419328790bcce05eab3cef2f842397aaba8e0321
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Renesas H8/300, for GDB.
2
3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /*
21 Contributed by Steve Chamberlain
22 sac@cygnus.com
23 */
24
25 #include "defs.h"
26 #include "value.h"
27 #include "arch-utils.h"
28 #include "regcache.h"
29 #include "gdbcore.h"
30 #include "objfiles.h"
31 #include "gdb_assert.h"
32 #include "dis-asm.h"
33 #include "dwarf2-frame.h"
34 #include "frame-base.h"
35 #include "frame-unwind.h"
36
37 enum gdb_regnum
38 {
39 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
40 E_RET0_REGNUM = E_R0_REGNUM,
41 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
42 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
43 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
44 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
45 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
46 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
47 E_SP_REGNUM,
48 E_CCR_REGNUM,
49 E_PC_REGNUM,
50 E_CYCLES_REGNUM,
51 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
52 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
53 E_INSTS_REGNUM,
54 E_MACH_REGNUM,
55 E_MACL_REGNUM,
56 E_SBR_REGNUM,
57 E_VBR_REGNUM
58 };
59
60 #define H8300_MAX_NUM_REGS 18
61
62 #define E_PSEUDO_CCR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch))
63 #define E_PSEUDO_EXR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch)+1)
64
65 struct h8300_frame_cache
66 {
67 /* Base address. */
68 CORE_ADDR base;
69 CORE_ADDR sp_offset;
70 CORE_ADDR pc;
71
72 /* Flag showing that a frame has been created in the prologue code. */
73 int uses_fp;
74
75 /* Saved registers. */
76 CORE_ADDR saved_regs[H8300_MAX_NUM_REGS];
77 CORE_ADDR saved_sp;
78 };
79
80 enum
81 {
82 h8300_reg_size = 2,
83 h8300h_reg_size = 4,
84 h8300_max_reg_size = 4,
85 };
86
87 static int is_h8300hmode (struct gdbarch *gdbarch);
88 static int is_h8300smode (struct gdbarch *gdbarch);
89 static int is_h8300sxmode (struct gdbarch *gdbarch);
90 static int is_h8300_normal_mode (struct gdbarch *gdbarch);
91
92 #define BINWORD(gdbarch) ((is_h8300hmode (gdbarch) \
93 && !is_h8300_normal_mode (gdbarch)) \
94 ? h8300h_reg_size : h8300_reg_size)
95
96 static CORE_ADDR
97 h8300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
98 {
99 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
100 }
101
102 static CORE_ADDR
103 h8300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
104 {
105 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
106 }
107
108 static struct frame_id
109 h8300_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
110 {
111 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
112 return frame_id_build (sp, get_frame_pc (this_frame));
113 }
114
115 /* Normal frames. */
116
117 /* Allocate and initialize a frame cache. */
118
119 static void
120 h8300_init_frame_cache (struct gdbarch *gdbarch,
121 struct h8300_frame_cache *cache)
122 {
123 int i;
124
125 /* Base address. */
126 cache->base = 0;
127 cache->sp_offset = 0;
128 cache->pc = 0;
129
130 /* Frameless until proven otherwise. */
131 cache->uses_fp = 0;
132
133 /* Saved registers. We initialize these to -1 since zero is a valid
134 offset (that's where %fp is supposed to be stored). */
135 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
136 cache->saved_regs[i] = -1;
137 }
138
139 #define IS_MOVB_RnRm(x) (((x) & 0xff88) == 0x0c88)
140 #define IS_MOVW_RnRm(x) (((x) & 0xff88) == 0x0d00)
141 #define IS_MOVL_RnRm(x) (((x) & 0xff88) == 0x0f80)
142 #define IS_MOVB_Rn16_SP(x) (((x) & 0xfff0) == 0x6ee0)
143 #define IS_MOVB_EXT(x) ((x) == 0x7860)
144 #define IS_MOVB_Rn24_SP(x) (((x) & 0xfff0) == 0x6aa0)
145 #define IS_MOVW_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
146 #define IS_MOVW_EXT(x) ((x) == 0x78e0)
147 #define IS_MOVW_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
148 /* Same instructions as mov.w, just prefixed with 0x0100. */
149 #define IS_MOVL_PRE(x) ((x) == 0x0100)
150 #define IS_MOVL_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
151 #define IS_MOVL_EXT(x) ((x) == 0x78e0)
152 #define IS_MOVL_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
153
154 #define IS_PUSHFP_MOVESPFP(x) ((x) == 0x6df60d76)
155 #define IS_PUSH_FP(x) ((x) == 0x01006df6)
156 #define IS_MOV_SP_FP(x) ((x) == 0x0ff6)
157 #define IS_SUB2_SP(x) ((x) == 0x1b87)
158 #define IS_SUB4_SP(x) ((x) == 0x1b97)
159 #define IS_ADD_IMM_SP(x) ((x) == 0x7a1f)
160 #define IS_SUB_IMM_SP(x) ((x) == 0x7a3f)
161 #define IS_SUBL4_SP(x) ((x) == 0x1acf)
162 #define IS_MOV_IMM_Rn(x) (((x) & 0xfff0) == 0x7905)
163 #define IS_SUB_RnSP(x) (((x) & 0xff0f) == 0x1907)
164 #define IS_ADD_RnSP(x) (((x) & 0xff0f) == 0x0907)
165 #define IS_PUSH(x) (((x) & 0xfff0) == 0x6df0)
166
167 /* If the instruction at PC is an argument register spill, return its
168 length. Otherwise, return zero.
169
170 An argument register spill is an instruction that moves an argument
171 from the register in which it was passed to the stack slot in which
172 it really lives. It is a byte, word, or longword move from an
173 argument register to a negative offset from the frame pointer.
174
175 CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
176 is used, it could be a byte, word or long move to registers r3-r5. */
177
178 static int
179 h8300_is_argument_spill (struct gdbarch *gdbarch, CORE_ADDR pc)
180 {
181 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
182 int w = read_memory_unsigned_integer (pc, 2, byte_order);
183
184 if ((IS_MOVB_RnRm (w) || IS_MOVW_RnRm (w) || IS_MOVL_RnRm (w))
185 && (w & 0x70) <= 0x20 /* Rs is R0, R1 or R2 */
186 && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5) /* Rd is R3, R4 or R5 */
187 return 2;
188
189 if (IS_MOVB_Rn16_SP (w)
190 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
191 {
192 /* ... and d:16 is negative. */
193 if (read_memory_integer (pc + 2, 2, byte_order) < 0)
194 return 4;
195 }
196 else if (IS_MOVB_EXT (w))
197 {
198 if (IS_MOVB_Rn24_SP (read_memory_unsigned_integer (pc + 2,
199 2, byte_order)))
200 {
201 LONGEST disp = read_memory_integer (pc + 4, 4, byte_order);
202
203 /* ... and d:24 is negative. */
204 if (disp < 0 && disp > 0xffffff)
205 return 8;
206 }
207 }
208 else if (IS_MOVW_Rn16_SP (w)
209 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
210 {
211 /* ... and d:16 is negative. */
212 if (read_memory_integer (pc + 2, 2, byte_order) < 0)
213 return 4;
214 }
215 else if (IS_MOVW_EXT (w))
216 {
217 if (IS_MOVW_Rn24_SP (read_memory_unsigned_integer (pc + 2,
218 2, byte_order)))
219 {
220 LONGEST disp = read_memory_integer (pc + 4, 4, byte_order);
221
222 /* ... and d:24 is negative. */
223 if (disp < 0 && disp > 0xffffff)
224 return 8;
225 }
226 }
227 else if (IS_MOVL_PRE (w))
228 {
229 int w2 = read_memory_integer (pc + 2, 2, byte_order);
230
231 if (IS_MOVL_Rn16_SP (w2)
232 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
233 {
234 /* ... and d:16 is negative. */
235 if (read_memory_integer (pc + 4, 2, byte_order) < 0)
236 return 6;
237 }
238 else if (IS_MOVL_EXT (w2))
239 {
240 int w3 = read_memory_integer (pc + 4, 2, byte_order);
241
242 if (IS_MOVL_Rn24_SP (read_memory_integer (pc + 4, 2, byte_order)))
243 {
244 LONGEST disp = read_memory_integer (pc + 6, 4, byte_order);
245
246 /* ... and d:24 is negative. */
247 if (disp < 0 && disp > 0xffffff)
248 return 10;
249 }
250 }
251 }
252
253 return 0;
254 }
255
256 /* Do a full analysis of the prologue at PC and update CACHE
257 accordingly. Bail out early if CURRENT_PC is reached. Return the
258 address where the analysis stopped.
259
260 We handle all cases that can be generated by gcc.
261
262 For allocating a stack frame:
263
264 mov.w r6,@-sp
265 mov.w sp,r6
266 mov.w #-n,rN
267 add.w rN,sp
268
269 mov.w r6,@-sp
270 mov.w sp,r6
271 subs #2,sp
272 (repeat)
273
274 mov.l er6,@-sp
275 mov.l sp,er6
276 add.l #-n,sp
277
278 mov.w r6,@-sp
279 mov.w sp,r6
280 subs #4,sp
281 (repeat)
282
283 For saving registers:
284
285 mov.w rN,@-sp
286 mov.l erN,@-sp
287 stm.l reglist,@-sp
288
289 */
290
291 static CORE_ADDR
292 h8300_analyze_prologue (struct gdbarch *gdbarch,
293 CORE_ADDR pc, CORE_ADDR current_pc,
294 struct h8300_frame_cache *cache)
295 {
296 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
297 unsigned int op;
298 int regno, i, spill_size;
299
300 cache->sp_offset = 0;
301
302 if (pc >= current_pc)
303 return current_pc;
304
305 op = read_memory_unsigned_integer (pc, 4, byte_order);
306
307 if (IS_PUSHFP_MOVESPFP (op))
308 {
309 cache->saved_regs[E_FP_REGNUM] = 0;
310 cache->uses_fp = 1;
311 pc += 4;
312 }
313 else if (IS_PUSH_FP (op))
314 {
315 cache->saved_regs[E_FP_REGNUM] = 0;
316 pc += 4;
317 if (pc >= current_pc)
318 return current_pc;
319 op = read_memory_unsigned_integer (pc, 2, byte_order);
320 if (IS_MOV_SP_FP (op))
321 {
322 cache->uses_fp = 1;
323 pc += 2;
324 }
325 }
326
327 while (pc < current_pc)
328 {
329 op = read_memory_unsigned_integer (pc, 2, byte_order);
330 if (IS_SUB2_SP (op))
331 {
332 cache->sp_offset += 2;
333 pc += 2;
334 }
335 else if (IS_SUB4_SP (op))
336 {
337 cache->sp_offset += 4;
338 pc += 2;
339 }
340 else if (IS_ADD_IMM_SP (op))
341 {
342 cache->sp_offset += -read_memory_integer (pc + 2, 2, byte_order);
343 pc += 4;
344 }
345 else if (IS_SUB_IMM_SP (op))
346 {
347 cache->sp_offset += read_memory_integer (pc + 2, 2, byte_order);
348 pc += 4;
349 }
350 else if (IS_SUBL4_SP (op))
351 {
352 cache->sp_offset += 4;
353 pc += 2;
354 }
355 else if (IS_MOV_IMM_Rn (op))
356 {
357 int offset = read_memory_integer (pc + 2, 2, byte_order);
358 regno = op & 0x000f;
359 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
360 if (IS_ADD_RnSP (op) && (op & 0x00f0) == regno)
361 {
362 cache->sp_offset -= offset;
363 pc += 6;
364 }
365 else if (IS_SUB_RnSP (op) && (op & 0x00f0) == regno)
366 {
367 cache->sp_offset += offset;
368 pc += 6;
369 }
370 else
371 break;
372 }
373 else if (IS_PUSH (op))
374 {
375 regno = op & 0x000f;
376 cache->sp_offset += 2;
377 cache->saved_regs[regno] = cache->sp_offset;
378 pc += 2;
379 }
380 else if (op == 0x0100)
381 {
382 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
383 if (IS_PUSH (op))
384 {
385 regno = op & 0x000f;
386 cache->sp_offset += 4;
387 cache->saved_regs[regno] = cache->sp_offset;
388 pc += 4;
389 }
390 else
391 break;
392 }
393 else if ((op & 0xffcf) == 0x0100)
394 {
395 int op1;
396 op1 = read_memory_unsigned_integer (pc + 2, 2, byte_order);
397 if (IS_PUSH (op1))
398 {
399 /* Since the prefix is 0x01x0, this is not a simple pushm but a
400 stm.l reglist,@-sp */
401 i = ((op & 0x0030) >> 4) + 1;
402 regno = op1 & 0x000f;
403 for (; i > 0; regno++, --i)
404 {
405 cache->sp_offset += 4;
406 cache->saved_regs[regno] = cache->sp_offset;
407 }
408 pc += 4;
409 }
410 else
411 break;
412 }
413 else
414 break;
415 }
416
417 /* Check for spilling an argument register to the stack frame.
418 This could also be an initializing store from non-prologue code,
419 but I don't think there's any harm in skipping that. */
420 while ((spill_size = h8300_is_argument_spill (gdbarch, pc)) > 0
421 && pc + spill_size <= current_pc)
422 pc += spill_size;
423
424 return pc;
425 }
426
427 static struct h8300_frame_cache *
428 h8300_frame_cache (struct frame_info *this_frame, void **this_cache)
429 {
430 struct gdbarch *gdbarch = get_frame_arch (this_frame);
431 struct h8300_frame_cache *cache;
432 int i;
433 CORE_ADDR current_pc;
434
435 if (*this_cache)
436 return *this_cache;
437
438 cache = FRAME_OBSTACK_ZALLOC (struct h8300_frame_cache);
439 h8300_init_frame_cache (gdbarch, cache);
440 *this_cache = cache;
441
442 /* In principle, for normal frames, %fp holds the frame pointer,
443 which holds the base address for the current stack frame.
444 However, for functions that don't need it, the frame pointer is
445 optional. For these "frameless" functions the frame pointer is
446 actually the frame pointer of the calling frame. */
447
448 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
449 if (cache->base == 0)
450 return cache;
451
452 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
453
454 cache->pc = get_frame_func (this_frame);
455 current_pc = get_frame_pc (this_frame);
456 if (cache->pc != 0)
457 h8300_analyze_prologue (gdbarch, cache->pc, current_pc, cache);
458
459 if (!cache->uses_fp)
460 {
461 /* We didn't find a valid frame, which means that CACHE->base
462 currently holds the frame pointer for our calling frame. If
463 we're at the start of a function, or somewhere half-way its
464 prologue, the function's frame probably hasn't been fully
465 setup yet. Try to reconstruct the base address for the stack
466 frame by looking at the stack pointer. For truly "frameless"
467 functions this might work too. */
468
469 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM)
470 + cache->sp_offset;
471 cache->saved_sp = cache->base + BINWORD (gdbarch);
472 cache->saved_regs[E_PC_REGNUM] = 0;
473 }
474 else
475 {
476 cache->saved_sp = cache->base + 2 * BINWORD (gdbarch);
477 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
478 }
479
480 /* Adjust all the saved registers such that they contain addresses
481 instead of offsets. */
482 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
483 if (cache->saved_regs[i] != -1)
484 cache->saved_regs[i] = cache->base - cache->saved_regs[i];
485
486 return cache;
487 }
488
489 static void
490 h8300_frame_this_id (struct frame_info *this_frame, void **this_cache,
491 struct frame_id *this_id)
492 {
493 struct h8300_frame_cache *cache =
494 h8300_frame_cache (this_frame, this_cache);
495
496 /* This marks the outermost frame. */
497 if (cache->base == 0)
498 return;
499
500 *this_id = frame_id_build (cache->saved_sp, cache->pc);
501 }
502
503 static struct value *
504 h8300_frame_prev_register (struct frame_info *this_frame, void **this_cache,
505 int regnum)
506 {
507 struct gdbarch *gdbarch = get_frame_arch (this_frame);
508 struct h8300_frame_cache *cache =
509 h8300_frame_cache (this_frame, this_cache);
510
511 gdb_assert (regnum >= 0);
512
513 if (regnum == E_SP_REGNUM && cache->saved_sp)
514 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
515
516 if (regnum < gdbarch_num_regs (gdbarch)
517 && cache->saved_regs[regnum] != -1)
518 return frame_unwind_got_memory (this_frame, regnum,
519 cache->saved_regs[regnum]);
520
521 return frame_unwind_got_register (this_frame, regnum, regnum);
522 }
523
524 static const struct frame_unwind h8300_frame_unwind = {
525 NORMAL_FRAME,
526 default_frame_unwind_stop_reason,
527 h8300_frame_this_id,
528 h8300_frame_prev_register,
529 NULL,
530 default_frame_sniffer
531 };
532
533 static CORE_ADDR
534 h8300_frame_base_address (struct frame_info *this_frame, void **this_cache)
535 {
536 struct h8300_frame_cache *cache = h8300_frame_cache (this_frame, this_cache);
537 return cache->base;
538 }
539
540 static const struct frame_base h8300_frame_base = {
541 &h8300_frame_unwind,
542 h8300_frame_base_address,
543 h8300_frame_base_address,
544 h8300_frame_base_address
545 };
546
547 static CORE_ADDR
548 h8300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
549 {
550 CORE_ADDR func_addr = 0 , func_end = 0;
551
552 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
553 {
554 struct symtab_and_line sal;
555 struct h8300_frame_cache cache;
556
557 /* Found a function. */
558 sal = find_pc_line (func_addr, 0);
559 if (sal.end && sal.end < func_end)
560 /* Found a line number, use it as end of prologue. */
561 return sal.end;
562
563 /* No useable line symbol. Use prologue parsing method. */
564 h8300_init_frame_cache (gdbarch, &cache);
565 return h8300_analyze_prologue (gdbarch, func_addr, func_end, &cache);
566 }
567
568 /* No function symbol -- just return the PC. */
569 return (CORE_ADDR) pc;
570 }
571
572 /* Function: push_dummy_call
573 Setup the function arguments for calling a function in the inferior.
574 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
575 on the H8/300H.
576
577 There are actually two ABI's here: -mquickcall (the default) and
578 -mno-quickcall. With -mno-quickcall, all arguments are passed on
579 the stack after the return address, word-aligned. With
580 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
581 GCC doesn't indicate in the object file which ABI was used to
582 compile it, GDB only supports the default --- -mquickcall.
583
584 Here are the rules for -mquickcall, in detail:
585
586 Each argument, whether scalar or aggregate, is padded to occupy a
587 whole number of words. Arguments smaller than a word are padded at
588 the most significant end; those larger than a word are padded at
589 the least significant end.
590
591 The initial arguments are passed in r0 -- r2. Earlier arguments go in
592 lower-numbered registers. Multi-word arguments are passed in
593 consecutive registers, with the most significant end in the
594 lower-numbered register.
595
596 If an argument doesn't fit entirely in the remaining registers, it
597 is passed entirely on the stack. Stack arguments begin just after
598 the return address. Once an argument has overflowed onto the stack
599 this way, all subsequent arguments are passed on the stack.
600
601 The above rule has odd consequences. For example, on the h8/300s,
602 if a function takes two longs and an int as arguments:
603 - the first long will be passed in r0/r1,
604 - the second long will be passed entirely on the stack, since it
605 doesn't fit in r2,
606 - and the int will be passed on the stack, even though it could fit
607 in r2.
608
609 A weird exception: if an argument is larger than a word, but not a
610 whole number of words in length (before padding), it is passed on
611 the stack following the rules for stack arguments above, even if
612 there are sufficient registers available to hold it. Stranger
613 still, the argument registers are still `used up' --- even though
614 there's nothing in them.
615
616 So, for example, on the h8/300s, if a function expects a three-byte
617 structure and an int, the structure will go on the stack, and the
618 int will go in r2, not r0.
619
620 If the function returns an aggregate type (struct, union, or class)
621 by value, the caller must allocate space to hold the return value,
622 and pass the callee a pointer to this space as an invisible first
623 argument, in R0.
624
625 For varargs functions, the last fixed argument and all the variable
626 arguments are always passed on the stack. This means that calls to
627 varargs functions don't work properly unless there is a prototype
628 in scope.
629
630 Basically, this ABI is not good, for the following reasons:
631 - You can't call vararg functions properly unless a prototype is in scope.
632 - Structure passing is inconsistent, to no purpose I can see.
633 - It often wastes argument registers, of which there are only three
634 to begin with. */
635
636 static CORE_ADDR
637 h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
638 struct regcache *regcache, CORE_ADDR bp_addr,
639 int nargs, struct value **args, CORE_ADDR sp,
640 int struct_return, CORE_ADDR struct_addr)
641 {
642 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
643 int stack_alloc = 0, stack_offset = 0;
644 int wordsize = BINWORD (gdbarch);
645 int reg = E_ARG0_REGNUM;
646 int argument;
647
648 /* First, make sure the stack is properly aligned. */
649 sp = align_down (sp, wordsize);
650
651 /* Now make sure there's space on the stack for the arguments. We
652 may over-allocate a little here, but that won't hurt anything. */
653 for (argument = 0; argument < nargs; argument++)
654 stack_alloc += align_up (TYPE_LENGTH (value_type (args[argument])),
655 wordsize);
656 sp -= stack_alloc;
657
658 /* Now load as many arguments as possible into registers, and push
659 the rest onto the stack.
660 If we're returning a structure by value, then we must pass a
661 pointer to the buffer for the return value as an invisible first
662 argument. */
663 if (struct_return)
664 regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
665
666 for (argument = 0; argument < nargs; argument++)
667 {
668 struct cleanup *back_to;
669 struct type *type = value_type (args[argument]);
670 int len = TYPE_LENGTH (type);
671 char *contents = (char *) value_contents (args[argument]);
672
673 /* Pad the argument appropriately. */
674 int padded_len = align_up (len, wordsize);
675 gdb_byte *padded = xmalloc (padded_len);
676 back_to = make_cleanup (xfree, padded);
677
678 memset (padded, 0, padded_len);
679 memcpy (len < wordsize ? padded + padded_len - len : padded,
680 contents, len);
681
682 /* Could the argument fit in the remaining registers? */
683 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
684 {
685 /* Are we going to pass it on the stack anyway, for no good
686 reason? */
687 if (len > wordsize && len % wordsize)
688 {
689 /* I feel so unclean. */
690 write_memory (sp + stack_offset, padded, padded_len);
691 stack_offset += padded_len;
692
693 /* That's right --- even though we passed the argument
694 on the stack, we consume the registers anyway! Love
695 me, love my dog. */
696 reg += padded_len / wordsize;
697 }
698 else
699 {
700 /* Heavens to Betsy --- it's really going in registers!
701 Note that on the h8/300s, there are gaps between the
702 registers in the register file. */
703 int offset;
704
705 for (offset = 0; offset < padded_len; offset += wordsize)
706 {
707 ULONGEST word
708 = extract_unsigned_integer (padded + offset,
709 wordsize, byte_order);
710 regcache_cooked_write_unsigned (regcache, reg++, word);
711 }
712 }
713 }
714 else
715 {
716 /* It doesn't fit in registers! Onto the stack it goes. */
717 write_memory (sp + stack_offset, padded, padded_len);
718 stack_offset += padded_len;
719
720 /* Once one argument has spilled onto the stack, all
721 subsequent arguments go on the stack. */
722 reg = E_ARGLAST_REGNUM + 1;
723 }
724
725 do_cleanups (back_to);
726 }
727
728 /* Store return address. */
729 sp -= wordsize;
730 write_memory_unsigned_integer (sp, wordsize, byte_order, bp_addr);
731
732 /* Update stack pointer. */
733 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
734
735 /* Return the new stack pointer minus the return address slot since
736 that's what DWARF2/GCC uses as the frame's CFA. */
737 return sp + wordsize;
738 }
739
740 /* Function: extract_return_value
741 Figure out where in REGBUF the called function has left its return value.
742 Copy that into VALBUF. Be sure to account for CPU type. */
743
744 static void
745 h8300_extract_return_value (struct type *type, struct regcache *regcache,
746 void *valbuf)
747 {
748 struct gdbarch *gdbarch = get_regcache_arch (regcache);
749 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
750 int len = TYPE_LENGTH (type);
751 ULONGEST c, addr;
752
753 switch (len)
754 {
755 case 1:
756 case 2:
757 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
758 store_unsigned_integer (valbuf, len, byte_order, c);
759 break;
760 case 4: /* Needs two registers on plain H8/300 */
761 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
762 store_unsigned_integer (valbuf, 2, byte_order, c);
763 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
764 store_unsigned_integer ((void *)((char *) valbuf + 2), 2, byte_order, c);
765 break;
766 case 8: /* long long is now 8 bytes. */
767 if (TYPE_CODE (type) == TYPE_CODE_INT)
768 {
769 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
770 c = read_memory_unsigned_integer ((CORE_ADDR) addr, len, byte_order);
771 store_unsigned_integer (valbuf, len, byte_order, c);
772 }
773 else
774 {
775 error (_("I don't know how this 8 byte value is returned."));
776 }
777 break;
778 }
779 }
780
781 static void
782 h8300h_extract_return_value (struct type *type, struct regcache *regcache,
783 void *valbuf)
784 {
785 struct gdbarch *gdbarch = get_regcache_arch (regcache);
786 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
787 ULONGEST c;
788
789 switch (TYPE_LENGTH (type))
790 {
791 case 1:
792 case 2:
793 case 4:
794 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
795 store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, c);
796 break;
797 case 8: /* long long is now 8 bytes. */
798 if (TYPE_CODE (type) == TYPE_CODE_INT)
799 {
800 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
801 store_unsigned_integer (valbuf, 4, byte_order, c);
802 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
803 store_unsigned_integer ((void *) ((char *) valbuf + 4), 4,
804 byte_order, c);
805 }
806 else
807 {
808 error (_("I don't know how this 8 byte value is returned."));
809 }
810 break;
811 }
812 }
813
814 static int
815 h8300_use_struct_convention (struct type *value_type)
816 {
817 /* Types of 1, 2 or 4 bytes are returned in R0/R1, everything else on the
818 stack. */
819
820 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
821 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
822 return 1;
823 return !(TYPE_LENGTH (value_type) == 1
824 || TYPE_LENGTH (value_type) == 2
825 || TYPE_LENGTH (value_type) == 4);
826 }
827
828 static int
829 h8300h_use_struct_convention (struct type *value_type)
830 {
831 /* Types of 1, 2 or 4 bytes are returned in R0, INT types of 8 bytes are
832 returned in R0/R1, everything else on the stack. */
833 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
834 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
835 return 1;
836 return !(TYPE_LENGTH (value_type) == 1
837 || TYPE_LENGTH (value_type) == 2
838 || TYPE_LENGTH (value_type) == 4
839 || (TYPE_LENGTH (value_type) == 8
840 && TYPE_CODE (value_type) == TYPE_CODE_INT));
841 }
842
843 /* Function: store_return_value
844 Place the appropriate value in the appropriate registers.
845 Primarily used by the RETURN command. */
846
847 static void
848 h8300_store_return_value (struct type *type, struct regcache *regcache,
849 const void *valbuf)
850 {
851 struct gdbarch *gdbarch = get_regcache_arch (regcache);
852 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
853 ULONGEST val;
854
855 switch (TYPE_LENGTH (type))
856 {
857 case 1:
858 case 2: /* short... */
859 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
860 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
861 break;
862 case 4: /* long, float */
863 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
864 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
865 (val >> 16) & 0xffff);
866 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
867 break;
868 case 8: /* long long, double and long double
869 are all defined as 4 byte types so
870 far so this shouldn't happen. */
871 error (_("I don't know how to return an 8 byte value."));
872 break;
873 }
874 }
875
876 static void
877 h8300h_store_return_value (struct type *type, struct regcache *regcache,
878 const void *valbuf)
879 {
880 struct gdbarch *gdbarch = get_regcache_arch (regcache);
881 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
882 ULONGEST val;
883
884 switch (TYPE_LENGTH (type))
885 {
886 case 1:
887 case 2:
888 case 4: /* long, float */
889 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
890 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
891 break;
892 case 8:
893 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
894 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
895 (val >> 32) & 0xffffffff);
896 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM,
897 val & 0xffffffff);
898 break;
899 }
900 }
901
902 static enum return_value_convention
903 h8300_return_value (struct gdbarch *gdbarch, struct value *function,
904 struct type *type, struct regcache *regcache,
905 gdb_byte *readbuf, const gdb_byte *writebuf)
906 {
907 if (h8300_use_struct_convention (type))
908 return RETURN_VALUE_STRUCT_CONVENTION;
909 if (writebuf)
910 h8300_store_return_value (type, regcache, writebuf);
911 else if (readbuf)
912 h8300_extract_return_value (type, regcache, readbuf);
913 return RETURN_VALUE_REGISTER_CONVENTION;
914 }
915
916 static enum return_value_convention
917 h8300h_return_value (struct gdbarch *gdbarch, struct value *function,
918 struct type *type, struct regcache *regcache,
919 gdb_byte *readbuf, const gdb_byte *writebuf)
920 {
921 if (h8300h_use_struct_convention (type))
922 {
923 if (readbuf)
924 {
925 ULONGEST addr;
926
927 regcache_raw_read_unsigned (regcache, E_R0_REGNUM, &addr);
928 read_memory (addr, readbuf, TYPE_LENGTH (type));
929 }
930
931 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
932 }
933 if (writebuf)
934 h8300h_store_return_value (type, regcache, writebuf);
935 else if (readbuf)
936 h8300h_extract_return_value (type, regcache, readbuf);
937 return RETURN_VALUE_REGISTER_CONVENTION;
938 }
939
940 static struct cmd_list_element *setmachinelist;
941
942 /* Implementation of 'register_sim_regno' gdbarch method. */
943
944 static int
945 h8300_register_sim_regno (struct gdbarch *gdbarch, int regnum)
946 {
947 /* Only makes sense to supply raw registers. */
948 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
949
950 /* We hide the raw ccr from the user by making it nameless. Because
951 the default register_sim_regno hook returns
952 LEGACY_SIM_REGNO_IGNORE for unnamed registers, we need to
953 override it. The sim register numbering is compatible with
954 gdb's. */
955 return regnum;
956 }
957
958 static const char *
959 h8300_register_name (struct gdbarch *gdbarch, int regno)
960 {
961 /* The register names change depending on which h8300 processor
962 type is selected. */
963 static char *register_names[] = {
964 "r0", "r1", "r2", "r3", "r4", "r5", "r6",
965 "sp", "", "pc", "cycles", "tick", "inst",
966 "ccr", /* pseudo register */
967 };
968 if (regno < 0
969 || regno >= (sizeof (register_names) / sizeof (*register_names)))
970 internal_error (__FILE__, __LINE__,
971 _("h8300_register_name: illegal register number %d"),
972 regno);
973 else
974 return register_names[regno];
975 }
976
977 static const char *
978 h8300s_register_name (struct gdbarch *gdbarch, int regno)
979 {
980 static char *register_names[] = {
981 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
982 "sp", "", "pc", "cycles", "", "tick", "inst",
983 "mach", "macl",
984 "ccr", "exr" /* pseudo registers */
985 };
986 if (regno < 0
987 || regno >= (sizeof (register_names) / sizeof (*register_names)))
988 internal_error (__FILE__, __LINE__,
989 _("h8300s_register_name: illegal register number %d"),
990 regno);
991 else
992 return register_names[regno];
993 }
994
995 static const char *
996 h8300sx_register_name (struct gdbarch *gdbarch, int regno)
997 {
998 static char *register_names[] = {
999 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
1000 "sp", "", "pc", "cycles", "", "tick", "inst",
1001 "mach", "macl", "sbr", "vbr",
1002 "ccr", "exr" /* pseudo registers */
1003 };
1004 if (regno < 0
1005 || regno >= (sizeof (register_names) / sizeof (*register_names)))
1006 internal_error (__FILE__, __LINE__,
1007 _("h8300sx_register_name: illegal register number %d"),
1008 regno);
1009 else
1010 return register_names[regno];
1011 }
1012
1013 static void
1014 h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1015 struct frame_info *frame, int regno)
1016 {
1017 LONGEST rval;
1018 const char *name = gdbarch_register_name (gdbarch, regno);
1019
1020 if (!name || !*name)
1021 return;
1022
1023 rval = get_frame_register_signed (frame, regno);
1024
1025 fprintf_filtered (file, "%-14s ", name);
1026 if ((regno == E_PSEUDO_CCR_REGNUM (gdbarch)) || \
1027 (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch)))
1028 {
1029 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1030 print_longest (file, 'u', 1, rval);
1031 }
1032 else
1033 {
1034 fprintf_filtered (file, "0x%s ", phex ((ULONGEST) rval,
1035 BINWORD (gdbarch)));
1036 print_longest (file, 'd', 1, rval);
1037 }
1038 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1039 {
1040 /* CCR register */
1041 int C, Z, N, V;
1042 unsigned char l = rval & 0xff;
1043 fprintf_filtered (file, "\t");
1044 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
1045 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
1046 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
1047 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
1048 N = (l & 0x8) != 0;
1049 Z = (l & 0x4) != 0;
1050 V = (l & 0x2) != 0;
1051 C = (l & 0x1) != 0;
1052 fprintf_filtered (file, "N-%d ", N);
1053 fprintf_filtered (file, "Z-%d ", Z);
1054 fprintf_filtered (file, "V-%d ", V);
1055 fprintf_filtered (file, "C-%d ", C);
1056 if ((C | Z) == 0)
1057 fprintf_filtered (file, "u> ");
1058 if ((C | Z) == 1)
1059 fprintf_filtered (file, "u<= ");
1060 if ((C == 0))
1061 fprintf_filtered (file, "u>= ");
1062 if (C == 1)
1063 fprintf_filtered (file, "u< ");
1064 if (Z == 0)
1065 fprintf_filtered (file, "!= ");
1066 if (Z == 1)
1067 fprintf_filtered (file, "== ");
1068 if ((N ^ V) == 0)
1069 fprintf_filtered (file, ">= ");
1070 if ((N ^ V) == 1)
1071 fprintf_filtered (file, "< ");
1072 if ((Z | (N ^ V)) == 0)
1073 fprintf_filtered (file, "> ");
1074 if ((Z | (N ^ V)) == 1)
1075 fprintf_filtered (file, "<= ");
1076 }
1077 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch))
1078 {
1079 /* EXR register */
1080 unsigned char l = rval & 0xff;
1081 fprintf_filtered (file, "\t");
1082 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
1083 fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
1084 fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
1085 fprintf_filtered (file, "I0-%d", (l & 1) != 0);
1086 }
1087 fprintf_filtered (file, "\n");
1088 }
1089
1090 static void
1091 h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1092 struct frame_info *frame, int regno, int cpregs)
1093 {
1094 if (regno < 0)
1095 {
1096 for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
1097 h8300_print_register (gdbarch, file, frame, regno);
1098 h8300_print_register (gdbarch, file, frame,
1099 E_PSEUDO_CCR_REGNUM (gdbarch));
1100 h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
1101 if (is_h8300smode (gdbarch))
1102 {
1103 h8300_print_register (gdbarch, file, frame,
1104 E_PSEUDO_EXR_REGNUM (gdbarch));
1105 if (is_h8300sxmode (gdbarch))
1106 {
1107 h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
1108 h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
1109 }
1110 h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
1111 h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
1112 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1113 h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
1114 h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
1115 }
1116 else
1117 {
1118 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1119 h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
1120 h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
1121 }
1122 }
1123 else
1124 {
1125 if (regno == E_CCR_REGNUM)
1126 h8300_print_register (gdbarch, file, frame,
1127 E_PSEUDO_CCR_REGNUM (gdbarch));
1128 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch)
1129 && is_h8300smode (gdbarch))
1130 h8300_print_register (gdbarch, file, frame,
1131 E_PSEUDO_EXR_REGNUM (gdbarch));
1132 else
1133 h8300_print_register (gdbarch, file, frame, regno);
1134 }
1135 }
1136
1137 static struct type *
1138 h8300_register_type (struct gdbarch *gdbarch, int regno)
1139 {
1140 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch)
1141 + gdbarch_num_pseudo_regs (gdbarch))
1142 internal_error (__FILE__, __LINE__,
1143 _("h8300_register_type: illegal register number %d"),
1144 regno);
1145 else
1146 {
1147 switch (regno)
1148 {
1149 case E_PC_REGNUM:
1150 return builtin_type (gdbarch)->builtin_func_ptr;
1151 case E_SP_REGNUM:
1152 case E_FP_REGNUM:
1153 return builtin_type (gdbarch)->builtin_data_ptr;
1154 default:
1155 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1156 return builtin_type (gdbarch)->builtin_uint8;
1157 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1158 return builtin_type (gdbarch)->builtin_uint8;
1159 else if (is_h8300hmode (gdbarch))
1160 return builtin_type (gdbarch)->builtin_int32;
1161 else
1162 return builtin_type (gdbarch)->builtin_int16;
1163 }
1164 }
1165 }
1166
1167 static enum register_status
1168 h8300_pseudo_register_read (struct gdbarch *gdbarch,
1169 struct regcache *regcache, int regno,
1170 gdb_byte *buf)
1171 {
1172 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1173 return regcache_raw_read (regcache, E_CCR_REGNUM, buf);
1174 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1175 return regcache_raw_read (regcache, E_EXR_REGNUM, buf);
1176 else
1177 return regcache_raw_read (regcache, regno, buf);
1178 }
1179
1180 static void
1181 h8300_pseudo_register_write (struct gdbarch *gdbarch,
1182 struct regcache *regcache, int regno,
1183 const gdb_byte *buf)
1184 {
1185 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1186 regcache_raw_write (regcache, E_CCR_REGNUM, buf);
1187 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1188 regcache_raw_write (regcache, E_EXR_REGNUM, buf);
1189 else
1190 regcache_raw_write (regcache, regno, buf);
1191 }
1192
1193 static int
1194 h8300_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1195 {
1196 if (regno == E_CCR_REGNUM)
1197 return E_PSEUDO_CCR_REGNUM (gdbarch);
1198 return regno;
1199 }
1200
1201 static int
1202 h8300s_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1203 {
1204 if (regno == E_CCR_REGNUM)
1205 return E_PSEUDO_CCR_REGNUM (gdbarch);
1206 if (regno == E_EXR_REGNUM)
1207 return E_PSEUDO_EXR_REGNUM (gdbarch);
1208 return regno;
1209 }
1210
1211 static const unsigned char *
1212 h8300_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1213 int *lenptr)
1214 {
1215 /*static unsigned char breakpoint[] = { 0x7A, 0xFF }; *//* ??? */
1216 static unsigned char breakpoint[] = { 0x01, 0x80 }; /* Sleep */
1217
1218 *lenptr = sizeof (breakpoint);
1219 return breakpoint;
1220 }
1221
1222 static void
1223 h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1224 struct frame_info *frame, const char *args)
1225 {
1226 fprintf_filtered (file, "\
1227 No floating-point info available for this processor.\n");
1228 }
1229
1230 static struct gdbarch *
1231 h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1232 {
1233 struct gdbarch_tdep *tdep = NULL;
1234 struct gdbarch *gdbarch;
1235
1236 arches = gdbarch_list_lookup_by_info (arches, &info);
1237 if (arches != NULL)
1238 return arches->gdbarch;
1239
1240 #if 0
1241 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1242 #endif
1243
1244 if (info.bfd_arch_info->arch != bfd_arch_h8300)
1245 return NULL;
1246
1247 gdbarch = gdbarch_alloc (&info, 0);
1248
1249 set_gdbarch_register_sim_regno (gdbarch, h8300_register_sim_regno);
1250
1251 switch (info.bfd_arch_info->mach)
1252 {
1253 case bfd_mach_h8300:
1254 set_gdbarch_num_regs (gdbarch, 13);
1255 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1256 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1257 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1258 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1259 set_gdbarch_register_name (gdbarch, h8300_register_name);
1260 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1261 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1262 set_gdbarch_return_value (gdbarch, h8300_return_value);
1263 set_gdbarch_print_insn (gdbarch, print_insn_h8300);
1264 break;
1265 case bfd_mach_h8300h:
1266 case bfd_mach_h8300hn:
1267 set_gdbarch_num_regs (gdbarch, 13);
1268 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1269 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1270 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1271 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1272 set_gdbarch_register_name (gdbarch, h8300_register_name);
1273 if (info.bfd_arch_info->mach != bfd_mach_h8300hn)
1274 {
1275 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1276 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1277 }
1278 else
1279 {
1280 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1281 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1282 }
1283 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1284 set_gdbarch_print_insn (gdbarch, print_insn_h8300h);
1285 break;
1286 case bfd_mach_h8300s:
1287 case bfd_mach_h8300sn:
1288 set_gdbarch_num_regs (gdbarch, 16);
1289 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1290 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1291 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1292 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1293 set_gdbarch_register_name (gdbarch, h8300s_register_name);
1294 if (info.bfd_arch_info->mach != bfd_mach_h8300sn)
1295 {
1296 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1297 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1298 }
1299 else
1300 {
1301 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1302 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1303 }
1304 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1305 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1306 break;
1307 case bfd_mach_h8300sx:
1308 case bfd_mach_h8300sxn:
1309 set_gdbarch_num_regs (gdbarch, 18);
1310 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1311 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1312 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1313 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1314 set_gdbarch_register_name (gdbarch, h8300sx_register_name);
1315 if (info.bfd_arch_info->mach != bfd_mach_h8300sxn)
1316 {
1317 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1318 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1319 }
1320 else
1321 {
1322 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1323 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1324 }
1325 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1326 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1327 break;
1328 }
1329
1330 set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
1331 set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
1332
1333 /*
1334 * Basic register fields and methods.
1335 */
1336
1337 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1338 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1339 set_gdbarch_register_type (gdbarch, h8300_register_type);
1340 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
1341 set_gdbarch_print_float_info (gdbarch, h8300_print_float_info);
1342
1343 /*
1344 * Frame Info
1345 */
1346 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1347
1348 /* Frame unwinder. */
1349 set_gdbarch_unwind_pc (gdbarch, h8300_unwind_pc);
1350 set_gdbarch_unwind_sp (gdbarch, h8300_unwind_sp);
1351 set_gdbarch_dummy_id (gdbarch, h8300_dummy_id);
1352 frame_base_set_default (gdbarch, &h8300_frame_base);
1353
1354 /*
1355 * Miscelany
1356 */
1357 /* Stack grows up. */
1358 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1359
1360 set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
1361 set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
1362
1363 set_gdbarch_char_signed (gdbarch, 0);
1364 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1365 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1366 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1367 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1368 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1369 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1370 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1371
1372 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1373
1374 /* Hook in the DWARF CFI frame unwinder. */
1375 dwarf2_append_unwinders (gdbarch);
1376 frame_unwind_append_unwinder (gdbarch, &h8300_frame_unwind);
1377
1378 return gdbarch;
1379
1380 }
1381
1382 extern initialize_file_ftype _initialize_h8300_tdep; /* -Wmissing-prototypes */
1383
1384 void
1385 _initialize_h8300_tdep (void)
1386 {
1387 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
1388 }
1389
1390 static int
1391 is_h8300hmode (struct gdbarch *gdbarch)
1392 {
1393 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1394 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1395 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1396 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1397 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h
1398 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1399 }
1400
1401 static int
1402 is_h8300smode (struct gdbarch *gdbarch)
1403 {
1404 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1405 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1406 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1407 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn;
1408 }
1409
1410 static int
1411 is_h8300sxmode (struct gdbarch *gdbarch)
1412 {
1413 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1414 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn;
1415 }
1416
1417 static int
1418 is_h8300_normal_mode (struct gdbarch *gdbarch)
1419 {
1420 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1421 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1422 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1423 }
This page took 0.058399 seconds and 4 git commands to generate.