2009-10-19 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / hppa-linux-tdep.c
1 /* Target-dependent code for GNU/Linux running on PA-RISC, for GDB.
2
3 Copyright (C) 2004, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "osabi.h"
23 #include "target.h"
24 #include "objfiles.h"
25 #include "solib-svr4.h"
26 #include "glibc-tdep.h"
27 #include "frame-unwind.h"
28 #include "trad-frame.h"
29 #include "dwarf2-frame.h"
30 #include "value.h"
31 #include "regset.h"
32 #include "regcache.h"
33 #include "hppa-tdep.h"
34
35 #include "elf/common.h"
36
37 /* Map DWARF DBX register numbers to GDB register numbers. */
38 static int
39 hppa_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
40 {
41 /* The general registers and the sar are the same in both sets. */
42 if (reg <= 32)
43 return reg;
44
45 /* fr4-fr31 (left and right halves) are mapped from 72. */
46 if (reg >= 72 && reg <= 72 + 28 * 2)
47 return HPPA_FP4_REGNUM + (reg - 72);
48
49 warning (_("Unmapped DWARF DBX Register #%d encountered."), reg);
50 return -1;
51 }
52
53 static void
54 hppa_linux_target_write_pc (struct regcache *regcache, CORE_ADDR v)
55 {
56 /* Probably this should be done by the kernel, but it isn't. */
57 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, v | 0x3);
58 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, (v + 4) | 0x3);
59 }
60
61 /* An instruction to match. */
62 struct insn_pattern
63 {
64 unsigned int data; /* See if it matches this.... */
65 unsigned int mask; /* ... with this mask. */
66 };
67
68 static struct insn_pattern hppa_sigtramp[] = {
69 /* ldi 0, %r25 or ldi 1, %r25 */
70 { 0x34190000, 0xfffffffd },
71 /* ldi __NR_rt_sigreturn, %r20 */
72 { 0x3414015a, 0xffffffff },
73 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
74 { 0xe4008200, 0xffffffff },
75 /* nop */
76 { 0x08000240, 0xffffffff },
77 { 0, 0 }
78 };
79
80 #define HPPA_MAX_INSN_PATTERN_LEN (4)
81
82 /* Return non-zero if the instructions at PC match the series
83 described in PATTERN, or zero otherwise. PATTERN is an array of
84 'struct insn_pattern' objects, terminated by an entry whose mask is
85 zero.
86
87 When the match is successful, fill INSN[i] with what PATTERN[i]
88 matched. */
89 static int
90 insns_match_pattern (struct gdbarch *gdbarch, CORE_ADDR pc,
91 struct insn_pattern *pattern,
92 unsigned int *insn)
93 {
94 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
95 int i;
96 CORE_ADDR npc = pc;
97
98 for (i = 0; pattern[i].mask; i++)
99 {
100 char buf[4];
101
102 target_read_memory (npc, buf, 4);
103 insn[i] = extract_unsigned_integer (buf, 4, byte_order);
104 if ((insn[i] & pattern[i].mask) == pattern[i].data)
105 npc += 4;
106 else
107 return 0;
108 }
109 return 1;
110 }
111
112 /* Signal frames. */
113
114 /* (This is derived from MD_FALLBACK_FRAME_STATE_FOR in gcc.)
115
116 Unfortunately, because of various bugs and changes to the kernel,
117 we have several cases to deal with.
118
119 In 2.4, the signal trampoline is 4 bytes, and pc should point directly at
120 the beginning of the trampoline and struct rt_sigframe.
121
122 In <= 2.6.5-rc2-pa3, the signal trampoline is 9 bytes, and pc points at
123 the 4th word in the trampoline structure. This is wrong, it should point
124 at the 5th word. This is fixed in 2.6.5-rc2-pa4.
125
126 To detect these cases, we first take pc, align it to 64-bytes
127 to get the beginning of the signal frame, and then check offsets 0, 4
128 and 5 to see if we found the beginning of the trampoline. This will
129 tell us how to locate the sigcontext structure.
130
131 Note that with a 2.4 64-bit kernel, the signal context is not properly
132 passed back to userspace so the unwind will not work correctly. */
133 static CORE_ADDR
134 hppa_linux_sigtramp_find_sigcontext (struct gdbarch *gdbarch, CORE_ADDR pc)
135 {
136 unsigned int dummy[HPPA_MAX_INSN_PATTERN_LEN];
137 int offs = 0;
138 int try;
139 /* offsets to try to find the trampoline */
140 static int pcoffs[] = { 0, 4*4, 5*4 };
141 /* offsets to the rt_sigframe structure */
142 static int sfoffs[] = { 4*4, 10*4, 10*4 };
143 CORE_ADDR sp;
144
145 /* Most of the time, this will be correct. The one case when this will
146 fail is if the user defined an alternate stack, in which case the
147 beginning of the stack will not be align_down (pc, 64). */
148 sp = align_down (pc, 64);
149
150 /* rt_sigreturn trampoline:
151 3419000x ldi 0, %r25 or ldi 1, %r25 (x = 0 or 2)
152 3414015a ldi __NR_rt_sigreturn, %r20
153 e4008200 be,l 0x100(%sr2, %r0), %sr0, %r31
154 08000240 nop */
155
156 for (try = 0; try < ARRAY_SIZE (pcoffs); try++)
157 {
158 if (insns_match_pattern (gdbarch, sp + pcoffs[try],
159 hppa_sigtramp, dummy))
160 {
161 offs = sfoffs[try];
162 break;
163 }
164 }
165
166 if (offs == 0)
167 {
168 if (insns_match_pattern (gdbarch, pc, hppa_sigtramp, dummy))
169 {
170 /* sigaltstack case: we have no way of knowing which offset to
171 use in this case; default to new kernel handling. If this is
172 wrong the unwinding will fail. */
173 try = 2;
174 sp = pc - pcoffs[try];
175 }
176 else
177 {
178 return 0;
179 }
180 }
181
182 /* sp + sfoffs[try] points to a struct rt_sigframe, which contains
183 a struct siginfo and a struct ucontext. struct ucontext contains
184 a struct sigcontext. Return an offset to this sigcontext here. Too
185 bad we cannot include system specific headers :-(.
186 sizeof(struct siginfo) == 128
187 offsetof(struct ucontext, uc_mcontext) == 24. */
188 return sp + sfoffs[try] + 128 + 24;
189 }
190
191 struct hppa_linux_sigtramp_unwind_cache
192 {
193 CORE_ADDR base;
194 struct trad_frame_saved_reg *saved_regs;
195 };
196
197 static struct hppa_linux_sigtramp_unwind_cache *
198 hppa_linux_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
199 void **this_cache)
200 {
201 struct gdbarch *gdbarch = get_frame_arch (this_frame);
202 struct hppa_linux_sigtramp_unwind_cache *info;
203 CORE_ADDR pc, scptr;
204 int i;
205
206 if (*this_cache)
207 return *this_cache;
208
209 info = FRAME_OBSTACK_ZALLOC (struct hppa_linux_sigtramp_unwind_cache);
210 *this_cache = info;
211 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
212
213 pc = get_frame_pc (this_frame);
214 scptr = hppa_linux_sigtramp_find_sigcontext (gdbarch, pc);
215
216 /* structure of struct sigcontext:
217
218 struct sigcontext {
219 unsigned long sc_flags;
220 unsigned long sc_gr[32];
221 unsigned long long sc_fr[32];
222 unsigned long sc_iasq[2];
223 unsigned long sc_iaoq[2];
224 unsigned long sc_sar; */
225
226 /* Skip sc_flags. */
227 scptr += 4;
228
229 /* GR[0] is the psw. */
230 info->saved_regs[HPPA_IPSW_REGNUM].addr = scptr;
231 scptr += 4;
232
233 /* General registers. */
234 for (i = 1; i < 32; i++)
235 {
236 info->saved_regs[HPPA_R0_REGNUM + i].addr = scptr;
237 scptr += 4;
238 }
239
240 /* Pad to long long boundary. */
241 scptr += 4;
242
243 /* FP regs; FP0-3 are not restored. */
244 scptr += (8 * 4);
245
246 for (i = 4; i < 32; i++)
247 {
248 info->saved_regs[HPPA_FP0_REGNUM + (i * 2)].addr = scptr;
249 scptr += 4;
250 info->saved_regs[HPPA_FP0_REGNUM + (i * 2) + 1].addr = scptr;
251 scptr += 4;
252 }
253
254 /* IASQ/IAOQ. */
255 info->saved_regs[HPPA_PCSQ_HEAD_REGNUM].addr = scptr;
256 scptr += 4;
257 info->saved_regs[HPPA_PCSQ_TAIL_REGNUM].addr = scptr;
258 scptr += 4;
259
260 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = scptr;
261 scptr += 4;
262 info->saved_regs[HPPA_PCOQ_TAIL_REGNUM].addr = scptr;
263 scptr += 4;
264
265 info->saved_regs[HPPA_SAR_REGNUM].addr = scptr;
266
267 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
268
269 return info;
270 }
271
272 static void
273 hppa_linux_sigtramp_frame_this_id (struct frame_info *this_frame,
274 void **this_prologue_cache,
275 struct frame_id *this_id)
276 {
277 struct hppa_linux_sigtramp_unwind_cache *info
278 = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
279 *this_id = frame_id_build (info->base, get_frame_pc (this_frame));
280 }
281
282 static struct value *
283 hppa_linux_sigtramp_frame_prev_register (struct frame_info *this_frame,
284 void **this_prologue_cache,
285 int regnum)
286 {
287 struct hppa_linux_sigtramp_unwind_cache *info
288 = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
289 return hppa_frame_prev_register_helper (this_frame,
290 info->saved_regs, regnum);
291 }
292
293 /* hppa-linux always uses "new-style" rt-signals. The signal handler's return
294 address should point to a signal trampoline on the stack. The signal
295 trampoline is embedded in a rt_sigframe structure that is aligned on
296 the stack. We take advantage of the fact that sp must be 64-byte aligned,
297 and the trampoline is small, so by rounding down the trampoline address
298 we can find the beginning of the struct rt_sigframe. */
299 static int
300 hppa_linux_sigtramp_frame_sniffer (const struct frame_unwind *self,
301 struct frame_info *this_frame,
302 void **this_prologue_cache)
303 {
304 struct gdbarch *gdbarch = get_frame_arch (this_frame);
305 CORE_ADDR pc = get_frame_pc (this_frame);
306
307 if (hppa_linux_sigtramp_find_sigcontext (gdbarch, pc))
308 return 1;
309
310 return 0;
311 }
312
313 static const struct frame_unwind hppa_linux_sigtramp_frame_unwind = {
314 SIGTRAMP_FRAME,
315 hppa_linux_sigtramp_frame_this_id,
316 hppa_linux_sigtramp_frame_prev_register,
317 NULL,
318 hppa_linux_sigtramp_frame_sniffer
319 };
320
321 /* Attempt to find (and return) the global pointer for the given
322 function.
323
324 This is a rather nasty bit of code searchs for the .dynamic section
325 in the objfile corresponding to the pc of the function we're trying
326 to call. Once it finds the addresses at which the .dynamic section
327 lives in the child process, it scans the Elf32_Dyn entries for a
328 DT_PLTGOT tag. If it finds one of these, the corresponding
329 d_un.d_ptr value is the global pointer. */
330
331 static CORE_ADDR
332 hppa_linux_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
333 {
334 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
335 struct obj_section *faddr_sect;
336 CORE_ADDR faddr;
337
338 faddr = value_as_address (function);
339
340 /* Is this a plabel? If so, dereference it to get the gp value. */
341 if (faddr & 2)
342 {
343 int status;
344 char buf[4];
345
346 faddr &= ~3;
347
348 status = target_read_memory (faddr + 4, buf, sizeof (buf));
349 if (status == 0)
350 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
351 }
352
353 /* If the address is in the plt section, then the real function hasn't
354 yet been fixed up by the linker so we cannot determine the gp of
355 that function. */
356 if (in_plt_section (faddr, NULL))
357 return 0;
358
359 faddr_sect = find_pc_section (faddr);
360 if (faddr_sect != NULL)
361 {
362 struct obj_section *osect;
363
364 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
365 {
366 if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
367 break;
368 }
369
370 if (osect < faddr_sect->objfile->sections_end)
371 {
372 CORE_ADDR addr, endaddr;
373
374 addr = obj_section_addr (osect);
375 endaddr = obj_section_endaddr (osect);
376
377 while (addr < endaddr)
378 {
379 int status;
380 LONGEST tag;
381 char buf[4];
382
383 status = target_read_memory (addr, buf, sizeof (buf));
384 if (status != 0)
385 break;
386 tag = extract_signed_integer (buf, sizeof (buf), byte_order);
387
388 if (tag == DT_PLTGOT)
389 {
390 CORE_ADDR global_pointer;
391
392 status = target_read_memory (addr + 4, buf, sizeof (buf));
393 if (status != 0)
394 break;
395 global_pointer = extract_unsigned_integer (buf, sizeof (buf),
396 byte_order);
397 /* The payoff... */
398 return global_pointer;
399 }
400
401 if (tag == DT_NULL)
402 break;
403
404 addr += 8;
405 }
406 }
407 }
408 return 0;
409 }
410 \f
411 /*
412 * Registers saved in a coredump:
413 * gr0..gr31
414 * sr0..sr7
415 * iaoq0..iaoq1
416 * iasq0..iasq1
417 * sar, iir, isr, ior, ipsw
418 * cr0, cr24..cr31
419 * cr8,9,12,13
420 * cr10, cr15
421 */
422
423 #define GR_REGNUM(_n) (HPPA_R0_REGNUM+_n)
424 #define TR_REGNUM(_n) (HPPA_TR0_REGNUM+_n)
425 static const int greg_map[] =
426 {
427 GR_REGNUM(0), GR_REGNUM(1), GR_REGNUM(2), GR_REGNUM(3),
428 GR_REGNUM(4), GR_REGNUM(5), GR_REGNUM(6), GR_REGNUM(7),
429 GR_REGNUM(8), GR_REGNUM(9), GR_REGNUM(10), GR_REGNUM(11),
430 GR_REGNUM(12), GR_REGNUM(13), GR_REGNUM(14), GR_REGNUM(15),
431 GR_REGNUM(16), GR_REGNUM(17), GR_REGNUM(18), GR_REGNUM(19),
432 GR_REGNUM(20), GR_REGNUM(21), GR_REGNUM(22), GR_REGNUM(23),
433 GR_REGNUM(24), GR_REGNUM(25), GR_REGNUM(26), GR_REGNUM(27),
434 GR_REGNUM(28), GR_REGNUM(29), GR_REGNUM(30), GR_REGNUM(31),
435
436 HPPA_SR4_REGNUM+1, HPPA_SR4_REGNUM+2, HPPA_SR4_REGNUM+3, HPPA_SR4_REGNUM+4,
437 HPPA_SR4_REGNUM, HPPA_SR4_REGNUM+5, HPPA_SR4_REGNUM+6, HPPA_SR4_REGNUM+7,
438
439 HPPA_PCOQ_HEAD_REGNUM, HPPA_PCOQ_TAIL_REGNUM,
440 HPPA_PCSQ_HEAD_REGNUM, HPPA_PCSQ_TAIL_REGNUM,
441
442 HPPA_SAR_REGNUM, HPPA_IIR_REGNUM, HPPA_ISR_REGNUM, HPPA_IOR_REGNUM,
443 HPPA_IPSW_REGNUM, HPPA_RCR_REGNUM,
444
445 TR_REGNUM(0), TR_REGNUM(1), TR_REGNUM(2), TR_REGNUM(3),
446 TR_REGNUM(4), TR_REGNUM(5), TR_REGNUM(6), TR_REGNUM(7),
447
448 HPPA_PID0_REGNUM, HPPA_PID1_REGNUM, HPPA_PID2_REGNUM, HPPA_PID3_REGNUM,
449 HPPA_CCR_REGNUM, HPPA_EIEM_REGNUM,
450 };
451
452 static void
453 hppa_linux_supply_regset (const struct regset *regset,
454 struct regcache *regcache,
455 int regnum, const void *regs, size_t len)
456 {
457 struct gdbarch *arch = get_regcache_arch (regcache);
458 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
459 const char *buf = regs;
460 int i, offset;
461
462 offset = 0;
463 for (i = 0; i < ARRAY_SIZE (greg_map); i++)
464 {
465 if (regnum == greg_map[i] || regnum == -1)
466 regcache_raw_supply (regcache, greg_map[i], buf + offset);
467
468 offset += tdep->bytes_per_address;
469 }
470 }
471
472 static void
473 hppa_linux_supply_fpregset (const struct regset *regset,
474 struct regcache *regcache,
475 int regnum, const void *regs, size_t len)
476 {
477 const char *buf = regs;
478 int i, offset;
479
480 offset = 0;
481 for (i = 0; i < 64; i++)
482 {
483 if (regnum == HPPA_FP0_REGNUM + i || regnum == -1)
484 regcache_raw_supply (regcache, HPPA_FP0_REGNUM + i,
485 buf + offset);
486 offset += 4;
487 }
488 }
489
490 /* HPPA Linux kernel register set. */
491 static struct regset hppa_linux_regset =
492 {
493 NULL,
494 hppa_linux_supply_regset
495 };
496
497 static struct regset hppa_linux_fpregset =
498 {
499 NULL,
500 hppa_linux_supply_fpregset
501 };
502
503 static const struct regset *
504 hppa_linux_regset_from_core_section (struct gdbarch *gdbarch,
505 const char *sect_name,
506 size_t sect_size)
507 {
508 if (strcmp (sect_name, ".reg") == 0)
509 return &hppa_linux_regset;
510 else if (strcmp (sect_name, ".reg2") == 0)
511 return &hppa_linux_fpregset;
512
513 return NULL;
514 }
515 \f
516
517 /* Forward declarations. */
518 extern initialize_file_ftype _initialize_hppa_linux_tdep;
519
520 static void
521 hppa_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
522 {
523 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
524
525 /* GNU/Linux is always ELF. */
526 tdep->is_elf = 1;
527
528 tdep->find_global_pointer = hppa_linux_find_global_pointer;
529
530 set_gdbarch_write_pc (gdbarch, hppa_linux_target_write_pc);
531
532 frame_unwind_append_unwinder (gdbarch, &hppa_linux_sigtramp_frame_unwind);
533
534 /* GNU/Linux uses SVR4-style shared libraries. */
535 set_solib_svr4_fetch_link_map_offsets
536 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
537
538 tdep->in_solib_call_trampoline = hppa_in_solib_call_trampoline;
539 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
540
541 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
542 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
543
544 /* On hppa-linux, currently, sizeof(long double) == 8. There has been
545 some discussions to support 128-bit long double, but it requires some
546 more work in gcc and glibc first. */
547 set_gdbarch_long_double_bit (gdbarch, 64);
548
549 set_gdbarch_regset_from_core_section
550 (gdbarch, hppa_linux_regset_from_core_section);
551
552 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa_dwarf_reg_to_regnum);
553
554 /* Enable TLS support. */
555 set_gdbarch_fetch_tls_load_module_address (gdbarch,
556 svr4_fetch_objfile_link_map);
557 }
558
559 void
560 _initialize_hppa_linux_tdep (void)
561 {
562 gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_LINUX, hppa_linux_init_abi);
563 gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w, GDB_OSABI_LINUX, hppa_linux_init_abi);
564 }
This page took 0.042392 seconds and 4 git commands to generate.