* config/mcore/tm-mcore.h: Remove file.
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Hitachi H8/300, for GDB.
2
3 Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
4 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /*
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
26 */
27
28 #include "defs.h"
29 #include "frame.h"
30 #include "obstack.h"
31 #include "symtab.h"
32 #include "dis-asm.h"
33 #include "gdbcmd.h"
34 #include "gdbtypes.h"
35 #include "gdbcore.h"
36 #include "gdb_string.h"
37 #include "value.h"
38 #include "regcache.h"
39
40 extern int h8300hmode, h8300smode;
41
42 #undef NUM_REGS
43 #define NUM_REGS (h8300smode?12:11)
44
45 #define UNSIGNED_SHORT(X) ((X) & 0xffff)
46
47 #define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
48 #define IS_PUSH_FP(x) (x == 0x6df6)
49 #define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
50 #define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
51 #define IS_SUB2_SP(x) (x==0x1b87)
52 #define IS_SUB4_SP(x) (x==0x1b97)
53 #define IS_SUBL_SP(x) (x==0x7a37)
54 #define IS_MOVK_R5(x) (x==0x7905)
55 #define IS_SUB_R5SP(x) (x==0x1957)
56
57 /* The register names change depending on whether the h8300h processor
58 type is selected. */
59
60 static char *original_register_names[] = REGISTER_NAMES;
61
62 static char *h8300h_register_names[] = {
63 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
64 "sp", "ccr", "pc", "cycles", "exr", "tick", "inst"
65 };
66
67 char **h8300_register_names = original_register_names;
68
69 /* Local function declarations. */
70
71 static CORE_ADDR examine_prologue ();
72 static void set_machine_hook (char *filename);
73
74 CORE_ADDR
75 h8300_skip_prologue (CORE_ADDR start_pc)
76 {
77 short int w;
78 int adjust = 0;
79
80 /* Skip past all push and stm insns. */
81 while (1)
82 {
83 w = read_memory_unsigned_integer (start_pc, 2);
84 /* First look for push insns. */
85 if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130)
86 {
87 w = read_memory_unsigned_integer (start_pc + 2, 2);
88 adjust = 2;
89 }
90
91 if (IS_PUSH (w))
92 {
93 start_pc += 2 + adjust;
94 w = read_memory_unsigned_integer (start_pc, 2);
95 continue;
96 }
97 adjust = 0;
98 break;
99 }
100
101 /* Skip past a move to FP, either word or long sized */
102 w = read_memory_unsigned_integer (start_pc, 2);
103 if (w == 0x0100)
104 {
105 w = read_memory_unsigned_integer (start_pc + 2, 2);
106 adjust += 2;
107 }
108
109 if (IS_MOVE_FP (w))
110 {
111 start_pc += 2 + adjust;
112 w = read_memory_unsigned_integer (start_pc, 2);
113 }
114
115 /* Check for loading either a word constant into r5;
116 long versions are handled by the SUBL_SP below. */
117 if (IS_MOVK_R5 (w))
118 {
119 start_pc += 2;
120 w = read_memory_unsigned_integer (start_pc, 2);
121 }
122
123 /* Now check for subtracting r5 from sp, word sized only. */
124 if (IS_SUB_R5SP (w))
125 {
126 start_pc += 2 + adjust;
127 w = read_memory_unsigned_integer (start_pc, 2);
128 }
129
130 /* Check for subs #2 and subs #4. */
131 while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
132 {
133 start_pc += 2 + adjust;
134 w = read_memory_unsigned_integer (start_pc, 2);
135 }
136
137 /* Check for a 32bit subtract. */
138 if (IS_SUBL_SP (w))
139 start_pc += 6 + adjust;
140
141 return start_pc;
142 }
143
144 int
145 gdb_print_insn_h8300 (bfd_vma memaddr, disassemble_info *info)
146 {
147 if (h8300smode)
148 return print_insn_h8300s (memaddr, info);
149 else if (h8300hmode)
150 return print_insn_h8300h (memaddr, info);
151 else
152 return print_insn_h8300 (memaddr, info);
153 }
154
155 /* Given a GDB frame, determine the address of the calling function's frame.
156 This will be used to create a new GDB frame struct, and then
157 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
158
159 For us, the frame address is its stack pointer value, so we look up
160 the function prologue to determine the caller's sp value, and return it. */
161
162 CORE_ADDR
163 h8300_frame_chain (struct frame_info *thisframe)
164 {
165 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
166 { /* initialize the from_pc now */
167 thisframe->from_pc = generic_read_register_dummy (thisframe->pc,
168 thisframe->frame,
169 PC_REGNUM);
170 return thisframe->frame;
171 }
172 h8300_frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
173 return thisframe->fsr->regs[SP_REGNUM];
174 }
175
176 /* Put here the code to store, into a struct frame_saved_regs,
177 the addresses of the saved registers of frame described by FRAME_INFO.
178 This includes special registers such as pc and fp saved in special
179 ways in the stack frame. sp is even more special:
180 the address we return for it IS the sp for the next frame.
181
182 We cache the result of doing this in the frame_obstack, since it is
183 fairly expensive. */
184
185 void
186 h8300_frame_find_saved_regs (struct frame_info *fi,
187 struct frame_saved_regs *fsr)
188 {
189 register struct frame_saved_regs *cache_fsr;
190 CORE_ADDR ip;
191 struct symtab_and_line sal;
192 CORE_ADDR limit;
193
194 if (!fi->fsr)
195 {
196 cache_fsr = (struct frame_saved_regs *)
197 frame_obstack_alloc (sizeof (struct frame_saved_regs));
198 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
199
200 fi->fsr = cache_fsr;
201
202 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
203 { /* no more to do. */
204 if (fsr)
205 *fsr = *fi->fsr;
206 return;
207 }
208 /* Find the start and end of the function prologue. If the PC
209 is in the function prologue, we only consider the part that
210 has executed already. */
211
212 ip = get_pc_function_start (fi->pc);
213 sal = find_pc_line (ip, 0);
214 limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
215
216 /* This will fill in fields in *fi as well as in cache_fsr. */
217 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
218 }
219
220 if (fsr)
221 *fsr = *fi->fsr;
222 }
223
224 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
225 is not the address of a valid instruction, the address of the next
226 instruction beyond ADDR otherwise. *PWORD1 receives the first word
227 of the instruction. */
228
229 CORE_ADDR
230 NEXT_PROLOGUE_INSN (CORE_ADDR addr, CORE_ADDR lim, INSN_WORD *pword1)
231 {
232 char buf[2];
233 if (addr < lim + 8)
234 {
235 read_memory (addr, buf, 2);
236 *pword1 = extract_signed_integer (buf, 2);
237
238 return addr + 2;
239 }
240 return 0;
241 }
242
243 /* Examine the prologue of a function. `ip' points to the first instruction.
244 `limit' is the limit of the prologue (e.g. the addr of the first
245 linenumber, or perhaps the program counter if we're stepping through).
246 `frame_sp' is the stack pointer value in use in this frame.
247 `fsr' is a pointer to a frame_saved_regs structure into which we put
248 info about the registers saved by this frame.
249 `fi' is a struct frame_info pointer; we fill in various fields in it
250 to reflect the offsets of the arg pointer and the locals pointer. */
251
252 static CORE_ADDR
253 examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
254 CORE_ADDR after_prolog_fp, struct frame_saved_regs *fsr,
255 struct frame_info *fi)
256 {
257 register CORE_ADDR next_ip;
258 int r;
259 int have_fp = 0;
260 INSN_WORD insn_word;
261 /* Number of things pushed onto stack, starts at 2/4, 'cause the
262 PC is already there */
263 unsigned int reg_save_depth = h8300hmode ? 4 : 2;
264
265 unsigned int auto_depth = 0; /* Number of bytes of autos */
266
267 char in_frame[11]; /* One for each reg */
268
269 int adjust = 0;
270
271 memset (in_frame, 1, 11);
272 for (r = 0; r < 8; r++)
273 {
274 fsr->regs[r] = 0;
275 }
276 if (after_prolog_fp == 0)
277 {
278 after_prolog_fp = read_register (SP_REGNUM);
279 }
280
281 /* If the PC isn't valid, quit now. */
282 if (ip == 0 || ip & (h8300hmode ? ~0xffffff : ~0xffff))
283 return 0;
284
285 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
286
287 if (insn_word == 0x0100)
288 {
289 insn_word = read_memory_unsigned_integer (ip + 2, 2);
290 adjust = 2;
291 }
292
293 /* Skip over any fp push instructions */
294 fsr->regs[6] = after_prolog_fp;
295 while (next_ip && IS_PUSH_FP (insn_word))
296 {
297 ip = next_ip + adjust;
298
299 in_frame[insn_word & 0x7] = reg_save_depth;
300 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
301 reg_save_depth += 2 + adjust;
302 }
303
304 /* Is this a move into the fp */
305 if (next_ip && IS_MOV_SP_FP (insn_word))
306 {
307 ip = next_ip;
308 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
309 have_fp = 1;
310 }
311
312 /* Skip over any stack adjustment, happens either with a number of
313 sub#2,sp or a mov #x,r5 sub r5,sp */
314
315 if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
316 {
317 while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
318 {
319 auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
320 ip = next_ip;
321 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
322 }
323 }
324 else
325 {
326 if (next_ip && IS_MOVK_R5 (insn_word))
327 {
328 ip = next_ip;
329 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
330 auto_depth += insn_word;
331
332 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
333 auto_depth += insn_word;
334 }
335 if (next_ip && IS_SUBL_SP (insn_word))
336 {
337 ip = next_ip;
338 auto_depth += read_memory_unsigned_integer (ip, 4);
339 ip += 4;
340
341 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
342 }
343 }
344
345 /* Now examine the push insns to determine where everything lives
346 on the stack. */
347 while (1)
348 {
349 adjust = 0;
350 if (!next_ip)
351 break;
352
353 if (insn_word == 0x0100)
354 {
355 ip = next_ip;
356 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
357 adjust = 2;
358 }
359
360 if (IS_PUSH (insn_word))
361 {
362 ip = next_ip;
363 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
364 fsr->regs[r] = after_prolog_fp + auto_depth;
365 auto_depth += 2 + adjust;
366 continue;
367 }
368
369 /* Now check for push multiple insns. */
370 if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130)
371 {
372 int count = ((insn_word >> 4) & 0xf) + 1;
373 int start, i;
374
375 ip = next_ip;
376 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
377 start = insn_word & 0x7;
378
379 for (i = start; i <= start + count; i++)
380 {
381 fsr->regs[i] = after_prolog_fp + auto_depth;
382 auto_depth += 4;
383 }
384 }
385 break;
386 }
387
388 /* The args are always reffed based from the stack pointer */
389 fi->args_pointer = after_prolog_fp;
390 /* Locals are always reffed based from the fp */
391 fi->locals_pointer = after_prolog_fp;
392 /* The PC is at a known place */
393 fi->from_pc = read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
394
395 /* Rememeber any others too */
396 in_frame[PC_REGNUM] = 0;
397
398 if (have_fp)
399 /* We keep the old FP in the SP spot */
400 fsr->regs[SP_REGNUM] = read_memory_unsigned_integer (fsr->regs[6], BINWORD);
401 else
402 fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
403
404 return (ip);
405 }
406
407 void
408 h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
409 {
410 fi->fsr = 0; /* Not yet allocated */
411 fi->args_pointer = 0; /* Unknown */
412 fi->locals_pointer = 0; /* Unknown */
413 fi->from_pc = 0;
414 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
415 { /* anything special to do? */
416 return;
417 }
418 }
419
420 /* Return the saved PC from this frame.
421
422 If the frame has a memory copy of SRP_REGNUM, use that. If not,
423 just use the register SRP_REGNUM itself. */
424
425 CORE_ADDR
426 h8300_frame_saved_pc (struct frame_info *frame)
427 {
428 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
429 return generic_read_register_dummy (frame->pc, frame->frame, PC_REGNUM);
430 else
431 return frame->from_pc;
432 }
433
434 CORE_ADDR
435 h8300_frame_locals_address (struct frame_info *fi)
436 {
437 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
438 return (CORE_ADDR) 0; /* Not sure what else to do... */
439 if (!fi->locals_pointer)
440 {
441 struct frame_saved_regs ignore;
442
443 get_frame_saved_regs (fi, &ignore);
444
445 }
446 return fi->locals_pointer;
447 }
448
449 /* Return the address of the argument block for the frame
450 described by FI. Returns 0 if the address is unknown. */
451
452 CORE_ADDR
453 h8300_frame_args_address (struct frame_info *fi)
454 {
455 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
456 return (CORE_ADDR) 0; /* Not sure what else to do... */
457 if (!fi->args_pointer)
458 {
459 struct frame_saved_regs ignore;
460
461 get_frame_saved_regs (fi, &ignore);
462
463 }
464
465 return fi->args_pointer;
466 }
467
468 /* Function: push_arguments
469 Setup the function arguments for calling a function in the inferior.
470
471 On the Hitachi H8/300 architecture, there are three registers (R0 to R2)
472 which are dedicated for passing function arguments. Up to the first
473 three arguments (depending on size) may go into these registers.
474 The rest go on the stack.
475
476 Arguments that are smaller than WORDSIZE bytes will still take up a
477 whole register or a whole WORDSIZE word on the stack, and will be
478 right-justified in the register or the stack word. This includes
479 chars and small aggregate types. Note that WORDSIZE depends on the
480 cpu type.
481
482 Arguments that are larger than WORDSIZE bytes will be split between
483 two or more registers as available, but will NOT be split between a
484 register and the stack.
485
486 An exceptional case exists for struct arguments (and possibly other
487 aggregates such as arrays) -- if the size is larger than WORDSIZE
488 bytes but not a multiple of WORDSIZE bytes. In this case the
489 argument is never split between the registers and the stack, but
490 instead is copied in its entirety onto the stack, AND also copied
491 into as many registers as there is room for. In other words, space
492 in registers permitting, two copies of the same argument are passed
493 in. As far as I can tell, only the one on the stack is used,
494 although that may be a function of the level of compiler
495 optimization. I suspect this is a compiler bug. Arguments of
496 these odd sizes are left-justified within the word (as opposed to
497 arguments smaller than WORDSIZE bytes, which are right-justified).
498
499 If the function is to return an aggregate type such as a struct,
500 the caller must allocate space into which the callee will copy the
501 return value. In this case, a pointer to the return value location
502 is passed into the callee in register R0, which displaces one of
503 the other arguments passed in via registers R0 to R2. */
504
505 CORE_ADDR
506 h8300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
507 unsigned char struct_return, CORE_ADDR struct_addr)
508 {
509 int stack_align, stack_alloc, stack_offset;
510 int wordsize;
511 int argreg;
512 int argnum;
513 struct type *type;
514 CORE_ADDR regval;
515 char *val;
516 char valbuf[4];
517 int len;
518
519 if (h8300hmode || h8300smode)
520 {
521 stack_align = 3;
522 wordsize = 4;
523 }
524 else
525 {
526 stack_align = 1;
527 wordsize = 2;
528 }
529
530 /* first force sp to a n-byte alignment */
531 sp = sp & ~stack_align;
532
533 /* Now make sure there's space on the stack */
534 for (argnum = 0, stack_alloc = 0;
535 argnum < nargs; argnum++)
536 stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + stack_align)
537 & ~stack_align);
538 sp -= stack_alloc; /* make room on stack for args */
539 /* we may over-allocate a little here, but that won't hurt anything */
540
541 argreg = ARG0_REGNUM;
542 if (struct_return) /* "struct return" pointer takes up one argreg */
543 {
544 write_register (argreg++, struct_addr);
545 }
546
547 /* Now load as many as possible of the first arguments into
548 registers, and push the rest onto the stack. There are 3N bytes
549 in three registers available. Loop thru args from first to last. */
550
551 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
552 {
553 type = VALUE_TYPE (args[argnum]);
554 len = TYPE_LENGTH (type);
555 memset (valbuf, 0, sizeof (valbuf));
556 if (len < wordsize)
557 {
558 /* the purpose of this is to right-justify the value within the word */
559 memcpy (valbuf + (wordsize - len),
560 (char *) VALUE_CONTENTS (args[argnum]), len);
561 val = valbuf;
562 }
563 else
564 val = (char *) VALUE_CONTENTS (args[argnum]);
565
566 if (len > (ARGLAST_REGNUM + 1 - argreg) * REGISTER_RAW_SIZE (ARG0_REGNUM) ||
567 (len > wordsize && (len & stack_align) != 0))
568 { /* passed on the stack */
569 write_memory (sp + stack_offset, val,
570 len < wordsize ? wordsize : len);
571 stack_offset += (len + stack_align) & ~stack_align;
572 }
573 /* NOTE WELL!!!!! This is not an "else if" clause!!!
574 That's because some *&^%$ things get passed on the stack
575 AND in the registers! */
576 if (len <= (ARGLAST_REGNUM + 1 - argreg) * REGISTER_RAW_SIZE (ARG0_REGNUM))
577 while (len > 0)
578 { /* there's room in registers */
579 regval = extract_address (val, wordsize);
580 write_register (argreg, regval);
581 len -= wordsize;
582 val += wordsize;
583 argreg++;
584 }
585 }
586 return sp;
587 }
588
589 /* Function: push_return_address
590 Setup the return address for a dummy frame, as called by
591 call_function_by_hand. Only necessary when you are using an
592 empty CALL_DUMMY, ie. the target will not actually be executing
593 a JSR/BSR instruction. */
594
595 CORE_ADDR
596 h8300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
597 {
598 unsigned char buf[4];
599 int wordsize;
600
601 if (h8300hmode || h8300smode)
602 wordsize = 4;
603 else
604 wordsize = 2;
605
606 sp -= wordsize;
607 store_unsigned_integer (buf, wordsize, CALL_DUMMY_ADDRESS ());
608 write_memory (sp, buf, wordsize);
609 return sp;
610 }
611
612 /* Function: h8300_pop_frame
613 Restore the machine to the state it had before the current frame
614 was created. Usually used either by the "RETURN" command, or by
615 call_function_by_hand after the dummy_frame is finished. */
616
617 void
618 h8300_pop_frame (void)
619 {
620 unsigned regnum;
621 struct frame_saved_regs fsr;
622 struct frame_info *frame = get_current_frame ();
623
624 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
625 {
626 generic_pop_dummy_frame ();
627 }
628 else
629 {
630 get_frame_saved_regs (frame, &fsr);
631
632 for (regnum = 0; regnum < 8; regnum++)
633 {
634 /* Don't forget SP_REGNUM is a frame_saved_regs struct is the
635 actual value we want, not the address of the value we want. */
636 if (fsr.regs[regnum] && regnum != SP_REGNUM)
637 write_register (regnum,
638 read_memory_integer (fsr.regs[regnum], BINWORD));
639 else if (fsr.regs[regnum] && regnum == SP_REGNUM)
640 write_register (regnum, frame->frame + 2 * BINWORD);
641 }
642
643 /* Don't forget the update the PC too! */
644 write_pc (frame->from_pc);
645 }
646 flush_cached_frames ();
647 }
648
649 /* Function: extract_return_value
650 Figure out where in REGBUF the called function has left its return value.
651 Copy that into VALBUF. Be sure to account for CPU type. */
652
653 void
654 h8300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
655 {
656 int wordsize, len;
657
658 if (h8300smode || h8300hmode)
659 wordsize = 4;
660 else
661 wordsize = 2;
662
663 len = TYPE_LENGTH (type);
664
665 switch (len)
666 {
667 case 1: /* (char) */
668 case 2: /* (short), (int) */
669 memcpy (valbuf, regbuf + REGISTER_BYTE (0) + (wordsize - len), len);
670 break;
671 case 4: /* (long), (float) */
672 if (h8300smode || h8300hmode)
673 {
674 memcpy (valbuf, regbuf + REGISTER_BYTE (0), 4);
675 }
676 else
677 {
678 memcpy (valbuf, regbuf + REGISTER_BYTE (0), 2);
679 memcpy (valbuf + 2, regbuf + REGISTER_BYTE (1), 2);
680 }
681 break;
682 case 8: /* (double) (doesn't seem to happen, which is good,
683 because this almost certainly isn't right. */
684 error ("I don't know how a double is returned.");
685 break;
686 }
687 }
688
689 /* Function: store_return_value
690 Place the appropriate value in the appropriate registers.
691 Primarily used by the RETURN command. */
692
693 void
694 h8300_store_return_value (struct type *type, char *valbuf)
695 {
696 int wordsize, len, regval;
697
698 if (h8300hmode || h8300smode)
699 wordsize = 4;
700 else
701 wordsize = 2;
702
703 len = TYPE_LENGTH (type);
704 switch (len)
705 {
706 case 1: /* char */
707 case 2: /* short, int */
708 regval = extract_address (valbuf, len);
709 write_register (0, regval);
710 break;
711 case 4: /* long, float */
712 regval = extract_address (valbuf, len);
713 if (h8300smode || h8300hmode)
714 {
715 write_register (0, regval);
716 }
717 else
718 {
719 write_register (0, regval >> 16);
720 write_register (1, regval & 0xffff);
721 }
722 break;
723 case 8: /* presumeably double, but doesn't seem to happen */
724 error ("I don't know how to return a double.");
725 break;
726 }
727 }
728
729 struct cmd_list_element *setmemorylist;
730
731 static void
732 set_register_names (void)
733 {
734 if (h8300hmode != 0)
735 h8300_register_names = h8300h_register_names;
736 else
737 h8300_register_names = original_register_names;
738 }
739
740 static void
741 h8300_command (char *args, int from_tty)
742 {
743 extern int h8300hmode;
744 h8300hmode = 0;
745 h8300smode = 0;
746 set_register_names ();
747 }
748
749 static void
750 h8300h_command (char *args, int from_tty)
751 {
752 extern int h8300hmode;
753 h8300hmode = 1;
754 h8300smode = 0;
755 set_register_names ();
756 }
757
758 static void
759 h8300s_command (char *args, int from_tty)
760 {
761 extern int h8300smode;
762 extern int h8300hmode;
763 h8300smode = 1;
764 h8300hmode = 1;
765 set_register_names ();
766 }
767
768 static void
769 set_machine (char *args, int from_tty)
770 {
771 printf_unfiltered ("\"set machine\" must be followed by h8300, h8300h");
772 printf_unfiltered ("or h8300s");
773 help_list (setmemorylist, "set memory ", -1, gdb_stdout);
774 }
775
776 /* set_machine_hook is called as the exec file is being opened, but
777 before the symbol file is opened. This allows us to set the
778 h8300hmode flag based on the machine type specified in the exec
779 file. This in turn will cause subsequently defined pointer types
780 to be 16 or 32 bits as appropriate for the machine. */
781
782 static void
783 set_machine_hook (char *filename)
784 {
785 if (bfd_get_mach (exec_bfd) == bfd_mach_h8300s)
786 {
787 h8300smode = 1;
788 h8300hmode = 1;
789 }
790 else if (bfd_get_mach (exec_bfd) == bfd_mach_h8300h)
791 {
792 h8300smode = 0;
793 h8300hmode = 1;
794 }
795 else
796 {
797 h8300smode = 0;
798 h8300hmode = 0;
799 }
800 set_register_names ();
801 }
802
803 void
804 _initialize_h8300m (void)
805 {
806 add_prefix_cmd ("machine", no_class, set_machine,
807 "set the machine type",
808 &setmemorylist, "set machine ", 0,
809 &setlist);
810
811 add_cmd ("h8300", class_support, h8300_command,
812 "Set machine to be H8/300.", &setmemorylist);
813
814 add_cmd ("h8300h", class_support, h8300h_command,
815 "Set machine to be H8/300H.", &setmemorylist);
816
817 add_cmd ("h8300s", class_support, h8300s_command,
818 "Set machine to be H8/300S.", &setmemorylist);
819
820 /* Add a hook to set the machine type when we're loading a file. */
821
822 specify_exec_file_hook (set_machine_hook);
823 }
824
825 void
826 h8300_print_register_hook (int regno)
827 {
828 if (regno == CCR_REGNUM)
829 {
830 /* CCR register */
831 int C, Z, N, V;
832 unsigned char b[REGISTER_SIZE];
833 unsigned char l;
834 frame_register_read (selected_frame, regno, b);
835 l = b[REGISTER_VIRTUAL_SIZE (CCR_REGNUM) - 1];
836 printf_unfiltered ("\t");
837 printf_unfiltered ("I-%d ", (l & 0x80) != 0);
838 printf_unfiltered ("UI-%d ", (l & 0x40) != 0);
839 printf_unfiltered ("H-%d ", (l & 0x20) != 0);
840 printf_unfiltered ("U-%d ", (l & 0x10) != 0);
841 N = (l & 0x8) != 0;
842 Z = (l & 0x4) != 0;
843 V = (l & 0x2) != 0;
844 C = (l & 0x1) != 0;
845 printf_unfiltered ("N-%d ", N);
846 printf_unfiltered ("Z-%d ", Z);
847 printf_unfiltered ("V-%d ", V);
848 printf_unfiltered ("C-%d ", C);
849 if ((C | Z) == 0)
850 printf_unfiltered ("u> ");
851 if ((C | Z) == 1)
852 printf_unfiltered ("u<= ");
853 if ((C == 0))
854 printf_unfiltered ("u>= ");
855 if (C == 1)
856 printf_unfiltered ("u< ");
857 if (Z == 0)
858 printf_unfiltered ("!= ");
859 if (Z == 1)
860 printf_unfiltered ("== ");
861 if ((N ^ V) == 0)
862 printf_unfiltered (">= ");
863 if ((N ^ V) == 1)
864 printf_unfiltered ("< ");
865 if ((Z | (N ^ V)) == 0)
866 printf_unfiltered ("> ");
867 if ((Z | (N ^ V)) == 1)
868 printf_unfiltered ("<= ");
869 }
870
871 if (regno == EXR_REGNUM && h8300smode)
872 {
873 /* EXR register */
874 unsigned char b[REGISTER_SIZE];
875 unsigned char l;
876 frame_register_read (selected_frame, regno, b);
877 l = b[REGISTER_VIRTUAL_SIZE (EXR_REGNUM) - 1];
878 printf_unfiltered ("\t");
879 printf_unfiltered ("T-%d - - - ", (l & 0x80) != 0);
880 printf_unfiltered ("I2-%d ", (l & 4) != 0);
881 printf_unfiltered ("I1-%d ", (l & 2) != 0);
882 printf_unfiltered ("I0-%d", (l & 1) != 0);
883 }
884 }
885
886 void
887 _initialize_h8300_tdep (void)
888 {
889 tm_print_insn = gdb_print_insn_h8300;
890 }
This page took 0.050427 seconds and 4 git commands to generate.