C++: dlsym casts in gdb/linux-thread-db.c and gdb/gdbserver/thread-db.c
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Renesas H8/300, for GDB.
2
3 Copyright (C) 1988-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /*
21 Contributed by Steve Chamberlain
22 sac@cygnus.com
23 */
24
25 #include "defs.h"
26 #include "value.h"
27 #include "arch-utils.h"
28 #include "regcache.h"
29 #include "gdbcore.h"
30 #include "objfiles.h"
31 #include "dis-asm.h"
32 #include "dwarf2-frame.h"
33 #include "frame-base.h"
34 #include "frame-unwind.h"
35
36 enum gdb_regnum
37 {
38 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
39 E_RET0_REGNUM = E_R0_REGNUM,
40 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
41 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
42 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
43 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
44 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
45 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
46 E_SP_REGNUM,
47 E_CCR_REGNUM,
48 E_PC_REGNUM,
49 E_CYCLES_REGNUM,
50 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
51 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
52 E_INSTS_REGNUM,
53 E_MACH_REGNUM,
54 E_MACL_REGNUM,
55 E_SBR_REGNUM,
56 E_VBR_REGNUM
57 };
58
59 #define H8300_MAX_NUM_REGS 18
60
61 #define E_PSEUDO_CCR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch))
62 #define E_PSEUDO_EXR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch)+1)
63
64 struct h8300_frame_cache
65 {
66 /* Base address. */
67 CORE_ADDR base;
68 CORE_ADDR sp_offset;
69 CORE_ADDR pc;
70
71 /* Flag showing that a frame has been created in the prologue code. */
72 int uses_fp;
73
74 /* Saved registers. */
75 CORE_ADDR saved_regs[H8300_MAX_NUM_REGS];
76 CORE_ADDR saved_sp;
77 };
78
79 enum
80 {
81 h8300_reg_size = 2,
82 h8300h_reg_size = 4,
83 h8300_max_reg_size = 4,
84 };
85
86 static int is_h8300hmode (struct gdbarch *gdbarch);
87 static int is_h8300smode (struct gdbarch *gdbarch);
88 static int is_h8300sxmode (struct gdbarch *gdbarch);
89 static int is_h8300_normal_mode (struct gdbarch *gdbarch);
90
91 #define BINWORD(gdbarch) ((is_h8300hmode (gdbarch) \
92 && !is_h8300_normal_mode (gdbarch)) \
93 ? h8300h_reg_size : h8300_reg_size)
94
95 static CORE_ADDR
96 h8300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
97 {
98 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
99 }
100
101 static CORE_ADDR
102 h8300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
103 {
104 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
105 }
106
107 static struct frame_id
108 h8300_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
109 {
110 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
111 return frame_id_build (sp, get_frame_pc (this_frame));
112 }
113
114 /* Normal frames. */
115
116 /* Allocate and initialize a frame cache. */
117
118 static void
119 h8300_init_frame_cache (struct gdbarch *gdbarch,
120 struct h8300_frame_cache *cache)
121 {
122 int i;
123
124 /* Base address. */
125 cache->base = 0;
126 cache->sp_offset = 0;
127 cache->pc = 0;
128
129 /* Frameless until proven otherwise. */
130 cache->uses_fp = 0;
131
132 /* Saved registers. We initialize these to -1 since zero is a valid
133 offset (that's where %fp is supposed to be stored). */
134 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
135 cache->saved_regs[i] = -1;
136 }
137
138 #define IS_MOVB_RnRm(x) (((x) & 0xff88) == 0x0c88)
139 #define IS_MOVW_RnRm(x) (((x) & 0xff88) == 0x0d00)
140 #define IS_MOVL_RnRm(x) (((x) & 0xff88) == 0x0f80)
141 #define IS_MOVB_Rn16_SP(x) (((x) & 0xfff0) == 0x6ee0)
142 #define IS_MOVB_EXT(x) ((x) == 0x7860)
143 #define IS_MOVB_Rn24_SP(x) (((x) & 0xfff0) == 0x6aa0)
144 #define IS_MOVW_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
145 #define IS_MOVW_EXT(x) ((x) == 0x78e0)
146 #define IS_MOVW_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
147 /* Same instructions as mov.w, just prefixed with 0x0100. */
148 #define IS_MOVL_PRE(x) ((x) == 0x0100)
149 #define IS_MOVL_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
150 #define IS_MOVL_EXT(x) ((x) == 0x78e0)
151 #define IS_MOVL_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
152
153 #define IS_PUSHFP_MOVESPFP(x) ((x) == 0x6df60d76)
154 #define IS_PUSH_FP(x) ((x) == 0x01006df6)
155 #define IS_MOV_SP_FP(x) ((x) == 0x0ff6)
156 #define IS_SUB2_SP(x) ((x) == 0x1b87)
157 #define IS_SUB4_SP(x) ((x) == 0x1b97)
158 #define IS_ADD_IMM_SP(x) ((x) == 0x7a1f)
159 #define IS_SUB_IMM_SP(x) ((x) == 0x7a3f)
160 #define IS_SUBL4_SP(x) ((x) == 0x1acf)
161 #define IS_MOV_IMM_Rn(x) (((x) & 0xfff0) == 0x7905)
162 #define IS_SUB_RnSP(x) (((x) & 0xff0f) == 0x1907)
163 #define IS_ADD_RnSP(x) (((x) & 0xff0f) == 0x0907)
164 #define IS_PUSH(x) (((x) & 0xfff0) == 0x6df0)
165
166 /* If the instruction at PC is an argument register spill, return its
167 length. Otherwise, return zero.
168
169 An argument register spill is an instruction that moves an argument
170 from the register in which it was passed to the stack slot in which
171 it really lives. It is a byte, word, or longword move from an
172 argument register to a negative offset from the frame pointer.
173
174 CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
175 is used, it could be a byte, word or long move to registers r3-r5. */
176
177 static int
178 h8300_is_argument_spill (struct gdbarch *gdbarch, CORE_ADDR pc)
179 {
180 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
181 int w = read_memory_unsigned_integer (pc, 2, byte_order);
182
183 if ((IS_MOVB_RnRm (w) || IS_MOVW_RnRm (w) || IS_MOVL_RnRm (w))
184 && (w & 0x70) <= 0x20 /* Rs is R0, R1 or R2 */
185 && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5) /* Rd is R3, R4 or R5 */
186 return 2;
187
188 if (IS_MOVB_Rn16_SP (w)
189 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
190 {
191 /* ... and d:16 is negative. */
192 if (read_memory_integer (pc + 2, 2, byte_order) < 0)
193 return 4;
194 }
195 else if (IS_MOVB_EXT (w))
196 {
197 if (IS_MOVB_Rn24_SP (read_memory_unsigned_integer (pc + 2,
198 2, byte_order)))
199 {
200 LONGEST disp = read_memory_integer (pc + 4, 4, byte_order);
201
202 /* ... and d:24 is negative. */
203 if (disp < 0 && disp > 0xffffff)
204 return 8;
205 }
206 }
207 else if (IS_MOVW_Rn16_SP (w)
208 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
209 {
210 /* ... and d:16 is negative. */
211 if (read_memory_integer (pc + 2, 2, byte_order) < 0)
212 return 4;
213 }
214 else if (IS_MOVW_EXT (w))
215 {
216 if (IS_MOVW_Rn24_SP (read_memory_unsigned_integer (pc + 2,
217 2, byte_order)))
218 {
219 LONGEST disp = read_memory_integer (pc + 4, 4, byte_order);
220
221 /* ... and d:24 is negative. */
222 if (disp < 0 && disp > 0xffffff)
223 return 8;
224 }
225 }
226 else if (IS_MOVL_PRE (w))
227 {
228 int w2 = read_memory_integer (pc + 2, 2, byte_order);
229
230 if (IS_MOVL_Rn16_SP (w2)
231 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
232 {
233 /* ... and d:16 is negative. */
234 if (read_memory_integer (pc + 4, 2, byte_order) < 0)
235 return 6;
236 }
237 else if (IS_MOVL_EXT (w2))
238 {
239 int w3 = read_memory_integer (pc + 4, 2, byte_order);
240
241 if (IS_MOVL_Rn24_SP (read_memory_integer (pc + 4, 2, byte_order)))
242 {
243 LONGEST disp = read_memory_integer (pc + 6, 4, byte_order);
244
245 /* ... and d:24 is negative. */
246 if (disp < 0 && disp > 0xffffff)
247 return 10;
248 }
249 }
250 }
251
252 return 0;
253 }
254
255 /* Do a full analysis of the prologue at PC and update CACHE
256 accordingly. Bail out early if CURRENT_PC is reached. Return the
257 address where the analysis stopped.
258
259 We handle all cases that can be generated by gcc.
260
261 For allocating a stack frame:
262
263 mov.w r6,@-sp
264 mov.w sp,r6
265 mov.w #-n,rN
266 add.w rN,sp
267
268 mov.w r6,@-sp
269 mov.w sp,r6
270 subs #2,sp
271 (repeat)
272
273 mov.l er6,@-sp
274 mov.l sp,er6
275 add.l #-n,sp
276
277 mov.w r6,@-sp
278 mov.w sp,r6
279 subs #4,sp
280 (repeat)
281
282 For saving registers:
283
284 mov.w rN,@-sp
285 mov.l erN,@-sp
286 stm.l reglist,@-sp
287
288 */
289
290 static CORE_ADDR
291 h8300_analyze_prologue (struct gdbarch *gdbarch,
292 CORE_ADDR pc, CORE_ADDR current_pc,
293 struct h8300_frame_cache *cache)
294 {
295 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
296 unsigned int op;
297 int regno, i, spill_size;
298
299 cache->sp_offset = 0;
300
301 if (pc >= current_pc)
302 return current_pc;
303
304 op = read_memory_unsigned_integer (pc, 4, byte_order);
305
306 if (IS_PUSHFP_MOVESPFP (op))
307 {
308 cache->saved_regs[E_FP_REGNUM] = 0;
309 cache->uses_fp = 1;
310 pc += 4;
311 }
312 else if (IS_PUSH_FP (op))
313 {
314 cache->saved_regs[E_FP_REGNUM] = 0;
315 pc += 4;
316 if (pc >= current_pc)
317 return current_pc;
318 op = read_memory_unsigned_integer (pc, 2, byte_order);
319 if (IS_MOV_SP_FP (op))
320 {
321 cache->uses_fp = 1;
322 pc += 2;
323 }
324 }
325
326 while (pc < current_pc)
327 {
328 op = read_memory_unsigned_integer (pc, 2, byte_order);
329 if (IS_SUB2_SP (op))
330 {
331 cache->sp_offset += 2;
332 pc += 2;
333 }
334 else if (IS_SUB4_SP (op))
335 {
336 cache->sp_offset += 4;
337 pc += 2;
338 }
339 else if (IS_ADD_IMM_SP (op))
340 {
341 cache->sp_offset += -read_memory_integer (pc + 2, 2, byte_order);
342 pc += 4;
343 }
344 else if (IS_SUB_IMM_SP (op))
345 {
346 cache->sp_offset += read_memory_integer (pc + 2, 2, byte_order);
347 pc += 4;
348 }
349 else if (IS_SUBL4_SP (op))
350 {
351 cache->sp_offset += 4;
352 pc += 2;
353 }
354 else if (IS_MOV_IMM_Rn (op))
355 {
356 int offset = read_memory_integer (pc + 2, 2, byte_order);
357 regno = op & 0x000f;
358 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
359 if (IS_ADD_RnSP (op) && (op & 0x00f0) == regno)
360 {
361 cache->sp_offset -= offset;
362 pc += 6;
363 }
364 else if (IS_SUB_RnSP (op) && (op & 0x00f0) == regno)
365 {
366 cache->sp_offset += offset;
367 pc += 6;
368 }
369 else
370 break;
371 }
372 else if (IS_PUSH (op))
373 {
374 regno = op & 0x000f;
375 cache->sp_offset += 2;
376 cache->saved_regs[regno] = cache->sp_offset;
377 pc += 2;
378 }
379 else if (op == 0x0100)
380 {
381 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
382 if (IS_PUSH (op))
383 {
384 regno = op & 0x000f;
385 cache->sp_offset += 4;
386 cache->saved_regs[regno] = cache->sp_offset;
387 pc += 4;
388 }
389 else
390 break;
391 }
392 else if ((op & 0xffcf) == 0x0100)
393 {
394 int op1;
395 op1 = read_memory_unsigned_integer (pc + 2, 2, byte_order);
396 if (IS_PUSH (op1))
397 {
398 /* Since the prefix is 0x01x0, this is not a simple pushm but a
399 stm.l reglist,@-sp */
400 i = ((op & 0x0030) >> 4) + 1;
401 regno = op1 & 0x000f;
402 for (; i > 0; regno++, --i)
403 {
404 cache->sp_offset += 4;
405 cache->saved_regs[regno] = cache->sp_offset;
406 }
407 pc += 4;
408 }
409 else
410 break;
411 }
412 else
413 break;
414 }
415
416 /* Check for spilling an argument register to the stack frame.
417 This could also be an initializing store from non-prologue code,
418 but I don't think there's any harm in skipping that. */
419 while ((spill_size = h8300_is_argument_spill (gdbarch, pc)) > 0
420 && pc + spill_size <= current_pc)
421 pc += spill_size;
422
423 return pc;
424 }
425
426 static struct h8300_frame_cache *
427 h8300_frame_cache (struct frame_info *this_frame, void **this_cache)
428 {
429 struct gdbarch *gdbarch = get_frame_arch (this_frame);
430 struct h8300_frame_cache *cache;
431 int i;
432 CORE_ADDR current_pc;
433
434 if (*this_cache)
435 return *this_cache;
436
437 cache = FRAME_OBSTACK_ZALLOC (struct h8300_frame_cache);
438 h8300_init_frame_cache (gdbarch, cache);
439 *this_cache = cache;
440
441 /* In principle, for normal frames, %fp holds the frame pointer,
442 which holds the base address for the current stack frame.
443 However, for functions that don't need it, the frame pointer is
444 optional. For these "frameless" functions the frame pointer is
445 actually the frame pointer of the calling frame. */
446
447 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
448 if (cache->base == 0)
449 return cache;
450
451 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
452
453 cache->pc = get_frame_func (this_frame);
454 current_pc = get_frame_pc (this_frame);
455 if (cache->pc != 0)
456 h8300_analyze_prologue (gdbarch, cache->pc, current_pc, cache);
457
458 if (!cache->uses_fp)
459 {
460 /* We didn't find a valid frame, which means that CACHE->base
461 currently holds the frame pointer for our calling frame. If
462 we're at the start of a function, or somewhere half-way its
463 prologue, the function's frame probably hasn't been fully
464 setup yet. Try to reconstruct the base address for the stack
465 frame by looking at the stack pointer. For truly "frameless"
466 functions this might work too. */
467
468 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM)
469 + cache->sp_offset;
470 cache->saved_sp = cache->base + BINWORD (gdbarch);
471 cache->saved_regs[E_PC_REGNUM] = 0;
472 }
473 else
474 {
475 cache->saved_sp = cache->base + 2 * BINWORD (gdbarch);
476 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
477 }
478
479 /* Adjust all the saved registers such that they contain addresses
480 instead of offsets. */
481 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
482 if (cache->saved_regs[i] != -1)
483 cache->saved_regs[i] = cache->base - cache->saved_regs[i];
484
485 return cache;
486 }
487
488 static void
489 h8300_frame_this_id (struct frame_info *this_frame, void **this_cache,
490 struct frame_id *this_id)
491 {
492 struct h8300_frame_cache *cache =
493 h8300_frame_cache (this_frame, this_cache);
494
495 /* This marks the outermost frame. */
496 if (cache->base == 0)
497 return;
498
499 *this_id = frame_id_build (cache->saved_sp, cache->pc);
500 }
501
502 static struct value *
503 h8300_frame_prev_register (struct frame_info *this_frame, void **this_cache,
504 int regnum)
505 {
506 struct gdbarch *gdbarch = get_frame_arch (this_frame);
507 struct h8300_frame_cache *cache =
508 h8300_frame_cache (this_frame, this_cache);
509
510 gdb_assert (regnum >= 0);
511
512 if (regnum == E_SP_REGNUM && cache->saved_sp)
513 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
514
515 if (regnum < gdbarch_num_regs (gdbarch)
516 && cache->saved_regs[regnum] != -1)
517 return frame_unwind_got_memory (this_frame, regnum,
518 cache->saved_regs[regnum]);
519
520 return frame_unwind_got_register (this_frame, regnum, regnum);
521 }
522
523 static const struct frame_unwind h8300_frame_unwind = {
524 NORMAL_FRAME,
525 default_frame_unwind_stop_reason,
526 h8300_frame_this_id,
527 h8300_frame_prev_register,
528 NULL,
529 default_frame_sniffer
530 };
531
532 static CORE_ADDR
533 h8300_frame_base_address (struct frame_info *this_frame, void **this_cache)
534 {
535 struct h8300_frame_cache *cache = h8300_frame_cache (this_frame, this_cache);
536 return cache->base;
537 }
538
539 static const struct frame_base h8300_frame_base = {
540 &h8300_frame_unwind,
541 h8300_frame_base_address,
542 h8300_frame_base_address,
543 h8300_frame_base_address
544 };
545
546 static CORE_ADDR
547 h8300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
548 {
549 CORE_ADDR func_addr = 0 , func_end = 0;
550
551 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
552 {
553 struct symtab_and_line sal;
554 struct h8300_frame_cache cache;
555
556 /* Found a function. */
557 sal = find_pc_line (func_addr, 0);
558 if (sal.end && sal.end < func_end)
559 /* Found a line number, use it as end of prologue. */
560 return sal.end;
561
562 /* No useable line symbol. Use prologue parsing method. */
563 h8300_init_frame_cache (gdbarch, &cache);
564 return h8300_analyze_prologue (gdbarch, func_addr, func_end, &cache);
565 }
566
567 /* No function symbol -- just return the PC. */
568 return (CORE_ADDR) pc;
569 }
570
571 /* Function: push_dummy_call
572 Setup the function arguments for calling a function in the inferior.
573 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
574 on the H8/300H.
575
576 There are actually two ABI's here: -mquickcall (the default) and
577 -mno-quickcall. With -mno-quickcall, all arguments are passed on
578 the stack after the return address, word-aligned. With
579 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
580 GCC doesn't indicate in the object file which ABI was used to
581 compile it, GDB only supports the default --- -mquickcall.
582
583 Here are the rules for -mquickcall, in detail:
584
585 Each argument, whether scalar or aggregate, is padded to occupy a
586 whole number of words. Arguments smaller than a word are padded at
587 the most significant end; those larger than a word are padded at
588 the least significant end.
589
590 The initial arguments are passed in r0 -- r2. Earlier arguments go in
591 lower-numbered registers. Multi-word arguments are passed in
592 consecutive registers, with the most significant end in the
593 lower-numbered register.
594
595 If an argument doesn't fit entirely in the remaining registers, it
596 is passed entirely on the stack. Stack arguments begin just after
597 the return address. Once an argument has overflowed onto the stack
598 this way, all subsequent arguments are passed on the stack.
599
600 The above rule has odd consequences. For example, on the h8/300s,
601 if a function takes two longs and an int as arguments:
602 - the first long will be passed in r0/r1,
603 - the second long will be passed entirely on the stack, since it
604 doesn't fit in r2,
605 - and the int will be passed on the stack, even though it could fit
606 in r2.
607
608 A weird exception: if an argument is larger than a word, but not a
609 whole number of words in length (before padding), it is passed on
610 the stack following the rules for stack arguments above, even if
611 there are sufficient registers available to hold it. Stranger
612 still, the argument registers are still `used up' --- even though
613 there's nothing in them.
614
615 So, for example, on the h8/300s, if a function expects a three-byte
616 structure and an int, the structure will go on the stack, and the
617 int will go in r2, not r0.
618
619 If the function returns an aggregate type (struct, union, or class)
620 by value, the caller must allocate space to hold the return value,
621 and pass the callee a pointer to this space as an invisible first
622 argument, in R0.
623
624 For varargs functions, the last fixed argument and all the variable
625 arguments are always passed on the stack. This means that calls to
626 varargs functions don't work properly unless there is a prototype
627 in scope.
628
629 Basically, this ABI is not good, for the following reasons:
630 - You can't call vararg functions properly unless a prototype is in scope.
631 - Structure passing is inconsistent, to no purpose I can see.
632 - It often wastes argument registers, of which there are only three
633 to begin with. */
634
635 static CORE_ADDR
636 h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
637 struct regcache *regcache, CORE_ADDR bp_addr,
638 int nargs, struct value **args, CORE_ADDR sp,
639 int struct_return, CORE_ADDR struct_addr)
640 {
641 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
642 int stack_alloc = 0, stack_offset = 0;
643 int wordsize = BINWORD (gdbarch);
644 int reg = E_ARG0_REGNUM;
645 int argument;
646
647 /* First, make sure the stack is properly aligned. */
648 sp = align_down (sp, wordsize);
649
650 /* Now make sure there's space on the stack for the arguments. We
651 may over-allocate a little here, but that won't hurt anything. */
652 for (argument = 0; argument < nargs; argument++)
653 stack_alloc += align_up (TYPE_LENGTH (value_type (args[argument])),
654 wordsize);
655 sp -= stack_alloc;
656
657 /* Now load as many arguments as possible into registers, and push
658 the rest onto the stack.
659 If we're returning a structure by value, then we must pass a
660 pointer to the buffer for the return value as an invisible first
661 argument. */
662 if (struct_return)
663 regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
664
665 for (argument = 0; argument < nargs; argument++)
666 {
667 struct cleanup *back_to;
668 struct type *type = value_type (args[argument]);
669 int len = TYPE_LENGTH (type);
670 char *contents = (char *) value_contents (args[argument]);
671
672 /* Pad the argument appropriately. */
673 int padded_len = align_up (len, wordsize);
674 gdb_byte *padded = xmalloc (padded_len);
675 back_to = make_cleanup (xfree, padded);
676
677 memset (padded, 0, padded_len);
678 memcpy (len < wordsize ? padded + padded_len - len : padded,
679 contents, len);
680
681 /* Could the argument fit in the remaining registers? */
682 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
683 {
684 /* Are we going to pass it on the stack anyway, for no good
685 reason? */
686 if (len > wordsize && len % wordsize)
687 {
688 /* I feel so unclean. */
689 write_memory (sp + stack_offset, padded, padded_len);
690 stack_offset += padded_len;
691
692 /* That's right --- even though we passed the argument
693 on the stack, we consume the registers anyway! Love
694 me, love my dog. */
695 reg += padded_len / wordsize;
696 }
697 else
698 {
699 /* Heavens to Betsy --- it's really going in registers!
700 Note that on the h8/300s, there are gaps between the
701 registers in the register file. */
702 int offset;
703
704 for (offset = 0; offset < padded_len; offset += wordsize)
705 {
706 ULONGEST word
707 = extract_unsigned_integer (padded + offset,
708 wordsize, byte_order);
709 regcache_cooked_write_unsigned (regcache, reg++, word);
710 }
711 }
712 }
713 else
714 {
715 /* It doesn't fit in registers! Onto the stack it goes. */
716 write_memory (sp + stack_offset, padded, padded_len);
717 stack_offset += padded_len;
718
719 /* Once one argument has spilled onto the stack, all
720 subsequent arguments go on the stack. */
721 reg = E_ARGLAST_REGNUM + 1;
722 }
723
724 do_cleanups (back_to);
725 }
726
727 /* Store return address. */
728 sp -= wordsize;
729 write_memory_unsigned_integer (sp, wordsize, byte_order, bp_addr);
730
731 /* Update stack pointer. */
732 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
733
734 /* Return the new stack pointer minus the return address slot since
735 that's what DWARF2/GCC uses as the frame's CFA. */
736 return sp + wordsize;
737 }
738
739 /* Function: extract_return_value
740 Figure out where in REGBUF the called function has left its return value.
741 Copy that into VALBUF. Be sure to account for CPU type. */
742
743 static void
744 h8300_extract_return_value (struct type *type, struct regcache *regcache,
745 void *valbuf)
746 {
747 struct gdbarch *gdbarch = get_regcache_arch (regcache);
748 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
749 int len = TYPE_LENGTH (type);
750 ULONGEST c, addr;
751
752 switch (len)
753 {
754 case 1:
755 case 2:
756 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
757 store_unsigned_integer (valbuf, len, byte_order, c);
758 break;
759 case 4: /* Needs two registers on plain H8/300 */
760 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
761 store_unsigned_integer (valbuf, 2, byte_order, c);
762 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
763 store_unsigned_integer ((void *)((char *) valbuf + 2), 2, byte_order, c);
764 break;
765 case 8: /* long long is now 8 bytes. */
766 if (TYPE_CODE (type) == TYPE_CODE_INT)
767 {
768 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
769 c = read_memory_unsigned_integer ((CORE_ADDR) addr, len, byte_order);
770 store_unsigned_integer (valbuf, len, byte_order, c);
771 }
772 else
773 {
774 error (_("I don't know how this 8 byte value is returned."));
775 }
776 break;
777 }
778 }
779
780 static void
781 h8300h_extract_return_value (struct type *type, struct regcache *regcache,
782 void *valbuf)
783 {
784 struct gdbarch *gdbarch = get_regcache_arch (regcache);
785 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
786 ULONGEST c;
787
788 switch (TYPE_LENGTH (type))
789 {
790 case 1:
791 case 2:
792 case 4:
793 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
794 store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, c);
795 break;
796 case 8: /* long long is now 8 bytes. */
797 if (TYPE_CODE (type) == TYPE_CODE_INT)
798 {
799 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
800 store_unsigned_integer (valbuf, 4, byte_order, c);
801 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
802 store_unsigned_integer ((void *) ((char *) valbuf + 4), 4,
803 byte_order, c);
804 }
805 else
806 {
807 error (_("I don't know how this 8 byte value is returned."));
808 }
809 break;
810 }
811 }
812
813 static int
814 h8300_use_struct_convention (struct type *value_type)
815 {
816 /* Types of 1, 2 or 4 bytes are returned in R0/R1, everything else on the
817 stack. */
818
819 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
820 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
821 return 1;
822 return !(TYPE_LENGTH (value_type) == 1
823 || TYPE_LENGTH (value_type) == 2
824 || TYPE_LENGTH (value_type) == 4);
825 }
826
827 static int
828 h8300h_use_struct_convention (struct type *value_type)
829 {
830 /* Types of 1, 2 or 4 bytes are returned in R0, INT types of 8 bytes are
831 returned in R0/R1, everything else on the stack. */
832 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
833 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
834 return 1;
835 return !(TYPE_LENGTH (value_type) == 1
836 || TYPE_LENGTH (value_type) == 2
837 || TYPE_LENGTH (value_type) == 4
838 || (TYPE_LENGTH (value_type) == 8
839 && TYPE_CODE (value_type) == TYPE_CODE_INT));
840 }
841
842 /* Function: store_return_value
843 Place the appropriate value in the appropriate registers.
844 Primarily used by the RETURN command. */
845
846 static void
847 h8300_store_return_value (struct type *type, struct regcache *regcache,
848 const void *valbuf)
849 {
850 struct gdbarch *gdbarch = get_regcache_arch (regcache);
851 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
852 ULONGEST val;
853
854 switch (TYPE_LENGTH (type))
855 {
856 case 1:
857 case 2: /* short... */
858 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
859 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
860 break;
861 case 4: /* long, float */
862 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
863 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
864 (val >> 16) & 0xffff);
865 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
866 break;
867 case 8: /* long long, double and long double
868 are all defined as 4 byte types so
869 far so this shouldn't happen. */
870 error (_("I don't know how to return an 8 byte value."));
871 break;
872 }
873 }
874
875 static void
876 h8300h_store_return_value (struct type *type, struct regcache *regcache,
877 const void *valbuf)
878 {
879 struct gdbarch *gdbarch = get_regcache_arch (regcache);
880 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
881 ULONGEST val;
882
883 switch (TYPE_LENGTH (type))
884 {
885 case 1:
886 case 2:
887 case 4: /* long, float */
888 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
889 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
890 break;
891 case 8:
892 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
893 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
894 (val >> 32) & 0xffffffff);
895 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM,
896 val & 0xffffffff);
897 break;
898 }
899 }
900
901 static enum return_value_convention
902 h8300_return_value (struct gdbarch *gdbarch, struct value *function,
903 struct type *type, struct regcache *regcache,
904 gdb_byte *readbuf, const gdb_byte *writebuf)
905 {
906 if (h8300_use_struct_convention (type))
907 return RETURN_VALUE_STRUCT_CONVENTION;
908 if (writebuf)
909 h8300_store_return_value (type, regcache, writebuf);
910 else if (readbuf)
911 h8300_extract_return_value (type, regcache, readbuf);
912 return RETURN_VALUE_REGISTER_CONVENTION;
913 }
914
915 static enum return_value_convention
916 h8300h_return_value (struct gdbarch *gdbarch, struct value *function,
917 struct type *type, struct regcache *regcache,
918 gdb_byte *readbuf, const gdb_byte *writebuf)
919 {
920 if (h8300h_use_struct_convention (type))
921 {
922 if (readbuf)
923 {
924 ULONGEST addr;
925
926 regcache_raw_read_unsigned (regcache, E_R0_REGNUM, &addr);
927 read_memory (addr, readbuf, TYPE_LENGTH (type));
928 }
929
930 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
931 }
932 if (writebuf)
933 h8300h_store_return_value (type, regcache, writebuf);
934 else if (readbuf)
935 h8300h_extract_return_value (type, regcache, readbuf);
936 return RETURN_VALUE_REGISTER_CONVENTION;
937 }
938
939 /* Implementation of 'register_sim_regno' gdbarch method. */
940
941 static int
942 h8300_register_sim_regno (struct gdbarch *gdbarch, int regnum)
943 {
944 /* Only makes sense to supply raw registers. */
945 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
946
947 /* We hide the raw ccr from the user by making it nameless. Because
948 the default register_sim_regno hook returns
949 LEGACY_SIM_REGNO_IGNORE for unnamed registers, we need to
950 override it. The sim register numbering is compatible with
951 gdb's. */
952 return regnum;
953 }
954
955 static const char *
956 h8300_register_name (struct gdbarch *gdbarch, int regno)
957 {
958 /* The register names change depending on which h8300 processor
959 type is selected. */
960 static char *register_names[] = {
961 "r0", "r1", "r2", "r3", "r4", "r5", "r6",
962 "sp", "", "pc", "cycles", "tick", "inst",
963 "ccr", /* pseudo register */
964 };
965 if (regno < 0
966 || regno >= (sizeof (register_names) / sizeof (*register_names)))
967 internal_error (__FILE__, __LINE__,
968 _("h8300_register_name: illegal register number %d"),
969 regno);
970 else
971 return register_names[regno];
972 }
973
974 static const char *
975 h8300s_register_name (struct gdbarch *gdbarch, int regno)
976 {
977 static char *register_names[] = {
978 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
979 "sp", "", "pc", "cycles", "", "tick", "inst",
980 "mach", "macl",
981 "ccr", "exr" /* pseudo registers */
982 };
983 if (regno < 0
984 || regno >= (sizeof (register_names) / sizeof (*register_names)))
985 internal_error (__FILE__, __LINE__,
986 _("h8300s_register_name: illegal register number %d"),
987 regno);
988 else
989 return register_names[regno];
990 }
991
992 static const char *
993 h8300sx_register_name (struct gdbarch *gdbarch, int regno)
994 {
995 static char *register_names[] = {
996 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
997 "sp", "", "pc", "cycles", "", "tick", "inst",
998 "mach", "macl", "sbr", "vbr",
999 "ccr", "exr" /* pseudo registers */
1000 };
1001 if (regno < 0
1002 || regno >= (sizeof (register_names) / sizeof (*register_names)))
1003 internal_error (__FILE__, __LINE__,
1004 _("h8300sx_register_name: illegal register number %d"),
1005 regno);
1006 else
1007 return register_names[regno];
1008 }
1009
1010 static void
1011 h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1012 struct frame_info *frame, int regno)
1013 {
1014 LONGEST rval;
1015 const char *name = gdbarch_register_name (gdbarch, regno);
1016
1017 if (!name || !*name)
1018 return;
1019
1020 rval = get_frame_register_signed (frame, regno);
1021
1022 fprintf_filtered (file, "%-14s ", name);
1023 if ((regno == E_PSEUDO_CCR_REGNUM (gdbarch)) || \
1024 (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch)))
1025 {
1026 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1027 print_longest (file, 'u', 1, rval);
1028 }
1029 else
1030 {
1031 fprintf_filtered (file, "0x%s ", phex ((ULONGEST) rval,
1032 BINWORD (gdbarch)));
1033 print_longest (file, 'd', 1, rval);
1034 }
1035 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1036 {
1037 /* CCR register */
1038 int C, Z, N, V;
1039 unsigned char l = rval & 0xff;
1040 fprintf_filtered (file, "\t");
1041 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
1042 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
1043 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
1044 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
1045 N = (l & 0x8) != 0;
1046 Z = (l & 0x4) != 0;
1047 V = (l & 0x2) != 0;
1048 C = (l & 0x1) != 0;
1049 fprintf_filtered (file, "N-%d ", N);
1050 fprintf_filtered (file, "Z-%d ", Z);
1051 fprintf_filtered (file, "V-%d ", V);
1052 fprintf_filtered (file, "C-%d ", C);
1053 if ((C | Z) == 0)
1054 fprintf_filtered (file, "u> ");
1055 if ((C | Z) == 1)
1056 fprintf_filtered (file, "u<= ");
1057 if ((C == 0))
1058 fprintf_filtered (file, "u>= ");
1059 if (C == 1)
1060 fprintf_filtered (file, "u< ");
1061 if (Z == 0)
1062 fprintf_filtered (file, "!= ");
1063 if (Z == 1)
1064 fprintf_filtered (file, "== ");
1065 if ((N ^ V) == 0)
1066 fprintf_filtered (file, ">= ");
1067 if ((N ^ V) == 1)
1068 fprintf_filtered (file, "< ");
1069 if ((Z | (N ^ V)) == 0)
1070 fprintf_filtered (file, "> ");
1071 if ((Z | (N ^ V)) == 1)
1072 fprintf_filtered (file, "<= ");
1073 }
1074 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch))
1075 {
1076 /* EXR register */
1077 unsigned char l = rval & 0xff;
1078 fprintf_filtered (file, "\t");
1079 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
1080 fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
1081 fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
1082 fprintf_filtered (file, "I0-%d", (l & 1) != 0);
1083 }
1084 fprintf_filtered (file, "\n");
1085 }
1086
1087 static void
1088 h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1089 struct frame_info *frame, int regno, int cpregs)
1090 {
1091 if (regno < 0)
1092 {
1093 for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
1094 h8300_print_register (gdbarch, file, frame, regno);
1095 h8300_print_register (gdbarch, file, frame,
1096 E_PSEUDO_CCR_REGNUM (gdbarch));
1097 h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
1098 if (is_h8300smode (gdbarch))
1099 {
1100 h8300_print_register (gdbarch, file, frame,
1101 E_PSEUDO_EXR_REGNUM (gdbarch));
1102 if (is_h8300sxmode (gdbarch))
1103 {
1104 h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
1105 h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
1106 }
1107 h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
1108 h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
1109 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1110 h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
1111 h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
1112 }
1113 else
1114 {
1115 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1116 h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
1117 h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
1118 }
1119 }
1120 else
1121 {
1122 if (regno == E_CCR_REGNUM)
1123 h8300_print_register (gdbarch, file, frame,
1124 E_PSEUDO_CCR_REGNUM (gdbarch));
1125 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch)
1126 && is_h8300smode (gdbarch))
1127 h8300_print_register (gdbarch, file, frame,
1128 E_PSEUDO_EXR_REGNUM (gdbarch));
1129 else
1130 h8300_print_register (gdbarch, file, frame, regno);
1131 }
1132 }
1133
1134 static struct type *
1135 h8300_register_type (struct gdbarch *gdbarch, int regno)
1136 {
1137 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch)
1138 + gdbarch_num_pseudo_regs (gdbarch))
1139 internal_error (__FILE__, __LINE__,
1140 _("h8300_register_type: illegal register number %d"),
1141 regno);
1142 else
1143 {
1144 switch (regno)
1145 {
1146 case E_PC_REGNUM:
1147 return builtin_type (gdbarch)->builtin_func_ptr;
1148 case E_SP_REGNUM:
1149 case E_FP_REGNUM:
1150 return builtin_type (gdbarch)->builtin_data_ptr;
1151 default:
1152 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1153 return builtin_type (gdbarch)->builtin_uint8;
1154 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1155 return builtin_type (gdbarch)->builtin_uint8;
1156 else if (is_h8300hmode (gdbarch))
1157 return builtin_type (gdbarch)->builtin_int32;
1158 else
1159 return builtin_type (gdbarch)->builtin_int16;
1160 }
1161 }
1162 }
1163
1164 /* Helpers for h8300_pseudo_register_read. We expose ccr/exr as
1165 pseudo-registers to users with smaller sizes than the corresponding
1166 raw registers. These helpers extend/narrow the values. */
1167
1168 static enum register_status
1169 pseudo_from_raw_register (struct gdbarch *gdbarch, struct regcache *regcache,
1170 gdb_byte *buf, int pseudo_regno, int raw_regno)
1171 {
1172 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1173 enum register_status status;
1174 ULONGEST val;
1175
1176 status = regcache_raw_read_unsigned (regcache, raw_regno, &val);
1177 if (status == REG_VALID)
1178 store_unsigned_integer (buf,
1179 register_size (gdbarch, pseudo_regno),
1180 byte_order, val);
1181 return status;
1182 }
1183
1184 /* See pseudo_from_raw_register. */
1185
1186 static void
1187 raw_from_pseudo_register (struct gdbarch *gdbarch, struct regcache *regcache,
1188 const gdb_byte *buf, int raw_regno, int pseudo_regno)
1189 {
1190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1191 ULONGEST val;
1192
1193 val = extract_unsigned_integer (buf, register_size (gdbarch, pseudo_regno),
1194 byte_order);
1195 regcache_raw_write_unsigned (regcache, raw_regno, val);
1196 }
1197
1198 static enum register_status
1199 h8300_pseudo_register_read (struct gdbarch *gdbarch,
1200 struct regcache *regcache, int regno,
1201 gdb_byte *buf)
1202 {
1203 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1204 {
1205 return pseudo_from_raw_register (gdbarch, regcache, buf,
1206 regno, E_CCR_REGNUM);
1207 }
1208 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1209 {
1210 return pseudo_from_raw_register (gdbarch, regcache, buf,
1211 regno, E_EXR_REGNUM);
1212 }
1213 else
1214 return regcache_raw_read (regcache, regno, buf);
1215 }
1216
1217 static void
1218 h8300_pseudo_register_write (struct gdbarch *gdbarch,
1219 struct regcache *regcache, int regno,
1220 const gdb_byte *buf)
1221 {
1222 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1223 raw_from_pseudo_register (gdbarch, regcache, buf, E_CCR_REGNUM, regno);
1224 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1225 raw_from_pseudo_register (gdbarch, regcache, buf, E_EXR_REGNUM, regno);
1226 else
1227 regcache_raw_write (regcache, regno, buf);
1228 }
1229
1230 static int
1231 h8300_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1232 {
1233 if (regno == E_CCR_REGNUM)
1234 return E_PSEUDO_CCR_REGNUM (gdbarch);
1235 return regno;
1236 }
1237
1238 static int
1239 h8300s_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1240 {
1241 if (regno == E_CCR_REGNUM)
1242 return E_PSEUDO_CCR_REGNUM (gdbarch);
1243 if (regno == E_EXR_REGNUM)
1244 return E_PSEUDO_EXR_REGNUM (gdbarch);
1245 return regno;
1246 }
1247
1248 static const unsigned char *
1249 h8300_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1250 int *lenptr)
1251 {
1252 /*static unsigned char breakpoint[] = { 0x7A, 0xFF }; *//* ??? */
1253 static unsigned char breakpoint[] = { 0x01, 0x80 }; /* Sleep */
1254
1255 *lenptr = sizeof (breakpoint);
1256 return breakpoint;
1257 }
1258
1259 static struct gdbarch *
1260 h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1261 {
1262 struct gdbarch_tdep *tdep = NULL;
1263 struct gdbarch *gdbarch;
1264
1265 arches = gdbarch_list_lookup_by_info (arches, &info);
1266 if (arches != NULL)
1267 return arches->gdbarch;
1268
1269 #if 0
1270 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1271 #endif
1272
1273 if (info.bfd_arch_info->arch != bfd_arch_h8300)
1274 return NULL;
1275
1276 gdbarch = gdbarch_alloc (&info, 0);
1277
1278 set_gdbarch_register_sim_regno (gdbarch, h8300_register_sim_regno);
1279
1280 switch (info.bfd_arch_info->mach)
1281 {
1282 case bfd_mach_h8300:
1283 set_gdbarch_num_regs (gdbarch, 13);
1284 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1285 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1286 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1287 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1288 set_gdbarch_register_name (gdbarch, h8300_register_name);
1289 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1290 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1291 set_gdbarch_return_value (gdbarch, h8300_return_value);
1292 set_gdbarch_print_insn (gdbarch, print_insn_h8300);
1293 break;
1294 case bfd_mach_h8300h:
1295 case bfd_mach_h8300hn:
1296 set_gdbarch_num_regs (gdbarch, 13);
1297 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1298 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1299 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1300 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1301 set_gdbarch_register_name (gdbarch, h8300_register_name);
1302 if (info.bfd_arch_info->mach != bfd_mach_h8300hn)
1303 {
1304 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1305 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1306 }
1307 else
1308 {
1309 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1310 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1311 }
1312 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1313 set_gdbarch_print_insn (gdbarch, print_insn_h8300h);
1314 break;
1315 case bfd_mach_h8300s:
1316 case bfd_mach_h8300sn:
1317 set_gdbarch_num_regs (gdbarch, 16);
1318 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1319 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1320 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1321 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1322 set_gdbarch_register_name (gdbarch, h8300s_register_name);
1323 if (info.bfd_arch_info->mach != bfd_mach_h8300sn)
1324 {
1325 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1326 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1327 }
1328 else
1329 {
1330 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1331 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1332 }
1333 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1334 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1335 break;
1336 case bfd_mach_h8300sx:
1337 case bfd_mach_h8300sxn:
1338 set_gdbarch_num_regs (gdbarch, 18);
1339 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1340 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1341 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1342 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1343 set_gdbarch_register_name (gdbarch, h8300sx_register_name);
1344 if (info.bfd_arch_info->mach != bfd_mach_h8300sxn)
1345 {
1346 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1347 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1348 }
1349 else
1350 {
1351 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1352 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1353 }
1354 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1355 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1356 break;
1357 }
1358
1359 set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
1360 set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
1361
1362 /*
1363 * Basic register fields and methods.
1364 */
1365
1366 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1367 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1368 set_gdbarch_register_type (gdbarch, h8300_register_type);
1369 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
1370
1371 /*
1372 * Frame Info
1373 */
1374 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1375
1376 /* Frame unwinder. */
1377 set_gdbarch_unwind_pc (gdbarch, h8300_unwind_pc);
1378 set_gdbarch_unwind_sp (gdbarch, h8300_unwind_sp);
1379 set_gdbarch_dummy_id (gdbarch, h8300_dummy_id);
1380 frame_base_set_default (gdbarch, &h8300_frame_base);
1381
1382 /*
1383 * Miscelany
1384 */
1385 /* Stack grows up. */
1386 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1387
1388 set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
1389 set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
1390
1391 set_gdbarch_char_signed (gdbarch, 0);
1392 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1393 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1394 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1395 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1396 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1397 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1398 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1399
1400 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1401
1402 /* Hook in the DWARF CFI frame unwinder. */
1403 dwarf2_append_unwinders (gdbarch);
1404 frame_unwind_append_unwinder (gdbarch, &h8300_frame_unwind);
1405
1406 return gdbarch;
1407
1408 }
1409
1410 extern initialize_file_ftype _initialize_h8300_tdep; /* -Wmissing-prototypes */
1411
1412 void
1413 _initialize_h8300_tdep (void)
1414 {
1415 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
1416 }
1417
1418 static int
1419 is_h8300hmode (struct gdbarch *gdbarch)
1420 {
1421 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1422 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1423 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1424 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1425 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h
1426 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1427 }
1428
1429 static int
1430 is_h8300smode (struct gdbarch *gdbarch)
1431 {
1432 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1433 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1434 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1435 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn;
1436 }
1437
1438 static int
1439 is_h8300sxmode (struct gdbarch *gdbarch)
1440 {
1441 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1442 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn;
1443 }
1444
1445 static int
1446 is_h8300_normal_mode (struct gdbarch *gdbarch)
1447 {
1448 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1449 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1450 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1451 }
This page took 0.058433 seconds and 4 git commands to generate.