2002-04-24 Michael Snyder <msnyder@redhat.com>
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Hitachi H8/300, for GDB.
2
3 Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
4 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /*
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
26 */
27
28 #include "defs.h"
29 #include "frame.h"
30 #include "obstack.h"
31 #include "symtab.h"
32 #include "dis-asm.h"
33 #include "gdbcmd.h"
34 #include "gdbtypes.h"
35 #include "gdbcore.h"
36 #include "gdb_string.h"
37 #include "value.h"
38 #include "regcache.h"
39
40 extern int h8300hmode, h8300smode;
41
42 #undef NUM_REGS
43 #define NUM_REGS 11
44
45 #define UNSIGNED_SHORT(X) ((X) & 0xffff)
46
47 #define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
48 #define IS_PUSH_FP(x) (x == 0x6df6)
49 #define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
50 #define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
51 #define IS_SUB2_SP(x) (x==0x1b87)
52 #define IS_SUB4_SP(x) (x==0x1b97)
53 #define IS_SUBL_SP(x) (x==0x7a37)
54 #define IS_MOVK_R5(x) (x==0x7905)
55 #define IS_SUB_R5SP(x) (x==0x1957)
56
57
58 /* The register names change depending on whether the h8300h processor
59 type is selected. */
60
61 static char *original_register_names[] = REGISTER_NAMES;
62
63 static char *h8300h_register_names[] =
64 {"er0", "er1", "er2", "er3", "er4", "er5", "er6",
65 "sp", "ccr", "pc", "cycles", "tick", "inst"};
66
67 char **h8300_register_names = original_register_names;
68
69
70 /* Local function declarations. */
71
72 static CORE_ADDR examine_prologue ();
73 static void set_machine_hook (char *filename);
74
75 CORE_ADDR
76 h8300_skip_prologue (CORE_ADDR start_pc)
77 {
78 short int w;
79 int adjust = 0;
80
81 /* Skip past all push and stm insns. */
82 while (1)
83 {
84 w = read_memory_unsigned_integer (start_pc, 2);
85 /* First look for push insns. */
86 if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130)
87 {
88 w = read_memory_unsigned_integer (start_pc + 2, 2);
89 adjust = 2;
90 }
91
92 if (IS_PUSH (w))
93 {
94 start_pc += 2 + adjust;
95 w = read_memory_unsigned_integer (start_pc, 2);
96 continue;
97 }
98 adjust = 0;
99 break;
100 }
101
102 /* Skip past a move to FP, either word or long sized */
103 w = read_memory_unsigned_integer (start_pc, 2);
104 if (w == 0x0100)
105 {
106 w = read_memory_unsigned_integer (start_pc + 2, 2);
107 adjust += 2;
108 }
109
110 if (IS_MOVE_FP (w))
111 {
112 start_pc += 2 + adjust;
113 w = read_memory_unsigned_integer (start_pc, 2);
114 }
115
116 /* Check for loading either a word constant into r5;
117 long versions are handled by the SUBL_SP below. */
118 if (IS_MOVK_R5 (w))
119 {
120 start_pc += 2;
121 w = read_memory_unsigned_integer (start_pc, 2);
122 }
123
124 /* Now check for subtracting r5 from sp, word sized only. */
125 if (IS_SUB_R5SP (w))
126 {
127 start_pc += 2 + adjust;
128 w = read_memory_unsigned_integer (start_pc, 2);
129 }
130
131 /* Check for subs #2 and subs #4. */
132 while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
133 {
134 start_pc += 2 + adjust;
135 w = read_memory_unsigned_integer (start_pc, 2);
136 }
137
138 /* Check for a 32bit subtract. */
139 if (IS_SUBL_SP (w))
140 start_pc += 6 + adjust;
141
142 return start_pc;
143 }
144
145 int
146 gdb_print_insn_h8300 (bfd_vma memaddr, disassemble_info *info)
147 {
148 if (h8300smode)
149 return print_insn_h8300s (memaddr, info);
150 else if (h8300hmode)
151 return print_insn_h8300h (memaddr, info);
152 else
153 return print_insn_h8300 (memaddr, info);
154 }
155
156 /* Given a GDB frame, determine the address of the calling function's frame.
157 This will be used to create a new GDB frame struct, and then
158 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
159
160 For us, the frame address is its stack pointer value, so we look up
161 the function prologue to determine the caller's sp value, and return it. */
162
163 CORE_ADDR
164 h8300_frame_chain (struct frame_info *thisframe)
165 {
166 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
167 { /* initialize the from_pc now */
168 thisframe->from_pc = generic_read_register_dummy (thisframe->pc,
169 thisframe->frame,
170 PC_REGNUM);
171 return thisframe->frame;
172 }
173 h8300_frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
174 return thisframe->fsr->regs[SP_REGNUM];
175 }
176
177 /* Put here the code to store, into a struct frame_saved_regs,
178 the addresses of the saved registers of frame described by FRAME_INFO.
179 This includes special registers such as pc and fp saved in special
180 ways in the stack frame. sp is even more special:
181 the address we return for it IS the sp for the next frame.
182
183 We cache the result of doing this in the frame_obstack, since it is
184 fairly expensive. */
185
186 void
187 h8300_frame_find_saved_regs (struct frame_info *fi,
188 struct frame_saved_regs *fsr)
189 {
190 register struct frame_saved_regs *cache_fsr;
191 CORE_ADDR ip;
192 struct symtab_and_line sal;
193 CORE_ADDR limit;
194
195 if (!fi->fsr)
196 {
197 cache_fsr = (struct frame_saved_regs *)
198 frame_obstack_alloc (sizeof (struct frame_saved_regs));
199 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
200
201 fi->fsr = cache_fsr;
202
203 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
204 { /* no more to do. */
205 if (fsr)
206 *fsr = *fi->fsr;
207 return;
208 }
209 /* Find the start and end of the function prologue. If the PC
210 is in the function prologue, we only consider the part that
211 has executed already. */
212
213 ip = get_pc_function_start (fi->pc);
214 sal = find_pc_line (ip, 0);
215 limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
216
217 /* This will fill in fields in *fi as well as in cache_fsr. */
218 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
219 }
220
221 if (fsr)
222 *fsr = *fi->fsr;
223 }
224
225 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
226 is not the address of a valid instruction, the address of the next
227 instruction beyond ADDR otherwise. *PWORD1 receives the first word
228 of the instruction. */
229
230 CORE_ADDR
231 NEXT_PROLOGUE_INSN (CORE_ADDR addr, CORE_ADDR lim, INSN_WORD *pword1)
232 {
233 char buf[2];
234 if (addr < lim + 8)
235 {
236 read_memory (addr, buf, 2);
237 *pword1 = extract_signed_integer (buf, 2);
238
239 return addr + 2;
240 }
241 return 0;
242 }
243
244 /* Examine the prologue of a function. `ip' points to the first instruction.
245 `limit' is the limit of the prologue (e.g. the addr of the first
246 linenumber, or perhaps the program counter if we're stepping through).
247 `frame_sp' is the stack pointer value in use in this frame.
248 `fsr' is a pointer to a frame_saved_regs structure into which we put
249 info about the registers saved by this frame.
250 `fi' is a struct frame_info pointer; we fill in various fields in it
251 to reflect the offsets of the arg pointer and the locals pointer. */
252
253 static CORE_ADDR
254 examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
255 CORE_ADDR after_prolog_fp, struct frame_saved_regs *fsr,
256 struct frame_info *fi)
257 {
258 register CORE_ADDR next_ip;
259 int r;
260 int have_fp = 0;
261 INSN_WORD insn_word;
262 /* Number of things pushed onto stack, starts at 2/4, 'cause the
263 PC is already there */
264 unsigned int reg_save_depth = h8300hmode ? 4 : 2;
265
266 unsigned int auto_depth = 0; /* Number of bytes of autos */
267
268 char in_frame[11]; /* One for each reg */
269
270 int adjust = 0;
271
272 memset (in_frame, 1, 11);
273 for (r = 0; r < 8; r++)
274 {
275 fsr->regs[r] = 0;
276 }
277 if (after_prolog_fp == 0)
278 {
279 after_prolog_fp = read_register (SP_REGNUM);
280 }
281
282 /* If the PC isn't valid, quit now. */
283 if (ip == 0 || ip & (h8300hmode ? ~0xffffff : ~0xffff))
284 return 0;
285
286 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
287
288 if (insn_word == 0x0100)
289 {
290 insn_word = read_memory_unsigned_integer (ip + 2, 2);
291 adjust = 2;
292 }
293
294 /* Skip over any fp push instructions */
295 fsr->regs[6] = after_prolog_fp;
296 while (next_ip && IS_PUSH_FP (insn_word))
297 {
298 ip = next_ip + adjust;
299
300 in_frame[insn_word & 0x7] = reg_save_depth;
301 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
302 reg_save_depth += 2 + adjust;
303 }
304
305 /* Is this a move into the fp */
306 if (next_ip && IS_MOV_SP_FP (insn_word))
307 {
308 ip = next_ip;
309 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
310 have_fp = 1;
311 }
312
313 /* Skip over any stack adjustment, happens either with a number of
314 sub#2,sp or a mov #x,r5 sub r5,sp */
315
316 if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
317 {
318 while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
319 {
320 auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
321 ip = next_ip;
322 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
323 }
324 }
325 else
326 {
327 if (next_ip && IS_MOVK_R5 (insn_word))
328 {
329 ip = next_ip;
330 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
331 auto_depth += insn_word;
332
333 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
334 auto_depth += insn_word;
335 }
336 if (next_ip && IS_SUBL_SP (insn_word))
337 {
338 ip = next_ip;
339 auto_depth += read_memory_unsigned_integer (ip, 4);
340 ip += 4;
341
342 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
343 }
344 }
345
346 /* Now examine the push insns to determine where everything lives
347 on the stack. */
348 while (1)
349 {
350 adjust = 0;
351 if (!next_ip)
352 break;
353
354 if (insn_word == 0x0100)
355 {
356 ip = next_ip;
357 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
358 adjust = 2;
359 }
360
361 if (IS_PUSH (insn_word))
362 {
363 ip = next_ip;
364 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
365 fsr->regs[r] = after_prolog_fp + auto_depth;
366 auto_depth += 2 + adjust;
367 continue;
368 }
369
370 /* Now check for push multiple insns. */
371 if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130)
372 {
373 int count = ((insn_word >> 4) & 0xf) + 1;
374 int start, i;
375
376 ip = next_ip;
377 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
378 start = insn_word & 0x7;
379
380 for (i = start; i <= start + count; i++)
381 {
382 fsr->regs[i] = after_prolog_fp + auto_depth;
383 auto_depth += 4;
384 }
385 }
386 break;
387 }
388
389 /* The args are always reffed based from the stack pointer */
390 fi->args_pointer = after_prolog_fp;
391 /* Locals are always reffed based from the fp */
392 fi->locals_pointer = after_prolog_fp;
393 /* The PC is at a known place */
394 fi->from_pc = read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
395
396 /* Rememeber any others too */
397 in_frame[PC_REGNUM] = 0;
398
399 if (have_fp)
400 /* We keep the old FP in the SP spot */
401 fsr->regs[SP_REGNUM] = read_memory_unsigned_integer (fsr->regs[6], BINWORD);
402 else
403 fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
404
405 return (ip);
406 }
407
408 void
409 h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
410 {
411 fi->fsr = 0; /* Not yet allocated */
412 fi->args_pointer = 0; /* Unknown */
413 fi->locals_pointer = 0; /* Unknown */
414 fi->from_pc = 0;
415 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
416 { /* anything special to do? */
417 return;
418 }
419 }
420
421 /* Return the saved PC from this frame.
422
423 If the frame has a memory copy of SRP_REGNUM, use that. If not,
424 just use the register SRP_REGNUM itself. */
425
426 CORE_ADDR
427 h8300_frame_saved_pc (struct frame_info *frame)
428 {
429 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
430 return generic_read_register_dummy (frame->pc, frame->frame, PC_REGNUM);
431 else
432 return frame->from_pc;
433 }
434
435 CORE_ADDR
436 h8300_frame_locals_address (struct frame_info *fi)
437 {
438 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
439 return (CORE_ADDR) 0; /* Not sure what else to do... */
440 if (!fi->locals_pointer)
441 {
442 struct frame_saved_regs ignore;
443
444 get_frame_saved_regs (fi, &ignore);
445
446 }
447 return fi->locals_pointer;
448 }
449
450 /* Return the address of the argument block for the frame
451 described by FI. Returns 0 if the address is unknown. */
452
453 CORE_ADDR
454 h8300_frame_args_address (struct frame_info *fi)
455 {
456 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
457 return (CORE_ADDR) 0; /* Not sure what else to do... */
458 if (!fi->args_pointer)
459 {
460 struct frame_saved_regs ignore;
461
462 get_frame_saved_regs (fi, &ignore);
463
464 }
465
466 return fi->args_pointer;
467 }
468
469 /* Function: push_arguments
470 Setup the function arguments for calling a function in the inferior.
471
472 On the Hitachi H8/300 architecture, there are three registers (R0 to R2)
473 which are dedicated for passing function arguments. Up to the first
474 three arguments (depending on size) may go into these registers.
475 The rest go on the stack.
476
477 Arguments that are smaller than WORDSIZE bytes will still take up a
478 whole register or a whole WORDSIZE word on the stack, and will be
479 right-justified in the register or the stack word. This includes
480 chars and small aggregate types. Note that WORDSIZE depends on the
481 cpu type.
482
483 Arguments that are larger than WORDSIZE bytes will be split between
484 two or more registers as available, but will NOT be split between a
485 register and the stack.
486
487 An exceptional case exists for struct arguments (and possibly other
488 aggregates such as arrays) -- if the size is larger than WORDSIZE
489 bytes but not a multiple of WORDSIZE bytes. In this case the
490 argument is never split between the registers and the stack, but
491 instead is copied in its entirety onto the stack, AND also copied
492 into as many registers as there is room for. In other words, space
493 in registers permitting, two copies of the same argument are passed
494 in. As far as I can tell, only the one on the stack is used,
495 although that may be a function of the level of compiler
496 optimization. I suspect this is a compiler bug. Arguments of
497 these odd sizes are left-justified within the word (as opposed to
498 arguments smaller than WORDSIZE bytes, which are right-justified).
499
500 If the function is to return an aggregate type such as a struct,
501 the caller must allocate space into which the callee will copy the
502 return value. In this case, a pointer to the return value location
503 is passed into the callee in register R0, which displaces one of
504 the other arguments passed in via registers R0 to R2. */
505
506 CORE_ADDR
507 h8300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
508 unsigned char struct_return, CORE_ADDR struct_addr)
509 {
510 int stack_align, stack_alloc, stack_offset;
511 int wordsize;
512 int argreg;
513 int argnum;
514 struct type *type;
515 CORE_ADDR regval;
516 char *val;
517 char valbuf[4];
518 int len;
519
520 if (h8300hmode || h8300smode)
521 {
522 stack_align = 3;
523 wordsize = 4;
524 }
525 else
526 {
527 stack_align = 1;
528 wordsize = 2;
529 }
530
531 /* first force sp to a n-byte alignment */
532 sp = sp & ~stack_align;
533
534 /* Now make sure there's space on the stack */
535 for (argnum = 0, stack_alloc = 0;
536 argnum < nargs; argnum++)
537 stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + stack_align)
538 & ~stack_align);
539 sp -= stack_alloc; /* make room on stack for args */
540 /* we may over-allocate a little here, but that won't hurt anything */
541
542 argreg = ARG0_REGNUM;
543 if (struct_return) /* "struct return" pointer takes up one argreg */
544 {
545 write_register (argreg++, struct_addr);
546 }
547
548 /* Now load as many as possible of the first arguments into
549 registers, and push the rest onto the stack. There are 3N bytes
550 in three registers available. Loop thru args from first to last. */
551
552 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
553 {
554 type = VALUE_TYPE (args[argnum]);
555 len = TYPE_LENGTH (type);
556 memset (valbuf, 0, sizeof (valbuf));
557 if (len < wordsize)
558 {
559 /* the purpose of this is to right-justify the value within the word */
560 memcpy (valbuf + (wordsize - len),
561 (char *) VALUE_CONTENTS (args[argnum]), len);
562 val = valbuf;
563 }
564 else
565 val = (char *) VALUE_CONTENTS (args[argnum]);
566
567 if (len > (ARGLAST_REGNUM + 1 - argreg) * REGISTER_RAW_SIZE (ARG0_REGNUM) ||
568 (len > wordsize && (len & stack_align) != 0))
569 { /* passed on the stack */
570 write_memory (sp + stack_offset, val,
571 len < wordsize ? wordsize : len);
572 stack_offset += (len + stack_align) & ~stack_align;
573 }
574 /* NOTE WELL!!!!! This is not an "else if" clause!!!
575 That's because some *&^%$ things get passed on the stack
576 AND in the registers! */
577 if (len <= (ARGLAST_REGNUM + 1 - argreg) * REGISTER_RAW_SIZE (ARG0_REGNUM))
578 while (len > 0)
579 { /* there's room in registers */
580 regval = extract_address (val, wordsize);
581 write_register (argreg, regval);
582 len -= wordsize;
583 val += wordsize;
584 argreg++;
585 }
586 }
587 return sp;
588 }
589
590 /* Function: push_return_address
591 Setup the return address for a dummy frame, as called by
592 call_function_by_hand. Only necessary when you are using an
593 empty CALL_DUMMY, ie. the target will not actually be executing
594 a JSR/BSR instruction. */
595
596 CORE_ADDR
597 h8300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
598 {
599 unsigned char buf[4];
600 int wordsize;
601
602 if (h8300hmode || h8300smode)
603 wordsize = 4;
604 else
605 wordsize = 2;
606
607 sp -= wordsize;
608 store_unsigned_integer (buf, wordsize, CALL_DUMMY_ADDRESS ());
609 write_memory (sp, buf, wordsize);
610 return sp;
611 }
612
613 /* Function: h8300_pop_frame
614 Restore the machine to the state it had before the current frame
615 was created. Usually used either by the "RETURN" command, or by
616 call_function_by_hand after the dummy_frame is finished. */
617
618 void
619 h8300_pop_frame (void)
620 {
621 unsigned regnum;
622 struct frame_saved_regs fsr;
623 struct frame_info *frame = get_current_frame ();
624
625 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
626 {
627 generic_pop_dummy_frame ();
628 }
629 else
630 {
631 get_frame_saved_regs (frame, &fsr);
632
633 for (regnum = 0; regnum < 8; regnum++)
634 {
635 /* Don't forget SP_REGNUM is a frame_saved_regs struct is the
636 actual value we want, not the address of the value we want. */
637 if (fsr.regs[regnum] && regnum != SP_REGNUM)
638 write_register (regnum,
639 read_memory_integer (fsr.regs[regnum], BINWORD));
640 else if (fsr.regs[regnum] && regnum == SP_REGNUM)
641 write_register (regnum, frame->frame + 2 * BINWORD);
642 }
643
644 /* Don't forget the update the PC too! */
645 write_pc (frame->from_pc);
646 }
647 flush_cached_frames ();
648 }
649
650 /* Function: extract_return_value
651 Figure out where in REGBUF the called function has left its return value.
652 Copy that into VALBUF. Be sure to account for CPU type. */
653
654 void
655 h8300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
656 {
657 int wordsize, len;
658
659 if (h8300smode || h8300hmode)
660 wordsize = 4;
661 else
662 wordsize = 2;
663
664 len = TYPE_LENGTH (type);
665
666 switch (len)
667 {
668 case 1: /* (char) */
669 case 2: /* (short), (int) */
670 memcpy (valbuf, regbuf + REGISTER_BYTE (0) + (wordsize - len), len);
671 break;
672 case 4: /* (long), (float) */
673 if (h8300smode || h8300hmode)
674 {
675 memcpy (valbuf, regbuf + REGISTER_BYTE (0), 4);
676 }
677 else
678 {
679 memcpy (valbuf, regbuf + REGISTER_BYTE (0), 2);
680 memcpy (valbuf + 2, regbuf + REGISTER_BYTE (1), 2);
681 }
682 break;
683 case 8: /* (double) (doesn't seem to happen, which is good,
684 because this almost certainly isn't right. */
685 error ("I don't know how a double is returned.");
686 break;
687 }
688 }
689
690 /* Function: store_return_value
691 Place the appropriate value in the appropriate registers.
692 Primarily used by the RETURN command. */
693
694 void
695 h8300_store_return_value (struct type *type, char *valbuf)
696 {
697 int wordsize, len, regval;
698
699 if (h8300hmode || h8300smode)
700 wordsize = 4;
701 else
702 wordsize = 2;
703
704 len = TYPE_LENGTH (type);
705 switch (len)
706 {
707 case 1: /* char */
708 case 2: /* short, int */
709 regval = extract_address (valbuf, len);
710 write_register (0, regval);
711 break;
712 case 4: /* long, float */
713 regval = extract_address (valbuf, len);
714 if (h8300smode || h8300hmode)
715 {
716 write_register (0, regval);
717 }
718 else
719 {
720 write_register (0, regval >> 16);
721 write_register (1, regval & 0xffff);
722 }
723 break;
724 case 8: /* presumeably double, but doesn't seem to happen */
725 error ("I don't know how to return a double.");
726 break;
727 }
728 }
729
730 struct cmd_list_element *setmemorylist;
731
732 static void
733 set_register_names (void)
734 {
735 if (h8300hmode != 0)
736 h8300_register_names = h8300h_register_names;
737 else
738 h8300_register_names = original_register_names;
739 }
740
741 static void
742 h8300_command (char *args, int from_tty)
743 {
744 extern int h8300hmode;
745 h8300hmode = 0;
746 h8300smode = 0;
747 set_register_names ();
748 }
749
750 static void
751 h8300h_command (char *args, int from_tty)
752 {
753 extern int h8300hmode;
754 h8300hmode = 1;
755 h8300smode = 0;
756 set_register_names ();
757 }
758
759 static void
760 h8300s_command (char *args, int from_tty)
761 {
762 extern int h8300smode;
763 extern int h8300hmode;
764 h8300smode = 1;
765 h8300hmode = 1;
766 set_register_names ();
767 }
768
769
770 static void
771 set_machine (char *args, int from_tty)
772 {
773 printf_unfiltered ("\"set machine\" must be followed by h8300, h8300h");
774 printf_unfiltered ("or h8300s");
775 help_list (setmemorylist, "set memory ", -1, gdb_stdout);
776 }
777
778 /* set_machine_hook is called as the exec file is being opened, but
779 before the symbol file is opened. This allows us to set the
780 h8300hmode flag based on the machine type specified in the exec
781 file. This in turn will cause subsequently defined pointer types
782 to be 16 or 32 bits as appropriate for the machine. */
783
784 static void
785 set_machine_hook (char *filename)
786 {
787 if (bfd_get_mach (exec_bfd) == bfd_mach_h8300s)
788 {
789 h8300smode = 1;
790 h8300hmode = 1;
791 }
792 else if (bfd_get_mach (exec_bfd) == bfd_mach_h8300h)
793 {
794 h8300smode = 0;
795 h8300hmode = 1;
796 }
797 else
798 {
799 h8300smode = 0;
800 h8300hmode = 0;
801 }
802 set_register_names ();
803 }
804
805 void
806 _initialize_h8300m (void)
807 {
808 add_prefix_cmd ("machine", no_class, set_machine,
809 "set the machine type",
810 &setmemorylist, "set machine ", 0,
811 &setlist);
812
813 add_cmd ("h8300", class_support, h8300_command,
814 "Set machine to be H8/300.", &setmemorylist);
815
816 add_cmd ("h8300h", class_support, h8300h_command,
817 "Set machine to be H8/300H.", &setmemorylist);
818
819 add_cmd ("h8300s", class_support, h8300s_command,
820 "Set machine to be H8/300S.", &setmemorylist);
821
822 /* Add a hook to set the machine type when we're loading a file. */
823
824 specify_exec_file_hook (set_machine_hook);
825 }
826
827
828
829 void
830 h8300_print_register_hook (int regno)
831 {
832 if (regno == 8)
833 {
834 /* CCR register */
835 int C, Z, N, V;
836 unsigned char b[4];
837 unsigned char l;
838 frame_register_read (selected_frame, regno, b);
839 l = b[REGISTER_VIRTUAL_SIZE (8) - 1];
840 printf_unfiltered ("\t");
841 printf_unfiltered ("I-%d - ", (l & 0x80) != 0);
842 printf_unfiltered ("H-%d - ", (l & 0x20) != 0);
843 N = (l & 0x8) != 0;
844 Z = (l & 0x4) != 0;
845 V = (l & 0x2) != 0;
846 C = (l & 0x1) != 0;
847 printf_unfiltered ("N-%d ", N);
848 printf_unfiltered ("Z-%d ", Z);
849 printf_unfiltered ("V-%d ", V);
850 printf_unfiltered ("C-%d ", C);
851 if ((C | Z) == 0)
852 printf_unfiltered ("u> ");
853 if ((C | Z) == 1)
854 printf_unfiltered ("u<= ");
855 if ((C == 0))
856 printf_unfiltered ("u>= ");
857 if (C == 1)
858 printf_unfiltered ("u< ");
859 if (Z == 0)
860 printf_unfiltered ("!= ");
861 if (Z == 1)
862 printf_unfiltered ("== ");
863 if ((N ^ V) == 0)
864 printf_unfiltered (">= ");
865 if ((N ^ V) == 1)
866 printf_unfiltered ("< ");
867 if ((Z | (N ^ V)) == 0)
868 printf_unfiltered ("> ");
869 if ((Z | (N ^ V)) == 1)
870 printf_unfiltered ("<= ");
871 }
872 }
873
874 void
875 _initialize_h8300_tdep (void)
876 {
877 tm_print_insn = gdb_print_insn_h8300;
878 }
This page took 0.080699 seconds and 4 git commands to generate.