2003-03-01 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Hitachi H8/300, for GDB.
2
3 Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /*
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
26 */
27
28 #include "defs.h"
29 #include "value.h"
30 #include "inferior.h"
31 #include "symfile.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "gdbcmd.h"
37 #include "gdb_assert.h"
38
39 /* Extra info which is saved in each frame_info. */
40 struct frame_extra_info
41 {
42 CORE_ADDR from_pc;
43 CORE_ADDR args_pointer;
44 CORE_ADDR locals_pointer;
45 };
46
47 #define E_NUM_REGS (h8300smode ? 14 : 13)
48
49 enum
50 {
51 h8300_reg_size = 2,
52 h8300h_reg_size = 4,
53 h8300_max_reg_size = 4,
54 };
55 #define BINWORD (h8300hmode ? h8300h_reg_size : h8300_reg_size)
56
57 enum gdb_regnum
58 {
59 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
60 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM,
61 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
62 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
63 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
64 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
65 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
66 E_SP_REGNUM,
67 E_CCR_REGNUM,
68 E_PC_REGNUM,
69 E_CYCLES_REGNUM,
70 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
71 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
72 E_INSTS_REGNUM
73 };
74
75 #define UNSIGNED_SHORT(X) ((X) & 0xffff)
76
77 #define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
78 #define IS_PUSH_FP(x) (x == 0x6df6)
79 #define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
80 #define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
81 #define IS_SUB2_SP(x) (x==0x1b87)
82 #define IS_SUB4_SP(x) (x==0x1b97)
83 #define IS_SUBL_SP(x) (x==0x7a37)
84 #define IS_MOVK_R5(x) (x==0x7905)
85 #define IS_SUB_R5SP(x) (x==0x1957)
86
87 /* If the instruction at PC is an argument register spill, return its
88 length. Otherwise, return zero.
89
90 An argument register spill is an instruction that moves an argument
91 from the register in which it was passed to the stack slot in which
92 it really lives. It is a byte, word, or longword move from an
93 argument register to a negative offset from the frame pointer. */
94
95 static int
96 h8300_is_argument_spill (CORE_ADDR pc)
97 {
98 int w = read_memory_unsigned_integer (pc, 2);
99
100 if ((w & 0xfff0) == 0x6ee0 /* mov.b Rs,@(d:16,er6) */
101 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
102 {
103 int w2 = read_memory_integer (pc + 2, 2);
104
105 /* ... and d:16 is negative. */
106 if (w2 < 0)
107 return 4;
108 }
109 else if (w == 0x7860)
110 {
111 int w2 = read_memory_integer (pc + 2, 2);
112
113 if ((w2 & 0xfff0) == 0x6aa0) /* mov.b Rs, @(d:24,er6) */
114 {
115 LONGEST disp = read_memory_integer (pc + 4, 4);
116
117 /* ... and d:24 is negative. */
118 if (disp < 0 && disp > 0xffffff)
119 return 8;
120 }
121 }
122 else if ((w & 0xfff0) == 0x6fe0 /* mov.w Rs,@(d:16,er6) */
123 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
124 {
125 int w2 = read_memory_integer (pc + 2, 2);
126
127 /* ... and d:16 is negative. */
128 if (w2 < 0)
129 return 4;
130 }
131 else if (w == 0x78e0)
132 {
133 int w2 = read_memory_integer (pc + 2, 2);
134
135 if ((w2 & 0xfff0) == 0x6ba0) /* mov.b Rs, @(d:24,er6) */
136 {
137 LONGEST disp = read_memory_integer (pc + 4, 4);
138
139 /* ... and d:24 is negative. */
140 if (disp < 0 && disp > 0xffffff)
141 return 8;
142 }
143 }
144 else if (w == 0x0100)
145 {
146 int w2 = read_memory_integer (pc + 2, 2);
147
148 if ((w2 & 0xfff0) == 0x6fe0 /* mov.l Rs,@(d:16,er6) */
149 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
150 {
151 int w3 = read_memory_integer (pc + 4, 2);
152
153 /* ... and d:16 is negative. */
154 if (w3 < 0)
155 return 6;
156 }
157 else if (w2 == 0x78e0)
158 {
159 int w3 = read_memory_integer (pc + 4, 2);
160
161 if ((w3 & 0xfff0) == 0x6ba0) /* mov.l Rs, @(d:24,er6) */
162 {
163 LONGEST disp = read_memory_integer (pc + 6, 4);
164
165 /* ... and d:24 is negative. */
166 if (disp < 0 && disp > 0xffffff)
167 return 10;
168 }
169 }
170 }
171
172 return 0;
173 }
174
175 static CORE_ADDR
176 h8300_skip_prologue (CORE_ADDR start_pc)
177 {
178 short int w;
179 int adjust = 0;
180
181 /* Skip past all push and stm insns. */
182 while (1)
183 {
184 w = read_memory_unsigned_integer (start_pc, 2);
185 /* First look for push insns. */
186 if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130)
187 {
188 w = read_memory_unsigned_integer (start_pc + 2, 2);
189 adjust = 2;
190 }
191
192 if (IS_PUSH (w))
193 {
194 start_pc += 2 + adjust;
195 w = read_memory_unsigned_integer (start_pc, 2);
196 continue;
197 }
198 adjust = 0;
199 break;
200 }
201
202 /* Skip past a move to FP, either word or long sized */
203 w = read_memory_unsigned_integer (start_pc, 2);
204 if (w == 0x0100)
205 {
206 w = read_memory_unsigned_integer (start_pc + 2, 2);
207 adjust += 2;
208 }
209
210 if (IS_MOVE_FP (w))
211 {
212 start_pc += 2 + adjust;
213 w = read_memory_unsigned_integer (start_pc, 2);
214 }
215
216 /* Check for loading either a word constant into r5;
217 long versions are handled by the SUBL_SP below. */
218 if (IS_MOVK_R5 (w))
219 {
220 start_pc += 2;
221 w = read_memory_unsigned_integer (start_pc, 2);
222 }
223
224 /* Now check for subtracting r5 from sp, word sized only. */
225 if (IS_SUB_R5SP (w))
226 {
227 start_pc += 2 + adjust;
228 w = read_memory_unsigned_integer (start_pc, 2);
229 }
230
231 /* Check for subs #2 and subs #4. */
232 while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
233 {
234 start_pc += 2 + adjust;
235 w = read_memory_unsigned_integer (start_pc, 2);
236 }
237
238 /* Check for a 32bit subtract. */
239 if (IS_SUBL_SP (w))
240 start_pc += 6 + adjust;
241
242 /* Check for spilling an argument register to the stack frame.
243 This could also be an initializing store from non-prologue code,
244 but I don't think there's any harm in skipping that. */
245 for (;;)
246 {
247 int spill_size = h8300_is_argument_spill (start_pc);
248 if (spill_size == 0)
249 break;
250 start_pc += spill_size;
251 }
252
253 return start_pc;
254 }
255
256 static int
257 gdb_print_insn_h8300 (bfd_vma memaddr, disassemble_info * info)
258 {
259 if (h8300smode)
260 return print_insn_h8300s (memaddr, info);
261 else if (h8300hmode)
262 return print_insn_h8300h (memaddr, info);
263 else
264 return print_insn_h8300 (memaddr, info);
265 }
266
267 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
268 is not the address of a valid instruction, the address of the next
269 instruction beyond ADDR otherwise. *PWORD1 receives the first word
270 of the instruction. */
271
272 static CORE_ADDR
273 h8300_next_prologue_insn (CORE_ADDR addr, CORE_ADDR lim, unsigned short* pword1)
274 {
275 char buf[2];
276 if (addr < lim + 8)
277 {
278 read_memory (addr, buf, 2);
279 *pword1 = extract_signed_integer (buf, 2);
280
281 return addr + 2;
282 }
283 return 0;
284 }
285
286 /* Examine the prologue of a function. `ip' points to the first instruction.
287 `limit' is the limit of the prologue (e.g. the addr of the first
288 linenumber, or perhaps the program counter if we're stepping through).
289 `frame_sp' is the stack pointer value in use in this frame.
290 `fsr' is a pointer to a frame_saved_regs structure into which we put
291 info about the registers saved by this frame.
292 `fi' is a struct frame_info pointer; we fill in various fields in it
293 to reflect the offsets of the arg pointer and the locals pointer. */
294
295 /* Any function with a frame looks like this
296 SECOND ARG
297 FIRST ARG
298 RET PC
299 SAVED R2
300 SAVED R3
301 SAVED FP <-FP POINTS HERE
302 LOCALS0
303 LOCALS1 <-SP POINTS HERE
304 */
305
306 static CORE_ADDR
307 h8300_examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
308 CORE_ADDR after_prolog_fp, CORE_ADDR *fsr,
309 struct frame_info *fi)
310 {
311 register CORE_ADDR next_ip;
312 int r;
313 int have_fp = 0;
314 unsigned short insn_word;
315 /* Number of things pushed onto stack, starts at 2/4, 'cause the
316 PC is already there */
317 unsigned int reg_save_depth = BINWORD;
318
319 unsigned int auto_depth = 0; /* Number of bytes of autos */
320
321 char in_frame[11]; /* One for each reg */
322
323 int adjust = 0;
324
325 memset (in_frame, 1, 11);
326 for (r = 0; r < 8; r++)
327 {
328 fsr[r] = 0;
329 }
330 if (after_prolog_fp == 0)
331 {
332 after_prolog_fp = read_register (E_SP_REGNUM);
333 }
334
335 /* If the PC isn't valid, quit now. */
336 if (ip == 0 || ip & (h8300hmode ? ~0xffffff : ~0xffff))
337 return 0;
338
339 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
340
341 if (insn_word == 0x0100)
342 {
343 insn_word = read_memory_unsigned_integer (ip + 2, 2);
344 adjust = 2;
345 }
346
347 /* Skip over any fp push instructions */
348 fsr[E_FP_REGNUM] = after_prolog_fp;
349 while (next_ip && IS_PUSH_FP (insn_word))
350 {
351 ip = next_ip + adjust;
352
353 in_frame[insn_word & 0x7] = reg_save_depth;
354 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
355 reg_save_depth += 2 + adjust;
356 }
357
358 /* Is this a move into the fp */
359 if (next_ip && IS_MOV_SP_FP (insn_word))
360 {
361 ip = next_ip;
362 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
363 have_fp = 1;
364 }
365
366 /* Skip over any stack adjustment, happens either with a number of
367 sub#2,sp or a mov #x,r5 sub r5,sp */
368
369 if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
370 {
371 while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
372 {
373 auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
374 ip = next_ip;
375 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
376 }
377 }
378 else
379 {
380 if (next_ip && IS_MOVK_R5 (insn_word))
381 {
382 ip = next_ip;
383 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
384 auto_depth += insn_word;
385
386 next_ip = h8300_next_prologue_insn (next_ip, limit, &insn_word);
387 auto_depth += insn_word;
388 }
389 if (next_ip && IS_SUBL_SP (insn_word))
390 {
391 ip = next_ip;
392 auto_depth += read_memory_unsigned_integer (ip, 4);
393 ip += 4;
394
395 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
396 }
397 }
398
399 /* Now examine the push insns to determine where everything lives
400 on the stack. */
401 while (1)
402 {
403 adjust = 0;
404 if (!next_ip)
405 break;
406
407 if (insn_word == 0x0100)
408 {
409 ip = next_ip;
410 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
411 adjust = 2;
412 }
413
414 if (IS_PUSH (insn_word))
415 {
416 auto_depth += 2 + adjust;
417 fsr[insn_word & 0x7] = after_prolog_fp - auto_depth;
418 ip = next_ip;
419 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
420 continue;
421 }
422
423 /* Now check for push multiple insns. */
424 if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130)
425 {
426 int count = ((insn_word >> 4) & 0xf) + 1;
427 int start, i;
428
429 ip = next_ip;
430 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
431 start = insn_word & 0x7;
432
433 for (i = start; i < start + count; i++)
434 {
435 auto_depth += 4;
436 fsr[i] = after_prolog_fp - auto_depth;
437 }
438 }
439 break;
440 }
441
442 /* The args are always reffed based from the stack pointer */
443 get_frame_extra_info (fi)->args_pointer = after_prolog_fp;
444 /* Locals are always reffed based from the fp */
445 get_frame_extra_info (fi)->locals_pointer = after_prolog_fp;
446 /* The PC is at a known place */
447 get_frame_extra_info (fi)->from_pc =
448 read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
449
450 /* Rememeber any others too */
451 in_frame[E_PC_REGNUM] = 0;
452
453 if (have_fp)
454 /* We keep the old FP in the SP spot */
455 fsr[E_SP_REGNUM] = read_memory_unsigned_integer (fsr[E_FP_REGNUM], BINWORD);
456 else
457 fsr[E_SP_REGNUM] = after_prolog_fp + auto_depth;
458
459 return (ip);
460 }
461
462 static void
463 h8300_frame_init_saved_regs (struct frame_info *fi)
464 {
465 CORE_ADDR func_addr, func_end;
466
467 if (!get_frame_saved_regs (fi))
468 {
469 frame_saved_regs_zalloc (fi);
470
471 /* Find the beginning of this function, so we can analyze its
472 prologue. */
473 if (find_pc_partial_function (get_frame_pc (fi), NULL, &func_addr, &func_end))
474 {
475 struct symtab_and_line sal = find_pc_line (func_addr, 0);
476 CORE_ADDR limit = (sal.end && sal.end < get_frame_pc (fi)) ? sal.end : get_frame_pc (fi);
477 /* This will fill in fields in fi. */
478 h8300_examine_prologue (func_addr, limit, get_frame_base (fi),
479 get_frame_saved_regs (fi), fi);
480 }
481 /* Else we're out of luck (can't debug completely stripped code).
482 FIXME. */
483 }
484 }
485
486 /* Given a GDB frame, determine the address of the calling function's
487 frame. This will be used to create a new GDB frame struct, and
488 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
489 will be called for the new frame.
490
491 For us, the frame address is its stack pointer value, so we look up
492 the function prologue to determine the caller's sp value, and return it. */
493
494 static CORE_ADDR
495 h8300_frame_chain (struct frame_info *thisframe)
496 {
497 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
498 get_frame_base (thisframe),
499 get_frame_base (thisframe)))
500 { /* initialize the from_pc now */
501 get_frame_extra_info (thisframe)->from_pc =
502 deprecated_read_register_dummy (get_frame_pc (thisframe),
503 get_frame_base (thisframe),
504 E_PC_REGNUM);
505 return get_frame_base (thisframe);
506 }
507 return get_frame_saved_regs (thisframe)[E_SP_REGNUM];
508 }
509
510 /* Return the saved PC from this frame.
511
512 If the frame has a memory copy of SRP_REGNUM, use that. If not,
513 just use the register SRP_REGNUM itself. */
514
515 static CORE_ADDR
516 h8300_frame_saved_pc (struct frame_info *frame)
517 {
518 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
519 get_frame_base (frame),
520 get_frame_base (frame)))
521 return deprecated_read_register_dummy (get_frame_pc (frame),
522 get_frame_base (frame),
523 E_PC_REGNUM);
524 else
525 return get_frame_extra_info (frame)->from_pc;
526 }
527
528 static void
529 h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
530 {
531 if (!get_frame_extra_info (fi))
532 {
533 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
534 get_frame_extra_info (fi)->from_pc = 0;
535 get_frame_extra_info (fi)->args_pointer = 0; /* Unknown */
536 get_frame_extra_info (fi)->locals_pointer = 0; /* Unknown */
537
538 if (!get_frame_pc (fi))
539 {
540 if (get_next_frame (fi))
541 deprecated_update_frame_pc_hack (fi, h8300_frame_saved_pc (get_next_frame (fi)));
542 }
543 h8300_frame_init_saved_regs (fi);
544 }
545 }
546
547 static CORE_ADDR
548 h8300_frame_locals_address (struct frame_info *fi)
549 {
550 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), get_frame_base (fi),
551 get_frame_base (fi)))
552 return (CORE_ADDR) 0; /* Not sure what else to do... */
553 return get_frame_extra_info (fi)->locals_pointer;
554 }
555
556 /* Return the address of the argument block for the frame
557 described by FI. Returns 0 if the address is unknown. */
558
559 static CORE_ADDR
560 h8300_frame_args_address (struct frame_info *fi)
561 {
562 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), get_frame_base (fi),
563 get_frame_base (fi)))
564 return (CORE_ADDR) 0; /* Not sure what else to do... */
565 return get_frame_extra_info (fi)->args_pointer;
566 }
567
568 /* Round N up or down to the nearest multiple of UNIT.
569 Evaluate N only once, UNIT several times.
570 UNIT must be a power of two. */
571 #define round_up(n, unit) (((n) + (unit) - 1) & -(unit))
572 #define round_down(n, unit) ((n) & -(unit))
573
574 /* Function: push_arguments
575 Setup the function arguments for calling a function in the inferior.
576 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
577 on the H8/300H.
578
579 There are actually two ABI's here: -mquickcall (the default) and
580 -mno-quickcall. With -mno-quickcall, all arguments are passed on
581 the stack after the return address, word-aligned. With
582 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
583 GCC doesn't indicate in the object file which ABI was used to
584 compile it, GDB only supports the default --- -mquickcall.
585
586 Here are the rules for -mquickcall, in detail:
587
588 Each argument, whether scalar or aggregate, is padded to occupy a
589 whole number of words. Arguments smaller than a word are padded at
590 the most significant end; those larger than a word are padded at
591 the least significant end.
592
593 The initial arguments are passed in r0 -- r2. Earlier arguments go in
594 lower-numbered registers. Multi-word arguments are passed in
595 consecutive registers, with the most significant end in the
596 lower-numbered register.
597
598 If an argument doesn't fit entirely in the remaining registers, it
599 is passed entirely on the stack. Stack arguments begin just after
600 the return address. Once an argument has overflowed onto the stack
601 this way, all subsequent arguments are passed on the stack.
602
603 The above rule has odd consequences. For example, on the h8/300s,
604 if a function takes two longs and an int as arguments:
605 - the first long will be passed in r0/r1,
606 - the second long will be passed entirely on the stack, since it
607 doesn't fit in r2,
608 - and the int will be passed on the stack, even though it could fit
609 in r2.
610
611 A weird exception: if an argument is larger than a word, but not a
612 whole number of words in length (before padding), it is passed on
613 the stack following the rules for stack arguments above, even if
614 there are sufficient registers available to hold it. Stranger
615 still, the argument registers are still `used up' --- even though
616 there's nothing in them.
617
618 So, for example, on the h8/300s, if a function expects a three-byte
619 structure and an int, the structure will go on the stack, and the
620 int will go in r2, not r0.
621
622 If the function returns an aggregate type (struct, union, or class)
623 by value, the caller must allocate space to hold the return value,
624 and pass the callee a pointer to this space as an invisible first
625 argument, in R0.
626
627 For varargs functions, the last fixed argument and all the variable
628 arguments are always passed on the stack. This means that calls to
629 varargs functions don't work properly unless there is a prototype
630 in scope.
631
632 Basically, this ABI is not good, for the following reasons:
633 - You can't call vararg functions properly unless a prototype is in scope.
634 - Structure passing is inconsistent, to no purpose I can see.
635 - It often wastes argument registers, of which there are only three
636 to begin with. */
637
638 static CORE_ADDR
639 h8300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
640 int struct_return, CORE_ADDR struct_addr)
641 {
642 int stack_align, stack_alloc, stack_offset;
643 int wordsize = BINWORD;
644 int reg;
645 int argument;
646
647 /* First, make sure the stack is properly aligned. */
648 sp = round_down (sp, wordsize);
649
650 /* Now make sure there's space on the stack for the arguments. We
651 may over-allocate a little here, but that won't hurt anything. */
652 stack_alloc = 0;
653 for (argument = 0; argument < nargs; argument++)
654 stack_alloc += round_up (TYPE_LENGTH (VALUE_TYPE (args[argument])),
655 wordsize);
656 sp -= stack_alloc;
657
658 /* Now load as many arguments as possible into registers, and push
659 the rest onto the stack. */
660 reg = E_ARG0_REGNUM;
661 stack_offset = 0;
662
663 /* If we're returning a structure by value, then we must pass a
664 pointer to the buffer for the return value as an invisible first
665 argument. */
666 if (struct_return)
667 write_register (reg++, struct_addr);
668
669 for (argument = 0; argument < nargs; argument++)
670 {
671 struct type *type = VALUE_TYPE (args[argument]);
672 int len = TYPE_LENGTH (type);
673 char *contents = (char *) VALUE_CONTENTS (args[argument]);
674
675 /* Pad the argument appropriately. */
676 int padded_len = round_up (len, wordsize);
677 char *padded = alloca (padded_len);
678
679 memset (padded, 0, padded_len);
680 memcpy (len < wordsize ? padded + padded_len - len : padded,
681 contents, len);
682
683 /* Could the argument fit in the remaining registers? */
684 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
685 {
686 /* Are we going to pass it on the stack anyway, for no good
687 reason? */
688 if (len > wordsize && len % wordsize)
689 {
690 /* I feel so unclean. */
691 write_memory (sp + stack_offset, padded, padded_len);
692 stack_offset += padded_len;
693
694 /* That's right --- even though we passed the argument
695 on the stack, we consume the registers anyway! Love
696 me, love my dog. */
697 reg += padded_len / wordsize;
698 }
699 else
700 {
701 /* Heavens to Betsy --- it's really going in registers!
702 It would be nice if we could use write_register_bytes
703 here, but on the h8/300s, there are gaps between
704 the registers in the register file. */
705 int offset;
706
707 for (offset = 0; offset < padded_len; offset += wordsize)
708 {
709 ULONGEST word = extract_address (padded + offset, wordsize);
710 write_register (reg++, word);
711 }
712 }
713 }
714 else
715 {
716 /* It doesn't fit in registers! Onto the stack it goes. */
717 write_memory (sp + stack_offset, padded, padded_len);
718 stack_offset += padded_len;
719
720 /* Once one argument has spilled onto the stack, all
721 subsequent arguments go on the stack. */
722 reg = E_ARGLAST_REGNUM + 1;
723 }
724 }
725
726 return sp;
727 }
728
729 /* Function: push_return_address
730 Setup the return address for a dummy frame, as called by
731 call_function_by_hand. Only necessary when you are using an
732 empty CALL_DUMMY, ie. the target will not actually be executing
733 a JSR/BSR instruction. */
734
735 static CORE_ADDR
736 h8300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
737 {
738 unsigned char buf[4];
739 int wordsize = BINWORD;
740
741 sp -= wordsize;
742 store_unsigned_integer (buf, wordsize, CALL_DUMMY_ADDRESS ());
743 write_memory (sp, buf, wordsize);
744 return sp;
745 }
746
747 /* Function: h8300_pop_frame
748 Restore the machine to the state it had before the current frame
749 was created. Usually used either by the "RETURN" command, or by
750 call_function_by_hand after the dummy_frame is finished. */
751
752 static void
753 h8300_pop_frame (void)
754 {
755 unsigned regno;
756 struct frame_info *frame = get_current_frame ();
757
758 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
759 get_frame_base (frame),
760 get_frame_base (frame)))
761 {
762 generic_pop_dummy_frame ();
763 }
764 else
765 {
766 for (regno = 0; regno < 8; regno++)
767 {
768 /* Don't forget E_SP_REGNUM is a frame_saved_regs struct is the
769 actual value we want, not the address of the value we want. */
770 if (get_frame_saved_regs (frame)[regno] && regno != E_SP_REGNUM)
771 write_register (regno,
772 read_memory_integer (get_frame_saved_regs (frame)[regno],
773 BINWORD));
774 else if (get_frame_saved_regs (frame)[regno] && regno == E_SP_REGNUM)
775 write_register (regno, get_frame_base (frame) + 2 * BINWORD);
776 }
777
778 /* Don't forget to update the PC too! */
779 write_register (E_PC_REGNUM, get_frame_extra_info (frame)->from_pc);
780 }
781 flush_cached_frames ();
782 }
783
784 /* Function: extract_return_value
785 Figure out where in REGBUF the called function has left its return value.
786 Copy that into VALBUF. Be sure to account for CPU type. */
787
788 static void
789 h8300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
790 {
791 int wordsize = BINWORD;
792 int len = TYPE_LENGTH (type);
793
794 switch (len)
795 {
796 case 1: /* (char) */
797 case 2: /* (short), (int) */
798 memcpy (valbuf, regbuf + REGISTER_BYTE (0) + (wordsize - len), len);
799 break;
800 case 4: /* (long), (float) */
801 if (wordsize == 4)
802 {
803 memcpy (valbuf, regbuf + REGISTER_BYTE (0), 4);
804 }
805 else
806 {
807 memcpy (valbuf, regbuf + REGISTER_BYTE (0), 2);
808 memcpy (valbuf + 2, regbuf + REGISTER_BYTE (1), 2);
809 }
810 break;
811 case 8: /* (double) (doesn't seem to happen, which is good,
812 because this almost certainly isn't right. */
813 error ("I don't know how a double is returned.");
814 break;
815 }
816 }
817
818 /* Function: store_return_value
819 Place the appropriate value in the appropriate registers.
820 Primarily used by the RETURN command. */
821
822 static void
823 h8300_store_return_value (struct type *type, char *valbuf)
824 {
825 int regval;
826 int wordsize = BINWORD;
827 int len = TYPE_LENGTH (type);
828
829 switch (len)
830 {
831 case 1: /* char */
832 case 2: /* short, int */
833 regval = extract_address (valbuf, len);
834 write_register (0, regval);
835 break;
836 case 4: /* long, float */
837 regval = extract_address (valbuf, len);
838 if (wordsize == 4)
839 {
840 write_register (0, regval);
841 }
842 else
843 {
844 write_register (0, regval >> 16);
845 write_register (1, regval & 0xffff);
846 }
847 break;
848 case 8: /* presumeably double, but doesn't seem to happen */
849 error ("I don't know how to return a double.");
850 break;
851 }
852 }
853
854 static struct cmd_list_element *setmachinelist;
855
856 static const char *
857 h8300_register_name (int regno)
858 {
859 /* The register names change depending on whether the h8300h processor
860 type is selected. */
861 static char *h8300_register_names[] = {
862 "r0", "r1", "r2", "r3", "r4", "r5", "r6",
863 "sp", "ccr","pc","cycles", "tick", "inst", ""
864 };
865 static char *h8300s_register_names[] = {
866 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
867 "sp", "ccr", "pc", "cycles", "exr", "tick", "inst"
868 };
869 char **register_names =
870 h8300smode ? h8300s_register_names : h8300_register_names;
871 if (regno < 0 || regno >= E_NUM_REGS)
872 internal_error (__FILE__, __LINE__,
873 "h8300_register_name: illegal register number %d", regno);
874 else
875 return register_names[regno];
876 }
877
878 static void
879 h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
880 struct frame_info *frame, int regno)
881 {
882 ULONGEST rval;
883 long val;
884 const char *name = h8300_register_name (regno);
885
886 if (!name || !*name)
887 return;
888
889 /* FIXME: cagney/2002-10-22: The code below assumes that VAL is at
890 least 4 bytes (32 bits) in size and hence is large enough to hold
891 the largest h8300 register. Should instead be using ULONGEST and
892 the phex() functions. */
893 gdb_assert (sizeof (val) >= 4);
894 frame_read_unsigned_register (frame, regno, &rval);
895 val = rval;
896
897 fprintf_filtered (file, "%-14s ", name);
898 if (h8300hmode)
899 {
900 if (val)
901 fprintf_filtered (file, "0x%08lx %-8ld", val, val);
902 else
903 fprintf_filtered (file, "0x%-8lx %-8ld", val, val);
904 }
905 else
906 {
907 if (val)
908 fprintf_filtered (file, "0x%04lx %-4ld", val, val);
909 else
910 fprintf_filtered (file, "0x%-4lx %-4ld", val, val);
911 }
912 if (regno == E_CCR_REGNUM)
913 {
914 /* CCR register */
915 int C, Z, N, V;
916 unsigned char b[h8300h_reg_size];
917 unsigned char l;
918 frame_register_read (deprecated_selected_frame, regno, b);
919 l = b[REGISTER_VIRTUAL_SIZE (E_CCR_REGNUM) - 1];
920 fprintf_filtered (file, "\t");
921 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
922 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
923 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
924 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
925 N = (l & 0x8) != 0;
926 Z = (l & 0x4) != 0;
927 V = (l & 0x2) != 0;
928 C = (l & 0x1) != 0;
929 fprintf_filtered (file, "N-%d ", N);
930 fprintf_filtered (file, "Z-%d ", Z);
931 fprintf_filtered (file, "V-%d ", V);
932 fprintf_filtered (file, "C-%d ", C);
933 if ((C | Z) == 0)
934 fprintf_filtered (file, "u> ");
935 if ((C | Z) == 1)
936 fprintf_filtered (file, "u<= ");
937 if ((C == 0))
938 fprintf_filtered (file, "u>= ");
939 if (C == 1)
940 fprintf_filtered (file, "u< ");
941 if (Z == 0)
942 fprintf_filtered (file, "!= ");
943 if (Z == 1)
944 fprintf_filtered (file, "== ");
945 if ((N ^ V) == 0)
946 fprintf_filtered (file, ">= ");
947 if ((N ^ V) == 1)
948 fprintf_filtered (file, "< ");
949 if ((Z | (N ^ V)) == 0)
950 fprintf_filtered (file, "> ");
951 if ((Z | (N ^ V)) == 1)
952 fprintf_filtered (file, "<= ");
953 }
954 else if (regno == E_EXR_REGNUM && h8300smode)
955 {
956 /* EXR register */
957 unsigned char b[h8300h_reg_size];
958 unsigned char l;
959 frame_register_read (deprecated_selected_frame, regno, b);
960 l = b[REGISTER_VIRTUAL_SIZE (E_EXR_REGNUM) - 1];
961 fprintf_filtered (file, "\t");
962 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
963 fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
964 fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
965 fprintf_filtered (file, "I0-%d", (l & 1) != 0);
966 }
967 fprintf_filtered (file, "\n");
968 }
969
970 static void
971 h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
972 struct frame_info *frame, int regno, int cpregs)
973 {
974 if (regno < 0)
975 for (regno = 0; regno < E_NUM_REGS; ++regno)
976 h8300_print_register (gdbarch, file, frame, regno);
977 else
978 h8300_print_register (gdbarch, file, frame, regno);
979 }
980
981 static CORE_ADDR
982 h8300_saved_pc_after_call (struct frame_info *ignore)
983 {
984 return read_memory_unsigned_integer (read_register (E_SP_REGNUM), BINWORD);
985 }
986
987 static int
988 h8300_register_byte (int regno)
989 {
990 if (regno < 0 || regno >= E_NUM_REGS)
991 internal_error (__FILE__, __LINE__,
992 "h8300_register_byte: illegal register number %d", regno);
993 else
994 return regno * BINWORD;
995 }
996
997 static int
998 h8300_register_raw_size (int regno)
999 {
1000 if (regno < 0 || regno >= E_NUM_REGS)
1001 internal_error (__FILE__, __LINE__,
1002 "h8300_register_raw_size: illegal register number %d",
1003 regno);
1004 else
1005 return BINWORD;
1006 }
1007
1008 static struct type *
1009 h8300_register_virtual_type (int regno)
1010 {
1011 if (regno < 0 || regno >= E_NUM_REGS)
1012 internal_error (__FILE__, __LINE__,
1013 "h8300_register_virtual_type: illegal register number %d",
1014 regno);
1015 else
1016 return h8300hmode ?
1017 builtin_type_unsigned_long : builtin_type_unsigned_short;
1018 }
1019
1020 static void
1021 h8300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1022 {
1023 write_register (0, addr);
1024 }
1025
1026 static int
1027 h8300_use_struct_convention (int gcc_p, struct type *type)
1028 {
1029 return 1;
1030 }
1031
1032 static CORE_ADDR
1033 h8300_extract_struct_value_address (char *regbuf)
1034 {
1035 return extract_address (regbuf + h8300_register_byte (E_ARG0_REGNUM),
1036 h8300_register_raw_size (E_ARG0_REGNUM));
1037 }
1038
1039 const static unsigned char *
1040 h8300_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1041 {
1042 /*static unsigned char breakpoint[] = { 0x7A, 0xFF };*/ /* ??? */
1043 static unsigned char breakpoint[] = { 0x01, 0x80 }; /* Sleep */
1044
1045 *lenptr = sizeof (breakpoint);
1046 return breakpoint;
1047 }
1048
1049 static void
1050 h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1051 struct frame_info *frame, const char *args)
1052 {
1053 fprintf_filtered (file, "\
1054 No floating-point info available for this processor.\n");
1055 }
1056
1057 static struct gdbarch *
1058 h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1059 {
1060 static LONGEST call_dummy_words[1] = { 0 };
1061 struct gdbarch_tdep *tdep = NULL;
1062 struct gdbarch *gdbarch;
1063
1064 arches = gdbarch_list_lookup_by_info (arches, &info);
1065 if (arches != NULL)
1066 return arches->gdbarch;
1067
1068 #if 0
1069 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1070 #endif
1071
1072 if (info.bfd_arch_info->arch != bfd_arch_h8300)
1073 return NULL;
1074
1075 switch (info.bfd_arch_info->mach)
1076 {
1077 case bfd_mach_h8300:
1078 h8300smode = 0;
1079 h8300hmode = 0;
1080 break;
1081 case bfd_mach_h8300h:
1082 h8300smode = 0;
1083 h8300hmode = 1;
1084 break;
1085 case bfd_mach_h8300s:
1086 h8300smode = 1;
1087 h8300hmode = 1;
1088 break;
1089 }
1090
1091 gdbarch = gdbarch_alloc (&info, 0);
1092
1093 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1094 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1095 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1096
1097 /*
1098 * Basic register fields and methods.
1099 */
1100
1101 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
1102 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1103 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1104 set_gdbarch_fp_regnum (gdbarch, E_FP_REGNUM);
1105 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1106 set_gdbarch_register_name (gdbarch, h8300_register_name);
1107 set_gdbarch_register_size (gdbarch, BINWORD);
1108 set_gdbarch_register_bytes (gdbarch, E_NUM_REGS * BINWORD);
1109 set_gdbarch_register_byte (gdbarch, h8300_register_byte);
1110 set_gdbarch_register_raw_size (gdbarch, h8300_register_raw_size);
1111 set_gdbarch_max_register_raw_size (gdbarch, h8300h_reg_size);
1112 set_gdbarch_register_virtual_size (gdbarch, h8300_register_raw_size);
1113 set_gdbarch_max_register_virtual_size (gdbarch, h8300h_reg_size);
1114 set_gdbarch_register_virtual_type (gdbarch, h8300_register_virtual_type);
1115 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
1116 set_gdbarch_print_float_info (gdbarch, h8300_print_float_info);
1117
1118 /*
1119 * Frame Info
1120 */
1121 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, h8300_init_extra_frame_info);
1122 set_gdbarch_frame_init_saved_regs (gdbarch, h8300_frame_init_saved_regs);
1123 set_gdbarch_frame_chain (gdbarch, h8300_frame_chain);
1124 set_gdbarch_saved_pc_after_call (gdbarch, h8300_saved_pc_after_call);
1125 set_gdbarch_frame_saved_pc (gdbarch, h8300_frame_saved_pc);
1126 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1127 set_gdbarch_frame_args_address (gdbarch, h8300_frame_args_address);
1128 set_gdbarch_frame_locals_address (gdbarch, h8300_frame_locals_address);
1129
1130 /*
1131 * Miscelany
1132 */
1133 /* Stack grows up. */
1134 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1135 /* PC stops zero byte after a trap instruction
1136 (which means: exactly on trap instruction). */
1137 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1138 /* This value is almost never non-zero... */
1139 set_gdbarch_function_start_offset (gdbarch, 0);
1140 /* This value is almost never non-zero... */
1141 set_gdbarch_frame_args_skip (gdbarch, 0);
1142 /* OK to default this value to 'unknown'. */
1143 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1144 set_gdbarch_frameless_function_invocation (gdbarch,
1145 frameless_look_for_prologue);
1146
1147 /*
1148 * Call Dummies
1149 *
1150 * These values and methods are used when gdb calls a target function. */
1151 set_gdbarch_push_return_address (gdbarch, h8300_push_return_address);
1152 set_gdbarch_deprecated_extract_return_value (gdbarch, h8300_extract_return_value);
1153 set_gdbarch_push_arguments (gdbarch, h8300_push_arguments);
1154 set_gdbarch_pop_frame (gdbarch, h8300_pop_frame);
1155 set_gdbarch_store_struct_return (gdbarch, h8300_store_struct_return);
1156 set_gdbarch_deprecated_store_return_value (gdbarch, h8300_store_return_value);
1157 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, h8300_extract_struct_value_address);
1158 set_gdbarch_use_struct_convention (gdbarch, h8300_use_struct_convention);
1159 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1160 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1161 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1162 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1163 set_gdbarch_call_dummy_length (gdbarch, 0);
1164 set_gdbarch_call_dummy_p (gdbarch, 1);
1165 set_gdbarch_call_dummy_words (gdbarch, call_dummy_words);
1166 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
1167 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1168 /* set_gdbarch_call_dummy_stack_adjust */
1169 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1170 set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
1171
1172 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1173 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1174 set_gdbarch_ptr_bit (gdbarch, BINWORD * TARGET_CHAR_BIT);
1175 set_gdbarch_addr_bit (gdbarch, BINWORD * TARGET_CHAR_BIT);
1176
1177 /* set_gdbarch_stack_align (gdbarch, SOME_stack_align); */
1178 set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
1179 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1180
1181 return gdbarch;
1182 }
1183
1184 void
1185 _initialize_h8300_tdep (void)
1186 {
1187 tm_print_insn = gdb_print_insn_h8300;
1188 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
1189 }
This page took 0.055563 seconds and 5 git commands to generate.