* parse.c (write_dollar_variable): New function.
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Hitachi H8/300, for GDB.
2 Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 /*
21 Contributed by Steve Chamberlain
22 sac@cygnus.com
23 */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "obstack.h"
28 #include "symtab.h"
29 #include "dis-asm.h"
30 #include "gdbcmd.h"
31 #include "gdbtypes.h"
32
33 #undef NUM_REGS
34 #define NUM_REGS 11
35
36 #define UNSIGNED_SHORT(X) ((X) & 0xffff)
37
38 /* an easy to debug H8 stack frame looks like:
39 0x6df6 push r6
40 0x0d76 mov.w r7,r6
41 0x6dfn push reg
42 0x7905 nnnn mov.w #n,r5 or 0x1b87 subs #2,sp
43 0x1957 sub.w r5,sp
44
45 */
46
47 #define IS_PUSH(x) ((x & 0xff00)==0x6d00)
48 #define IS_PUSH_FP(x) (x == 0x6df6)
49 #define IS_MOVE_FP(x) (x == 0x0d76)
50 #define IS_MOV_SP_FP(x) (x == 0x0d76)
51 #define IS_SUB2_SP(x) (x==0x1b87)
52 #define IS_MOVK_R5(x) (x==0x7905)
53 #define IS_SUB_R5SP(x) (x==0x1957)
54
55 static CORE_ADDR examine_prologue ();
56
57 void frame_find_saved_regs ();
58 CORE_ADDR
59 h8300_skip_prologue (start_pc)
60 CORE_ADDR start_pc;
61 {
62 short int w;
63
64 w = read_memory_unsigned_integer (start_pc, 2);
65 /* Skip past all push insns */
66 while (IS_PUSH_FP (w))
67 {
68 start_pc += 2;
69 w = read_memory_unsigned_integer (start_pc, 2);
70 }
71
72 /* Skip past a move to FP */
73 if (IS_MOVE_FP (w))
74 {
75 start_pc += 2;
76 w = read_memory_unsigned_integer (start_pc, 2);
77 }
78
79 /* Skip the stack adjust */
80
81 if (IS_MOVK_R5 (w))
82 {
83 start_pc += 2;
84 w = read_memory_unsigned_integer (start_pc, 2);
85 }
86 if (IS_SUB_R5SP (w))
87 {
88 start_pc += 2;
89 w = read_memory_unsigned_integer (start_pc, 2);
90 }
91 while (IS_SUB2_SP (w))
92 {
93 start_pc += 2;
94 w = read_memory_unsigned_integer (start_pc, 2);
95 }
96
97 return start_pc;
98 }
99
100 int
101 gdb_print_insn_h8300 (memaddr, info)
102 bfd_vma memaddr;
103 disassemble_info *info;
104 {
105 if (h8300hmode)
106 return print_insn_h8300h (memaddr, info);
107 else
108 return print_insn_h8300 (memaddr, info);
109 }
110
111 /* Given a GDB frame, determine the address of the calling function's frame.
112 This will be used to create a new GDB frame struct, and then
113 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
114
115 For us, the frame address is its stack pointer value, so we look up
116 the function prologue to determine the caller's sp value, and return it. */
117
118 CORE_ADDR
119 h8300_frame_chain (thisframe)
120 struct frame_info *thisframe;
121 {
122 frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
123 return thisframe->fsr->regs[SP_REGNUM];
124 }
125
126 /* Put here the code to store, into a struct frame_saved_regs,
127 the addresses of the saved registers of frame described by FRAME_INFO.
128 This includes special registers such as pc and fp saved in special
129 ways in the stack frame. sp is even more special:
130 the address we return for it IS the sp for the next frame.
131
132 We cache the result of doing this in the frame_cache_obstack, since
133 it is fairly expensive. */
134
135 void
136 frame_find_saved_regs (fi, fsr)
137 struct frame_info *fi;
138 struct frame_saved_regs *fsr;
139 {
140 register CORE_ADDR next_addr;
141 register CORE_ADDR *saved_regs;
142 register int regnum;
143 register struct frame_saved_regs *cache_fsr;
144 extern struct obstack frame_cache_obstack;
145 CORE_ADDR ip;
146 struct symtab_and_line sal;
147 CORE_ADDR limit;
148
149 if (!fi->fsr)
150 {
151 cache_fsr = (struct frame_saved_regs *)
152 obstack_alloc (&frame_cache_obstack,
153 sizeof (struct frame_saved_regs));
154 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
155
156 fi->fsr = cache_fsr;
157
158 /* Find the start and end of the function prologue. If the PC
159 is in the function prologue, we only consider the part that
160 has executed already. */
161
162 ip = get_pc_function_start (fi->pc);
163 sal = find_pc_line (ip, 0);
164 limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
165
166 /* This will fill in fields in *fi as well as in cache_fsr. */
167 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
168 }
169
170 if (fsr)
171 *fsr = *fi->fsr;
172 }
173
174 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
175 is not the address of a valid instruction, the address of the next
176 instruction beyond ADDR otherwise. *PWORD1 receives the first word
177 of the instruction.*/
178
179 CORE_ADDR
180 NEXT_PROLOGUE_INSN (addr, lim, pword1)
181 CORE_ADDR addr;
182 CORE_ADDR lim;
183 INSN_WORD *pword1;
184 {
185 char buf[2];
186 if (addr < lim + 8)
187 {
188 read_memory (addr, buf, 2);
189 *pword1 = extract_signed_integer (buf, 2);
190
191 return addr + 2;
192 }
193 return 0;
194 }
195
196 /* Examine the prologue of a function. `ip' points to the first instruction.
197 `limit' is the limit of the prologue (e.g. the addr of the first
198 linenumber, or perhaps the program counter if we're stepping through).
199 `frame_sp' is the stack pointer value in use in this frame.
200 `fsr' is a pointer to a frame_saved_regs structure into which we put
201 info about the registers saved by this frame.
202 `fi' is a struct frame_info pointer; we fill in various fields in it
203 to reflect the offsets of the arg pointer and the locals pointer. */
204
205 static CORE_ADDR
206 examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
207 register CORE_ADDR ip;
208 register CORE_ADDR limit;
209 CORE_ADDR after_prolog_fp;
210 struct frame_saved_regs *fsr;
211 struct frame_info *fi;
212 {
213 register CORE_ADDR next_ip;
214 int r;
215 int i;
216 int have_fp = 0;
217 register int src;
218 register struct pic_prologue_code *pcode;
219 INSN_WORD insn_word;
220 int size, offset;
221 /* Number of things pushed onto stack, starts at 2/4, 'cause the
222 PC is already there */
223 unsigned int reg_save_depth = h8300hmode ? 4 : 2;
224
225 unsigned int auto_depth = 0; /* Number of bytes of autos */
226
227 char in_frame[11]; /* One for each reg */
228
229 memset (in_frame, 1, 11);
230 for (r = 0; r < 8; r++)
231 {
232 fsr->regs[r] = 0;
233 }
234 if (after_prolog_fp == 0)
235 {
236 after_prolog_fp = read_register (SP_REGNUM);
237 }
238 if (ip == 0 || ip & (h8300hmode ? ~0xffff : ~0xffff))
239 return 0;
240
241 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
242
243 /* Skip over any fp push instructions */
244 fsr->regs[6] = after_prolog_fp;
245 while (next_ip && IS_PUSH_FP (insn_word))
246 {
247 ip = next_ip;
248
249 in_frame[insn_word & 0x7] = reg_save_depth;
250 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
251 reg_save_depth += 2;
252 }
253
254 /* Is this a move into the fp */
255 if (next_ip && IS_MOV_SP_FP (insn_word))
256 {
257 ip = next_ip;
258 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
259 have_fp = 1;
260 }
261
262 /* Skip over any stack adjustment, happens either with a number of
263 sub#2,sp or a mov #x,r5 sub r5,sp */
264
265 if (next_ip && IS_SUB2_SP (insn_word))
266 {
267 while (next_ip && IS_SUB2_SP (insn_word))
268 {
269 auto_depth += 2;
270 ip = next_ip;
271 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
272 }
273 }
274 else
275 {
276 if (next_ip && IS_MOVK_R5 (insn_word))
277 {
278 ip = next_ip;
279 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
280 auto_depth += insn_word;
281
282 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
283 auto_depth += insn_word;
284 }
285 }
286 /* Work out which regs are stored where */
287 while (next_ip && IS_PUSH (insn_word))
288 {
289 ip = next_ip;
290 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
291 fsr->regs[r] = after_prolog_fp + auto_depth;
292 auto_depth += 2;
293 }
294
295 /* The args are always reffed based from the stack pointer */
296 fi->args_pointer = after_prolog_fp;
297 /* Locals are always reffed based from the fp */
298 fi->locals_pointer = after_prolog_fp;
299 /* The PC is at a known place */
300 fi->from_pc = read_memory_unsigned_integer (after_prolog_fp + 2, BINWORD);
301
302 /* Rememeber any others too */
303 in_frame[PC_REGNUM] = 0;
304
305 if (have_fp)
306 /* We keep the old FP in the SP spot */
307 fsr->regs[SP_REGNUM] = read_memory_unsigned_integer (fsr->regs[6], BINWORD);
308 else
309 fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
310
311 return (ip);
312 }
313
314 void
315 init_extra_frame_info (fromleaf, fi)
316 int fromleaf;
317 struct frame_info *fi;
318 {
319 fi->fsr = 0; /* Not yet allocated */
320 fi->args_pointer = 0; /* Unknown */
321 fi->locals_pointer = 0; /* Unknown */
322 fi->from_pc = 0;
323 }
324
325 /* Return the saved PC from this frame.
326
327 If the frame has a memory copy of SRP_REGNUM, use that. If not,
328 just use the register SRP_REGNUM itself. */
329
330 CORE_ADDR
331 frame_saved_pc (frame)
332 struct frame_info *frame;
333 {
334 return frame->from_pc;
335 }
336
337 CORE_ADDR
338 frame_locals_address (fi)
339 struct frame_info *fi;
340 {
341 if (!fi->locals_pointer)
342 {
343 struct frame_saved_regs ignore;
344
345 get_frame_saved_regs (fi, &ignore);
346
347 }
348 return fi->locals_pointer;
349 }
350
351 /* Return the address of the argument block for the frame
352 described by FI. Returns 0 if the address is unknown. */
353
354 CORE_ADDR
355 frame_args_address (fi)
356 struct frame_info *fi;
357 {
358 if (!fi->args_pointer)
359 {
360 struct frame_saved_regs ignore;
361
362 get_frame_saved_regs (fi, &ignore);
363
364 }
365
366 return fi->args_pointer;
367 }
368
369 void
370 h8300_pop_frame ()
371 {
372 unsigned regnum;
373 struct frame_saved_regs fsr;
374 struct frame_info *frame = get_current_frame ();
375
376 get_frame_saved_regs (frame, &fsr);
377
378 for (regnum = 0; regnum < 8; regnum++)
379 {
380 if (fsr.regs[regnum])
381 write_register (regnum, read_memory_integer(fsr.regs[regnum]), BINWORD);
382
383 flush_cached_frames ();
384 }
385 }
386
387
388 struct cmd_list_element *setmemorylist;
389
390 static void
391 h8300_command(args, from_tty)
392 {
393 extern int h8300hmode;
394 h8300hmode = 0;
395 }
396
397 static void
398 h8300h_command(args, from_tty)
399 {
400 extern int h8300hmode;
401 h8300hmode = 1;
402 }
403
404 static void
405 set_machine (args, from_tty)
406 char *args;
407 int from_tty;
408 {
409 printf_unfiltered ("\"set machine\" must be followed by h8300 or h8300h.\n");
410 help_list (setmemorylist, "set memory ", -1, gdb_stdout);
411 }
412
413 void
414 _initialize_h8300m ()
415 {
416 add_prefix_cmd ("machine", no_class, set_machine,
417 "set the machine type", &setmemorylist, "set machine ", 0,
418 &setlist);
419
420 add_cmd ("h8300", class_support, h8300_command,
421 "Set machine to be H8/300.", &setmemorylist);
422
423 add_cmd ("h8300h", class_support, h8300h_command,
424 "Set machine to be H8/300H.", &setmemorylist);
425 }
426
427
428
429 void
430 print_register_hook (regno)
431 {
432 if (regno == 8)
433 {
434 /* CCR register */
435 int C, Z, N, V;
436 unsigned char b[4];
437 unsigned char l;
438 read_relative_register_raw_bytes (regno, b);
439 l = b[REGISTER_VIRTUAL_SIZE(8) -1];
440 printf_unfiltered ("\t");
441 printf_unfiltered ("I-%d - ", (l & 0x80) != 0);
442 printf_unfiltered ("H-%d - ", (l & 0x20) != 0);
443 N = (l & 0x8) != 0;
444 Z = (l & 0x4) != 0;
445 V = (l & 0x2) != 0;
446 C = (l & 0x1) != 0;
447 printf_unfiltered ("N-%d ", N);
448 printf_unfiltered ("Z-%d ", Z);
449 printf_unfiltered ("V-%d ", V);
450 printf_unfiltered ("C-%d ", C);
451 if ((C | Z) == 0)
452 printf_unfiltered ("u> ");
453 if ((C | Z) == 1)
454 printf_unfiltered ("u<= ");
455 if ((C == 0))
456 printf_unfiltered ("u>= ");
457 if (C == 1)
458 printf_unfiltered ("u< ");
459 if (Z == 0)
460 printf_unfiltered ("!= ");
461 if (Z == 1)
462 printf_unfiltered ("== ");
463 if ((N ^ V) == 0)
464 printf_unfiltered (">= ");
465 if ((N ^ V) == 1)
466 printf_unfiltered ("< ");
467 if ((Z | (N ^ V)) == 0)
468 printf_unfiltered ("> ");
469 if ((Z | (N ^ V)) == 1)
470 printf_unfiltered ("<= ");
471 }
472 }
473
474 void
475 _initialize_h8300_tdep ()
476 {
477 tm_print_insn = gdb_print_insn_h8300;
478 }
This page took 0.050547 seconds and 4 git commands to generate.