* infrun.c (normal_stop): Don't call
[deliverable/binutils-gdb.git] / gdb / hppa-linux-tdep.c
1 /* Target-dependent code for GNU/Linux running on PA-RISC, for GDB.
2
3 Copyright (C) 2004, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "osabi.h"
23 #include "target.h"
24 #include "objfiles.h"
25 #include "solib-svr4.h"
26 #include "glibc-tdep.h"
27 #include "frame-unwind.h"
28 #include "trad-frame.h"
29 #include "dwarf2-frame.h"
30 #include "value.h"
31 #include "regset.h"
32 #include "regcache.h"
33 #include "hppa-tdep.h"
34
35 #include "elf/common.h"
36
37 /* Map DWARF DBX register numbers to GDB register numbers. */
38 static int
39 hppa_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
40 {
41 /* The general registers and the sar are the same in both sets. */
42 if (reg <= 32)
43 return reg;
44
45 /* fr4-fr31 (left and right halves) are mapped from 72. */
46 if (reg >= 72 && reg <= 72 + 28 * 2)
47 return HPPA_FP4_REGNUM + (reg - 72);
48
49 warning (_("Unmapped DWARF DBX Register #%d encountered."), reg);
50 return -1;
51 }
52
53 static void
54 hppa_linux_target_write_pc (struct regcache *regcache, CORE_ADDR v)
55 {
56 /* Probably this should be done by the kernel, but it isn't. */
57 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, v | 0x3);
58 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, (v + 4) | 0x3);
59 }
60
61 /* An instruction to match. */
62 struct insn_pattern
63 {
64 unsigned int data; /* See if it matches this.... */
65 unsigned int mask; /* ... with this mask. */
66 };
67
68 static struct insn_pattern hppa_sigtramp[] = {
69 /* ldi 0, %r25 or ldi 1, %r25 */
70 { 0x34190000, 0xfffffffd },
71 /* ldi __NR_rt_sigreturn, %r20 */
72 { 0x3414015a, 0xffffffff },
73 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
74 { 0xe4008200, 0xffffffff },
75 /* nop */
76 { 0x08000240, 0xffffffff },
77 { 0, 0 }
78 };
79
80 #define HPPA_MAX_INSN_PATTERN_LEN (4)
81
82 /* Return non-zero if the instructions at PC match the series
83 described in PATTERN, or zero otherwise. PATTERN is an array of
84 'struct insn_pattern' objects, terminated by an entry whose mask is
85 zero.
86
87 When the match is successful, fill INSN[i] with what PATTERN[i]
88 matched. */
89 static int
90 insns_match_pattern (CORE_ADDR pc,
91 struct insn_pattern *pattern,
92 unsigned int *insn)
93 {
94 int i;
95 CORE_ADDR npc = pc;
96
97 for (i = 0; pattern[i].mask; i++)
98 {
99 char buf[4];
100
101 target_read_memory (npc, buf, 4);
102 insn[i] = extract_unsigned_integer (buf, 4);
103 if ((insn[i] & pattern[i].mask) == pattern[i].data)
104 npc += 4;
105 else
106 return 0;
107 }
108 return 1;
109 }
110
111 /* Signal frames. */
112
113 /* (This is derived from MD_FALLBACK_FRAME_STATE_FOR in gcc.)
114
115 Unfortunately, because of various bugs and changes to the kernel,
116 we have several cases to deal with.
117
118 In 2.4, the signal trampoline is 4 bytes, and pc should point directly at
119 the beginning of the trampoline and struct rt_sigframe.
120
121 In <= 2.6.5-rc2-pa3, the signal trampoline is 9 bytes, and pc points at
122 the 4th word in the trampoline structure. This is wrong, it should point
123 at the 5th word. This is fixed in 2.6.5-rc2-pa4.
124
125 To detect these cases, we first take pc, align it to 64-bytes
126 to get the beginning of the signal frame, and then check offsets 0, 4
127 and 5 to see if we found the beginning of the trampoline. This will
128 tell us how to locate the sigcontext structure.
129
130 Note that with a 2.4 64-bit kernel, the signal context is not properly
131 passed back to userspace so the unwind will not work correctly. */
132 static CORE_ADDR
133 hppa_linux_sigtramp_find_sigcontext (CORE_ADDR pc)
134 {
135 unsigned int dummy[HPPA_MAX_INSN_PATTERN_LEN];
136 int offs = 0;
137 int try;
138 /* offsets to try to find the trampoline */
139 static int pcoffs[] = { 0, 4*4, 5*4 };
140 /* offsets to the rt_sigframe structure */
141 static int sfoffs[] = { 4*4, 10*4, 10*4 };
142 CORE_ADDR sp;
143
144 /* Most of the time, this will be correct. The one case when this will
145 fail is if the user defined an alternate stack, in which case the
146 beginning of the stack will not be align_down (pc, 64). */
147 sp = align_down (pc, 64);
148
149 /* rt_sigreturn trampoline:
150 3419000x ldi 0, %r25 or ldi 1, %r25 (x = 0 or 2)
151 3414015a ldi __NR_rt_sigreturn, %r20
152 e4008200 be,l 0x100(%sr2, %r0), %sr0, %r31
153 08000240 nop */
154
155 for (try = 0; try < ARRAY_SIZE (pcoffs); try++)
156 {
157 if (insns_match_pattern (sp + pcoffs[try], hppa_sigtramp, dummy))
158 {
159 offs = sfoffs[try];
160 break;
161 }
162 }
163
164 if (offs == 0)
165 {
166 if (insns_match_pattern (pc, hppa_sigtramp, dummy))
167 {
168 /* sigaltstack case: we have no way of knowing which offset to
169 use in this case; default to new kernel handling. If this is
170 wrong the unwinding will fail. */
171 try = 2;
172 sp = pc - pcoffs[try];
173 }
174 else
175 {
176 return 0;
177 }
178 }
179
180 /* sp + sfoffs[try] points to a struct rt_sigframe, which contains
181 a struct siginfo and a struct ucontext. struct ucontext contains
182 a struct sigcontext. Return an offset to this sigcontext here. Too
183 bad we cannot include system specific headers :-(.
184 sizeof(struct siginfo) == 128
185 offsetof(struct ucontext, uc_mcontext) == 24. */
186 return sp + sfoffs[try] + 128 + 24;
187 }
188
189 struct hppa_linux_sigtramp_unwind_cache
190 {
191 CORE_ADDR base;
192 struct trad_frame_saved_reg *saved_regs;
193 };
194
195 static struct hppa_linux_sigtramp_unwind_cache *
196 hppa_linux_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
197 void **this_cache)
198 {
199 struct gdbarch *gdbarch = get_frame_arch (this_frame);
200 struct hppa_linux_sigtramp_unwind_cache *info;
201 CORE_ADDR pc, scptr;
202 int i;
203
204 if (*this_cache)
205 return *this_cache;
206
207 info = FRAME_OBSTACK_ZALLOC (struct hppa_linux_sigtramp_unwind_cache);
208 *this_cache = info;
209 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
210
211 pc = get_frame_pc (this_frame);
212 scptr = hppa_linux_sigtramp_find_sigcontext (pc);
213
214 /* structure of struct sigcontext:
215
216 struct sigcontext {
217 unsigned long sc_flags;
218 unsigned long sc_gr[32];
219 unsigned long long sc_fr[32];
220 unsigned long sc_iasq[2];
221 unsigned long sc_iaoq[2];
222 unsigned long sc_sar; */
223
224 /* Skip sc_flags. */
225 scptr += 4;
226
227 /* GR[0] is the psw. */
228 info->saved_regs[HPPA_IPSW_REGNUM].addr = scptr;
229 scptr += 4;
230
231 /* General registers. */
232 for (i = 1; i < 32; i++)
233 {
234 info->saved_regs[HPPA_R0_REGNUM + i].addr = scptr;
235 scptr += 4;
236 }
237
238 /* Pad to long long boundary. */
239 scptr += 4;
240
241 /* FP regs; FP0-3 are not restored. */
242 scptr += (8 * 4);
243
244 for (i = 4; i < 32; i++)
245 {
246 info->saved_regs[HPPA_FP0_REGNUM + (i * 2)].addr = scptr;
247 scptr += 4;
248 info->saved_regs[HPPA_FP0_REGNUM + (i * 2) + 1].addr = scptr;
249 scptr += 4;
250 }
251
252 /* IASQ/IAOQ. */
253 info->saved_regs[HPPA_PCSQ_HEAD_REGNUM].addr = scptr;
254 scptr += 4;
255 info->saved_regs[HPPA_PCSQ_TAIL_REGNUM].addr = scptr;
256 scptr += 4;
257
258 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = scptr;
259 scptr += 4;
260 info->saved_regs[HPPA_PCOQ_TAIL_REGNUM].addr = scptr;
261 scptr += 4;
262
263 info->saved_regs[HPPA_SAR_REGNUM].addr = scptr;
264
265 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
266
267 return info;
268 }
269
270 static void
271 hppa_linux_sigtramp_frame_this_id (struct frame_info *this_frame,
272 void **this_prologue_cache,
273 struct frame_id *this_id)
274 {
275 struct hppa_linux_sigtramp_unwind_cache *info
276 = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
277 *this_id = frame_id_build (info->base, get_frame_pc (this_frame));
278 }
279
280 static struct value *
281 hppa_linux_sigtramp_frame_prev_register (struct frame_info *this_frame,
282 void **this_prologue_cache,
283 int regnum)
284 {
285 struct hppa_linux_sigtramp_unwind_cache *info
286 = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
287 return hppa_frame_prev_register_helper (this_frame,
288 info->saved_regs, regnum);
289 }
290
291 /* hppa-linux always uses "new-style" rt-signals. The signal handler's return
292 address should point to a signal trampoline on the stack. The signal
293 trampoline is embedded in a rt_sigframe structure that is aligned on
294 the stack. We take advantage of the fact that sp must be 64-byte aligned,
295 and the trampoline is small, so by rounding down the trampoline address
296 we can find the beginning of the struct rt_sigframe. */
297 static int
298 hppa_linux_sigtramp_frame_sniffer (const struct frame_unwind *self,
299 struct frame_info *this_frame,
300 void **this_prologue_cache)
301 {
302 CORE_ADDR pc = get_frame_pc (this_frame);
303
304 if (hppa_linux_sigtramp_find_sigcontext (pc))
305 return 1;
306
307 return 0;
308 }
309
310 static const struct frame_unwind hppa_linux_sigtramp_frame_unwind = {
311 SIGTRAMP_FRAME,
312 hppa_linux_sigtramp_frame_this_id,
313 hppa_linux_sigtramp_frame_prev_register,
314 NULL,
315 hppa_linux_sigtramp_frame_sniffer
316 };
317
318 /* Attempt to find (and return) the global pointer for the given
319 function.
320
321 This is a rather nasty bit of code searchs for the .dynamic section
322 in the objfile corresponding to the pc of the function we're trying
323 to call. Once it finds the addresses at which the .dynamic section
324 lives in the child process, it scans the Elf32_Dyn entries for a
325 DT_PLTGOT tag. If it finds one of these, the corresponding
326 d_un.d_ptr value is the global pointer. */
327
328 static CORE_ADDR
329 hppa_linux_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
330 {
331 struct obj_section *faddr_sect;
332 CORE_ADDR faddr;
333
334 faddr = value_as_address (function);
335
336 /* Is this a plabel? If so, dereference it to get the gp value. */
337 if (faddr & 2)
338 {
339 int status;
340 char buf[4];
341
342 faddr &= ~3;
343
344 status = target_read_memory (faddr + 4, buf, sizeof (buf));
345 if (status == 0)
346 return extract_unsigned_integer (buf, sizeof (buf));
347 }
348
349 /* If the address is in the plt section, then the real function hasn't
350 yet been fixed up by the linker so we cannot determine the gp of
351 that function. */
352 if (in_plt_section (faddr, NULL))
353 return 0;
354
355 faddr_sect = find_pc_section (faddr);
356 if (faddr_sect != NULL)
357 {
358 struct obj_section *osect;
359
360 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
361 {
362 if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
363 break;
364 }
365
366 if (osect < faddr_sect->objfile->sections_end)
367 {
368 CORE_ADDR addr, endaddr;
369
370 addr = obj_section_addr (osect);
371 endaddr = obj_section_endaddr (osect);
372
373 while (addr < endaddr)
374 {
375 int status;
376 LONGEST tag;
377 char buf[4];
378
379 status = target_read_memory (addr, buf, sizeof (buf));
380 if (status != 0)
381 break;
382 tag = extract_signed_integer (buf, sizeof (buf));
383
384 if (tag == DT_PLTGOT)
385 {
386 CORE_ADDR global_pointer;
387
388 status = target_read_memory (addr + 4, buf, sizeof (buf));
389 if (status != 0)
390 break;
391 global_pointer = extract_unsigned_integer (buf, sizeof (buf));
392
393 /* The payoff... */
394 return global_pointer;
395 }
396
397 if (tag == DT_NULL)
398 break;
399
400 addr += 8;
401 }
402 }
403 }
404 return 0;
405 }
406 \f
407 /*
408 * Registers saved in a coredump:
409 * gr0..gr31
410 * sr0..sr7
411 * iaoq0..iaoq1
412 * iasq0..iasq1
413 * sar, iir, isr, ior, ipsw
414 * cr0, cr24..cr31
415 * cr8,9,12,13
416 * cr10, cr15
417 */
418
419 #define GR_REGNUM(_n) (HPPA_R0_REGNUM+_n)
420 #define TR_REGNUM(_n) (HPPA_TR0_REGNUM+_n)
421 static const int greg_map[] =
422 {
423 GR_REGNUM(0), GR_REGNUM(1), GR_REGNUM(2), GR_REGNUM(3),
424 GR_REGNUM(4), GR_REGNUM(5), GR_REGNUM(6), GR_REGNUM(7),
425 GR_REGNUM(8), GR_REGNUM(9), GR_REGNUM(10), GR_REGNUM(11),
426 GR_REGNUM(12), GR_REGNUM(13), GR_REGNUM(14), GR_REGNUM(15),
427 GR_REGNUM(16), GR_REGNUM(17), GR_REGNUM(18), GR_REGNUM(19),
428 GR_REGNUM(20), GR_REGNUM(21), GR_REGNUM(22), GR_REGNUM(23),
429 GR_REGNUM(24), GR_REGNUM(25), GR_REGNUM(26), GR_REGNUM(27),
430 GR_REGNUM(28), GR_REGNUM(29), GR_REGNUM(30), GR_REGNUM(31),
431
432 HPPA_SR4_REGNUM+1, HPPA_SR4_REGNUM+2, HPPA_SR4_REGNUM+3, HPPA_SR4_REGNUM+4,
433 HPPA_SR4_REGNUM, HPPA_SR4_REGNUM+5, HPPA_SR4_REGNUM+6, HPPA_SR4_REGNUM+7,
434
435 HPPA_PCOQ_HEAD_REGNUM, HPPA_PCOQ_TAIL_REGNUM,
436 HPPA_PCSQ_HEAD_REGNUM, HPPA_PCSQ_TAIL_REGNUM,
437
438 HPPA_SAR_REGNUM, HPPA_IIR_REGNUM, HPPA_ISR_REGNUM, HPPA_IOR_REGNUM,
439 HPPA_IPSW_REGNUM, HPPA_RCR_REGNUM,
440
441 TR_REGNUM(0), TR_REGNUM(1), TR_REGNUM(2), TR_REGNUM(3),
442 TR_REGNUM(4), TR_REGNUM(5), TR_REGNUM(6), TR_REGNUM(7),
443
444 HPPA_PID0_REGNUM, HPPA_PID1_REGNUM, HPPA_PID2_REGNUM, HPPA_PID3_REGNUM,
445 HPPA_CCR_REGNUM, HPPA_EIEM_REGNUM,
446 };
447
448 static void
449 hppa_linux_supply_regset (const struct regset *regset,
450 struct regcache *regcache,
451 int regnum, const void *regs, size_t len)
452 {
453 struct gdbarch *arch = get_regcache_arch (regcache);
454 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
455 const char *buf = regs;
456 int i, offset;
457
458 offset = 0;
459 for (i = 0; i < ARRAY_SIZE (greg_map); i++)
460 {
461 if (regnum == greg_map[i] || regnum == -1)
462 regcache_raw_supply (regcache, greg_map[i], buf + offset);
463
464 offset += tdep->bytes_per_address;
465 }
466 }
467
468 static void
469 hppa_linux_supply_fpregset (const struct regset *regset,
470 struct regcache *regcache,
471 int regnum, const void *regs, size_t len)
472 {
473 const char *buf = regs;
474 int i, offset;
475
476 offset = 0;
477 for (i = 0; i < 64; i++)
478 {
479 if (regnum == HPPA_FP0_REGNUM + i || regnum == -1)
480 regcache_raw_supply (regcache, HPPA_FP0_REGNUM + i,
481 buf + offset);
482 offset += 4;
483 }
484 }
485
486 /* HPPA Linux kernel register set. */
487 static struct regset hppa_linux_regset =
488 {
489 NULL,
490 hppa_linux_supply_regset
491 };
492
493 static struct regset hppa_linux_fpregset =
494 {
495 NULL,
496 hppa_linux_supply_fpregset
497 };
498
499 static const struct regset *
500 hppa_linux_regset_from_core_section (struct gdbarch *gdbarch,
501 const char *sect_name,
502 size_t sect_size)
503 {
504 if (strcmp (sect_name, ".reg") == 0)
505 return &hppa_linux_regset;
506 else if (strcmp (sect_name, ".reg2") == 0)
507 return &hppa_linux_fpregset;
508
509 return NULL;
510 }
511 \f
512
513 /* Forward declarations. */
514 extern initialize_file_ftype _initialize_hppa_linux_tdep;
515
516 static void
517 hppa_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
518 {
519 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
520
521 /* GNU/Linux is always ELF. */
522 tdep->is_elf = 1;
523
524 tdep->find_global_pointer = hppa_linux_find_global_pointer;
525
526 set_gdbarch_write_pc (gdbarch, hppa_linux_target_write_pc);
527
528 frame_unwind_append_unwinder (gdbarch, &hppa_linux_sigtramp_frame_unwind);
529
530 /* GNU/Linux uses SVR4-style shared libraries. */
531 set_solib_svr4_fetch_link_map_offsets
532 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
533
534 tdep->in_solib_call_trampoline = hppa_in_solib_call_trampoline;
535 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
536
537 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
538 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
539
540 /* On hppa-linux, currently, sizeof(long double) == 8. There has been
541 some discussions to support 128-bit long double, but it requires some
542 more work in gcc and glibc first. */
543 set_gdbarch_long_double_bit (gdbarch, 64);
544
545 set_gdbarch_regset_from_core_section
546 (gdbarch, hppa_linux_regset_from_core_section);
547
548 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa_dwarf_reg_to_regnum);
549
550 /* Enable TLS support. */
551 set_gdbarch_fetch_tls_load_module_address (gdbarch,
552 svr4_fetch_objfile_link_map);
553 }
554
555 void
556 _initialize_hppa_linux_tdep (void)
557 {
558 gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_LINUX, hppa_linux_init_abi);
559 gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w, GDB_OSABI_LINUX, hppa_linux_init_abi);
560 }
This page took 0.044192 seconds and 4 git commands to generate.