* hppa.h: New argument type 'y'. Use in various float instructions.
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Hitachi H8/300, for GDB.
2 Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /*
21 Contributed by Steve Chamberlain
22 sac@cygnus.com
23 */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "obstack.h"
28 #include "symtab.h"
29 #include <dis-asm.h>
30 #undef NUM_REGS
31 #define NUM_REGS 11
32
33 #define UNSIGNED_SHORT(X) ((X) & 0xffff)
34
35 /* an easy to debug H8 stack frame looks like:
36 0x6df6 push r6
37 0x0d76 mov.w r7,r6
38 0x6dfn push reg
39 0x7905 nnnn mov.w #n,r5 or 0x1b87 subs #2,sp
40 0x1957 sub.w r5,sp
41
42 */
43
44 #define IS_PUSH(x) ((x & 0xff00)==0x6d00)
45 #define IS_PUSH_FP(x) (x == 0x6df6)
46 #define IS_MOVE_FP(x) (x == 0x0d76)
47 #define IS_MOV_SP_FP(x) (x == 0x0d76)
48 #define IS_SUB2_SP(x) (x==0x1b87)
49 #define IS_MOVK_R5(x) (x==0x7905)
50 #define IS_SUB_R5SP(x) (x==0x1957)
51
52 static CORE_ADDR examine_prologue ();
53
54 void frame_find_saved_regs ();
55 CORE_ADDR
56 h8300_skip_prologue (start_pc)
57 CORE_ADDR start_pc;
58 {
59 short int w;
60
61 w = read_memory_unsigned_integer (start_pc, 2);
62 /* Skip past all push insns */
63 while (IS_PUSH_FP (w))
64 {
65 start_pc += 2;
66 w = read_memory_unsigned_integer (start_pc, 2);
67 }
68
69 /* Skip past a move to FP */
70 if (IS_MOVE_FP (w))
71 {
72 start_pc += 2;
73 w = read_memory_unsigned_integer (start_pc, 2);
74 }
75
76 /* Skip the stack adjust */
77
78 if (IS_MOVK_R5 (w))
79 {
80 start_pc += 2;
81 w = read_memory_unsigned_integer (start_pc, 2);
82 }
83 if (IS_SUB_R5SP (w))
84 {
85 start_pc += 2;
86 w = read_memory_unsigned_integer (start_pc, 2);
87 }
88 while (IS_SUB2_SP (w))
89 {
90 start_pc += 2;
91 w = read_memory_unsigned_integer (start_pc, 2);
92 }
93
94 return start_pc;
95 }
96
97 int
98 print_insn (memaddr, stream)
99 CORE_ADDR memaddr;
100 FILE *stream;
101 {
102 disassemble_info info;
103 GDB_INIT_DISASSEMBLE_INFO(info, stream);
104 if (HMODE)
105 return print_insn_h8300h (memaddr, &info);
106 else
107 return print_insn_h8300 (memaddr, &info);
108 }
109
110 /* Given a GDB frame, determine the address of the calling function's frame.
111 This will be used to create a new GDB frame struct, and then
112 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
113
114 For us, the frame address is its stack pointer value, so we look up
115 the function prologue to determine the caller's sp value, and return it. */
116
117 FRAME_ADDR
118 FRAME_CHAIN (thisframe)
119 FRAME thisframe;
120 {
121 frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
122 return thisframe->fsr->regs[SP_REGNUM];
123 }
124
125 /* Put here the code to store, into a struct frame_saved_regs,
126 the addresses of the saved registers of frame described by FRAME_INFO.
127 This includes special registers such as pc and fp saved in special
128 ways in the stack frame. sp is even more special:
129 the address we return for it IS the sp for the next frame.
130
131 We cache the result of doing this in the frame_cache_obstack, since
132 it is fairly expensive. */
133
134 void
135 frame_find_saved_regs (fi, fsr)
136 struct frame_info *fi;
137 struct frame_saved_regs *fsr;
138 {
139 register CORE_ADDR next_addr;
140 register CORE_ADDR *saved_regs;
141 register int regnum;
142 register struct frame_saved_regs *cache_fsr;
143 extern struct obstack frame_cache_obstack;
144 CORE_ADDR ip;
145 struct symtab_and_line sal;
146 CORE_ADDR limit;
147
148 if (!fi->fsr)
149 {
150 cache_fsr = (struct frame_saved_regs *)
151 obstack_alloc (&frame_cache_obstack,
152 sizeof (struct frame_saved_regs));
153 bzero (cache_fsr, sizeof (struct frame_saved_regs));
154
155 fi->fsr = cache_fsr;
156
157 /* Find the start and end of the function prologue. If the PC
158 is in the function prologue, we only consider the part that
159 has executed already. */
160
161 ip = get_pc_function_start (fi->pc);
162 sal = find_pc_line (ip, 0);
163 limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
164
165 /* This will fill in fields in *fi as well as in cache_fsr. */
166 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
167 }
168
169 if (fsr)
170 *fsr = *fi->fsr;
171 }
172
173 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
174 is not the address of a valid instruction, the address of the next
175 instruction beyond ADDR otherwise. *PWORD1 receives the first word
176 of the instruction.*/
177
178 CORE_ADDR
179 NEXT_PROLOGUE_INSN (addr, lim, pword1)
180 CORE_ADDR addr;
181 CORE_ADDR lim;
182 INSN_WORD *pword1;
183 {
184 char buf[2];
185 if (addr < lim + 8)
186 {
187 read_memory (addr, buf, 2);
188 *pword1 = extract_signed_integer (buf, 2);
189
190 return addr + 2;
191 }
192 return 0;
193 }
194
195 /* Examine the prologue of a function. `ip' points to the first instruction.
196 `limit' is the limit of the prologue (e.g. the addr of the first
197 linenumber, or perhaps the program counter if we're stepping through).
198 `frame_sp' is the stack pointer value in use in this frame.
199 `fsr' is a pointer to a frame_saved_regs structure into which we put
200 info about the registers saved by this frame.
201 `fi' is a struct frame_info pointer; we fill in various fields in it
202 to reflect the offsets of the arg pointer and the locals pointer. */
203
204 static CORE_ADDR
205 examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
206 register CORE_ADDR ip;
207 register CORE_ADDR limit;
208 FRAME_ADDR after_prolog_fp;
209 struct frame_saved_regs *fsr;
210 struct frame_info *fi;
211 {
212 register CORE_ADDR next_ip;
213 int r;
214 int i;
215 int have_fp = 0;
216 register int src;
217 register struct pic_prologue_code *pcode;
218 INSN_WORD insn_word;
219 int size, offset;
220 /* Number of things pushed onto stack, starts at 2/4, 'cause the
221 PC is already there */
222 unsigned int reg_save_depth = HMODE ? 4 : 2;
223
224 unsigned int auto_depth = 0; /* Number of bytes of autos */
225
226 char in_frame[11]; /* One for each reg */
227
228 memset (in_frame, 1, 11);
229 for (r = 0; r < 8; r++)
230 {
231 fsr->regs[r] = 0;
232 }
233 if (after_prolog_fp == 0)
234 {
235 after_prolog_fp = read_register (SP_REGNUM);
236 }
237 if (ip == 0 || ip & (HMODE ? ~0xffff : ~0xffff))
238 return 0;
239
240 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
241
242 /* Skip over any fp push instructions */
243 fsr->regs[6] = after_prolog_fp;
244 while (next_ip && IS_PUSH_FP (insn_word))
245 {
246 ip = next_ip;
247
248 in_frame[insn_word & 0x7] = reg_save_depth;
249 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
250 reg_save_depth += 2;
251 }
252
253 /* Is this a move into the fp */
254 if (next_ip && IS_MOV_SP_FP (insn_word))
255 {
256 ip = next_ip;
257 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
258 have_fp = 1;
259 }
260
261 /* Skip over any stack adjustment, happens either with a number of
262 sub#2,sp or a mov #x,r5 sub r5,sp */
263
264 if (next_ip && IS_SUB2_SP (insn_word))
265 {
266 while (next_ip && IS_SUB2_SP (insn_word))
267 {
268 auto_depth += 2;
269 ip = next_ip;
270 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
271 }
272 }
273 else
274 {
275 if (next_ip && IS_MOVK_R5 (insn_word))
276 {
277 ip = next_ip;
278 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
279 auto_depth += insn_word;
280
281 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
282 auto_depth += insn_word;
283 }
284 }
285 /* Work out which regs are stored where */
286 while (next_ip && IS_PUSH (insn_word))
287 {
288 ip = next_ip;
289 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
290 fsr->regs[r] = after_prolog_fp + auto_depth;
291 auto_depth += 2;
292 }
293
294 /* The args are always reffed based from the stack pointer */
295 fi->args_pointer = after_prolog_fp;
296 /* Locals are always reffed based from the fp */
297 fi->locals_pointer = after_prolog_fp;
298 /* The PC is at a known place */
299 fi->from_pc = read_memory_unsigned_integer (after_prolog_fp + 2, BINWORD);
300
301 /* Rememeber any others too */
302 in_frame[PC_REGNUM] = 0;
303
304 if (have_fp)
305 /* We keep the old FP in the SP spot */
306 fsr->regs[SP_REGNUM] = read_memory_unsigned_integer (fsr->regs[6], BINWORD);
307 else
308 fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
309
310 return (ip);
311 }
312
313 void
314 init_extra_frame_info (fromleaf, fi)
315 int fromleaf;
316 struct frame_info *fi;
317 {
318 fi->fsr = 0; /* Not yet allocated */
319 fi->args_pointer = 0; /* Unknown */
320 fi->locals_pointer = 0; /* Unknown */
321 fi->from_pc = 0;
322 }
323
324 /* Return the saved PC from this frame.
325
326 If the frame has a memory copy of SRP_REGNUM, use that. If not,
327 just use the register SRP_REGNUM itself. */
328
329 CORE_ADDR
330 frame_saved_pc (frame)
331 FRAME frame;
332 {
333 return frame->from_pc;
334 }
335
336 CORE_ADDR
337 frame_locals_address (fi)
338 struct frame_info *fi;
339 {
340 if (!fi->locals_pointer)
341 {
342 struct frame_saved_regs ignore;
343
344 get_frame_saved_regs (fi, &ignore);
345
346 }
347 return fi->locals_pointer;
348 }
349
350 /* Return the address of the argument block for the frame
351 described by FI. Returns 0 if the address is unknown. */
352
353 CORE_ADDR
354 frame_args_address (fi)
355 struct frame_info *fi;
356 {
357 if (!fi->args_pointer)
358 {
359 struct frame_saved_regs ignore;
360
361 get_frame_saved_regs (fi, &ignore);
362
363 }
364
365 return fi->args_pointer;
366 }
367
368 void
369 h8300_pop_frame ()
370 {
371 unsigned regnum;
372 struct frame_saved_regs fsr;
373 struct frame_info *fi;
374
375 FRAME frame = get_current_frame ();
376
377 fi = get_frame_info (frame);
378 get_frame_saved_regs (fi, &fsr);
379
380 for (regnum = 0; regnum < 8; regnum++)
381 {
382 if (fsr.regs[regnum])
383 {
384 write_register (regnum, read_memory_integer(fsr.regs[regnum]), BINWORD);
385 }
386
387 flush_cached_frames ();
388 set_current_frame (create_new_frame (read_register (FP_REGNUM),
389 read_pc ()));
390 }
391 }
392
393 void
394 print_register_hook (regno)
395 {
396 if (regno == 8)
397 {
398 /* CCR register */
399
400 int C, Z, N, V;
401 unsigned char b[2];
402 unsigned char l;
403
404 read_relative_register_raw_bytes (regno, b);
405 l = b[1];
406 printf ("\t");
407 printf ("I-%d - ", (l & 0x80) != 0);
408 printf ("H-%d - ", (l & 0x20) != 0);
409 N = (l & 0x8) != 0;
410 Z = (l & 0x4) != 0;
411 V = (l & 0x2) != 0;
412 C = (l & 0x1) != 0;
413 printf ("N-%d ", N);
414 printf ("Z-%d ", Z);
415 printf ("V-%d ", V);
416 printf ("C-%d ", C);
417 if ((C | Z) == 0)
418 printf ("u> ");
419 if ((C | Z) == 1)
420 printf ("u<= ");
421 if ((C == 0))
422 printf ("u>= ");
423 if (C == 1)
424 printf ("u< ");
425 if (Z == 0)
426 printf ("!= ");
427 if (Z == 1)
428 printf ("== ");
429 if ((N ^ V) == 0)
430 printf (">= ");
431 if ((N ^ V) == 1)
432 printf ("< ");
433 if ((Z | (N ^ V)) == 0)
434 printf ("> ");
435 if ((Z | (N ^ V)) == 1)
436 printf ("<= ");
437 }
438 }
This page took 0.042796 seconds and 4 git commands to generate.