Merge {i386,amd64}_linux_read_description
[deliverable/binutils-gdb.git] / gdb / hppa-linux-tdep.c
1 /* Target-dependent code for GNU/Linux running on PA-RISC, for GDB.
2
3 Copyright (C) 2004-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "osabi.h"
23 #include "target.h"
24 #include "objfiles.h"
25 #include "solib-svr4.h"
26 #include "glibc-tdep.h"
27 #include "frame-unwind.h"
28 #include "trad-frame.h"
29 #include "dwarf2-frame.h"
30 #include "value.h"
31 #include "regset.h"
32 #include "regcache.h"
33 #include "hppa-tdep.h"
34 #include "linux-tdep.h"
35 #include "elf/common.h"
36
37 /* Map DWARF DBX register numbers to GDB register numbers. */
38 static int
39 hppa_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
40 {
41 /* The general registers and the sar are the same in both sets. */
42 if (reg <= 32)
43 return reg;
44
45 /* fr4-fr31 (left and right halves) are mapped from 72. */
46 if (reg >= 72 && reg <= 72 + 28 * 2)
47 return HPPA_FP4_REGNUM + (reg - 72);
48
49 warning (_("Unmapped DWARF DBX Register #%d encountered."), reg);
50 return -1;
51 }
52
53 static void
54 hppa_linux_target_write_pc (struct regcache *regcache, CORE_ADDR v)
55 {
56 /* Probably this should be done by the kernel, but it isn't. */
57 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, v | 0x3);
58 regcache_cooked_write_unsigned (regcache,
59 HPPA_PCOQ_TAIL_REGNUM, (v + 4) | 0x3);
60 }
61
62 /* An instruction to match. */
63 struct insn_pattern
64 {
65 unsigned int data; /* See if it matches this.... */
66 unsigned int mask; /* ... with this mask. */
67 };
68
69 static struct insn_pattern hppa_sigtramp[] = {
70 /* ldi 0, %r25 or ldi 1, %r25 */
71 { 0x34190000, 0xfffffffd },
72 /* ldi __NR_rt_sigreturn, %r20 */
73 { 0x3414015a, 0xffffffff },
74 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
75 { 0xe4008200, 0xffffffff },
76 /* nop */
77 { 0x08000240, 0xffffffff },
78 { 0, 0 }
79 };
80
81 #define HPPA_MAX_INSN_PATTERN_LEN (4)
82
83 /* Return non-zero if the instructions at PC match the series
84 described in PATTERN, or zero otherwise. PATTERN is an array of
85 'struct insn_pattern' objects, terminated by an entry whose mask is
86 zero.
87
88 When the match is successful, fill INSN[i] with what PATTERN[i]
89 matched. */
90 static int
91 insns_match_pattern (struct gdbarch *gdbarch, CORE_ADDR pc,
92 struct insn_pattern *pattern,
93 unsigned int *insn)
94 {
95 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96 int i;
97 CORE_ADDR npc = pc;
98
99 for (i = 0; pattern[i].mask; i++)
100 {
101 gdb_byte buf[4];
102
103 target_read_memory (npc, buf, 4);
104 insn[i] = extract_unsigned_integer (buf, 4, byte_order);
105 if ((insn[i] & pattern[i].mask) == pattern[i].data)
106 npc += 4;
107 else
108 return 0;
109 }
110 return 1;
111 }
112
113 /* Signal frames. */
114
115 /* (This is derived from MD_FALLBACK_FRAME_STATE_FOR in gcc.)
116
117 Unfortunately, because of various bugs and changes to the kernel,
118 we have several cases to deal with.
119
120 In 2.4, the signal trampoline is 4 bytes, and pc should point directly at
121 the beginning of the trampoline and struct rt_sigframe.
122
123 In <= 2.6.5-rc2-pa3, the signal trampoline is 9 bytes, and pc points at
124 the 4th word in the trampoline structure. This is wrong, it should point
125 at the 5th word. This is fixed in 2.6.5-rc2-pa4.
126
127 To detect these cases, we first take pc, align it to 64-bytes
128 to get the beginning of the signal frame, and then check offsets 0, 4
129 and 5 to see if we found the beginning of the trampoline. This will
130 tell us how to locate the sigcontext structure.
131
132 Note that with a 2.4 64-bit kernel, the signal context is not properly
133 passed back to userspace so the unwind will not work correctly. */
134 static CORE_ADDR
135 hppa_linux_sigtramp_find_sigcontext (struct gdbarch *gdbarch, CORE_ADDR pc)
136 {
137 unsigned int dummy[HPPA_MAX_INSN_PATTERN_LEN];
138 int offs = 0;
139 int try;
140 /* offsets to try to find the trampoline */
141 static int pcoffs[] = { 0, 4*4, 5*4 };
142 /* offsets to the rt_sigframe structure */
143 static int sfoffs[] = { 4*4, 10*4, 10*4 };
144 CORE_ADDR sp;
145
146 /* Most of the time, this will be correct. The one case when this will
147 fail is if the user defined an alternate stack, in which case the
148 beginning of the stack will not be align_down (pc, 64). */
149 sp = align_down (pc, 64);
150
151 /* rt_sigreturn trampoline:
152 3419000x ldi 0, %r25 or ldi 1, %r25 (x = 0 or 2)
153 3414015a ldi __NR_rt_sigreturn, %r20
154 e4008200 be,l 0x100(%sr2, %r0), %sr0, %r31
155 08000240 nop */
156
157 for (try = 0; try < ARRAY_SIZE (pcoffs); try++)
158 {
159 if (insns_match_pattern (gdbarch, sp + pcoffs[try],
160 hppa_sigtramp, dummy))
161 {
162 offs = sfoffs[try];
163 break;
164 }
165 }
166
167 if (offs == 0)
168 {
169 if (insns_match_pattern (gdbarch, pc, hppa_sigtramp, dummy))
170 {
171 /* sigaltstack case: we have no way of knowing which offset to
172 use in this case; default to new kernel handling. If this is
173 wrong the unwinding will fail. */
174 try = 2;
175 sp = pc - pcoffs[try];
176 }
177 else
178 {
179 return 0;
180 }
181 }
182
183 /* sp + sfoffs[try] points to a struct rt_sigframe, which contains
184 a struct siginfo and a struct ucontext. struct ucontext contains
185 a struct sigcontext. Return an offset to this sigcontext here. Too
186 bad we cannot include system specific headers :-(.
187 sizeof(struct siginfo) == 128
188 offsetof(struct ucontext, uc_mcontext) == 24. */
189 return sp + sfoffs[try] + 128 + 24;
190 }
191
192 struct hppa_linux_sigtramp_unwind_cache
193 {
194 CORE_ADDR base;
195 struct trad_frame_saved_reg *saved_regs;
196 };
197
198 static struct hppa_linux_sigtramp_unwind_cache *
199 hppa_linux_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
200 void **this_cache)
201 {
202 struct gdbarch *gdbarch = get_frame_arch (this_frame);
203 struct hppa_linux_sigtramp_unwind_cache *info;
204 CORE_ADDR pc, scptr;
205 int i;
206
207 if (*this_cache)
208 return *this_cache;
209
210 info = FRAME_OBSTACK_ZALLOC (struct hppa_linux_sigtramp_unwind_cache);
211 *this_cache = info;
212 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
213
214 pc = get_frame_pc (this_frame);
215 scptr = hppa_linux_sigtramp_find_sigcontext (gdbarch, pc);
216
217 /* structure of struct sigcontext:
218
219 struct sigcontext {
220 unsigned long sc_flags;
221 unsigned long sc_gr[32];
222 unsigned long long sc_fr[32];
223 unsigned long sc_iasq[2];
224 unsigned long sc_iaoq[2];
225 unsigned long sc_sar; */
226
227 /* Skip sc_flags. */
228 scptr += 4;
229
230 /* GR[0] is the psw. */
231 info->saved_regs[HPPA_IPSW_REGNUM].addr = scptr;
232 scptr += 4;
233
234 /* General registers. */
235 for (i = 1; i < 32; i++)
236 {
237 info->saved_regs[HPPA_R0_REGNUM + i].addr = scptr;
238 scptr += 4;
239 }
240
241 /* Pad to long long boundary. */
242 scptr += 4;
243
244 /* FP regs; FP0-3 are not restored. */
245 scptr += (8 * 4);
246
247 for (i = 4; i < 32; i++)
248 {
249 info->saved_regs[HPPA_FP0_REGNUM + (i * 2)].addr = scptr;
250 scptr += 4;
251 info->saved_regs[HPPA_FP0_REGNUM + (i * 2) + 1].addr = scptr;
252 scptr += 4;
253 }
254
255 /* IASQ/IAOQ. */
256 info->saved_regs[HPPA_PCSQ_HEAD_REGNUM].addr = scptr;
257 scptr += 4;
258 info->saved_regs[HPPA_PCSQ_TAIL_REGNUM].addr = scptr;
259 scptr += 4;
260
261 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = scptr;
262 scptr += 4;
263 info->saved_regs[HPPA_PCOQ_TAIL_REGNUM].addr = scptr;
264 scptr += 4;
265
266 info->saved_regs[HPPA_SAR_REGNUM].addr = scptr;
267
268 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
269
270 return info;
271 }
272
273 static void
274 hppa_linux_sigtramp_frame_this_id (struct frame_info *this_frame,
275 void **this_prologue_cache,
276 struct frame_id *this_id)
277 {
278 struct hppa_linux_sigtramp_unwind_cache *info
279 = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
280 *this_id = frame_id_build (info->base, get_frame_pc (this_frame));
281 }
282
283 static struct value *
284 hppa_linux_sigtramp_frame_prev_register (struct frame_info *this_frame,
285 void **this_prologue_cache,
286 int regnum)
287 {
288 struct hppa_linux_sigtramp_unwind_cache *info
289 = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
290 return hppa_frame_prev_register_helper (this_frame,
291 info->saved_regs, regnum);
292 }
293
294 /* hppa-linux always uses "new-style" rt-signals. The signal handler's return
295 address should point to a signal trampoline on the stack. The signal
296 trampoline is embedded in a rt_sigframe structure that is aligned on
297 the stack. We take advantage of the fact that sp must be 64-byte aligned,
298 and the trampoline is small, so by rounding down the trampoline address
299 we can find the beginning of the struct rt_sigframe. */
300 static int
301 hppa_linux_sigtramp_frame_sniffer (const struct frame_unwind *self,
302 struct frame_info *this_frame,
303 void **this_prologue_cache)
304 {
305 struct gdbarch *gdbarch = get_frame_arch (this_frame);
306 CORE_ADDR pc = get_frame_pc (this_frame);
307
308 if (hppa_linux_sigtramp_find_sigcontext (gdbarch, pc))
309 return 1;
310
311 return 0;
312 }
313
314 static const struct frame_unwind hppa_linux_sigtramp_frame_unwind = {
315 SIGTRAMP_FRAME,
316 default_frame_unwind_stop_reason,
317 hppa_linux_sigtramp_frame_this_id,
318 hppa_linux_sigtramp_frame_prev_register,
319 NULL,
320 hppa_linux_sigtramp_frame_sniffer
321 };
322
323 /* Attempt to find (and return) the global pointer for the given
324 function.
325
326 This is a rather nasty bit of code searchs for the .dynamic section
327 in the objfile corresponding to the pc of the function we're trying
328 to call. Once it finds the addresses at which the .dynamic section
329 lives in the child process, it scans the Elf32_Dyn entries for a
330 DT_PLTGOT tag. If it finds one of these, the corresponding
331 d_un.d_ptr value is the global pointer. */
332
333 static CORE_ADDR
334 hppa_linux_find_global_pointer (struct gdbarch *gdbarch,
335 struct value *function)
336 {
337 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
338 struct obj_section *faddr_sect;
339 CORE_ADDR faddr;
340
341 faddr = value_as_address (function);
342
343 /* Is this a plabel? If so, dereference it to get the gp value. */
344 if (faddr & 2)
345 {
346 int status;
347 gdb_byte buf[4];
348
349 faddr &= ~3;
350
351 status = target_read_memory (faddr + 4, buf, sizeof (buf));
352 if (status == 0)
353 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
354 }
355
356 /* If the address is in the plt section, then the real function hasn't
357 yet been fixed up by the linker so we cannot determine the gp of
358 that function. */
359 if (in_plt_section (faddr))
360 return 0;
361
362 faddr_sect = find_pc_section (faddr);
363 if (faddr_sect != NULL)
364 {
365 struct obj_section *osect;
366
367 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
368 {
369 if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
370 break;
371 }
372
373 if (osect < faddr_sect->objfile->sections_end)
374 {
375 CORE_ADDR addr, endaddr;
376
377 addr = obj_section_addr (osect);
378 endaddr = obj_section_endaddr (osect);
379
380 while (addr < endaddr)
381 {
382 int status;
383 LONGEST tag;
384 gdb_byte buf[4];
385
386 status = target_read_memory (addr, buf, sizeof (buf));
387 if (status != 0)
388 break;
389 tag = extract_signed_integer (buf, sizeof (buf), byte_order);
390
391 if (tag == DT_PLTGOT)
392 {
393 CORE_ADDR global_pointer;
394
395 status = target_read_memory (addr + 4, buf, sizeof (buf));
396 if (status != 0)
397 break;
398 global_pointer = extract_unsigned_integer (buf, sizeof (buf),
399 byte_order);
400 /* The payoff... */
401 return global_pointer;
402 }
403
404 if (tag == DT_NULL)
405 break;
406
407 addr += 8;
408 }
409 }
410 }
411 return 0;
412 }
413 \f
414 /*
415 * Registers saved in a coredump:
416 * gr0..gr31
417 * sr0..sr7
418 * iaoq0..iaoq1
419 * iasq0..iasq1
420 * sar, iir, isr, ior, ipsw
421 * cr0, cr24..cr31
422 * cr8,9,12,13
423 * cr10, cr15
424 */
425
426 #define GR_REGNUM(_n) (HPPA_R0_REGNUM+_n)
427 #define TR_REGNUM(_n) (HPPA_TR0_REGNUM+_n)
428 static const int greg_map[] =
429 {
430 GR_REGNUM(0), GR_REGNUM(1), GR_REGNUM(2), GR_REGNUM(3),
431 GR_REGNUM(4), GR_REGNUM(5), GR_REGNUM(6), GR_REGNUM(7),
432 GR_REGNUM(8), GR_REGNUM(9), GR_REGNUM(10), GR_REGNUM(11),
433 GR_REGNUM(12), GR_REGNUM(13), GR_REGNUM(14), GR_REGNUM(15),
434 GR_REGNUM(16), GR_REGNUM(17), GR_REGNUM(18), GR_REGNUM(19),
435 GR_REGNUM(20), GR_REGNUM(21), GR_REGNUM(22), GR_REGNUM(23),
436 GR_REGNUM(24), GR_REGNUM(25), GR_REGNUM(26), GR_REGNUM(27),
437 GR_REGNUM(28), GR_REGNUM(29), GR_REGNUM(30), GR_REGNUM(31),
438
439 HPPA_SR4_REGNUM+1, HPPA_SR4_REGNUM+2, HPPA_SR4_REGNUM+3, HPPA_SR4_REGNUM+4,
440 HPPA_SR4_REGNUM, HPPA_SR4_REGNUM+5, HPPA_SR4_REGNUM+6, HPPA_SR4_REGNUM+7,
441
442 HPPA_PCOQ_HEAD_REGNUM, HPPA_PCOQ_TAIL_REGNUM,
443 HPPA_PCSQ_HEAD_REGNUM, HPPA_PCSQ_TAIL_REGNUM,
444
445 HPPA_SAR_REGNUM, HPPA_IIR_REGNUM, HPPA_ISR_REGNUM, HPPA_IOR_REGNUM,
446 HPPA_IPSW_REGNUM, HPPA_RCR_REGNUM,
447
448 TR_REGNUM(0), TR_REGNUM(1), TR_REGNUM(2), TR_REGNUM(3),
449 TR_REGNUM(4), TR_REGNUM(5), TR_REGNUM(6), TR_REGNUM(7),
450
451 HPPA_PID0_REGNUM, HPPA_PID1_REGNUM, HPPA_PID2_REGNUM, HPPA_PID3_REGNUM,
452 HPPA_CCR_REGNUM, HPPA_EIEM_REGNUM,
453 };
454
455 static void
456 hppa_linux_supply_regset (const struct regset *regset,
457 struct regcache *regcache,
458 int regnum, const void *regs, size_t len)
459 {
460 struct gdbarch *arch = get_regcache_arch (regcache);
461 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
462 const char *buf = regs;
463 int i, offset;
464
465 offset = 0;
466 for (i = 0; i < ARRAY_SIZE (greg_map); i++)
467 {
468 if (regnum == greg_map[i] || regnum == -1)
469 regcache_raw_supply (regcache, greg_map[i], buf + offset);
470
471 offset += tdep->bytes_per_address;
472 }
473 }
474
475 static void
476 hppa_linux_supply_fpregset (const struct regset *regset,
477 struct regcache *regcache,
478 int regnum, const void *regs, size_t len)
479 {
480 const char *buf = regs;
481 int i, offset;
482
483 offset = 0;
484 for (i = 0; i < 64; i++)
485 {
486 if (regnum == HPPA_FP0_REGNUM + i || regnum == -1)
487 regcache_raw_supply (regcache, HPPA_FP0_REGNUM + i,
488 buf + offset);
489 offset += 4;
490 }
491 }
492
493 /* HPPA Linux kernel register set. */
494 static const struct regset hppa_linux_regset =
495 {
496 NULL,
497 hppa_linux_supply_regset
498 };
499
500 static const struct regset hppa_linux_fpregset =
501 {
502 NULL,
503 hppa_linux_supply_fpregset
504 };
505
506 static const struct regset *
507 hppa_linux_regset_from_core_section (struct gdbarch *gdbarch,
508 const char *sect_name,
509 size_t sect_size)
510 {
511 if (strcmp (sect_name, ".reg") == 0)
512 return &hppa_linux_regset;
513 else if (strcmp (sect_name, ".reg2") == 0)
514 return &hppa_linux_fpregset;
515
516 return NULL;
517 }
518 \f
519
520 /* Forward declarations. */
521 extern initialize_file_ftype _initialize_hppa_linux_tdep;
522
523 static void
524 hppa_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
525 {
526 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
527
528 linux_init_abi (info, gdbarch);
529
530 /* GNU/Linux is always ELF. */
531 tdep->is_elf = 1;
532
533 tdep->find_global_pointer = hppa_linux_find_global_pointer;
534
535 set_gdbarch_write_pc (gdbarch, hppa_linux_target_write_pc);
536
537 frame_unwind_append_unwinder (gdbarch, &hppa_linux_sigtramp_frame_unwind);
538
539 /* GNU/Linux uses SVR4-style shared libraries. */
540 set_solib_svr4_fetch_link_map_offsets
541 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
542
543 tdep->in_solib_call_trampoline = hppa_in_solib_call_trampoline;
544 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
545
546 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
547 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
548
549 /* On hppa-linux, currently, sizeof(long double) == 8. There has been
550 some discussions to support 128-bit long double, but it requires some
551 more work in gcc and glibc first. */
552 set_gdbarch_long_double_bit (gdbarch, 64);
553
554 set_gdbarch_regset_from_core_section
555 (gdbarch, hppa_linux_regset_from_core_section);
556
557 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa_dwarf_reg_to_regnum);
558
559 /* Enable TLS support. */
560 set_gdbarch_fetch_tls_load_module_address (gdbarch,
561 svr4_fetch_objfile_link_map);
562 }
563
564 void
565 _initialize_hppa_linux_tdep (void)
566 {
567 gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_LINUX,
568 hppa_linux_init_abi);
569 gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w,
570 GDB_OSABI_LINUX, hppa_linux_init_abi);
571 }
This page took 0.047228 seconds and 4 git commands to generate.