* osabi.c (gdb_osabi_name): Add entry for GDB_OSABI_INTERIX.
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Hitachi H8/300, for GDB.
2
3 Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
4 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /*
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
26 */
27
28 #include "defs.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "dis-asm.h"
32 #include "gdbcmd.h"
33 #include "gdbtypes.h"
34 #include "gdbcore.h"
35 #include "gdb_string.h"
36 #include "value.h"
37 #include "regcache.h"
38
39 extern int h8300hmode, h8300smode;
40
41 #undef NUM_REGS
42 #define NUM_REGS (h8300smode?12:11)
43
44 #define UNSIGNED_SHORT(X) ((X) & 0xffff)
45
46 #define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
47 #define IS_PUSH_FP(x) (x == 0x6df6)
48 #define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
49 #define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
50 #define IS_SUB2_SP(x) (x==0x1b87)
51 #define IS_SUB4_SP(x) (x==0x1b97)
52 #define IS_SUBL_SP(x) (x==0x7a37)
53 #define IS_MOVK_R5(x) (x==0x7905)
54 #define IS_SUB_R5SP(x) (x==0x1957)
55
56 /* The register names change depending on whether the h8300h processor
57 type is selected. */
58
59 static char *original_register_names[] = REGISTER_NAMES;
60
61 static char *h8300h_register_names[] = {
62 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
63 "sp", "ccr", "pc", "cycles", "exr", "tick", "inst"
64 };
65
66 char **h8300_register_names = original_register_names;
67
68 /* Local function declarations. */
69
70 static CORE_ADDR examine_prologue ();
71 static void set_machine_hook (char *filename);
72
73 CORE_ADDR
74 h8300_skip_prologue (CORE_ADDR start_pc)
75 {
76 short int w;
77 int adjust = 0;
78
79 /* Skip past all push and stm insns. */
80 while (1)
81 {
82 w = read_memory_unsigned_integer (start_pc, 2);
83 /* First look for push insns. */
84 if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130)
85 {
86 w = read_memory_unsigned_integer (start_pc + 2, 2);
87 adjust = 2;
88 }
89
90 if (IS_PUSH (w))
91 {
92 start_pc += 2 + adjust;
93 w = read_memory_unsigned_integer (start_pc, 2);
94 continue;
95 }
96 adjust = 0;
97 break;
98 }
99
100 /* Skip past a move to FP, either word or long sized */
101 w = read_memory_unsigned_integer (start_pc, 2);
102 if (w == 0x0100)
103 {
104 w = read_memory_unsigned_integer (start_pc + 2, 2);
105 adjust += 2;
106 }
107
108 if (IS_MOVE_FP (w))
109 {
110 start_pc += 2 + adjust;
111 w = read_memory_unsigned_integer (start_pc, 2);
112 }
113
114 /* Check for loading either a word constant into r5;
115 long versions are handled by the SUBL_SP below. */
116 if (IS_MOVK_R5 (w))
117 {
118 start_pc += 2;
119 w = read_memory_unsigned_integer (start_pc, 2);
120 }
121
122 /* Now check for subtracting r5 from sp, word sized only. */
123 if (IS_SUB_R5SP (w))
124 {
125 start_pc += 2 + adjust;
126 w = read_memory_unsigned_integer (start_pc, 2);
127 }
128
129 /* Check for subs #2 and subs #4. */
130 while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
131 {
132 start_pc += 2 + adjust;
133 w = read_memory_unsigned_integer (start_pc, 2);
134 }
135
136 /* Check for a 32bit subtract. */
137 if (IS_SUBL_SP (w))
138 start_pc += 6 + adjust;
139
140 return start_pc;
141 }
142
143 int
144 gdb_print_insn_h8300 (bfd_vma memaddr, disassemble_info * info)
145 {
146 if (h8300smode)
147 return print_insn_h8300s (memaddr, info);
148 else if (h8300hmode)
149 return print_insn_h8300h (memaddr, info);
150 else
151 return print_insn_h8300 (memaddr, info);
152 }
153
154 /* Given a GDB frame, determine the address of the calling function's frame.
155 This will be used to create a new GDB frame struct, and then
156 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
157
158 For us, the frame address is its stack pointer value, so we look up
159 the function prologue to determine the caller's sp value, and return it. */
160
161 CORE_ADDR
162 h8300_frame_chain (struct frame_info *thisframe)
163 {
164 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
165 { /* initialize the from_pc now */
166 thisframe->from_pc = generic_read_register_dummy (thisframe->pc,
167 thisframe->frame,
168 PC_REGNUM);
169 return thisframe->frame;
170 }
171 h8300_frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
172 return thisframe->fsr->regs[SP_REGNUM];
173 }
174
175 /* Put here the code to store, into a struct frame_saved_regs,
176 the addresses of the saved registers of frame described by FRAME_INFO.
177 This includes special registers such as pc and fp saved in special
178 ways in the stack frame. sp is even more special:
179 the address we return for it IS the sp for the next frame.
180
181 We cache the result of doing this in the frame_obstack, since it is
182 fairly expensive. */
183
184 void
185 h8300_frame_find_saved_regs (struct frame_info *fi,
186 struct frame_saved_regs *fsr)
187 {
188 register struct frame_saved_regs *cache_fsr;
189 CORE_ADDR ip;
190 struct symtab_and_line sal;
191 CORE_ADDR limit;
192
193 if (!fi->fsr)
194 {
195 cache_fsr = (struct frame_saved_regs *)
196 frame_obstack_alloc (sizeof (struct frame_saved_regs));
197 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
198
199 fi->fsr = cache_fsr;
200
201 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
202 { /* no more to do. */
203 if (fsr)
204 *fsr = *fi->fsr;
205 return;
206 }
207 /* Find the start and end of the function prologue. If the PC
208 is in the function prologue, we only consider the part that
209 has executed already. */
210
211 ip = get_pc_function_start (fi->pc);
212 sal = find_pc_line (ip, 0);
213 limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
214
215 /* This will fill in fields in *fi as well as in cache_fsr. */
216 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
217 }
218
219 if (fsr)
220 *fsr = *fi->fsr;
221 }
222
223 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
224 is not the address of a valid instruction, the address of the next
225 instruction beyond ADDR otherwise. *PWORD1 receives the first word
226 of the instruction. */
227
228 CORE_ADDR
229 NEXT_PROLOGUE_INSN (CORE_ADDR addr, CORE_ADDR lim, INSN_WORD * pword1)
230 {
231 char buf[2];
232 if (addr < lim + 8)
233 {
234 read_memory (addr, buf, 2);
235 *pword1 = extract_signed_integer (buf, 2);
236
237 return addr + 2;
238 }
239 return 0;
240 }
241
242 /* Examine the prologue of a function. `ip' points to the first instruction.
243 `limit' is the limit of the prologue (e.g. the addr of the first
244 linenumber, or perhaps the program counter if we're stepping through).
245 `frame_sp' is the stack pointer value in use in this frame.
246 `fsr' is a pointer to a frame_saved_regs structure into which we put
247 info about the registers saved by this frame.
248 `fi' is a struct frame_info pointer; we fill in various fields in it
249 to reflect the offsets of the arg pointer and the locals pointer. */
250
251 static CORE_ADDR
252 examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
253 CORE_ADDR after_prolog_fp, struct frame_saved_regs *fsr,
254 struct frame_info *fi)
255 {
256 register CORE_ADDR next_ip;
257 int r;
258 int have_fp = 0;
259 INSN_WORD insn_word;
260 /* Number of things pushed onto stack, starts at 2/4, 'cause the
261 PC is already there */
262 unsigned int reg_save_depth = h8300hmode ? 4 : 2;
263
264 unsigned int auto_depth = 0; /* Number of bytes of autos */
265
266 char in_frame[11]; /* One for each reg */
267
268 int adjust = 0;
269
270 memset (in_frame, 1, 11);
271 for (r = 0; r < 8; r++)
272 {
273 fsr->regs[r] = 0;
274 }
275 if (after_prolog_fp == 0)
276 {
277 after_prolog_fp = read_register (SP_REGNUM);
278 }
279
280 /* If the PC isn't valid, quit now. */
281 if (ip == 0 || ip & (h8300hmode ? ~0xffffff : ~0xffff))
282 return 0;
283
284 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
285
286 if (insn_word == 0x0100)
287 {
288 insn_word = read_memory_unsigned_integer (ip + 2, 2);
289 adjust = 2;
290 }
291
292 /* Skip over any fp push instructions */
293 fsr->regs[6] = after_prolog_fp;
294 while (next_ip && IS_PUSH_FP (insn_word))
295 {
296 ip = next_ip + adjust;
297
298 in_frame[insn_word & 0x7] = reg_save_depth;
299 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
300 reg_save_depth += 2 + adjust;
301 }
302
303 /* Is this a move into the fp */
304 if (next_ip && IS_MOV_SP_FP (insn_word))
305 {
306 ip = next_ip;
307 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
308 have_fp = 1;
309 }
310
311 /* Skip over any stack adjustment, happens either with a number of
312 sub#2,sp or a mov #x,r5 sub r5,sp */
313
314 if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
315 {
316 while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
317 {
318 auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
319 ip = next_ip;
320 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
321 }
322 }
323 else
324 {
325 if (next_ip && IS_MOVK_R5 (insn_word))
326 {
327 ip = next_ip;
328 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
329 auto_depth += insn_word;
330
331 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
332 auto_depth += insn_word;
333 }
334 if (next_ip && IS_SUBL_SP (insn_word))
335 {
336 ip = next_ip;
337 auto_depth += read_memory_unsigned_integer (ip, 4);
338 ip += 4;
339
340 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
341 }
342 }
343
344 /* Now examine the push insns to determine where everything lives
345 on the stack. */
346 while (1)
347 {
348 adjust = 0;
349 if (!next_ip)
350 break;
351
352 if (insn_word == 0x0100)
353 {
354 ip = next_ip;
355 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
356 adjust = 2;
357 }
358
359 if (IS_PUSH (insn_word))
360 {
361 ip = next_ip;
362 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
363 fsr->regs[r] = after_prolog_fp + auto_depth;
364 auto_depth += 2 + adjust;
365 continue;
366 }
367
368 /* Now check for push multiple insns. */
369 if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130)
370 {
371 int count = ((insn_word >> 4) & 0xf) + 1;
372 int start, i;
373
374 ip = next_ip;
375 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
376 start = insn_word & 0x7;
377
378 for (i = start; i <= start + count; i++)
379 {
380 fsr->regs[i] = after_prolog_fp + auto_depth;
381 auto_depth += 4;
382 }
383 }
384 break;
385 }
386
387 /* The args are always reffed based from the stack pointer */
388 fi->args_pointer = after_prolog_fp;
389 /* Locals are always reffed based from the fp */
390 fi->locals_pointer = after_prolog_fp;
391 /* The PC is at a known place */
392 fi->from_pc =
393 read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
394
395 /* Rememeber any others too */
396 in_frame[PC_REGNUM] = 0;
397
398 if (have_fp)
399 /* We keep the old FP in the SP spot */
400 fsr->regs[SP_REGNUM] =
401 read_memory_unsigned_integer (fsr->regs[6], BINWORD);
402 else
403 fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
404
405 return (ip);
406 }
407
408 void
409 h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
410 {
411 fi->fsr = 0; /* Not yet allocated */
412 fi->args_pointer = 0; /* Unknown */
413 fi->locals_pointer = 0; /* Unknown */
414 fi->from_pc = 0;
415 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
416 { /* anything special to do? */
417 return;
418 }
419 }
420
421 /* Return the saved PC from this frame.
422
423 If the frame has a memory copy of SRP_REGNUM, use that. If not,
424 just use the register SRP_REGNUM itself. */
425
426 CORE_ADDR
427 h8300_frame_saved_pc (struct frame_info *frame)
428 {
429 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
430 return generic_read_register_dummy (frame->pc, frame->frame, PC_REGNUM);
431 else
432 return frame->from_pc;
433 }
434
435 CORE_ADDR
436 h8300_frame_locals_address (struct frame_info *fi)
437 {
438 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
439 return (CORE_ADDR) 0; /* Not sure what else to do... */
440 if (!fi->locals_pointer)
441 {
442 struct frame_saved_regs ignore;
443
444 get_frame_saved_regs (fi, &ignore);
445
446 }
447 return fi->locals_pointer;
448 }
449
450 /* Return the address of the argument block for the frame
451 described by FI. Returns 0 if the address is unknown. */
452
453 CORE_ADDR
454 h8300_frame_args_address (struct frame_info *fi)
455 {
456 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
457 return (CORE_ADDR) 0; /* Not sure what else to do... */
458 if (!fi->args_pointer)
459 {
460 struct frame_saved_regs ignore;
461
462 get_frame_saved_regs (fi, &ignore);
463
464 }
465
466 return fi->args_pointer;
467 }
468
469 /* Function: push_arguments
470 Setup the function arguments for calling a function in the inferior.
471
472 On the Hitachi H8/300 architecture, there are three registers (R0 to R2)
473 which are dedicated for passing function arguments. Up to the first
474 three arguments (depending on size) may go into these registers.
475 The rest go on the stack.
476
477 Arguments that are smaller than WORDSIZE bytes will still take up a
478 whole register or a whole WORDSIZE word on the stack, and will be
479 right-justified in the register or the stack word. This includes
480 chars and small aggregate types. Note that WORDSIZE depends on the
481 cpu type.
482
483 Arguments that are larger than WORDSIZE bytes will be split between
484 two or more registers as available, but will NOT be split between a
485 register and the stack.
486
487 An exceptional case exists for struct arguments (and possibly other
488 aggregates such as arrays) -- if the size is larger than WORDSIZE
489 bytes but not a multiple of WORDSIZE bytes. In this case the
490 argument is never split between the registers and the stack, but
491 instead is copied in its entirety onto the stack, AND also copied
492 into as many registers as there is room for. In other words, space
493 in registers permitting, two copies of the same argument are passed
494 in. As far as I can tell, only the one on the stack is used,
495 although that may be a function of the level of compiler
496 optimization. I suspect this is a compiler bug. Arguments of
497 these odd sizes are left-justified within the word (as opposed to
498 arguments smaller than WORDSIZE bytes, which are right-justified).
499
500 If the function is to return an aggregate type such as a struct,
501 the caller must allocate space into which the callee will copy the
502 return value. In this case, a pointer to the return value location
503 is passed into the callee in register R0, which displaces one of
504 the other arguments passed in via registers R0 to R2. */
505
506 CORE_ADDR
507 h8300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
508 unsigned char struct_return, CORE_ADDR struct_addr)
509 {
510 int stack_align, stack_alloc, stack_offset;
511 int wordsize;
512 int argreg;
513 int argnum;
514 struct type *type;
515 CORE_ADDR regval;
516 char *val;
517 char valbuf[4];
518 int len;
519
520 if (h8300hmode || h8300smode)
521 {
522 stack_align = 3;
523 wordsize = 4;
524 }
525 else
526 {
527 stack_align = 1;
528 wordsize = 2;
529 }
530
531 /* first force sp to a n-byte alignment */
532 sp = sp & ~stack_align;
533
534 /* Now make sure there's space on the stack */
535 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
536 stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + stack_align)
537 & ~stack_align);
538 sp -= stack_alloc; /* make room on stack for args */
539 /* we may over-allocate a little here, but that won't hurt anything */
540
541 argreg = ARG0_REGNUM;
542 if (struct_return) /* "struct return" pointer takes up one argreg */
543 {
544 write_register (argreg++, struct_addr);
545 }
546
547 /* Now load as many as possible of the first arguments into
548 registers, and push the rest onto the stack. There are 3N bytes
549 in three registers available. Loop thru args from first to last. */
550
551 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
552 {
553 type = VALUE_TYPE (args[argnum]);
554 len = TYPE_LENGTH (type);
555 memset (valbuf, 0, sizeof (valbuf));
556 if (len < wordsize)
557 {
558 /* the purpose of this is to right-justify the value within the word */
559 memcpy (valbuf + (wordsize - len),
560 (char *) VALUE_CONTENTS (args[argnum]), len);
561 val = valbuf;
562 }
563 else
564 val = (char *) VALUE_CONTENTS (args[argnum]);
565
566 if (len >
567 (ARGLAST_REGNUM + 1 - argreg) * REGISTER_RAW_SIZE (ARG0_REGNUM)
568 || (len > wordsize && (len & stack_align) != 0))
569 { /* passed on the stack */
570 write_memory (sp + stack_offset, val,
571 len < wordsize ? wordsize : len);
572 stack_offset += (len + stack_align) & ~stack_align;
573 }
574 /* NOTE WELL!!!!! This is not an "else if" clause!!!
575 That's because some *&^%$ things get passed on the stack
576 AND in the registers! */
577 if (len <=
578 (ARGLAST_REGNUM + 1 - argreg) * REGISTER_RAW_SIZE (ARG0_REGNUM))
579 while (len > 0)
580 { /* there's room in registers */
581 regval = extract_address (val, wordsize);
582 write_register (argreg, regval);
583 len -= wordsize;
584 val += wordsize;
585 argreg++;
586 }
587 }
588 return sp;
589 }
590
591 /* Function: push_return_address
592 Setup the return address for a dummy frame, as called by
593 call_function_by_hand. Only necessary when you are using an
594 empty CALL_DUMMY, ie. the target will not actually be executing
595 a JSR/BSR instruction. */
596
597 CORE_ADDR
598 h8300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
599 {
600 unsigned char buf[4];
601 int wordsize;
602
603 if (h8300hmode || h8300smode)
604 wordsize = 4;
605 else
606 wordsize = 2;
607
608 sp -= wordsize;
609 store_unsigned_integer (buf, wordsize, CALL_DUMMY_ADDRESS ());
610 write_memory (sp, buf, wordsize);
611 return sp;
612 }
613
614 /* Function: h8300_pop_frame
615 Restore the machine to the state it had before the current frame
616 was created. Usually used either by the "RETURN" command, or by
617 call_function_by_hand after the dummy_frame is finished. */
618
619 void
620 h8300_pop_frame (void)
621 {
622 unsigned regnum;
623 struct frame_saved_regs fsr;
624 struct frame_info *frame = get_current_frame ();
625
626 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
627 {
628 generic_pop_dummy_frame ();
629 }
630 else
631 {
632 get_frame_saved_regs (frame, &fsr);
633
634 for (regnum = 0; regnum < 8; regnum++)
635 {
636 /* Don't forget SP_REGNUM is a frame_saved_regs struct is the
637 actual value we want, not the address of the value we want. */
638 if (fsr.regs[regnum] && regnum != SP_REGNUM)
639 write_register (regnum,
640 read_memory_integer (fsr.regs[regnum], BINWORD));
641 else if (fsr.regs[regnum] && regnum == SP_REGNUM)
642 write_register (regnum, frame->frame + 2 * BINWORD);
643 }
644
645 /* Don't forget the update the PC too! */
646 write_pc (frame->from_pc);
647 }
648 flush_cached_frames ();
649 }
650
651 /* Function: extract_return_value
652 Figure out where in REGBUF the called function has left its return value.
653 Copy that into VALBUF. Be sure to account for CPU type. */
654
655 void
656 h8300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
657 {
658 int wordsize, len;
659
660 if (h8300smode || h8300hmode)
661 wordsize = 4;
662 else
663 wordsize = 2;
664
665 len = TYPE_LENGTH (type);
666
667 switch (len)
668 {
669 case 1: /* (char) */
670 case 2: /* (short), (int) */
671 memcpy (valbuf, regbuf + REGISTER_BYTE (0) + (wordsize - len), len);
672 break;
673 case 4: /* (long), (float) */
674 if (h8300smode || h8300hmode)
675 {
676 memcpy (valbuf, regbuf + REGISTER_BYTE (0), 4);
677 }
678 else
679 {
680 memcpy (valbuf, regbuf + REGISTER_BYTE (0), 2);
681 memcpy (valbuf + 2, regbuf + REGISTER_BYTE (1), 2);
682 }
683 break;
684 case 8: /* (double) (doesn't seem to happen, which is good,
685 because this almost certainly isn't right. */
686 error ("I don't know how a double is returned.");
687 break;
688 }
689 }
690
691 /* Function: store_return_value
692 Place the appropriate value in the appropriate registers.
693 Primarily used by the RETURN command. */
694
695 void
696 h8300_store_return_value (struct type *type, char *valbuf)
697 {
698 int wordsize, len, regval;
699
700 if (h8300hmode || h8300smode)
701 wordsize = 4;
702 else
703 wordsize = 2;
704
705 len = TYPE_LENGTH (type);
706 switch (len)
707 {
708 case 1: /* char */
709 case 2: /* short, int */
710 regval = extract_address (valbuf, len);
711 write_register (0, regval);
712 break;
713 case 4: /* long, float */
714 regval = extract_address (valbuf, len);
715 if (h8300smode || h8300hmode)
716 {
717 write_register (0, regval);
718 }
719 else
720 {
721 write_register (0, regval >> 16);
722 write_register (1, regval & 0xffff);
723 }
724 break;
725 case 8: /* presumeably double, but doesn't seem to happen */
726 error ("I don't know how to return a double.");
727 break;
728 }
729 }
730
731 struct cmd_list_element *setmemorylist;
732
733 static void
734 set_register_names (void)
735 {
736 if (h8300hmode != 0)
737 h8300_register_names = h8300h_register_names;
738 else
739 h8300_register_names = original_register_names;
740 }
741
742 static void
743 h8300_command (char *args, int from_tty)
744 {
745 extern int h8300hmode;
746 h8300hmode = 0;
747 h8300smode = 0;
748 set_register_names ();
749 }
750
751 static void
752 h8300h_command (char *args, int from_tty)
753 {
754 extern int h8300hmode;
755 h8300hmode = 1;
756 h8300smode = 0;
757 set_register_names ();
758 }
759
760 static void
761 h8300s_command (char *args, int from_tty)
762 {
763 extern int h8300smode;
764 extern int h8300hmode;
765 h8300smode = 1;
766 h8300hmode = 1;
767 set_register_names ();
768 }
769
770 static void
771 set_machine (char *args, int from_tty)
772 {
773 printf_unfiltered ("\"set machine\" must be followed by h8300, h8300h");
774 printf_unfiltered ("or h8300s");
775 help_list (setmemorylist, "set memory ", -1, gdb_stdout);
776 }
777
778 /* set_machine_hook is called as the exec file is being opened, but
779 before the symbol file is opened. This allows us to set the
780 h8300hmode flag based on the machine type specified in the exec
781 file. This in turn will cause subsequently defined pointer types
782 to be 16 or 32 bits as appropriate for the machine. */
783
784 static void
785 set_machine_hook (char *filename)
786 {
787 if (bfd_get_mach (exec_bfd) == bfd_mach_h8300s)
788 {
789 h8300smode = 1;
790 h8300hmode = 1;
791 }
792 else if (bfd_get_mach (exec_bfd) == bfd_mach_h8300h)
793 {
794 h8300smode = 0;
795 h8300hmode = 1;
796 }
797 else
798 {
799 h8300smode = 0;
800 h8300hmode = 0;
801 }
802 set_register_names ();
803 }
804
805 void
806 _initialize_h8300m (void)
807 {
808 add_prefix_cmd ("machine", no_class, set_machine,
809 "set the machine type",
810 &setmemorylist, "set machine ", 0, &setlist);
811
812 add_cmd ("h8300", class_support, h8300_command,
813 "Set machine to be H8/300.", &setmemorylist);
814
815 add_cmd ("h8300h", class_support, h8300h_command,
816 "Set machine to be H8/300H.", &setmemorylist);
817
818 add_cmd ("h8300s", class_support, h8300s_command,
819 "Set machine to be H8/300S.", &setmemorylist);
820
821 /* Add a hook to set the machine type when we're loading a file. */
822
823 specify_exec_file_hook (set_machine_hook);
824 }
825
826 void
827 h8300_print_register_hook (int regno)
828 {
829 if (regno == CCR_REGNUM)
830 {
831 /* CCR register */
832 int C, Z, N, V;
833 unsigned char b[REGISTER_SIZE];
834 unsigned char l;
835 frame_register_read (selected_frame, regno, b);
836 l = b[REGISTER_VIRTUAL_SIZE (CCR_REGNUM) - 1];
837 printf_unfiltered ("\t");
838 printf_unfiltered ("I-%d ", (l & 0x80) != 0);
839 printf_unfiltered ("UI-%d ", (l & 0x40) != 0);
840 printf_unfiltered ("H-%d ", (l & 0x20) != 0);
841 printf_unfiltered ("U-%d ", (l & 0x10) != 0);
842 N = (l & 0x8) != 0;
843 Z = (l & 0x4) != 0;
844 V = (l & 0x2) != 0;
845 C = (l & 0x1) != 0;
846 printf_unfiltered ("N-%d ", N);
847 printf_unfiltered ("Z-%d ", Z);
848 printf_unfiltered ("V-%d ", V);
849 printf_unfiltered ("C-%d ", C);
850 if ((C | Z) == 0)
851 printf_unfiltered ("u> ");
852 if ((C | Z) == 1)
853 printf_unfiltered ("u<= ");
854 if ((C == 0))
855 printf_unfiltered ("u>= ");
856 if (C == 1)
857 printf_unfiltered ("u< ");
858 if (Z == 0)
859 printf_unfiltered ("!= ");
860 if (Z == 1)
861 printf_unfiltered ("== ");
862 if ((N ^ V) == 0)
863 printf_unfiltered (">= ");
864 if ((N ^ V) == 1)
865 printf_unfiltered ("< ");
866 if ((Z | (N ^ V)) == 0)
867 printf_unfiltered ("> ");
868 if ((Z | (N ^ V)) == 1)
869 printf_unfiltered ("<= ");
870 }
871
872 if (regno == EXR_REGNUM && h8300smode)
873 {
874 /* EXR register */
875 unsigned char b[REGISTER_SIZE];
876 unsigned char l;
877 frame_register_read (selected_frame, regno, b);
878 l = b[REGISTER_VIRTUAL_SIZE (EXR_REGNUM) - 1];
879 printf_unfiltered ("\t");
880 printf_unfiltered ("T-%d - - - ", (l & 0x80) != 0);
881 printf_unfiltered ("I2-%d ", (l & 4) != 0);
882 printf_unfiltered ("I1-%d ", (l & 2) != 0);
883 printf_unfiltered ("I0-%d", (l & 1) != 0);
884 }
885 }
886
887 void
888 _initialize_h8300_tdep (void)
889 {
890 tm_print_insn = gdb_print_insn_h8300;
891 }
This page took 0.059068 seconds and 4 git commands to generate.