* go32-nat.c (go32_sysinfo): Check if the call to
[deliverable/binutils-gdb.git] / gdb / go32-nat.c
1 /* Native debugging support for Intel x86 running DJGPP.
2 Copyright (C) 1997, 1999, 2000, 2001, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Written by Robert Hoehne.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <fcntl.h>
22
23 #include "defs.h"
24 #include "inferior.h"
25 #include "gdbthread.h"
26 #include "gdb_wait.h"
27 #include "gdbcore.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "floatformat.h"
31 #include "buildsym.h"
32 #include "i387-tdep.h"
33 #include "i386-tdep.h"
34 #include "value.h"
35 #include "regcache.h"
36 #include "gdb_string.h"
37 #include "top.h"
38
39 #include <stdio.h> /* might be required for __DJGPP_MINOR__ */
40 #include <stdlib.h>
41 #include <ctype.h>
42 #include <errno.h>
43 #include <unistd.h>
44 #include <sys/utsname.h>
45 #include <io.h>
46 #include <dos.h>
47 #include <dpmi.h>
48 #include <go32.h>
49 #include <sys/farptr.h>
50 #include <debug/v2load.h>
51 #include <debug/dbgcom.h>
52 #if __DJGPP_MINOR__ > 2
53 #include <debug/redir.h>
54 #endif
55
56 #if __DJGPP_MINOR__ < 3
57 /* This code will be provided from DJGPP 2.03 on. Until then I code it
58 here */
59 typedef struct
60 {
61 unsigned short sig0;
62 unsigned short sig1;
63 unsigned short sig2;
64 unsigned short sig3;
65 unsigned short exponent:15;
66 unsigned short sign:1;
67 }
68 NPXREG;
69
70 typedef struct
71 {
72 unsigned int control;
73 unsigned int status;
74 unsigned int tag;
75 unsigned int eip;
76 unsigned int cs;
77 unsigned int dataptr;
78 unsigned int datasel;
79 NPXREG reg[8];
80 }
81 NPX;
82
83 static NPX npx;
84
85 static void save_npx (void); /* Save the FPU of the debugged program */
86 static void load_npx (void); /* Restore the FPU of the debugged program */
87
88 /* ------------------------------------------------------------------------- */
89 /* Store the contents of the NPX in the global variable `npx'. */
90 /* *INDENT-OFF* */
91
92 static void
93 save_npx (void)
94 {
95 asm ("inb $0xa0, %%al \n\
96 testb $0x20, %%al \n\
97 jz 1f \n\
98 xorb %%al, %%al \n\
99 outb %%al, $0xf0 \n\
100 movb $0x20, %%al \n\
101 outb %%al, $0xa0 \n\
102 outb %%al, $0x20 \n\
103 1: \n\
104 fnsave %0 \n\
105 fwait "
106 : "=m" (npx)
107 : /* No input */
108 : "%eax");
109 }
110
111 /* *INDENT-ON* */
112
113
114 /* ------------------------------------------------------------------------- */
115 /* Reload the contents of the NPX from the global variable `npx'. */
116
117 static void
118 load_npx (void)
119 {
120 asm ("frstor %0":"=m" (npx));
121 }
122 /* ------------------------------------------------------------------------- */
123 /* Stubs for the missing redirection functions. */
124 typedef struct {
125 char *command;
126 int redirected;
127 } cmdline_t;
128
129 void
130 redir_cmdline_delete (cmdline_t *ptr)
131 {
132 ptr->redirected = 0;
133 }
134
135 int
136 redir_cmdline_parse (const char *args, cmdline_t *ptr)
137 {
138 return -1;
139 }
140
141 int
142 redir_to_child (cmdline_t *ptr)
143 {
144 return 1;
145 }
146
147 int
148 redir_to_debugger (cmdline_t *ptr)
149 {
150 return 1;
151 }
152
153 int
154 redir_debug_init (cmdline_t *ptr)
155 {
156 return 0;
157 }
158 #endif /* __DJGPP_MINOR < 3 */
159
160 typedef enum { wp_insert, wp_remove, wp_count } wp_op;
161
162 /* This holds the current reference counts for each debug register. */
163 static int dr_ref_count[4];
164
165 #define SOME_PID 42
166
167 static int prog_has_started = 0;
168 static void go32_open (char *name, int from_tty);
169 static void go32_close (int quitting);
170 static void go32_attach (struct target_ops *ops, char *args, int from_tty);
171 static void go32_detach (struct target_ops *ops, char *args, int from_tty);
172 static void go32_resume (struct target_ops *ops,
173 ptid_t ptid, int step,
174 enum target_signal siggnal);
175 static void go32_fetch_registers (struct target_ops *ops,
176 struct regcache *, int regno);
177 static void store_register (const struct regcache *, int regno);
178 static void go32_store_registers (struct target_ops *ops,
179 struct regcache *, int regno);
180 static void go32_prepare_to_store (struct regcache *);
181 static int go32_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len,
182 int write,
183 struct mem_attrib *attrib,
184 struct target_ops *target);
185 static void go32_files_info (struct target_ops *target);
186 static void go32_stop (ptid_t);
187 static void go32_kill_inferior (struct target_ops *ops);
188 static void go32_create_inferior (struct target_ops *ops, char *exec_file,
189 char *args, char **env, int from_tty);
190 static void go32_mourn_inferior (struct target_ops *ops);
191 static int go32_can_run (void);
192
193 static struct target_ops go32_ops;
194 static void go32_terminal_init (void);
195 static void go32_terminal_inferior (void);
196 static void go32_terminal_ours (void);
197
198 #define r_ofs(x) (offsetof(TSS,x))
199
200 static struct
201 {
202 size_t tss_ofs;
203 size_t size;
204 }
205 regno_mapping[] =
206 {
207 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
208 {r_ofs (tss_ecx), 4},
209 {r_ofs (tss_edx), 4},
210 {r_ofs (tss_ebx), 4},
211 {r_ofs (tss_esp), 4},
212 {r_ofs (tss_ebp), 4},
213 {r_ofs (tss_esi), 4},
214 {r_ofs (tss_edi), 4},
215 {r_ofs (tss_eip), 4},
216 {r_ofs (tss_eflags), 4},
217 {r_ofs (tss_cs), 2},
218 {r_ofs (tss_ss), 2},
219 {r_ofs (tss_ds), 2},
220 {r_ofs (tss_es), 2},
221 {r_ofs (tss_fs), 2},
222 {r_ofs (tss_gs), 2},
223 {0, 10}, /* 8 FP registers, from npx.reg[] */
224 {1, 10},
225 {2, 10},
226 {3, 10},
227 {4, 10},
228 {5, 10},
229 {6, 10},
230 {7, 10},
231 /* The order of the next 7 registers must be consistent
232 with their numbering in config/i386/tm-i386.h, which see. */
233 {0, 2}, /* control word, from npx */
234 {4, 2}, /* status word, from npx */
235 {8, 2}, /* tag word, from npx */
236 {16, 2}, /* last FP exception CS from npx */
237 {12, 4}, /* last FP exception EIP from npx */
238 {24, 2}, /* last FP exception operand selector from npx */
239 {20, 4}, /* last FP exception operand offset from npx */
240 {18, 2} /* last FP opcode from npx */
241 };
242
243 static struct
244 {
245 int go32_sig;
246 enum target_signal gdb_sig;
247 }
248 sig_map[] =
249 {
250 {0, TARGET_SIGNAL_FPE},
251 {1, TARGET_SIGNAL_TRAP},
252 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
253 but I think SIGBUS is better, since the NMI is usually activated
254 as a result of a memory parity check failure. */
255 {2, TARGET_SIGNAL_BUS},
256 {3, TARGET_SIGNAL_TRAP},
257 {4, TARGET_SIGNAL_FPE},
258 {5, TARGET_SIGNAL_SEGV},
259 {6, TARGET_SIGNAL_ILL},
260 {7, TARGET_SIGNAL_EMT}, /* no-coprocessor exception */
261 {8, TARGET_SIGNAL_SEGV},
262 {9, TARGET_SIGNAL_SEGV},
263 {10, TARGET_SIGNAL_BUS},
264 {11, TARGET_SIGNAL_SEGV},
265 {12, TARGET_SIGNAL_SEGV},
266 {13, TARGET_SIGNAL_SEGV},
267 {14, TARGET_SIGNAL_SEGV},
268 {16, TARGET_SIGNAL_FPE},
269 {17, TARGET_SIGNAL_BUS},
270 {31, TARGET_SIGNAL_ILL},
271 {0x1b, TARGET_SIGNAL_INT},
272 {0x75, TARGET_SIGNAL_FPE},
273 {0x78, TARGET_SIGNAL_ALRM},
274 {0x79, TARGET_SIGNAL_INT},
275 {0x7a, TARGET_SIGNAL_QUIT},
276 {-1, TARGET_SIGNAL_LAST}
277 };
278
279 static struct {
280 enum target_signal gdb_sig;
281 int djgpp_excepno;
282 } excepn_map[] = {
283 {TARGET_SIGNAL_0, -1},
284 {TARGET_SIGNAL_ILL, 6}, /* Invalid Opcode */
285 {TARGET_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
286 {TARGET_SIGNAL_SEGV, 13}, /* GPF */
287 {TARGET_SIGNAL_BUS, 17}, /* Alignment Check */
288 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
289 details. */
290 {TARGET_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
291 {TARGET_SIGNAL_FPE, 0x75},
292 {TARGET_SIGNAL_INT, 0x79},
293 {TARGET_SIGNAL_QUIT, 0x7a},
294 {TARGET_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
295 {TARGET_SIGNAL_PROF, 0x78},
296 {TARGET_SIGNAL_LAST, -1}
297 };
298
299 static void
300 go32_open (char *name, int from_tty)
301 {
302 printf_unfiltered ("Done. Use the \"run\" command to run the program.\n");
303 }
304
305 static void
306 go32_close (int quitting)
307 {
308 }
309
310 static void
311 go32_attach (struct target_ops *ops, char *args, int from_tty)
312 {
313 error (_("\
314 You cannot attach to a running program on this platform.\n\
315 Use the `run' command to run DJGPP programs."));
316 }
317
318 static void
319 go32_detach (struct target_ops *ops, char *args, int from_tty)
320 {
321 }
322
323 static int resume_is_step;
324 static int resume_signal = -1;
325
326 static void
327 go32_resume (struct target_ops *ops,
328 ptid_t ptid, int step, enum target_signal siggnal)
329 {
330 int i;
331
332 resume_is_step = step;
333
334 if (siggnal != TARGET_SIGNAL_0 && siggnal != TARGET_SIGNAL_TRAP)
335 {
336 for (i = 0, resume_signal = -1;
337 excepn_map[i].gdb_sig != TARGET_SIGNAL_LAST; i++)
338 if (excepn_map[i].gdb_sig == siggnal)
339 {
340 resume_signal = excepn_map[i].djgpp_excepno;
341 break;
342 }
343 if (resume_signal == -1)
344 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
345 target_signal_to_name (siggnal));
346 }
347 }
348
349 static char child_cwd[FILENAME_MAX];
350
351 static ptid_t
352 go32_wait (struct target_ops *ops,
353 ptid_t ptid, struct target_waitstatus *status)
354 {
355 int i;
356 unsigned char saved_opcode;
357 unsigned long INT3_addr = 0;
358 int stepping_over_INT = 0;
359
360 a_tss.tss_eflags &= 0xfeff; /* reset the single-step flag (TF) */
361 if (resume_is_step)
362 {
363 /* If the next instruction is INT xx or INTO, we need to handle
364 them specially. Intel manuals say that these instructions
365 reset the single-step flag (a.k.a. TF). However, it seems
366 that, at least in the DPMI environment, and at least when
367 stepping over the DPMI interrupt 31h, the problem is having
368 TF set at all when INT 31h is executed: the debuggee either
369 crashes (and takes the system with it) or is killed by a
370 SIGTRAP.
371
372 So we need to emulate single-step mode: we put an INT3 opcode
373 right after the INT xx instruction, let the debuggee run
374 until it hits INT3 and stops, then restore the original
375 instruction which we overwrote with the INT3 opcode, and back
376 up the debuggee's EIP to that instruction. */
377 read_child (a_tss.tss_eip, &saved_opcode, 1);
378 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
379 {
380 unsigned char INT3_opcode = 0xCC;
381
382 INT3_addr
383 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
384 stepping_over_INT = 1;
385 read_child (INT3_addr, &saved_opcode, 1);
386 write_child (INT3_addr, &INT3_opcode, 1);
387 }
388 else
389 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
390 }
391
392 /* The special value FFFFh in tss_trap indicates to run_child that
393 tss_irqn holds a signal to be delivered to the debuggee. */
394 if (resume_signal <= -1)
395 {
396 a_tss.tss_trap = 0;
397 a_tss.tss_irqn = 0xff;
398 }
399 else
400 {
401 a_tss.tss_trap = 0xffff; /* run_child looks for this */
402 a_tss.tss_irqn = resume_signal;
403 }
404
405 /* The child might change working directory behind our back. The
406 GDB users won't like the side effects of that when they work with
407 relative file names, and GDB might be confused by its current
408 directory not being in sync with the truth. So we always make a
409 point of changing back to where GDB thinks is its cwd, when we
410 return control to the debugger, but restore child's cwd before we
411 run it. */
412 /* Initialize child_cwd, before the first call to run_child and not
413 in the initialization, so the child get also the changed directory
414 set with the gdb-command "cd ..." */
415 if (!*child_cwd)
416 /* Initialize child's cwd with the current one. */
417 getcwd (child_cwd, sizeof (child_cwd));
418
419 chdir (child_cwd);
420
421 #if __DJGPP_MINOR__ < 3
422 load_npx ();
423 #endif
424 run_child ();
425 #if __DJGPP_MINOR__ < 3
426 save_npx ();
427 #endif
428
429 /* Did we step over an INT xx instruction? */
430 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
431 {
432 /* Restore the original opcode. */
433 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction */
434 write_child (a_tss.tss_eip, &saved_opcode, 1);
435 /* Simulate a TRAP exception. */
436 a_tss.tss_irqn = 1;
437 a_tss.tss_eflags |= 0x0100;
438 }
439
440 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
441 chdir (current_directory);
442
443 if (a_tss.tss_irqn == 0x21)
444 {
445 status->kind = TARGET_WAITKIND_EXITED;
446 status->value.integer = a_tss.tss_eax & 0xff;
447 }
448 else
449 {
450 status->value.sig = TARGET_SIGNAL_UNKNOWN;
451 status->kind = TARGET_WAITKIND_STOPPED;
452 for (i = 0; sig_map[i].go32_sig != -1; i++)
453 {
454 if (a_tss.tss_irqn == sig_map[i].go32_sig)
455 {
456 #if __DJGPP_MINOR__ < 3
457 if ((status->value.sig = sig_map[i].gdb_sig) !=
458 TARGET_SIGNAL_TRAP)
459 status->kind = TARGET_WAITKIND_SIGNALLED;
460 #else
461 status->value.sig = sig_map[i].gdb_sig;
462 #endif
463 break;
464 }
465 }
466 }
467 return pid_to_ptid (SOME_PID);
468 }
469
470 static void
471 fetch_register (struct regcache *regcache, int regno)
472 {
473 struct gdbarch *gdbarch = get_regcache_arch (regcache);
474 if (regno < gdbarch_fp0_regnum (gdbarch))
475 regcache_raw_supply (regcache, regno,
476 (char *) &a_tss + regno_mapping[regno].tss_ofs);
477 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch, regno))
478 i387_supply_fsave (regcache, regno, &npx);
479 else
480 internal_error (__FILE__, __LINE__,
481 _("Invalid register no. %d in fetch_register."), regno);
482 }
483
484 static void
485 go32_fetch_registers (struct target_ops *ops,
486 struct regcache *regcache, int regno)
487 {
488 if (regno >= 0)
489 fetch_register (regcache, regno);
490 else
491 {
492 for (regno = 0;
493 regno < gdbarch_fp0_regnum (get_regcache_arch (regcache));
494 regno++)
495 fetch_register (regcache, regno);
496 i387_supply_fsave (regcache, -1, &npx);
497 }
498 }
499
500 static void
501 store_register (const struct regcache *regcache, int regno)
502 {
503 struct gdbarch *gdbarch = get_regcache_arch (regcache);
504 if (regno < gdbarch_fp0_regnum (gdbarch))
505 regcache_raw_collect (regcache, regno,
506 (char *) &a_tss + regno_mapping[regno].tss_ofs);
507 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch, regno))
508 i387_collect_fsave (regcache, regno, &npx);
509 else
510 internal_error (__FILE__, __LINE__,
511 _("Invalid register no. %d in store_register."), regno);
512 }
513
514 static void
515 go32_store_registers (struct target_ops *ops,
516 struct regcache *regcache, int regno)
517 {
518 unsigned r;
519
520 if (regno >= 0)
521 store_register (regcache, regno);
522 else
523 {
524 for (r = 0; r < gdbarch_fp0_regnum (get_regcache_arch (regcache)); r++)
525 store_register (regcache, r);
526 i387_collect_fsave (regcache, -1, &npx);
527 }
528 }
529
530 static void
531 go32_prepare_to_store (struct regcache *regcache)
532 {
533 }
534
535 static int
536 go32_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
537 struct mem_attrib *attrib, struct target_ops *target)
538 {
539 if (write)
540 {
541 if (write_child (memaddr, myaddr, len))
542 {
543 return 0;
544 }
545 else
546 {
547 return len;
548 }
549 }
550 else
551 {
552 if (read_child (memaddr, myaddr, len))
553 {
554 return 0;
555 }
556 else
557 {
558 return len;
559 }
560 }
561 }
562
563 static cmdline_t child_cmd; /* parsed child's command line kept here */
564
565 static void
566 go32_files_info (struct target_ops *target)
567 {
568 printf_unfiltered ("You are running a DJGPP V2 program.\n");
569 }
570
571 static void
572 go32_stop (ptid_t ptid)
573 {
574 normal_stop ();
575 cleanup_client ();
576 ptid = inferior_ptid;
577 inferior_ptid = null_ptid;
578 delete_thread_silent (ptid);
579 prog_has_started = 0;
580 }
581
582 static void
583 go32_kill_inferior (struct target_ops *ops)
584 {
585 redir_cmdline_delete (&child_cmd);
586 resume_signal = -1;
587 resume_is_step = 0;
588 if (!ptid_equal (inferior_ptid, null_ptid))
589 delete_thread_silent (inferior_ptid);
590 unpush_target (&go32_ops);
591 }
592
593 static void
594 go32_create_inferior (struct target_ops *ops, char *exec_file,
595 char *args, char **env, int from_tty)
596 {
597 extern char **environ;
598 jmp_buf start_state;
599 char *cmdline;
600 char **env_save = environ;
601 size_t cmdlen;
602
603 /* If no exec file handed to us, get it from the exec-file command -- with
604 a good, common error message if none is specified. */
605 if (exec_file == 0)
606 exec_file = get_exec_file (1);
607
608 if (prog_has_started)
609 {
610 go32_stop (inferior_ptid);
611 go32_kill_inferior (ops);
612 }
613 resume_signal = -1;
614 resume_is_step = 0;
615
616 /* Initialize child's cwd as empty to be initialized when starting
617 the child. */
618 *child_cwd = 0;
619
620 /* Init command line storage. */
621 if (redir_debug_init (&child_cmd) == -1)
622 internal_error (__FILE__, __LINE__,
623 _("Cannot allocate redirection storage: not enough memory.\n"));
624
625 /* Parse the command line and create redirections. */
626 if (strpbrk (args, "<>"))
627 {
628 if (redir_cmdline_parse (args, &child_cmd) == 0)
629 args = child_cmd.command;
630 else
631 error (_("Syntax error in command line."));
632 }
633 else
634 child_cmd.command = xstrdup (args);
635
636 cmdlen = strlen (args);
637 /* v2loadimage passes command lines via DOS memory, so it cannot
638 possibly handle commands longer than 1MB. */
639 if (cmdlen > 1024*1024)
640 error (_("Command line too long."));
641
642 cmdline = xmalloc (cmdlen + 4);
643 strcpy (cmdline + 1, args);
644 /* If the command-line length fits into DOS 126-char limits, use the
645 DOS command tail format; otherwise, tell v2loadimage to pass it
646 through a buffer in conventional memory. */
647 if (cmdlen < 127)
648 {
649 cmdline[0] = strlen (args);
650 cmdline[cmdlen + 1] = 13;
651 }
652 else
653 cmdline[0] = 0xff; /* signal v2loadimage it's a long command */
654
655 environ = env;
656
657 if (v2loadimage (exec_file, cmdline, start_state))
658 {
659 environ = env_save;
660 printf_unfiltered ("Load failed for image %s\n", exec_file);
661 exit (1);
662 }
663 environ = env_save;
664 xfree (cmdline);
665
666 edi_init (start_state);
667 #if __DJGPP_MINOR__ < 3
668 save_npx ();
669 #endif
670
671 inferior_ptid = pid_to_ptid (SOME_PID);
672 add_inferior_silent (SOME_PID);
673
674 push_target (&go32_ops);
675
676 add_thread_silent (inferior_ptid);
677
678 clear_proceed_status ();
679 insert_breakpoints ();
680 prog_has_started = 1;
681 }
682
683 static void
684 go32_mourn_inferior (struct target_ops *ops)
685 {
686 /* We need to make sure all the breakpoint enable bits in the DR7
687 register are reset when the inferior exits. Otherwise, if they
688 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
689 failure to set more watchpoints, and other calamities. It would
690 be nice if GDB itself would take care to remove all breakpoints
691 at all times, but it doesn't, probably under an assumption that
692 the OS cleans up when the debuggee exits. */
693 i386_cleanup_dregs ();
694 go32_kill_inferior (ops);
695 generic_mourn_inferior ();
696 }
697
698 static int
699 go32_can_run (void)
700 {
701 return 1;
702 }
703
704 /* Hardware watchpoint support. */
705
706 #define D_REGS edi.dr
707 #define CONTROL D_REGS[7]
708 #define STATUS D_REGS[6]
709
710 /* Pass the address ADDR to the inferior in the I'th debug register.
711 Here we just store the address in D_REGS, the watchpoint will be
712 actually set up when go32_wait runs the debuggee. */
713 void
714 go32_set_dr (int i, CORE_ADDR addr)
715 {
716 if (i < 0 || i > 3)
717 internal_error (__FILE__, __LINE__,
718 _("Invalid register %d in go32_set_dr.\n"), i);
719 D_REGS[i] = addr;
720 }
721
722 /* Pass the value VAL to the inferior in the DR7 debug control
723 register. Here we just store the address in D_REGS, the watchpoint
724 will be actually set up when go32_wait runs the debuggee. */
725 void
726 go32_set_dr7 (unsigned val)
727 {
728 CONTROL = val;
729 }
730
731 /* Get the value of the DR6 debug status register from the inferior.
732 Here we just return the value stored in D_REGS, as we've got it
733 from the last go32_wait call. */
734 unsigned
735 go32_get_dr6 (void)
736 {
737 return STATUS;
738 }
739
740 /* Put the device open on handle FD into either raw or cooked
741 mode, return 1 if it was in raw mode, zero otherwise. */
742
743 static int
744 device_mode (int fd, int raw_p)
745 {
746 int oldmode, newmode;
747 __dpmi_regs regs;
748
749 regs.x.ax = 0x4400;
750 regs.x.bx = fd;
751 __dpmi_int (0x21, &regs);
752 if (regs.x.flags & 1)
753 return -1;
754 newmode = oldmode = regs.x.dx;
755
756 if (raw_p)
757 newmode |= 0x20;
758 else
759 newmode &= ~0x20;
760
761 if (oldmode & 0x80) /* Only for character dev */
762 {
763 regs.x.ax = 0x4401;
764 regs.x.bx = fd;
765 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails */
766 __dpmi_int (0x21, &regs);
767 if (regs.x.flags & 1)
768 return -1;
769 }
770 return (oldmode & 0x20) == 0x20;
771 }
772
773
774 static int inf_mode_valid = 0;
775 static int inf_terminal_mode;
776
777 /* This semaphore is needed because, amazingly enough, GDB calls
778 target.to_terminal_ours more than once after the inferior stops.
779 But we need the information from the first call only, since the
780 second call will always see GDB's own cooked terminal. */
781 static int terminal_is_ours = 1;
782
783 static void
784 go32_terminal_init (void)
785 {
786 inf_mode_valid = 0; /* reinitialize, in case they are restarting child */
787 terminal_is_ours = 1;
788 }
789
790 static void
791 go32_terminal_info (char *args, int from_tty)
792 {
793 printf_unfiltered ("Inferior's terminal is in %s mode.\n",
794 !inf_mode_valid
795 ? "default" : inf_terminal_mode ? "raw" : "cooked");
796
797 #if __DJGPP_MINOR__ > 2
798 if (child_cmd.redirection)
799 {
800 int i;
801
802 for (i = 0; i < DBG_HANDLES; i++)
803 {
804 if (child_cmd.redirection[i]->file_name)
805 printf_unfiltered ("\tFile handle %d is redirected to `%s'.\n",
806 i, child_cmd.redirection[i]->file_name);
807 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
808 printf_unfiltered
809 ("\tFile handle %d appears to be closed by inferior.\n", i);
810 /* Mask off the raw/cooked bit when comparing device info words. */
811 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
812 != (_get_dev_info (i) & 0xdf))
813 printf_unfiltered
814 ("\tFile handle %d appears to be redirected by inferior.\n", i);
815 }
816 }
817 #endif
818 }
819
820 static void
821 go32_terminal_inferior (void)
822 {
823 /* Redirect standard handles as child wants them. */
824 errno = 0;
825 if (redir_to_child (&child_cmd) == -1)
826 {
827 redir_to_debugger (&child_cmd);
828 error (_("Cannot redirect standard handles for program: %s."),
829 safe_strerror (errno));
830 }
831 /* set the console device of the inferior to whatever mode
832 (raw or cooked) we found it last time */
833 if (terminal_is_ours)
834 {
835 if (inf_mode_valid)
836 device_mode (0, inf_terminal_mode);
837 terminal_is_ours = 0;
838 }
839 }
840
841 static void
842 go32_terminal_ours (void)
843 {
844 /* Switch to cooked mode on the gdb terminal and save the inferior
845 terminal mode to be restored when it is resumed */
846 if (!terminal_is_ours)
847 {
848 inf_terminal_mode = device_mode (0, 0);
849 if (inf_terminal_mode != -1)
850 inf_mode_valid = 1;
851 else
852 /* If device_mode returned -1, we don't know what happens with
853 handle 0 anymore, so make the info invalid. */
854 inf_mode_valid = 0;
855 terminal_is_ours = 1;
856
857 /* Restore debugger's standard handles. */
858 errno = 0;
859 if (redir_to_debugger (&child_cmd) == -1)
860 {
861 redir_to_child (&child_cmd);
862 error (_("Cannot redirect standard handles for debugger: %s."),
863 safe_strerror (errno));
864 }
865 }
866 }
867
868 static int
869 go32_thread_alive (struct target_ops *ops, ptid_t ptid)
870 {
871 return 1;
872 }
873
874 static char *
875 go32_pid_to_str (struct target_ops *ops, ptid_t ptid)
876 {
877 static char buf[64];
878 xsnprintf (buf, sizeof buf, "Thread <main>");
879 return buf;
880 }
881
882 static void
883 init_go32_ops (void)
884 {
885 go32_ops.to_shortname = "djgpp";
886 go32_ops.to_longname = "djgpp target process";
887 go32_ops.to_doc =
888 "Program loaded by djgpp, when gdb is used as an external debugger";
889 go32_ops.to_open = go32_open;
890 go32_ops.to_close = go32_close;
891 go32_ops.to_attach = go32_attach;
892 go32_ops.to_detach = go32_detach;
893 go32_ops.to_resume = go32_resume;
894 go32_ops.to_wait = go32_wait;
895 go32_ops.to_fetch_registers = go32_fetch_registers;
896 go32_ops.to_store_registers = go32_store_registers;
897 go32_ops.to_prepare_to_store = go32_prepare_to_store;
898 go32_ops.deprecated_xfer_memory = go32_xfer_memory;
899 go32_ops.to_files_info = go32_files_info;
900 go32_ops.to_insert_breakpoint = memory_insert_breakpoint;
901 go32_ops.to_remove_breakpoint = memory_remove_breakpoint;
902 go32_ops.to_terminal_init = go32_terminal_init;
903 go32_ops.to_terminal_inferior = go32_terminal_inferior;
904 go32_ops.to_terminal_ours_for_output = go32_terminal_ours;
905 go32_ops.to_terminal_ours = go32_terminal_ours;
906 go32_ops.to_terminal_info = go32_terminal_info;
907 go32_ops.to_kill = go32_kill_inferior;
908 go32_ops.to_create_inferior = go32_create_inferior;
909 go32_ops.to_mourn_inferior = go32_mourn_inferior;
910 go32_ops.to_can_run = go32_can_run;
911 go32_ops.to_stop = go32_stop;
912 go32_ops.to_thread_alive = go32_thread_alive;
913 go32_ops.to_pid_to_str = go32_pid_to_str;
914 go32_ops.to_stratum = process_stratum;
915 go32_ops.to_has_all_memory = 1;
916 go32_ops.to_has_memory = 1;
917 go32_ops.to_has_stack = 1;
918 go32_ops.to_has_registers = 1;
919 go32_ops.to_has_execution = 1;
920
921 i386_use_watchpoints (&go32_ops);
922
923 go32_ops.to_magic = OPS_MAGIC;
924
925 /* Initialize child's cwd as empty to be initialized when starting
926 the child. */
927 *child_cwd = 0;
928
929 /* Initialize child's command line storage. */
930 if (redir_debug_init (&child_cmd) == -1)
931 internal_error (__FILE__, __LINE__,
932 _("Cannot allocate redirection storage: not enough memory.\n"));
933
934 /* We are always processing GCC-compiled programs. */
935 processing_gcc_compilation = 2;
936
937 /* Override the default name of the GDB init file. */
938 strcpy (gdbinit, "gdb.ini");
939 }
940
941 unsigned short windows_major, windows_minor;
942
943 /* Compute the version Windows reports via Int 2Fh/AX=1600h. */
944 static void
945 go32_get_windows_version(void)
946 {
947 __dpmi_regs r;
948
949 r.x.ax = 0x1600;
950 __dpmi_int(0x2f, &r);
951 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
952 && (r.h.al > 3 || r.h.ah > 0))
953 {
954 windows_major = r.h.al;
955 windows_minor = r.h.ah;
956 }
957 else
958 windows_major = 0xff; /* meaning no Windows */
959 }
960
961 /* A subroutine of go32_sysinfo to display memory info. */
962 static void
963 print_mem (unsigned long datum, const char *header, int in_pages_p)
964 {
965 if (datum != 0xffffffffUL)
966 {
967 if (in_pages_p)
968 datum <<= 12;
969 puts_filtered (header);
970 if (datum > 1024)
971 {
972 printf_filtered ("%lu KB", datum >> 10);
973 if (datum > 1024 * 1024)
974 printf_filtered (" (%lu MB)", datum >> 20);
975 }
976 else
977 printf_filtered ("%lu Bytes", datum);
978 puts_filtered ("\n");
979 }
980 }
981
982 /* Display assorted information about the underlying OS. */
983 static void
984 go32_sysinfo (char *arg, int from_tty)
985 {
986 static const char test_pattern[] =
987 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
988 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
989 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
990 struct utsname u;
991 char cpuid_vendor[13];
992 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
993 unsigned true_dos_version = _get_dos_version (1);
994 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
995 int dpmi_flags;
996 char dpmi_vendor_info[129];
997 int dpmi_vendor_available;
998 __dpmi_version_ret dpmi_version_data;
999 long eflags;
1000 __dpmi_free_mem_info mem_info;
1001 __dpmi_regs regs;
1002
1003 cpuid_vendor[0] = '\0';
1004 if (uname (&u))
1005 strcpy (u.machine, "Unknown x86");
1006 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1007 {
1008 /* CPUID with EAX = 0 returns the Vendor ID. */
1009 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1010 "xorl %%ecx, %%ecx;"
1011 "xorl %%edx, %%edx;"
1012 "movl $0, %%eax;"
1013 "cpuid;"
1014 "movl %%ebx, %0;"
1015 "movl %%edx, %1;"
1016 "movl %%ecx, %2;"
1017 "movl %%eax, %3;"
1018 : "=m" (cpuid_vendor[0]),
1019 "=m" (cpuid_vendor[4]),
1020 "=m" (cpuid_vendor[8]),
1021 "=m" (cpuid_max)
1022 :
1023 : "%eax", "%ebx", "%ecx", "%edx");
1024 cpuid_vendor[12] = '\0';
1025 }
1026
1027 printf_filtered ("CPU Type.......................%s", u.machine);
1028 if (cpuid_vendor[0])
1029 printf_filtered (" (%s)", cpuid_vendor);
1030 puts_filtered ("\n");
1031
1032 /* CPUID with EAX = 1 returns processor signature and features. */
1033 if (cpuid_max >= 1)
1034 {
1035 static char *brand_name[] = {
1036 "",
1037 " Celeron",
1038 " III",
1039 " III Xeon",
1040 "", "", "", "",
1041 " 4"
1042 };
1043 char cpu_string[80];
1044 char cpu_brand[20];
1045 unsigned brand_idx;
1046 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1047 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
1048 unsigned cpu_family, cpu_model;
1049
1050 __asm__ __volatile__ ("movl $1, %%eax;"
1051 "cpuid;"
1052 : "=a" (cpuid_eax),
1053 "=b" (cpuid_ebx),
1054 "=d" (cpuid_edx)
1055 :
1056 : "%ecx");
1057 brand_idx = cpuid_ebx & 0xff;
1058 cpu_family = (cpuid_eax >> 8) & 0xf;
1059 cpu_model = (cpuid_eax >> 4) & 0xf;
1060 cpu_brand[0] = '\0';
1061 if (intel_p)
1062 {
1063 if (brand_idx > 0
1064 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1065 && *brand_name[brand_idx])
1066 strcpy (cpu_brand, brand_name[brand_idx]);
1067 else if (cpu_family == 5)
1068 {
1069 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1070 strcpy (cpu_brand, " MMX");
1071 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1072 strcpy (cpu_brand, " OverDrive");
1073 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1074 strcpy (cpu_brand, " Dual");
1075 }
1076 else if (cpu_family == 6 && cpu_model < 8)
1077 {
1078 switch (cpu_model)
1079 {
1080 case 1:
1081 strcpy (cpu_brand, " Pro");
1082 break;
1083 case 3:
1084 strcpy (cpu_brand, " II");
1085 break;
1086 case 5:
1087 strcpy (cpu_brand, " II Xeon");
1088 break;
1089 case 6:
1090 strcpy (cpu_brand, " Celeron");
1091 break;
1092 case 7:
1093 strcpy (cpu_brand, " III");
1094 break;
1095 }
1096 }
1097 }
1098 else if (amd_p)
1099 {
1100 switch (cpu_family)
1101 {
1102 case 4:
1103 strcpy (cpu_brand, "486/5x86");
1104 break;
1105 case 5:
1106 switch (cpu_model)
1107 {
1108 case 0:
1109 case 1:
1110 case 2:
1111 case 3:
1112 strcpy (cpu_brand, "-K5");
1113 break;
1114 case 6:
1115 case 7:
1116 strcpy (cpu_brand, "-K6");
1117 break;
1118 case 8:
1119 strcpy (cpu_brand, "-K6-2");
1120 break;
1121 case 9:
1122 strcpy (cpu_brand, "-K6-III");
1123 break;
1124 }
1125 break;
1126 case 6:
1127 switch (cpu_model)
1128 {
1129 case 1:
1130 case 2:
1131 case 4:
1132 strcpy (cpu_brand, " Athlon");
1133 break;
1134 case 3:
1135 strcpy (cpu_brand, " Duron");
1136 break;
1137 }
1138 break;
1139 }
1140 }
1141 sprintf (cpu_string, "%s%s Model %d Stepping %d",
1142 intel_p ? "Pentium" : (amd_p ? "AMD" : "ix86"),
1143 cpu_brand, cpu_model, cpuid_eax & 0xf);
1144 printfi_filtered (31, "%s\n", cpu_string);
1145 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1146 || ((cpuid_edx & 1) == 0)
1147 || (amd_p && (cpuid_edx & (3 << 30)) != 0))
1148 {
1149 puts_filtered ("CPU Features...................");
1150 /* We only list features which might be useful in the DPMI
1151 environment. */
1152 if ((cpuid_edx & 1) == 0)
1153 puts_filtered ("No FPU "); /* it's unusual to not have an FPU */
1154 if ((cpuid_edx & (1 << 1)) != 0)
1155 puts_filtered ("VME ");
1156 if ((cpuid_edx & (1 << 2)) != 0)
1157 puts_filtered ("DE ");
1158 if ((cpuid_edx & (1 << 4)) != 0)
1159 puts_filtered ("TSC ");
1160 if ((cpuid_edx & (1 << 23)) != 0)
1161 puts_filtered ("MMX ");
1162 if ((cpuid_edx & (1 << 25)) != 0)
1163 puts_filtered ("SSE ");
1164 if ((cpuid_edx & (1 << 26)) != 0)
1165 puts_filtered ("SSE2 ");
1166 if (amd_p)
1167 {
1168 if ((cpuid_edx & (1 << 31)) != 0)
1169 puts_filtered ("3DNow! ");
1170 if ((cpuid_edx & (1 << 30)) != 0)
1171 puts_filtered ("3DNow!Ext");
1172 }
1173 puts_filtered ("\n");
1174 }
1175 }
1176 puts_filtered ("\n");
1177 printf_filtered ("DOS Version....................%s %s.%s",
1178 _os_flavor, u.release, u.version);
1179 if (true_dos_version != advertized_dos_version)
1180 printf_filtered (" (disguised as v%d.%d)", _osmajor, _osminor);
1181 puts_filtered ("\n");
1182 if (!windows_major)
1183 go32_get_windows_version ();
1184 if (windows_major != 0xff)
1185 {
1186 const char *windows_flavor;
1187
1188 printf_filtered ("Windows Version................%d.%02d (Windows ",
1189 windows_major, windows_minor);
1190 switch (windows_major)
1191 {
1192 case 3:
1193 windows_flavor = "3.X";
1194 break;
1195 case 4:
1196 switch (windows_minor)
1197 {
1198 case 0:
1199 windows_flavor = "95, 95A, or 95B";
1200 break;
1201 case 3:
1202 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1203 break;
1204 case 10:
1205 windows_flavor = "98 or 98 SE";
1206 break;
1207 case 90:
1208 windows_flavor = "ME";
1209 break;
1210 default:
1211 windows_flavor = "9X";
1212 break;
1213 }
1214 break;
1215 default:
1216 windows_flavor = "??";
1217 break;
1218 }
1219 printf_filtered ("%s)\n", windows_flavor);
1220 }
1221 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
1222 printf_filtered ("Windows Version................Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
1223 puts_filtered ("\n");
1224 /* On some versions of Windows, __dpmi_get_capabilities returns
1225 zero, but the buffer is not filled with info, so we fill the
1226 buffer with a known pattern and test for it afterwards. */
1227 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1228 dpmi_vendor_available =
1229 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1230 if (dpmi_vendor_available == 0
1231 && memcmp (dpmi_vendor_info, test_pattern,
1232 sizeof(dpmi_vendor_info)) != 0)
1233 {
1234 /* The DPMI spec says the vendor string should be ASCIIZ, but
1235 I don't trust the vendors to follow that... */
1236 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1237 dpmi_vendor_info[128] = '\0';
1238 printf_filtered ("DPMI Host......................%s v%d.%d (capabilities: %#x)\n",
1239 &dpmi_vendor_info[2],
1240 (unsigned)dpmi_vendor_info[0],
1241 (unsigned)dpmi_vendor_info[1],
1242 ((unsigned)dpmi_flags & 0x7f));
1243 }
1244 else
1245 printf_filtered ("DPMI Host......................(Info not available)\n");
1246 __dpmi_get_version (&dpmi_version_data);
1247 printf_filtered ("DPMI Version...................%d.%02d\n",
1248 dpmi_version_data.major, dpmi_version_data.minor);
1249 printf_filtered ("DPMI Info......................%s-bit DPMI, with%s Virtual Memory support\n",
1250 (dpmi_version_data.flags & 1) ? "32" : "16",
1251 (dpmi_version_data.flags & 4) ? "" : "out");
1252 printfi_filtered (31, "Interrupts reflected to %s mode\n",
1253 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1254 printfi_filtered (31, "Processor type: i%d86\n",
1255 dpmi_version_data.cpu);
1256 printfi_filtered (31, "PIC base interrupt: Master: %#x Slave: %#x\n",
1257 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
1258
1259 /* a_tss is only initialized when the debuggee is first run. */
1260 if (prog_has_started)
1261 {
1262 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
1263 printf_filtered ("Protection.....................Ring %d (in %s), with%s I/O protection\n",
1264 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1265 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
1266 }
1267 puts_filtered ("\n");
1268 __dpmi_get_free_memory_information (&mem_info);
1269 print_mem (mem_info.total_number_of_physical_pages,
1270 "DPMI Total Physical Memory.....", 1);
1271 print_mem (mem_info.total_number_of_free_pages,
1272 "DPMI Free Physical Memory......", 1);
1273 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1274 "DPMI Swap Space................", 1);
1275 print_mem (mem_info.linear_address_space_size_in_pages,
1276 "DPMI Total Linear Address Size.", 1);
1277 print_mem (mem_info.free_linear_address_space_in_pages,
1278 "DPMI Free Linear Address Size..", 1);
1279 print_mem (mem_info.largest_available_free_block_in_bytes,
1280 "DPMI Largest Free Memory Block.", 0);
1281
1282 regs.h.ah = 0x48;
1283 regs.x.bx = 0xffff;
1284 __dpmi_int (0x21, &regs);
1285 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1286 regs.x.ax = 0x5800;
1287 __dpmi_int (0x21, &regs);
1288 if ((regs.x.flags & 1) == 0)
1289 {
1290 static const char *dos_hilo[] = {
1291 "Low", "", "", "", "High", "", "", "", "High, then Low"
1292 };
1293 static const char *dos_fit[] = {
1294 "First", "Best", "Last"
1295 };
1296 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1297 int fit_idx = regs.x.ax & 0x0f;
1298
1299 if (hilo_idx > 8)
1300 hilo_idx = 0;
1301 if (fit_idx > 2)
1302 fit_idx = 0;
1303 printf_filtered ("DOS Memory Allocation..........%s memory, %s fit\n",
1304 dos_hilo[hilo_idx], dos_fit[fit_idx]);
1305 regs.x.ax = 0x5802;
1306 __dpmi_int (0x21, &regs);
1307 if ((regs.x.flags & 1) != 0)
1308 regs.h.al = 0;
1309 printfi_filtered (31, "UMBs %sin DOS memory chain\n",
1310 regs.h.al == 0 ? "not " : "");
1311 }
1312 }
1313
1314 struct seg_descr {
1315 unsigned short limit0;
1316 unsigned short base0;
1317 unsigned char base1;
1318 unsigned stype:5;
1319 unsigned dpl:2;
1320 unsigned present:1;
1321 unsigned limit1:4;
1322 unsigned available:1;
1323 unsigned dummy:1;
1324 unsigned bit32:1;
1325 unsigned page_granular:1;
1326 unsigned char base2;
1327 } __attribute__ ((packed));
1328
1329 struct gate_descr {
1330 unsigned short offset0;
1331 unsigned short selector;
1332 unsigned param_count:5;
1333 unsigned dummy:3;
1334 unsigned stype:5;
1335 unsigned dpl:2;
1336 unsigned present:1;
1337 unsigned short offset1;
1338 } __attribute__ ((packed));
1339
1340 /* Read LEN bytes starting at logical address ADDR, and put the result
1341 into DEST. Return 1 if success, zero if not. */
1342 static int
1343 read_memory_region (unsigned long addr, void *dest, size_t len)
1344 {
1345 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
1346 int retval = 1;
1347
1348 /* For the low memory, we can simply use _dos_ds. */
1349 if (addr <= dos_ds_limit - len)
1350 dosmemget (addr, len, dest);
1351 else
1352 {
1353 /* For memory above 1MB we need to set up a special segment to
1354 be able to access that memory. */
1355 int sel = __dpmi_allocate_ldt_descriptors (1);
1356
1357 if (sel <= 0)
1358 retval = 0;
1359 else
1360 {
1361 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1362 size_t segment_limit = len - 1;
1363
1364 /* Make sure the crucial bits in the descriptor access
1365 rights are set correctly. Some DPMI providers might barf
1366 if we set the segment limit to something that is not an
1367 integral multiple of 4KB pages if the granularity bit is
1368 not set to byte-granular, even though the DPMI spec says
1369 it's the host's responsibility to set that bit correctly. */
1370 if (len > 1024 * 1024)
1371 {
1372 access_rights |= 0x8000;
1373 /* Page-granular segments should have the low 12 bits of
1374 the limit set. */
1375 segment_limit |= 0xfff;
1376 }
1377 else
1378 access_rights &= ~0x8000;
1379
1380 if (__dpmi_set_segment_base_address (sel, addr) != -1
1381 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
1382 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1383 /* W2K silently fails to set the segment limit, leaving
1384 it at zero; this test avoids the resulting crash. */
1385 && __dpmi_get_segment_limit (sel) >= segment_limit)
1386 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1387 else
1388 retval = 0;
1389
1390 __dpmi_free_ldt_descriptor (sel);
1391 }
1392 }
1393 return retval;
1394 }
1395
1396 /* Get a segment descriptor stored at index IDX in the descriptor
1397 table whose base address is TABLE_BASE. Return the descriptor
1398 type, or -1 if failure. */
1399 static int
1400 get_descriptor (unsigned long table_base, int idx, void *descr)
1401 {
1402 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1403
1404 if (read_memory_region (addr, descr, 8))
1405 return (int)((struct seg_descr *)descr)->stype;
1406 return -1;
1407 }
1408
1409 struct dtr_reg {
1410 unsigned short limit __attribute__((packed));
1411 unsigned long base __attribute__((packed));
1412 };
1413
1414 /* Display a segment descriptor stored at index IDX in a descriptor
1415 table whose type is TYPE and whose base address is BASE_ADDR. If
1416 FORCE is non-zero, display even invalid descriptors. */
1417 static void
1418 display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1419 {
1420 struct seg_descr descr;
1421 struct gate_descr gate;
1422
1423 /* Get the descriptor from the table. */
1424 if (idx == 0 && type == 0)
1425 puts_filtered ("0x000: null descriptor\n");
1426 else if (get_descriptor (base_addr, idx, &descr) != -1)
1427 {
1428 /* For each type of descriptor table, this has a bit set if the
1429 corresponding type of selectors is valid in that table. */
1430 static unsigned allowed_descriptors[] = {
1431 0xffffdafeL, /* GDT */
1432 0x0000c0e0L, /* IDT */
1433 0xffffdafaL /* LDT */
1434 };
1435
1436 /* If the program hasn't started yet, assume the debuggee will
1437 have the same CPL as the debugger. */
1438 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1439 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1440
1441 if (descr.present
1442 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1443 {
1444 printf_filtered ("0x%03x: ",
1445 type == 1
1446 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1447 if (descr.page_granular)
1448 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1449 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1450 || descr.stype == 9 || descr.stype == 11
1451 || (descr.stype >= 16 && descr.stype < 32))
1452 printf_filtered ("base=0x%02x%02x%04x limit=0x%08lx",
1453 descr.base2, descr.base1, descr.base0, limit);
1454
1455 switch (descr.stype)
1456 {
1457 case 1:
1458 case 3:
1459 printf_filtered (" 16-bit TSS (task %sactive)",
1460 descr.stype == 3 ? "" : "in");
1461 break;
1462 case 2:
1463 puts_filtered (" LDT");
1464 break;
1465 case 4:
1466 memcpy (&gate, &descr, sizeof gate);
1467 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1468 gate.selector, gate.offset1, gate.offset0);
1469 printf_filtered (" 16-bit Call Gate (params=%d)",
1470 gate.param_count);
1471 break;
1472 case 5:
1473 printf_filtered ("TSS selector=0x%04x", descr.base0);
1474 printfi_filtered (16, "Task Gate");
1475 break;
1476 case 6:
1477 case 7:
1478 memcpy (&gate, &descr, sizeof gate);
1479 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1480 gate.selector, gate.offset1, gate.offset0);
1481 printf_filtered (" 16-bit %s Gate",
1482 descr.stype == 6 ? "Interrupt" : "Trap");
1483 break;
1484 case 9:
1485 case 11:
1486 printf_filtered (" 32-bit TSS (task %sactive)",
1487 descr.stype == 3 ? "" : "in");
1488 break;
1489 case 12:
1490 memcpy (&gate, &descr, sizeof gate);
1491 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1492 gate.selector, gate.offset1, gate.offset0);
1493 printf_filtered (" 32-bit Call Gate (params=%d)",
1494 gate.param_count);
1495 break;
1496 case 14:
1497 case 15:
1498 memcpy (&gate, &descr, sizeof gate);
1499 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1500 gate.selector, gate.offset1, gate.offset0);
1501 printf_filtered (" 32-bit %s Gate",
1502 descr.stype == 14 ? "Interrupt" : "Trap");
1503 break;
1504 case 16: /* data segments */
1505 case 17:
1506 case 18:
1507 case 19:
1508 case 20:
1509 case 21:
1510 case 22:
1511 case 23:
1512 printf_filtered (" %s-bit Data (%s Exp-%s%s)",
1513 descr.bit32 ? "32" : "16",
1514 descr.stype & 2 ? "Read/Write," : "Read-Only, ",
1515 descr.stype & 4 ? "down" : "up",
1516 descr.stype & 1 ? "" : ", N.Acc");
1517 break;
1518 case 24: /* code segments */
1519 case 25:
1520 case 26:
1521 case 27:
1522 case 28:
1523 case 29:
1524 case 30:
1525 case 31:
1526 printf_filtered (" %s-bit Code (%s, %sConf%s)",
1527 descr.bit32 ? "32" : "16",
1528 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1529 descr.stype & 4 ? "" : "N.",
1530 descr.stype & 1 ? "" : ", N.Acc");
1531 break;
1532 default:
1533 printf_filtered ("Unknown type 0x%02x", descr.stype);
1534 break;
1535 }
1536 puts_filtered ("\n");
1537 }
1538 else if (force)
1539 {
1540 printf_filtered ("0x%03x: ",
1541 type == 1
1542 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1543 if (!descr.present)
1544 puts_filtered ("Segment not present\n");
1545 else
1546 printf_filtered ("Segment type 0x%02x is invalid in this table\n",
1547 descr.stype);
1548 }
1549 }
1550 else if (force)
1551 printf_filtered ("0x%03x: Cannot read this descriptor\n", idx);
1552 }
1553
1554 static void
1555 go32_sldt (char *arg, int from_tty)
1556 {
1557 struct dtr_reg gdtr;
1558 unsigned short ldtr = 0;
1559 int ldt_idx;
1560 struct seg_descr ldt_descr;
1561 long ldt_entry = -1L;
1562 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1563
1564 if (arg && *arg)
1565 {
1566 while (*arg && isspace(*arg))
1567 arg++;
1568
1569 if (*arg)
1570 {
1571 ldt_entry = parse_and_eval_long (arg);
1572 if (ldt_entry < 0
1573 || (ldt_entry & 4) == 0
1574 || (ldt_entry & 3) != (cpl & 3))
1575 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
1576 }
1577 }
1578
1579 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1580 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1581 ldt_idx = ldtr / 8;
1582 if (ldt_idx == 0)
1583 puts_filtered ("There is no LDT.\n");
1584 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1585 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
1586 printf_filtered ("LDT is present (at %#x), but unreadable by GDB.\n",
1587 ldt_descr.base0
1588 | (ldt_descr.base1 << 16)
1589 | (ldt_descr.base2 << 24));
1590 else
1591 {
1592 unsigned base =
1593 ldt_descr.base0
1594 | (ldt_descr.base1 << 16)
1595 | (ldt_descr.base2 << 24);
1596 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1597 int max_entry;
1598
1599 if (ldt_descr.page_granular)
1600 /* Page-granular segments must have the low 12 bits of their
1601 limit set. */
1602 limit = (limit << 12) | 0xfff;
1603 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1604 64KB. */
1605 if (limit > 0xffff)
1606 limit = 0xffff;
1607
1608 max_entry = (limit + 1) / 8;
1609
1610 if (ldt_entry >= 0)
1611 {
1612 if (ldt_entry > limit)
1613 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
1614 (unsigned long)ldt_entry, limit);
1615
1616 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1617 }
1618 else
1619 {
1620 int i;
1621
1622 for (i = 0; i < max_entry; i++)
1623 display_descriptor (ldt_descr.stype, base, i, 0);
1624 }
1625 }
1626 }
1627
1628 static void
1629 go32_sgdt (char *arg, int from_tty)
1630 {
1631 struct dtr_reg gdtr;
1632 long gdt_entry = -1L;
1633 int max_entry;
1634
1635 if (arg && *arg)
1636 {
1637 while (*arg && isspace(*arg))
1638 arg++;
1639
1640 if (*arg)
1641 {
1642 gdt_entry = parse_and_eval_long (arg);
1643 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
1644 error (_("Invalid GDT entry 0x%03lx: not an integral multiple of 8."),
1645 (unsigned long)gdt_entry);
1646 }
1647 }
1648
1649 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1650 max_entry = (gdtr.limit + 1) / 8;
1651
1652 if (gdt_entry >= 0)
1653 {
1654 if (gdt_entry > gdtr.limit)
1655 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
1656 (unsigned long)gdt_entry, gdtr.limit);
1657
1658 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1659 }
1660 else
1661 {
1662 int i;
1663
1664 for (i = 0; i < max_entry; i++)
1665 display_descriptor (0, gdtr.base, i, 0);
1666 }
1667 }
1668
1669 static void
1670 go32_sidt (char *arg, int from_tty)
1671 {
1672 struct dtr_reg idtr;
1673 long idt_entry = -1L;
1674 int max_entry;
1675
1676 if (arg && *arg)
1677 {
1678 while (*arg && isspace(*arg))
1679 arg++;
1680
1681 if (*arg)
1682 {
1683 idt_entry = parse_and_eval_long (arg);
1684 if (idt_entry < 0)
1685 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
1686 }
1687 }
1688
1689 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1690 max_entry = (idtr.limit + 1) / 8;
1691 if (max_entry > 0x100) /* no more than 256 entries */
1692 max_entry = 0x100;
1693
1694 if (idt_entry >= 0)
1695 {
1696 if (idt_entry > idtr.limit)
1697 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
1698 (unsigned long)idt_entry, idtr.limit);
1699
1700 display_descriptor (1, idtr.base, idt_entry, 1);
1701 }
1702 else
1703 {
1704 int i;
1705
1706 for (i = 0; i < max_entry; i++)
1707 display_descriptor (1, idtr.base, i, 0);
1708 }
1709 }
1710
1711 /* Cached linear address of the base of the page directory. For
1712 now, available only under CWSDPMI. Code based on ideas and
1713 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1714 static unsigned long pdbr;
1715
1716 static unsigned long
1717 get_cr3 (void)
1718 {
1719 unsigned offset;
1720 unsigned taskreg;
1721 unsigned long taskbase, cr3;
1722 struct dtr_reg gdtr;
1723
1724 if (pdbr > 0 && pdbr <= 0xfffff)
1725 return pdbr;
1726
1727 /* Get the linear address of GDT and the Task Register. */
1728 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1729 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1730
1731 /* Task Register is a segment selector for the TSS of the current
1732 task. Therefore, it can be used as an index into the GDT to get
1733 at the segment descriptor for the TSS. To get the index, reset
1734 the low 3 bits of the selector (which give the CPL). Add 2 to the
1735 offset to point to the 3 low bytes of the base address. */
1736 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1737
1738
1739 /* CWSDPMI's task base is always under the 1MB mark. */
1740 if (offset > 0xfffff)
1741 return 0;
1742
1743 _farsetsel (_dos_ds);
1744 taskbase = _farnspeekl (offset) & 0xffffffU;
1745 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1746 if (taskbase > 0xfffff)
1747 return 0;
1748
1749 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1750 offset 1Ch in the TSS. */
1751 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1752 if (cr3 > 0xfffff)
1753 {
1754 #if 0 /* not fullly supported yet */
1755 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1756 the first Page Table right below the Page Directory. Thus,
1757 the first Page Table's entry for its own address and the Page
1758 Directory entry for that Page Table will hold the same
1759 physical address. The loop below searches the entire UMB
1760 range of addresses for such an occurence. */
1761 unsigned long addr, pte_idx;
1762
1763 for (addr = 0xb0000, pte_idx = 0xb0;
1764 pte_idx < 0xff;
1765 addr += 0x1000, pte_idx++)
1766 {
1767 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1768 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1769 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1770 {
1771 cr3 = addr + 0x1000;
1772 break;
1773 }
1774 }
1775 #endif
1776
1777 if (cr3 > 0xfffff)
1778 cr3 = 0;
1779 }
1780
1781 return cr3;
1782 }
1783
1784 /* Return the N'th Page Directory entry. */
1785 static unsigned long
1786 get_pde (int n)
1787 {
1788 unsigned long pde = 0;
1789
1790 if (pdbr && n >= 0 && n < 1024)
1791 {
1792 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1793 }
1794 return pde;
1795 }
1796
1797 /* Return the N'th entry of the Page Table whose Page Directory entry
1798 is PDE. */
1799 static unsigned long
1800 get_pte (unsigned long pde, int n)
1801 {
1802 unsigned long pte = 0;
1803
1804 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1805 page tables, for now. */
1806 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1807 {
1808 pde &= ~0xfff; /* clear non-address bits */
1809 pte = _farpeekl (_dos_ds, pde + 4*n);
1810 }
1811 return pte;
1812 }
1813
1814 /* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1815 says this is a Page Directory entry. If FORCE is non-zero, display
1816 the entry even if its Present flag is off. OFF is the offset of the
1817 address from the page's base address. */
1818 static void
1819 display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1820 {
1821 if ((entry & 1) != 0)
1822 {
1823 printf_filtered ("Base=0x%05lx000", entry >> 12);
1824 if ((entry & 0x100) && !is_dir)
1825 puts_filtered (" Global");
1826 if ((entry & 0x40) && !is_dir)
1827 puts_filtered (" Dirty");
1828 printf_filtered (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1829 printf_filtered (" %sCached", (entry & 0x10) ? "" : "Not-");
1830 printf_filtered (" Write-%s", (entry & 8) ? "Thru" : "Back");
1831 printf_filtered (" %s", (entry & 4) ? "Usr" : "Sup");
1832 printf_filtered (" Read-%s", (entry & 2) ? "Write" : "Only");
1833 if (off)
1834 printf_filtered (" +0x%x", off);
1835 puts_filtered ("\n");
1836 }
1837 else if (force)
1838 printf_filtered ("Page%s not present or not supported; value=0x%lx.\n",
1839 is_dir ? " Table" : "", entry >> 1);
1840 }
1841
1842 static void
1843 go32_pde (char *arg, int from_tty)
1844 {
1845 long pde_idx = -1, i;
1846
1847 if (arg && *arg)
1848 {
1849 while (*arg && isspace(*arg))
1850 arg++;
1851
1852 if (*arg)
1853 {
1854 pde_idx = parse_and_eval_long (arg);
1855 if (pde_idx < 0 || pde_idx >= 1024)
1856 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
1857 }
1858 }
1859
1860 pdbr = get_cr3 ();
1861 if (!pdbr)
1862 puts_filtered ("Access to Page Directories is not supported on this system.\n");
1863 else if (pde_idx >= 0)
1864 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
1865 else
1866 for (i = 0; i < 1024; i++)
1867 display_ptable_entry (get_pde (i), 1, 0, 0);
1868 }
1869
1870 /* A helper function to display entries in a Page Table pointed to by
1871 the N'th entry in the Page Directory. If FORCE is non-zero, say
1872 something even if the Page Table is not accessible. */
1873 static void
1874 display_page_table (long n, int force)
1875 {
1876 unsigned long pde = get_pde (n);
1877
1878 if ((pde & 1) != 0)
1879 {
1880 int i;
1881
1882 printf_filtered ("Page Table pointed to by Page Directory entry 0x%lx:\n", n);
1883 for (i = 0; i < 1024; i++)
1884 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
1885 puts_filtered ("\n");
1886 }
1887 else if (force)
1888 printf_filtered ("Page Table not present; value=0x%lx.\n", pde >> 1);
1889 }
1890
1891 static void
1892 go32_pte (char *arg, int from_tty)
1893 {
1894 long pde_idx = -1L, i;
1895
1896 if (arg && *arg)
1897 {
1898 while (*arg && isspace(*arg))
1899 arg++;
1900
1901 if (*arg)
1902 {
1903 pde_idx = parse_and_eval_long (arg);
1904 if (pde_idx < 0 || pde_idx >= 1024)
1905 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
1906 }
1907 }
1908
1909 pdbr = get_cr3 ();
1910 if (!pdbr)
1911 puts_filtered ("Access to Page Tables is not supported on this system.\n");
1912 else if (pde_idx >= 0)
1913 display_page_table (pde_idx, 1);
1914 else
1915 for (i = 0; i < 1024; i++)
1916 display_page_table (i, 0);
1917 }
1918
1919 static void
1920 go32_pte_for_address (char *arg, int from_tty)
1921 {
1922 CORE_ADDR addr = 0, i;
1923
1924 if (arg && *arg)
1925 {
1926 while (*arg && isspace(*arg))
1927 arg++;
1928
1929 if (*arg)
1930 addr = parse_and_eval_address (arg);
1931 }
1932 if (!addr)
1933 error_no_arg (_("linear address"));
1934
1935 pdbr = get_cr3 ();
1936 if (!pdbr)
1937 puts_filtered ("Access to Page Tables is not supported on this system.\n");
1938 else
1939 {
1940 int pde_idx = (addr >> 22) & 0x3ff;
1941 int pte_idx = (addr >> 12) & 0x3ff;
1942 unsigned offs = addr & 0xfff;
1943
1944 printf_filtered ("Page Table entry for address 0x%llx:\n",
1945 (unsigned long long)addr);
1946 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
1947 }
1948 }
1949
1950 static struct cmd_list_element *info_dos_cmdlist = NULL;
1951
1952 static void
1953 go32_info_dos_command (char *args, int from_tty)
1954 {
1955 help_list (info_dos_cmdlist, "info dos ", class_info, gdb_stdout);
1956 }
1957
1958 void
1959 _initialize_go32_nat (void)
1960 {
1961 init_go32_ops ();
1962 add_target (&go32_ops);
1963
1964 add_prefix_cmd ("dos", class_info, go32_info_dos_command, _("\
1965 Print information specific to DJGPP (aka MS-DOS) debugging."),
1966 &info_dos_cmdlist, "info dos ", 0, &infolist);
1967
1968 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
1969 Display information about the target system, including CPU, OS, DPMI, etc."),
1970 &info_dos_cmdlist);
1971 add_cmd ("ldt", class_info, go32_sldt, _("\
1972 Display entries in the LDT (Local Descriptor Table).\n\
1973 Entry number (an expression) as an argument means display only that entry."),
1974 &info_dos_cmdlist);
1975 add_cmd ("gdt", class_info, go32_sgdt, _("\
1976 Display entries in the GDT (Global Descriptor Table).\n\
1977 Entry number (an expression) as an argument means display only that entry."),
1978 &info_dos_cmdlist);
1979 add_cmd ("idt", class_info, go32_sidt, _("\
1980 Display entries in the IDT (Interrupt Descriptor Table).\n\
1981 Entry number (an expression) as an argument means display only that entry."),
1982 &info_dos_cmdlist);
1983 add_cmd ("pde", class_info, go32_pde, _("\
1984 Display entries in the Page Directory.\n\
1985 Entry number (an expression) as an argument means display only that entry."),
1986 &info_dos_cmdlist);
1987 add_cmd ("pte", class_info, go32_pte, _("\
1988 Display entries in Page Tables.\n\
1989 Entry number (an expression) as an argument means display only entries\n\
1990 from the Page Table pointed to by the specified Page Directory entry."),
1991 &info_dos_cmdlist);
1992 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
1993 Display a Page Table entry for a linear address.\n\
1994 The address argument must be a linear address, after adding to\n\
1995 it the base address of the appropriate segment.\n\
1996 The base address of variables and functions in the debuggee's data\n\
1997 or code segment is stored in the variable __djgpp_base_address,\n\
1998 so use `__djgpp_base_address + (char *)&var' as the argument.\n\
1999 For other segments, look up their base address in the output of\n\
2000 the `info dos ldt' command."),
2001 &info_dos_cmdlist);
2002 }
2003
2004 pid_t
2005 tcgetpgrp (int fd)
2006 {
2007 if (isatty (fd))
2008 return SOME_PID;
2009 errno = ENOTTY;
2010 return -1;
2011 }
2012
2013 int
2014 tcsetpgrp (int fd, pid_t pgid)
2015 {
2016 if (isatty (fd) && pgid == SOME_PID)
2017 return 0;
2018 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;
2019 return -1;
2020 }
This page took 0.069128 seconds and 5 git commands to generate.