0fc9d86d69b7cfc41b3892be899d213f9261c527
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Hitachi H8/300, for GDB.
2
3 Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
4 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /*
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
26 */
27
28 #include "defs.h"
29 #include "value.h"
30 #include "inferior.h"
31 #include "symfile.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "gdbcmd.h"
37 #include "gdb_assert.h"
38
39 /* Extra info which is saved in each frame_info. */
40 struct frame_extra_info
41 {
42 CORE_ADDR from_pc;
43 CORE_ADDR args_pointer;
44 CORE_ADDR locals_pointer;
45 };
46
47 #define E_NUM_REGS (h8300smode ? 14 : 13)
48
49 enum
50 {
51 h8300_reg_size = 2,
52 h8300h_reg_size = 4,
53 h8300_max_reg_size = 4,
54 };
55 #define BINWORD (h8300hmode ? h8300h_reg_size : h8300_reg_size)
56
57 enum gdb_regnum
58 {
59 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
60 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM,
61 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
62 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
63 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
64 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
65 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
66 E_SP_REGNUM,
67 E_CCR_REGNUM,
68 E_PC_REGNUM,
69 E_CYCLES_REGNUM,
70 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
71 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
72 E_INSTS_REGNUM
73 };
74
75 #define UNSIGNED_SHORT(X) ((X) & 0xffff)
76
77 #define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
78 #define IS_PUSH_FP(x) (x == 0x6df6)
79 #define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
80 #define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
81 #define IS_SUB2_SP(x) (x==0x1b87)
82 #define IS_SUB4_SP(x) (x==0x1b97)
83 #define IS_SUBL_SP(x) (x==0x7a37)
84 #define IS_MOVK_R5(x) (x==0x7905)
85 #define IS_SUB_R5SP(x) (x==0x1957)
86
87 /* If the instruction at PC is an argument register spill, return its
88 length. Otherwise, return zero.
89
90 An argument register spill is an instruction that moves an argument
91 from the register in which it was passed to the stack slot in which
92 it really lives. It is a byte, word, or longword move from an
93 argument register to a negative offset from the frame pointer. */
94
95 static int
96 h8300_is_argument_spill (CORE_ADDR pc)
97 {
98 int w = read_memory_unsigned_integer (pc, 2);
99
100 if ((w & 0xfff0) == 0x6ee0 /* mov.b Rs,@(d:16,er6) */
101 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
102 {
103 int w2 = read_memory_integer (pc + 2, 2);
104
105 /* ... and d:16 is negative. */
106 if (w2 < 0)
107 return 4;
108 }
109 else if (w == 0x7860)
110 {
111 int w2 = read_memory_integer (pc + 2, 2);
112
113 if ((w2 & 0xfff0) == 0x6aa0) /* mov.b Rs, @(d:24,er6) */
114 {
115 LONGEST disp = read_memory_integer (pc + 4, 4);
116
117 /* ... and d:24 is negative. */
118 if (disp < 0 && disp > 0xffffff)
119 return 8;
120 }
121 }
122 else if ((w & 0xfff0) == 0x6fe0 /* mov.w Rs,@(d:16,er6) */
123 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
124 {
125 int w2 = read_memory_integer (pc + 2, 2);
126
127 /* ... and d:16 is negative. */
128 if (w2 < 0)
129 return 4;
130 }
131 else if (w == 0x78e0)
132 {
133 int w2 = read_memory_integer (pc + 2, 2);
134
135 if ((w2 & 0xfff0) == 0x6ba0) /* mov.b Rs, @(d:24,er6) */
136 {
137 LONGEST disp = read_memory_integer (pc + 4, 4);
138
139 /* ... and d:24 is negative. */
140 if (disp < 0 && disp > 0xffffff)
141 return 8;
142 }
143 }
144 else if (w == 0x0100)
145 {
146 int w2 = read_memory_integer (pc + 2, 2);
147
148 if ((w2 & 0xfff0) == 0x6fe0 /* mov.l Rs,@(d:16,er6) */
149 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
150 {
151 int w3 = read_memory_integer (pc + 4, 2);
152
153 /* ... and d:16 is negative. */
154 if (w3 < 0)
155 return 6;
156 }
157 else if (w2 == 0x78e0)
158 {
159 int w3 = read_memory_integer (pc + 4, 2);
160
161 if ((w3 & 0xfff0) == 0x6ba0) /* mov.l Rs, @(d:24,er6) */
162 {
163 LONGEST disp = read_memory_integer (pc + 6, 4);
164
165 /* ... and d:24 is negative. */
166 if (disp < 0 && disp > 0xffffff)
167 return 10;
168 }
169 }
170 }
171
172 return 0;
173 }
174
175 static CORE_ADDR
176 h8300_skip_prologue (CORE_ADDR start_pc)
177 {
178 short int w;
179 int adjust = 0;
180
181 /* Skip past all push and stm insns. */
182 while (1)
183 {
184 w = read_memory_unsigned_integer (start_pc, 2);
185 /* First look for push insns. */
186 if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130)
187 {
188 w = read_memory_unsigned_integer (start_pc + 2, 2);
189 adjust = 2;
190 }
191
192 if (IS_PUSH (w))
193 {
194 start_pc += 2 + adjust;
195 w = read_memory_unsigned_integer (start_pc, 2);
196 continue;
197 }
198 adjust = 0;
199 break;
200 }
201
202 /* Skip past a move to FP, either word or long sized */
203 w = read_memory_unsigned_integer (start_pc, 2);
204 if (w == 0x0100)
205 {
206 w = read_memory_unsigned_integer (start_pc + 2, 2);
207 adjust += 2;
208 }
209
210 if (IS_MOVE_FP (w))
211 {
212 start_pc += 2 + adjust;
213 w = read_memory_unsigned_integer (start_pc, 2);
214 }
215
216 /* Check for loading either a word constant into r5;
217 long versions are handled by the SUBL_SP below. */
218 if (IS_MOVK_R5 (w))
219 {
220 start_pc += 2;
221 w = read_memory_unsigned_integer (start_pc, 2);
222 }
223
224 /* Now check for subtracting r5 from sp, word sized only. */
225 if (IS_SUB_R5SP (w))
226 {
227 start_pc += 2 + adjust;
228 w = read_memory_unsigned_integer (start_pc, 2);
229 }
230
231 /* Check for subs #2 and subs #4. */
232 while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
233 {
234 start_pc += 2 + adjust;
235 w = read_memory_unsigned_integer (start_pc, 2);
236 }
237
238 /* Check for a 32bit subtract. */
239 if (IS_SUBL_SP (w))
240 start_pc += 6 + adjust;
241
242 /* Check for spilling an argument register to the stack frame.
243 This could also be an initializing store from non-prologue code,
244 but I don't think there's any harm in skipping that. */
245 for (;;)
246 {
247 int spill_size = h8300_is_argument_spill (start_pc);
248 if (spill_size == 0)
249 break;
250 start_pc += spill_size;
251 }
252
253 return start_pc;
254 }
255
256 static int
257 gdb_print_insn_h8300 (bfd_vma memaddr, disassemble_info * info)
258 {
259 if (h8300smode)
260 return print_insn_h8300s (memaddr, info);
261 else if (h8300hmode)
262 return print_insn_h8300h (memaddr, info);
263 else
264 return print_insn_h8300 (memaddr, info);
265 }
266
267 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
268 is not the address of a valid instruction, the address of the next
269 instruction beyond ADDR otherwise. *PWORD1 receives the first word
270 of the instruction. */
271
272 static CORE_ADDR
273 h8300_next_prologue_insn (CORE_ADDR addr, CORE_ADDR lim, unsigned short* pword1)
274 {
275 char buf[2];
276 if (addr < lim + 8)
277 {
278 read_memory (addr, buf, 2);
279 *pword1 = extract_signed_integer (buf, 2);
280
281 return addr + 2;
282 }
283 return 0;
284 }
285
286 /* Examine the prologue of a function. `ip' points to the first instruction.
287 `limit' is the limit of the prologue (e.g. the addr of the first
288 linenumber, or perhaps the program counter if we're stepping through).
289 `frame_sp' is the stack pointer value in use in this frame.
290 `fsr' is a pointer to a frame_saved_regs structure into which we put
291 info about the registers saved by this frame.
292 `fi' is a struct frame_info pointer; we fill in various fields in it
293 to reflect the offsets of the arg pointer and the locals pointer. */
294
295 /* Any function with a frame looks like this
296 SECOND ARG
297 FIRST ARG
298 RET PC
299 SAVED R2
300 SAVED R3
301 SAVED FP <-FP POINTS HERE
302 LOCALS0
303 LOCALS1 <-SP POINTS HERE
304 */
305
306 static CORE_ADDR
307 h8300_examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
308 CORE_ADDR after_prolog_fp, CORE_ADDR *fsr,
309 struct frame_info *fi)
310 {
311 register CORE_ADDR next_ip;
312 int r;
313 int have_fp = 0;
314 unsigned short insn_word;
315 /* Number of things pushed onto stack, starts at 2/4, 'cause the
316 PC is already there */
317 unsigned int reg_save_depth = BINWORD;
318
319 unsigned int auto_depth = 0; /* Number of bytes of autos */
320
321 char in_frame[11]; /* One for each reg */
322
323 int adjust = 0;
324
325 memset (in_frame, 1, 11);
326 for (r = 0; r < 8; r++)
327 {
328 fsr[r] = 0;
329 }
330 if (after_prolog_fp == 0)
331 {
332 after_prolog_fp = read_register (E_SP_REGNUM);
333 }
334
335 /* If the PC isn't valid, quit now. */
336 if (ip == 0 || ip & (h8300hmode ? ~0xffffff : ~0xffff))
337 return 0;
338
339 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
340
341 if (insn_word == 0x0100)
342 {
343 insn_word = read_memory_unsigned_integer (ip + 2, 2);
344 adjust = 2;
345 }
346
347 /* Skip over any fp push instructions */
348 fsr[E_FP_REGNUM] = after_prolog_fp;
349 while (next_ip && IS_PUSH_FP (insn_word))
350 {
351 ip = next_ip + adjust;
352
353 in_frame[insn_word & 0x7] = reg_save_depth;
354 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
355 reg_save_depth += 2 + adjust;
356 }
357
358 /* Is this a move into the fp */
359 if (next_ip && IS_MOV_SP_FP (insn_word))
360 {
361 ip = next_ip;
362 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
363 have_fp = 1;
364 }
365
366 /* Skip over any stack adjustment, happens either with a number of
367 sub#2,sp or a mov #x,r5 sub r5,sp */
368
369 if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
370 {
371 while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
372 {
373 auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
374 ip = next_ip;
375 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
376 }
377 }
378 else
379 {
380 if (next_ip && IS_MOVK_R5 (insn_word))
381 {
382 ip = next_ip;
383 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
384 auto_depth += insn_word;
385
386 next_ip = h8300_next_prologue_insn (next_ip, limit, &insn_word);
387 auto_depth += insn_word;
388 }
389 if (next_ip && IS_SUBL_SP (insn_word))
390 {
391 ip = next_ip;
392 auto_depth += read_memory_unsigned_integer (ip, 4);
393 ip += 4;
394
395 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
396 }
397 }
398
399 /* Now examine the push insns to determine where everything lives
400 on the stack. */
401 while (1)
402 {
403 adjust = 0;
404 if (!next_ip)
405 break;
406
407 if (insn_word == 0x0100)
408 {
409 ip = next_ip;
410 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
411 adjust = 2;
412 }
413
414 if (IS_PUSH (insn_word))
415 {
416 auto_depth += 2 + adjust;
417 fsr[insn_word & 0x7] = after_prolog_fp - auto_depth;
418 ip = next_ip;
419 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
420 continue;
421 }
422
423 /* Now check for push multiple insns. */
424 if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130)
425 {
426 int count = ((insn_word >> 4) & 0xf) + 1;
427 int start, i;
428
429 ip = next_ip;
430 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
431 start = insn_word & 0x7;
432
433 for (i = start; i < start + count; i++)
434 {
435 auto_depth += 4;
436 fsr[i] = after_prolog_fp - auto_depth;
437 }
438 }
439 break;
440 }
441
442 /* The args are always reffed based from the stack pointer */
443 fi->extra_info->args_pointer = after_prolog_fp;
444 /* Locals are always reffed based from the fp */
445 fi->extra_info->locals_pointer = after_prolog_fp;
446 /* The PC is at a known place */
447 fi->extra_info->from_pc =
448 read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
449
450 /* Rememeber any others too */
451 in_frame[E_PC_REGNUM] = 0;
452
453 if (have_fp)
454 /* We keep the old FP in the SP spot */
455 fsr[E_SP_REGNUM] = read_memory_unsigned_integer (fsr[E_FP_REGNUM], BINWORD);
456 else
457 fsr[E_SP_REGNUM] = after_prolog_fp + auto_depth;
458
459 return (ip);
460 }
461
462 static void
463 h8300_frame_init_saved_regs (struct frame_info *fi)
464 {
465 CORE_ADDR func_addr, func_end;
466
467 if (!fi->saved_regs)
468 {
469 frame_saved_regs_zalloc (fi);
470
471 /* Find the beginning of this function, so we can analyze its
472 prologue. */
473 if (find_pc_partial_function (fi->pc, NULL, &func_addr, &func_end))
474 {
475 struct symtab_and_line sal = find_pc_line (func_addr, 0);
476 CORE_ADDR limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
477 /* This will fill in fields in fi. */
478 h8300_examine_prologue (func_addr, limit, fi->frame, fi->saved_regs, fi);
479 }
480 /* Else we're out of luck (can't debug completely stripped code).
481 FIXME. */
482 }
483 }
484
485 /* Given a GDB frame, determine the address of the calling function's
486 frame. This will be used to create a new GDB frame struct, and
487 then INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC will be
488 called for the new frame.
489
490 For us, the frame address is its stack pointer value, so we look up
491 the function prologue to determine the caller's sp value, and return it. */
492
493 static CORE_ADDR
494 h8300_frame_chain (struct frame_info *thisframe)
495 {
496 if (DEPRECATED_PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
497 { /* initialize the from_pc now */
498 thisframe->extra_info->from_pc =
499 deprecated_read_register_dummy (thisframe->pc, thisframe->frame,
500 E_PC_REGNUM);
501 return thisframe->frame;
502 }
503 return thisframe->saved_regs[E_SP_REGNUM];
504 }
505
506 /* Return the saved PC from this frame.
507
508 If the frame has a memory copy of SRP_REGNUM, use that. If not,
509 just use the register SRP_REGNUM itself. */
510
511 static CORE_ADDR
512 h8300_frame_saved_pc (struct frame_info *frame)
513 {
514 if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
515 return deprecated_read_register_dummy (frame->pc, frame->frame,
516 E_PC_REGNUM);
517 else
518 return frame->extra_info->from_pc;
519 }
520
521 static void
522 h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
523 {
524 if (!fi->extra_info)
525 {
526 fi->extra_info = (struct frame_extra_info *)
527 frame_obstack_alloc (sizeof (struct frame_extra_info));
528 fi->extra_info->from_pc = 0;
529 fi->extra_info->args_pointer = 0; /* Unknown */
530 fi->extra_info->locals_pointer = 0; /* Unknown */
531
532 if (!fi->pc)
533 {
534 if (fi->next)
535 fi->pc = h8300_frame_saved_pc (fi->next);
536 }
537 h8300_frame_init_saved_regs (fi);
538 }
539 }
540
541 static CORE_ADDR
542 h8300_frame_locals_address (struct frame_info *fi)
543 {
544 if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
545 return (CORE_ADDR) 0; /* Not sure what else to do... */
546 return fi->extra_info->locals_pointer;
547 }
548
549 /* Return the address of the argument block for the frame
550 described by FI. Returns 0 if the address is unknown. */
551
552 static CORE_ADDR
553 h8300_frame_args_address (struct frame_info *fi)
554 {
555 if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
556 return (CORE_ADDR) 0; /* Not sure what else to do... */
557 return fi->extra_info->args_pointer;
558 }
559
560 /* Round N up or down to the nearest multiple of UNIT.
561 Evaluate N only once, UNIT several times.
562 UNIT must be a power of two. */
563 #define round_up(n, unit) (((n) + (unit) - 1) & -(unit))
564 #define round_down(n, unit) ((n) & -(unit))
565
566 /* Function: push_arguments
567 Setup the function arguments for calling a function in the inferior.
568 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
569 on the H8/300H.
570
571 There are actually two ABI's here: -mquickcall (the default) and
572 -mno-quickcall. With -mno-quickcall, all arguments are passed on
573 the stack after the return address, word-aligned. With
574 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
575 GCC doesn't indicate in the object file which ABI was used to
576 compile it, GDB only supports the default --- -mquickcall.
577
578 Here are the rules for -mquickcall, in detail:
579
580 Each argument, whether scalar or aggregate, is padded to occupy a
581 whole number of words. Arguments smaller than a word are padded at
582 the most significant end; those larger than a word are padded at
583 the least significant end.
584
585 The initial arguments are passed in r0 -- r2. Earlier arguments go in
586 lower-numbered registers. Multi-word arguments are passed in
587 consecutive registers, with the most significant end in the
588 lower-numbered register.
589
590 If an argument doesn't fit entirely in the remaining registers, it
591 is passed entirely on the stack. Stack arguments begin just after
592 the return address. Once an argument has overflowed onto the stack
593 this way, all subsequent arguments are passed on the stack.
594
595 The above rule has odd consequences. For example, on the h8/300s,
596 if a function takes two longs and an int as arguments:
597 - the first long will be passed in r0/r1,
598 - the second long will be passed entirely on the stack, since it
599 doesn't fit in r2,
600 - and the int will be passed on the stack, even though it could fit
601 in r2.
602
603 A weird exception: if an argument is larger than a word, but not a
604 whole number of words in length (before padding), it is passed on
605 the stack following the rules for stack arguments above, even if
606 there are sufficient registers available to hold it. Stranger
607 still, the argument registers are still `used up' --- even though
608 there's nothing in them.
609
610 So, for example, on the h8/300s, if a function expects a three-byte
611 structure and an int, the structure will go on the stack, and the
612 int will go in r2, not r0.
613
614 If the function returns an aggregate type (struct, union, or class)
615 by value, the caller must allocate space to hold the return value,
616 and pass the callee a pointer to this space as an invisible first
617 argument, in R0.
618
619 For varargs functions, the last fixed argument and all the variable
620 arguments are always passed on the stack. This means that calls to
621 varargs functions don't work properly unless there is a prototype
622 in scope.
623
624 Basically, this ABI is not good, for the following reasons:
625 - You can't call vararg functions properly unless a prototype is in scope.
626 - Structure passing is inconsistent, to no purpose I can see.
627 - It often wastes argument registers, of which there are only three
628 to begin with. */
629
630 static CORE_ADDR
631 h8300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
632 int struct_return, CORE_ADDR struct_addr)
633 {
634 int stack_align, stack_alloc, stack_offset;
635 int wordsize = BINWORD;
636 int reg;
637 int argument;
638
639 /* First, make sure the stack is properly aligned. */
640 sp = round_down (sp, wordsize);
641
642 /* Now make sure there's space on the stack for the arguments. We
643 may over-allocate a little here, but that won't hurt anything. */
644 stack_alloc = 0;
645 for (argument = 0; argument < nargs; argument++)
646 stack_alloc += round_up (TYPE_LENGTH (VALUE_TYPE (args[argument])),
647 wordsize);
648 sp -= stack_alloc;
649
650 /* Now load as many arguments as possible into registers, and push
651 the rest onto the stack. */
652 reg = E_ARG0_REGNUM;
653 stack_offset = 0;
654
655 /* If we're returning a structure by value, then we must pass a
656 pointer to the buffer for the return value as an invisible first
657 argument. */
658 if (struct_return)
659 write_register (reg++, struct_addr);
660
661 for (argument = 0; argument < nargs; argument++)
662 {
663 struct type *type = VALUE_TYPE (args[argument]);
664 int len = TYPE_LENGTH (type);
665 char *contents = (char *) VALUE_CONTENTS (args[argument]);
666
667 /* Pad the argument appropriately. */
668 int padded_len = round_up (len, wordsize);
669 char *padded = alloca (padded_len);
670
671 memset (padded, 0, padded_len);
672 memcpy (len < wordsize ? padded + padded_len - len : padded,
673 contents, len);
674
675 /* Could the argument fit in the remaining registers? */
676 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
677 {
678 /* Are we going to pass it on the stack anyway, for no good
679 reason? */
680 if (len > wordsize && len % wordsize)
681 {
682 /* I feel so unclean. */
683 write_memory (sp + stack_offset, padded, padded_len);
684 stack_offset += padded_len;
685
686 /* That's right --- even though we passed the argument
687 on the stack, we consume the registers anyway! Love
688 me, love my dog. */
689 reg += padded_len / wordsize;
690 }
691 else
692 {
693 /* Heavens to Betsy --- it's really going in registers!
694 It would be nice if we could use write_register_bytes
695 here, but on the h8/300s, there are gaps between
696 the registers in the register file. */
697 int offset;
698
699 for (offset = 0; offset < padded_len; offset += wordsize)
700 {
701 ULONGEST word = extract_address (padded + offset, wordsize);
702 write_register (reg++, word);
703 }
704 }
705 }
706 else
707 {
708 /* It doesn't fit in registers! Onto the stack it goes. */
709 write_memory (sp + stack_offset, padded, padded_len);
710 stack_offset += padded_len;
711
712 /* Once one argument has spilled onto the stack, all
713 subsequent arguments go on the stack. */
714 reg = E_ARGLAST_REGNUM + 1;
715 }
716 }
717
718 return sp;
719 }
720
721 /* Function: push_return_address
722 Setup the return address for a dummy frame, as called by
723 call_function_by_hand. Only necessary when you are using an
724 empty CALL_DUMMY, ie. the target will not actually be executing
725 a JSR/BSR instruction. */
726
727 static CORE_ADDR
728 h8300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
729 {
730 unsigned char buf[4];
731 int wordsize = BINWORD;
732
733 sp -= wordsize;
734 store_unsigned_integer (buf, wordsize, CALL_DUMMY_ADDRESS ());
735 write_memory (sp, buf, wordsize);
736 return sp;
737 }
738
739 /* Function: h8300_pop_frame
740 Restore the machine to the state it had before the current frame
741 was created. Usually used either by the "RETURN" command, or by
742 call_function_by_hand after the dummy_frame is finished. */
743
744 static void
745 h8300_pop_frame (void)
746 {
747 unsigned regno;
748 struct frame_info *frame = get_current_frame ();
749
750 if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
751 {
752 generic_pop_dummy_frame ();
753 }
754 else
755 {
756 for (regno = 0; regno < 8; regno++)
757 {
758 /* Don't forget E_SP_REGNUM is a frame_saved_regs struct is the
759 actual value we want, not the address of the value we want. */
760 if (frame->saved_regs[regno] && regno != E_SP_REGNUM)
761 write_register (regno,
762 read_memory_integer (frame->saved_regs[regno],
763 BINWORD));
764 else if (frame->saved_regs[regno] && regno == E_SP_REGNUM)
765 write_register (regno, frame->frame + 2 * BINWORD);
766 }
767
768 /* Don't forget to update the PC too! */
769 write_register (E_PC_REGNUM, frame->extra_info->from_pc);
770 }
771 flush_cached_frames ();
772 }
773
774 /* Function: extract_return_value
775 Figure out where in REGBUF the called function has left its return value.
776 Copy that into VALBUF. Be sure to account for CPU type. */
777
778 static void
779 h8300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
780 {
781 int wordsize = BINWORD;
782 int len = TYPE_LENGTH (type);
783
784 switch (len)
785 {
786 case 1: /* (char) */
787 case 2: /* (short), (int) */
788 memcpy (valbuf, regbuf + REGISTER_BYTE (0) + (wordsize - len), len);
789 break;
790 case 4: /* (long), (float) */
791 if (wordsize == 4)
792 {
793 memcpy (valbuf, regbuf + REGISTER_BYTE (0), 4);
794 }
795 else
796 {
797 memcpy (valbuf, regbuf + REGISTER_BYTE (0), 2);
798 memcpy (valbuf + 2, regbuf + REGISTER_BYTE (1), 2);
799 }
800 break;
801 case 8: /* (double) (doesn't seem to happen, which is good,
802 because this almost certainly isn't right. */
803 error ("I don't know how a double is returned.");
804 break;
805 }
806 }
807
808 /* Function: store_return_value
809 Place the appropriate value in the appropriate registers.
810 Primarily used by the RETURN command. */
811
812 static void
813 h8300_store_return_value (struct type *type, char *valbuf)
814 {
815 int regval;
816 int wordsize = BINWORD;
817 int len = TYPE_LENGTH (type);
818
819 switch (len)
820 {
821 case 1: /* char */
822 case 2: /* short, int */
823 regval = extract_address (valbuf, len);
824 write_register (0, regval);
825 break;
826 case 4: /* long, float */
827 regval = extract_address (valbuf, len);
828 if (wordsize == 4)
829 {
830 write_register (0, regval);
831 }
832 else
833 {
834 write_register (0, regval >> 16);
835 write_register (1, regval & 0xffff);
836 }
837 break;
838 case 8: /* presumeably double, but doesn't seem to happen */
839 error ("I don't know how to return a double.");
840 break;
841 }
842 }
843
844 static struct cmd_list_element *setmachinelist;
845
846 static const char *
847 h8300_register_name (int regno)
848 {
849 /* The register names change depending on whether the h8300h processor
850 type is selected. */
851 static char *h8300_register_names[] = {
852 "r0", "r1", "r2", "r3", "r4", "r5", "r6",
853 "sp", "ccr","pc","cycles", "tick", "inst", ""
854 };
855 static char *h8300s_register_names[] = {
856 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
857 "sp", "ccr", "pc", "cycles", "exr", "tick", "inst"
858 };
859 char **register_names =
860 h8300smode ? h8300s_register_names : h8300_register_names;
861 if (regno < 0 || regno >= E_NUM_REGS)
862 internal_error (__FILE__, __LINE__,
863 "h8300_register_name: illegal register number %d", regno);
864 else
865 return register_names[regno];
866 }
867
868 static void
869 h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
870 struct frame_info *frame, int regno)
871 {
872 ULONGEST rval;
873 long val;
874 const char *name = h8300_register_name (regno);
875
876 if (!name || !*name)
877 return;
878
879 /* FIXME: cagney/2002-10-22: The code below assumes that VAL is at
880 least 4 bytes (32 bits) in size and hence is large enough to hold
881 the largest h8300 register. Should instead be using ULONGEST and
882 the phex() functions. */
883 gdb_assert (sizeof (val) >= 4);
884 frame_read_unsigned_register (frame, regno, &rval);
885 val = rval;
886
887 fprintf_filtered (file, "%-14s ", name);
888 if (h8300hmode)
889 {
890 if (val)
891 fprintf_filtered (file, "0x%08lx %-8ld", val, val);
892 else
893 fprintf_filtered (file, "0x%-8lx %-8ld", val, val);
894 }
895 else
896 {
897 if (val)
898 fprintf_filtered (file, "0x%04lx %-4ld", val, val);
899 else
900 fprintf_filtered (file, "0x%-4lx %-4ld", val, val);
901 }
902 if (regno == E_CCR_REGNUM)
903 {
904 /* CCR register */
905 int C, Z, N, V;
906 unsigned char b[h8300h_reg_size];
907 unsigned char l;
908 frame_register_read (deprecated_selected_frame, regno, b);
909 l = b[REGISTER_VIRTUAL_SIZE (E_CCR_REGNUM) - 1];
910 fprintf_filtered (file, "\t");
911 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
912 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
913 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
914 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
915 N = (l & 0x8) != 0;
916 Z = (l & 0x4) != 0;
917 V = (l & 0x2) != 0;
918 C = (l & 0x1) != 0;
919 fprintf_filtered (file, "N-%d ", N);
920 fprintf_filtered (file, "Z-%d ", Z);
921 fprintf_filtered (file, "V-%d ", V);
922 fprintf_filtered (file, "C-%d ", C);
923 if ((C | Z) == 0)
924 fprintf_filtered (file, "u> ");
925 if ((C | Z) == 1)
926 fprintf_filtered (file, "u<= ");
927 if ((C == 0))
928 fprintf_filtered (file, "u>= ");
929 if (C == 1)
930 fprintf_filtered (file, "u< ");
931 if (Z == 0)
932 fprintf_filtered (file, "!= ");
933 if (Z == 1)
934 fprintf_filtered (file, "== ");
935 if ((N ^ V) == 0)
936 fprintf_filtered (file, ">= ");
937 if ((N ^ V) == 1)
938 fprintf_filtered (file, "< ");
939 if ((Z | (N ^ V)) == 0)
940 fprintf_filtered (file, "> ");
941 if ((Z | (N ^ V)) == 1)
942 fprintf_filtered (file, "<= ");
943 }
944 else if (regno == E_EXR_REGNUM && h8300smode)
945 {
946 /* EXR register */
947 unsigned char b[h8300h_reg_size];
948 unsigned char l;
949 frame_register_read (deprecated_selected_frame, regno, b);
950 l = b[REGISTER_VIRTUAL_SIZE (E_EXR_REGNUM) - 1];
951 fprintf_filtered (file, "\t");
952 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
953 fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
954 fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
955 fprintf_filtered (file, "I0-%d", (l & 1) != 0);
956 }
957 fprintf_filtered (file, "\n");
958 }
959
960 static void
961 h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
962 struct frame_info *frame, int regno, int cpregs)
963 {
964 if (regno < 0)
965 for (regno = 0; regno < E_NUM_REGS; ++regno)
966 h8300_print_register (gdbarch, file, frame, regno);
967 else
968 h8300_print_register (gdbarch, file, frame, regno);
969 }
970
971 static CORE_ADDR
972 h8300_saved_pc_after_call (struct frame_info *ignore)
973 {
974 return read_memory_unsigned_integer (read_register (E_SP_REGNUM), BINWORD);
975 }
976
977 static int
978 h8300_register_byte (int regno)
979 {
980 if (regno < 0 || regno >= E_NUM_REGS)
981 internal_error (__FILE__, __LINE__,
982 "h8300_register_byte: illegal register number %d", regno);
983 else
984 return regno * BINWORD;
985 }
986
987 static int
988 h8300_register_raw_size (int regno)
989 {
990 if (regno < 0 || regno >= E_NUM_REGS)
991 internal_error (__FILE__, __LINE__,
992 "h8300_register_raw_size: illegal register number %d",
993 regno);
994 else
995 return BINWORD;
996 }
997
998 static struct type *
999 h8300_register_virtual_type (int regno)
1000 {
1001 if (regno < 0 || regno >= E_NUM_REGS)
1002 internal_error (__FILE__, __LINE__,
1003 "h8300_register_virtual_type: illegal register number %d",
1004 regno);
1005 else
1006 return h8300hmode ?
1007 builtin_type_unsigned_long : builtin_type_unsigned_short;
1008 }
1009
1010 static void
1011 h8300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1012 {
1013 write_register (0, addr);
1014 }
1015
1016 static int
1017 h8300_use_struct_convention (int gcc_p, struct type *type)
1018 {
1019 return 1;
1020 }
1021
1022 static CORE_ADDR
1023 h8300_extract_struct_value_address (char *regbuf)
1024 {
1025 return extract_address (regbuf + h8300_register_byte (E_ARG0_REGNUM),
1026 h8300_register_raw_size (E_ARG0_REGNUM));
1027 }
1028
1029 const static unsigned char *
1030 h8300_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1031 {
1032 /*static unsigned char breakpoint[] = { 0x7A, 0xFF };*/ /* ??? */
1033 static unsigned char breakpoint[] = { 0x01, 0x80 }; /* Sleep */
1034
1035 *lenptr = sizeof (breakpoint);
1036 return breakpoint;
1037 }
1038
1039 static void
1040 h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1041 struct frame_info *frame, const char *args)
1042 {
1043 fprintf_filtered (file, "\
1044 No floating-point info available for this processor.\n");
1045 }
1046
1047 static struct gdbarch *
1048 h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1049 {
1050 static LONGEST call_dummy_words[1] = { 0 };
1051 struct gdbarch_tdep *tdep = NULL;
1052 struct gdbarch *gdbarch;
1053
1054 arches = gdbarch_list_lookup_by_info (arches, &info);
1055 if (arches != NULL)
1056 return arches->gdbarch;
1057
1058 #if 0
1059 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1060 #endif
1061
1062 if (info.bfd_arch_info->arch != bfd_arch_h8300)
1063 return NULL;
1064
1065 switch (info.bfd_arch_info->mach)
1066 {
1067 case bfd_mach_h8300:
1068 h8300smode = 0;
1069 h8300hmode = 0;
1070 break;
1071 case bfd_mach_h8300h:
1072 h8300smode = 0;
1073 h8300hmode = 1;
1074 break;
1075 case bfd_mach_h8300s:
1076 h8300smode = 1;
1077 h8300hmode = 1;
1078 break;
1079 }
1080
1081 gdbarch = gdbarch_alloc (&info, 0);
1082
1083 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1084 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1085 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1086
1087 /*
1088 * Basic register fields and methods.
1089 */
1090
1091 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
1092 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1093 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1094 set_gdbarch_fp_regnum (gdbarch, E_FP_REGNUM);
1095 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1096 set_gdbarch_register_name (gdbarch, h8300_register_name);
1097 set_gdbarch_register_size (gdbarch, BINWORD);
1098 set_gdbarch_register_bytes (gdbarch, E_NUM_REGS * BINWORD);
1099 set_gdbarch_register_byte (gdbarch, h8300_register_byte);
1100 set_gdbarch_register_raw_size (gdbarch, h8300_register_raw_size);
1101 set_gdbarch_max_register_raw_size (gdbarch, h8300h_reg_size);
1102 set_gdbarch_register_virtual_size (gdbarch, h8300_register_raw_size);
1103 set_gdbarch_max_register_virtual_size (gdbarch, h8300h_reg_size);
1104 set_gdbarch_register_virtual_type (gdbarch, h8300_register_virtual_type);
1105 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
1106 set_gdbarch_print_float_info (gdbarch, h8300_print_float_info);
1107
1108 /*
1109 * Frame Info
1110 */
1111 set_gdbarch_init_extra_frame_info (gdbarch, h8300_init_extra_frame_info);
1112 set_gdbarch_frame_init_saved_regs (gdbarch, h8300_frame_init_saved_regs);
1113 set_gdbarch_frame_chain (gdbarch, h8300_frame_chain);
1114 set_gdbarch_saved_pc_after_call (gdbarch, h8300_saved_pc_after_call);
1115 set_gdbarch_frame_saved_pc (gdbarch, h8300_frame_saved_pc);
1116 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1117 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1118 set_gdbarch_frame_args_address (gdbarch, h8300_frame_args_address);
1119 set_gdbarch_frame_locals_address (gdbarch, h8300_frame_locals_address);
1120
1121 /*
1122 * Miscelany
1123 */
1124 /* Stack grows up. */
1125 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1126 /* PC stops zero byte after a trap instruction
1127 (which means: exactly on trap instruction). */
1128 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1129 /* This value is almost never non-zero... */
1130 set_gdbarch_function_start_offset (gdbarch, 0);
1131 /* This value is almost never non-zero... */
1132 set_gdbarch_frame_args_skip (gdbarch, 0);
1133 /* OK to default this value to 'unknown'. */
1134 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1135 set_gdbarch_frameless_function_invocation (gdbarch,
1136 frameless_look_for_prologue);
1137
1138 /* W/o prototype, coerce float args to double. */
1139 /* set_gdbarch_coerce_float_to_double (gdbarch, standard_coerce_float_to_double); */
1140
1141 /*
1142 * Call Dummies
1143 *
1144 * These values and methods are used when gdb calls a target function. */
1145 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1146 set_gdbarch_push_return_address (gdbarch, h8300_push_return_address);
1147 set_gdbarch_deprecated_extract_return_value (gdbarch, h8300_extract_return_value);
1148 set_gdbarch_push_arguments (gdbarch, h8300_push_arguments);
1149 set_gdbarch_pop_frame (gdbarch, h8300_pop_frame);
1150 set_gdbarch_store_struct_return (gdbarch, h8300_store_struct_return);
1151 set_gdbarch_deprecated_store_return_value (gdbarch, h8300_store_return_value);
1152 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, h8300_extract_struct_value_address);
1153 set_gdbarch_use_struct_convention (gdbarch, h8300_use_struct_convention);
1154 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1155 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1156 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1157 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1158 set_gdbarch_call_dummy_length (gdbarch, 0);
1159 set_gdbarch_call_dummy_p (gdbarch, 1);
1160 set_gdbarch_call_dummy_words (gdbarch, call_dummy_words);
1161 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
1162 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1163 /* set_gdbarch_call_dummy_stack_adjust */
1164 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1165 set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
1166
1167 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1168 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1169 set_gdbarch_ptr_bit (gdbarch, BINWORD * TARGET_CHAR_BIT);
1170 set_gdbarch_addr_bit (gdbarch, BINWORD * TARGET_CHAR_BIT);
1171
1172 /* set_gdbarch_stack_align (gdbarch, SOME_stack_align); */
1173 set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
1174 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1175
1176 return gdbarch;
1177 }
1178
1179 void
1180 _initialize_h8300_tdep (void)
1181 {
1182 tm_print_insn = gdb_print_insn_h8300;
1183 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
1184 }
This page took 0.055414 seconds and 4 git commands to generate.