* h8300-tdep.c (examine_prologue): Fix call to read_memory_unsigned_integer.
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Hitachi H8/300, for GDB.
2 Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /*
21 Contributed by Steve Chamberlain
22 sac@cygnus.com
23 */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "obstack.h"
28 #include "symtab.h"
29 #include <dis-asm.h>
30 #undef NUM_REGS
31 #define NUM_REGS 11
32
33 #define UNSIGNED_SHORT(X) ((X) & 0xffff)
34
35 /* an easy to debug H8 stack frame looks like:
36 0x6df6 push r6
37 0x0d76 mov.w r7,r6
38 0x6dfn push reg
39 0x7905 nnnn mov.w #n,r5 or 0x1b87 subs #2,sp
40 0x1957 sub.w r5,sp
41
42 */
43
44 #define IS_PUSH(x) ((x & 0xff00)==0x6d00)
45 #define IS_PUSH_FP(x) (x == 0x6df6)
46 #define IS_MOVE_FP(x) (x == 0x0d76)
47 #define IS_MOV_SP_FP(x) (x == 0x0d76)
48 #define IS_SUB2_SP(x) (x==0x1b87)
49 #define IS_MOVK_R5(x) (x==0x7905)
50 #define IS_SUB_R5SP(x) (x==0x1957)
51 CORE_ADDR examine_prologue ();
52
53 void frame_find_saved_regs ();
54 CORE_ADDR
55 h8300_skip_prologue (start_pc)
56 CORE_ADDR start_pc;
57
58 {
59 short int w;
60
61 w = read_memory_unsigned_integer (start_pc, 2);
62 /* Skip past all push insns */
63 while (IS_PUSH_FP (w))
64 {
65 start_pc += 2;
66 w = read_memory_unsigned_integer (start_pc, 2);
67 }
68
69 /* Skip past a move to FP */
70 if (IS_MOVE_FP (w))
71 {
72 start_pc += 2;
73 w = read_memory_unsigned_integer (start_pc, 2);
74 }
75
76 /* Skip the stack adjust */
77
78 if (IS_MOVK_R5 (w))
79 {
80 start_pc += 2;
81 w = read_memory_unsigned_integer (start_pc, 2);
82 }
83 if (IS_SUB_R5SP (w))
84 {
85 start_pc += 2;
86 w = read_memory_unsigned_integer (start_pc, 2);
87 }
88 while (IS_SUB2_SP (w))
89 {
90 start_pc += 2;
91 w = read_memory_unsigned_integer (start_pc, 2);
92 }
93
94 return start_pc;
95
96 }
97
98 int
99 print_insn (memaddr, stream)
100 CORE_ADDR memaddr;
101 FILE *stream;
102 {
103 disassemble_info info;
104 GDB_INIT_DISASSEMBLE_INFO(info, stream);
105 return print_insn_h8300 (memaddr, &info);
106 }
107
108 /* Given a GDB frame, determine the address of the calling function's frame.
109 This will be used to create a new GDB frame struct, and then
110 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
111
112 For us, the frame address is its stack pointer value, so we look up
113 the function prologue to determine the caller's sp value, and return it. */
114
115 FRAME_ADDR
116 FRAME_CHAIN (thisframe)
117 FRAME thisframe;
118 {
119
120 frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
121 return thisframe->fsr->regs[SP_REGNUM];
122 }
123
124 /* Put here the code to store, into a struct frame_saved_regs,
125 the addresses of the saved registers of frame described by FRAME_INFO.
126 This includes special registers such as pc and fp saved in special
127 ways in the stack frame. sp is even more special:
128 the address we return for it IS the sp for the next frame.
129
130 We cache the result of doing this in the frame_cache_obstack, since
131 it is fairly expensive. */
132
133 void
134 frame_find_saved_regs (fi, fsr)
135 struct frame_info *fi;
136 struct frame_saved_regs *fsr;
137 {
138 register CORE_ADDR next_addr;
139 register CORE_ADDR *saved_regs;
140 register int regnum;
141 register struct frame_saved_regs *cache_fsr;
142 extern struct obstack frame_cache_obstack;
143 CORE_ADDR ip;
144 struct symtab_and_line sal;
145 CORE_ADDR limit;
146
147 if (!fi->fsr)
148 {
149 cache_fsr = (struct frame_saved_regs *)
150 obstack_alloc (&frame_cache_obstack,
151 sizeof (struct frame_saved_regs));
152 bzero (cache_fsr, sizeof (struct frame_saved_regs));
153
154 fi->fsr = cache_fsr;
155
156 /* Find the start and end of the function prologue. If the PC
157 is in the function prologue, we only consider the part that
158 has executed already. */
159
160 ip = get_pc_function_start (fi->pc);
161 sal = find_pc_line (ip, 0);
162 limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
163
164 /* This will fill in fields in *fi as well as in cache_fsr. */
165 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
166 }
167
168 if (fsr)
169 *fsr = *fi->fsr;
170 }
171
172 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
173 is not the address of a valid instruction, the address of the next
174 instruction beyond ADDR otherwise. *PWORD1 receives the first word
175 of the instruction.*/
176
177 CORE_ADDR
178 NEXT_PROLOGUE_INSN (addr, lim, pword1)
179 CORE_ADDR addr;
180 CORE_ADDR lim;
181 short *pword1;
182 {
183 if (addr < lim + 8)
184 {
185 read_memory (addr, pword1, sizeof (*pword1));
186 SWAP_TARGET_AND_HOST (pword1, sizeof (short));
187
188 return addr + 2;
189 }
190 return 0;
191 }
192
193 /* Examine the prologue of a function. `ip' points to the first instruction.
194 `limit' is the limit of the prologue (e.g. the addr of the first
195 linenumber, or perhaps the program counter if we're stepping through).
196 `frame_sp' is the stack pointer value in use in this frame.
197 `fsr' is a pointer to a frame_saved_regs structure into which we put
198 info about the registers saved by this frame.
199 `fi' is a struct frame_info pointer; we fill in various fields in it
200 to reflect the offsets of the arg pointer and the locals pointer. */
201
202 static CORE_ADDR
203 examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
204 register CORE_ADDR ip;
205 register CORE_ADDR limit;
206 FRAME_ADDR after_prolog_fp;
207 struct frame_saved_regs *fsr;
208 struct frame_info *fi;
209 {
210 register CORE_ADDR next_ip;
211 int r;
212 int i;
213 int have_fp = 0;
214
215 register int src;
216 register struct pic_prologue_code *pcode;
217 INSN_WORD insn_word;
218 int size, offset;
219 unsigned int reg_save_depth = 2; /* Number of things pushed onto
220 stack, starts at 2, 'cause the
221 PC is already there */
222
223 unsigned int auto_depth = 0; /* Number of bytes of autos */
224
225 char in_frame[11]; /* One for each reg */
226
227 memset (in_frame, 1, 11);
228 for (r = 0; r < 8; r++)
229 {
230 fsr->regs[r] = 0;
231 }
232 if (after_prolog_fp == 0)
233 {
234 after_prolog_fp = read_register (SP_REGNUM);
235 }
236 if (ip == 0 || ip & ~0xffff)
237 return 0;
238
239 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
240
241 /* Skip over any fp push instructions */
242 fsr->regs[6] = after_prolog_fp;
243 while (next_ip && IS_PUSH_FP (insn_word))
244 {
245 ip = next_ip;
246
247 in_frame[insn_word & 0x7] = reg_save_depth;
248 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
249 reg_save_depth += 2;
250 }
251
252 /* Is this a move into the fp */
253 if (next_ip && IS_MOV_SP_FP (insn_word))
254 {
255 ip = next_ip;
256 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
257 have_fp = 1;
258 }
259
260 /* Skip over any stack adjustment, happens either with a number of
261 sub#2,sp or a mov #x,r5 sub r5,sp */
262
263 if (next_ip && IS_SUB2_SP (insn_word))
264 {
265 while (next_ip && IS_SUB2_SP (insn_word))
266 {
267 auto_depth += 2;
268 ip = next_ip;
269 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
270 }
271 }
272 else
273 {
274 if (next_ip && IS_MOVK_R5 (insn_word))
275 {
276 ip = next_ip;
277 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
278 auto_depth += insn_word;
279
280 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
281 auto_depth += insn_word;
282
283 }
284 }
285 /* Work out which regs are stored where */
286 while (next_ip && IS_PUSH (insn_word))
287 {
288 ip = next_ip;
289 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
290 fsr->regs[r] = after_prolog_fp + auto_depth;
291 auto_depth += 2;
292 }
293
294 /* The args are always reffed based from the stack pointer */
295 fi->args_pointer = after_prolog_fp;
296 /* Locals are always reffed based from the fp */
297 fi->locals_pointer = after_prolog_fp;
298 /* The PC is at a known place */
299 fi->from_pc = read_memory_unsigned_integer (after_prolog_fp + 2, BINWORD);
300
301 /* Rememeber any others too */
302 in_frame[PC_REGNUM] = 0;
303
304 if (have_fp)
305 /* We keep the old FP in the SP spot */
306 fsr->regs[SP_REGNUM] = read_memory_unsigned_integer (fsr->regs[6], BINWORD);
307 else
308 fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
309
310 return (ip);
311 }
312
313 void
314 init_extra_frame_info (fromleaf, fi)
315 int fromleaf;
316 struct frame_info *fi;
317 {
318 fi->fsr = 0; /* Not yet allocated */
319 fi->args_pointer = 0; /* Unknown */
320 fi->locals_pointer = 0; /* Unknown */
321 fi->from_pc = 0;
322
323 }
324
325 /* Return the saved PC from this frame.
326
327 If the frame has a memory copy of SRP_REGNUM, use that. If not,
328 just use the register SRP_REGNUM itself. */
329
330 CORE_ADDR
331 frame_saved_pc (frame)
332 FRAME frame;
333
334 {
335 return frame->from_pc;
336 }
337
338 CORE_ADDR
339 frame_locals_address (fi)
340 struct frame_info *fi;
341 {
342 if (!fi->locals_pointer)
343 {
344 struct frame_saved_regs ignore;
345
346 get_frame_saved_regs (fi, &ignore);
347
348 }
349 return fi->locals_pointer;
350 }
351
352 /* Return the address of the argument block for the frame
353 described by FI. Returns 0 if the address is unknown. */
354
355 CORE_ADDR
356 frame_args_address (fi)
357 struct frame_info *fi;
358 {
359 if (!fi->args_pointer)
360 {
361 struct frame_saved_regs ignore;
362
363 get_frame_saved_regs (fi, &ignore);
364
365 }
366
367 return fi->args_pointer;
368 }
369
370 void
371 h8300_pop_frame ()
372 {
373 unsigned regnum;
374 struct frame_saved_regs fsr;
375 struct frame_info *fi;
376
377 FRAME frame = get_current_frame ();
378
379 fi = get_frame_info (frame);
380 get_frame_saved_regs (fi, &fsr);
381
382 for (regnum = 0; regnum < 8; regnum++)
383 {
384 if (fsr.regs[regnum])
385 {
386 write_register (regnum, read_memory_integer(fsr.regs[regnum]), BINWORD);
387 }
388
389 flush_cached_frames ();
390 set_current_frame (create_new_frame (read_register (FP_REGNUM),
391 read_pc ()));
392
393 }
394
395 }
396
397 void
398 print_register_hook (regno)
399 {
400 if (regno == 8)
401 {
402 /* CCR register */
403
404 int C, Z, N, V;
405 unsigned char b[2];
406 unsigned char l;
407
408 read_relative_register_raw_bytes (regno, b);
409 l = b[1];
410 printf ("\t");
411 printf ("I-%d - ", (l & 0x80) != 0);
412 printf ("H-%d - ", (l & 0x20) != 0);
413 N = (l & 0x8) != 0;
414 Z = (l & 0x4) != 0;
415 V = (l & 0x2) != 0;
416 C = (l & 0x1) != 0;
417 printf ("N-%d ", N);
418 printf ("Z-%d ", Z);
419 printf ("V-%d ", V);
420 printf ("C-%d ", C);
421 if ((C | Z) == 0)
422 printf ("u> ");
423 if ((C | Z) == 1)
424 printf ("u<= ");
425 if ((C == 0))
426 printf ("u>= ");
427 if (C == 1)
428 printf ("u< ");
429 if (Z == 0)
430 printf ("!= ");
431 if (Z == 1)
432 printf ("== ");
433 if ((N ^ V) == 0)
434 printf (">= ");
435 if ((N ^ V) == 1)
436 printf ("< ");
437 if ((Z | (N ^ V)) == 0)
438 printf ("> ");
439 if ((Z | (N ^ V)) == 1)
440 printf ("<= ");
441 }
442 }
This page took 0.040231 seconds and 5 git commands to generate.