2010-04-04 Stan Shebs <stan@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / hppa-hpux-tdep.c
1 /* Target-dependent code for HP-UX on PA-RISC.
2
3 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "arch-utils.h"
23 #include "gdbcore.h"
24 #include "osabi.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "trad-frame.h"
28 #include "symtab.h"
29 #include "objfiles.h"
30 #include "inferior.h"
31 #include "infcall.h"
32 #include "observer.h"
33 #include "hppa-tdep.h"
34 #include "solib-som.h"
35 #include "solib-pa64.h"
36 #include "regset.h"
37 #include "regcache.h"
38 #include "exceptions.h"
39
40 #include "gdb_string.h"
41
42 #define IS_32BIT_TARGET(_gdbarch) \
43 ((gdbarch_tdep (_gdbarch))->bytes_per_address == 4)
44
45 /* Bit in the `ss_flag' member of `struct save_state' that indicates
46 that the 64-bit register values are live. From
47 <machine/save_state.h>. */
48 #define HPPA_HPUX_SS_WIDEREGS 0x40
49
50 /* Offsets of various parts of `struct save_state'. From
51 <machine/save_state.h>. */
52 #define HPPA_HPUX_SS_FLAGS_OFFSET 0
53 #define HPPA_HPUX_SS_NARROW_OFFSET 4
54 #define HPPA_HPUX_SS_FPBLOCK_OFFSET 256
55 #define HPPA_HPUX_SS_WIDE_OFFSET 640
56
57 /* The size of `struct save_state. */
58 #define HPPA_HPUX_SAVE_STATE_SIZE 1152
59
60 /* The size of `struct pa89_save_state', which corresponds to PA-RISC
61 1.1, the lowest common denominator that we support. */
62 #define HPPA_HPUX_PA89_SAVE_STATE_SIZE 512
63
64
65 /* Forward declarations. */
66 extern void _initialize_hppa_hpux_tdep (void);
67 extern initialize_file_ftype _initialize_hppa_hpux_tdep;
68
69 static int
70 in_opd_section (CORE_ADDR pc)
71 {
72 struct obj_section *s;
73 int retval = 0;
74
75 s = find_pc_section (pc);
76
77 retval = (s != NULL
78 && s->the_bfd_section->name != NULL
79 && strcmp (s->the_bfd_section->name, ".opd") == 0);
80 return (retval);
81 }
82
83 /* Return one if PC is in the call path of a trampoline, else return zero.
84
85 Note we return one for *any* call trampoline (long-call, arg-reloc), not
86 just shared library trampolines (import, export). */
87
88 static int
89 hppa32_hpux_in_solib_call_trampoline (struct gdbarch *gdbarch,
90 CORE_ADDR pc, char *name)
91 {
92 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
93 struct minimal_symbol *minsym;
94 struct unwind_table_entry *u;
95
96 /* First see if PC is in one of the two C-library trampolines. */
97 if (pc == hppa_symbol_address("$$dyncall")
98 || pc == hppa_symbol_address("_sr4export"))
99 return 1;
100
101 minsym = lookup_minimal_symbol_by_pc (pc);
102 if (minsym && strcmp (SYMBOL_LINKAGE_NAME (minsym), ".stub") == 0)
103 return 1;
104
105 /* Get the unwind descriptor corresponding to PC, return zero
106 if no unwind was found. */
107 u = find_unwind_entry (pc);
108 if (!u)
109 return 0;
110
111 /* If this isn't a linker stub, then return now. */
112 if (u->stub_unwind.stub_type == 0)
113 return 0;
114
115 /* By definition a long-branch stub is a call stub. */
116 if (u->stub_unwind.stub_type == LONG_BRANCH)
117 return 1;
118
119 /* The call and return path execute the same instructions within
120 an IMPORT stub! So an IMPORT stub is both a call and return
121 trampoline. */
122 if (u->stub_unwind.stub_type == IMPORT)
123 return 1;
124
125 /* Parameter relocation stubs always have a call path and may have a
126 return path. */
127 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
128 || u->stub_unwind.stub_type == EXPORT)
129 {
130 CORE_ADDR addr;
131
132 /* Search forward from the current PC until we hit a branch
133 or the end of the stub. */
134 for (addr = pc; addr <= u->region_end; addr += 4)
135 {
136 unsigned long insn;
137
138 insn = read_memory_integer (addr, 4, byte_order);
139
140 /* Does it look like a bl? If so then it's the call path, if
141 we find a bv or be first, then we're on the return path. */
142 if ((insn & 0xfc00e000) == 0xe8000000)
143 return 1;
144 else if ((insn & 0xfc00e001) == 0xe800c000
145 || (insn & 0xfc000000) == 0xe0000000)
146 return 0;
147 }
148
149 /* Should never happen. */
150 warning (_("Unable to find branch in parameter relocation stub."));
151 return 0;
152 }
153
154 /* Unknown stub type. For now, just return zero. */
155 return 0;
156 }
157
158 static int
159 hppa64_hpux_in_solib_call_trampoline (struct gdbarch *gdbarch,
160 CORE_ADDR pc, char *name)
161 {
162 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
163
164 /* PA64 has a completely different stub/trampoline scheme. Is it
165 better? Maybe. It's certainly harder to determine with any
166 certainty that we are in a stub because we can not refer to the
167 unwinders to help.
168
169 The heuristic is simple. Try to lookup the current PC value in th
170 minimal symbol table. If that fails, then assume we are not in a
171 stub and return.
172
173 Then see if the PC value falls within the section bounds for the
174 section containing the minimal symbol we found in the first
175 step. If it does, then assume we are not in a stub and return.
176
177 Finally peek at the instructions to see if they look like a stub. */
178 struct minimal_symbol *minsym;
179 asection *sec;
180 CORE_ADDR addr;
181 int insn, i;
182
183 minsym = lookup_minimal_symbol_by_pc (pc);
184 if (! minsym)
185 return 0;
186
187 sec = SYMBOL_OBJ_SECTION (minsym)->the_bfd_section;
188
189 if (bfd_get_section_vma (sec->owner, sec) <= pc
190 && pc < (bfd_get_section_vma (sec->owner, sec)
191 + bfd_section_size (sec->owner, sec)))
192 return 0;
193
194 /* We might be in a stub. Peek at the instructions. Stubs are 3
195 instructions long. */
196 insn = read_memory_integer (pc, 4, byte_order);
197
198 /* Find out where we think we are within the stub. */
199 if ((insn & 0xffffc00e) == 0x53610000)
200 addr = pc;
201 else if ((insn & 0xffffffff) == 0xe820d000)
202 addr = pc - 4;
203 else if ((insn & 0xffffc00e) == 0x537b0000)
204 addr = pc - 8;
205 else
206 return 0;
207
208 /* Now verify each insn in the range looks like a stub instruction. */
209 insn = read_memory_integer (addr, 4, byte_order);
210 if ((insn & 0xffffc00e) != 0x53610000)
211 return 0;
212
213 /* Now verify each insn in the range looks like a stub instruction. */
214 insn = read_memory_integer (addr + 4, 4, byte_order);
215 if ((insn & 0xffffffff) != 0xe820d000)
216 return 0;
217
218 /* Now verify each insn in the range looks like a stub instruction. */
219 insn = read_memory_integer (addr + 8, 4, byte_order);
220 if ((insn & 0xffffc00e) != 0x537b0000)
221 return 0;
222
223 /* Looks like a stub. */
224 return 1;
225 }
226
227 /* Return one if PC is in the return path of a trampoline, else return zero.
228
229 Note we return one for *any* call trampoline (long-call, arg-reloc), not
230 just shared library trampolines (import, export). */
231
232 static int
233 hppa_hpux_in_solib_return_trampoline (struct gdbarch *gdbarch,
234 CORE_ADDR pc, char *name)
235 {
236 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
237 struct unwind_table_entry *u;
238
239 /* Get the unwind descriptor corresponding to PC, return zero
240 if no unwind was found. */
241 u = find_unwind_entry (pc);
242 if (!u)
243 return 0;
244
245 /* If this isn't a linker stub or it's just a long branch stub, then
246 return zero. */
247 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
248 return 0;
249
250 /* The call and return path execute the same instructions within
251 an IMPORT stub! So an IMPORT stub is both a call and return
252 trampoline. */
253 if (u->stub_unwind.stub_type == IMPORT)
254 return 1;
255
256 /* Parameter relocation stubs always have a call path and may have a
257 return path. */
258 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
259 || u->stub_unwind.stub_type == EXPORT)
260 {
261 CORE_ADDR addr;
262
263 /* Search forward from the current PC until we hit a branch
264 or the end of the stub. */
265 for (addr = pc; addr <= u->region_end; addr += 4)
266 {
267 unsigned long insn;
268
269 insn = read_memory_integer (addr, 4, byte_order);
270
271 /* Does it look like a bl? If so then it's the call path, if
272 we find a bv or be first, then we're on the return path. */
273 if ((insn & 0xfc00e000) == 0xe8000000)
274 return 0;
275 else if ((insn & 0xfc00e001) == 0xe800c000
276 || (insn & 0xfc000000) == 0xe0000000)
277 return 1;
278 }
279
280 /* Should never happen. */
281 warning (_("Unable to find branch in parameter relocation stub."));
282 return 0;
283 }
284
285 /* Unknown stub type. For now, just return zero. */
286 return 0;
287
288 }
289
290 /* Figure out if PC is in a trampoline, and if so find out where
291 the trampoline will jump to. If not in a trampoline, return zero.
292
293 Simple code examination probably is not a good idea since the code
294 sequences in trampolines can also appear in user code.
295
296 We use unwinds and information from the minimal symbol table to
297 determine when we're in a trampoline. This won't work for ELF
298 (yet) since it doesn't create stub unwind entries. Whether or
299 not ELF will create stub unwinds or normal unwinds for linker
300 stubs is still being debated.
301
302 This should handle simple calls through dyncall or sr4export,
303 long calls, argument relocation stubs, and dyncall/sr4export
304 calling an argument relocation stub. It even handles some stubs
305 used in dynamic executables. */
306
307 static CORE_ADDR
308 hppa_hpux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
309 {
310 struct gdbarch *gdbarch = get_frame_arch (frame);
311 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
312 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
313 long orig_pc = pc;
314 long prev_inst, curr_inst, loc;
315 struct minimal_symbol *msym;
316 struct unwind_table_entry *u;
317
318 /* Addresses passed to dyncall may *NOT* be the actual address
319 of the function. So we may have to do something special. */
320 if (pc == hppa_symbol_address("$$dyncall"))
321 {
322 pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22);
323
324 /* If bit 30 (counting from the left) is on, then pc is the address of
325 the PLT entry for this function, not the address of the function
326 itself. Bit 31 has meaning too, but only for MPE. */
327 if (pc & 0x2)
328 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, word_size, byte_order);
329 }
330 if (pc == hppa_symbol_address("$$dyncall_external"))
331 {
332 pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22);
333 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, word_size, byte_order);
334 }
335 else if (pc == hppa_symbol_address("_sr4export"))
336 pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22);
337
338 /* Get the unwind descriptor corresponding to PC, return zero
339 if no unwind was found. */
340 u = find_unwind_entry (pc);
341 if (!u)
342 return 0;
343
344 /* If this isn't a linker stub, then return now. */
345 /* elz: attention here! (FIXME) because of a compiler/linker
346 error, some stubs which should have a non zero stub_unwind.stub_type
347 have unfortunately a value of zero. So this function would return here
348 as if we were not in a trampoline. To fix this, we go look at the partial
349 symbol information, which reports this guy as a stub.
350 (FIXME): Unfortunately, we are not that lucky: it turns out that the
351 partial symbol information is also wrong sometimes. This is because
352 when it is entered (somread.c::som_symtab_read()) it can happen that
353 if the type of the symbol (from the som) is Entry, and the symbol is
354 in a shared library, then it can also be a trampoline. This would
355 be OK, except that I believe the way they decide if we are ina shared library
356 does not work. SOOOO..., even if we have a regular function w/o trampolines
357 its minimal symbol can be assigned type mst_solib_trampoline.
358 Also, if we find that the symbol is a real stub, then we fix the unwind
359 descriptor, and define the stub type to be EXPORT.
360 Hopefully this is correct most of the times. */
361 if (u->stub_unwind.stub_type == 0)
362 {
363
364 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
365 we can delete all the code which appears between the lines */
366 /*--------------------------------------------------------------------------*/
367 msym = lookup_minimal_symbol_by_pc (pc);
368
369 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
370 return orig_pc == pc ? 0 : pc & ~0x3;
371
372 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
373 {
374 struct objfile *objfile;
375 struct minimal_symbol *msymbol;
376 int function_found = 0;
377
378 /* go look if there is another minimal symbol with the same name as
379 this one, but with type mst_text. This would happen if the msym
380 is an actual trampoline, in which case there would be another
381 symbol with the same name corresponding to the real function */
382
383 ALL_MSYMBOLS (objfile, msymbol)
384 {
385 if (MSYMBOL_TYPE (msymbol) == mst_text
386 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
387 SYMBOL_LINKAGE_NAME (msym)) == 0)
388 {
389 function_found = 1;
390 break;
391 }
392 }
393
394 if (function_found)
395 /* the type of msym is correct (mst_solib_trampoline), but
396 the unwind info is wrong, so set it to the correct value */
397 u->stub_unwind.stub_type = EXPORT;
398 else
399 /* the stub type info in the unwind is correct (this is not a
400 trampoline), but the msym type information is wrong, it
401 should be mst_text. So we need to fix the msym, and also
402 get out of this function */
403 {
404 MSYMBOL_TYPE (msym) = mst_text;
405 return orig_pc == pc ? 0 : pc & ~0x3;
406 }
407 }
408
409 /*--------------------------------------------------------------------------*/
410 }
411
412 /* It's a stub. Search for a branch and figure out where it goes.
413 Note we have to handle multi insn branch sequences like ldil;ble.
414 Most (all?) other branches can be determined by examining the contents
415 of certain registers and the stack. */
416
417 loc = pc;
418 curr_inst = 0;
419 prev_inst = 0;
420 while (1)
421 {
422 /* Make sure we haven't walked outside the range of this stub. */
423 if (u != find_unwind_entry (loc))
424 {
425 warning (_("Unable to find branch in linker stub"));
426 return orig_pc == pc ? 0 : pc & ~0x3;
427 }
428
429 prev_inst = curr_inst;
430 curr_inst = read_memory_integer (loc, 4, byte_order);
431
432 /* Does it look like a branch external using %r1? Then it's the
433 branch from the stub to the actual function. */
434 if ((curr_inst & 0xffe0e000) == 0xe0202000)
435 {
436 /* Yup. See if the previous instruction loaded
437 a value into %r1. If so compute and return the jump address. */
438 if ((prev_inst & 0xffe00000) == 0x20200000)
439 return (hppa_extract_21 (prev_inst) + hppa_extract_17 (curr_inst)) & ~0x3;
440 else
441 {
442 warning (_("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."));
443 return orig_pc == pc ? 0 : pc & ~0x3;
444 }
445 }
446
447 /* Does it look like a be 0(sr0,%r21)? OR
448 Does it look like a be, n 0(sr0,%r21)? OR
449 Does it look like a bve (r21)? (this is on PA2.0)
450 Does it look like a bve, n(r21)? (this is also on PA2.0)
451 That's the branch from an
452 import stub to an export stub.
453
454 It is impossible to determine the target of the branch via
455 simple examination of instructions and/or data (consider
456 that the address in the plabel may be the address of the
457 bind-on-reference routine in the dynamic loader).
458
459 So we have try an alternative approach.
460
461 Get the name of the symbol at our current location; it should
462 be a stub symbol with the same name as the symbol in the
463 shared library.
464
465 Then lookup a minimal symbol with the same name; we should
466 get the minimal symbol for the target routine in the shared
467 library as those take precedence of import/export stubs. */
468 if ((curr_inst == 0xe2a00000) ||
469 (curr_inst == 0xe2a00002) ||
470 (curr_inst == 0xeaa0d000) ||
471 (curr_inst == 0xeaa0d002))
472 {
473 struct minimal_symbol *stubsym, *libsym;
474
475 stubsym = lookup_minimal_symbol_by_pc (loc);
476 if (stubsym == NULL)
477 {
478 warning (_("Unable to find symbol for 0x%lx"), loc);
479 return orig_pc == pc ? 0 : pc & ~0x3;
480 }
481
482 libsym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (stubsym), NULL, NULL);
483 if (libsym == NULL)
484 {
485 warning (_("Unable to find library symbol for %s."),
486 SYMBOL_PRINT_NAME (stubsym));
487 return orig_pc == pc ? 0 : pc & ~0x3;
488 }
489
490 return SYMBOL_VALUE (libsym);
491 }
492
493 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
494 branch from the stub to the actual function. */
495 /*elz */
496 else if ((curr_inst & 0xffe0e000) == 0xe8400000
497 || (curr_inst & 0xffe0e000) == 0xe8000000
498 || (curr_inst & 0xffe0e000) == 0xe800A000)
499 return (loc + hppa_extract_17 (curr_inst) + 8) & ~0x3;
500
501 /* Does it look like bv (rp)? Note this depends on the
502 current stack pointer being the same as the stack
503 pointer in the stub itself! This is a branch on from the
504 stub back to the original caller. */
505 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
506 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
507 {
508 /* Yup. See if the previous instruction loaded
509 rp from sp - 8. */
510 if (prev_inst == 0x4bc23ff1)
511 {
512 CORE_ADDR sp;
513 sp = get_frame_register_unsigned (frame, HPPA_SP_REGNUM);
514 return read_memory_integer (sp - 8, 4, byte_order) & ~0x3;
515 }
516 else
517 {
518 warning (_("Unable to find restore of %%rp before bv (%%rp)."));
519 return orig_pc == pc ? 0 : pc & ~0x3;
520 }
521 }
522
523 /* elz: added this case to capture the new instruction
524 at the end of the return part of an export stub used by
525 the PA2.0: BVE, n (rp) */
526 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
527 {
528 return (read_memory_integer
529 (get_frame_register_unsigned (frame, HPPA_SP_REGNUM) - 24,
530 word_size, byte_order)) & ~0x3;
531 }
532
533 /* What about be,n 0(sr0,%rp)? It's just another way we return to
534 the original caller from the stub. Used in dynamic executables. */
535 else if (curr_inst == 0xe0400002)
536 {
537 /* The value we jump to is sitting in sp - 24. But that's
538 loaded several instructions before the be instruction.
539 I guess we could check for the previous instruction being
540 mtsp %r1,%sr0 if we want to do sanity checking. */
541 return (read_memory_integer
542 (get_frame_register_unsigned (frame, HPPA_SP_REGNUM) - 24,
543 word_size, byte_order)) & ~0x3;
544 }
545
546 /* Haven't found the branch yet, but we're still in the stub.
547 Keep looking. */
548 loc += 4;
549 }
550 }
551
552 static void
553 hppa_skip_permanent_breakpoint (struct regcache *regcache)
554 {
555 /* To step over a breakpoint instruction on the PA takes some
556 fiddling with the instruction address queue.
557
558 When we stop at a breakpoint, the IA queue front (the instruction
559 we're executing now) points at the breakpoint instruction, and
560 the IA queue back (the next instruction to execute) points to
561 whatever instruction we would execute after the breakpoint, if it
562 were an ordinary instruction. This is the case even if the
563 breakpoint is in the delay slot of a branch instruction.
564
565 Clearly, to step past the breakpoint, we need to set the queue
566 front to the back. But what do we put in the back? What
567 instruction comes after that one? Because of the branch delay
568 slot, the next insn is always at the back + 4. */
569
570 ULONGEST pcoq_tail, pcsq_tail;
571 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, &pcoq_tail);
572 regcache_cooked_read_unsigned (regcache, HPPA_PCSQ_TAIL_REGNUM, &pcsq_tail);
573
574 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pcoq_tail);
575 regcache_cooked_write_unsigned (regcache, HPPA_PCSQ_HEAD_REGNUM, pcsq_tail);
576
577 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pcoq_tail + 4);
578 /* We can leave the tail's space the same, since there's no jump. */
579 }
580
581
582 /* Signal frames. */
583 struct hppa_hpux_sigtramp_unwind_cache
584 {
585 CORE_ADDR base;
586 struct trad_frame_saved_reg *saved_regs;
587 };
588
589 static int hppa_hpux_tramp_reg[] = {
590 HPPA_SAR_REGNUM,
591 HPPA_PCOQ_HEAD_REGNUM,
592 HPPA_PCSQ_HEAD_REGNUM,
593 HPPA_PCOQ_TAIL_REGNUM,
594 HPPA_PCSQ_TAIL_REGNUM,
595 HPPA_EIEM_REGNUM,
596 HPPA_IIR_REGNUM,
597 HPPA_ISR_REGNUM,
598 HPPA_IOR_REGNUM,
599 HPPA_IPSW_REGNUM,
600 -1,
601 HPPA_SR4_REGNUM,
602 HPPA_SR4_REGNUM + 1,
603 HPPA_SR4_REGNUM + 2,
604 HPPA_SR4_REGNUM + 3,
605 HPPA_SR4_REGNUM + 4,
606 HPPA_SR4_REGNUM + 5,
607 HPPA_SR4_REGNUM + 6,
608 HPPA_SR4_REGNUM + 7,
609 HPPA_RCR_REGNUM,
610 HPPA_PID0_REGNUM,
611 HPPA_PID1_REGNUM,
612 HPPA_CCR_REGNUM,
613 HPPA_PID2_REGNUM,
614 HPPA_PID3_REGNUM,
615 HPPA_TR0_REGNUM,
616 HPPA_TR0_REGNUM + 1,
617 HPPA_TR0_REGNUM + 2,
618 HPPA_CR27_REGNUM
619 };
620
621 static struct hppa_hpux_sigtramp_unwind_cache *
622 hppa_hpux_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
623 void **this_cache)
624
625 {
626 struct gdbarch *gdbarch = get_frame_arch (this_frame);
627 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
628 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
629 struct hppa_hpux_sigtramp_unwind_cache *info;
630 unsigned int flag;
631 CORE_ADDR sp, scptr, off;
632 int i, incr, szoff;
633
634 if (*this_cache)
635 return *this_cache;
636
637 info = FRAME_OBSTACK_ZALLOC (struct hppa_hpux_sigtramp_unwind_cache);
638 *this_cache = info;
639 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
640
641 sp = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
642
643 if (IS_32BIT_TARGET (gdbarch))
644 scptr = sp - 1352;
645 else
646 scptr = sp - 1520;
647
648 off = scptr;
649
650 /* See /usr/include/machine/save_state.h for the structure of the save_state_t
651 structure. */
652
653 flag = read_memory_unsigned_integer (scptr + HPPA_HPUX_SS_FLAGS_OFFSET,
654 4, byte_order);
655
656 if (!(flag & HPPA_HPUX_SS_WIDEREGS))
657 {
658 /* Narrow registers. */
659 off = scptr + HPPA_HPUX_SS_NARROW_OFFSET;
660 incr = 4;
661 szoff = 0;
662 }
663 else
664 {
665 /* Wide registers. */
666 off = scptr + HPPA_HPUX_SS_WIDE_OFFSET + 8;
667 incr = 8;
668 szoff = (tdep->bytes_per_address == 4 ? 4 : 0);
669 }
670
671 for (i = 1; i < 32; i++)
672 {
673 info->saved_regs[HPPA_R0_REGNUM + i].addr = off + szoff;
674 off += incr;
675 }
676
677 for (i = 0; i < ARRAY_SIZE (hppa_hpux_tramp_reg); i++)
678 {
679 if (hppa_hpux_tramp_reg[i] > 0)
680 info->saved_regs[hppa_hpux_tramp_reg[i]].addr = off + szoff;
681
682 off += incr;
683 }
684
685 /* TODO: fp regs */
686
687 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
688
689 return info;
690 }
691
692 static void
693 hppa_hpux_sigtramp_frame_this_id (struct frame_info *this_frame,
694 void **this_prologue_cache,
695 struct frame_id *this_id)
696 {
697 struct hppa_hpux_sigtramp_unwind_cache *info
698 = hppa_hpux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
699
700 *this_id = frame_id_build (info->base, get_frame_pc (this_frame));
701 }
702
703 static struct value *
704 hppa_hpux_sigtramp_frame_prev_register (struct frame_info *this_frame,
705 void **this_prologue_cache,
706 int regnum)
707 {
708 struct hppa_hpux_sigtramp_unwind_cache *info
709 = hppa_hpux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
710
711 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
712 }
713
714 static int
715 hppa_hpux_sigtramp_unwind_sniffer (const struct frame_unwind *self,
716 struct frame_info *this_frame,
717 void **this_cache)
718 {
719 struct gdbarch *gdbarch = get_frame_arch (this_frame);
720 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
721 struct unwind_table_entry *u;
722 CORE_ADDR pc = get_frame_pc (this_frame);
723
724 u = find_unwind_entry (pc);
725
726 /* If this is an export stub, try to get the unwind descriptor for
727 the actual function itself. */
728 if (u && u->stub_unwind.stub_type == EXPORT)
729 {
730 gdb_byte buf[HPPA_INSN_SIZE];
731 unsigned long insn;
732
733 if (!safe_frame_unwind_memory (this_frame, u->region_start,
734 buf, sizeof buf))
735 return 0;
736
737 insn = extract_unsigned_integer (buf, sizeof buf, byte_order);
738 if ((insn & 0xffe0e000) == 0xe8400000)
739 u = find_unwind_entry(u->region_start + hppa_extract_17 (insn) + 8);
740 }
741
742 if (u && u->HP_UX_interrupt_marker)
743 return 1;
744
745 return 0;
746 }
747
748 static const struct frame_unwind hppa_hpux_sigtramp_frame_unwind = {
749 SIGTRAMP_FRAME,
750 hppa_hpux_sigtramp_frame_this_id,
751 hppa_hpux_sigtramp_frame_prev_register,
752 NULL,
753 hppa_hpux_sigtramp_unwind_sniffer
754 };
755
756 static CORE_ADDR
757 hppa32_hpux_find_global_pointer (struct gdbarch *gdbarch,
758 struct value *function)
759 {
760 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
761 CORE_ADDR faddr;
762
763 faddr = value_as_address (function);
764
765 /* Is this a plabel? If so, dereference it to get the gp value. */
766 if (faddr & 2)
767 {
768 int status;
769 char buf[4];
770
771 faddr &= ~3;
772
773 status = target_read_memory (faddr + 4, buf, sizeof (buf));
774 if (status == 0)
775 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
776 }
777
778 return gdbarch_tdep (gdbarch)->solib_get_got_by_pc (faddr);
779 }
780
781 static CORE_ADDR
782 hppa64_hpux_find_global_pointer (struct gdbarch *gdbarch,
783 struct value *function)
784 {
785 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
786 CORE_ADDR faddr;
787 char buf[32];
788
789 faddr = value_as_address (function);
790
791 if (in_opd_section (faddr))
792 {
793 target_read_memory (faddr, buf, sizeof (buf));
794 return extract_unsigned_integer (&buf[24], 8, byte_order);
795 }
796 else
797 {
798 return gdbarch_tdep (gdbarch)->solib_get_got_by_pc (faddr);
799 }
800 }
801
802 static unsigned int ldsid_pattern[] = {
803 0x000010a0, /* ldsid (rX),rY */
804 0x00001820, /* mtsp rY,sr0 */
805 0xe0000000 /* be,n (sr0,rX) */
806 };
807
808 static CORE_ADDR
809 hppa_hpux_search_pattern (struct gdbarch *gdbarch,
810 CORE_ADDR start, CORE_ADDR end,
811 unsigned int *patterns, int count)
812 {
813 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
814 int num_insns = (end - start + HPPA_INSN_SIZE) / HPPA_INSN_SIZE;
815 unsigned int *insns;
816 gdb_byte *buf;
817 int offset, i;
818
819 buf = alloca (num_insns * HPPA_INSN_SIZE);
820 insns = alloca (num_insns * sizeof (unsigned int));
821
822 read_memory (start, buf, num_insns * HPPA_INSN_SIZE);
823 for (i = 0; i < num_insns; i++, buf += HPPA_INSN_SIZE)
824 insns[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
825
826 for (offset = 0; offset <= num_insns - count; offset++)
827 {
828 for (i = 0; i < count; i++)
829 {
830 if ((insns[offset + i] & patterns[i]) != patterns[i])
831 break;
832 }
833 if (i == count)
834 break;
835 }
836
837 if (offset <= num_insns - count)
838 return start + offset * HPPA_INSN_SIZE;
839 else
840 return 0;
841 }
842
843 static CORE_ADDR
844 hppa32_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc,
845 int *argreg)
846 {
847 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
848 struct objfile *obj;
849 struct obj_section *sec;
850 struct hppa_objfile_private *priv;
851 struct frame_info *frame;
852 struct unwind_table_entry *u;
853 CORE_ADDR addr, rp;
854 char buf[4];
855 unsigned int insn;
856
857 sec = find_pc_section (pc);
858 obj = sec->objfile;
859 priv = objfile_data (obj, hppa_objfile_priv_data);
860
861 if (!priv)
862 priv = hppa_init_objfile_priv_data (obj);
863 if (!priv)
864 error (_("Internal error creating objfile private data."));
865
866 /* Use the cached value if we have one. */
867 if (priv->dummy_call_sequence_addr != 0)
868 {
869 *argreg = priv->dummy_call_sequence_reg;
870 return priv->dummy_call_sequence_addr;
871 }
872
873 /* First try a heuristic; if we are in a shared library call, our return
874 pointer is likely to point at an export stub. */
875 frame = get_current_frame ();
876 rp = frame_unwind_register_unsigned (frame, 2);
877 u = find_unwind_entry (rp);
878 if (u && u->stub_unwind.stub_type == EXPORT)
879 {
880 addr = hppa_hpux_search_pattern (gdbarch,
881 u->region_start, u->region_end,
882 ldsid_pattern,
883 ARRAY_SIZE (ldsid_pattern));
884 if (addr)
885 goto found_pattern;
886 }
887
888 /* Next thing to try is to look for an export stub. */
889 if (priv->unwind_info)
890 {
891 int i;
892
893 for (i = 0; i < priv->unwind_info->last; i++)
894 {
895 struct unwind_table_entry *u;
896 u = &priv->unwind_info->table[i];
897 if (u->stub_unwind.stub_type == EXPORT)
898 {
899 addr = hppa_hpux_search_pattern (gdbarch,
900 u->region_start, u->region_end,
901 ldsid_pattern,
902 ARRAY_SIZE (ldsid_pattern));
903 if (addr)
904 {
905 goto found_pattern;
906 }
907 }
908 }
909 }
910
911 /* Finally, if this is the main executable, try to locate a sequence
912 from noshlibs */
913 addr = hppa_symbol_address ("noshlibs");
914 sec = find_pc_section (addr);
915
916 if (sec && sec->objfile == obj)
917 {
918 CORE_ADDR start, end;
919
920 find_pc_partial_function (addr, NULL, &start, &end);
921 if (start != 0 && end != 0)
922 {
923 addr = hppa_hpux_search_pattern (gdbarch, start, end, ldsid_pattern,
924 ARRAY_SIZE (ldsid_pattern));
925 if (addr)
926 goto found_pattern;
927 }
928 }
929
930 /* Can't find a suitable sequence. */
931 return 0;
932
933 found_pattern:
934 target_read_memory (addr, buf, sizeof (buf));
935 insn = extract_unsigned_integer (buf, sizeof (buf), byte_order);
936 priv->dummy_call_sequence_addr = addr;
937 priv->dummy_call_sequence_reg = (insn >> 21) & 0x1f;
938
939 *argreg = priv->dummy_call_sequence_reg;
940 return priv->dummy_call_sequence_addr;
941 }
942
943 static CORE_ADDR
944 hppa64_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc,
945 int *argreg)
946 {
947 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
948 struct objfile *obj;
949 struct obj_section *sec;
950 struct hppa_objfile_private *priv;
951 CORE_ADDR addr;
952 struct minimal_symbol *msym;
953 int i;
954
955 sec = find_pc_section (pc);
956 obj = sec->objfile;
957 priv = objfile_data (obj, hppa_objfile_priv_data);
958
959 if (!priv)
960 priv = hppa_init_objfile_priv_data (obj);
961 if (!priv)
962 error (_("Internal error creating objfile private data."));
963
964 /* Use the cached value if we have one. */
965 if (priv->dummy_call_sequence_addr != 0)
966 {
967 *argreg = priv->dummy_call_sequence_reg;
968 return priv->dummy_call_sequence_addr;
969 }
970
971 /* FIXME: Without stub unwind information, locating a suitable sequence is
972 fairly difficult. For now, we implement a very naive and inefficient
973 scheme; try to read in blocks of code, and look for a "bve,n (rp)"
974 instruction. These are likely to occur at the end of functions, so
975 we only look at the last two instructions of each function. */
976 for (i = 0, msym = obj->msymbols; i < obj->minimal_symbol_count; i++, msym++)
977 {
978 CORE_ADDR begin, end;
979 char *name;
980 gdb_byte buf[2 * HPPA_INSN_SIZE];
981 int offset;
982
983 find_pc_partial_function (SYMBOL_VALUE_ADDRESS (msym), &name,
984 &begin, &end);
985
986 if (name == NULL || begin == 0 || end == 0)
987 continue;
988
989 if (target_read_memory (end - sizeof (buf), buf, sizeof (buf)) == 0)
990 {
991 for (offset = 0; offset < sizeof (buf); offset++)
992 {
993 unsigned int insn;
994
995 insn = extract_unsigned_integer (buf + offset,
996 HPPA_INSN_SIZE, byte_order);
997 if (insn == 0xe840d002) /* bve,n (rp) */
998 {
999 addr = (end - sizeof (buf)) + offset;
1000 goto found_pattern;
1001 }
1002 }
1003 }
1004 }
1005
1006 /* Can't find a suitable sequence. */
1007 return 0;
1008
1009 found_pattern:
1010 priv->dummy_call_sequence_addr = addr;
1011 /* Right now we only look for a "bve,l (rp)" sequence, so the register is
1012 always HPPA_RP_REGNUM. */
1013 priv->dummy_call_sequence_reg = HPPA_RP_REGNUM;
1014
1015 *argreg = priv->dummy_call_sequence_reg;
1016 return priv->dummy_call_sequence_addr;
1017 }
1018
1019 static CORE_ADDR
1020 hppa_hpux_find_import_stub_for_addr (CORE_ADDR funcaddr)
1021 {
1022 struct objfile *objfile;
1023 struct minimal_symbol *funsym, *stubsym;
1024 CORE_ADDR stubaddr;
1025
1026 funsym = lookup_minimal_symbol_by_pc (funcaddr);
1027 stubaddr = 0;
1028
1029 ALL_OBJFILES (objfile)
1030 {
1031 stubsym = lookup_minimal_symbol_solib_trampoline
1032 (SYMBOL_LINKAGE_NAME (funsym), objfile);
1033
1034 if (stubsym)
1035 {
1036 struct unwind_table_entry *u;
1037
1038 u = find_unwind_entry (SYMBOL_VALUE (stubsym));
1039 if (u == NULL
1040 || (u->stub_unwind.stub_type != IMPORT
1041 && u->stub_unwind.stub_type != IMPORT_SHLIB))
1042 continue;
1043
1044 stubaddr = SYMBOL_VALUE (stubsym);
1045
1046 /* If we found an IMPORT stub, then we can stop searching;
1047 if we found an IMPORT_SHLIB, we want to continue the search
1048 in the hopes that we will find an IMPORT stub. */
1049 if (u->stub_unwind.stub_type == IMPORT)
1050 break;
1051 }
1052 }
1053
1054 return stubaddr;
1055 }
1056
1057 static int
1058 hppa_hpux_sr_for_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
1059 {
1060 int sr;
1061 /* The space register to use is encoded in the top 2 bits of the address. */
1062 sr = addr >> (gdbarch_tdep (gdbarch)->bytes_per_address * 8 - 2);
1063 return sr + 4;
1064 }
1065
1066 static CORE_ADDR
1067 hppa_hpux_find_dummy_bpaddr (CORE_ADDR addr)
1068 {
1069 /* In order for us to restore the space register to its starting state,
1070 we need the dummy trampoline to return to the an instruction address in
1071 the same space as where we started the call. We used to place the
1072 breakpoint near the current pc, however, this breaks nested dummy calls
1073 as the nested call will hit the breakpoint address and terminate
1074 prematurely. Instead, we try to look for an address in the same space to
1075 put the breakpoint.
1076
1077 This is similar in spirit to putting the breakpoint at the "entry point"
1078 of an executable. */
1079
1080 struct obj_section *sec;
1081 struct unwind_table_entry *u;
1082 struct minimal_symbol *msym;
1083 CORE_ADDR func;
1084 int i;
1085
1086 sec = find_pc_section (addr);
1087 if (sec)
1088 {
1089 /* First try the lowest address in the section; we can use it as long
1090 as it is "regular" code (i.e. not a stub) */
1091 u = find_unwind_entry (obj_section_addr (sec));
1092 if (!u || u->stub_unwind.stub_type == 0)
1093 return obj_section_addr (sec);
1094
1095 /* Otherwise, we need to find a symbol for a regular function. We
1096 do this by walking the list of msymbols in the objfile. The symbol
1097 we find should not be the same as the function that was passed in. */
1098
1099 /* FIXME: this is broken, because we can find a function that will be
1100 called by the dummy call target function, which will still not
1101 work. */
1102
1103 find_pc_partial_function (addr, NULL, &func, NULL);
1104 for (i = 0, msym = sec->objfile->msymbols;
1105 i < sec->objfile->minimal_symbol_count;
1106 i++, msym++)
1107 {
1108 u = find_unwind_entry (SYMBOL_VALUE_ADDRESS (msym));
1109 if (func != SYMBOL_VALUE_ADDRESS (msym)
1110 && (!u || u->stub_unwind.stub_type == 0))
1111 return SYMBOL_VALUE_ADDRESS (msym);
1112 }
1113 }
1114
1115 warning (_("Cannot find suitable address to place dummy breakpoint; nested "
1116 "calls may fail."));
1117 return addr - 4;
1118 }
1119
1120 static CORE_ADDR
1121 hppa_hpux_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
1122 CORE_ADDR funcaddr,
1123 struct value **args, int nargs,
1124 struct type *value_type,
1125 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1126 struct regcache *regcache)
1127 {
1128 CORE_ADDR pc, stubaddr;
1129 int argreg = 0;
1130
1131 pc = regcache_read_pc (regcache);
1132
1133 /* Note: we don't want to pass a function descriptor here; push_dummy_call
1134 fills in the PIC register for us. */
1135 funcaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funcaddr, NULL);
1136
1137 /* The simple case is where we call a function in the same space that we are
1138 currently in; in that case we don't really need to do anything. */
1139 if (hppa_hpux_sr_for_addr (gdbarch, pc)
1140 == hppa_hpux_sr_for_addr (gdbarch, funcaddr))
1141 {
1142 /* Intraspace call. */
1143 *bp_addr = hppa_hpux_find_dummy_bpaddr (pc);
1144 *real_pc = funcaddr;
1145 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, *bp_addr);
1146
1147 return sp;
1148 }
1149
1150 /* In order to make an interspace call, we need to go through a stub.
1151 gcc supplies an appropriate stub called "__gcc_plt_call", however, if
1152 an application is compiled with HP compilers then this stub is not
1153 available. We used to fallback to "__d_plt_call", however that stub
1154 is not entirely useful for us because it doesn't do an interspace
1155 return back to the caller. Also, on hppa64-hpux, there is no
1156 __gcc_plt_call available. In order to keep the code uniform, we
1157 instead don't use either of these stubs, but instead write our own
1158 onto the stack.
1159
1160 A problem arises since the stack is located in a different space than
1161 code, so in order to branch to a stack stub, we will need to do an
1162 interspace branch. Previous versions of gdb did this by modifying code
1163 at the current pc and doing single-stepping to set the pcsq. Since this
1164 is highly undesirable, we use a different scheme:
1165
1166 All we really need to do the branch to the stub is a short instruction
1167 sequence like this:
1168
1169 PA1.1:
1170 ldsid (rX),r1
1171 mtsp r1,sr0
1172 be,n (sr0,rX)
1173
1174 PA2.0:
1175 bve,n (sr0,rX)
1176
1177 Instead of writing these sequences ourselves, we can find it in
1178 the instruction stream that belongs to the current space. While this
1179 seems difficult at first, we are actually guaranteed to find the sequences
1180 in several places:
1181
1182 For 32-bit code:
1183 - in export stubs for shared libraries
1184 - in the "noshlibs" routine in the main module
1185
1186 For 64-bit code:
1187 - at the end of each "regular" function
1188
1189 We cache the address of these sequences in the objfile's private data
1190 since these operations can potentially be quite expensive.
1191
1192 So, what we do is:
1193 - write a stack trampoline
1194 - look for a suitable instruction sequence in the current space
1195 - point the sequence at the trampoline
1196 - set the return address of the trampoline to the current space
1197 (see hppa_hpux_find_dummy_call_bpaddr)
1198 - set the continuing address of the "dummy code" as the sequence.
1199
1200 */
1201
1202 if (IS_32BIT_TARGET (gdbarch))
1203 {
1204 static unsigned int hppa32_tramp[] = {
1205 0x0fdf1291, /* stw r31,-8(,sp) */
1206 0x02c010a1, /* ldsid (,r22),r1 */
1207 0x00011820, /* mtsp r1,sr0 */
1208 0xe6c00000, /* be,l 0(sr0,r22),%sr0,%r31 */
1209 0x081f0242, /* copy r31,rp */
1210 0x0fd11082, /* ldw -8(,sp),rp */
1211 0x004010a1, /* ldsid (,rp),r1 */
1212 0x00011820, /* mtsp r1,sr0 */
1213 0xe0400000, /* be 0(sr0,rp) */
1214 0x08000240 /* nop */
1215 };
1216
1217 /* for hppa32, we must call the function through a stub so that on
1218 return it can return to the space of our trampoline. */
1219 stubaddr = hppa_hpux_find_import_stub_for_addr (funcaddr);
1220 if (stubaddr == 0)
1221 error (_("Cannot call external function not referenced by application "
1222 "(no import stub).\n"));
1223 regcache_cooked_write_unsigned (regcache, 22, stubaddr);
1224
1225 write_memory (sp, (char *)&hppa32_tramp, sizeof (hppa32_tramp));
1226
1227 *bp_addr = hppa_hpux_find_dummy_bpaddr (pc);
1228 regcache_cooked_write_unsigned (regcache, 31, *bp_addr);
1229
1230 *real_pc = hppa32_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg);
1231 if (*real_pc == 0)
1232 error (_("Cannot make interspace call from here."));
1233
1234 regcache_cooked_write_unsigned (regcache, argreg, sp);
1235
1236 sp += sizeof (hppa32_tramp);
1237 }
1238 else
1239 {
1240 static unsigned int hppa64_tramp[] = {
1241 0xeac0f000, /* bve,l (r22),%r2 */
1242 0x0fdf12d1, /* std r31,-8(,sp) */
1243 0x0fd110c2, /* ldd -8(,sp),rp */
1244 0xe840d002, /* bve,n (rp) */
1245 0x08000240 /* nop */
1246 };
1247
1248 /* for hppa64, we don't need to call through a stub; all functions
1249 return via a bve. */
1250 regcache_cooked_write_unsigned (regcache, 22, funcaddr);
1251 write_memory (sp, (char *)&hppa64_tramp, sizeof (hppa64_tramp));
1252
1253 *bp_addr = pc - 4;
1254 regcache_cooked_write_unsigned (regcache, 31, *bp_addr);
1255
1256 *real_pc = hppa64_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg);
1257 if (*real_pc == 0)
1258 error (_("Cannot make interspace call from here."));
1259
1260 regcache_cooked_write_unsigned (regcache, argreg, sp);
1261
1262 sp += sizeof (hppa64_tramp);
1263 }
1264
1265 sp = gdbarch_frame_align (gdbarch, sp);
1266
1267 return sp;
1268 }
1269
1270 \f
1271
1272 static void
1273 hppa_hpux_supply_ss_narrow (struct regcache *regcache,
1274 int regnum, const char *save_state)
1275 {
1276 const char *ss_narrow = save_state + HPPA_HPUX_SS_NARROW_OFFSET;
1277 int i, offset = 0;
1278
1279 for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++)
1280 {
1281 if (regnum == i || regnum == -1)
1282 regcache_raw_supply (regcache, i, ss_narrow + offset);
1283
1284 offset += 4;
1285 }
1286 }
1287
1288 static void
1289 hppa_hpux_supply_ss_fpblock (struct regcache *regcache,
1290 int regnum, const char *save_state)
1291 {
1292 const char *ss_fpblock = save_state + HPPA_HPUX_SS_FPBLOCK_OFFSET;
1293 int i, offset = 0;
1294
1295 /* FIXME: We view the floating-point state as 64 single-precision
1296 registers for 32-bit code, and 32 double-precision register for
1297 64-bit code. This distinction is artificial and should be
1298 eliminated. If that ever happens, we should remove the if-clause
1299 below. */
1300
1301 if (register_size (get_regcache_arch (regcache), HPPA_FP0_REGNUM) == 4)
1302 {
1303 for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 64; i++)
1304 {
1305 if (regnum == i || regnum == -1)
1306 regcache_raw_supply (regcache, i, ss_fpblock + offset);
1307
1308 offset += 4;
1309 }
1310 }
1311 else
1312 {
1313 for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 32; i++)
1314 {
1315 if (regnum == i || regnum == -1)
1316 regcache_raw_supply (regcache, i, ss_fpblock + offset);
1317
1318 offset += 8;
1319 }
1320 }
1321 }
1322
1323 static void
1324 hppa_hpux_supply_ss_wide (struct regcache *regcache,
1325 int regnum, const char *save_state)
1326 {
1327 const char *ss_wide = save_state + HPPA_HPUX_SS_WIDE_OFFSET;
1328 int i, offset = 8;
1329
1330 if (register_size (get_regcache_arch (regcache), HPPA_R1_REGNUM) == 4)
1331 offset += 4;
1332
1333 for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++)
1334 {
1335 if (regnum == i || regnum == -1)
1336 regcache_raw_supply (regcache, i, ss_wide + offset);
1337
1338 offset += 8;
1339 }
1340 }
1341
1342 static void
1343 hppa_hpux_supply_save_state (const struct regset *regset,
1344 struct regcache *regcache,
1345 int regnum, const void *regs, size_t len)
1346 {
1347 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1348 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1349 const char *proc_info = regs;
1350 const char *save_state = proc_info + 8;
1351 ULONGEST flags;
1352
1353 flags = extract_unsigned_integer (save_state + HPPA_HPUX_SS_FLAGS_OFFSET,
1354 4, byte_order);
1355 if (regnum == -1 || regnum == HPPA_FLAGS_REGNUM)
1356 {
1357 size_t size = register_size (gdbarch, HPPA_FLAGS_REGNUM);
1358 char buf[8];
1359
1360 store_unsigned_integer (buf, size, byte_order, flags);
1361 regcache_raw_supply (regcache, HPPA_FLAGS_REGNUM, buf);
1362 }
1363
1364 /* If the SS_WIDEREGS flag is set, we really do need the full
1365 `struct save_state'. */
1366 if (flags & HPPA_HPUX_SS_WIDEREGS && len < HPPA_HPUX_SAVE_STATE_SIZE)
1367 error (_("Register set contents too small"));
1368
1369 if (flags & HPPA_HPUX_SS_WIDEREGS)
1370 hppa_hpux_supply_ss_wide (regcache, regnum, save_state);
1371 else
1372 hppa_hpux_supply_ss_narrow (regcache, regnum, save_state);
1373
1374 hppa_hpux_supply_ss_fpblock (regcache, regnum, save_state);
1375 }
1376
1377 /* HP-UX register set. */
1378
1379 static struct regset hppa_hpux_regset =
1380 {
1381 NULL,
1382 hppa_hpux_supply_save_state
1383 };
1384
1385 static const struct regset *
1386 hppa_hpux_regset_from_core_section (struct gdbarch *gdbarch,
1387 const char *sect_name, size_t sect_size)
1388 {
1389 if (strcmp (sect_name, ".reg") == 0
1390 && sect_size >= HPPA_HPUX_PA89_SAVE_STATE_SIZE + 8)
1391 return &hppa_hpux_regset;
1392
1393 return NULL;
1394 }
1395 \f
1396
1397 /* Bit in the `ss_flag' member of `struct save_state' that indicates
1398 the state was saved from a system call. From
1399 <machine/save_state.h>. */
1400 #define HPPA_HPUX_SS_INSYSCALL 0x02
1401
1402 static CORE_ADDR
1403 hppa_hpux_read_pc (struct regcache *regcache)
1404 {
1405 ULONGEST flags;
1406
1407 /* If we're currently in a system call return the contents of %r31. */
1408 regcache_cooked_read_unsigned (regcache, HPPA_FLAGS_REGNUM, &flags);
1409 if (flags & HPPA_HPUX_SS_INSYSCALL)
1410 {
1411 ULONGEST pc;
1412 regcache_cooked_read_unsigned (regcache, HPPA_R31_REGNUM, &pc);
1413 return pc & ~0x3;
1414 }
1415
1416 return hppa_read_pc (regcache);
1417 }
1418
1419 static void
1420 hppa_hpux_write_pc (struct regcache *regcache, CORE_ADDR pc)
1421 {
1422 ULONGEST flags;
1423
1424 /* If we're currently in a system call also write PC into %r31. */
1425 regcache_cooked_read_unsigned (regcache, HPPA_FLAGS_REGNUM, &flags);
1426 if (flags & HPPA_HPUX_SS_INSYSCALL)
1427 regcache_cooked_write_unsigned (regcache, HPPA_R31_REGNUM, pc | 0x3);
1428
1429 hppa_write_pc (regcache, pc);
1430 }
1431
1432 static CORE_ADDR
1433 hppa_hpux_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1434 {
1435 ULONGEST flags;
1436
1437 /* If we're currently in a system call return the contents of %r31. */
1438 flags = frame_unwind_register_unsigned (next_frame, HPPA_FLAGS_REGNUM);
1439 if (flags & HPPA_HPUX_SS_INSYSCALL)
1440 return frame_unwind_register_unsigned (next_frame, HPPA_R31_REGNUM) & ~0x3;
1441
1442 return hppa_unwind_pc (gdbarch, next_frame);
1443 }
1444 \f
1445
1446 /* Given the current value of the pc, check to see if it is inside a stub, and
1447 if so, change the value of the pc to point to the caller of the stub.
1448 THIS_FRAME is the current frame in the current list of frames.
1449 BASE contains to stack frame base of the current frame.
1450 SAVE_REGS is the register file stored in the frame cache. */
1451 static void
1452 hppa_hpux_unwind_adjust_stub (struct frame_info *this_frame, CORE_ADDR base,
1453 struct trad_frame_saved_reg *saved_regs)
1454 {
1455 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1456 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1457 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1458 struct value *pcoq_head_val;
1459 ULONGEST pcoq_head;
1460 CORE_ADDR stubpc;
1461 struct unwind_table_entry *u;
1462
1463 pcoq_head_val = trad_frame_get_prev_register (this_frame, saved_regs,
1464 HPPA_PCOQ_HEAD_REGNUM);
1465 pcoq_head =
1466 extract_unsigned_integer (value_contents_all (pcoq_head_val),
1467 register_size (gdbarch, HPPA_PCOQ_HEAD_REGNUM),
1468 byte_order);
1469
1470 u = find_unwind_entry (pcoq_head);
1471 if (u && u->stub_unwind.stub_type == EXPORT)
1472 {
1473 stubpc = read_memory_integer (base - 24, word_size, byte_order);
1474 trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc);
1475 }
1476 else if (hppa_symbol_address ("__gcc_plt_call")
1477 == get_pc_function_start (pcoq_head))
1478 {
1479 stubpc = read_memory_integer (base - 8, word_size, byte_order);
1480 trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc);
1481 }
1482 }
1483
1484 static void
1485 hppa_hpux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1486 {
1487 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1488
1489 if (IS_32BIT_TARGET (gdbarch))
1490 tdep->in_solib_call_trampoline = hppa32_hpux_in_solib_call_trampoline;
1491 else
1492 tdep->in_solib_call_trampoline = hppa64_hpux_in_solib_call_trampoline;
1493
1494 tdep->unwind_adjust_stub = hppa_hpux_unwind_adjust_stub;
1495
1496 set_gdbarch_in_solib_return_trampoline
1497 (gdbarch, hppa_hpux_in_solib_return_trampoline);
1498 set_gdbarch_skip_trampoline_code (gdbarch, hppa_hpux_skip_trampoline_code);
1499
1500 set_gdbarch_push_dummy_code (gdbarch, hppa_hpux_push_dummy_code);
1501 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1502
1503 set_gdbarch_read_pc (gdbarch, hppa_hpux_read_pc);
1504 set_gdbarch_write_pc (gdbarch, hppa_hpux_write_pc);
1505 set_gdbarch_unwind_pc (gdbarch, hppa_hpux_unwind_pc);
1506 set_gdbarch_skip_permanent_breakpoint
1507 (gdbarch, hppa_skip_permanent_breakpoint);
1508
1509 set_gdbarch_regset_from_core_section
1510 (gdbarch, hppa_hpux_regset_from_core_section);
1511
1512 frame_unwind_append_unwinder (gdbarch, &hppa_hpux_sigtramp_frame_unwind);
1513 }
1514
1515 static void
1516 hppa_hpux_som_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1517 {
1518 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1519
1520 tdep->is_elf = 0;
1521
1522 tdep->find_global_pointer = hppa32_hpux_find_global_pointer;
1523
1524 hppa_hpux_init_abi (info, gdbarch);
1525 som_solib_select (gdbarch);
1526 }
1527
1528 static void
1529 hppa_hpux_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1530 {
1531 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1532
1533 tdep->is_elf = 1;
1534 tdep->find_global_pointer = hppa64_hpux_find_global_pointer;
1535
1536 hppa_hpux_init_abi (info, gdbarch);
1537 pa64_solib_select (gdbarch);
1538 }
1539
1540 static enum gdb_osabi
1541 hppa_hpux_core_osabi_sniffer (bfd *abfd)
1542 {
1543 if (strcmp (bfd_get_target (abfd), "hpux-core") == 0)
1544 return GDB_OSABI_HPUX_SOM;
1545 else if (strcmp (bfd_get_target (abfd), "elf64-hppa") == 0)
1546 {
1547 asection *section;
1548
1549 section = bfd_get_section_by_name (abfd, ".kernel");
1550 if (section)
1551 {
1552 bfd_size_type size;
1553 char *contents;
1554
1555 size = bfd_section_size (abfd, section);
1556 contents = alloca (size);
1557 if (bfd_get_section_contents (abfd, section, contents,
1558 (file_ptr) 0, size)
1559 && strcmp (contents, "HP-UX") == 0)
1560 return GDB_OSABI_HPUX_ELF;
1561 }
1562 }
1563
1564 return GDB_OSABI_UNKNOWN;
1565 }
1566
1567 void
1568 _initialize_hppa_hpux_tdep (void)
1569 {
1570 /* BFD doesn't set a flavour for HP-UX style core files. It doesn't
1571 set the architecture either. */
1572 gdbarch_register_osabi_sniffer (bfd_arch_unknown,
1573 bfd_target_unknown_flavour,
1574 hppa_hpux_core_osabi_sniffer);
1575 gdbarch_register_osabi_sniffer (bfd_arch_hppa,
1576 bfd_target_elf_flavour,
1577 hppa_hpux_core_osabi_sniffer);
1578
1579 gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_HPUX_SOM,
1580 hppa_hpux_som_init_abi);
1581 gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w, GDB_OSABI_HPUX_ELF,
1582 hppa_hpux_elf_init_abi);
1583 }
This page took 0.066181 seconds and 4 git commands to generate.