2005-01-12 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / hppa-hpux-tdep.c
1 /* Target-dependent code for HP-UX on PA-RISC.
2
3 Copyright 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbcore.h"
25 #include "osabi.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "trad-frame.h"
29 #include "symtab.h"
30 #include "objfiles.h"
31 #include "inferior.h"
32 #include "infcall.h"
33 #include "observer.h"
34 #include "hppa-tdep.h"
35 #include "solib-som.h"
36 #include "solib-pa64.h"
37 #include "regset.h"
38 #include "exceptions.h"
39
40 #include "gdb_string.h"
41
42 #include <dl.h>
43 #include <machine/save_state.h>
44
45 #ifndef offsetof
46 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
47 #endif
48
49 #define IS_32BIT_TARGET(_gdbarch) \
50 ((gdbarch_tdep (_gdbarch))->bytes_per_address == 4)
51
52 /* Forward declarations. */
53 extern void _initialize_hppa_hpux_tdep (void);
54 extern initialize_file_ftype _initialize_hppa_hpux_tdep;
55
56 typedef struct
57 {
58 struct minimal_symbol *msym;
59 CORE_ADDR solib_handle;
60 CORE_ADDR return_val;
61 }
62 args_for_find_stub;
63
64 static int
65 in_opd_section (CORE_ADDR pc)
66 {
67 struct obj_section *s;
68 int retval = 0;
69
70 s = find_pc_section (pc);
71
72 retval = (s != NULL
73 && s->the_bfd_section->name != NULL
74 && strcmp (s->the_bfd_section->name, ".opd") == 0);
75 return (retval);
76 }
77
78 /* Return one if PC is in the call path of a trampoline, else return zero.
79
80 Note we return one for *any* call trampoline (long-call, arg-reloc), not
81 just shared library trampolines (import, export). */
82
83 static int
84 hppa32_hpux_in_solib_call_trampoline (CORE_ADDR pc, char *name)
85 {
86 struct minimal_symbol *minsym;
87 struct unwind_table_entry *u;
88
89 /* First see if PC is in one of the two C-library trampolines. */
90 if (pc == hppa_symbol_address("$$dyncall")
91 || pc == hppa_symbol_address("_sr4export"))
92 return 1;
93
94 minsym = lookup_minimal_symbol_by_pc (pc);
95 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
96 return 1;
97
98 /* Get the unwind descriptor corresponding to PC, return zero
99 if no unwind was found. */
100 u = find_unwind_entry (pc);
101 if (!u)
102 return 0;
103
104 /* If this isn't a linker stub, then return now. */
105 if (u->stub_unwind.stub_type == 0)
106 return 0;
107
108 /* By definition a long-branch stub is a call stub. */
109 if (u->stub_unwind.stub_type == LONG_BRANCH)
110 return 1;
111
112 /* The call and return path execute the same instructions within
113 an IMPORT stub! So an IMPORT stub is both a call and return
114 trampoline. */
115 if (u->stub_unwind.stub_type == IMPORT)
116 return 1;
117
118 /* Parameter relocation stubs always have a call path and may have a
119 return path. */
120 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
121 || u->stub_unwind.stub_type == EXPORT)
122 {
123 CORE_ADDR addr;
124
125 /* Search forward from the current PC until we hit a branch
126 or the end of the stub. */
127 for (addr = pc; addr <= u->region_end; addr += 4)
128 {
129 unsigned long insn;
130
131 insn = read_memory_integer (addr, 4);
132
133 /* Does it look like a bl? If so then it's the call path, if
134 we find a bv or be first, then we're on the return path. */
135 if ((insn & 0xfc00e000) == 0xe8000000)
136 return 1;
137 else if ((insn & 0xfc00e001) == 0xe800c000
138 || (insn & 0xfc000000) == 0xe0000000)
139 return 0;
140 }
141
142 /* Should never happen. */
143 warning ("Unable to find branch in parameter relocation stub.\n");
144 return 0;
145 }
146
147 /* Unknown stub type. For now, just return zero. */
148 return 0;
149 }
150
151 static int
152 hppa64_hpux_in_solib_call_trampoline (CORE_ADDR pc, char *name)
153 {
154 /* PA64 has a completely different stub/trampoline scheme. Is it
155 better? Maybe. It's certainly harder to determine with any
156 certainty that we are in a stub because we can not refer to the
157 unwinders to help.
158
159 The heuristic is simple. Try to lookup the current PC value in th
160 minimal symbol table. If that fails, then assume we are not in a
161 stub and return.
162
163 Then see if the PC value falls within the section bounds for the
164 section containing the minimal symbol we found in the first
165 step. If it does, then assume we are not in a stub and return.
166
167 Finally peek at the instructions to see if they look like a stub. */
168 struct minimal_symbol *minsym;
169 asection *sec;
170 CORE_ADDR addr;
171 int insn, i;
172
173 minsym = lookup_minimal_symbol_by_pc (pc);
174 if (! minsym)
175 return 0;
176
177 sec = SYMBOL_BFD_SECTION (minsym);
178
179 if (bfd_get_section_vma (sec->owner, sec) <= pc
180 && pc < (bfd_get_section_vma (sec->owner, sec)
181 + bfd_section_size (sec->owner, sec)))
182 return 0;
183
184 /* We might be in a stub. Peek at the instructions. Stubs are 3
185 instructions long. */
186 insn = read_memory_integer (pc, 4);
187
188 /* Find out where we think we are within the stub. */
189 if ((insn & 0xffffc00e) == 0x53610000)
190 addr = pc;
191 else if ((insn & 0xffffffff) == 0xe820d000)
192 addr = pc - 4;
193 else if ((insn & 0xffffc00e) == 0x537b0000)
194 addr = pc - 8;
195 else
196 return 0;
197
198 /* Now verify each insn in the range looks like a stub instruction. */
199 insn = read_memory_integer (addr, 4);
200 if ((insn & 0xffffc00e) != 0x53610000)
201 return 0;
202
203 /* Now verify each insn in the range looks like a stub instruction. */
204 insn = read_memory_integer (addr + 4, 4);
205 if ((insn & 0xffffffff) != 0xe820d000)
206 return 0;
207
208 /* Now verify each insn in the range looks like a stub instruction. */
209 insn = read_memory_integer (addr + 8, 4);
210 if ((insn & 0xffffc00e) != 0x537b0000)
211 return 0;
212
213 /* Looks like a stub. */
214 return 1;
215 }
216
217 /* Return one if PC is in the return path of a trampoline, else return zero.
218
219 Note we return one for *any* call trampoline (long-call, arg-reloc), not
220 just shared library trampolines (import, export). */
221
222 static int
223 hppa_hpux_in_solib_return_trampoline (CORE_ADDR pc, char *name)
224 {
225 struct unwind_table_entry *u;
226
227 /* Get the unwind descriptor corresponding to PC, return zero
228 if no unwind was found. */
229 u = find_unwind_entry (pc);
230 if (!u)
231 return 0;
232
233 /* If this isn't a linker stub or it's just a long branch stub, then
234 return zero. */
235 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
236 return 0;
237
238 /* The call and return path execute the same instructions within
239 an IMPORT stub! So an IMPORT stub is both a call and return
240 trampoline. */
241 if (u->stub_unwind.stub_type == IMPORT)
242 return 1;
243
244 /* Parameter relocation stubs always have a call path and may have a
245 return path. */
246 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
247 || u->stub_unwind.stub_type == EXPORT)
248 {
249 CORE_ADDR addr;
250
251 /* Search forward from the current PC until we hit a branch
252 or the end of the stub. */
253 for (addr = pc; addr <= u->region_end; addr += 4)
254 {
255 unsigned long insn;
256
257 insn = read_memory_integer (addr, 4);
258
259 /* Does it look like a bl? If so then it's the call path, if
260 we find a bv or be first, then we're on the return path. */
261 if ((insn & 0xfc00e000) == 0xe8000000)
262 return 0;
263 else if ((insn & 0xfc00e001) == 0xe800c000
264 || (insn & 0xfc000000) == 0xe0000000)
265 return 1;
266 }
267
268 /* Should never happen. */
269 warning ("Unable to find branch in parameter relocation stub.\n");
270 return 0;
271 }
272
273 /* Unknown stub type. For now, just return zero. */
274 return 0;
275
276 }
277
278 /* Figure out if PC is in a trampoline, and if so find out where
279 the trampoline will jump to. If not in a trampoline, return zero.
280
281 Simple code examination probably is not a good idea since the code
282 sequences in trampolines can also appear in user code.
283
284 We use unwinds and information from the minimal symbol table to
285 determine when we're in a trampoline. This won't work for ELF
286 (yet) since it doesn't create stub unwind entries. Whether or
287 not ELF will create stub unwinds or normal unwinds for linker
288 stubs is still being debated.
289
290 This should handle simple calls through dyncall or sr4export,
291 long calls, argument relocation stubs, and dyncall/sr4export
292 calling an argument relocation stub. It even handles some stubs
293 used in dynamic executables. */
294
295 static CORE_ADDR
296 hppa_hpux_skip_trampoline_code (CORE_ADDR pc)
297 {
298 long orig_pc = pc;
299 long prev_inst, curr_inst, loc;
300 struct minimal_symbol *msym;
301 struct unwind_table_entry *u;
302
303 /* Addresses passed to dyncall may *NOT* be the actual address
304 of the function. So we may have to do something special. */
305 if (pc == hppa_symbol_address("$$dyncall"))
306 {
307 pc = (CORE_ADDR) read_register (22);
308
309 /* If bit 30 (counting from the left) is on, then pc is the address of
310 the PLT entry for this function, not the address of the function
311 itself. Bit 31 has meaning too, but only for MPE. */
312 if (pc & 0x2)
313 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
314 }
315 if (pc == hppa_symbol_address("$$dyncall_external"))
316 {
317 pc = (CORE_ADDR) read_register (22);
318 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
319 }
320 else if (pc == hppa_symbol_address("_sr4export"))
321 pc = (CORE_ADDR) (read_register (22));
322
323 /* Get the unwind descriptor corresponding to PC, return zero
324 if no unwind was found. */
325 u = find_unwind_entry (pc);
326 if (!u)
327 return 0;
328
329 /* If this isn't a linker stub, then return now. */
330 /* elz: attention here! (FIXME) because of a compiler/linker
331 error, some stubs which should have a non zero stub_unwind.stub_type
332 have unfortunately a value of zero. So this function would return here
333 as if we were not in a trampoline. To fix this, we go look at the partial
334 symbol information, which reports this guy as a stub.
335 (FIXME): Unfortunately, we are not that lucky: it turns out that the
336 partial symbol information is also wrong sometimes. This is because
337 when it is entered (somread.c::som_symtab_read()) it can happen that
338 if the type of the symbol (from the som) is Entry, and the symbol is
339 in a shared library, then it can also be a trampoline. This would
340 be OK, except that I believe the way they decide if we are ina shared library
341 does not work. SOOOO..., even if we have a regular function w/o trampolines
342 its minimal symbol can be assigned type mst_solib_trampoline.
343 Also, if we find that the symbol is a real stub, then we fix the unwind
344 descriptor, and define the stub type to be EXPORT.
345 Hopefully this is correct most of the times. */
346 if (u->stub_unwind.stub_type == 0)
347 {
348
349 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
350 we can delete all the code which appears between the lines */
351 /*--------------------------------------------------------------------------*/
352 msym = lookup_minimal_symbol_by_pc (pc);
353
354 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
355 return orig_pc == pc ? 0 : pc & ~0x3;
356
357 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
358 {
359 struct objfile *objfile;
360 struct minimal_symbol *msymbol;
361 int function_found = 0;
362
363 /* go look if there is another minimal symbol with the same name as
364 this one, but with type mst_text. This would happen if the msym
365 is an actual trampoline, in which case there would be another
366 symbol with the same name corresponding to the real function */
367
368 ALL_MSYMBOLS (objfile, msymbol)
369 {
370 if (MSYMBOL_TYPE (msymbol) == mst_text
371 && DEPRECATED_STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
372 {
373 function_found = 1;
374 break;
375 }
376 }
377
378 if (function_found)
379 /* the type of msym is correct (mst_solib_trampoline), but
380 the unwind info is wrong, so set it to the correct value */
381 u->stub_unwind.stub_type = EXPORT;
382 else
383 /* the stub type info in the unwind is correct (this is not a
384 trampoline), but the msym type information is wrong, it
385 should be mst_text. So we need to fix the msym, and also
386 get out of this function */
387 {
388 MSYMBOL_TYPE (msym) = mst_text;
389 return orig_pc == pc ? 0 : pc & ~0x3;
390 }
391 }
392
393 /*--------------------------------------------------------------------------*/
394 }
395
396 /* It's a stub. Search for a branch and figure out where it goes.
397 Note we have to handle multi insn branch sequences like ldil;ble.
398 Most (all?) other branches can be determined by examining the contents
399 of certain registers and the stack. */
400
401 loc = pc;
402 curr_inst = 0;
403 prev_inst = 0;
404 while (1)
405 {
406 /* Make sure we haven't walked outside the range of this stub. */
407 if (u != find_unwind_entry (loc))
408 {
409 warning ("Unable to find branch in linker stub");
410 return orig_pc == pc ? 0 : pc & ~0x3;
411 }
412
413 prev_inst = curr_inst;
414 curr_inst = read_memory_integer (loc, 4);
415
416 /* Does it look like a branch external using %r1? Then it's the
417 branch from the stub to the actual function. */
418 if ((curr_inst & 0xffe0e000) == 0xe0202000)
419 {
420 /* Yup. See if the previous instruction loaded
421 a value into %r1. If so compute and return the jump address. */
422 if ((prev_inst & 0xffe00000) == 0x20200000)
423 return (hppa_extract_21 (prev_inst) + hppa_extract_17 (curr_inst)) & ~0x3;
424 else
425 {
426 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
427 return orig_pc == pc ? 0 : pc & ~0x3;
428 }
429 }
430
431 /* Does it look like a be 0(sr0,%r21)? OR
432 Does it look like a be, n 0(sr0,%r21)? OR
433 Does it look like a bve (r21)? (this is on PA2.0)
434 Does it look like a bve, n(r21)? (this is also on PA2.0)
435 That's the branch from an
436 import stub to an export stub.
437
438 It is impossible to determine the target of the branch via
439 simple examination of instructions and/or data (consider
440 that the address in the plabel may be the address of the
441 bind-on-reference routine in the dynamic loader).
442
443 So we have try an alternative approach.
444
445 Get the name of the symbol at our current location; it should
446 be a stub symbol with the same name as the symbol in the
447 shared library.
448
449 Then lookup a minimal symbol with the same name; we should
450 get the minimal symbol for the target routine in the shared
451 library as those take precedence of import/export stubs. */
452 if ((curr_inst == 0xe2a00000) ||
453 (curr_inst == 0xe2a00002) ||
454 (curr_inst == 0xeaa0d000) ||
455 (curr_inst == 0xeaa0d002))
456 {
457 struct minimal_symbol *stubsym, *libsym;
458
459 stubsym = lookup_minimal_symbol_by_pc (loc);
460 if (stubsym == NULL)
461 {
462 warning ("Unable to find symbol for 0x%lx", loc);
463 return orig_pc == pc ? 0 : pc & ~0x3;
464 }
465
466 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
467 if (libsym == NULL)
468 {
469 warning ("Unable to find library symbol for %s\n",
470 DEPRECATED_SYMBOL_NAME (stubsym));
471 return orig_pc == pc ? 0 : pc & ~0x3;
472 }
473
474 return SYMBOL_VALUE (libsym);
475 }
476
477 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
478 branch from the stub to the actual function. */
479 /*elz */
480 else if ((curr_inst & 0xffe0e000) == 0xe8400000
481 || (curr_inst & 0xffe0e000) == 0xe8000000
482 || (curr_inst & 0xffe0e000) == 0xe800A000)
483 return (loc + hppa_extract_17 (curr_inst) + 8) & ~0x3;
484
485 /* Does it look like bv (rp)? Note this depends on the
486 current stack pointer being the same as the stack
487 pointer in the stub itself! This is a branch on from the
488 stub back to the original caller. */
489 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
490 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
491 {
492 /* Yup. See if the previous instruction loaded
493 rp from sp - 8. */
494 if (prev_inst == 0x4bc23ff1)
495 return (read_memory_integer
496 (read_register (HPPA_SP_REGNUM) - 8, 4)) & ~0x3;
497 else
498 {
499 warning ("Unable to find restore of %%rp before bv (%%rp).");
500 return orig_pc == pc ? 0 : pc & ~0x3;
501 }
502 }
503
504 /* elz: added this case to capture the new instruction
505 at the end of the return part of an export stub used by
506 the PA2.0: BVE, n (rp) */
507 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
508 {
509 return (read_memory_integer
510 (read_register (HPPA_SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
511 }
512
513 /* What about be,n 0(sr0,%rp)? It's just another way we return to
514 the original caller from the stub. Used in dynamic executables. */
515 else if (curr_inst == 0xe0400002)
516 {
517 /* The value we jump to is sitting in sp - 24. But that's
518 loaded several instructions before the be instruction.
519 I guess we could check for the previous instruction being
520 mtsp %r1,%sr0 if we want to do sanity checking. */
521 return (read_memory_integer
522 (read_register (HPPA_SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
523 }
524
525 /* Haven't found the branch yet, but we're still in the stub.
526 Keep looking. */
527 loc += 4;
528 }
529 }
530
531 void
532 hppa_skip_permanent_breakpoint (void)
533 {
534 /* To step over a breakpoint instruction on the PA takes some
535 fiddling with the instruction address queue.
536
537 When we stop at a breakpoint, the IA queue front (the instruction
538 we're executing now) points at the breakpoint instruction, and
539 the IA queue back (the next instruction to execute) points to
540 whatever instruction we would execute after the breakpoint, if it
541 were an ordinary instruction. This is the case even if the
542 breakpoint is in the delay slot of a branch instruction.
543
544 Clearly, to step past the breakpoint, we need to set the queue
545 front to the back. But what do we put in the back? What
546 instruction comes after that one? Because of the branch delay
547 slot, the next insn is always at the back + 4. */
548 write_register (HPPA_PCOQ_HEAD_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM));
549 write_register (HPPA_PCSQ_HEAD_REGNUM, read_register (HPPA_PCSQ_TAIL_REGNUM));
550
551 write_register (HPPA_PCOQ_TAIL_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM) + 4);
552 /* We can leave the tail's space the same, since there's no jump. */
553 }
554
555 /* Exception handling support for the HP-UX ANSI C++ compiler.
556 The compiler (aCC) provides a callback for exception events;
557 GDB can set a breakpoint on this callback and find out what
558 exception event has occurred. */
559
560 /* The name of the hook to be set to point to the callback function */
561 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
562 /* The name of the function to be used to set the hook value */
563 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
564 /* The name of the callback function in end.o */
565 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
566 /* Name of function in end.o on which a break is set (called by above) */
567 static char HP_ACC_EH_break[] = "__d_eh_break";
568 /* Name of flag (in end.o) that enables catching throws */
569 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
570 /* Name of flag (in end.o) that enables catching catching */
571 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
572 /* The enum used by aCC */
573 typedef enum
574 {
575 __EH_NOTIFY_THROW,
576 __EH_NOTIFY_CATCH
577 }
578 __eh_notification;
579
580 /* Is exception-handling support available with this executable? */
581 static int hp_cxx_exception_support = 0;
582 /* Has the initialize function been run? */
583 static int hp_cxx_exception_support_initialized = 0;
584 /* Address of __eh_notify_hook */
585 static CORE_ADDR eh_notify_hook_addr = 0;
586 /* Address of __d_eh_notify_callback */
587 static CORE_ADDR eh_notify_callback_addr = 0;
588 /* Address of __d_eh_break */
589 static CORE_ADDR eh_break_addr = 0;
590 /* Address of __d_eh_catch_catch */
591 static CORE_ADDR eh_catch_catch_addr = 0;
592 /* Address of __d_eh_catch_throw */
593 static CORE_ADDR eh_catch_throw_addr = 0;
594 /* Sal for __d_eh_break */
595 static struct symtab_and_line *break_callback_sal = 0;
596
597 /* Code in end.c expects __d_pid to be set in the inferior,
598 otherwise __d_eh_notify_callback doesn't bother to call
599 __d_eh_break! So we poke the pid into this symbol
600 ourselves.
601 0 => success
602 1 => failure */
603 static int
604 setup_d_pid_in_inferior (void)
605 {
606 CORE_ADDR anaddr;
607 struct minimal_symbol *msymbol;
608 char buf[4]; /* FIXME 32x64? */
609
610 /* Slam the pid of the process into __d_pid; failing is only a warning! */
611 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
612 if (msymbol == NULL)
613 {
614 warning ("Unable to find __d_pid symbol in object file.");
615 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
616 return 1;
617 }
618
619 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
620 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
621 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
622 {
623 warning ("Unable to write __d_pid");
624 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
625 return 1;
626 }
627 return 0;
628 }
629
630 /* elz: Used to lookup a symbol in the shared libraries.
631 This function calls shl_findsym, indirectly through a
632 call to __d_shl_get. __d_shl_get is in end.c, which is always
633 linked in by the hp compilers/linkers.
634 The call to shl_findsym cannot be made directly because it needs
635 to be active in target address space.
636 inputs: - minimal symbol pointer for the function we want to look up
637 - address in target space of the descriptor for the library
638 where we want to look the symbol up.
639 This address is retrieved using the
640 som_solib_get_solib_by_pc function (somsolib.c).
641 output: - real address in the library of the function.
642 note: the handle can be null, in which case shl_findsym will look for
643 the symbol in all the loaded shared libraries.
644 files to look at if you need reference on this stuff:
645 dld.c, dld_shl_findsym.c
646 end.c
647 man entry for shl_findsym */
648
649 static CORE_ADDR
650 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
651 {
652 struct symbol *get_sym, *symbol2;
653 struct minimal_symbol *buff_minsym, *msymbol;
654 struct type *ftype;
655 struct value **args;
656 struct value *funcval;
657 struct value *val;
658
659 int x, namelen, err_value, tmp = -1;
660 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
661 CORE_ADDR stub_addr;
662
663
664 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
665 funcval = find_function_in_inferior ("__d_shl_get");
666 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL);
667 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
668 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
669 symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL);
670 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
671 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
672 value_return_addr = endo_buff_addr + namelen;
673 ftype = check_typedef (SYMBOL_TYPE (get_sym));
674
675 /* do alignment */
676 if ((x = value_return_addr % 64) != 0)
677 value_return_addr = value_return_addr + 64 - x;
678
679 errno_return_addr = value_return_addr + 64;
680
681
682 /* set up stuff needed by __d_shl_get in buffer in end.o */
683
684 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
685
686 target_write_memory (value_return_addr, (char *) &tmp, 4);
687
688 target_write_memory (errno_return_addr, (char *) &tmp, 4);
689
690 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
691 (char *) &handle, 4);
692
693 /* now prepare the arguments for the call */
694
695 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
696 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
697 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
698 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
699 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
700 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
701
702 /* now call the function */
703
704 val = call_function_by_hand (funcval, 6, args);
705
706 /* now get the results */
707
708 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
709
710 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
711 if (stub_addr <= 0)
712 error ("call to __d_shl_get failed, error code is %d", err_value);
713
714 return (stub_addr);
715 }
716
717 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
718 static int
719 cover_find_stub_with_shl_get (void *args_untyped)
720 {
721 args_for_find_stub *args = args_untyped;
722 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
723 return 0;
724 }
725
726 /* Initialize exception catchpoint support by looking for the
727 necessary hooks/callbacks in end.o, etc., and set the hook value to
728 point to the required debug function
729
730 Return 0 => failure
731 1 => success */
732
733 static int
734 initialize_hp_cxx_exception_support (void)
735 {
736 struct symtabs_and_lines sals;
737 struct cleanup *old_chain;
738 struct cleanup *canonical_strings_chain = NULL;
739 int i;
740 char *addr_start;
741 char *addr_end = NULL;
742 char **canonical = (char **) NULL;
743 int thread = -1;
744 struct symbol *sym = NULL;
745 struct minimal_symbol *msym = NULL;
746 struct objfile *objfile;
747 asection *shlib_info;
748
749 /* Detect and disallow recursion. On HP-UX with aCC, infinite
750 recursion is a possibility because finding the hook for exception
751 callbacks involves making a call in the inferior, which means
752 re-inserting breakpoints which can re-invoke this code */
753
754 static int recurse = 0;
755 if (recurse > 0)
756 {
757 hp_cxx_exception_support_initialized = 0;
758 deprecated_exception_support_initialized = 0;
759 return 0;
760 }
761
762 hp_cxx_exception_support = 0;
763
764 /* First check if we have seen any HP compiled objects; if not,
765 it is very unlikely that HP's idiosyncratic callback mechanism
766 for exception handling debug support will be available!
767 This will percolate back up to breakpoint.c, where our callers
768 will decide to try the g++ exception-handling support instead. */
769 if (!deprecated_hp_som_som_object_present)
770 return 0;
771
772 /* We have a SOM executable with SOM debug info; find the hooks */
773
774 /* First look for the notify hook provided by aCC runtime libs */
775 /* If we find this symbol, we conclude that the executable must
776 have HP aCC exception support built in. If this symbol is not
777 found, even though we're a HP SOM-SOM file, we may have been
778 built with some other compiler (not aCC). This results percolates
779 back up to our callers in breakpoint.c which can decide to
780 try the g++ style of exception support instead.
781 If this symbol is found but the other symbols we require are
782 not found, there is something weird going on, and g++ support
783 should *not* be tried as an alternative.
784
785 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
786 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
787
788 /* libCsup has this hook; it'll usually be non-debuggable */
789 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
790 if (msym)
791 {
792 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
793 hp_cxx_exception_support = 1;
794 }
795 else
796 {
797 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
798 warning ("Executable may not have been compiled debuggable with HP aCC.");
799 warning ("GDB will be unable to intercept exception events.");
800 eh_notify_hook_addr = 0;
801 hp_cxx_exception_support = 0;
802 return 0;
803 }
804
805 /* Next look for the notify callback routine in end.o */
806 /* This is always available in the SOM symbol dictionary if end.o is linked in */
807 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
808 if (msym)
809 {
810 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
811 hp_cxx_exception_support = 1;
812 }
813 else
814 {
815 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
816 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
817 warning ("GDB will be unable to intercept exception events.");
818 eh_notify_callback_addr = 0;
819 return 0;
820 }
821
822 #ifndef GDB_TARGET_IS_HPPA_20W
823 /* Check whether the executable is dynamically linked or archive bound */
824 /* With an archive-bound executable we can use the raw addresses we find
825 for the callback function, etc. without modification. For an executable
826 with shared libraries, we have to do more work to find the plabel, which
827 can be the target of a call through $$dyncall from the aCC runtime support
828 library (libCsup) which is linked shared by default by aCC. */
829 /* This test below was copied from somsolib.c/somread.c. It may not be a very
830 reliable one to test that an executable is linked shared. pai/1997-07-18 */
831 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
832 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
833 {
834 /* The minsym we have has the local code address, but that's not the
835 plabel that can be used by an inter-load-module call. */
836 /* Find solib handle for main image (which has end.o), and use that
837 and the min sym as arguments to __d_shl_get() (which does the equivalent
838 of shl_findsym()) to find the plabel. */
839
840 args_for_find_stub args;
841 static char message[] = "Error while finding exception callback hook:\n";
842
843 args.solib_handle = gdbarch_tdep (current_gdbarch)->solib_get_solib_by_pc (eh_notify_callback_addr);
844 args.msym = msym;
845 args.return_val = 0;
846
847 recurse++;
848 catch_errors (cover_find_stub_with_shl_get, &args, message,
849 RETURN_MASK_ALL);
850 eh_notify_callback_addr = args.return_val;
851 recurse--;
852
853 deprecated_exception_catchpoints_are_fragile = 1;
854
855 if (!eh_notify_callback_addr)
856 {
857 /* We can get here either if there is no plabel in the export list
858 for the main image, or if something strange happened (?) */
859 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
860 warning ("GDB will not be able to intercept exception events.");
861 return 0;
862 }
863 }
864 else
865 deprecated_exception_catchpoints_are_fragile = 0;
866 #endif
867
868 /* Now, look for the breakpointable routine in end.o */
869 /* This should also be available in the SOM symbol dict. if end.o linked in */
870 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
871 if (msym)
872 {
873 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
874 hp_cxx_exception_support = 1;
875 }
876 else
877 {
878 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
879 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
880 warning ("GDB will be unable to intercept exception events.");
881 eh_break_addr = 0;
882 return 0;
883 }
884
885 /* Next look for the catch enable flag provided in end.o */
886 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
887 VAR_DOMAIN, 0, (struct symtab **) NULL);
888 if (sym) /* sometimes present in debug info */
889 {
890 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
891 hp_cxx_exception_support = 1;
892 }
893 else
894 /* otherwise look in SOM symbol dict. */
895 {
896 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
897 if (msym)
898 {
899 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
900 hp_cxx_exception_support = 1;
901 }
902 else
903 {
904 warning ("Unable to enable interception of exception catches.");
905 warning ("Executable may not have been compiled debuggable with HP aCC.");
906 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
907 return 0;
908 }
909 }
910
911 /* Next look for the catch enable flag provided end.o */
912 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
913 VAR_DOMAIN, 0, (struct symtab **) NULL);
914 if (sym) /* sometimes present in debug info */
915 {
916 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
917 hp_cxx_exception_support = 1;
918 }
919 else
920 /* otherwise look in SOM symbol dict. */
921 {
922 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
923 if (msym)
924 {
925 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
926 hp_cxx_exception_support = 1;
927 }
928 else
929 {
930 warning ("Unable to enable interception of exception throws.");
931 warning ("Executable may not have been compiled debuggable with HP aCC.");
932 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
933 return 0;
934 }
935 }
936
937 /* Set the flags */
938 hp_cxx_exception_support = 2; /* everything worked so far */
939 hp_cxx_exception_support_initialized = 1;
940 deprecated_exception_support_initialized = 1;
941
942 return 1;
943 }
944
945 /* Target operation for enabling or disabling interception of
946 exception events.
947 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
948 ENABLE is either 0 (disable) or 1 (enable).
949 Return value is NULL if no support found;
950 -1 if something went wrong,
951 or a pointer to a symtab/line struct if the breakpointable
952 address was found. */
953
954 struct symtab_and_line *
955 child_enable_exception_callback (enum exception_event_kind kind, int enable)
956 {
957 char buf[4];
958
959 if (!deprecated_exception_support_initialized
960 || !hp_cxx_exception_support_initialized)
961 if (!initialize_hp_cxx_exception_support ())
962 return NULL;
963
964 switch (hp_cxx_exception_support)
965 {
966 case 0:
967 /* Assuming no HP support at all */
968 return NULL;
969 case 1:
970 /* HP support should be present, but something went wrong */
971 return (struct symtab_and_line *) -1; /* yuck! */
972 /* there may be other cases in the future */
973 }
974
975 /* Set the EH hook to point to the callback routine */
976 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
977 /* pai: (temp) FIXME should there be a pack operation first? */
978 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
979 {
980 warning ("Could not write to target memory for exception event callback.");
981 warning ("Interception of exception events may not work.");
982 return (struct symtab_and_line *) -1;
983 }
984 if (enable)
985 {
986 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
987 if (PIDGET (inferior_ptid) > 0)
988 {
989 if (setup_d_pid_in_inferior ())
990 return (struct symtab_and_line *) -1;
991 }
992 else
993 {
994 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
995 return (struct symtab_and_line *) -1;
996 }
997 }
998
999 switch (kind)
1000 {
1001 case EX_EVENT_THROW:
1002 store_unsigned_integer (buf, 4, enable ? 1 : 0);
1003 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
1004 {
1005 warning ("Couldn't enable exception throw interception.");
1006 return (struct symtab_and_line *) -1;
1007 }
1008 break;
1009 case EX_EVENT_CATCH:
1010 store_unsigned_integer (buf, 4, enable ? 1 : 0);
1011 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
1012 {
1013 warning ("Couldn't enable exception catch interception.");
1014 return (struct symtab_and_line *) -1;
1015 }
1016 break;
1017 default:
1018 error ("Request to enable unknown or unsupported exception event.");
1019 }
1020
1021 /* Copy break address into new sal struct, malloc'ing if needed. */
1022 if (!break_callback_sal)
1023 break_callback_sal = XMALLOC (struct symtab_and_line);
1024 init_sal (break_callback_sal);
1025 break_callback_sal->symtab = NULL;
1026 break_callback_sal->pc = eh_break_addr;
1027 break_callback_sal->line = 0;
1028 break_callback_sal->end = eh_break_addr;
1029
1030 return break_callback_sal;
1031 }
1032
1033 /* Record some information about the current exception event */
1034 static struct exception_event_record current_ex_event;
1035 /* Convenience struct */
1036 static struct symtab_and_line null_symtab_and_line =
1037 {NULL, 0, 0, 0};
1038
1039 /* Report current exception event. Returns a pointer to a record
1040 that describes the kind of the event, where it was thrown from,
1041 and where it will be caught. More information may be reported
1042 in the future */
1043 struct exception_event_record *
1044 child_get_current_exception_event (void)
1045 {
1046 CORE_ADDR event_kind;
1047 CORE_ADDR throw_addr;
1048 CORE_ADDR catch_addr;
1049 struct frame_info *fi, *curr_frame;
1050 int level = 1;
1051
1052 curr_frame = get_current_frame ();
1053 if (!curr_frame)
1054 return (struct exception_event_record *) NULL;
1055
1056 /* Go up one frame to __d_eh_notify_callback, because at the
1057 point when this code is executed, there's garbage in the
1058 arguments of __d_eh_break. */
1059 fi = find_relative_frame (curr_frame, &level);
1060 if (level != 0)
1061 return (struct exception_event_record *) NULL;
1062
1063 select_frame (fi);
1064
1065 /* Read in the arguments */
1066 /* __d_eh_notify_callback() is called with 3 arguments:
1067 1. event kind catch or throw
1068 2. the target address if known
1069 3. a flag -- not sure what this is. pai/1997-07-17 */
1070 event_kind = read_register (HPPA_ARG0_REGNUM);
1071 catch_addr = read_register (HPPA_ARG1_REGNUM);
1072
1073 /* Now go down to a user frame */
1074 /* For a throw, __d_eh_break is called by
1075 __d_eh_notify_callback which is called by
1076 __notify_throw which is called
1077 from user code.
1078 For a catch, __d_eh_break is called by
1079 __d_eh_notify_callback which is called by
1080 <stackwalking stuff> which is called by
1081 __throw__<stuff> or __rethrow_<stuff> which is called
1082 from user code. */
1083 /* FIXME: Don't use such magic numbers; search for the frames */
1084 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
1085 fi = find_relative_frame (curr_frame, &level);
1086 if (level != 0)
1087 return (struct exception_event_record *) NULL;
1088
1089 select_frame (fi);
1090 throw_addr = get_frame_pc (fi);
1091
1092 /* Go back to original (top) frame */
1093 select_frame (curr_frame);
1094
1095 current_ex_event.kind = (enum exception_event_kind) event_kind;
1096 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
1097 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
1098
1099 return &current_ex_event;
1100 }
1101
1102 /* Signal frames. */
1103 struct hppa_hpux_sigtramp_unwind_cache
1104 {
1105 CORE_ADDR base;
1106 struct trad_frame_saved_reg *saved_regs;
1107 };
1108
1109 static int hppa_hpux_tramp_reg[] = {
1110 HPPA_SAR_REGNUM,
1111 HPPA_PCOQ_HEAD_REGNUM,
1112 HPPA_PCSQ_HEAD_REGNUM,
1113 HPPA_PCOQ_TAIL_REGNUM,
1114 HPPA_PCSQ_TAIL_REGNUM,
1115 HPPA_EIEM_REGNUM,
1116 HPPA_IIR_REGNUM,
1117 HPPA_ISR_REGNUM,
1118 HPPA_IOR_REGNUM,
1119 HPPA_IPSW_REGNUM,
1120 -1,
1121 HPPA_SR4_REGNUM,
1122 HPPA_SR4_REGNUM + 1,
1123 HPPA_SR4_REGNUM + 2,
1124 HPPA_SR4_REGNUM + 3,
1125 HPPA_SR4_REGNUM + 4,
1126 HPPA_SR4_REGNUM + 5,
1127 HPPA_SR4_REGNUM + 6,
1128 HPPA_SR4_REGNUM + 7,
1129 HPPA_RCR_REGNUM,
1130 HPPA_PID0_REGNUM,
1131 HPPA_PID1_REGNUM,
1132 HPPA_CCR_REGNUM,
1133 HPPA_PID2_REGNUM,
1134 HPPA_PID3_REGNUM,
1135 HPPA_TR0_REGNUM,
1136 HPPA_TR0_REGNUM + 1,
1137 HPPA_TR0_REGNUM + 2,
1138 HPPA_CR27_REGNUM
1139 };
1140
1141 static struct hppa_hpux_sigtramp_unwind_cache *
1142 hppa_hpux_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
1143 void **this_cache)
1144
1145 {
1146 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1148 struct hppa_hpux_sigtramp_unwind_cache *info;
1149 unsigned int flag;
1150 CORE_ADDR sp, scptr;
1151 int i, incr, off, szoff;
1152
1153 if (*this_cache)
1154 return *this_cache;
1155
1156 info = FRAME_OBSTACK_ZALLOC (struct hppa_hpux_sigtramp_unwind_cache);
1157 *this_cache = info;
1158 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1159
1160 sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
1161
1162 scptr = sp - 1352;
1163 off = scptr;
1164
1165 /* See /usr/include/machine/save_state.h for the structure of the save_state_t
1166 structure. */
1167
1168 flag = read_memory_unsigned_integer(scptr, 4);
1169
1170 if (!(flag & 0x40))
1171 {
1172 /* Narrow registers. */
1173 off = scptr + offsetof (save_state_t, ss_narrow);
1174 incr = 4;
1175 szoff = 0;
1176 }
1177 else
1178 {
1179 /* Wide registers. */
1180 off = scptr + offsetof (save_state_t, ss_wide) + 8;
1181 incr = 8;
1182 szoff = (tdep->bytes_per_address == 4 ? 4 : 0);
1183 }
1184
1185 for (i = 1; i < 32; i++)
1186 {
1187 info->saved_regs[HPPA_R0_REGNUM + i].addr = off + szoff;
1188 off += incr;
1189 }
1190
1191 for (i = 0; i < ARRAY_SIZE (hppa_hpux_tramp_reg); i++)
1192 {
1193 if (hppa_hpux_tramp_reg[i] > 0)
1194 info->saved_regs[hppa_hpux_tramp_reg[i]].addr = off + szoff;
1195 off += incr;
1196 }
1197
1198 /* TODO: fp regs */
1199
1200 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
1201
1202 return info;
1203 }
1204
1205 static void
1206 hppa_hpux_sigtramp_frame_this_id (struct frame_info *next_frame,
1207 void **this_prologue_cache,
1208 struct frame_id *this_id)
1209 {
1210 struct hppa_hpux_sigtramp_unwind_cache *info
1211 = hppa_hpux_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
1212 *this_id = frame_id_build (info->base, frame_pc_unwind (next_frame));
1213 }
1214
1215 static void
1216 hppa_hpux_sigtramp_frame_prev_register (struct frame_info *next_frame,
1217 void **this_prologue_cache,
1218 int regnum, int *optimizedp,
1219 enum lval_type *lvalp,
1220 CORE_ADDR *addrp,
1221 int *realnump, void *valuep)
1222 {
1223 struct hppa_hpux_sigtramp_unwind_cache *info
1224 = hppa_hpux_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
1225 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
1226 optimizedp, lvalp, addrp, realnump, valuep);
1227 }
1228
1229 static const struct frame_unwind hppa_hpux_sigtramp_frame_unwind = {
1230 SIGTRAMP_FRAME,
1231 hppa_hpux_sigtramp_frame_this_id,
1232 hppa_hpux_sigtramp_frame_prev_register
1233 };
1234
1235 static const struct frame_unwind *
1236 hppa_hpux_sigtramp_unwind_sniffer (struct frame_info *next_frame)
1237 {
1238 CORE_ADDR pc = frame_pc_unwind (next_frame);
1239 char *name;
1240
1241 find_pc_partial_function (pc, &name, NULL, NULL);
1242
1243 if (name && strcmp(name, "_sigreturn") == 0)
1244 return &hppa_hpux_sigtramp_frame_unwind;
1245
1246 return NULL;
1247 }
1248
1249 static CORE_ADDR
1250 hppa32_hpux_find_global_pointer (struct value *function)
1251 {
1252 CORE_ADDR faddr;
1253
1254 faddr = value_as_address (function);
1255
1256 /* Is this a plabel? If so, dereference it to get the gp value. */
1257 if (faddr & 2)
1258 {
1259 int status;
1260 char buf[4];
1261
1262 faddr &= ~3;
1263
1264 status = target_read_memory (faddr + 4, buf, sizeof (buf));
1265 if (status == 0)
1266 return extract_unsigned_integer (buf, sizeof (buf));
1267 }
1268
1269 return gdbarch_tdep (current_gdbarch)->solib_get_got_by_pc (faddr);
1270 }
1271
1272 static CORE_ADDR
1273 hppa64_hpux_find_global_pointer (struct value *function)
1274 {
1275 CORE_ADDR faddr;
1276 char buf[32];
1277
1278 faddr = value_as_address (function);
1279
1280 if (in_opd_section (faddr))
1281 {
1282 target_read_memory (faddr, buf, sizeof (buf));
1283 return extract_unsigned_integer (&buf[24], 8);
1284 }
1285 else
1286 {
1287 return gdbarch_tdep (current_gdbarch)->solib_get_got_by_pc (faddr);
1288 }
1289 }
1290
1291 static unsigned int ldsid_pattern[] = {
1292 0x000010a0, /* ldsid (rX),rY */
1293 0x00001820, /* mtsp rY,sr0 */
1294 0xe0000000 /* be,n (sr0,rX) */
1295 };
1296
1297 static CORE_ADDR
1298 hppa_hpux_search_pattern (CORE_ADDR start, CORE_ADDR end,
1299 unsigned int *patterns, int count)
1300 {
1301 unsigned int *buf;
1302 int offset, i;
1303 int region, insns;
1304
1305 region = end - start + 4;
1306 insns = region / 4;
1307 buf = (unsigned int *) alloca (region);
1308
1309 read_memory (start, (char *) buf, region);
1310
1311 for (i = 0; i < insns; i++)
1312 buf[i] = extract_unsigned_integer (&buf[i], 4);
1313
1314 for (offset = 0; offset <= insns - count; offset++)
1315 {
1316 for (i = 0; i < count; i++)
1317 {
1318 if ((buf[offset + i] & patterns[i]) != patterns[i])
1319 break;
1320 }
1321 if (i == count)
1322 break;
1323 }
1324
1325 if (offset <= insns - count)
1326 return start + offset * 4;
1327 else
1328 return 0;
1329 }
1330
1331 static CORE_ADDR
1332 hppa32_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc,
1333 int *argreg)
1334 {
1335 struct objfile *obj;
1336 struct obj_section *sec;
1337 struct hppa_objfile_private *priv;
1338 struct frame_info *frame;
1339 struct unwind_table_entry *u;
1340 CORE_ADDR addr, rp;
1341 char buf[4];
1342 unsigned int insn;
1343
1344 sec = find_pc_section (pc);
1345 obj = sec->objfile;
1346 priv = objfile_data (obj, hppa_objfile_priv_data);
1347
1348 if (!priv)
1349 priv = hppa_init_objfile_priv_data (obj);
1350 if (!priv)
1351 error ("Internal error creating objfile private data.\n");
1352
1353 /* Use the cached value if we have one. */
1354 if (priv->dummy_call_sequence_addr != 0)
1355 {
1356 *argreg = priv->dummy_call_sequence_reg;
1357 return priv->dummy_call_sequence_addr;
1358 }
1359
1360 /* First try a heuristic; if we are in a shared library call, our return
1361 pointer is likely to point at an export stub. */
1362 frame = get_current_frame ();
1363 rp = frame_unwind_register_unsigned (frame, 2);
1364 u = find_unwind_entry (rp);
1365 if (u && u->stub_unwind.stub_type == EXPORT)
1366 {
1367 addr = hppa_hpux_search_pattern (u->region_start, u->region_end,
1368 ldsid_pattern,
1369 ARRAY_SIZE (ldsid_pattern));
1370 if (addr)
1371 goto found_pattern;
1372 }
1373
1374 /* Next thing to try is to look for an export stub. */
1375 if (priv->unwind_info)
1376 {
1377 int i;
1378
1379 for (i = 0; i < priv->unwind_info->last; i++)
1380 {
1381 struct unwind_table_entry *u;
1382 u = &priv->unwind_info->table[i];
1383 if (u->stub_unwind.stub_type == EXPORT)
1384 {
1385 addr = hppa_hpux_search_pattern (u->region_start, u->region_end,
1386 ldsid_pattern,
1387 ARRAY_SIZE (ldsid_pattern));
1388 if (addr)
1389 {
1390 goto found_pattern;
1391 }
1392 }
1393 }
1394 }
1395
1396 /* Finally, if this is the main executable, try to locate a sequence
1397 from noshlibs */
1398 addr = hppa_symbol_address ("noshlibs");
1399 sec = find_pc_section (addr);
1400
1401 if (sec && sec->objfile == obj)
1402 {
1403 CORE_ADDR start, end;
1404
1405 find_pc_partial_function (addr, NULL, &start, &end);
1406 if (start != 0 && end != 0)
1407 {
1408 addr = hppa_hpux_search_pattern (start, end, ldsid_pattern,
1409 ARRAY_SIZE (ldsid_pattern));
1410 if (addr)
1411 goto found_pattern;
1412 }
1413 }
1414
1415 /* Can't find a suitable sequence. */
1416 return 0;
1417
1418 found_pattern:
1419 target_read_memory (addr, buf, sizeof (buf));
1420 insn = extract_unsigned_integer (buf, sizeof (buf));
1421 priv->dummy_call_sequence_addr = addr;
1422 priv->dummy_call_sequence_reg = (insn >> 21) & 0x1f;
1423
1424 *argreg = priv->dummy_call_sequence_reg;
1425 return priv->dummy_call_sequence_addr;
1426 }
1427
1428 static CORE_ADDR
1429 hppa64_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc,
1430 int *argreg)
1431 {
1432 struct objfile *obj;
1433 struct obj_section *sec;
1434 struct hppa_objfile_private *priv;
1435 CORE_ADDR addr;
1436 struct minimal_symbol *msym;
1437 int i;
1438
1439 sec = find_pc_section (pc);
1440 obj = sec->objfile;
1441 priv = objfile_data (obj, hppa_objfile_priv_data);
1442
1443 if (!priv)
1444 priv = hppa_init_objfile_priv_data (obj);
1445 if (!priv)
1446 error ("Internal error creating objfile private data.\n");
1447
1448 /* Use the cached value if we have one. */
1449 if (priv->dummy_call_sequence_addr != 0)
1450 {
1451 *argreg = priv->dummy_call_sequence_reg;
1452 return priv->dummy_call_sequence_addr;
1453 }
1454
1455 /* FIXME: Without stub unwind information, locating a suitable sequence is
1456 fairly difficult. For now, we implement a very naive and inefficient
1457 scheme; try to read in blocks of code, and look for a "bve,n (rp)"
1458 instruction. These are likely to occur at the end of functions, so
1459 we only look at the last two instructions of each function. */
1460 for (i = 0, msym = obj->msymbols; i < obj->minimal_symbol_count; i++, msym++)
1461 {
1462 CORE_ADDR begin, end;
1463 char *name;
1464 unsigned int insns[2];
1465 int offset;
1466
1467 find_pc_partial_function (SYMBOL_VALUE_ADDRESS (msym), &name,
1468 &begin, &end);
1469
1470 if (name == NULL || begin == 0 || end == 0)
1471 continue;
1472
1473 if (target_read_memory (end - sizeof (insns), (char *)insns, sizeof (insns)) == 0)
1474 {
1475 for (offset = 0; offset < ARRAY_SIZE (insns); offset++)
1476 {
1477 unsigned int insn;
1478
1479 insn = extract_unsigned_integer (&insns[offset], 4);
1480 if (insn == 0xe840d002) /* bve,n (rp) */
1481 {
1482 addr = (end - sizeof (insns)) + (offset * 4);
1483 goto found_pattern;
1484 }
1485 }
1486 }
1487 }
1488
1489 /* Can't find a suitable sequence. */
1490 return 0;
1491
1492 found_pattern:
1493 priv->dummy_call_sequence_addr = addr;
1494 /* Right now we only look for a "bve,l (rp)" sequence, so the register is
1495 always HPPA_RP_REGNUM. */
1496 priv->dummy_call_sequence_reg = HPPA_RP_REGNUM;
1497
1498 *argreg = priv->dummy_call_sequence_reg;
1499 return priv->dummy_call_sequence_addr;
1500 }
1501
1502 static CORE_ADDR
1503 hppa_hpux_find_import_stub_for_addr (CORE_ADDR funcaddr)
1504 {
1505 struct objfile *objfile;
1506 struct minimal_symbol *funsym, *stubsym;
1507 CORE_ADDR stubaddr;
1508
1509 funsym = lookup_minimal_symbol_by_pc (funcaddr);
1510 stubaddr = 0;
1511
1512 ALL_OBJFILES (objfile)
1513 {
1514 stubsym = lookup_minimal_symbol_solib_trampoline
1515 (SYMBOL_LINKAGE_NAME (funsym), objfile);
1516
1517 if (stubsym)
1518 {
1519 struct unwind_table_entry *u;
1520
1521 u = find_unwind_entry (SYMBOL_VALUE (stubsym));
1522 if (u == NULL
1523 || (u->stub_unwind.stub_type != IMPORT
1524 && u->stub_unwind.stub_type != IMPORT_SHLIB))
1525 continue;
1526
1527 stubaddr = SYMBOL_VALUE (stubsym);
1528
1529 /* If we found an IMPORT stub, then we can stop searching;
1530 if we found an IMPORT_SHLIB, we want to continue the search
1531 in the hopes that we will find an IMPORT stub. */
1532 if (u->stub_unwind.stub_type == IMPORT)
1533 break;
1534 }
1535 }
1536
1537 return stubaddr;
1538 }
1539
1540 static int
1541 hppa_hpux_sr_for_addr (CORE_ADDR addr)
1542 {
1543 int sr;
1544 /* The space register to use is encoded in the top 2 bits of the address. */
1545 sr = addr >> (gdbarch_tdep (current_gdbarch)->bytes_per_address * 8 - 2);
1546 return sr + 4;
1547 }
1548
1549 static CORE_ADDR
1550 hppa_hpux_find_dummy_bpaddr (CORE_ADDR addr)
1551 {
1552 /* In order for us to restore the space register to its starting state,
1553 we need the dummy trampoline to return to the an instruction address in
1554 the same space as where we started the call. We used to place the
1555 breakpoint near the current pc, however, this breaks nested dummy calls
1556 as the nested call will hit the breakpoint address and terminate
1557 prematurely. Instead, we try to look for an address in the same space to
1558 put the breakpoint.
1559
1560 This is similar in spirit to putting the breakpoint at the "entry point"
1561 of an executable. */
1562
1563 struct obj_section *sec;
1564 struct unwind_table_entry *u;
1565 struct minimal_symbol *msym;
1566 CORE_ADDR func;
1567 int i;
1568
1569 sec = find_pc_section (addr);
1570 if (sec)
1571 {
1572 /* First try the lowest address in the section; we can use it as long
1573 as it is "regular" code (i.e. not a stub) */
1574 u = find_unwind_entry (sec->addr);
1575 if (!u || u->stub_unwind.stub_type == 0)
1576 return sec->addr;
1577
1578 /* Otherwise, we need to find a symbol for a regular function. We
1579 do this by walking the list of msymbols in the objfile. The symbol
1580 we find should not be the same as the function that was passed in. */
1581
1582 /* FIXME: this is broken, because we can find a function that will be
1583 called by the dummy call target function, which will still not
1584 work. */
1585
1586 find_pc_partial_function (addr, NULL, &func, NULL);
1587 for (i = 0, msym = sec->objfile->msymbols;
1588 i < sec->objfile->minimal_symbol_count;
1589 i++, msym++)
1590 {
1591 u = find_unwind_entry (SYMBOL_VALUE_ADDRESS (msym));
1592 if (func != SYMBOL_VALUE_ADDRESS (msym)
1593 && (!u || u->stub_unwind.stub_type == 0))
1594 return SYMBOL_VALUE_ADDRESS (msym);
1595 }
1596 }
1597
1598 warning ("Cannot find suitable address to place dummy breakpoint; nested "
1599 "calls may fail.\n");
1600 return addr - 4;
1601 }
1602
1603 static CORE_ADDR
1604 hppa_hpux_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
1605 CORE_ADDR funcaddr, int using_gcc,
1606 struct value **args, int nargs,
1607 struct type *value_type,
1608 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
1609 {
1610 CORE_ADDR pc, stubaddr;
1611 int argreg;
1612
1613 pc = read_pc ();
1614
1615 /* Note: we don't want to pass a function descriptor here; push_dummy_call
1616 fills in the PIC register for us. */
1617 funcaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funcaddr, NULL);
1618
1619 /* The simple case is where we call a function in the same space that we are
1620 currently in; in that case we don't really need to do anything. */
1621 if (hppa_hpux_sr_for_addr (pc) == hppa_hpux_sr_for_addr (funcaddr))
1622 {
1623 /* Intraspace call. */
1624 *bp_addr = hppa_hpux_find_dummy_bpaddr (pc);
1625 *real_pc = funcaddr;
1626 regcache_cooked_write_unsigned (current_regcache, HPPA_RP_REGNUM, *bp_addr);
1627
1628 return sp;
1629 }
1630
1631 /* In order to make an interspace call, we need to go through a stub.
1632 gcc supplies an appropriate stub called "__gcc_plt_call", however, if
1633 an application is compiled with HP compilers then this stub is not
1634 available. We used to fallback to "__d_plt_call", however that stub
1635 is not entirely useful for us because it doesn't do an interspace
1636 return back to the caller. Also, on hppa64-hpux, there is no
1637 __gcc_plt_call available. In order to keep the code uniform, we
1638 instead don't use either of these stubs, but instead write our own
1639 onto the stack.
1640
1641 A problem arises since the stack is located in a different space than
1642 code, so in order to branch to a stack stub, we will need to do an
1643 interspace branch. Previous versions of gdb did this by modifying code
1644 at the current pc and doing single-stepping to set the pcsq. Since this
1645 is highly undesirable, we use a different scheme:
1646
1647 All we really need to do the branch to the stub is a short instruction
1648 sequence like this:
1649
1650 PA1.1:
1651 ldsid (rX),r1
1652 mtsp r1,sr0
1653 be,n (sr0,rX)
1654
1655 PA2.0:
1656 bve,n (sr0,rX)
1657
1658 Instead of writing these sequences ourselves, we can find it in
1659 the instruction stream that belongs to the current space. While this
1660 seems difficult at first, we are actually guaranteed to find the sequences
1661 in several places:
1662
1663 For 32-bit code:
1664 - in export stubs for shared libraries
1665 - in the "noshlibs" routine in the main module
1666
1667 For 64-bit code:
1668 - at the end of each "regular" function
1669
1670 We cache the address of these sequences in the objfile's private data
1671 since these operations can potentially be quite expensive.
1672
1673 So, what we do is:
1674 - write a stack trampoline
1675 - look for a suitable instruction sequence in the current space
1676 - point the sequence at the trampoline
1677 - set the return address of the trampoline to the current space
1678 (see hppa_hpux_find_dummy_call_bpaddr)
1679 - set the continuing address of the "dummy code" as the sequence.
1680
1681 */
1682
1683 if (IS_32BIT_TARGET (gdbarch))
1684 {
1685 static unsigned int hppa32_tramp[] = {
1686 0x0fdf1291, /* stw r31,-8(,sp) */
1687 0x02c010a1, /* ldsid (,r22),r1 */
1688 0x00011820, /* mtsp r1,sr0 */
1689 0xe6c00000, /* be,l 0(sr0,r22),%sr0,%r31 */
1690 0x081f0242, /* copy r31,rp */
1691 0x0fd11082, /* ldw -8(,sp),rp */
1692 0x004010a1, /* ldsid (,rp),r1 */
1693 0x00011820, /* mtsp r1,sr0 */
1694 0xe0400000, /* be 0(sr0,rp) */
1695 0x08000240 /* nop */
1696 };
1697
1698 /* for hppa32, we must call the function through a stub so that on
1699 return it can return to the space of our trampoline. */
1700 stubaddr = hppa_hpux_find_import_stub_for_addr (funcaddr);
1701 if (stubaddr == 0)
1702 error ("Cannot call external function not referenced by application "
1703 "(no import stub).\n");
1704 regcache_cooked_write_unsigned (current_regcache, 22, stubaddr);
1705
1706 write_memory (sp, (char *)&hppa32_tramp, sizeof (hppa32_tramp));
1707
1708 *bp_addr = hppa_hpux_find_dummy_bpaddr (pc);
1709 regcache_cooked_write_unsigned (current_regcache, 31, *bp_addr);
1710
1711 *real_pc = hppa32_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg);
1712 if (*real_pc == 0)
1713 error ("Cannot make interspace call from here.\n");
1714
1715 regcache_cooked_write_unsigned (current_regcache, argreg, sp);
1716
1717 sp += sizeof (hppa32_tramp);
1718 }
1719 else
1720 {
1721 static unsigned int hppa64_tramp[] = {
1722 0xeac0f000, /* bve,l (r22),%r2 */
1723 0x0fdf12d1, /* std r31,-8(,sp) */
1724 0x0fd110c2, /* ldd -8(,sp),rp */
1725 0xe840d002, /* bve,n (rp) */
1726 0x08000240 /* nop */
1727 };
1728
1729 /* for hppa64, we don't need to call through a stub; all functions
1730 return via a bve. */
1731 regcache_cooked_write_unsigned (current_regcache, 22, funcaddr);
1732 write_memory (sp, (char *)&hppa64_tramp, sizeof (hppa64_tramp));
1733
1734 *bp_addr = pc - 4;
1735 regcache_cooked_write_unsigned (current_regcache, 31, *bp_addr);
1736
1737 *real_pc = hppa64_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg);
1738 if (*real_pc == 0)
1739 error ("Cannot make interspace call from here.\n");
1740
1741 regcache_cooked_write_unsigned (current_regcache, argreg, sp);
1742
1743 sp += sizeof (hppa64_tramp);
1744 }
1745
1746 sp = gdbarch_frame_align (gdbarch, sp);
1747
1748 return sp;
1749 }
1750
1751 \f
1752
1753 /* Bit in the `ss_flag' member of `struct save_state' that indicates
1754 that the 64-bit register values are live. From
1755 <machine/save_state.h>. */
1756 #define HPPA_HPUX_SS_WIDEREGS 0x40
1757
1758 /* Offsets of various parts of `struct save_state'. From
1759 <machine/save_state.h>. */
1760 #define HPPA_HPUX_SS_FLAGS_OFFSET 0
1761 #define HPPA_HPUX_SS_NARROW_OFFSET 4
1762 #define HPPA_HPUX_SS_FPBLOCK_OFFSET 256
1763 #define HPPA_HPUX_SS_WIDE_OFFSET 640
1764
1765 /* The size of `struct save_state. */
1766 #define HPPA_HPUX_SAVE_STATE_SIZE 1152
1767
1768 /* The size of `struct pa89_save_state', which corresponds to PA-RISC
1769 1.1, the lowest common denominator that we support. */
1770 #define HPPA_HPUX_PA89_SAVE_STATE_SIZE 512
1771
1772 static void
1773 hppa_hpux_supply_ss_narrow (struct regcache *regcache,
1774 int regnum, const char *save_state)
1775 {
1776 const char *ss_narrow = save_state + HPPA_HPUX_SS_NARROW_OFFSET;
1777 int i, offset = 0;
1778
1779 for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++)
1780 {
1781 if (regnum == i || regnum == -1)
1782 regcache_raw_supply (regcache, i, ss_narrow + offset);
1783
1784 offset += 4;
1785 }
1786 }
1787
1788 static void
1789 hppa_hpux_supply_ss_fpblock (struct regcache *regcache,
1790 int regnum, const char *save_state)
1791 {
1792 const char *ss_fpblock = save_state + HPPA_HPUX_SS_FPBLOCK_OFFSET;
1793 int i, offset = 0;
1794
1795 /* FIXME: We view the floating-point state as 64 single-precision
1796 registers for 32-bit code, and 32 double-precision register for
1797 64-bit code. This distinction is artificial and should be
1798 eliminated. If that ever happens, we should remove the if-clause
1799 below. */
1800
1801 if (register_size (get_regcache_arch (regcache), HPPA_FP0_REGNUM) == 4)
1802 {
1803 for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 64; i++)
1804 {
1805 if (regnum == i || regnum == -1)
1806 regcache_raw_supply (regcache, i, ss_fpblock + offset);
1807
1808 offset += 4;
1809 }
1810 }
1811 else
1812 {
1813 for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 32; i++)
1814 {
1815 if (regnum == i || regnum == -1)
1816 regcache_raw_supply (regcache, i, ss_fpblock + offset);
1817
1818 offset += 8;
1819 }
1820 }
1821 }
1822
1823 static void
1824 hppa_hpux_supply_ss_wide (struct regcache *regcache,
1825 int regnum, const char *save_state)
1826 {
1827 const char *ss_wide = save_state + HPPA_HPUX_SS_WIDE_OFFSET;
1828 int i, offset = 8;
1829
1830 if (register_size (get_regcache_arch (regcache), HPPA_R1_REGNUM) == 4)
1831 offset += 4;
1832
1833 for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++)
1834 {
1835 if (regnum == i || regnum == -1)
1836 regcache_raw_supply (regcache, i, ss_wide + offset);
1837
1838 offset += 8;
1839 }
1840 }
1841
1842 static void
1843 hppa_hpux_supply_save_state (const struct regset *regset,
1844 struct regcache *regcache,
1845 int regnum, const void *regs, size_t len)
1846 {
1847 const char *proc_info = regs;
1848 const char *save_state = proc_info + 8;
1849 ULONGEST flags;
1850
1851 flags = extract_unsigned_integer (save_state + HPPA_HPUX_SS_FLAGS_OFFSET, 4);
1852 if (regnum == -1 || regnum == HPPA_FLAGS_REGNUM)
1853 {
1854 struct gdbarch *arch = get_regcache_arch (regcache);
1855 size_t size = register_size (arch, HPPA_FLAGS_REGNUM);
1856 char buf[8];
1857
1858 store_unsigned_integer (buf, size, flags);
1859 regcache_raw_supply (regcache, HPPA_FLAGS_REGNUM, buf);
1860 }
1861
1862 /* If the SS_WIDEREGS flag is set, we really do need the full
1863 `struct save_state'. */
1864 if (flags & HPPA_HPUX_SS_WIDEREGS && len < HPPA_HPUX_SAVE_STATE_SIZE)
1865 error ("Register set contents too small");
1866
1867 if (flags & HPPA_HPUX_SS_WIDEREGS)
1868 hppa_hpux_supply_ss_wide (regcache, regnum, save_state);
1869 else
1870 hppa_hpux_supply_ss_narrow (regcache, regnum, save_state);
1871
1872 hppa_hpux_supply_ss_fpblock (regcache, regnum, save_state);
1873 }
1874
1875 /* HP-UX register set. */
1876
1877 static struct regset hppa_hpux_regset =
1878 {
1879 NULL,
1880 hppa_hpux_supply_save_state
1881 };
1882
1883 static const struct regset *
1884 hppa_hpux_regset_from_core_section (struct gdbarch *gdbarch,
1885 const char *sect_name, size_t sect_size)
1886 {
1887 if (strcmp (sect_name, ".reg") == 0
1888 && sect_size >= HPPA_HPUX_PA89_SAVE_STATE_SIZE + 8)
1889 return &hppa_hpux_regset;
1890
1891 return NULL;
1892 }
1893 \f
1894
1895 /* Bit in the `ss_flag' member of `struct save_state' that indicates
1896 the state was saved from a system call. From
1897 <machine/save_state.h>. */
1898 #define HPPA_HPUX_SS_INSYSCALL 0x02
1899
1900 static CORE_ADDR
1901 hppa_hpux_read_pc (ptid_t ptid)
1902 {
1903 ULONGEST flags;
1904
1905 /* If we're currently in a system call return the contents of %r31. */
1906 flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
1907 if (flags & HPPA_HPUX_SS_INSYSCALL)
1908 return read_register_pid (HPPA_R31_REGNUM, ptid) & ~0x3;
1909
1910 return hppa_read_pc (ptid);
1911 }
1912
1913 static void
1914 hppa_hpux_write_pc (CORE_ADDR pc, ptid_t ptid)
1915 {
1916 ULONGEST flags;
1917
1918 /* If we're currently in a system call also write PC into %r31. */
1919 flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
1920 if (flags & HPPA_HPUX_SS_INSYSCALL)
1921 write_register_pid (HPPA_R31_REGNUM, pc | 0x3, ptid);
1922
1923 return hppa_write_pc (pc, ptid);
1924 }
1925
1926 static CORE_ADDR
1927 hppa_hpux_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1928 {
1929 ULONGEST flags;
1930
1931 /* If we're currently in a system call return the contents of %r31. */
1932 flags = frame_unwind_register_unsigned (next_frame, HPPA_FLAGS_REGNUM);
1933 if (flags & HPPA_HPUX_SS_INSYSCALL)
1934 return frame_unwind_register_unsigned (next_frame, HPPA_R31_REGNUM) & ~0x3;
1935
1936 return hppa_unwind_pc (gdbarch, next_frame);
1937 }
1938 \f
1939
1940 static void
1941 hppa_hpux_inferior_created (struct target_ops *objfile, int from_tty)
1942 {
1943 /* Some HP-UX related globals to clear when a new "main"
1944 symbol file is loaded. HP-specific. */
1945 deprecated_hp_som_som_object_present = 0;
1946 hp_cxx_exception_support_initialized = 0;
1947 }
1948
1949 /* Given the current value of the pc, check to see if it is inside a stub, and
1950 if so, change the value of the pc to point to the caller of the stub.
1951 NEXT_FRAME is the next frame in the current list of frames.
1952 BASE contains to stack frame base of the current frame.
1953 SAVE_REGS is the register file stored in the frame cache. */
1954 static void
1955 hppa_hpux_unwind_adjust_stub (struct frame_info *next_frame, CORE_ADDR base,
1956 struct trad_frame_saved_reg *saved_regs)
1957 {
1958 int optimized, realreg;
1959 enum lval_type lval;
1960 CORE_ADDR addr;
1961 char buffer[sizeof(ULONGEST)];
1962 ULONGEST val;
1963 CORE_ADDR stubpc;
1964 struct unwind_table_entry *u;
1965
1966 trad_frame_get_prev_register (next_frame, saved_regs,
1967 HPPA_PCOQ_HEAD_REGNUM,
1968 &optimized, &lval, &addr, &realreg, buffer);
1969 val = extract_unsigned_integer (buffer,
1970 register_size (get_frame_arch (next_frame),
1971 HPPA_PCOQ_HEAD_REGNUM));
1972
1973 u = find_unwind_entry (val);
1974 if (u && u->stub_unwind.stub_type == EXPORT)
1975 {
1976 stubpc = read_memory_integer (base - 24, TARGET_PTR_BIT / 8);
1977 trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc);
1978 }
1979 else if (hppa_symbol_address ("__gcc_plt_call")
1980 == get_pc_function_start (val))
1981 {
1982 stubpc = read_memory_integer (base - 8, TARGET_PTR_BIT / 8);
1983 trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc);
1984 }
1985 }
1986
1987 static void
1988 hppa_hpux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1989 {
1990 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1991
1992 if (IS_32BIT_TARGET (gdbarch))
1993 tdep->in_solib_call_trampoline = hppa32_hpux_in_solib_call_trampoline;
1994 else
1995 tdep->in_solib_call_trampoline = hppa64_hpux_in_solib_call_trampoline;
1996
1997 tdep->unwind_adjust_stub = hppa_hpux_unwind_adjust_stub;
1998
1999 set_gdbarch_in_solib_return_trampoline
2000 (gdbarch, hppa_hpux_in_solib_return_trampoline);
2001 set_gdbarch_skip_trampoline_code (gdbarch, hppa_hpux_skip_trampoline_code);
2002
2003 set_gdbarch_push_dummy_code (gdbarch, hppa_hpux_push_dummy_code);
2004 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2005
2006 set_gdbarch_read_pc (gdbarch, hppa_hpux_read_pc);
2007 set_gdbarch_write_pc (gdbarch, hppa_hpux_write_pc);
2008 set_gdbarch_unwind_pc (gdbarch, hppa_hpux_unwind_pc);
2009
2010 set_gdbarch_regset_from_core_section
2011 (gdbarch, hppa_hpux_regset_from_core_section);
2012
2013 frame_unwind_append_sniffer (gdbarch, hppa_hpux_sigtramp_unwind_sniffer);
2014
2015 observer_attach_inferior_created (hppa_hpux_inferior_created);
2016 }
2017
2018 static void
2019 hppa_hpux_som_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2020 {
2021 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2022
2023 tdep->is_elf = 0;
2024
2025 tdep->find_global_pointer = hppa32_hpux_find_global_pointer;
2026
2027 hppa_hpux_init_abi (info, gdbarch);
2028 som_solib_select (tdep);
2029 }
2030
2031 static void
2032 hppa_hpux_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2033 {
2034 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2035
2036 tdep->is_elf = 1;
2037 tdep->find_global_pointer = hppa64_hpux_find_global_pointer;
2038
2039 hppa_hpux_init_abi (info, gdbarch);
2040 pa64_solib_select (tdep);
2041 }
2042
2043 static enum gdb_osabi
2044 hppa_hpux_core_osabi_sniffer (bfd *abfd)
2045 {
2046 if (strcmp (bfd_get_target (abfd), "hpux-core") == 0)
2047 return GDB_OSABI_HPUX_SOM;
2048
2049 return GDB_OSABI_UNKNOWN;
2050 }
2051
2052 void
2053 _initialize_hppa_hpux_tdep (void)
2054 {
2055 /* BFD doesn't set a flavour for HP-UX style core files. It doesn't
2056 set the architecture either. */
2057 gdbarch_register_osabi_sniffer (bfd_arch_unknown,
2058 bfd_target_unknown_flavour,
2059 hppa_hpux_core_osabi_sniffer);
2060
2061 gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_HPUX_SOM,
2062 hppa_hpux_som_init_abi);
2063 gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w, GDB_OSABI_HPUX_ELF,
2064 hppa_hpux_elf_init_abi);
2065 }
This page took 0.11213 seconds and 4 git commands to generate.