f2a2d02222a44b7691eecf81319824ad590a0a88
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Hitachi H8/300, for GDB.
2 Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /*
21 Contributed by Steve Chamberlain
22 sac@cygnus.com
23 */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "obstack.h"
28 #include "symtab.h"
29 #include <dis-asm.h>
30 #undef NUM_REGS
31 #define NUM_REGS 11
32
33 #define UNSIGNED_SHORT(X) ((X) & 0xffff)
34
35 /* an easy to debug H8 stack frame looks like:
36 0x6df6 push r6
37 0x0d76 mov.w r7,r6
38 0x6dfn push reg
39 0x7905 nnnn mov.w #n,r5 or 0x1b87 subs #2,sp
40 0x1957 sub.w r5,sp
41
42 */
43
44 #define IS_PUSH(x) ((x & 0xff00)==0x6d00)
45 #define IS_PUSH_FP(x) (x == 0x6df6)
46 #define IS_MOVE_FP(x) (x == 0x0d76)
47 #define IS_MOV_SP_FP(x) (x == 0x0d76)
48 #define IS_SUB2_SP(x) (x==0x1b87)
49 #define IS_MOVK_R5(x) (x==0x7905)
50 #define IS_SUB_R5SP(x) (x==0x1957)
51 CORE_ADDR examine_prologue ();
52
53 void frame_find_saved_regs ();
54 CORE_ADDR
55 h8300_skip_prologue (start_pc)
56 CORE_ADDR start_pc;
57 {
58 short int w;
59
60 w = read_memory_unsigned_integer (start_pc, 2);
61 /* Skip past all push insns */
62 while (IS_PUSH_FP (w))
63 {
64 start_pc += 2;
65 w = read_memory_unsigned_integer (start_pc, 2);
66 }
67
68 /* Skip past a move to FP */
69 if (IS_MOVE_FP (w))
70 {
71 start_pc += 2;
72 w = read_memory_unsigned_integer (start_pc, 2);
73 }
74
75 /* Skip the stack adjust */
76
77 if (IS_MOVK_R5 (w))
78 {
79 start_pc += 2;
80 w = read_memory_unsigned_integer (start_pc, 2);
81 }
82 if (IS_SUB_R5SP (w))
83 {
84 start_pc += 2;
85 w = read_memory_unsigned_integer (start_pc, 2);
86 }
87 while (IS_SUB2_SP (w))
88 {
89 start_pc += 2;
90 w = read_memory_unsigned_integer (start_pc, 2);
91 }
92
93 return start_pc;
94 }
95
96 int
97 print_insn (memaddr, stream)
98 CORE_ADDR memaddr;
99 FILE *stream;
100 {
101 disassemble_info info;
102 GDB_INIT_DISASSEMBLE_INFO(info, stream);
103 if (HMODE)
104 return print_insn_h8300h (memaddr, &info);
105 else
106 return print_insn_h8300 (memaddr, &info);
107 }
108
109 /* Given a GDB frame, determine the address of the calling function's frame.
110 This will be used to create a new GDB frame struct, and then
111 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
112
113 For us, the frame address is its stack pointer value, so we look up
114 the function prologue to determine the caller's sp value, and return it. */
115
116 FRAME_ADDR
117 FRAME_CHAIN (thisframe)
118 FRAME thisframe;
119 {
120 frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
121 return thisframe->fsr->regs[SP_REGNUM];
122 }
123
124 /* Put here the code to store, into a struct frame_saved_regs,
125 the addresses of the saved registers of frame described by FRAME_INFO.
126 This includes special registers such as pc and fp saved in special
127 ways in the stack frame. sp is even more special:
128 the address we return for it IS the sp for the next frame.
129
130 We cache the result of doing this in the frame_cache_obstack, since
131 it is fairly expensive. */
132
133 void
134 frame_find_saved_regs (fi, fsr)
135 struct frame_info *fi;
136 struct frame_saved_regs *fsr;
137 {
138 register CORE_ADDR next_addr;
139 register CORE_ADDR *saved_regs;
140 register int regnum;
141 register struct frame_saved_regs *cache_fsr;
142 extern struct obstack frame_cache_obstack;
143 CORE_ADDR ip;
144 struct symtab_and_line sal;
145 CORE_ADDR limit;
146
147 if (!fi->fsr)
148 {
149 cache_fsr = (struct frame_saved_regs *)
150 obstack_alloc (&frame_cache_obstack,
151 sizeof (struct frame_saved_regs));
152 bzero (cache_fsr, sizeof (struct frame_saved_regs));
153
154 fi->fsr = cache_fsr;
155
156 /* Find the start and end of the function prologue. If the PC
157 is in the function prologue, we only consider the part that
158 has executed already. */
159
160 ip = get_pc_function_start (fi->pc);
161 sal = find_pc_line (ip, 0);
162 limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
163
164 /* This will fill in fields in *fi as well as in cache_fsr. */
165 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
166 }
167
168 if (fsr)
169 *fsr = *fi->fsr;
170 }
171
172 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
173 is not the address of a valid instruction, the address of the next
174 instruction beyond ADDR otherwise. *PWORD1 receives the first word
175 of the instruction.*/
176
177 CORE_ADDR
178 NEXT_PROLOGUE_INSN (addr, lim, pword1)
179 CORE_ADDR addr;
180 CORE_ADDR lim;
181 short *pword1;
182 {
183 if (addr < lim + 8)
184 {
185 read_memory (addr, pword1, sizeof (*pword1));
186 SWAP_TARGET_AND_HOST (pword1, sizeof (short));
187
188 return addr + 2;
189 }
190 return 0;
191 }
192
193 /* Examine the prologue of a function. `ip' points to the first instruction.
194 `limit' is the limit of the prologue (e.g. the addr of the first
195 linenumber, or perhaps the program counter if we're stepping through).
196 `frame_sp' is the stack pointer value in use in this frame.
197 `fsr' is a pointer to a frame_saved_regs structure into which we put
198 info about the registers saved by this frame.
199 `fi' is a struct frame_info pointer; we fill in various fields in it
200 to reflect the offsets of the arg pointer and the locals pointer. */
201
202 static CORE_ADDR
203 examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
204 register CORE_ADDR ip;
205 register CORE_ADDR limit;
206 FRAME_ADDR after_prolog_fp;
207 struct frame_saved_regs *fsr;
208 struct frame_info *fi;
209 {
210 register CORE_ADDR next_ip;
211 int r;
212 int i;
213 int have_fp = 0;
214 register int src;
215 register struct pic_prologue_code *pcode;
216 INSN_WORD insn_word;
217 int size, offset;
218 /* Number of things pushed onto stack, starts at 2/4, 'cause the
219 PC is already there */
220 unsigned int reg_save_depth = HMODE ? 4 : 2;
221
222 unsigned int auto_depth = 0; /* Number of bytes of autos */
223
224 char in_frame[11]; /* One for each reg */
225
226 memset (in_frame, 1, 11);
227 for (r = 0; r < 8; r++)
228 {
229 fsr->regs[r] = 0;
230 }
231 if (after_prolog_fp == 0)
232 {
233 after_prolog_fp = read_register (SP_REGNUM);
234 }
235 if (ip == 0 || ip & (HMODE ? ~0xffff : ~0xffff))
236 return 0;
237
238 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
239
240 /* Skip over any fp push instructions */
241 fsr->regs[6] = after_prolog_fp;
242 while (next_ip && IS_PUSH_FP (insn_word))
243 {
244 ip = next_ip;
245
246 in_frame[insn_word & 0x7] = reg_save_depth;
247 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
248 reg_save_depth += 2;
249 }
250
251 /* Is this a move into the fp */
252 if (next_ip && IS_MOV_SP_FP (insn_word))
253 {
254 ip = next_ip;
255 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
256 have_fp = 1;
257 }
258
259 /* Skip over any stack adjustment, happens either with a number of
260 sub#2,sp or a mov #x,r5 sub r5,sp */
261
262 if (next_ip && IS_SUB2_SP (insn_word))
263 {
264 while (next_ip && IS_SUB2_SP (insn_word))
265 {
266 auto_depth += 2;
267 ip = next_ip;
268 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
269 }
270 }
271 else
272 {
273 if (next_ip && IS_MOVK_R5 (insn_word))
274 {
275 ip = next_ip;
276 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
277 auto_depth += insn_word;
278
279 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
280 auto_depth += insn_word;
281 }
282 }
283 /* Work out which regs are stored where */
284 while (next_ip && IS_PUSH (insn_word))
285 {
286 ip = next_ip;
287 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
288 fsr->regs[r] = after_prolog_fp + auto_depth;
289 auto_depth += 2;
290 }
291
292 /* The args are always reffed based from the stack pointer */
293 fi->args_pointer = after_prolog_fp;
294 /* Locals are always reffed based from the fp */
295 fi->locals_pointer = after_prolog_fp;
296 /* The PC is at a known place */
297 fi->from_pc = read_memory_unsigned_integer (after_prolog_fp + 2, BINWORD);
298
299 /* Rememeber any others too */
300 in_frame[PC_REGNUM] = 0;
301
302 if (have_fp)
303 /* We keep the old FP in the SP spot */
304 fsr->regs[SP_REGNUM] = read_memory_unsigned_integer (fsr->regs[6], BINWORD);
305 else
306 fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
307
308 return (ip);
309 }
310
311 void
312 init_extra_frame_info (fromleaf, fi)
313 int fromleaf;
314 struct frame_info *fi;
315 {
316 fi->fsr = 0; /* Not yet allocated */
317 fi->args_pointer = 0; /* Unknown */
318 fi->locals_pointer = 0; /* Unknown */
319 fi->from_pc = 0;
320 }
321
322 /* Return the saved PC from this frame.
323
324 If the frame has a memory copy of SRP_REGNUM, use that. If not,
325 just use the register SRP_REGNUM itself. */
326
327 CORE_ADDR
328 frame_saved_pc (frame)
329 FRAME frame;
330 {
331 return frame->from_pc;
332 }
333
334 CORE_ADDR
335 frame_locals_address (fi)
336 struct frame_info *fi;
337 {
338 if (!fi->locals_pointer)
339 {
340 struct frame_saved_regs ignore;
341
342 get_frame_saved_regs (fi, &ignore);
343
344 }
345 return fi->locals_pointer;
346 }
347
348 /* Return the address of the argument block for the frame
349 described by FI. Returns 0 if the address is unknown. */
350
351 CORE_ADDR
352 frame_args_address (fi)
353 struct frame_info *fi;
354 {
355 if (!fi->args_pointer)
356 {
357 struct frame_saved_regs ignore;
358
359 get_frame_saved_regs (fi, &ignore);
360
361 }
362
363 return fi->args_pointer;
364 }
365
366 void
367 h8300_pop_frame ()
368 {
369 unsigned regnum;
370 struct frame_saved_regs fsr;
371 struct frame_info *fi;
372
373 FRAME frame = get_current_frame ();
374
375 fi = get_frame_info (frame);
376 get_frame_saved_regs (fi, &fsr);
377
378 for (regnum = 0; regnum < 8; regnum++)
379 {
380 if (fsr.regs[regnum])
381 {
382 write_register (regnum, read_memory_integer(fsr.regs[regnum]), BINWORD);
383 }
384
385 flush_cached_frames ();
386 set_current_frame (create_new_frame (read_register (FP_REGNUM),
387 read_pc ()));
388 }
389 }
390
391 void
392 print_register_hook (regno)
393 {
394 if (regno == 8)
395 {
396 /* CCR register */
397
398 int C, Z, N, V;
399 unsigned char b[2];
400 unsigned char l;
401
402 read_relative_register_raw_bytes (regno, b);
403 l = b[1];
404 printf ("\t");
405 printf ("I-%d - ", (l & 0x80) != 0);
406 printf ("H-%d - ", (l & 0x20) != 0);
407 N = (l & 0x8) != 0;
408 Z = (l & 0x4) != 0;
409 V = (l & 0x2) != 0;
410 C = (l & 0x1) != 0;
411 printf ("N-%d ", N);
412 printf ("Z-%d ", Z);
413 printf ("V-%d ", V);
414 printf ("C-%d ", C);
415 if ((C | Z) == 0)
416 printf ("u> ");
417 if ((C | Z) == 1)
418 printf ("u<= ");
419 if ((C == 0))
420 printf ("u>= ");
421 if (C == 1)
422 printf ("u< ");
423 if (Z == 0)
424 printf ("!= ");
425 if (Z == 1)
426 printf ("== ");
427 if ((N ^ V) == 0)
428 printf (">= ");
429 if ((N ^ V) == 1)
430 printf ("< ");
431 if ((Z | (N ^ V)) == 0)
432 printf ("> ");
433 if ((Z | (N ^ V)) == 1)
434 printf ("<= ");
435 }
436 }
This page took 0.045582 seconds and 4 git commands to generate.