2002-11-29 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Hitachi H8/300, for GDB.
2
3 Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
4 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /*
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
26 */
27
28 #include "defs.h"
29 #include "value.h"
30 #include "inferior.h"
31 #include "symfile.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "gdbcmd.h"
37 #include "gdb_assert.h"
38
39 /* Extra info which is saved in each frame_info. */
40 struct frame_extra_info
41 {
42 CORE_ADDR from_pc;
43 CORE_ADDR args_pointer;
44 CORE_ADDR locals_pointer;
45 };
46
47 #define E_NUM_REGS (h8300smode ? 14 : 13)
48
49 enum
50 {
51 h8300_reg_size = 2,
52 h8300h_reg_size = 4,
53 h8300_max_reg_size = 4,
54 };
55 #define BINWORD (h8300hmode ? h8300h_reg_size : h8300_reg_size)
56
57 enum gdb_regnum
58 {
59 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
60 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM,
61 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
62 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
63 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
64 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
65 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
66 E_SP_REGNUM,
67 E_CCR_REGNUM,
68 E_PC_REGNUM,
69 E_CYCLES_REGNUM,
70 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
71 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
72 E_INSTS_REGNUM
73 };
74
75 #define UNSIGNED_SHORT(X) ((X) & 0xffff)
76
77 #define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
78 #define IS_PUSH_FP(x) (x == 0x6df6)
79 #define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
80 #define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
81 #define IS_SUB2_SP(x) (x==0x1b87)
82 #define IS_SUB4_SP(x) (x==0x1b97)
83 #define IS_SUBL_SP(x) (x==0x7a37)
84 #define IS_MOVK_R5(x) (x==0x7905)
85 #define IS_SUB_R5SP(x) (x==0x1957)
86
87 /* If the instruction at PC is an argument register spill, return its
88 length. Otherwise, return zero.
89
90 An argument register spill is an instruction that moves an argument
91 from the register in which it was passed to the stack slot in which
92 it really lives. It is a byte, word, or longword move from an
93 argument register to a negative offset from the frame pointer. */
94
95 static int
96 h8300_is_argument_spill (CORE_ADDR pc)
97 {
98 int w = read_memory_unsigned_integer (pc, 2);
99
100 if ((w & 0xfff0) == 0x6ee0 /* mov.b Rs,@(d:16,er6) */
101 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
102 {
103 int w2 = read_memory_integer (pc + 2, 2);
104
105 /* ... and d:16 is negative. */
106 if (w2 < 0)
107 return 4;
108 }
109 else if (w == 0x7860)
110 {
111 int w2 = read_memory_integer (pc + 2, 2);
112
113 if ((w2 & 0xfff0) == 0x6aa0) /* mov.b Rs, @(d:24,er6) */
114 {
115 LONGEST disp = read_memory_integer (pc + 4, 4);
116
117 /* ... and d:24 is negative. */
118 if (disp < 0 && disp > 0xffffff)
119 return 8;
120 }
121 }
122 else if ((w & 0xfff0) == 0x6fe0 /* mov.w Rs,@(d:16,er6) */
123 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
124 {
125 int w2 = read_memory_integer (pc + 2, 2);
126
127 /* ... and d:16 is negative. */
128 if (w2 < 0)
129 return 4;
130 }
131 else if (w == 0x78e0)
132 {
133 int w2 = read_memory_integer (pc + 2, 2);
134
135 if ((w2 & 0xfff0) == 0x6ba0) /* mov.b Rs, @(d:24,er6) */
136 {
137 LONGEST disp = read_memory_integer (pc + 4, 4);
138
139 /* ... and d:24 is negative. */
140 if (disp < 0 && disp > 0xffffff)
141 return 8;
142 }
143 }
144 else if (w == 0x0100)
145 {
146 int w2 = read_memory_integer (pc + 2, 2);
147
148 if ((w2 & 0xfff0) == 0x6fe0 /* mov.l Rs,@(d:16,er6) */
149 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
150 {
151 int w3 = read_memory_integer (pc + 4, 2);
152
153 /* ... and d:16 is negative. */
154 if (w3 < 0)
155 return 6;
156 }
157 else if (w2 == 0x78e0)
158 {
159 int w3 = read_memory_integer (pc + 4, 2);
160
161 if ((w3 & 0xfff0) == 0x6ba0) /* mov.l Rs, @(d:24,er6) */
162 {
163 LONGEST disp = read_memory_integer (pc + 6, 4);
164
165 /* ... and d:24 is negative. */
166 if (disp < 0 && disp > 0xffffff)
167 return 10;
168 }
169 }
170 }
171
172 return 0;
173 }
174
175 static CORE_ADDR
176 h8300_skip_prologue (CORE_ADDR start_pc)
177 {
178 short int w;
179 int adjust = 0;
180
181 /* Skip past all push and stm insns. */
182 while (1)
183 {
184 w = read_memory_unsigned_integer (start_pc, 2);
185 /* First look for push insns. */
186 if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130)
187 {
188 w = read_memory_unsigned_integer (start_pc + 2, 2);
189 adjust = 2;
190 }
191
192 if (IS_PUSH (w))
193 {
194 start_pc += 2 + adjust;
195 w = read_memory_unsigned_integer (start_pc, 2);
196 continue;
197 }
198 adjust = 0;
199 break;
200 }
201
202 /* Skip past a move to FP, either word or long sized */
203 w = read_memory_unsigned_integer (start_pc, 2);
204 if (w == 0x0100)
205 {
206 w = read_memory_unsigned_integer (start_pc + 2, 2);
207 adjust += 2;
208 }
209
210 if (IS_MOVE_FP (w))
211 {
212 start_pc += 2 + adjust;
213 w = read_memory_unsigned_integer (start_pc, 2);
214 }
215
216 /* Check for loading either a word constant into r5;
217 long versions are handled by the SUBL_SP below. */
218 if (IS_MOVK_R5 (w))
219 {
220 start_pc += 2;
221 w = read_memory_unsigned_integer (start_pc, 2);
222 }
223
224 /* Now check for subtracting r5 from sp, word sized only. */
225 if (IS_SUB_R5SP (w))
226 {
227 start_pc += 2 + adjust;
228 w = read_memory_unsigned_integer (start_pc, 2);
229 }
230
231 /* Check for subs #2 and subs #4. */
232 while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
233 {
234 start_pc += 2 + adjust;
235 w = read_memory_unsigned_integer (start_pc, 2);
236 }
237
238 /* Check for a 32bit subtract. */
239 if (IS_SUBL_SP (w))
240 start_pc += 6 + adjust;
241
242 /* Check for spilling an argument register to the stack frame.
243 This could also be an initializing store from non-prologue code,
244 but I don't think there's any harm in skipping that. */
245 for (;;)
246 {
247 int spill_size = h8300_is_argument_spill (start_pc);
248 if (spill_size == 0)
249 break;
250 start_pc += spill_size;
251 }
252
253 return start_pc;
254 }
255
256 static int
257 gdb_print_insn_h8300 (bfd_vma memaddr, disassemble_info * info)
258 {
259 if (h8300smode)
260 return print_insn_h8300s (memaddr, info);
261 else if (h8300hmode)
262 return print_insn_h8300h (memaddr, info);
263 else
264 return print_insn_h8300 (memaddr, info);
265 }
266
267 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
268 is not the address of a valid instruction, the address of the next
269 instruction beyond ADDR otherwise. *PWORD1 receives the first word
270 of the instruction. */
271
272 static CORE_ADDR
273 h8300_next_prologue_insn (CORE_ADDR addr, CORE_ADDR lim, unsigned short* pword1)
274 {
275 char buf[2];
276 if (addr < lim + 8)
277 {
278 read_memory (addr, buf, 2);
279 *pword1 = extract_signed_integer (buf, 2);
280
281 return addr + 2;
282 }
283 return 0;
284 }
285
286 /* Examine the prologue of a function. `ip' points to the first instruction.
287 `limit' is the limit of the prologue (e.g. the addr of the first
288 linenumber, or perhaps the program counter if we're stepping through).
289 `frame_sp' is the stack pointer value in use in this frame.
290 `fsr' is a pointer to a frame_saved_regs structure into which we put
291 info about the registers saved by this frame.
292 `fi' is a struct frame_info pointer; we fill in various fields in it
293 to reflect the offsets of the arg pointer and the locals pointer. */
294
295 /* Any function with a frame looks like this
296 SECOND ARG
297 FIRST ARG
298 RET PC
299 SAVED R2
300 SAVED R3
301 SAVED FP <-FP POINTS HERE
302 LOCALS0
303 LOCALS1 <-SP POINTS HERE
304 */
305
306 static CORE_ADDR
307 h8300_examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
308 CORE_ADDR after_prolog_fp, CORE_ADDR *fsr,
309 struct frame_info *fi)
310 {
311 register CORE_ADDR next_ip;
312 int r;
313 int have_fp = 0;
314 unsigned short insn_word;
315 /* Number of things pushed onto stack, starts at 2/4, 'cause the
316 PC is already there */
317 unsigned int reg_save_depth = BINWORD;
318
319 unsigned int auto_depth = 0; /* Number of bytes of autos */
320
321 char in_frame[11]; /* One for each reg */
322
323 int adjust = 0;
324
325 memset (in_frame, 1, 11);
326 for (r = 0; r < 8; r++)
327 {
328 fsr[r] = 0;
329 }
330 if (after_prolog_fp == 0)
331 {
332 after_prolog_fp = read_register (E_SP_REGNUM);
333 }
334
335 /* If the PC isn't valid, quit now. */
336 if (ip == 0 || ip & (h8300hmode ? ~0xffffff : ~0xffff))
337 return 0;
338
339 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
340
341 if (insn_word == 0x0100)
342 {
343 insn_word = read_memory_unsigned_integer (ip + 2, 2);
344 adjust = 2;
345 }
346
347 /* Skip over any fp push instructions */
348 fsr[E_FP_REGNUM] = after_prolog_fp;
349 while (next_ip && IS_PUSH_FP (insn_word))
350 {
351 ip = next_ip + adjust;
352
353 in_frame[insn_word & 0x7] = reg_save_depth;
354 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
355 reg_save_depth += 2 + adjust;
356 }
357
358 /* Is this a move into the fp */
359 if (next_ip && IS_MOV_SP_FP (insn_word))
360 {
361 ip = next_ip;
362 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
363 have_fp = 1;
364 }
365
366 /* Skip over any stack adjustment, happens either with a number of
367 sub#2,sp or a mov #x,r5 sub r5,sp */
368
369 if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
370 {
371 while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
372 {
373 auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
374 ip = next_ip;
375 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
376 }
377 }
378 else
379 {
380 if (next_ip && IS_MOVK_R5 (insn_word))
381 {
382 ip = next_ip;
383 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
384 auto_depth += insn_word;
385
386 next_ip = h8300_next_prologue_insn (next_ip, limit, &insn_word);
387 auto_depth += insn_word;
388 }
389 if (next_ip && IS_SUBL_SP (insn_word))
390 {
391 ip = next_ip;
392 auto_depth += read_memory_unsigned_integer (ip, 4);
393 ip += 4;
394
395 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
396 }
397 }
398
399 /* Now examine the push insns to determine where everything lives
400 on the stack. */
401 while (1)
402 {
403 adjust = 0;
404 if (!next_ip)
405 break;
406
407 if (insn_word == 0x0100)
408 {
409 ip = next_ip;
410 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
411 adjust = 2;
412 }
413
414 if (IS_PUSH (insn_word))
415 {
416 auto_depth += 2 + adjust;
417 fsr[insn_word & 0x7] = after_prolog_fp - auto_depth;
418 ip = next_ip;
419 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
420 continue;
421 }
422
423 /* Now check for push multiple insns. */
424 if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130)
425 {
426 int count = ((insn_word >> 4) & 0xf) + 1;
427 int start, i;
428
429 ip = next_ip;
430 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
431 start = insn_word & 0x7;
432
433 for (i = start; i < start + count; i++)
434 {
435 auto_depth += 4;
436 fsr[i] = after_prolog_fp - auto_depth;
437 }
438 }
439 break;
440 }
441
442 /* The args are always reffed based from the stack pointer */
443 fi->extra_info->args_pointer = after_prolog_fp;
444 /* Locals are always reffed based from the fp */
445 fi->extra_info->locals_pointer = after_prolog_fp;
446 /* The PC is at a known place */
447 fi->extra_info->from_pc =
448 read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
449
450 /* Rememeber any others too */
451 in_frame[E_PC_REGNUM] = 0;
452
453 if (have_fp)
454 /* We keep the old FP in the SP spot */
455 fsr[E_SP_REGNUM] = read_memory_unsigned_integer (fsr[E_FP_REGNUM], BINWORD);
456 else
457 fsr[E_SP_REGNUM] = after_prolog_fp + auto_depth;
458
459 return (ip);
460 }
461
462 static void
463 h8300_frame_init_saved_regs (struct frame_info *fi)
464 {
465 CORE_ADDR func_addr, func_end;
466
467 if (!fi->saved_regs)
468 {
469 frame_saved_regs_zalloc (fi);
470
471 /* Find the beginning of this function, so we can analyze its
472 prologue. */
473 if (find_pc_partial_function (fi->pc, NULL, &func_addr, &func_end))
474 {
475 struct symtab_and_line sal = find_pc_line (func_addr, 0);
476 CORE_ADDR limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
477 /* This will fill in fields in fi. */
478 h8300_examine_prologue (func_addr, limit, fi->frame, fi->saved_regs, fi);
479 }
480 /* Else we're out of luck (can't debug completely stripped code).
481 FIXME. */
482 }
483 }
484
485 /* Given a GDB frame, determine the address of the calling function's frame.
486 This will be used to create a new GDB frame struct, and then
487 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
488
489 For us, the frame address is its stack pointer value, so we look up
490 the function prologue to determine the caller's sp value, and return it. */
491
492 static CORE_ADDR
493 h8300_frame_chain (struct frame_info *thisframe)
494 {
495 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
496 { /* initialize the from_pc now */
497 thisframe->extra_info->from_pc =
498 deprecated_read_register_dummy (thisframe->pc, thisframe->frame,
499 E_PC_REGNUM);
500 return thisframe->frame;
501 }
502 return thisframe->saved_regs[E_SP_REGNUM];
503 }
504
505 /* Return the saved PC from this frame.
506
507 If the frame has a memory copy of SRP_REGNUM, use that. If not,
508 just use the register SRP_REGNUM itself. */
509
510 static CORE_ADDR
511 h8300_frame_saved_pc (struct frame_info *frame)
512 {
513 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
514 return deprecated_read_register_dummy (frame->pc, frame->frame,
515 E_PC_REGNUM);
516 else
517 return frame->extra_info->from_pc;
518 }
519
520 static void
521 h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
522 {
523 if (!fi->extra_info)
524 {
525 fi->extra_info = (struct frame_extra_info *)
526 frame_obstack_alloc (sizeof (struct frame_extra_info));
527 fi->extra_info->from_pc = 0;
528 fi->extra_info->args_pointer = 0; /* Unknown */
529 fi->extra_info->locals_pointer = 0; /* Unknown */
530
531 if (!fi->pc)
532 {
533 if (fi->next)
534 fi->pc = h8300_frame_saved_pc (fi->next);
535 }
536 h8300_frame_init_saved_regs (fi);
537 }
538 }
539
540 static CORE_ADDR
541 h8300_frame_locals_address (struct frame_info *fi)
542 {
543 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
544 return (CORE_ADDR) 0; /* Not sure what else to do... */
545 return fi->extra_info->locals_pointer;
546 }
547
548 /* Return the address of the argument block for the frame
549 described by FI. Returns 0 if the address is unknown. */
550
551 static CORE_ADDR
552 h8300_frame_args_address (struct frame_info *fi)
553 {
554 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
555 return (CORE_ADDR) 0; /* Not sure what else to do... */
556 return fi->extra_info->args_pointer;
557 }
558
559 /* Round N up or down to the nearest multiple of UNIT.
560 Evaluate N only once, UNIT several times.
561 UNIT must be a power of two. */
562 #define round_up(n, unit) (((n) + (unit) - 1) & -(unit))
563 #define round_down(n, unit) ((n) & -(unit))
564
565 /* Function: push_arguments
566 Setup the function arguments for calling a function in the inferior.
567 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
568 on the H8/300H.
569
570 There are actually two ABI's here: -mquickcall (the default) and
571 -mno-quickcall. With -mno-quickcall, all arguments are passed on
572 the stack after the return address, word-aligned. With
573 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
574 GCC doesn't indicate in the object file which ABI was used to
575 compile it, GDB only supports the default --- -mquickcall.
576
577 Here are the rules for -mquickcall, in detail:
578
579 Each argument, whether scalar or aggregate, is padded to occupy a
580 whole number of words. Arguments smaller than a word are padded at
581 the most significant end; those larger than a word are padded at
582 the least significant end.
583
584 The initial arguments are passed in r0 -- r2. Earlier arguments go in
585 lower-numbered registers. Multi-word arguments are passed in
586 consecutive registers, with the most significant end in the
587 lower-numbered register.
588
589 If an argument doesn't fit entirely in the remaining registers, it
590 is passed entirely on the stack. Stack arguments begin just after
591 the return address. Once an argument has overflowed onto the stack
592 this way, all subsequent arguments are passed on the stack.
593
594 The above rule has odd consequences. For example, on the h8/300s,
595 if a function takes two longs and an int as arguments:
596 - the first long will be passed in r0/r1,
597 - the second long will be passed entirely on the stack, since it
598 doesn't fit in r2,
599 - and the int will be passed on the stack, even though it could fit
600 in r2.
601
602 A weird exception: if an argument is larger than a word, but not a
603 whole number of words in length (before padding), it is passed on
604 the stack following the rules for stack arguments above, even if
605 there are sufficient registers available to hold it. Stranger
606 still, the argument registers are still `used up' --- even though
607 there's nothing in them.
608
609 So, for example, on the h8/300s, if a function expects a three-byte
610 structure and an int, the structure will go on the stack, and the
611 int will go in r2, not r0.
612
613 If the function returns an aggregate type (struct, union, or class)
614 by value, the caller must allocate space to hold the return value,
615 and pass the callee a pointer to this space as an invisible first
616 argument, in R0.
617
618 For varargs functions, the last fixed argument and all the variable
619 arguments are always passed on the stack. This means that calls to
620 varargs functions don't work properly unless there is a prototype
621 in scope.
622
623 Basically, this ABI is not good, for the following reasons:
624 - You can't call vararg functions properly unless a prototype is in scope.
625 - Structure passing is inconsistent, to no purpose I can see.
626 - It often wastes argument registers, of which there are only three
627 to begin with. */
628
629 static CORE_ADDR
630 h8300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
631 int struct_return, CORE_ADDR struct_addr)
632 {
633 int stack_align, stack_alloc, stack_offset;
634 int wordsize = BINWORD;
635 int reg;
636 int argument;
637
638 /* First, make sure the stack is properly aligned. */
639 sp = round_down (sp, wordsize);
640
641 /* Now make sure there's space on the stack for the arguments. We
642 may over-allocate a little here, but that won't hurt anything. */
643 stack_alloc = 0;
644 for (argument = 0; argument < nargs; argument++)
645 stack_alloc += round_up (TYPE_LENGTH (VALUE_TYPE (args[argument])),
646 wordsize);
647 sp -= stack_alloc;
648
649 /* Now load as many arguments as possible into registers, and push
650 the rest onto the stack. */
651 reg = E_ARG0_REGNUM;
652 stack_offset = 0;
653
654 /* If we're returning a structure by value, then we must pass a
655 pointer to the buffer for the return value as an invisible first
656 argument. */
657 if (struct_return)
658 write_register (reg++, struct_addr);
659
660 for (argument = 0; argument < nargs; argument++)
661 {
662 struct type *type = VALUE_TYPE (args[argument]);
663 int len = TYPE_LENGTH (type);
664 char *contents = (char *) VALUE_CONTENTS (args[argument]);
665
666 /* Pad the argument appropriately. */
667 int padded_len = round_up (len, wordsize);
668 char *padded = alloca (padded_len);
669
670 memset (padded, 0, padded_len);
671 memcpy (len < wordsize ? padded + padded_len - len : padded,
672 contents, len);
673
674 /* Could the argument fit in the remaining registers? */
675 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
676 {
677 /* Are we going to pass it on the stack anyway, for no good
678 reason? */
679 if (len > wordsize && len % wordsize)
680 {
681 /* I feel so unclean. */
682 write_memory (sp + stack_offset, padded, padded_len);
683 stack_offset += padded_len;
684
685 /* That's right --- even though we passed the argument
686 on the stack, we consume the registers anyway! Love
687 me, love my dog. */
688 reg += padded_len / wordsize;
689 }
690 else
691 {
692 /* Heavens to Betsy --- it's really going in registers!
693 It would be nice if we could use write_register_bytes
694 here, but on the h8/300s, there are gaps between
695 the registers in the register file. */
696 int offset;
697
698 for (offset = 0; offset < padded_len; offset += wordsize)
699 {
700 ULONGEST word = extract_address (padded + offset, wordsize);
701 write_register (reg++, word);
702 }
703 }
704 }
705 else
706 {
707 /* It doesn't fit in registers! Onto the stack it goes. */
708 write_memory (sp + stack_offset, padded, padded_len);
709 stack_offset += padded_len;
710
711 /* Once one argument has spilled onto the stack, all
712 subsequent arguments go on the stack. */
713 reg = E_ARGLAST_REGNUM + 1;
714 }
715 }
716
717 return sp;
718 }
719
720 /* Function: push_return_address
721 Setup the return address for a dummy frame, as called by
722 call_function_by_hand. Only necessary when you are using an
723 empty CALL_DUMMY, ie. the target will not actually be executing
724 a JSR/BSR instruction. */
725
726 static CORE_ADDR
727 h8300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
728 {
729 unsigned char buf[4];
730 int wordsize = BINWORD;
731
732 sp -= wordsize;
733 store_unsigned_integer (buf, wordsize, CALL_DUMMY_ADDRESS ());
734 write_memory (sp, buf, wordsize);
735 return sp;
736 }
737
738 /* Function: h8300_pop_frame
739 Restore the machine to the state it had before the current frame
740 was created. Usually used either by the "RETURN" command, or by
741 call_function_by_hand after the dummy_frame is finished. */
742
743 static void
744 h8300_pop_frame (void)
745 {
746 unsigned regno;
747 struct frame_info *frame = get_current_frame ();
748
749 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
750 {
751 generic_pop_dummy_frame ();
752 }
753 else
754 {
755 for (regno = 0; regno < 8; regno++)
756 {
757 /* Don't forget E_SP_REGNUM is a frame_saved_regs struct is the
758 actual value we want, not the address of the value we want. */
759 if (frame->saved_regs[regno] && regno != E_SP_REGNUM)
760 write_register (regno,
761 read_memory_integer (frame->saved_regs[regno],
762 BINWORD));
763 else if (frame->saved_regs[regno] && regno == E_SP_REGNUM)
764 write_register (regno, frame->frame + 2 * BINWORD);
765 }
766
767 /* Don't forget to update the PC too! */
768 write_register (E_PC_REGNUM, frame->extra_info->from_pc);
769 }
770 flush_cached_frames ();
771 }
772
773 /* Function: extract_return_value
774 Figure out where in REGBUF the called function has left its return value.
775 Copy that into VALBUF. Be sure to account for CPU type. */
776
777 static void
778 h8300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
779 {
780 int wordsize = BINWORD;
781 int len = TYPE_LENGTH (type);
782
783 switch (len)
784 {
785 case 1: /* (char) */
786 case 2: /* (short), (int) */
787 memcpy (valbuf, regbuf + REGISTER_BYTE (0) + (wordsize - len), len);
788 break;
789 case 4: /* (long), (float) */
790 if (wordsize == 4)
791 {
792 memcpy (valbuf, regbuf + REGISTER_BYTE (0), 4);
793 }
794 else
795 {
796 memcpy (valbuf, regbuf + REGISTER_BYTE (0), 2);
797 memcpy (valbuf + 2, regbuf + REGISTER_BYTE (1), 2);
798 }
799 break;
800 case 8: /* (double) (doesn't seem to happen, which is good,
801 because this almost certainly isn't right. */
802 error ("I don't know how a double is returned.");
803 break;
804 }
805 }
806
807 /* Function: store_return_value
808 Place the appropriate value in the appropriate registers.
809 Primarily used by the RETURN command. */
810
811 static void
812 h8300_store_return_value (struct type *type, char *valbuf)
813 {
814 int regval;
815 int wordsize = BINWORD;
816 int len = TYPE_LENGTH (type);
817
818 switch (len)
819 {
820 case 1: /* char */
821 case 2: /* short, int */
822 regval = extract_address (valbuf, len);
823 write_register (0, regval);
824 break;
825 case 4: /* long, float */
826 regval = extract_address (valbuf, len);
827 if (wordsize == 4)
828 {
829 write_register (0, regval);
830 }
831 else
832 {
833 write_register (0, regval >> 16);
834 write_register (1, regval & 0xffff);
835 }
836 break;
837 case 8: /* presumeably double, but doesn't seem to happen */
838 error ("I don't know how to return a double.");
839 break;
840 }
841 }
842
843 static struct cmd_list_element *setmachinelist;
844
845 static const char *
846 h8300_register_name (int regno)
847 {
848 /* The register names change depending on whether the h8300h processor
849 type is selected. */
850 static char *h8300_register_names[] = {
851 "r0", "r1", "r2", "r3", "r4", "r5", "r6",
852 "sp", "ccr","pc","cycles", "tick", "inst", ""
853 };
854 static char *h8300s_register_names[] = {
855 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
856 "sp", "ccr", "pc", "cycles", "exr", "tick", "inst"
857 };
858 char **register_names =
859 h8300smode ? h8300s_register_names : h8300_register_names;
860 if (regno < 0 || regno >= E_NUM_REGS)
861 internal_error (__FILE__, __LINE__,
862 "h8300_register_name: illegal register number %d", regno);
863 else
864 return register_names[regno];
865 }
866
867 static void
868 h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
869 struct frame_info *frame, int regno)
870 {
871 ULONGEST rval;
872 long val;
873 const char *name = h8300_register_name (regno);
874
875 if (!name || !*name)
876 return;
877
878 /* FIXME: cagney/2002-10-22: The code below assumes that VAL is at
879 least 4 bytes (32 bits) in size and hence is large enough to hold
880 the largest h8300 register. Should instead be using ULONGEST and
881 the phex() functions. */
882 gdb_assert (sizeof (val) >= 4);
883 frame_read_unsigned_register (frame, regno, &rval);
884 val = rval;
885
886 fprintf_filtered (file, "%-14s ", name);
887 if (h8300hmode)
888 {
889 if (val)
890 fprintf_filtered (file, "0x%08lx %-8ld", val, val);
891 else
892 fprintf_filtered (file, "0x%-8lx %-8ld", val, val);
893 }
894 else
895 {
896 if (val)
897 fprintf_filtered (file, "0x%04lx %-4ld", val, val);
898 else
899 fprintf_filtered (file, "0x%-4lx %-4ld", val, val);
900 }
901 if (regno == E_CCR_REGNUM)
902 {
903 /* CCR register */
904 int C, Z, N, V;
905 unsigned char b[h8300h_reg_size];
906 unsigned char l;
907 frame_register_read (deprecated_selected_frame, regno, b);
908 l = b[REGISTER_VIRTUAL_SIZE (E_CCR_REGNUM) - 1];
909 fprintf_filtered (file, "\t");
910 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
911 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
912 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
913 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
914 N = (l & 0x8) != 0;
915 Z = (l & 0x4) != 0;
916 V = (l & 0x2) != 0;
917 C = (l & 0x1) != 0;
918 fprintf_filtered (file, "N-%d ", N);
919 fprintf_filtered (file, "Z-%d ", Z);
920 fprintf_filtered (file, "V-%d ", V);
921 fprintf_filtered (file, "C-%d ", C);
922 if ((C | Z) == 0)
923 fprintf_filtered (file, "u> ");
924 if ((C | Z) == 1)
925 fprintf_filtered (file, "u<= ");
926 if ((C == 0))
927 fprintf_filtered (file, "u>= ");
928 if (C == 1)
929 fprintf_filtered (file, "u< ");
930 if (Z == 0)
931 fprintf_filtered (file, "!= ");
932 if (Z == 1)
933 fprintf_filtered (file, "== ");
934 if ((N ^ V) == 0)
935 fprintf_filtered (file, ">= ");
936 if ((N ^ V) == 1)
937 fprintf_filtered (file, "< ");
938 if ((Z | (N ^ V)) == 0)
939 fprintf_filtered (file, "> ");
940 if ((Z | (N ^ V)) == 1)
941 fprintf_filtered (file, "<= ");
942 }
943 else if (regno == E_EXR_REGNUM && h8300smode)
944 {
945 /* EXR register */
946 unsigned char b[h8300h_reg_size];
947 unsigned char l;
948 frame_register_read (deprecated_selected_frame, regno, b);
949 l = b[REGISTER_VIRTUAL_SIZE (E_EXR_REGNUM) - 1];
950 fprintf_filtered (file, "\t");
951 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
952 fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
953 fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
954 fprintf_filtered (file, "I0-%d", (l & 1) != 0);
955 }
956 fprintf_filtered (file, "\n");
957 }
958
959 static void
960 h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
961 struct frame_info *frame, int regno, int cpregs)
962 {
963 if (regno < 0)
964 for (regno = 0; regno < E_NUM_REGS; ++regno)
965 h8300_print_register (gdbarch, file, frame, regno);
966 else
967 h8300_print_register (gdbarch, file, frame, regno);
968 }
969
970 static CORE_ADDR
971 h8300_saved_pc_after_call (struct frame_info *ignore)
972 {
973 return read_memory_unsigned_integer (read_register (E_SP_REGNUM), BINWORD);
974 }
975
976 static int
977 h8300_register_byte (int regno)
978 {
979 if (regno < 0 || regno >= E_NUM_REGS)
980 internal_error (__FILE__, __LINE__,
981 "h8300_register_byte: illegal register number %d", regno);
982 else
983 return regno * BINWORD;
984 }
985
986 static int
987 h8300_register_raw_size (int regno)
988 {
989 if (regno < 0 || regno >= E_NUM_REGS)
990 internal_error (__FILE__, __LINE__,
991 "h8300_register_raw_size: illegal register number %d",
992 regno);
993 else
994 return BINWORD;
995 }
996
997 static struct type *
998 h8300_register_virtual_type (int regno)
999 {
1000 if (regno < 0 || regno >= E_NUM_REGS)
1001 internal_error (__FILE__, __LINE__,
1002 "h8300_register_virtual_type: illegal register number %d",
1003 regno);
1004 else
1005 return h8300hmode ?
1006 builtin_type_unsigned_long : builtin_type_unsigned_short;
1007 }
1008
1009 static void
1010 h8300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1011 {
1012 write_register (0, addr);
1013 }
1014
1015 static int
1016 h8300_use_struct_convention (int gcc_p, struct type *type)
1017 {
1018 return 1;
1019 }
1020
1021 static CORE_ADDR
1022 h8300_extract_struct_value_address (char *regbuf)
1023 {
1024 return extract_address (regbuf + h8300_register_byte (E_ARG0_REGNUM),
1025 h8300_register_raw_size (E_ARG0_REGNUM));
1026 }
1027
1028 const static unsigned char *
1029 h8300_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1030 {
1031 /*static unsigned char breakpoint[] = { 0x7A, 0xFF };*/ /* ??? */
1032 static unsigned char breakpoint[] = { 0x01, 0x80 }; /* Sleep */
1033
1034 *lenptr = sizeof (breakpoint);
1035 return breakpoint;
1036 }
1037
1038 static void
1039 h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1040 struct frame_info *frame, const char *args)
1041 {
1042 fprintf_filtered (file, "\
1043 No floating-point info available for this processor.\n");
1044 }
1045
1046 static struct gdbarch *
1047 h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1048 {
1049 static LONGEST call_dummy_words[1] = { 0 };
1050 struct gdbarch_tdep *tdep = NULL;
1051 struct gdbarch *gdbarch;
1052
1053 arches = gdbarch_list_lookup_by_info (arches, &info);
1054 if (arches != NULL)
1055 return arches->gdbarch;
1056
1057 #if 0
1058 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1059 #endif
1060
1061 if (info.bfd_arch_info->arch != bfd_arch_h8300)
1062 return NULL;
1063
1064 switch (info.bfd_arch_info->mach)
1065 {
1066 case bfd_mach_h8300:
1067 h8300smode = 0;
1068 h8300hmode = 0;
1069 break;
1070 case bfd_mach_h8300h:
1071 h8300smode = 0;
1072 h8300hmode = 1;
1073 break;
1074 case bfd_mach_h8300s:
1075 h8300smode = 1;
1076 h8300hmode = 1;
1077 break;
1078 }
1079
1080 gdbarch = gdbarch_alloc (&info, 0);
1081
1082 /*
1083 * Basic register fields and methods.
1084 */
1085
1086 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
1087 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1088 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1089 set_gdbarch_fp_regnum (gdbarch, E_FP_REGNUM);
1090 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1091 set_gdbarch_register_name (gdbarch, h8300_register_name);
1092 set_gdbarch_register_size (gdbarch, BINWORD);
1093 set_gdbarch_register_bytes (gdbarch, E_NUM_REGS * BINWORD);
1094 set_gdbarch_register_byte (gdbarch, h8300_register_byte);
1095 set_gdbarch_register_raw_size (gdbarch, h8300_register_raw_size);
1096 set_gdbarch_max_register_raw_size (gdbarch, h8300h_reg_size);
1097 set_gdbarch_register_virtual_size (gdbarch, h8300_register_raw_size);
1098 set_gdbarch_max_register_virtual_size (gdbarch, h8300h_reg_size);
1099 set_gdbarch_register_virtual_type (gdbarch, h8300_register_virtual_type);
1100 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
1101 set_gdbarch_print_float_info (gdbarch, h8300_print_float_info);
1102
1103 /*
1104 * Frame Info
1105 */
1106 set_gdbarch_init_extra_frame_info (gdbarch, h8300_init_extra_frame_info);
1107 set_gdbarch_frame_init_saved_regs (gdbarch, h8300_frame_init_saved_regs);
1108 set_gdbarch_frame_chain (gdbarch, h8300_frame_chain);
1109 set_gdbarch_saved_pc_after_call (gdbarch, h8300_saved_pc_after_call);
1110 set_gdbarch_frame_saved_pc (gdbarch, h8300_frame_saved_pc);
1111 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1112 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1113 set_gdbarch_frame_args_address (gdbarch, h8300_frame_args_address);
1114 set_gdbarch_frame_locals_address (gdbarch, h8300_frame_locals_address);
1115
1116 /*
1117 * Miscelany
1118 */
1119 /* Stack grows up. */
1120 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1121 /* PC stops zero byte after a trap instruction
1122 (which means: exactly on trap instruction). */
1123 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1124 /* This value is almost never non-zero... */
1125 set_gdbarch_function_start_offset (gdbarch, 0);
1126 /* This value is almost never non-zero... */
1127 set_gdbarch_frame_args_skip (gdbarch, 0);
1128 /* OK to default this value to 'unknown'. */
1129 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1130 set_gdbarch_frameless_function_invocation (gdbarch,
1131 frameless_look_for_prologue);
1132
1133 /* W/o prototype, coerce float args to double. */
1134 /* set_gdbarch_coerce_float_to_double (gdbarch, standard_coerce_float_to_double); */
1135
1136 /*
1137 * Call Dummies
1138 *
1139 * These values and methods are used when gdb calls a target function. */
1140 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1141 set_gdbarch_push_return_address (gdbarch, h8300_push_return_address);
1142 set_gdbarch_deprecated_extract_return_value (gdbarch, h8300_extract_return_value);
1143 set_gdbarch_push_arguments (gdbarch, h8300_push_arguments);
1144 set_gdbarch_pop_frame (gdbarch, h8300_pop_frame);
1145 set_gdbarch_store_struct_return (gdbarch, h8300_store_struct_return);
1146 set_gdbarch_deprecated_store_return_value (gdbarch, h8300_store_return_value);
1147 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, h8300_extract_struct_value_address);
1148 set_gdbarch_use_struct_convention (gdbarch, h8300_use_struct_convention);
1149 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1150 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1151 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1152 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1153 set_gdbarch_call_dummy_length (gdbarch, 0);
1154 set_gdbarch_call_dummy_p (gdbarch, 1);
1155 set_gdbarch_call_dummy_words (gdbarch, call_dummy_words);
1156 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
1157 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1158 /* set_gdbarch_call_dummy_stack_adjust */
1159 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1160 set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
1161
1162 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1163 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1164 set_gdbarch_ptr_bit (gdbarch, BINWORD * TARGET_CHAR_BIT);
1165 set_gdbarch_addr_bit (gdbarch, BINWORD * TARGET_CHAR_BIT);
1166
1167 /* set_gdbarch_stack_align (gdbarch, SOME_stack_align); */
1168 set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
1169 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1170
1171 return gdbarch;
1172 }
1173
1174 void
1175 _initialize_h8300_tdep (void)
1176 {
1177 tm_print_insn = gdb_print_insn_h8300;
1178 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
1179 }
This page took 0.05352 seconds and 5 git commands to generate.