32581e99dc724707d6bca402f1dd0c5ec921ff11
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Hitachi H8/300, for GDB.
2 Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 /*
21 Contributed by Steve Chamberlain
22 sac@cygnus.com
23 */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "obstack.h"
28 #include "symtab.h"
29 #include "dis-asm.h"
30 #include "gdbcmd.h"
31 #include "gdbtypes.h"
32 #include "gdbcore.h"
33 #include "gdb_string.h"
34 #include "value.h"
35
36
37 #undef NUM_REGS
38 #define NUM_REGS 11
39
40 #define UNSIGNED_SHORT(X) ((X) & 0xffff)
41
42 /* an easy to debug H8 stack frame looks like:
43 0x6df6 push r6
44 0x0d76 mov.w r7,r6
45 0x6dfn push reg
46 0x7905 nnnn mov.w #n,r5 or 0x1b87 subs #2,sp
47 0x1957 sub.w r5,sp
48
49 */
50
51 #define IS_PUSH(x) ((x & 0xff00)==0x6d00)
52 #define IS_PUSH_FP(x) (x == 0x6df6)
53 #define IS_MOVE_FP(x) (x == 0x0d76)
54 #define IS_MOV_SP_FP(x) (x == 0x0d76)
55 #define IS_SUB2_SP(x) (x==0x1b87)
56 #define IS_MOVK_R5(x) (x==0x7905)
57 #define IS_SUB_R5SP(x) (x==0x1957)
58
59 /* Local function declarations. */
60
61 static CORE_ADDR examine_prologue ();
62 static void set_machine_hook PARAMS ((char *filename));
63
64 void frame_find_saved_regs ();
65 CORE_ADDR
66 h8300_skip_prologue (start_pc)
67 CORE_ADDR start_pc;
68 {
69 short int w;
70
71 w = read_memory_unsigned_integer (start_pc, 2);
72 /* Skip past all push insns */
73 while (IS_PUSH_FP (w))
74 {
75 start_pc += 2;
76 w = read_memory_unsigned_integer (start_pc, 2);
77 }
78
79 /* Skip past a move to FP */
80 if (IS_MOVE_FP (w))
81 {
82 start_pc += 2;
83 w = read_memory_unsigned_integer (start_pc, 2);
84 }
85
86 /* Skip the stack adjust */
87
88 if (IS_MOVK_R5 (w))
89 {
90 start_pc += 2;
91 w = read_memory_unsigned_integer (start_pc, 2);
92 }
93 if (IS_SUB_R5SP (w))
94 {
95 start_pc += 2;
96 w = read_memory_unsigned_integer (start_pc, 2);
97 }
98 while (IS_SUB2_SP (w))
99 {
100 start_pc += 2;
101 w = read_memory_unsigned_integer (start_pc, 2);
102 }
103
104 return start_pc;
105 }
106
107 int
108 gdb_print_insn_h8300 (memaddr, info)
109 bfd_vma memaddr;
110 disassemble_info *info;
111 {
112 if (h8300hmode)
113 return print_insn_h8300h (memaddr, info);
114 else
115 return print_insn_h8300 (memaddr, info);
116 }
117
118 /* Given a GDB frame, determine the address of the calling function's frame.
119 This will be used to create a new GDB frame struct, and then
120 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
121
122 For us, the frame address is its stack pointer value, so we look up
123 the function prologue to determine the caller's sp value, and return it. */
124
125 CORE_ADDR
126 h8300_frame_chain (thisframe)
127 struct frame_info *thisframe;
128 {
129 frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
130 return thisframe->fsr->regs[SP_REGNUM];
131 }
132
133 /* Put here the code to store, into a struct frame_saved_regs,
134 the addresses of the saved registers of frame described by FRAME_INFO.
135 This includes special registers such as pc and fp saved in special
136 ways in the stack frame. sp is even more special:
137 the address we return for it IS the sp for the next frame.
138
139 We cache the result of doing this in the frame_cache_obstack, since
140 it is fairly expensive. */
141
142 void
143 frame_find_saved_regs (fi, fsr)
144 struct frame_info *fi;
145 struct frame_saved_regs *fsr;
146 {
147 register struct frame_saved_regs *cache_fsr;
148 extern struct obstack frame_cache_obstack;
149 CORE_ADDR ip;
150 struct symtab_and_line sal;
151 CORE_ADDR limit;
152
153 if (!fi->fsr)
154 {
155 cache_fsr = (struct frame_saved_regs *)
156 obstack_alloc (&frame_cache_obstack,
157 sizeof (struct frame_saved_regs));
158 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
159
160 fi->fsr = cache_fsr;
161
162 /* Find the start and end of the function prologue. If the PC
163 is in the function prologue, we only consider the part that
164 has executed already. */
165
166 ip = get_pc_function_start (fi->pc);
167 sal = find_pc_line (ip, 0);
168 limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
169
170 /* This will fill in fields in *fi as well as in cache_fsr. */
171 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
172 }
173
174 if (fsr)
175 *fsr = *fi->fsr;
176 }
177
178 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
179 is not the address of a valid instruction, the address of the next
180 instruction beyond ADDR otherwise. *PWORD1 receives the first word
181 of the instruction.*/
182
183 CORE_ADDR
184 NEXT_PROLOGUE_INSN (addr, lim, pword1)
185 CORE_ADDR addr;
186 CORE_ADDR lim;
187 INSN_WORD *pword1;
188 {
189 char buf[2];
190 if (addr < lim + 8)
191 {
192 read_memory (addr, buf, 2);
193 *pword1 = extract_signed_integer (buf, 2);
194
195 return addr + 2;
196 }
197 return 0;
198 }
199
200 /* Examine the prologue of a function. `ip' points to the first instruction.
201 `limit' is the limit of the prologue (e.g. the addr of the first
202 linenumber, or perhaps the program counter if we're stepping through).
203 `frame_sp' is the stack pointer value in use in this frame.
204 `fsr' is a pointer to a frame_saved_regs structure into which we put
205 info about the registers saved by this frame.
206 `fi' is a struct frame_info pointer; we fill in various fields in it
207 to reflect the offsets of the arg pointer and the locals pointer. */
208
209 static CORE_ADDR
210 examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
211 register CORE_ADDR ip;
212 register CORE_ADDR limit;
213 CORE_ADDR after_prolog_fp;
214 struct frame_saved_regs *fsr;
215 struct frame_info *fi;
216 {
217 register CORE_ADDR next_ip;
218 int r;
219 int have_fp = 0;
220 INSN_WORD insn_word;
221 /* Number of things pushed onto stack, starts at 2/4, 'cause the
222 PC is already there */
223 unsigned int reg_save_depth = h8300hmode ? 4 : 2;
224
225 unsigned int auto_depth = 0; /* Number of bytes of autos */
226
227 char in_frame[11]; /* One for each reg */
228
229 memset (in_frame, 1, 11);
230 for (r = 0; r < 8; r++)
231 {
232 fsr->regs[r] = 0;
233 }
234 if (after_prolog_fp == 0)
235 {
236 after_prolog_fp = read_register (SP_REGNUM);
237 }
238 if (ip == 0 || ip & (h8300hmode ? ~0xffff : ~0xffff))
239 return 0;
240
241 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
242
243 /* Skip over any fp push instructions */
244 fsr->regs[6] = after_prolog_fp;
245 while (next_ip && IS_PUSH_FP (insn_word))
246 {
247 ip = next_ip;
248
249 in_frame[insn_word & 0x7] = reg_save_depth;
250 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
251 reg_save_depth += 2;
252 }
253
254 /* Is this a move into the fp */
255 if (next_ip && IS_MOV_SP_FP (insn_word))
256 {
257 ip = next_ip;
258 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
259 have_fp = 1;
260 }
261
262 /* Skip over any stack adjustment, happens either with a number of
263 sub#2,sp or a mov #x,r5 sub r5,sp */
264
265 if (next_ip && IS_SUB2_SP (insn_word))
266 {
267 while (next_ip && IS_SUB2_SP (insn_word))
268 {
269 auto_depth += 2;
270 ip = next_ip;
271 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
272 }
273 }
274 else
275 {
276 if (next_ip && IS_MOVK_R5 (insn_word))
277 {
278 ip = next_ip;
279 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
280 auto_depth += insn_word;
281
282 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
283 auto_depth += insn_word;
284 }
285 }
286 /* Work out which regs are stored where */
287 while (next_ip && IS_PUSH (insn_word))
288 {
289 ip = next_ip;
290 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
291 fsr->regs[r] = after_prolog_fp + auto_depth;
292 auto_depth += 2;
293 }
294
295 /* The args are always reffed based from the stack pointer */
296 fi->args_pointer = after_prolog_fp;
297 /* Locals are always reffed based from the fp */
298 fi->locals_pointer = after_prolog_fp;
299 /* The PC is at a known place */
300 fi->from_pc = read_memory_unsigned_integer (after_prolog_fp + 2, BINWORD);
301
302 /* Rememeber any others too */
303 in_frame[PC_REGNUM] = 0;
304
305 if (have_fp)
306 /* We keep the old FP in the SP spot */
307 fsr->regs[SP_REGNUM] = read_memory_unsigned_integer (fsr->regs[6], BINWORD);
308 else
309 fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
310
311 return (ip);
312 }
313
314 void
315 init_extra_frame_info (fromleaf, fi)
316 int fromleaf;
317 struct frame_info *fi;
318 {
319 fi->fsr = 0; /* Not yet allocated */
320 fi->args_pointer = 0; /* Unknown */
321 fi->locals_pointer = 0; /* Unknown */
322 fi->from_pc = 0;
323 }
324
325 /* Return the saved PC from this frame.
326
327 If the frame has a memory copy of SRP_REGNUM, use that. If not,
328 just use the register SRP_REGNUM itself. */
329
330 CORE_ADDR
331 frame_saved_pc (frame)
332 struct frame_info *frame;
333 {
334 return frame->from_pc;
335 }
336
337 CORE_ADDR
338 frame_locals_address (fi)
339 struct frame_info *fi;
340 {
341 if (!fi->locals_pointer)
342 {
343 struct frame_saved_regs ignore;
344
345 get_frame_saved_regs (fi, &ignore);
346
347 }
348 return fi->locals_pointer;
349 }
350
351 /* Return the address of the argument block for the frame
352 described by FI. Returns 0 if the address is unknown. */
353
354 CORE_ADDR
355 frame_args_address (fi)
356 struct frame_info *fi;
357 {
358 if (!fi->args_pointer)
359 {
360 struct frame_saved_regs ignore;
361
362 get_frame_saved_regs (fi, &ignore);
363
364 }
365
366 return fi->args_pointer;
367 }
368
369 void
370 h8300_pop_frame ()
371 {
372 unsigned regnum;
373 struct frame_saved_regs fsr;
374 struct frame_info *frame = get_current_frame ();
375
376 get_frame_saved_regs (frame, &fsr);
377
378 for (regnum = 0; regnum < 8; regnum++)
379 {
380 if (fsr.regs[regnum])
381 write_register (regnum, read_memory_integer(fsr.regs[regnum], BINWORD));
382
383 flush_cached_frames ();
384 }
385 }
386
387
388 struct cmd_list_element *setmemorylist;
389
390 static void
391 h8300_command(args, from_tty)
392 {
393 extern int h8300hmode;
394 h8300hmode = 0;
395 }
396
397 static void
398 h8300h_command(args, from_tty)
399 {
400 extern int h8300hmode;
401 h8300hmode = 1;
402 }
403
404 static void
405 set_machine (args, from_tty)
406 char *args;
407 int from_tty;
408 {
409 printf_unfiltered ("\"set machine\" must be followed by h8300 or h8300h.\n");
410 help_list (setmemorylist, "set memory ", -1, gdb_stdout);
411 }
412
413 /* set_machine_hook is called as the exec file is being opened, but
414 before the symbol file is opened. This allows us to set the
415 h8300hmode flag based on the machine type specified in the exec
416 file. This in turn will cause subsequently defined pointer types
417 to be 16 or 32 bits as appropriate for the machine. */
418
419 static void
420 set_machine_hook (filename)
421 char *filename;
422 {
423 h8300hmode = (bfd_get_mach (exec_bfd) == bfd_mach_h8300h);
424 }
425
426 void
427 _initialize_h8300m ()
428 {
429 add_prefix_cmd ("machine", no_class, set_machine,
430 "set the machine type", &setmemorylist, "set machine ", 0,
431 &setlist);
432
433 add_cmd ("h8300", class_support, h8300_command,
434 "Set machine to be H8/300.", &setmemorylist);
435
436 add_cmd ("h8300h", class_support, h8300h_command,
437 "Set machine to be H8/300H.", &setmemorylist);
438
439 /* Add a hook to set the machine type when we're loading a file. */
440
441 specify_exec_file_hook(set_machine_hook);
442 }
443
444
445
446 void
447 print_register_hook (regno)
448 {
449 if (regno == 8)
450 {
451 /* CCR register */
452 int C, Z, N, V;
453 unsigned char b[4];
454 unsigned char l;
455 read_relative_register_raw_bytes (regno, b);
456 l = b[REGISTER_VIRTUAL_SIZE(8) -1];
457 printf_unfiltered ("\t");
458 printf_unfiltered ("I-%d - ", (l & 0x80) != 0);
459 printf_unfiltered ("H-%d - ", (l & 0x20) != 0);
460 N = (l & 0x8) != 0;
461 Z = (l & 0x4) != 0;
462 V = (l & 0x2) != 0;
463 C = (l & 0x1) != 0;
464 printf_unfiltered ("N-%d ", N);
465 printf_unfiltered ("Z-%d ", Z);
466 printf_unfiltered ("V-%d ", V);
467 printf_unfiltered ("C-%d ", C);
468 if ((C | Z) == 0)
469 printf_unfiltered ("u> ");
470 if ((C | Z) == 1)
471 printf_unfiltered ("u<= ");
472 if ((C == 0))
473 printf_unfiltered ("u>= ");
474 if (C == 1)
475 printf_unfiltered ("u< ");
476 if (Z == 0)
477 printf_unfiltered ("!= ");
478 if (Z == 1)
479 printf_unfiltered ("== ");
480 if ((N ^ V) == 0)
481 printf_unfiltered (">= ");
482 if ((N ^ V) == 1)
483 printf_unfiltered ("< ");
484 if ((Z | (N ^ V)) == 0)
485 printf_unfiltered ("> ");
486 if ((Z | (N ^ V)) == 1)
487 printf_unfiltered ("<= ");
488 }
489 }
490
491 void
492 _initialize_h8300_tdep ()
493 {
494 tm_print_insn = gdb_print_insn_h8300;
495 }
This page took 0.043637 seconds and 4 git commands to generate.