2003-09-04 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Hitachi H8/300, for GDB.
2
3 Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /*
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
26 */
27
28 #include "defs.h"
29 #include "value.h"
30 #include "inferior.h"
31 #include "symfile.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "gdbcmd.h"
37 #include "gdb_assert.h"
38 #include "dis-asm.h"
39
40 /* Extra info which is saved in each frame_info. */
41 struct frame_extra_info
42 {
43 CORE_ADDR from_pc;
44 };
45
46 enum
47 {
48 h8300_reg_size = 2,
49 h8300h_reg_size = 4,
50 h8300_max_reg_size = 4,
51 };
52 #define BINWORD (h8300hmode ? h8300h_reg_size : h8300_reg_size)
53
54 enum gdb_regnum
55 {
56 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
57 E_RET0_REGNUM = E_R0_REGNUM,
58 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
59 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
60 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
61 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
62 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
63 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
64 E_SP_REGNUM,
65 E_CCR_REGNUM,
66 E_PC_REGNUM,
67 E_CYCLES_REGNUM,
68 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
69 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
70 E_INSTS_REGNUM,
71 E_MACH_REGNUM,
72 E_MACL_REGNUM,
73 E_SBR_REGNUM,
74 E_VBR_REGNUM
75 };
76
77 #define E_PSEUDO_CCR_REGNUM (NUM_REGS)
78 #define E_PSEUDO_EXR_REGNUM (NUM_REGS+1)
79
80 #define UNSIGNED_SHORT(X) ((X) & 0xffff)
81
82 #define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
83 #define IS_PUSH_FP(x) (x == 0x6df6)
84 #define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
85 #define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
86 #define IS_SUB2_SP(x) (x==0x1b87)
87 #define IS_SUB4_SP(x) (x==0x1b97)
88 #define IS_SUBL_SP(x) (x==0x7a37)
89 #define IS_MOVK_R5(x) (x==0x7905)
90 #define IS_SUB_R5SP(x) (x==0x1957)
91
92 /* If the instruction at PC is an argument register spill, return its
93 length. Otherwise, return zero.
94
95 An argument register spill is an instruction that moves an argument
96 from the register in which it was passed to the stack slot in which
97 it really lives. It is a byte, word, or longword move from an
98 argument register to a negative offset from the frame pointer.
99
100 CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
101 is used, it could be a byte, word or long move to registers r3-r5. */
102
103 static int
104 h8300_is_argument_spill (CORE_ADDR pc)
105 {
106 int w = read_memory_unsigned_integer (pc, 2);
107
108 if (((w & 0xff88) == 0x0c88 /* mov.b Rsl, Rdl */
109 || (w & 0xff88) == 0x0d00 /* mov.w Rs, Rd */
110 || (w & 0xff88) == 0x0f80) /* mov.l Rs, Rd */
111 && (w & 0x70) <= 0x20 /* Rs is R0, R1 or R2 */
112 && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5)/* Rd is R3, R4 or R5 */
113 return 2;
114
115 if ((w & 0xfff0) == 0x6ee0 /* mov.b Rs,@(d:16,er6) */
116 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
117 {
118 int w2 = read_memory_integer (pc + 2, 2);
119
120 /* ... and d:16 is negative. */
121 if (w2 < 0)
122 return 4;
123 }
124 else if (w == 0x7860)
125 {
126 int w2 = read_memory_integer (pc + 2, 2);
127
128 if ((w2 & 0xfff0) == 0x6aa0) /* mov.b Rs, @(d:24,er6) */
129 {
130 LONGEST disp = read_memory_integer (pc + 4, 4);
131
132 /* ... and d:24 is negative. */
133 if (disp < 0 && disp > 0xffffff)
134 return 8;
135 }
136 }
137 else if ((w & 0xfff0) == 0x6fe0 /* mov.w Rs,@(d:16,er6) */
138 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
139 {
140 int w2 = read_memory_integer (pc + 2, 2);
141
142 /* ... and d:16 is negative. */
143 if (w2 < 0)
144 return 4;
145 }
146 else if (w == 0x78e0)
147 {
148 int w2 = read_memory_integer (pc + 2, 2);
149
150 if ((w2 & 0xfff0) == 0x6ba0) /* mov.b Rs, @(d:24,er6) */
151 {
152 LONGEST disp = read_memory_integer (pc + 4, 4);
153
154 /* ... and d:24 is negative. */
155 if (disp < 0 && disp > 0xffffff)
156 return 8;
157 }
158 }
159 else if (w == 0x0100)
160 {
161 int w2 = read_memory_integer (pc + 2, 2);
162
163 if ((w2 & 0xfff0) == 0x6fe0 /* mov.l Rs,@(d:16,er6) */
164 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
165 {
166 int w3 = read_memory_integer (pc + 4, 2);
167
168 /* ... and d:16 is negative. */
169 if (w3 < 0)
170 return 6;
171 }
172 else if (w2 == 0x78e0)
173 {
174 int w3 = read_memory_integer (pc + 4, 2);
175
176 if ((w3 & 0xfff0) == 0x6ba0) /* mov.l Rs, @(d:24,er6) */
177 {
178 LONGEST disp = read_memory_integer (pc + 6, 4);
179
180 /* ... and d:24 is negative. */
181 if (disp < 0 && disp > 0xffffff)
182 return 10;
183 }
184 }
185 }
186
187 return 0;
188 }
189
190 static CORE_ADDR
191 h8300_skip_prologue (CORE_ADDR start_pc)
192 {
193 short int w;
194 int adjust = 0;
195
196 /* Skip past all push and stm insns. */
197 while (1)
198 {
199 w = read_memory_unsigned_integer (start_pc, 2);
200 /* First look for push insns. */
201 if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130)
202 {
203 w = read_memory_unsigned_integer (start_pc + 2, 2);
204 adjust = 2;
205 }
206
207 if (IS_PUSH (w))
208 {
209 start_pc += 2 + adjust;
210 w = read_memory_unsigned_integer (start_pc, 2);
211 continue;
212 }
213 adjust = 0;
214 break;
215 }
216
217 /* Skip past a move to FP, either word or long sized */
218 w = read_memory_unsigned_integer (start_pc, 2);
219 if (w == 0x0100)
220 {
221 w = read_memory_unsigned_integer (start_pc + 2, 2);
222 adjust += 2;
223 }
224
225 if (IS_MOVE_FP (w))
226 {
227 start_pc += 2 + adjust;
228 w = read_memory_unsigned_integer (start_pc, 2);
229 }
230
231 /* Check for loading either a word constant into r5;
232 long versions are handled by the SUBL_SP below. */
233 if (IS_MOVK_R5 (w))
234 {
235 start_pc += 2;
236 w = read_memory_unsigned_integer (start_pc, 2);
237 }
238
239 /* Now check for subtracting r5 from sp, word sized only. */
240 if (IS_SUB_R5SP (w))
241 {
242 start_pc += 2 + adjust;
243 w = read_memory_unsigned_integer (start_pc, 2);
244 }
245
246 /* Check for subs #2 and subs #4. */
247 while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
248 {
249 start_pc += 2 + adjust;
250 w = read_memory_unsigned_integer (start_pc, 2);
251 }
252
253 /* Check for a 32bit subtract. */
254 if (IS_SUBL_SP (w))
255 start_pc += 6 + adjust;
256
257 /* Skip past another possible stm insn for registers R3 to R5 (possibly used
258 for register qualified arguments. */
259 w = read_memory_unsigned_integer (start_pc, 2);
260 /* First look for push insns. */
261 if (w == 0x0110 || w == 0x0120 || w == 0x0130)
262 {
263 w = read_memory_unsigned_integer (start_pc + 2, 2);
264 if (IS_PUSH (w) && (w & 0xf) >= 0x3 && (w & 0xf) <= 0x5)
265 start_pc += 4;
266 }
267
268 /* Check for spilling an argument register to the stack frame.
269 This could also be an initializing store from non-prologue code,
270 but I don't think there's any harm in skipping that. */
271 for (;;)
272 {
273 int spill_size = h8300_is_argument_spill (start_pc);
274 if (spill_size == 0)
275 break;
276 start_pc += spill_size;
277 }
278
279 return start_pc;
280 }
281
282 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
283 is not the address of a valid instruction, the address of the next
284 instruction beyond ADDR otherwise. *PWORD1 receives the first word
285 of the instruction. */
286
287 static CORE_ADDR
288 h8300_next_prologue_insn (CORE_ADDR addr,
289 CORE_ADDR lim,
290 unsigned short* pword1)
291 {
292 char buf[2];
293 if (addr < lim + 8)
294 {
295 read_memory (addr, buf, 2);
296 *pword1 = extract_signed_integer (buf, 2);
297
298 return addr + 2;
299 }
300 return 0;
301 }
302
303 /* Examine the prologue of a function. `ip' points to the first instruction.
304 `limit' is the limit of the prologue (e.g. the addr of the first
305 linenumber, or perhaps the program counter if we're stepping through).
306 `frame_sp' is the stack pointer value in use in this frame.
307 `fsr' is a pointer to a frame_saved_regs structure into which we put
308 info about the registers saved by this frame.
309 `fi' is a struct frame_info pointer; we fill in various fields in it
310 to reflect the offsets of the arg pointer and the locals pointer. */
311
312 /* Any function with a frame looks like this
313 SECOND ARG
314 FIRST ARG
315 RET PC
316 SAVED R2
317 SAVED R3
318 SAVED FP <-FP POINTS HERE
319 LOCALS0
320 LOCALS1 <-SP POINTS HERE
321 */
322
323 static CORE_ADDR
324 h8300_examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
325 CORE_ADDR after_prolog_fp, CORE_ADDR *fsr,
326 struct frame_info *fi)
327 {
328 register CORE_ADDR next_ip;
329 int r;
330 int have_fp = 0;
331 unsigned short insn_word;
332 /* Number of things pushed onto stack, starts at 2/4, 'cause the
333 PC is already there */
334 unsigned int reg_save_depth = BINWORD;
335
336 unsigned int auto_depth = 0; /* Number of bytes of autos */
337
338 char in_frame[11]; /* One for each reg */
339
340 int adjust = 0;
341
342 memset (in_frame, 1, 11);
343 for (r = 0; r < 8; r++)
344 {
345 fsr[r] = 0;
346 }
347 if (after_prolog_fp == 0)
348 {
349 after_prolog_fp = read_register (E_SP_REGNUM);
350 }
351
352 /* If the PC isn't valid, quit now. */
353 if (ip == 0 || ip & (h8300hmode ? ~0xffffff : ~0xffff))
354 return 0;
355
356 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
357
358 if (insn_word == 0x0100) /* mov.l */
359 {
360 insn_word = read_memory_unsigned_integer (ip + 2, 2);
361 adjust = 2;
362 }
363
364 /* Skip over any fp push instructions */
365 fsr[E_FP_REGNUM] = after_prolog_fp;
366 while (next_ip && IS_PUSH_FP (insn_word))
367 {
368 ip = next_ip + adjust;
369
370 in_frame[insn_word & 0x7] = reg_save_depth;
371 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
372 reg_save_depth += 2 + adjust;
373 }
374
375 /* Is this a move into the fp */
376 if (next_ip && IS_MOV_SP_FP (insn_word))
377 {
378 ip = next_ip;
379 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
380 have_fp = 1;
381 }
382
383 /* Skip over any stack adjustment, happens either with a number of
384 sub#2,sp or a mov #x,r5 sub r5,sp */
385
386 if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
387 {
388 while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
389 {
390 auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
391 ip = next_ip;
392 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
393 }
394 }
395 else
396 {
397 if (next_ip && IS_MOVK_R5 (insn_word))
398 {
399 ip = next_ip;
400 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
401 auto_depth += insn_word;
402
403 next_ip = h8300_next_prologue_insn (next_ip, limit, &insn_word);
404 auto_depth += insn_word;
405 }
406 if (next_ip && IS_SUBL_SP (insn_word))
407 {
408 ip = next_ip;
409 auto_depth += read_memory_unsigned_integer (ip, 4);
410 ip += 4;
411
412 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
413 }
414 }
415
416 /* Now examine the push insns to determine where everything lives
417 on the stack. */
418 while (1)
419 {
420 adjust = 0;
421 if (!next_ip)
422 break;
423
424 if (insn_word == 0x0100)
425 {
426 ip = next_ip;
427 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
428 adjust = 2;
429 }
430
431 if (IS_PUSH (insn_word))
432 {
433 auto_depth += 2 + adjust;
434 fsr[insn_word & 0x7] = after_prolog_fp - auto_depth;
435 ip = next_ip;
436 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
437 continue;
438 }
439
440 /* Now check for push multiple insns. */
441 if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130)
442 {
443 int count = ((insn_word >> 4) & 0xf) + 1;
444 int start, i;
445
446 ip = next_ip;
447 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
448 start = insn_word & 0x7;
449
450 for (i = start; i < start + count; i++)
451 {
452 auto_depth += 4;
453 fsr[i] = after_prolog_fp - auto_depth;
454 }
455 }
456 break;
457 }
458
459 /* The PC is at a known place */
460 get_frame_extra_info (fi)->from_pc =
461 read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
462
463 /* Rememeber any others too */
464 in_frame[E_PC_REGNUM] = 0;
465
466 if (have_fp)
467 /* We keep the old FP in the SP spot */
468 fsr[E_SP_REGNUM] = read_memory_unsigned_integer (fsr[E_FP_REGNUM],
469 BINWORD);
470 else
471 fsr[E_SP_REGNUM] = after_prolog_fp + auto_depth;
472
473 return (ip);
474 }
475
476 static void
477 h8300_frame_init_saved_regs (struct frame_info *fi)
478 {
479 CORE_ADDR func_addr, func_end;
480
481 if (!get_frame_saved_regs (fi))
482 {
483 frame_saved_regs_zalloc (fi);
484
485 /* Find the beginning of this function, so we can analyze its
486 prologue. */
487 if (find_pc_partial_function (get_frame_pc (fi), NULL,
488 &func_addr, &func_end))
489 {
490 struct symtab_and_line sal = find_pc_line (func_addr, 0);
491 CORE_ADDR limit = (sal.end && sal.end < get_frame_pc (fi))
492 ? sal.end : get_frame_pc (fi);
493 /* This will fill in fields in fi. */
494 h8300_examine_prologue (func_addr, limit, get_frame_base (fi),
495 get_frame_saved_regs (fi), fi);
496 }
497 /* Else we're out of luck (can't debug completely stripped code).
498 FIXME. */
499 }
500 }
501
502 /* Given a GDB frame, determine the address of the calling function's
503 frame. This will be used to create a new GDB frame struct, and
504 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
505 will be called for the new frame.
506
507 For us, the frame address is its stack pointer value, so we look up
508 the function prologue to determine the caller's sp value, and
509 return it. */
510
511 static CORE_ADDR
512 h8300_frame_chain (struct frame_info *thisframe)
513 {
514 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
515 get_frame_base (thisframe),
516 get_frame_base (thisframe)))
517 { /* initialize the from_pc now */
518 get_frame_extra_info (thisframe)->from_pc =
519 deprecated_read_register_dummy (get_frame_pc (thisframe),
520 get_frame_base (thisframe),
521 E_PC_REGNUM);
522 return get_frame_base (thisframe);
523 }
524 return get_frame_saved_regs (thisframe)[E_SP_REGNUM];
525 }
526
527 /* Return the saved PC from this frame.
528
529 If the frame has a memory copy of SRP_REGNUM, use that. If not,
530 just use the register SRP_REGNUM itself. */
531
532 static CORE_ADDR
533 h8300_frame_saved_pc (struct frame_info *frame)
534 {
535 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
536 get_frame_base (frame),
537 get_frame_base (frame)))
538 return deprecated_read_register_dummy (get_frame_pc (frame),
539 get_frame_base (frame),
540 E_PC_REGNUM);
541 else
542 return get_frame_extra_info (frame)->from_pc;
543 }
544
545 static void
546 h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
547 {
548 if (!get_frame_extra_info (fi))
549 {
550 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
551 get_frame_extra_info (fi)->from_pc = 0;
552
553 if (!get_frame_pc (fi))
554 {
555 if (get_next_frame (fi))
556 deprecated_update_frame_pc_hack (fi, h8300_frame_saved_pc (get_next_frame (fi)));
557 }
558 h8300_frame_init_saved_regs (fi);
559 }
560 }
561
562 /* Round N up or down to the nearest multiple of UNIT.
563 Evaluate N only once, UNIT several times.
564 UNIT must be a power of two. */
565 #define round_up(n, unit) (((n) + (unit) - 1) & -(unit))
566 #define round_down(n, unit) ((n) & -(unit))
567
568 /* Function: push_dummy_call
569 Setup the function arguments for calling a function in the inferior.
570 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
571 on the H8/300H.
572
573 There are actually two ABI's here: -mquickcall (the default) and
574 -mno-quickcall. With -mno-quickcall, all arguments are passed on
575 the stack after the return address, word-aligned. With
576 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
577 GCC doesn't indicate in the object file which ABI was used to
578 compile it, GDB only supports the default --- -mquickcall.
579
580 Here are the rules for -mquickcall, in detail:
581
582 Each argument, whether scalar or aggregate, is padded to occupy a
583 whole number of words. Arguments smaller than a word are padded at
584 the most significant end; those larger than a word are padded at
585 the least significant end.
586
587 The initial arguments are passed in r0 -- r2. Earlier arguments go in
588 lower-numbered registers. Multi-word arguments are passed in
589 consecutive registers, with the most significant end in the
590 lower-numbered register.
591
592 If an argument doesn't fit entirely in the remaining registers, it
593 is passed entirely on the stack. Stack arguments begin just after
594 the return address. Once an argument has overflowed onto the stack
595 this way, all subsequent arguments are passed on the stack.
596
597 The above rule has odd consequences. For example, on the h8/300s,
598 if a function takes two longs and an int as arguments:
599 - the first long will be passed in r0/r1,
600 - the second long will be passed entirely on the stack, since it
601 doesn't fit in r2,
602 - and the int will be passed on the stack, even though it could fit
603 in r2.
604
605 A weird exception: if an argument is larger than a word, but not a
606 whole number of words in length (before padding), it is passed on
607 the stack following the rules for stack arguments above, even if
608 there are sufficient registers available to hold it. Stranger
609 still, the argument registers are still `used up' --- even though
610 there's nothing in them.
611
612 So, for example, on the h8/300s, if a function expects a three-byte
613 structure and an int, the structure will go on the stack, and the
614 int will go in r2, not r0.
615
616 If the function returns an aggregate type (struct, union, or class)
617 by value, the caller must allocate space to hold the return value,
618 and pass the callee a pointer to this space as an invisible first
619 argument, in R0.
620
621 For varargs functions, the last fixed argument and all the variable
622 arguments are always passed on the stack. This means that calls to
623 varargs functions don't work properly unless there is a prototype
624 in scope.
625
626 Basically, this ABI is not good, for the following reasons:
627 - You can't call vararg functions properly unless a prototype is in scope.
628 - Structure passing is inconsistent, to no purpose I can see.
629 - It often wastes argument registers, of which there are only three
630 to begin with. */
631
632 static CORE_ADDR
633 h8300_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
634 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
635 struct value **args, CORE_ADDR sp, int struct_return,
636 CORE_ADDR struct_addr)
637 {
638 int stack_alloc = 0, stack_offset = 0;
639 int wordsize = BINWORD;
640 int reg = E_ARG0_REGNUM;
641 int argument;
642
643 /* First, make sure the stack is properly aligned. */
644 sp = round_down (sp, wordsize);
645
646 /* Now make sure there's space on the stack for the arguments. We
647 may over-allocate a little here, but that won't hurt anything. */
648 for (argument = 0; argument < nargs; argument++)
649 stack_alloc += round_up (TYPE_LENGTH (VALUE_TYPE (args[argument])),
650 wordsize);
651 sp -= stack_alloc;
652
653 /* Now load as many arguments as possible into registers, and push
654 the rest onto the stack.
655 If we're returning a structure by value, then we must pass a
656 pointer to the buffer for the return value as an invisible first
657 argument. */
658 if (struct_return)
659 regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
660
661 for (argument = 0; argument < nargs; argument++)
662 {
663 struct type *type = VALUE_TYPE (args[argument]);
664 int len = TYPE_LENGTH (type);
665 char *contents = (char *) VALUE_CONTENTS (args[argument]);
666
667 /* Pad the argument appropriately. */
668 int padded_len = round_up (len, wordsize);
669 char *padded = alloca (padded_len);
670
671 memset (padded, 0, padded_len);
672 memcpy (len < wordsize ? padded + padded_len - len : padded,
673 contents, len);
674
675 /* Could the argument fit in the remaining registers? */
676 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
677 {
678 /* Are we going to pass it on the stack anyway, for no good
679 reason? */
680 if (len > wordsize && len % wordsize)
681 {
682 /* I feel so unclean. */
683 write_memory (sp + stack_offset, padded, padded_len);
684 stack_offset += padded_len;
685
686 /* That's right --- even though we passed the argument
687 on the stack, we consume the registers anyway! Love
688 me, love my dog. */
689 reg += padded_len / wordsize;
690 }
691 else
692 {
693 /* Heavens to Betsy --- it's really going in registers!
694 It would be nice if we could use write_register_bytes
695 here, but on the h8/300s, there are gaps between
696 the registers in the register file. */
697 int offset;
698
699 for (offset = 0; offset < padded_len; offset += wordsize)
700 {
701 ULONGEST word = extract_unsigned_integer (padded + offset,
702 wordsize);
703 regcache_cooked_write_unsigned (regcache, reg++, word);
704 }
705 }
706 }
707 else
708 {
709 /* It doesn't fit in registers! Onto the stack it goes. */
710 write_memory (sp + stack_offset, padded, padded_len);
711 stack_offset += padded_len;
712
713 /* Once one argument has spilled onto the stack, all
714 subsequent arguments go on the stack. */
715 reg = E_ARGLAST_REGNUM + 1;
716 }
717 }
718
719 /* Store return address. */
720 sp -= wordsize;
721 write_memory_unsigned_integer (sp, wordsize, bp_addr);
722
723 /* Update stack pointer. */
724 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
725
726 return sp;
727 }
728
729 /* Function: h8300_pop_frame
730 Restore the machine to the state it had before the current frame
731 was created. Usually used either by the "RETURN" command, or by
732 call_function_by_hand after the dummy_frame is finished. */
733
734 static void
735 h8300_pop_frame (void)
736 {
737 unsigned regno;
738 struct frame_info *frame = get_current_frame ();
739
740 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
741 get_frame_base (frame),
742 get_frame_base (frame)))
743 {
744 generic_pop_dummy_frame ();
745 }
746 else
747 {
748 for (regno = 0; regno < 8; regno++)
749 {
750 /* Don't forget E_SP_REGNUM is a frame_saved_regs struct is the
751 actual value we want, not the address of the value we want. */
752 if (get_frame_saved_regs (frame)[regno] && regno != E_SP_REGNUM)
753 write_register (regno,
754 read_memory_integer
755 (get_frame_saved_regs (frame)[regno], BINWORD));
756 else if (get_frame_saved_regs (frame)[regno] && regno == E_SP_REGNUM)
757 write_register (regno, get_frame_base (frame) + 2 * BINWORD);
758 }
759
760 /* Don't forget to update the PC too! */
761 write_register (E_PC_REGNUM, get_frame_extra_info (frame)->from_pc);
762 }
763 flush_cached_frames ();
764 }
765
766 /* Function: extract_return_value
767 Figure out where in REGBUF the called function has left its return value.
768 Copy that into VALBUF. Be sure to account for CPU type. */
769
770 static void
771 h8300_extract_return_value (struct type *type, struct regcache *regcache,
772 void *valbuf)
773 {
774 int len = TYPE_LENGTH (type);
775 ULONGEST c, addr;
776
777 switch (len)
778 {
779 case 1:
780 case 2:
781 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
782 store_unsigned_integer (valbuf, len, c);
783 break;
784 case 4: /* Needs two registers on plain H8/300 */
785 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
786 store_unsigned_integer (valbuf, 2, c);
787 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
788 store_unsigned_integer ((void*)((char *)valbuf + 2), 2, c);
789 break;
790 case 8: /* long long is now 8 bytes. */
791 if (TYPE_CODE (type) == TYPE_CODE_INT)
792 {
793 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
794 c = read_memory_unsigned_integer ((CORE_ADDR) addr, len);
795 store_unsigned_integer (valbuf, len, c);
796 }
797 else
798 {
799 error ("I don't know how this 8 byte value is returned.");
800 }
801 break;
802 }
803 }
804
805 static void
806 h8300h_extract_return_value (struct type *type, struct regcache *regcache,
807 void *valbuf)
808 {
809 int len = TYPE_LENGTH (type);
810 ULONGEST c, addr;
811
812 switch (len)
813 {
814 case 1:
815 case 2:
816 case 4:
817 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
818 store_unsigned_integer (valbuf, len, c);
819 break;
820 case 8: /* long long is now 8 bytes. */
821 if (TYPE_CODE (type) == TYPE_CODE_INT)
822 {
823 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
824 c = read_memory_unsigned_integer ((CORE_ADDR) addr, len);
825 store_unsigned_integer (valbuf, len, c);
826 }
827 else
828 {
829 error ("I don't know how this 8 byte value is returned.");
830 }
831 break;
832 }
833 }
834
835
836 /* Function: store_return_value
837 Place the appropriate value in the appropriate registers.
838 Primarily used by the RETURN command. */
839
840 static void
841 h8300_store_return_value (struct type *type, struct regcache *regcache,
842 const void *valbuf)
843 {
844 int len = TYPE_LENGTH (type);
845 ULONGEST val;
846
847 switch (len)
848 {
849 case 1:
850 case 2: /* short... */
851 val = extract_unsigned_integer (valbuf, len);
852 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
853 break;
854 case 4: /* long, float */
855 val = extract_unsigned_integer (valbuf, len);
856 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
857 (val >> 16) &0xffff);
858 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
859 break;
860 case 8: /* long long, double and long double are all defined
861 as 4 byte types so far so this shouldn't happen. */
862 error ("I don't know how to return an 8 byte value.");
863 break;
864 }
865 }
866
867 static void
868 h8300h_store_return_value (struct type *type, struct regcache *regcache,
869 const void *valbuf)
870 {
871 int len = TYPE_LENGTH (type);
872 ULONGEST val;
873
874 switch (len)
875 {
876 case 1:
877 case 2:
878 case 4: /* long, float */
879 val = extract_unsigned_integer (valbuf, len);
880 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
881 break;
882 case 8: /* long long, double and long double are all defined
883 as 4 byte types so far so this shouldn't happen. */
884 error ("I don't know how to return an 8 byte value.");
885 break;
886 }
887 }
888
889 static struct cmd_list_element *setmachinelist;
890
891 static const char *
892 h8300_register_name (int regno)
893 {
894 /* The register names change depending on which h8300 processor
895 type is selected. */
896 static char *register_names[] = {
897 "r0", "r1", "r2", "r3", "r4", "r5", "r6",
898 "sp", "","pc","cycles", "tick", "inst",
899 "ccr", /* pseudo register */
900 };
901 if (regno < 0
902 || regno >= (sizeof (register_names) / sizeof (*register_names)))
903 internal_error (__FILE__, __LINE__,
904 "h8300_register_name: illegal register number %d", regno);
905 else
906 return register_names[regno];
907 }
908
909 static const char *
910 h8300s_register_name (int regno)
911 {
912 static char *register_names[] = {
913 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
914 "sp", "", "pc", "cycles", "", "tick", "inst",
915 "mach", "macl",
916 "ccr", "exr" /* pseudo registers */
917 };
918 if (regno < 0
919 || regno >= (sizeof (register_names) / sizeof (*register_names)))
920 internal_error (__FILE__, __LINE__,
921 "h8300s_register_name: illegal register number %d", regno);
922 else
923 return register_names[regno];
924 }
925
926 static const char *
927 h8300sx_register_name (int regno)
928 {
929 static char *register_names[] = {
930 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
931 "sp", "", "pc", "cycles", "", "tick", "inst",
932 "mach", "macl", "sbr", "vbr",
933 "ccr", "exr" /* pseudo registers */
934 };
935 if (regno < 0
936 || regno >= (sizeof (register_names) / sizeof (*register_names)))
937 internal_error (__FILE__, __LINE__,
938 "h8300sx_register_name: illegal register number %d", regno);
939 else
940 return register_names[regno];
941 }
942
943 static void
944 h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
945 struct frame_info *frame, int regno)
946 {
947 LONGEST rval;
948 const char *name = gdbarch_register_name (gdbarch, regno);
949
950 if (!name || !*name)
951 return;
952
953 frame_read_signed_register (frame, regno, &rval);
954
955 fprintf_filtered (file, "%-14s ", name);
956 if (regno == E_PSEUDO_CCR_REGNUM || (regno == E_PSEUDO_EXR_REGNUM && h8300smode))
957 {
958 fprintf_filtered (file, "0x%02x ", (unsigned char)rval);
959 print_longest (file, 'u', 1, rval);
960 }
961 else
962 {
963 fprintf_filtered (file, "0x%s ", phex ((ULONGEST)rval, BINWORD));
964 print_longest (file, 'd', 1, rval);
965 }
966 if (regno == E_PSEUDO_CCR_REGNUM)
967 {
968 /* CCR register */
969 int C, Z, N, V;
970 unsigned char l = rval & 0xff;
971 fprintf_filtered (file, "\t");
972 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
973 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
974 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
975 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
976 N = (l & 0x8) != 0;
977 Z = (l & 0x4) != 0;
978 V = (l & 0x2) != 0;
979 C = (l & 0x1) != 0;
980 fprintf_filtered (file, "N-%d ", N);
981 fprintf_filtered (file, "Z-%d ", Z);
982 fprintf_filtered (file, "V-%d ", V);
983 fprintf_filtered (file, "C-%d ", C);
984 if ((C | Z) == 0)
985 fprintf_filtered (file, "u> ");
986 if ((C | Z) == 1)
987 fprintf_filtered (file, "u<= ");
988 if ((C == 0))
989 fprintf_filtered (file, "u>= ");
990 if (C == 1)
991 fprintf_filtered (file, "u< ");
992 if (Z == 0)
993 fprintf_filtered (file, "!= ");
994 if (Z == 1)
995 fprintf_filtered (file, "== ");
996 if ((N ^ V) == 0)
997 fprintf_filtered (file, ">= ");
998 if ((N ^ V) == 1)
999 fprintf_filtered (file, "< ");
1000 if ((Z | (N ^ V)) == 0)
1001 fprintf_filtered (file, "> ");
1002 if ((Z | (N ^ V)) == 1)
1003 fprintf_filtered (file, "<= ");
1004 }
1005 else if (regno == E_PSEUDO_EXR_REGNUM && h8300smode)
1006 {
1007 /* EXR register */
1008 unsigned char l = rval & 0xff;
1009 fprintf_filtered (file, "\t");
1010 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
1011 fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
1012 fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
1013 fprintf_filtered (file, "I0-%d", (l & 1) != 0);
1014 }
1015 fprintf_filtered (file, "\n");
1016 }
1017
1018 static void
1019 h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1020 struct frame_info *frame, int regno, int cpregs)
1021 {
1022 if (regno < 0)
1023 {
1024 for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
1025 h8300_print_register (gdbarch, file, frame, regno);
1026 h8300_print_register (gdbarch, file, frame, E_PSEUDO_CCR_REGNUM);
1027 h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
1028 if (h8300smode)
1029 {
1030 h8300_print_register (gdbarch, file, frame, E_PSEUDO_EXR_REGNUM);
1031 if (h8300sxmode)
1032 {
1033 h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
1034 h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
1035 }
1036 h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
1037 h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
1038 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1039 h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
1040 h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
1041 }
1042 else
1043 {
1044 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1045 h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
1046 h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
1047 }
1048 }
1049 else
1050 {
1051 if (regno == E_CCR_REGNUM)
1052 h8300_print_register (gdbarch, file, frame, E_PSEUDO_CCR_REGNUM);
1053 else if (regno == E_PSEUDO_EXR_REGNUM && h8300smode)
1054 h8300_print_register (gdbarch, file, frame, E_PSEUDO_EXR_REGNUM);
1055 else
1056 h8300_print_register (gdbarch, file, frame, regno);
1057 }
1058 }
1059
1060 static CORE_ADDR
1061 h8300_saved_pc_after_call (struct frame_info *ignore)
1062 {
1063 return read_memory_unsigned_integer (read_register (E_SP_REGNUM), BINWORD);
1064 }
1065
1066 static struct type *
1067 h8300_register_type (struct gdbarch *gdbarch, int regno)
1068 {
1069 if (regno < 0 || regno >= NUM_REGS + NUM_PSEUDO_REGS)
1070 internal_error (__FILE__, __LINE__,
1071 "h8300_register_type: illegal register number %d",
1072 regno);
1073 else
1074 {
1075 switch (regno)
1076 {
1077 case E_PC_REGNUM:
1078 return builtin_type_void_func_ptr;
1079 case E_SP_REGNUM:
1080 case E_FP_REGNUM:
1081 return builtin_type_void_data_ptr;
1082 default:
1083 if (regno == E_PSEUDO_CCR_REGNUM)
1084 return builtin_type_uint8;
1085 else if (regno == E_PSEUDO_EXR_REGNUM)
1086 return builtin_type_uint8;
1087 else if (h8300hmode)
1088 return builtin_type_int32;
1089 else
1090 return builtin_type_int16;
1091 }
1092 }
1093 }
1094
1095 static void
1096 h8300_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1097 int regno, void *buf)
1098 {
1099 if (regno == E_PSEUDO_CCR_REGNUM)
1100 regcache_raw_read (regcache, E_CCR_REGNUM, buf);
1101 else if (regno == E_PSEUDO_EXR_REGNUM)
1102 regcache_raw_read (regcache, E_EXR_REGNUM, buf);
1103 else
1104 regcache_raw_read (regcache, regno, buf);
1105 }
1106
1107 static void
1108 h8300_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1109 int regno, const void *buf)
1110 {
1111 if (regno == E_PSEUDO_CCR_REGNUM)
1112 regcache_raw_write (regcache, E_CCR_REGNUM, buf);
1113 else if (regno == E_PSEUDO_EXR_REGNUM)
1114 regcache_raw_write (regcache, E_EXR_REGNUM, buf);
1115 else
1116 regcache_raw_write (regcache, regno, buf);
1117 }
1118
1119 static int
1120 h8300_dbg_reg_to_regnum (int regno)
1121 {
1122 if (regno == E_CCR_REGNUM)
1123 return E_PSEUDO_CCR_REGNUM;
1124 return regno;
1125 }
1126
1127 static int
1128 h8300s_dbg_reg_to_regnum (int regno)
1129 {
1130 if (regno == E_CCR_REGNUM)
1131 return E_PSEUDO_CCR_REGNUM;
1132 if (regno == E_EXR_REGNUM)
1133 return E_PSEUDO_EXR_REGNUM;
1134 return regno;
1135 }
1136
1137 static CORE_ADDR
1138 h8300_extract_struct_value_address (struct regcache *regcache)
1139 {
1140 ULONGEST addr;
1141 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
1142 return addr;
1143 }
1144
1145 const static unsigned char *
1146 h8300_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1147 {
1148 /*static unsigned char breakpoint[] = { 0x7A, 0xFF };*/ /* ??? */
1149 static unsigned char breakpoint[] = { 0x01, 0x80 }; /* Sleep */
1150
1151 *lenptr = sizeof (breakpoint);
1152 return breakpoint;
1153 }
1154
1155 static CORE_ADDR
1156 h8300_push_dummy_code (struct gdbarch *gdbarch,
1157 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
1158 struct value **args, int nargs,
1159 struct type *value_type,
1160 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
1161 {
1162 /* Allocate space sufficient for a breakpoint. */
1163 sp = (sp - 2) & ~1;
1164 /* Store the address of that breakpoint */
1165 *bp_addr = sp;
1166 /* h8300 always starts the call at the callee's entry point. */
1167 *real_pc = funaddr;
1168 return sp;
1169 }
1170
1171 static void
1172 h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1173 struct frame_info *frame, const char *args)
1174 {
1175 fprintf_filtered (file, "\
1176 No floating-point info available for this processor.\n");
1177 }
1178
1179 static struct gdbarch *
1180 h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1181 {
1182 struct gdbarch_tdep *tdep = NULL;
1183 struct gdbarch *gdbarch;
1184
1185 arches = gdbarch_list_lookup_by_info (arches, &info);
1186 if (arches != NULL)
1187 return arches->gdbarch;
1188
1189 #if 0
1190 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1191 #endif
1192
1193 if (info.bfd_arch_info->arch != bfd_arch_h8300)
1194 return NULL;
1195
1196 gdbarch = gdbarch_alloc (&info, 0);
1197
1198 switch (info.bfd_arch_info->mach)
1199 {
1200 case bfd_mach_h8300:
1201 h8300sxmode = 0;
1202 h8300smode = 0;
1203 h8300hmode = 0;
1204 set_gdbarch_num_regs (gdbarch, 13);
1205 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1206 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1207 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1208 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1209 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1210 set_gdbarch_register_name (gdbarch, h8300_register_name);
1211 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1212 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1213 set_gdbarch_extract_return_value (gdbarch, h8300_extract_return_value);
1214 set_gdbarch_store_return_value (gdbarch, h8300_store_return_value);
1215 set_gdbarch_print_insn (gdbarch, print_insn_h8300);
1216 break;
1217 case bfd_mach_h8300h:
1218 case bfd_mach_h8300hn:
1219 h8300sxmode = 0;
1220 h8300smode = 0;
1221 h8300hmode = 1;
1222 set_gdbarch_num_regs (gdbarch, 13);
1223 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1224 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1225 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1226 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1227 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1228 set_gdbarch_register_name (gdbarch, h8300_register_name);
1229 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1230 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1231 set_gdbarch_extract_return_value (gdbarch, h8300h_extract_return_value);
1232 set_gdbarch_store_return_value (gdbarch, h8300h_store_return_value);
1233 set_gdbarch_print_insn (gdbarch, print_insn_h8300h);
1234 break;
1235 case bfd_mach_h8300s:
1236 case bfd_mach_h8300sn:
1237 h8300sxmode = 0;
1238 h8300smode = 1;
1239 h8300hmode = 1;
1240 set_gdbarch_num_regs (gdbarch, 16);
1241 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1242 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1243 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1244 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1245 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1246 set_gdbarch_register_name (gdbarch, h8300s_register_name);
1247 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1248 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1249 set_gdbarch_extract_return_value (gdbarch, h8300h_extract_return_value);
1250 set_gdbarch_store_return_value (gdbarch, h8300h_store_return_value);
1251 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1252 break;
1253 case bfd_mach_h8300sx:
1254 case bfd_mach_h8300sxn:
1255 h8300sxmode = 1;
1256 h8300smode = 1;
1257 h8300hmode = 1;
1258 set_gdbarch_num_regs (gdbarch, 18);
1259 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1260 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1261 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1262 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1263 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1264 set_gdbarch_register_name (gdbarch, h8300sx_register_name);
1265 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1266 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1267 set_gdbarch_extract_return_value (gdbarch, h8300h_extract_return_value);
1268 set_gdbarch_store_return_value (gdbarch, h8300h_store_return_value);
1269 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1270 break;
1271 }
1272
1273 set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
1274 set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
1275
1276 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1277 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1278 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1279
1280 /*
1281 * Basic register fields and methods.
1282 */
1283
1284 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1285 set_gdbarch_deprecated_fp_regnum (gdbarch, E_FP_REGNUM);
1286 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1287 set_gdbarch_register_type (gdbarch, h8300_register_type);
1288 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
1289 set_gdbarch_print_float_info (gdbarch, h8300_print_float_info);
1290
1291 /*
1292 * Frame Info
1293 */
1294 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1295
1296 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch,
1297 h8300_frame_init_saved_regs);
1298 set_gdbarch_deprecated_init_extra_frame_info (gdbarch,
1299 h8300_init_extra_frame_info);
1300 set_gdbarch_deprecated_frame_chain (gdbarch, h8300_frame_chain);
1301 set_gdbarch_deprecated_saved_pc_after_call (gdbarch,
1302 h8300_saved_pc_after_call);
1303 set_gdbarch_deprecated_frame_saved_pc (gdbarch, h8300_frame_saved_pc);
1304 set_gdbarch_deprecated_pop_frame (gdbarch, h8300_pop_frame);
1305
1306 /*
1307 * Miscelany
1308 */
1309 /* Stack grows up. */
1310 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1311 /* PC stops zero byte after a trap instruction
1312 (which means: exactly on trap instruction). */
1313 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1314 /* This value is almost never non-zero... */
1315 set_gdbarch_function_start_offset (gdbarch, 0);
1316 /* This value is almost never non-zero... */
1317 set_gdbarch_frame_args_skip (gdbarch, 0);
1318 set_gdbarch_frameless_function_invocation (gdbarch,
1319 frameless_look_for_prologue);
1320
1321 set_gdbarch_extract_struct_value_address (gdbarch,
1322 h8300_extract_struct_value_address);
1323 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
1324 set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
1325 set_gdbarch_push_dummy_code (gdbarch, h8300_push_dummy_code);
1326 set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
1327
1328 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1329 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1330 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1331 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1332 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1333
1334 /* set_gdbarch_stack_align (gdbarch, SOME_stack_align); */
1335 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1336
1337 /* Char is unsigned. */
1338 set_gdbarch_char_signed (gdbarch, 0);
1339
1340 return gdbarch;
1341 }
1342
1343 extern initialize_file_ftype _initialize_h8300_tdep; /* -Wmissing-prototypes */
1344
1345 void
1346 _initialize_h8300_tdep (void)
1347 {
1348 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
1349 }
This page took 0.057474 seconds and 5 git commands to generate.