a50e4bd3786f2ddae04ad82f8a5d102967cb75c9
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Hitachi H8/300, for GDB.
2 Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /*
21 Contributed by Steve Chamberlain
22 sac@cygnus.com
23 */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "obstack.h"
28 #include "symtab.h"
29 #include <dis-asm.h>
30 #include "gdbcmd.h"
31 #include "gdbtypes.h"
32
33 #undef NUM_REGS
34 #define NUM_REGS 11
35
36 #define UNSIGNED_SHORT(X) ((X) & 0xffff)
37
38 /* an easy to debug H8 stack frame looks like:
39 0x6df6 push r6
40 0x0d76 mov.w r7,r6
41 0x6dfn push reg
42 0x7905 nnnn mov.w #n,r5 or 0x1b87 subs #2,sp
43 0x1957 sub.w r5,sp
44
45 */
46
47 #define IS_PUSH(x) ((x & 0xff00)==0x6d00)
48 #define IS_PUSH_FP(x) (x == 0x6df6)
49 #define IS_MOVE_FP(x) (x == 0x0d76)
50 #define IS_MOV_SP_FP(x) (x == 0x0d76)
51 #define IS_SUB2_SP(x) (x==0x1b87)
52 #define IS_MOVK_R5(x) (x==0x7905)
53 #define IS_SUB_R5SP(x) (x==0x1957)
54
55 static CORE_ADDR examine_prologue ();
56
57 void frame_find_saved_regs ();
58 CORE_ADDR
59 h8300_skip_prologue (start_pc)
60 CORE_ADDR start_pc;
61 {
62 short int w;
63
64 w = read_memory_unsigned_integer (start_pc, 2);
65 /* Skip past all push insns */
66 while (IS_PUSH_FP (w))
67 {
68 start_pc += 2;
69 w = read_memory_unsigned_integer (start_pc, 2);
70 }
71
72 /* Skip past a move to FP */
73 if (IS_MOVE_FP (w))
74 {
75 start_pc += 2;
76 w = read_memory_unsigned_integer (start_pc, 2);
77 }
78
79 /* Skip the stack adjust */
80
81 if (IS_MOVK_R5 (w))
82 {
83 start_pc += 2;
84 w = read_memory_unsigned_integer (start_pc, 2);
85 }
86 if (IS_SUB_R5SP (w))
87 {
88 start_pc += 2;
89 w = read_memory_unsigned_integer (start_pc, 2);
90 }
91 while (IS_SUB2_SP (w))
92 {
93 start_pc += 2;
94 w = read_memory_unsigned_integer (start_pc, 2);
95 }
96
97 return start_pc;
98 }
99
100 int
101 print_insn (memaddr, stream)
102 CORE_ADDR memaddr;
103 FILE *stream;
104 {
105 disassemble_info info;
106 GDB_INIT_DISASSEMBLE_INFO(info, stream);
107 if (h8300hmode)
108 return print_insn_h8300h (memaddr, &info);
109 else
110 return print_insn_h8300 (memaddr, &info);
111 }
112
113 /* Given a GDB frame, determine the address of the calling function's frame.
114 This will be used to create a new GDB frame struct, and then
115 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
116
117 For us, the frame address is its stack pointer value, so we look up
118 the function prologue to determine the caller's sp value, and return it. */
119
120 FRAME_ADDR
121 FRAME_CHAIN (thisframe)
122 FRAME thisframe;
123 {
124 frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
125 return thisframe->fsr->regs[SP_REGNUM];
126 }
127
128 /* Put here the code to store, into a struct frame_saved_regs,
129 the addresses of the saved registers of frame described by FRAME_INFO.
130 This includes special registers such as pc and fp saved in special
131 ways in the stack frame. sp is even more special:
132 the address we return for it IS the sp for the next frame.
133
134 We cache the result of doing this in the frame_cache_obstack, since
135 it is fairly expensive. */
136
137 void
138 frame_find_saved_regs (fi, fsr)
139 struct frame_info *fi;
140 struct frame_saved_regs *fsr;
141 {
142 register CORE_ADDR next_addr;
143 register CORE_ADDR *saved_regs;
144 register int regnum;
145 register struct frame_saved_regs *cache_fsr;
146 extern struct obstack frame_cache_obstack;
147 CORE_ADDR ip;
148 struct symtab_and_line sal;
149 CORE_ADDR limit;
150
151 if (!fi->fsr)
152 {
153 cache_fsr = (struct frame_saved_regs *)
154 obstack_alloc (&frame_cache_obstack,
155 sizeof (struct frame_saved_regs));
156 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
157
158 fi->fsr = cache_fsr;
159
160 /* Find the start and end of the function prologue. If the PC
161 is in the function prologue, we only consider the part that
162 has executed already. */
163
164 ip = get_pc_function_start (fi->pc);
165 sal = find_pc_line (ip, 0);
166 limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
167
168 /* This will fill in fields in *fi as well as in cache_fsr. */
169 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
170 }
171
172 if (fsr)
173 *fsr = *fi->fsr;
174 }
175
176 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
177 is not the address of a valid instruction, the address of the next
178 instruction beyond ADDR otherwise. *PWORD1 receives the first word
179 of the instruction.*/
180
181 CORE_ADDR
182 NEXT_PROLOGUE_INSN (addr, lim, pword1)
183 CORE_ADDR addr;
184 CORE_ADDR lim;
185 INSN_WORD *pword1;
186 {
187 char buf[2];
188 if (addr < lim + 8)
189 {
190 read_memory (addr, buf, 2);
191 *pword1 = extract_signed_integer (buf, 2);
192
193 return addr + 2;
194 }
195 return 0;
196 }
197
198 /* Examine the prologue of a function. `ip' points to the first instruction.
199 `limit' is the limit of the prologue (e.g. the addr of the first
200 linenumber, or perhaps the program counter if we're stepping through).
201 `frame_sp' is the stack pointer value in use in this frame.
202 `fsr' is a pointer to a frame_saved_regs structure into which we put
203 info about the registers saved by this frame.
204 `fi' is a struct frame_info pointer; we fill in various fields in it
205 to reflect the offsets of the arg pointer and the locals pointer. */
206
207 static CORE_ADDR
208 examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
209 register CORE_ADDR ip;
210 register CORE_ADDR limit;
211 FRAME_ADDR after_prolog_fp;
212 struct frame_saved_regs *fsr;
213 struct frame_info *fi;
214 {
215 register CORE_ADDR next_ip;
216 int r;
217 int i;
218 int have_fp = 0;
219 register int src;
220 register struct pic_prologue_code *pcode;
221 INSN_WORD insn_word;
222 int size, offset;
223 /* Number of things pushed onto stack, starts at 2/4, 'cause the
224 PC is already there */
225 unsigned int reg_save_depth = h8300hmode ? 4 : 2;
226
227 unsigned int auto_depth = 0; /* Number of bytes of autos */
228
229 char in_frame[11]; /* One for each reg */
230
231 memset (in_frame, 1, 11);
232 for (r = 0; r < 8; r++)
233 {
234 fsr->regs[r] = 0;
235 }
236 if (after_prolog_fp == 0)
237 {
238 after_prolog_fp = read_register (SP_REGNUM);
239 }
240 if (ip == 0 || ip & (h8300hmode ? ~0xffff : ~0xffff))
241 return 0;
242
243 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
244
245 /* Skip over any fp push instructions */
246 fsr->regs[6] = after_prolog_fp;
247 while (next_ip && IS_PUSH_FP (insn_word))
248 {
249 ip = next_ip;
250
251 in_frame[insn_word & 0x7] = reg_save_depth;
252 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
253 reg_save_depth += 2;
254 }
255
256 /* Is this a move into the fp */
257 if (next_ip && IS_MOV_SP_FP (insn_word))
258 {
259 ip = next_ip;
260 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
261 have_fp = 1;
262 }
263
264 /* Skip over any stack adjustment, happens either with a number of
265 sub#2,sp or a mov #x,r5 sub r5,sp */
266
267 if (next_ip && IS_SUB2_SP (insn_word))
268 {
269 while (next_ip && IS_SUB2_SP (insn_word))
270 {
271 auto_depth += 2;
272 ip = next_ip;
273 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
274 }
275 }
276 else
277 {
278 if (next_ip && IS_MOVK_R5 (insn_word))
279 {
280 ip = next_ip;
281 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
282 auto_depth += insn_word;
283
284 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
285 auto_depth += insn_word;
286 }
287 }
288 /* Work out which regs are stored where */
289 while (next_ip && IS_PUSH (insn_word))
290 {
291 ip = next_ip;
292 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
293 fsr->regs[r] = after_prolog_fp + auto_depth;
294 auto_depth += 2;
295 }
296
297 /* The args are always reffed based from the stack pointer */
298 fi->args_pointer = after_prolog_fp;
299 /* Locals are always reffed based from the fp */
300 fi->locals_pointer = after_prolog_fp;
301 /* The PC is at a known place */
302 fi->from_pc = read_memory_unsigned_integer (after_prolog_fp + 2, BINWORD);
303
304 /* Rememeber any others too */
305 in_frame[PC_REGNUM] = 0;
306
307 if (have_fp)
308 /* We keep the old FP in the SP spot */
309 fsr->regs[SP_REGNUM] = read_memory_unsigned_integer (fsr->regs[6], BINWORD);
310 else
311 fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
312
313 return (ip);
314 }
315
316 void
317 init_extra_frame_info (fromleaf, fi)
318 int fromleaf;
319 struct frame_info *fi;
320 {
321 fi->fsr = 0; /* Not yet allocated */
322 fi->args_pointer = 0; /* Unknown */
323 fi->locals_pointer = 0; /* Unknown */
324 fi->from_pc = 0;
325 }
326
327 /* Return the saved PC from this frame.
328
329 If the frame has a memory copy of SRP_REGNUM, use that. If not,
330 just use the register SRP_REGNUM itself. */
331
332 CORE_ADDR
333 frame_saved_pc (frame)
334 FRAME frame;
335 {
336 return frame->from_pc;
337 }
338
339 CORE_ADDR
340 frame_locals_address (fi)
341 struct frame_info *fi;
342 {
343 if (!fi->locals_pointer)
344 {
345 struct frame_saved_regs ignore;
346
347 get_frame_saved_regs (fi, &ignore);
348
349 }
350 return fi->locals_pointer;
351 }
352
353 /* Return the address of the argument block for the frame
354 described by FI. Returns 0 if the address is unknown. */
355
356 CORE_ADDR
357 frame_args_address (fi)
358 struct frame_info *fi;
359 {
360 if (!fi->args_pointer)
361 {
362 struct frame_saved_regs ignore;
363
364 get_frame_saved_regs (fi, &ignore);
365
366 }
367
368 return fi->args_pointer;
369 }
370
371 void
372 h8300_pop_frame ()
373 {
374 unsigned regnum;
375 struct frame_saved_regs fsr;
376 struct frame_info *fi;
377
378 FRAME frame = get_current_frame ();
379
380 fi = get_frame_info (frame);
381 get_frame_saved_regs (fi, &fsr);
382
383 for (regnum = 0; regnum < 8; regnum++)
384 {
385 if (fsr.regs[regnum])
386 {
387 write_register (regnum, read_memory_integer(fsr.regs[regnum]), BINWORD);
388 }
389
390 flush_cached_frames ();
391 set_current_frame (create_new_frame (read_register (FP_REGNUM),
392 read_pc ()));
393 }
394 }
395
396
397 struct cmd_list_element *setmemorylist;
398
399 static void
400 h8300_command(args, from_tty)
401 {
402 extern int h8300hmode;
403 h8300hmode = 0;
404 }
405
406 static void
407 h8300h_command(args, from_tty)
408 {
409 extern int h8300hmode;
410 h8300hmode = 1;
411 }
412
413 static void
414 set_machine (args, from_tty)
415 char *args;
416 int from_tty;
417 {
418 printf ("\"set machine\" must be followed by h8300 or h8300h.\n");
419 help_list (setmemorylist, "set memory ", -1, stdout);
420 }
421
422 void
423 _initialize_h8300m ()
424 {
425 add_prefix_cmd ("machine", no_class, set_machine,
426 "set the machine type", &setmemorylist, "set machine ", 0,
427 &setlist);
428
429 add_cmd ("h8300", class_support, h8300_command,
430 "Set machine to be H8/300.", &setmemorylist);
431
432 add_cmd ("h8300h", class_support, h8300h_command,
433 "Set machine to be H8/300H.", &setmemorylist);
434 }
435
436
437
438 void
439 print_register_hook (regno)
440 {
441 if (regno == 8)
442 {
443 /* CCR register */
444
445 int C, Z, N, V;
446 unsigned char b[2];
447 unsigned char l;
448
449 read_relative_register_raw_bytes (regno, b);
450 l = b[1];
451 printf ("\t");
452 printf ("I-%d - ", (l & 0x80) != 0);
453 printf ("H-%d - ", (l & 0x20) != 0);
454 N = (l & 0x8) != 0;
455 Z = (l & 0x4) != 0;
456 V = (l & 0x2) != 0;
457 C = (l & 0x1) != 0;
458 printf ("N-%d ", N);
459 printf ("Z-%d ", Z);
460 printf ("V-%d ", V);
461 printf ("C-%d ", C);
462 if ((C | Z) == 0)
463 printf ("u> ");
464 if ((C | Z) == 1)
465 printf ("u<= ");
466 if ((C == 0))
467 printf ("u>= ");
468 if (C == 1)
469 printf ("u< ");
470 if (Z == 0)
471 printf ("!= ");
472 if (Z == 1)
473 printf ("== ");
474 if ((N ^ V) == 0)
475 printf (">= ");
476 if ((N ^ V) == 1)
477 printf ("< ");
478 if ((Z | (N ^ V)) == 0)
479 printf ("> ");
480 if ((Z | (N ^ V)) == 1)
481 printf ("<= ");
482 }
483 }
484
This page took 0.062977 seconds and 4 git commands to generate.