)
4389 {
4390 boolean is_a_jump_n = false;
4391
4392 p1 = p + 2;
4393 mcnt = 0;
4394 switch ((re_opcode_t) *p1++)
4395 {
4396 case jump_n:
4397 is_a_jump_n = true;
4398 case pop_failure_jump:
4399 case maybe_pop_jump:
4400 case jump:
4401 case dummy_failure_jump:
4402 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4403 if (is_a_jump_n)
4404 p1 += 2;
4405 break;
4406
4407 default:
4408 /* do nothing */ ;
4409 }
4410 p1 += mcnt;
4411
4412 /* If the next operation is a jump backwards in the pattern
4413 to an on_failure_jump right before the start_memory
4414 corresponding to this stop_memory, exit from the loop
4415 by forcing a failure after pushing on the stack the
4416 on_failure_jump's jump in the pattern, and d. */
4417 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4418 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4419 {
4420 /* If this group ever matched anything, then restore
4421 what its registers were before trying this last
4422 failed match, e.g., with `(a*)*b' against `ab' for
4423 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4424 against `aba' for regend[3].
4425
4426 Also restore the registers for inner groups for,
4427 e.g., `((a*)(b*))*' against `aba' (register 3 would
4428 otherwise get trashed). */
4429
4430 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4431 {
4432 unsigned r;
4433
4434 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4435
4436 /* Restore this and inner groups' (if any) registers. */
4437 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4438 r++)
4439 {
4440 regstart[r] = old_regstart[r];
4441
4442 /* xx why this test? */
4443 if (old_regend[r] >= regstart[r])
4444 regend[r] = old_regend[r];
4445 }
4446 }
4447 p1++;
4448 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4449 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4450
4451 goto fail;
4452 }
4453 }
4454
4455 /* Move past the register number and the inner group count. */
4456 p += 2;
4457 break;
4458
4459
4460 /* \<digit> has been turned into a `duplicate' command which is
4461 followed by the numeric value of <digit> as the register number. */
4462 case duplicate:
4463 {
4464 register const char *d2, *dend2;
4465 int regno = *p++; /* Get which register to match against. */
4466 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4467
4468 /* Can't back reference a group which we've never matched. */
4469 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4470 goto fail;
4471
4472 /* Where in input to try to start matching. */
4473 d2 = regstart[regno];
4474
4475 /* Where to stop matching; if both the place to start and
4476 the place to stop matching are in the same string, then
4477 set to the place to stop, otherwise, for now have to use
4478 the end of the first string. */
4479
4480 dend2 = ((FIRST_STRING_P (regstart[regno])
4481 == FIRST_STRING_P (regend[regno]))
4482 ? regend[regno] : end_match_1);
4483 for (;;)
4484 {
4485 /* If necessary, advance to next segment in register
4486 contents. */
4487 while (d2 == dend2)
4488 {
4489 if (dend2 == end_match_2) break;
4490 if (dend2 == regend[regno]) break;
4491
4492 /* End of string1 => advance to string2. */
4493 d2 = string2;
4494 dend2 = regend[regno];
4495 }
4496 /* At end of register contents => success */
4497 if (d2 == dend2) break;
4498
4499 /* If necessary, advance to next segment in data. */
4500 PREFETCH ();
4501
4502 /* How many characters left in this segment to match. */
4503 mcnt = dend - d;
4504
4505 /* Want how many consecutive characters we can match in
4506 one shot, so, if necessary, adjust the count. */
4507 if (mcnt > dend2 - d2)
4508 mcnt = dend2 - d2;
4509
4510 /* Compare that many; failure if mismatch, else move
4511 past them. */
4512 if (translate
4513 ? bcmp_translate (d, d2, mcnt, translate)
4514 : memcmp (d, d2, mcnt))
4515 goto fail;
4516 d += mcnt, d2 += mcnt;
4517
4518 /* Do this because we've match some characters. */
4519 SET_REGS_MATCHED ();
4520 }
4521 }
4522 break;
4523
4524
4525 /* begline matches the empty string at the beginning of the string
4526 (unless `not_bol' is set in `bufp'), and, if
4527 `newline_anchor' is set, after newlines. */
4528 case begline:
4529 DEBUG_PRINT1 ("EXECUTING begline.\n");
4530
4531 if (AT_STRINGS_BEG (d))
4532 {
4533 if (!bufp->not_bol) break;
4534 }
4535 else if (d[-1] == '\n' && bufp->newline_anchor)
4536 {
4537 break;
4538 }
4539 /* In all other cases, we fail. */
4540 goto fail;
4541
4542
4543 /* endline is the dual of begline. */
4544 case endline:
4545 DEBUG_PRINT1 ("EXECUTING endline.\n");
4546
4547 if (AT_STRINGS_END (d))
4548 {
4549 if (!bufp->not_eol) break;
4550 }
4551
4552 /* We have to ``prefetch'' the next character. */
4553 else if ((d == end1 ? *string2 : *d) == '\n'
4554 && bufp->newline_anchor)
4555 {
4556 break;
4557 }
4558 goto fail;
4559
4560
4561 /* Match at the very beginning of the data. */
4562 case begbuf:
4563 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4564 if (AT_STRINGS_BEG (d))
4565 break;
4566 goto fail;
4567
4568
4569 /* Match at the very end of the data. */
4570 case endbuf:
4571 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4572 if (AT_STRINGS_END (d))
4573 break;
4574 goto fail;
4575
4576
4577 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4578 pushes NULL as the value for the string on the stack. Then
4579 `pop_failure_point' will keep the current value for the
4580 string, instead of restoring it. To see why, consider
4581 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4582 then the . fails against the \n. But the next thing we want
4583 to do is match the \n against the \n; if we restored the
4584 string value, we would be back at the foo.
4585
4586 Because this is used only in specific cases, we don't need to
4587 check all the things that `on_failure_jump' does, to make
4588 sure the right things get saved on the stack. Hence we don't
4589 share its code. The only reason to push anything on the
4590 stack at all is that otherwise we would have to change
4591 `anychar's code to do something besides goto fail in this
4592 case; that seems worse than this. */
4593 case on_failure_keep_string_jump:
4594 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4595
4596 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4597 #ifdef _LIBC
4598 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4599 #else
4600 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4601 #endif
4602
4603 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4604 break;
4605
4606
4607 /* Uses of on_failure_jump:
4608
4609 Each alternative starts with an on_failure_jump that points
4610 to the beginning of the next alternative. Each alternative
4611 except the last ends with a jump that in effect jumps past
4612 the rest of the alternatives. (They really jump to the
4613 ending jump of the following alternative, because tensioning
4614 these jumps is a hassle.)
4615
4616 Repeats start with an on_failure_jump that points past both
4617 the repetition text and either the following jump or
4618 pop_failure_jump back to this on_failure_jump. */
4619 case on_failure_jump:
4620 on_failure:
4621 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4622
4623 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4624 #ifdef _LIBC
4625 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4626 #else
4627 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4628 #endif
4629
4630 /* If this on_failure_jump comes right before a group (i.e.,
4631 the original * applied to a group), save the information
4632 for that group and all inner ones, so that if we fail back
4633 to this point, the group's information will be correct.
4634 For example, in \(a*\)*\1, we need the preceding group,
4635 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4636
4637 /* We can't use `p' to check ahead because we push
4638 a failure point to `p + mcnt' after we do this. */
4639 p1 = p;
4640
4641 /* We need to skip no_op's before we look for the
4642 start_memory in case this on_failure_jump is happening as
4643 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4644 against aba. */
4645 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4646 p1++;
4647
4648 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4649 {
4650 /* We have a new highest active register now. This will
4651 get reset at the start_memory we are about to get to,
4652 but we will have saved all the registers relevant to
4653 this repetition op, as described above. */
4654 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4655 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4656 lowest_active_reg = *(p1 + 1);
4657 }
4658
4659 DEBUG_PRINT1 (":\n");
4660 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4661 break;
4662
4663
4664 /* A smart repeat ends with `maybe_pop_jump'.
4665 We change it to either `pop_failure_jump' or `jump'. */
4666 case maybe_pop_jump:
4667 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4668 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4669 {
4670 register unsigned char *p2 = p;
4671
4672 /* Compare the beginning of the repeat with what in the
4673 pattern follows its end. If we can establish that there
4674 is nothing that they would both match, i.e., that we
4675 would have to backtrack because of (as in, e.g., `a*a')
4676 then we can change to pop_failure_jump, because we'll
4677 never have to backtrack.
4678
4679 This is not true in the case of alternatives: in
4680 `(a|ab)*' we do need to backtrack to the `ab' alternative
4681 (e.g., if the string was `ab'). But instead of trying to
4682 detect that here, the alternative has put on a dummy
4683 failure point which is what we will end up popping. */
4684
4685 /* Skip over open/close-group commands.
4686 If what follows this loop is a ...+ construct,
4687 look at what begins its body, since we will have to
4688 match at least one of that. */
4689 while (1)
4690 {
4691 if (p2 + 2 < pend
4692 && ((re_opcode_t) *p2 == stop_memory
4693 || (re_opcode_t) *p2 == start_memory))
4694 p2 += 3;
4695 else if (p2 + 6 < pend
4696 && (re_opcode_t) *p2 == dummy_failure_jump)
4697 p2 += 6;
4698 else
4699 break;
4700 }
4701
4702 p1 = p + mcnt;
4703 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4704 to the `maybe_finalize_jump' of this case. Examine what
4705 follows. */
4706
4707 /* If we're at the end of the pattern, we can change. */
4708 if (p2 == pend)
4709 {
4710 /* Consider what happens when matching ":\(.*\)"
4711 against ":/". I don't really understand this code
4712 yet. */
4713 p[-3] = (unsigned char) pop_failure_jump;
4714 DEBUG_PRINT1
4715 (" End of pattern: change to `pop_failure_jump'.\n");
4716 }
4717
4718 else if ((re_opcode_t) *p2 == exactn
4719 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4720 {
4721 register unsigned char c
4722 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4723
4724 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4725 {
4726 p[-3] = (unsigned char) pop_failure_jump;
4727 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4728 c, p1[5]);
4729 }
4730
4731 else if ((re_opcode_t) p1[3] == charset
4732 || (re_opcode_t) p1[3] == charset_not)
4733 {
4734 int not = (re_opcode_t) p1[3] == charset_not;
4735
4736 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4737 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4738 not = !not;
4739
4740 /* `not' is equal to 1 if c would match, which means
4741 that we can't change to pop_failure_jump. */
4742 if (!not)
4743 {
4744 p[-3] = (unsigned char) pop_failure_jump;
4745 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4746 }
4747 }
4748 }
4749 else if ((re_opcode_t) *p2 == charset)
4750 {
4751 #ifdef DEBUG
4752 register unsigned char c
4753 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4754 #endif
4755
4756 #if 0
4757 if ((re_opcode_t) p1[3] == exactn
4758 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4759 && (p2[2 + p1[5] / BYTEWIDTH]
4760 & (1 << (p1[5] % BYTEWIDTH)))))
4761 #else
4762 if ((re_opcode_t) p1[3] == exactn
4763 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4764 && (p2[2 + p1[4] / BYTEWIDTH]
4765 & (1 << (p1[4] % BYTEWIDTH)))))
4766 #endif
4767 {
4768 p[-3] = (unsigned char) pop_failure_jump;
4769 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4770 c, p1[5]);
4771 }
4772
4773 else if ((re_opcode_t) p1[3] == charset_not)
4774 {
4775 int idx;
4776 /* We win if the charset_not inside the loop
4777 lists every character listed in the charset after. */
4778 for (idx = 0; idx < (int) p2[1]; idx++)
4779 if (! (p2[2 + idx] == 0
4780 || (idx < (int) p1[4]
4781 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4782 break;
4783
4784 if (idx == p2[1])
4785 {
4786 p[-3] = (unsigned char) pop_failure_jump;
4787 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4788 }
4789 }
4790 else if ((re_opcode_t) p1[3] == charset)
4791 {
4792 int idx;
4793 /* We win if the charset inside the loop
4794 has no overlap with the one after the loop. */
4795 for (idx = 0;
4796 idx < (int) p2[1] && idx < (int) p1[4];
4797 idx++)
4798 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4799 break;
4800
4801 if (idx == p2[1] || idx == p1[4])
4802 {
4803 p[-3] = (unsigned char) pop_failure_jump;
4804 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4805 }
4806 }
4807 }
4808 }
4809 p -= 2; /* Point at relative address again. */
4810 if ((re_opcode_t) p[-1] != pop_failure_jump)
4811 {
4812 p[-1] = (unsigned char) jump;
4813 DEBUG_PRINT1 (" Match => jump.\n");
4814 goto unconditional_jump;
4815 }
4816 /* Note fall through. */
4817
4818
4819 /* The end of a simple repeat has a pop_failure_jump back to
4820 its matching on_failure_jump, where the latter will push a
4821 failure point. The pop_failure_jump takes off failure
4822 points put on by this pop_failure_jump's matching
4823 on_failure_jump; we got through the pattern to here from the
4824 matching on_failure_jump, so didn't fail. */
4825 case pop_failure_jump:
4826 {
4827 /* We need to pass separate storage for the lowest and
4828 highest registers, even though we don't care about the
4829 actual values. Otherwise, we will restore only one
4830 register from the stack, since lowest will == highest in
4831 `pop_failure_point'. */
4832 active_reg_t dummy_low_reg, dummy_high_reg;
4833 unsigned char *pdummy;
4834 const char *sdummy;
4835
4836 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4837 POP_FAILURE_POINT (sdummy, pdummy,
4838 dummy_low_reg, dummy_high_reg,
4839 reg_dummy, reg_dummy, reg_info_dummy);
4840 }
4841 /* Note fall through. */
4842
4843 unconditional_jump:
4844 #ifdef _LIBC
4845 DEBUG_PRINT2 ("\n%p: ", p);
4846 #else
4847 DEBUG_PRINT2 ("\n0x%x: ", p);
4848 #endif
4849 /* Note fall through. */
4850
4851 /* Unconditionally jump (without popping any failure points). */
4852 case jump:
4853 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4854 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4855 p += mcnt; /* Do the jump. */
4856 #ifdef _LIBC
4857 DEBUG_PRINT2 ("(to %p).\n", p);
4858 #else
4859 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4860 #endif
4861 break;
4862
4863
4864 /* We need this opcode so we can detect where alternatives end
4865 in `group_match_null_string_p' et al. */
4866 case jump_past_alt:
4867 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4868 goto unconditional_jump;
4869
4870
4871 /* Normally, the on_failure_jump pushes a failure point, which
4872 then gets popped at pop_failure_jump. We will end up at
4873 pop_failure_jump, also, and with a pattern of, say, `a+', we
4874 are skipping over the on_failure_jump, so we have to push
4875 something meaningless for pop_failure_jump to pop. */
4876 case dummy_failure_jump:
4877 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4878 /* It doesn't matter what we push for the string here. What
4879 the code at `fail' tests is the value for the pattern. */
4880 PUSH_FAILURE_POINT (NULL, NULL, -2);
4881 goto unconditional_jump;
4882
4883
4884 /* At the end of an alternative, we need to push a dummy failure
4885 point in case we are followed by a `pop_failure_jump', because
4886 we don't want the failure point for the alternative to be
4887 popped. For example, matching `(a|ab)*' against `aab'
4888 requires that we match the `ab' alternative. */
4889 case push_dummy_failure:
4890 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4891 /* See comments just above at `dummy_failure_jump' about the
4892 two zeroes. */
4893 PUSH_FAILURE_POINT (NULL, NULL, -2);
4894 break;
4895
4896 /* Have to succeed matching what follows at least n times.
4897 After that, handle like `on_failure_jump'. */
4898 case succeed_n:
4899 EXTRACT_NUMBER (mcnt, p + 2);
4900 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4901
4902 assert (mcnt >= 0);
4903 /* Originally, this is how many times we HAVE to succeed. */
4904 if (mcnt > 0)
4905 {
4906 mcnt--;
4907 p += 2;
4908 STORE_NUMBER_AND_INCR (p, mcnt);
4909 #ifdef _LIBC
4910 DEBUG_PRINT3 (" Setting %p to %d.\n", p - 2, mcnt);
4911 #else
4912 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - 2, mcnt);
4913 #endif
4914 }
4915 else if (mcnt == 0)
4916 {
4917 #ifdef _LIBC
4918 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2);
4919 #else
4920 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4921 #endif
4922 p[2] = (unsigned char) no_op;
4923 p[3] = (unsigned char) no_op;
4924 goto on_failure;
4925 }
4926 break;
4927
4928 case jump_n:
4929 EXTRACT_NUMBER (mcnt, p + 2);
4930 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4931
4932 /* Originally, this is how many times we CAN jump. */
4933 if (mcnt)
4934 {
4935 mcnt--;
4936 STORE_NUMBER (p + 2, mcnt);
4937 #ifdef _LIBC
4938 DEBUG_PRINT3 (" Setting %p to %d.\n", p + 2, mcnt);
4939 #else
4940 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + 2, mcnt);
4941 #endif
4942 goto unconditional_jump;
4943 }
4944 /* If don't have to jump any more, skip over the rest of command. */
4945 else
4946 p += 4;
4947 break;
4948
4949 case set_number_at:
4950 {
4951 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4952
4953 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4954 p1 = p + mcnt;
4955 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4956 #ifdef _LIBC
4957 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
4958 #else
4959 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4960 #endif
4961 STORE_NUMBER (p1, mcnt);
4962 break;
4963 }
4964
4965 #if 0
4966 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4967 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4968 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4969 macro and introducing temporary variables works around the bug. */
4970
4971 case wordbound:
4972 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4973 if (AT_WORD_BOUNDARY (d))
4974 break;
4975 goto fail;
4976
4977 case notwordbound:
4978 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4979 if (AT_WORD_BOUNDARY (d))
4980 goto fail;
4981 break;
4982 #else
4983 case wordbound:
4984 {
4985 boolean prevchar, thischar;
4986
4987 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4988 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4989 break;
4990
4991 prevchar = WORDCHAR_P (d - 1);
4992 thischar = WORDCHAR_P (d);
4993 if (prevchar != thischar)
4994 break;
4995 goto fail;
4996 }
4997
4998 case notwordbound:
4999 {
5000 boolean prevchar, thischar;
5001
5002 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5003 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5004 goto fail;
5005
5006 prevchar = WORDCHAR_P (d - 1);
5007 thischar = WORDCHAR_P (d);
5008 if (prevchar != thischar)
5009 goto fail;
5010 break;
5011 }
5012 #endif
5013
5014 case wordbeg:
5015 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5016 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
5017 break;
5018 goto fail;
5019
5020 case wordend:
5021 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5022 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
5023 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
5024 break;
5025 goto fail;
5026
5027 #ifdef emacs
5028 case before_dot:
5029 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5030 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
5031 goto fail;
5032 break;
5033
5034 case at_dot:
5035 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5036 if (PTR_CHAR_POS ((unsigned char *) d) != point)
5037 goto fail;
5038 break;
5039
5040 case after_dot:
5041 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5042 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5043 goto fail;
5044 break;
5045
5046 case syntaxspec:
5047 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5048 mcnt = *p++;
5049 goto matchsyntax;
5050
5051 case wordchar:
5052 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5053 mcnt = (int) Sword;
5054 matchsyntax:
5055 PREFETCH ();
5056 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5057 d++;
5058 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5059 goto fail;
5060 SET_REGS_MATCHED ();
5061 break;
5062
5063 case notsyntaxspec:
5064 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5065 mcnt = *p++;
5066 goto matchnotsyntax;
5067
5068 case notwordchar:
5069 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5070 mcnt = (int) Sword;
5071 matchnotsyntax:
5072 PREFETCH ();
5073 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5074 d++;
5075 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5076 goto fail;
5077 SET_REGS_MATCHED ();
5078 break;
5079
5080 #else /* not emacs */
5081 case wordchar:
5082 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5083 PREFETCH ();
5084 if (!WORDCHAR_P (d))
5085 goto fail;
5086 SET_REGS_MATCHED ();
5087 d++;
5088 break;
5089
5090 case notwordchar:
5091 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5092 PREFETCH ();
5093 if (WORDCHAR_P (d))
5094 goto fail;
5095 SET_REGS_MATCHED ();
5096 d++;
5097 break;
5098 #endif /* not emacs */
5099
5100 default:
5101 abort ();
5102 }
5103 continue; /* Successfully executed one pattern command; keep going. */
5104
5105
5106 /* We goto here if a matching operation fails. */
5107 fail:
5108 if (!FAIL_STACK_EMPTY ())
5109 { /* A restart point is known. Restore to that state. */
5110 DEBUG_PRINT1 ("\nFAIL:\n");
5111 POP_FAILURE_POINT (d, p,
5112 lowest_active_reg, highest_active_reg,
5113 regstart, regend, reg_info);
5114
5115 /* If this failure point is a dummy, try the next one. */
5116 if (!p)
5117 goto fail;
5118
5119 /* If we failed to the end of the pattern, don't examine *p. */
5120 assert (p <= pend);
5121 if (p < pend)
5122 {
5123 boolean is_a_jump_n = false;
5124
5125 /* If failed to a backwards jump that's part of a repetition
5126 loop, need to pop this failure point and use the next one. */
5127 switch ((re_opcode_t) *p)
5128 {
5129 case jump_n:
5130 is_a_jump_n = true;
5131 case maybe_pop_jump:
5132 case pop_failure_jump:
5133 case jump:
5134 p1 = p + 1;
5135 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5136 p1 += mcnt;
5137
5138 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5139 || (!is_a_jump_n
5140 && (re_opcode_t) *p1 == on_failure_jump))
5141 goto fail;
5142 break;
5143 default:
5144 /* do nothing */ ;
5145 }
5146 }
5147
5148 if (d >= string1 && d <= end1)
5149 dend = end_match_1;
5150 }
5151 else
5152 break; /* Matching at this starting point really fails. */
5153 } /* for (;;) */
5154
5155 if (best_regs_set)
5156 goto restore_best_regs;
5157
5158 FREE_VARIABLES ();
5159
5160 return -1; /* Failure to match. */
5161 } /* re_match_2 */
5162 \f
5163 /* Subroutine definitions for re_match_2. */
5164
5165
5166 /* We are passed P pointing to a register number after a start_memory.
5167
5168 Return true if the pattern up to the corresponding stop_memory can
5169 match the empty string, and false otherwise.
5170
5171 If we find the matching stop_memory, sets P to point to one past its number.
5172 Otherwise, sets P to an undefined byte less than or equal to END.
5173
5174 We don't handle duplicates properly (yet). */
5175
5176 static boolean
5177 group_match_null_string_p (p, end, reg_info)
5178 unsigned char **p, *end;
5179 register_info_type *reg_info;
5180 {
5181 int mcnt;
5182 /* Point to after the args to the start_memory. */
5183 unsigned char *p1 = *p + 2;
5184
5185 while (p1 < end)
5186 {
5187 /* Skip over opcodes that can match nothing, and return true or
5188 false, as appropriate, when we get to one that can't, or to the
5189 matching stop_memory. */
5190
5191 switch ((re_opcode_t) *p1)
5192 {
5193 /* Could be either a loop or a series of alternatives. */
5194 case on_failure_jump:
5195 p1++;
5196 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5197
5198 /* If the next operation is not a jump backwards in the
5199 pattern. */
5200
5201 if (mcnt >= 0)
5202 {
5203 /* Go through the on_failure_jumps of the alternatives,
5204 seeing if any of the alternatives cannot match nothing.
5205 The last alternative starts with only a jump,
5206 whereas the rest start with on_failure_jump and end
5207 with a jump, e.g., here is the pattern for `a|b|c':
5208
5209 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5210 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5211 /exactn/1/c
5212
5213 So, we have to first go through the first (n-1)
5214 alternatives and then deal with the last one separately. */
5215
5216
5217 /* Deal with the first (n-1) alternatives, which start
5218 with an on_failure_jump (see above) that jumps to right
5219 past a jump_past_alt. */
5220
5221 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5222 {
5223 /* `mcnt' holds how many bytes long the alternative
5224 is, including the ending `jump_past_alt' and
5225 its number. */
5226
5227 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5228 reg_info))
5229 return false;
5230
5231 /* Move to right after this alternative, including the
5232 jump_past_alt. */
5233 p1 += mcnt;
5234
5235 /* Break if it's the beginning of an n-th alternative
5236 that doesn't begin with an on_failure_jump. */
5237 if ((re_opcode_t) *p1 != on_failure_jump)
5238 break;
5239
5240 /* Still have to check that it's not an n-th
5241 alternative that starts with an on_failure_jump. */
5242 p1++;
5243 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5244 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5245 {
5246 /* Get to the beginning of the n-th alternative. */
5247 p1 -= 3;
5248 break;
5249 }
5250 }
5251
5252 /* Deal with the last alternative: go back and get number
5253 of the `jump_past_alt' just before it. `mcnt' contains
5254 the length of the alternative. */
5255 EXTRACT_NUMBER (mcnt, p1 - 2);
5256
5257 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5258 return false;
5259
5260 p1 += mcnt; /* Get past the n-th alternative. */
5261 } /* if mcnt > 0 */
5262 break;
5263
5264
5265 case stop_memory:
5266 assert (p1[1] == **p);
5267 *p = p1 + 2;
5268 return true;
5269
5270
5271 default:
5272 if (!common_op_match_null_string_p (&p1, end, reg_info))
5273 return false;
5274 }
5275 } /* while p1 < end */
5276
5277 return false;
5278 } /* group_match_null_string_p */
5279
5280
5281 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5282 It expects P to be the first byte of a single alternative and END one
5283 byte past the last. The alternative can contain groups. */
5284
5285 static boolean
5286 alt_match_null_string_p (p, end, reg_info)
5287 unsigned char *p, *end;
5288 register_info_type *reg_info;
5289 {
5290 int mcnt;
5291 unsigned char *p1 = p;
5292
5293 while (p1 < end)
5294 {
5295 /* Skip over opcodes that can match nothing, and break when we get
5296 to one that can't. */
5297
5298 switch ((re_opcode_t) *p1)
5299 {
5300 /* It's a loop. */
5301 case on_failure_jump:
5302 p1++;
5303 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5304 p1 += mcnt;
5305 break;
5306
5307 default:
5308 if (!common_op_match_null_string_p (&p1, end, reg_info))
5309 return false;
5310 }
5311 } /* while p1 < end */
5312
5313 return true;
5314 } /* alt_match_null_string_p */
5315
5316
5317 /* Deals with the ops common to group_match_null_string_p and
5318 alt_match_null_string_p.
5319
5320 Sets P to one after the op and its arguments, if any. */
5321
5322 static boolean
5323 common_op_match_null_string_p (p, end, reg_info)
5324 unsigned char **p, *end;
5325 register_info_type *reg_info;
5326 {
5327 int mcnt;
5328 boolean ret;
5329 int reg_no;
5330 unsigned char *p1 = *p;
5331
5332 switch ((re_opcode_t) *p1++)
5333 {
5334 case no_op:
5335 case begline:
5336 case endline:
5337 case begbuf:
5338 case endbuf:
5339 case wordbeg:
5340 case wordend:
5341 case wordbound:
5342 case notwordbound:
5343 #ifdef emacs
5344 case before_dot:
5345 case at_dot:
5346 case after_dot:
5347 #endif
5348 break;
5349
5350 case start_memory:
5351 reg_no = *p1;
5352 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5353 ret = group_match_null_string_p (&p1, end, reg_info);
5354
5355 /* Have to set this here in case we're checking a group which
5356 contains a group and a back reference to it. */
5357
5358 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5359 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5360
5361 if (!ret)
5362 return false;
5363 break;
5364
5365 /* If this is an optimized succeed_n for zero times, make the jump. */
5366 case jump:
5367 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5368 if (mcnt >= 0)
5369 p1 += mcnt;
5370 else
5371 return false;
5372 break;
5373
5374 case succeed_n:
5375 /* Get to the number of times to succeed. */
5376 p1 += 2;
5377 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5378
5379 if (mcnt == 0)
5380 {
5381 p1 -= 4;
5382 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5383 p1 += mcnt;
5384 }
5385 else
5386 return false;
5387 break;
5388
5389 case duplicate:
5390 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5391 return false;
5392 break;
5393
5394 case set_number_at:
5395 p1 += 4;
5396
5397 default:
5398 /* All other opcodes mean we cannot match the empty string. */
5399 return false;
5400 }
5401
5402 *p = p1;
5403 return true;
5404 } /* common_op_match_null_string_p */
5405
5406
5407 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5408 bytes; nonzero otherwise. */
5409
5410 static int
5411 bcmp_translate (s1, s2, len, translate)
5412 const char *s1, *s2;
5413 register int len;
5414 RE_TRANSLATE_TYPE translate;
5415 {
5416 register const unsigned char *p1 = (const unsigned char *) s1;
5417 register const unsigned char *p2 = (const unsigned char *) s2;
5418 while (len)
5419 {
5420 if (translate[*p1++] != translate[*p2++]) return 1;
5421 len--;
5422 }
5423 return 0;
5424 }
5425 \f
5426 /* Entry points for GNU code. */
5427
5428 /* re_compile_pattern is the GNU regular expression compiler: it
5429 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5430 Returns 0 if the pattern was valid, otherwise an error string.
5431
5432 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5433 are set in BUFP on entry.
5434
5435 We call regex_compile to do the actual compilation. */
5436
5437 const char *
5438 re_compile_pattern (pattern, length, bufp)
5439 const char *pattern;
5440 size_t length;
5441 struct re_pattern_buffer *bufp;
5442 {
5443 reg_errcode_t ret;
5444
5445 /* GNU code is written to assume at least RE_NREGS registers will be set
5446 (and at least one extra will be -1). */
5447 bufp->regs_allocated = REGS_UNALLOCATED;
5448
5449 /* And GNU code determines whether or not to get register information
5450 by passing null for the REGS argument to re_match, etc., not by
5451 setting no_sub. */
5452 bufp->no_sub = 0;
5453
5454 /* Match anchors at newline. */
5455 bufp->newline_anchor = 1;
5456
5457 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5458
5459 if (!ret)
5460 return NULL;
5461 return gettext (re_error_msgid[(int) ret]);
5462 }
5463 #ifdef _LIBC
5464 weak_alias (__re_compile_pattern, re_compile_pattern)
5465 #endif
5466 \f
5467 /* Entry points compatible with 4.2 BSD regex library. We don't define
5468 them unless specifically requested. */
5469
5470 #if defined _REGEX_RE_COMP || defined _LIBC
5471
5472 /* BSD has one and only one pattern buffer. */
5473 static struct re_pattern_buffer re_comp_buf;
5474
5475 char *
5476 #ifdef _LIBC
5477 /* Make these definitions weak in libc, so POSIX programs can redefine
5478 these names if they don't use our functions, and still use
5479 regcomp/regexec below without link errors. */
5480 weak_function
5481 #endif
5482 re_comp (s)
5483 const char *s;
5484 {
5485 reg_errcode_t ret;
5486
5487 if (!s)
5488 {
5489 if (!re_comp_buf.buffer)
5490 return gettext ("No previous regular expression");
5491 return 0;
5492 }
5493
5494 if (!re_comp_buf.buffer)
5495 {
5496 re_comp_buf.buffer = (unsigned char *) malloc (200);
5497 if (re_comp_buf.buffer == NULL)
5498 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5499 re_comp_buf.allocated = 200;
5500
5501 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5502 if (re_comp_buf.fastmap == NULL)
5503 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5504 }
5505
5506 /* Since `re_exec' always passes NULL for the `regs' argument, we
5507 don't need to initialize the pattern buffer fields which affect it. */
5508
5509 /* Match anchors at newlines. */
5510 re_comp_buf.newline_anchor = 1;
5511
5512 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5513
5514 if (!ret)
5515 return NULL;
5516
5517 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5518 return (char *) gettext (re_error_msgid[(int) ret]);
5519 }
5520
5521
5522 int
5523 #ifdef _LIBC
5524 weak_function
5525 #endif
5526 re_exec (s)
5527 const char *s;
5528 {
5529 const int len = strlen (s);
5530 return
5531 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5532 }
5533
5534 #endif /* _REGEX_RE_COMP */
5535 \f
5536 /* POSIX.2 functions. Don't define these for Emacs. */
5537
5538 #ifndef emacs
5539
5540 /* regcomp takes a regular expression as a string and compiles it.
5541
5542 PREG is a regex_t *. We do not expect any fields to be initialized,
5543 since POSIX says we shouldn't. Thus, we set
5544
5545 `buffer' to the compiled pattern;
5546 `used' to the length of the compiled pattern;
5547 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5548 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5549 RE_SYNTAX_POSIX_BASIC;
5550 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5551 `fastmap' and `fastmap_accurate' to zero;
5552 `re_nsub' to the number of subexpressions in PATTERN.
5553
5554 PATTERN is the address of the pattern string.
5555
5556 CFLAGS is a series of bits which affect compilation.
5557
5558 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5559 use POSIX basic syntax.
5560
5561 If REG_NEWLINE is set, then . and [^...] don't match newline.
5562 Also, regexec will try a match beginning after every newline.
5563
5564 If REG_ICASE is set, then we considers upper- and lowercase
5565 versions of letters to be equivalent when matching.
5566
5567 If REG_NOSUB is set, then when PREG is passed to regexec, that
5568 routine will report only success or failure, and nothing about the
5569 registers.
5570
5571 It returns 0 if it succeeds, nonzero if it doesn't. (See gnu-regex.h for
5572 the return codes and their meanings.) */
5573
5574 int
5575 regcomp (preg, pattern, cflags)
5576 regex_t *preg;
5577 const char *pattern;
5578 int cflags;
5579 {
5580 reg_errcode_t ret;
5581 reg_syntax_t syntax
5582 = (cflags & REG_EXTENDED) ?
5583 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5584
5585 /* regex_compile will allocate the space for the compiled pattern. */
5586 preg->buffer = 0;
5587 preg->allocated = 0;
5588 preg->used = 0;
5589
5590 /* Don't bother to use a fastmap when searching. This simplifies the
5591 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5592 characters after newlines into the fastmap. This way, we just try
5593 every character. */
5594 preg->fastmap = 0;
5595
5596 if (cflags & REG_ICASE)
5597 {
5598 unsigned i;
5599
5600 preg->translate
5601 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5602 * sizeof (*(RE_TRANSLATE_TYPE)0));
5603 if (preg->translate == NULL)
5604 return (int) REG_ESPACE;
5605
5606 /* Map uppercase characters to corresponding lowercase ones. */
5607 for (i = 0; i < CHAR_SET_SIZE; i++)
5608 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5609 }
5610 else
5611 preg->translate = NULL;
5612
5613 /* If REG_NEWLINE is set, newlines are treated differently. */
5614 if (cflags & REG_NEWLINE)
5615 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5616 syntax &= ~RE_DOT_NEWLINE;
5617 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5618 /* It also changes the matching behavior. */
5619 preg->newline_anchor = 1;
5620 }
5621 else
5622 preg->newline_anchor = 0;
5623
5624 preg->no_sub = !!(cflags & REG_NOSUB);
5625
5626 /* POSIX says a null character in the pattern terminates it, so we
5627 can use strlen here in compiling the pattern. */
5628 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5629
5630 /* POSIX doesn't distinguish between an unmatched open-group and an
5631 unmatched close-group: both are REG_EPAREN. */
5632 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5633
5634 return (int) ret;
5635 }
5636 #ifdef _LIBC
5637 weak_alias (__regcomp, regcomp)
5638 #endif
5639
5640
5641 /* regexec searches for a given pattern, specified by PREG, in the
5642 string STRING.
5643
5644 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5645 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5646 least NMATCH elements, and we set them to the offsets of the
5647 corresponding matched substrings.
5648
5649 EFLAGS specifies `execution flags' which affect matching: if
5650 REG_NOTBOL is set, then ^ does not match at the beginning of the
5651 string; if REG_NOTEOL is set, then $ does not match at the end.
5652
5653 We return 0 if we find a match and REG_NOMATCH if not. */
5654
5655 int
5656 regexec (preg, string, nmatch, pmatch, eflags)
5657 const regex_t *preg;
5658 const char *string;
5659 size_t nmatch;
5660 regmatch_t pmatch[];
5661 int eflags;
5662 {
5663 int ret;
5664 struct re_registers regs;
5665 regex_t private_preg;
5666 int len = strlen (string);
5667 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5668
5669 private_preg = *preg;
5670
5671 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5672 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5673
5674 /* The user has told us exactly how many registers to return
5675 information about, via `nmatch'. We have to pass that on to the
5676 matching routines. */
5677 private_preg.regs_allocated = REGS_FIXED;
5678
5679 if (want_reg_info)
5680 {
5681 regs.num_regs = nmatch;
5682 regs.start = TALLOC (nmatch, regoff_t);
5683 regs.end = TALLOC (nmatch, regoff_t);
5684 if (regs.start == NULL || regs.end == NULL)
5685 return (int) REG_NOMATCH;
5686 }
5687
5688 /* Perform the searching operation. */
5689 ret = re_search (&private_preg, string, len,
5690 /* start: */ 0, /* range: */ len,
5691 want_reg_info ? &regs : (struct re_registers *) 0);
5692
5693 /* Copy the register information to the POSIX structure. */
5694 if (want_reg_info)
5695 {
5696 if (ret >= 0)
5697 {
5698 unsigned r;
5699
5700 for (r = 0; r < nmatch; r++)
5701 {
5702 pmatch[r].rm_so = regs.start[r];
5703 pmatch[r].rm_eo = regs.end[r];
5704 }
5705 }
5706
5707 /* If we needed the temporary register info, free the space now. */
5708 free (regs.start);
5709 free (regs.end);
5710 }
5711
5712 /* We want zero return to mean success, unlike `re_search'. */
5713 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5714 }
5715 #ifdef _LIBC
5716 weak_alias (__regexec, regexec)
5717 #endif
5718
5719
5720 /* Returns a message corresponding to an error code, ERRCODE, returned
5721 from either regcomp or regexec. We don't use PREG here. */
5722
5723 size_t
5724 __regerror (errcode, preg, errbuf, errbuf_size)
5725 int errcode;
5726 const regex_t *preg;
5727 char *errbuf;
5728 size_t errbuf_size;
5729 {
5730 const char *msg;
5731 size_t msg_size;
5732
5733 if (errcode < 0
5734 || errcode >= (int) (sizeof (re_error_msgid)
5735 / sizeof (re_error_msgid[0])))
5736 /* Only error codes returned by the rest of the code should be passed
5737 to this routine. If we are given anything else, or if other regex
5738 code generates an invalid error code, then the program has a bug.
5739 Dump core so we can fix it. */
5740 abort ();
5741
5742 msg = gettext (re_error_msgid[errcode]);
5743
5744 msg_size = strlen (msg) + 1; /* Includes the null. */
5745
5746 if (errbuf_size != 0)
5747 {
5748 if (msg_size > errbuf_size)
5749 {
5750 #if defined HAVE_MEMPCPY || defined _LIBC
5751 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
5752 #else
5753 memcpy (errbuf, msg, errbuf_size - 1);
5754 errbuf[errbuf_size - 1] = 0;
5755 #endif
5756 }
5757 else
5758 memcpy (errbuf, msg, msg_size);
5759 }
5760
5761 return msg_size;
5762 }
5763 #ifdef _LIBC
5764 weak_alias (__regerror, regerror)
5765 #endif
5766
5767
5768 /* Free dynamically allocated space used by PREG. */
5769
5770 void
5771 regfree (preg)
5772 regex_t *preg;
5773 {
5774 if (preg->buffer != NULL)
5775 free (preg->buffer);
5776 preg->buffer = NULL;
5777
5778 preg->allocated = 0;
5779 preg->used = 0;
5780
5781 if (preg->fastmap != NULL)
5782 free (preg->fastmap);
5783 preg->fastmap = NULL;
5784 preg->fastmap_accurate = 0;
5785
5786 if (preg->translate != NULL)
5787 free (preg->translate);
5788 preg->translate = NULL;
5789 }
5790 #ifdef _LIBC
5791 weak_alias (__regfree, regfree)
5792 #endif
5793
5794 #endif /* not emacs */
This page took 0.142668 seconds and 5 git commands to generate.