* ada-lang.c (user_select_syms): Use SYMBOL_SYMTAB.
[deliverable/binutils-gdb.git] / gdb / gnu-v3-abi.c
1 /* Abstraction of GNU v3 abi.
2 Contributed by Jim Blandy <jimb@redhat.com>
3
4 Copyright (C) 2001-2003, 2005-2012 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "value.h"
23 #include "cp-abi.h"
24 #include "cp-support.h"
25 #include "demangle.h"
26 #include "objfiles.h"
27 #include "valprint.h"
28 #include "c-lang.h"
29 #include "exceptions.h"
30 #include "typeprint.h"
31
32 #include "gdb_assert.h"
33 #include "gdb_string.h"
34
35 static struct cp_abi_ops gnu_v3_abi_ops;
36
37 static int
38 gnuv3_is_vtable_name (const char *name)
39 {
40 return strncmp (name, "_ZTV", 4) == 0;
41 }
42
43 static int
44 gnuv3_is_operator_name (const char *name)
45 {
46 return strncmp (name, "operator", 8) == 0;
47 }
48
49
50 /* To help us find the components of a vtable, we build ourselves a
51 GDB type object representing the vtable structure. Following the
52 V3 ABI, it goes something like this:
53
54 struct gdb_gnu_v3_abi_vtable {
55
56 / * An array of virtual call and virtual base offsets. The real
57 length of this array depends on the class hierarchy; we use
58 negative subscripts to access the elements. Yucky, but
59 better than the alternatives. * /
60 ptrdiff_t vcall_and_vbase_offsets[0];
61
62 / * The offset from a virtual pointer referring to this table
63 to the top of the complete object. * /
64 ptrdiff_t offset_to_top;
65
66 / * The type_info pointer for this class. This is really a
67 std::type_info *, but GDB doesn't really look at the
68 type_info object itself, so we don't bother to get the type
69 exactly right. * /
70 void *type_info;
71
72 / * Virtual table pointers in objects point here. * /
73
74 / * Virtual function pointers. Like the vcall/vbase array, the
75 real length of this table depends on the class hierarchy. * /
76 void (*virtual_functions[0]) ();
77
78 };
79
80 The catch, of course, is that the exact layout of this table
81 depends on the ABI --- word size, endianness, alignment, etc. So
82 the GDB type object is actually a per-architecture kind of thing.
83
84 vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
85 which refers to the struct type * for this structure, laid out
86 appropriately for the architecture. */
87 static struct gdbarch_data *vtable_type_gdbarch_data;
88
89
90 /* Human-readable names for the numbers of the fields above. */
91 enum {
92 vtable_field_vcall_and_vbase_offsets,
93 vtable_field_offset_to_top,
94 vtable_field_type_info,
95 vtable_field_virtual_functions
96 };
97
98
99 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
100 described above, laid out appropriately for ARCH.
101
102 We use this function as the gdbarch per-architecture data
103 initialization function. */
104 static void *
105 build_gdb_vtable_type (struct gdbarch *arch)
106 {
107 struct type *t;
108 struct field *field_list, *field;
109 int offset;
110
111 struct type *void_ptr_type
112 = builtin_type (arch)->builtin_data_ptr;
113 struct type *ptr_to_void_fn_type
114 = builtin_type (arch)->builtin_func_ptr;
115
116 /* ARCH can't give us the true ptrdiff_t type, so we guess. */
117 struct type *ptrdiff_type
118 = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");
119
120 /* We assume no padding is necessary, since GDB doesn't know
121 anything about alignment at the moment. If this assumption bites
122 us, we should add a gdbarch method which, given a type, returns
123 the alignment that type requires, and then use that here. */
124
125 /* Build the field list. */
126 field_list = xmalloc (sizeof (struct field [4]));
127 memset (field_list, 0, sizeof (struct field [4]));
128 field = &field_list[0];
129 offset = 0;
130
131 /* ptrdiff_t vcall_and_vbase_offsets[0]; */
132 FIELD_NAME (*field) = "vcall_and_vbase_offsets";
133 FIELD_TYPE (*field) = lookup_array_range_type (ptrdiff_type, 0, -1);
134 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
135 offset += TYPE_LENGTH (FIELD_TYPE (*field));
136 field++;
137
138 /* ptrdiff_t offset_to_top; */
139 FIELD_NAME (*field) = "offset_to_top";
140 FIELD_TYPE (*field) = ptrdiff_type;
141 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
142 offset += TYPE_LENGTH (FIELD_TYPE (*field));
143 field++;
144
145 /* void *type_info; */
146 FIELD_NAME (*field) = "type_info";
147 FIELD_TYPE (*field) = void_ptr_type;
148 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
149 offset += TYPE_LENGTH (FIELD_TYPE (*field));
150 field++;
151
152 /* void (*virtual_functions[0]) (); */
153 FIELD_NAME (*field) = "virtual_functions";
154 FIELD_TYPE (*field) = lookup_array_range_type (ptr_to_void_fn_type, 0, -1);
155 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
156 offset += TYPE_LENGTH (FIELD_TYPE (*field));
157 field++;
158
159 /* We assumed in the allocation above that there were four fields. */
160 gdb_assert (field == (field_list + 4));
161
162 t = arch_type (arch, TYPE_CODE_STRUCT, offset, NULL);
163 TYPE_NFIELDS (t) = field - field_list;
164 TYPE_FIELDS (t) = field_list;
165 TYPE_TAG_NAME (t) = "gdb_gnu_v3_abi_vtable";
166 INIT_CPLUS_SPECIFIC (t);
167
168 return t;
169 }
170
171
172 /* Return the ptrdiff_t type used in the vtable type. */
173 static struct type *
174 vtable_ptrdiff_type (struct gdbarch *gdbarch)
175 {
176 struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
177
178 /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */
179 return TYPE_FIELD_TYPE (vtable_type, vtable_field_offset_to_top);
180 }
181
182 /* Return the offset from the start of the imaginary `struct
183 gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
184 (i.e., where objects' virtual table pointers point). */
185 static int
186 vtable_address_point_offset (struct gdbarch *gdbarch)
187 {
188 struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
189
190 return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions)
191 / TARGET_CHAR_BIT);
192 }
193
194
195 /* Determine whether structure TYPE is a dynamic class. Cache the
196 result. */
197
198 static int
199 gnuv3_dynamic_class (struct type *type)
200 {
201 int fieldnum, fieldelem;
202
203 if (TYPE_CPLUS_DYNAMIC (type))
204 return TYPE_CPLUS_DYNAMIC (type) == 1;
205
206 ALLOCATE_CPLUS_STRUCT_TYPE (type);
207
208 for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
209 if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
210 || gnuv3_dynamic_class (TYPE_FIELD_TYPE (type, fieldnum)))
211 {
212 TYPE_CPLUS_DYNAMIC (type) = 1;
213 return 1;
214 }
215
216 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
217 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
218 fieldelem++)
219 {
220 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);
221
222 if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
223 {
224 TYPE_CPLUS_DYNAMIC (type) = 1;
225 return 1;
226 }
227 }
228
229 TYPE_CPLUS_DYNAMIC (type) = -1;
230 return 0;
231 }
232
233 /* Find the vtable for a value of CONTAINER_TYPE located at
234 CONTAINER_ADDR. Return a value of the correct vtable type for this
235 architecture, or NULL if CONTAINER does not have a vtable. */
236
237 static struct value *
238 gnuv3_get_vtable (struct gdbarch *gdbarch,
239 struct type *container_type, CORE_ADDR container_addr)
240 {
241 struct type *vtable_type = gdbarch_data (gdbarch,
242 vtable_type_gdbarch_data);
243 struct type *vtable_pointer_type;
244 struct value *vtable_pointer;
245 CORE_ADDR vtable_address;
246
247 /* If this type does not have a virtual table, don't read the first
248 field. */
249 if (!gnuv3_dynamic_class (check_typedef (container_type)))
250 return NULL;
251
252 /* We do not consult the debug information to find the virtual table.
253 The ABI specifies that it is always at offset zero in any class,
254 and debug information may not represent it.
255
256 We avoid using value_contents on principle, because the object might
257 be large. */
258
259 /* Find the type "pointer to virtual table". */
260 vtable_pointer_type = lookup_pointer_type (vtable_type);
261
262 /* Load it from the start of the class. */
263 vtable_pointer = value_at (vtable_pointer_type, container_addr);
264 vtable_address = value_as_address (vtable_pointer);
265
266 /* Correct it to point at the start of the virtual table, rather
267 than the address point. */
268 return value_at_lazy (vtable_type,
269 vtable_address
270 - vtable_address_point_offset (gdbarch));
271 }
272
273
274 static struct type *
275 gnuv3_rtti_type (struct value *value,
276 int *full_p, int *top_p, int *using_enc_p)
277 {
278 struct gdbarch *gdbarch;
279 struct type *values_type = check_typedef (value_type (value));
280 struct value *vtable;
281 struct minimal_symbol *vtable_symbol;
282 const char *vtable_symbol_name;
283 const char *class_name;
284 struct type *run_time_type;
285 LONGEST offset_to_top;
286
287 /* We only have RTTI for class objects. */
288 if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
289 return NULL;
290
291 /* Java doesn't have RTTI following the C++ ABI. */
292 if (TYPE_CPLUS_REALLY_JAVA (values_type))
293 return NULL;
294
295 /* Determine architecture. */
296 gdbarch = get_type_arch (values_type);
297
298 if (using_enc_p)
299 *using_enc_p = 0;
300
301 vtable = gnuv3_get_vtable (gdbarch, value_type (value),
302 value_as_address (value_addr (value)));
303 if (vtable == NULL)
304 return NULL;
305
306 /* Find the linker symbol for this vtable. */
307 vtable_symbol
308 = lookup_minimal_symbol_by_pc (value_address (vtable)
309 + value_embedded_offset (vtable));
310 if (! vtable_symbol)
311 return NULL;
312
313 /* The symbol's demangled name should be something like "vtable for
314 CLASS", where CLASS is the name of the run-time type of VALUE.
315 If we didn't like this approach, we could instead look in the
316 type_info object itself to get the class name. But this way
317 should work just as well, and doesn't read target memory. */
318 vtable_symbol_name = SYMBOL_DEMANGLED_NAME (vtable_symbol);
319 if (vtable_symbol_name == NULL
320 || strncmp (vtable_symbol_name, "vtable for ", 11))
321 {
322 warning (_("can't find linker symbol for virtual table for `%s' value"),
323 TYPE_SAFE_NAME (values_type));
324 if (vtable_symbol_name)
325 warning (_(" found `%s' instead"), vtable_symbol_name);
326 return NULL;
327 }
328 class_name = vtable_symbol_name + 11;
329
330 /* Try to look up the class name as a type name. */
331 /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
332 run_time_type = cp_lookup_rtti_type (class_name, NULL);
333 if (run_time_type == NULL)
334 return NULL;
335
336 /* Get the offset from VALUE to the top of the complete object.
337 NOTE: this is the reverse of the meaning of *TOP_P. */
338 offset_to_top
339 = value_as_long (value_field (vtable, vtable_field_offset_to_top));
340
341 if (full_p)
342 *full_p = (- offset_to_top == value_embedded_offset (value)
343 && (TYPE_LENGTH (value_enclosing_type (value))
344 >= TYPE_LENGTH (run_time_type)));
345 if (top_p)
346 *top_p = - offset_to_top;
347 return run_time_type;
348 }
349
350 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
351 function, of type FNTYPE. */
352
353 static struct value *
354 gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
355 struct type *fntype, int vtable_index)
356 {
357 struct value *vtable, *vfn;
358
359 /* Every class with virtual functions must have a vtable. */
360 vtable = gnuv3_get_vtable (gdbarch, value_type (container),
361 value_as_address (value_addr (container)));
362 gdb_assert (vtable != NULL);
363
364 /* Fetch the appropriate function pointer from the vtable. */
365 vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
366 vtable_index);
367
368 /* If this architecture uses function descriptors directly in the vtable,
369 then the address of the vtable entry is actually a "function pointer"
370 (i.e. points to the descriptor). We don't need to scale the index
371 by the size of a function descriptor; GCC does that before outputing
372 debug information. */
373 if (gdbarch_vtable_function_descriptors (gdbarch))
374 vfn = value_addr (vfn);
375
376 /* Cast the function pointer to the appropriate type. */
377 vfn = value_cast (lookup_pointer_type (fntype), vfn);
378
379 return vfn;
380 }
381
382 /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
383 for a description of the arguments. */
384
385 static struct value *
386 gnuv3_virtual_fn_field (struct value **value_p,
387 struct fn_field *f, int j,
388 struct type *vfn_base, int offset)
389 {
390 struct type *values_type = check_typedef (value_type (*value_p));
391 struct gdbarch *gdbarch;
392
393 /* Some simple sanity checks. */
394 if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
395 error (_("Only classes can have virtual functions."));
396
397 /* Determine architecture. */
398 gdbarch = get_type_arch (values_type);
399
400 /* Cast our value to the base class which defines this virtual
401 function. This takes care of any necessary `this'
402 adjustments. */
403 if (vfn_base != values_type)
404 *value_p = value_cast (vfn_base, *value_p);
405
406 return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
407 TYPE_FN_FIELD_VOFFSET (f, j));
408 }
409
410 /* Compute the offset of the baseclass which is
411 the INDEXth baseclass of class TYPE,
412 for value at VALADDR (in host) at ADDRESS (in target).
413 The result is the offset of the baseclass value relative
414 to (the address of)(ARG) + OFFSET.
415
416 -1 is returned on error. */
417
418 static int
419 gnuv3_baseclass_offset (struct type *type, int index,
420 const bfd_byte *valaddr, int embedded_offset,
421 CORE_ADDR address, const struct value *val)
422 {
423 struct gdbarch *gdbarch;
424 struct type *ptr_type;
425 struct value *vtable;
426 struct value *vbase_array;
427 long int cur_base_offset, base_offset;
428
429 /* Determine architecture. */
430 gdbarch = get_type_arch (type);
431 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
432
433 /* If it isn't a virtual base, this is easy. The offset is in the
434 type definition. Likewise for Java, which doesn't really have
435 virtual inheritance in the C++ sense. */
436 if (!BASETYPE_VIA_VIRTUAL (type, index) || TYPE_CPLUS_REALLY_JAVA (type))
437 return TYPE_BASECLASS_BITPOS (type, index) / 8;
438
439 /* To access a virtual base, we need to use the vbase offset stored in
440 our vtable. Recent GCC versions provide this information. If it isn't
441 available, we could get what we needed from RTTI, or from drawing the
442 complete inheritance graph based on the debug info. Neither is
443 worthwhile. */
444 cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
445 if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
446 error (_("Expected a negative vbase offset (old compiler?)"));
447
448 cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
449 if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0)
450 error (_("Misaligned vbase offset."));
451 cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type));
452
453 vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset);
454 gdb_assert (vtable != NULL);
455 vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
456 base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
457 return base_offset;
458 }
459
460 /* Locate a virtual method in DOMAIN or its non-virtual base classes
461 which has virtual table index VOFFSET. The method has an associated
462 "this" adjustment of ADJUSTMENT bytes. */
463
464 static const char *
465 gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
466 LONGEST adjustment)
467 {
468 int i;
469
470 /* Search this class first. */
471 if (adjustment == 0)
472 {
473 int len;
474
475 len = TYPE_NFN_FIELDS (domain);
476 for (i = 0; i < len; i++)
477 {
478 int len2, j;
479 struct fn_field *f;
480
481 f = TYPE_FN_FIELDLIST1 (domain, i);
482 len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
483
484 check_stub_method_group (domain, i);
485 for (j = 0; j < len2; j++)
486 if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
487 return TYPE_FN_FIELD_PHYSNAME (f, j);
488 }
489 }
490
491 /* Next search non-virtual bases. If it's in a virtual base,
492 we're out of luck. */
493 for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
494 {
495 int pos;
496 struct type *basetype;
497
498 if (BASETYPE_VIA_VIRTUAL (domain, i))
499 continue;
500
501 pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
502 basetype = TYPE_FIELD_TYPE (domain, i);
503 /* Recurse with a modified adjustment. We don't need to adjust
504 voffset. */
505 if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
506 return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
507 }
508
509 return NULL;
510 }
511
512 /* Decode GNU v3 method pointer. */
513
514 static int
515 gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
516 const gdb_byte *contents,
517 CORE_ADDR *value_p,
518 LONGEST *adjustment_p)
519 {
520 struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
521 struct type *offset_type = vtable_ptrdiff_type (gdbarch);
522 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
523 CORE_ADDR ptr_value;
524 LONGEST voffset, adjustment;
525 int vbit;
526
527 /* Extract the pointer to member. The first element is either a pointer
528 or a vtable offset. For pointers, we need to use extract_typed_address
529 to allow the back-end to convert the pointer to a GDB address -- but
530 vtable offsets we must handle as integers. At this point, we do not
531 yet know which case we have, so we extract the value under both
532 interpretations and choose the right one later on. */
533 ptr_value = extract_typed_address (contents, funcptr_type);
534 voffset = extract_signed_integer (contents,
535 TYPE_LENGTH (funcptr_type), byte_order);
536 contents += TYPE_LENGTH (funcptr_type);
537 adjustment = extract_signed_integer (contents,
538 TYPE_LENGTH (offset_type), byte_order);
539
540 if (!gdbarch_vbit_in_delta (gdbarch))
541 {
542 vbit = voffset & 1;
543 voffset = voffset ^ vbit;
544 }
545 else
546 {
547 vbit = adjustment & 1;
548 adjustment = adjustment >> 1;
549 }
550
551 *value_p = vbit? voffset : ptr_value;
552 *adjustment_p = adjustment;
553 return vbit;
554 }
555
556 /* GNU v3 implementation of cplus_print_method_ptr. */
557
558 static void
559 gnuv3_print_method_ptr (const gdb_byte *contents,
560 struct type *type,
561 struct ui_file *stream)
562 {
563 struct type *domain = TYPE_DOMAIN_TYPE (type);
564 struct gdbarch *gdbarch = get_type_arch (domain);
565 CORE_ADDR ptr_value;
566 LONGEST adjustment;
567 int vbit;
568
569 /* Extract the pointer to member. */
570 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
571
572 /* Check for NULL. */
573 if (ptr_value == 0 && vbit == 0)
574 {
575 fprintf_filtered (stream, "NULL");
576 return;
577 }
578
579 /* Search for a virtual method. */
580 if (vbit)
581 {
582 CORE_ADDR voffset;
583 const char *physname;
584
585 /* It's a virtual table offset, maybe in this class. Search
586 for a field with the correct vtable offset. First convert it
587 to an index, as used in TYPE_FN_FIELD_VOFFSET. */
588 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
589
590 physname = gnuv3_find_method_in (domain, voffset, adjustment);
591
592 /* If we found a method, print that. We don't bother to disambiguate
593 possible paths to the method based on the adjustment. */
594 if (physname)
595 {
596 char *demangled_name = cplus_demangle (physname,
597 DMGL_ANSI | DMGL_PARAMS);
598
599 fprintf_filtered (stream, "&virtual ");
600 if (demangled_name == NULL)
601 fputs_filtered (physname, stream);
602 else
603 {
604 fputs_filtered (demangled_name, stream);
605 xfree (demangled_name);
606 }
607 return;
608 }
609 }
610 else if (ptr_value != 0)
611 {
612 /* Found a non-virtual function: print out the type. */
613 fputs_filtered ("(", stream);
614 c_print_type (type, "", stream, -1, 0, &type_print_raw_options);
615 fputs_filtered (") ", stream);
616 }
617
618 /* We didn't find it; print the raw data. */
619 if (vbit)
620 {
621 fprintf_filtered (stream, "&virtual table offset ");
622 print_longest (stream, 'd', 1, ptr_value);
623 }
624 else
625 {
626 struct value_print_options opts;
627
628 get_user_print_options (&opts);
629 print_address_demangle (&opts, gdbarch, ptr_value, stream, demangle);
630 }
631
632 if (adjustment)
633 {
634 fprintf_filtered (stream, ", this adjustment ");
635 print_longest (stream, 'd', 1, adjustment);
636 }
637 }
638
639 /* GNU v3 implementation of cplus_method_ptr_size. */
640
641 static int
642 gnuv3_method_ptr_size (struct type *type)
643 {
644 struct gdbarch *gdbarch = get_type_arch (type);
645
646 return 2 * TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
647 }
648
649 /* GNU v3 implementation of cplus_make_method_ptr. */
650
651 static void
652 gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
653 CORE_ADDR value, int is_virtual)
654 {
655 struct gdbarch *gdbarch = get_type_arch (type);
656 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
657 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
658
659 /* FIXME drow/2006-12-24: The adjustment of "this" is currently
660 always zero, since the method pointer is of the correct type.
661 But if the method pointer came from a base class, this is
662 incorrect - it should be the offset to the base. The best
663 fix might be to create the pointer to member pointing at the
664 base class and cast it to the derived class, but that requires
665 support for adjusting pointers to members when casting them -
666 not currently supported by GDB. */
667
668 if (!gdbarch_vbit_in_delta (gdbarch))
669 {
670 store_unsigned_integer (contents, size, byte_order, value | is_virtual);
671 store_unsigned_integer (contents + size, size, byte_order, 0);
672 }
673 else
674 {
675 store_unsigned_integer (contents, size, byte_order, value);
676 store_unsigned_integer (contents + size, size, byte_order, is_virtual);
677 }
678 }
679
680 /* GNU v3 implementation of cplus_method_ptr_to_value. */
681
682 static struct value *
683 gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
684 {
685 struct gdbarch *gdbarch;
686 const gdb_byte *contents = value_contents (method_ptr);
687 CORE_ADDR ptr_value;
688 struct type *domain_type, *final_type, *method_type;
689 LONGEST adjustment;
690 int vbit;
691
692 domain_type = TYPE_DOMAIN_TYPE (check_typedef (value_type (method_ptr)));
693 final_type = lookup_pointer_type (domain_type);
694
695 method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));
696
697 /* Extract the pointer to member. */
698 gdbarch = get_type_arch (domain_type);
699 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
700
701 /* First convert THIS to match the containing type of the pointer to
702 member. This cast may adjust the value of THIS. */
703 *this_p = value_cast (final_type, *this_p);
704
705 /* Then apply whatever adjustment is necessary. This creates a somewhat
706 strange pointer: it claims to have type FINAL_TYPE, but in fact it
707 might not be a valid FINAL_TYPE. For instance, it might be a
708 base class of FINAL_TYPE. And if it's not the primary base class,
709 then printing it out as a FINAL_TYPE object would produce some pretty
710 garbage.
711
712 But we don't really know the type of the first argument in
713 METHOD_TYPE either, which is why this happens. We can't
714 dereference this later as a FINAL_TYPE, but once we arrive in the
715 called method we'll have debugging information for the type of
716 "this" - and that'll match the value we produce here.
717
718 You can provoke this case by casting a Base::* to a Derived::*, for
719 instance. */
720 *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
721 *this_p = value_ptradd (*this_p, adjustment);
722 *this_p = value_cast (final_type, *this_p);
723
724 if (vbit)
725 {
726 LONGEST voffset;
727
728 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
729 return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
730 method_type, voffset);
731 }
732 else
733 return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
734 }
735
736 /* Objects of this type are stored in a hash table and a vector when
737 printing the vtables for a class. */
738
739 struct value_and_voffset
740 {
741 /* The value representing the object. */
742 struct value *value;
743
744 /* The maximum vtable offset we've found for any object at this
745 offset in the outermost object. */
746 int max_voffset;
747 };
748
749 typedef struct value_and_voffset *value_and_voffset_p;
750 DEF_VEC_P (value_and_voffset_p);
751
752 /* Hash function for value_and_voffset. */
753
754 static hashval_t
755 hash_value_and_voffset (const void *p)
756 {
757 const struct value_and_voffset *o = p;
758
759 return value_address (o->value) + value_embedded_offset (o->value);
760 }
761
762 /* Equality function for value_and_voffset. */
763
764 static int
765 eq_value_and_voffset (const void *a, const void *b)
766 {
767 const struct value_and_voffset *ova = a;
768 const struct value_and_voffset *ovb = b;
769
770 return (value_address (ova->value) + value_embedded_offset (ova->value)
771 == value_address (ovb->value) + value_embedded_offset (ovb->value));
772 }
773
774 /* qsort comparison function for value_and_voffset. */
775
776 static int
777 compare_value_and_voffset (const void *a, const void *b)
778 {
779 const struct value_and_voffset * const *ova = a;
780 CORE_ADDR addra = (value_address ((*ova)->value)
781 + value_embedded_offset ((*ova)->value));
782 const struct value_and_voffset * const *ovb = b;
783 CORE_ADDR addrb = (value_address ((*ovb)->value)
784 + value_embedded_offset ((*ovb)->value));
785
786 if (addra < addrb)
787 return -1;
788 if (addra > addrb)
789 return 1;
790 return 0;
791 }
792
793 /* A helper function used when printing vtables. This determines the
794 key (most derived) sub-object at each address and also computes the
795 maximum vtable offset seen for the corresponding vtable. Updates
796 OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if
797 needed. VALUE is the object to examine. */
798
799 static void
800 compute_vtable_size (htab_t offset_hash,
801 VEC (value_and_voffset_p) **offset_vec,
802 struct value *value)
803 {
804 int i;
805 struct type *type = check_typedef (value_type (value));
806 void **slot;
807 struct value_and_voffset search_vo, *current_vo;
808 CORE_ADDR addr = value_address (value) + value_embedded_offset (value);
809
810 /* If the object is not dynamic, then we are done; as it cannot have
811 dynamic base types either. */
812 if (!gnuv3_dynamic_class (type))
813 return;
814
815 /* Update the hash and the vec, if needed. */
816 search_vo.value = value;
817 slot = htab_find_slot (offset_hash, &search_vo, INSERT);
818 if (*slot)
819 current_vo = *slot;
820 else
821 {
822 current_vo = XNEW (struct value_and_voffset);
823 current_vo->value = value;
824 current_vo->max_voffset = -1;
825 *slot = current_vo;
826 VEC_safe_push (value_and_voffset_p, *offset_vec, current_vo);
827 }
828
829 /* Update the value_and_voffset object with the highest vtable
830 offset from this class. */
831 for (i = 0; i < TYPE_NFN_FIELDS (type); ++i)
832 {
833 int j;
834 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, i);
835
836 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (type, i); ++j)
837 {
838 if (TYPE_FN_FIELD_VIRTUAL_P (fn, j))
839 {
840 int voffset = TYPE_FN_FIELD_VOFFSET (fn, j);
841
842 if (voffset > current_vo->max_voffset)
843 current_vo->max_voffset = voffset;
844 }
845 }
846 }
847
848 /* Recurse into base classes. */
849 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
850 compute_vtable_size (offset_hash, offset_vec, value_field (value, i));
851 }
852
853 /* Helper for gnuv3_print_vtable that prints a single vtable. */
854
855 static void
856 print_one_vtable (struct gdbarch *gdbarch, struct value *value,
857 int max_voffset,
858 struct value_print_options *opts)
859 {
860 int i;
861 struct type *type = check_typedef (value_type (value));
862 struct value *vtable;
863 CORE_ADDR vt_addr;
864
865 vtable = gnuv3_get_vtable (gdbarch, type,
866 value_address (value)
867 + value_embedded_offset (value));
868 vt_addr = value_address (value_field (vtable,
869 vtable_field_virtual_functions));
870
871 printf_filtered (_("vtable for '%s' @ %s (subobject @ %s):\n"),
872 TYPE_SAFE_NAME (type),
873 paddress (gdbarch, vt_addr),
874 paddress (gdbarch, (value_address (value)
875 + value_embedded_offset (value))));
876
877 for (i = 0; i <= max_voffset; ++i)
878 {
879 /* Initialize it just to avoid a GCC false warning. */
880 CORE_ADDR addr = 0;
881 struct value *vfn;
882 volatile struct gdb_exception ex;
883
884 printf_filtered ("[%d]: ", i);
885
886 vfn = value_subscript (value_field (vtable,
887 vtable_field_virtual_functions),
888 i);
889
890 if (gdbarch_vtable_function_descriptors (gdbarch))
891 vfn = value_addr (vfn);
892
893 TRY_CATCH (ex, RETURN_MASK_ERROR)
894 {
895 addr = value_as_address (vfn);
896 }
897 if (ex.reason < 0)
898 printf_filtered (_("<error: %s>"), ex.message);
899 else
900 print_function_pointer_address (opts, gdbarch, addr, gdb_stdout);
901 printf_filtered ("\n");
902 }
903 }
904
905 /* Implementation of the print_vtable method. */
906
907 static void
908 gnuv3_print_vtable (struct value *value)
909 {
910 struct gdbarch *gdbarch;
911 struct type *type;
912 struct value *vtable;
913 struct value_print_options opts;
914 htab_t offset_hash;
915 struct cleanup *cleanup;
916 VEC (value_and_voffset_p) *result_vec = NULL;
917 struct value_and_voffset *iter;
918 int i, count;
919
920 value = coerce_ref (value);
921 type = check_typedef (value_type (value));
922 if (TYPE_CODE (type) == TYPE_CODE_PTR)
923 {
924 value = value_ind (value);
925 type = check_typedef (value_type (value));
926 }
927
928 get_user_print_options (&opts);
929
930 /* Respect 'set print object'. */
931 if (opts.objectprint)
932 {
933 value = value_full_object (value, NULL, 0, 0, 0);
934 type = check_typedef (value_type (value));
935 }
936
937 gdbarch = get_type_arch (type);
938 vtable = gnuv3_get_vtable (gdbarch, type,
939 value_as_address (value_addr (value)));
940
941 if (!vtable)
942 {
943 printf_filtered (_("This object does not have a virtual function table\n"));
944 return;
945 }
946
947 offset_hash = htab_create_alloc (1, hash_value_and_voffset,
948 eq_value_and_voffset,
949 xfree, xcalloc, xfree);
950 cleanup = make_cleanup_htab_delete (offset_hash);
951 make_cleanup (VEC_cleanup (value_and_voffset_p), &result_vec);
952
953 compute_vtable_size (offset_hash, &result_vec, value);
954
955 qsort (VEC_address (value_and_voffset_p, result_vec),
956 VEC_length (value_and_voffset_p, result_vec),
957 sizeof (value_and_voffset_p),
958 compare_value_and_voffset);
959
960 count = 0;
961 for (i = 0; VEC_iterate (value_and_voffset_p, result_vec, i, iter); ++i)
962 {
963 if (iter->max_voffset >= 0)
964 {
965 if (count > 0)
966 printf_filtered ("\n");
967 print_one_vtable (gdbarch, iter->value, iter->max_voffset, &opts);
968 ++count;
969 }
970 }
971
972 do_cleanups (cleanup);
973 }
974
975 /* Determine if we are currently in a C++ thunk. If so, get the address
976 of the routine we are thunking to and continue to there instead. */
977
978 static CORE_ADDR
979 gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
980 {
981 CORE_ADDR real_stop_pc, method_stop_pc;
982 struct gdbarch *gdbarch = get_frame_arch (frame);
983 struct minimal_symbol *thunk_sym, *fn_sym;
984 struct obj_section *section;
985 const char *thunk_name, *fn_name;
986
987 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
988 if (real_stop_pc == 0)
989 real_stop_pc = stop_pc;
990
991 /* Find the linker symbol for this potential thunk. */
992 thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
993 section = find_pc_section (real_stop_pc);
994 if (thunk_sym == NULL || section == NULL)
995 return 0;
996
997 /* The symbol's demangled name should be something like "virtual
998 thunk to FUNCTION", where FUNCTION is the name of the function
999 being thunked to. */
1000 thunk_name = SYMBOL_DEMANGLED_NAME (thunk_sym);
1001 if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
1002 return 0;
1003
1004 fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
1005 fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
1006 if (fn_sym == NULL)
1007 return 0;
1008
1009 method_stop_pc = SYMBOL_VALUE_ADDRESS (fn_sym);
1010 real_stop_pc = gdbarch_skip_trampoline_code
1011 (gdbarch, frame, method_stop_pc);
1012 if (real_stop_pc == 0)
1013 real_stop_pc = method_stop_pc;
1014
1015 return real_stop_pc;
1016 }
1017
1018 /* Return nonzero if a type should be passed by reference.
1019
1020 The rule in the v3 ABI document comes from section 3.1.1. If the
1021 type has a non-trivial copy constructor or destructor, then the
1022 caller must make a copy (by calling the copy constructor if there
1023 is one or perform the copy itself otherwise), pass the address of
1024 the copy, and then destroy the temporary (if necessary).
1025
1026 For return values with non-trivial copy constructors or
1027 destructors, space will be allocated in the caller, and a pointer
1028 will be passed as the first argument (preceding "this").
1029
1030 We don't have a bulletproof mechanism for determining whether a
1031 constructor or destructor is trivial. For GCC and DWARF2 debug
1032 information, we can check the artificial flag.
1033
1034 We don't do anything with the constructors or destructors,
1035 but we have to get the argument passing right anyway. */
1036 static int
1037 gnuv3_pass_by_reference (struct type *type)
1038 {
1039 int fieldnum, fieldelem;
1040
1041 CHECK_TYPEDEF (type);
1042
1043 /* We're only interested in things that can have methods. */
1044 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1045 && TYPE_CODE (type) != TYPE_CODE_CLASS
1046 && TYPE_CODE (type) != TYPE_CODE_UNION)
1047 return 0;
1048
1049 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
1050 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
1051 fieldelem++)
1052 {
1053 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
1054 const char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
1055 struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
1056
1057 /* If this function is marked as artificial, it is compiler-generated,
1058 and we assume it is trivial. */
1059 if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
1060 continue;
1061
1062 /* If we've found a destructor, we must pass this by reference. */
1063 if (name[0] == '~')
1064 return 1;
1065
1066 /* If the mangled name of this method doesn't indicate that it
1067 is a constructor, we're not interested.
1068
1069 FIXME drow/2007-09-23: We could do this using the name of
1070 the method and the name of the class instead of dealing
1071 with the mangled name. We don't have a convenient function
1072 to strip off both leading scope qualifiers and trailing
1073 template arguments yet. */
1074 if (!is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem)))
1075 continue;
1076
1077 /* If this method takes two arguments, and the second argument is
1078 a reference to this class, then it is a copy constructor. */
1079 if (TYPE_NFIELDS (fieldtype) == 2
1080 && TYPE_CODE (TYPE_FIELD_TYPE (fieldtype, 1)) == TYPE_CODE_REF
1081 && check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (fieldtype,
1082 1))) == type)
1083 return 1;
1084 }
1085
1086 /* Even if all the constructors and destructors were artificial, one
1087 of them may have invoked a non-artificial constructor or
1088 destructor in a base class. If any base class needs to be passed
1089 by reference, so does this class. Similarly for members, which
1090 are constructed whenever this class is. We do not need to worry
1091 about recursive loops here, since we are only looking at members
1092 of complete class type. Also ignore any static members. */
1093 for (fieldnum = 0; fieldnum < TYPE_NFIELDS (type); fieldnum++)
1094 if (! field_is_static (&TYPE_FIELD (type, fieldnum))
1095 && gnuv3_pass_by_reference (TYPE_FIELD_TYPE (type, fieldnum)))
1096 return 1;
1097
1098 return 0;
1099 }
1100
1101 static void
1102 init_gnuv3_ops (void)
1103 {
1104 vtable_type_gdbarch_data
1105 = gdbarch_data_register_post_init (build_gdb_vtable_type);
1106
1107 gnu_v3_abi_ops.shortname = "gnu-v3";
1108 gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
1109 gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
1110 gnu_v3_abi_ops.is_destructor_name =
1111 (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
1112 gnu_v3_abi_ops.is_constructor_name =
1113 (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
1114 gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
1115 gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
1116 gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
1117 gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
1118 gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
1119 gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
1120 gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
1121 gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
1122 gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
1123 gnu_v3_abi_ops.print_vtable = gnuv3_print_vtable;
1124 gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
1125 gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
1126 }
1127
1128 extern initialize_file_ftype _initialize_gnu_v3_abi; /* -Wmissing-prototypes */
1129
1130 void
1131 _initialize_gnu_v3_abi (void)
1132 {
1133 init_gnuv3_ops ();
1134
1135 register_cp_abi (&gnu_v3_abi_ops);
1136 }
This page took 0.070025 seconds and 4 git commands to generate.