* TODO: Add item suggesting an "info bfd" command.
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <signal.h>
38
39 #ifdef COFF_ENCAPSULATE
40 #include "a.out.encap.h"
41 #else
42 #endif
43 #ifndef N_SET_MAGIC
44 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
45 #endif
46
47 /*#include <sys/user.h> After a.out.h */
48 #include <sys/file.h>
49 #include "gdb_stat.h"
50 #include "wait.h"
51
52 #include "gdbcore.h"
53 #include "gdbcmd.h"
54 #include "target.h"
55 #include "symfile.h"
56 #include "objfiles.h"
57
58 static int extract_5_load PARAMS ((unsigned int));
59
60 static unsigned extract_5R_store PARAMS ((unsigned int));
61
62 static unsigned extract_5r_store PARAMS ((unsigned int));
63
64 static void find_dummy_frame_regs PARAMS ((struct frame_info *,
65 struct frame_saved_regs *));
66
67 static int find_proc_framesize PARAMS ((CORE_ADDR));
68
69 static int find_return_regnum PARAMS ((CORE_ADDR));
70
71 struct unwind_table_entry *find_unwind_entry PARAMS ((CORE_ADDR));
72
73 static int extract_17 PARAMS ((unsigned int));
74
75 static unsigned deposit_21 PARAMS ((unsigned int, unsigned int));
76
77 static int extract_21 PARAMS ((unsigned));
78
79 static unsigned deposit_14 PARAMS ((int, unsigned int));
80
81 static int extract_14 PARAMS ((unsigned));
82
83 static void unwind_command PARAMS ((char *, int));
84
85 static int low_sign_extend PARAMS ((unsigned int, unsigned int));
86
87 static int sign_extend PARAMS ((unsigned int, unsigned int));
88
89 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
90
91 static int hppa_alignof PARAMS ((struct type *));
92
93 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
94
95 static int is_branch PARAMS ((unsigned long));
96
97 static int inst_saves_gr PARAMS ((unsigned long));
98
99 static int inst_saves_fr PARAMS ((unsigned long));
100
101 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
102
103 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
104
105 static int compare_unwind_entries PARAMS ((const void *, const void *));
106
107 static void read_unwind_info PARAMS ((struct objfile *));
108
109 static void internalize_unwinds PARAMS ((struct objfile *,
110 struct unwind_table_entry *,
111 asection *, unsigned int,
112 unsigned int, CORE_ADDR));
113 static void pa_print_registers PARAMS ((char *, int, int));
114 static void pa_print_fp_reg PARAMS ((int));
115
116 \f
117 /* Routines to extract various sized constants out of hppa
118 instructions. */
119
120 /* This assumes that no garbage lies outside of the lower bits of
121 value. */
122
123 static int
124 sign_extend (val, bits)
125 unsigned val, bits;
126 {
127 return (int)(val >> (bits - 1) ? (-1 << bits) | val : val);
128 }
129
130 /* For many immediate values the sign bit is the low bit! */
131
132 static int
133 low_sign_extend (val, bits)
134 unsigned val, bits;
135 {
136 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
137 }
138
139 /* extract the immediate field from a ld{bhw}s instruction */
140
141 #if 0
142
143 unsigned
144 get_field (val, from, to)
145 unsigned val, from, to;
146 {
147 val = val >> 31 - to;
148 return val & ((1 << 32 - from) - 1);
149 }
150
151 unsigned
152 set_field (val, from, to, new_val)
153 unsigned *val, from, to;
154 {
155 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
156 return *val = *val & mask | (new_val << (31 - from));
157 }
158
159 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
160
161 int
162 extract_3 (word)
163 unsigned word;
164 {
165 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
166 }
167
168 #endif
169
170 static int
171 extract_5_load (word)
172 unsigned word;
173 {
174 return low_sign_extend (word >> 16 & MASK_5, 5);
175 }
176
177 #if 0
178
179 /* extract the immediate field from a st{bhw}s instruction */
180
181 int
182 extract_5_store (word)
183 unsigned word;
184 {
185 return low_sign_extend (word & MASK_5, 5);
186 }
187
188 #endif /* 0 */
189
190 /* extract the immediate field from a break instruction */
191
192 static unsigned
193 extract_5r_store (word)
194 unsigned word;
195 {
196 return (word & MASK_5);
197 }
198
199 /* extract the immediate field from a {sr}sm instruction */
200
201 static unsigned
202 extract_5R_store (word)
203 unsigned word;
204 {
205 return (word >> 16 & MASK_5);
206 }
207
208 /* extract an 11 bit immediate field */
209
210 #if 0
211
212 int
213 extract_11 (word)
214 unsigned word;
215 {
216 return low_sign_extend (word & MASK_11, 11);
217 }
218
219 #endif
220
221 /* extract a 14 bit immediate field */
222
223 static int
224 extract_14 (word)
225 unsigned word;
226 {
227 return low_sign_extend (word & MASK_14, 14);
228 }
229
230 /* deposit a 14 bit constant in a word */
231
232 static unsigned
233 deposit_14 (opnd, word)
234 int opnd;
235 unsigned word;
236 {
237 unsigned sign = (opnd < 0 ? 1 : 0);
238
239 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
240 }
241
242 /* extract a 21 bit constant */
243
244 static int
245 extract_21 (word)
246 unsigned word;
247 {
248 int val;
249
250 word &= MASK_21;
251 word <<= 11;
252 val = GET_FIELD (word, 20, 20);
253 val <<= 11;
254 val |= GET_FIELD (word, 9, 19);
255 val <<= 2;
256 val |= GET_FIELD (word, 5, 6);
257 val <<= 5;
258 val |= GET_FIELD (word, 0, 4);
259 val <<= 2;
260 val |= GET_FIELD (word, 7, 8);
261 return sign_extend (val, 21) << 11;
262 }
263
264 /* deposit a 21 bit constant in a word. Although 21 bit constants are
265 usually the top 21 bits of a 32 bit constant, we assume that only
266 the low 21 bits of opnd are relevant */
267
268 static unsigned
269 deposit_21 (opnd, word)
270 unsigned opnd, word;
271 {
272 unsigned val = 0;
273
274 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
275 val <<= 2;
276 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
277 val <<= 2;
278 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
279 val <<= 11;
280 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
281 val <<= 1;
282 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
283 return word | val;
284 }
285
286 /* extract a 12 bit constant from branch instructions */
287
288 #if 0
289
290 int
291 extract_12 (word)
292 unsigned word;
293 {
294 return sign_extend (GET_FIELD (word, 19, 28) |
295 GET_FIELD (word, 29, 29) << 10 |
296 (word & 0x1) << 11, 12) << 2;
297 }
298
299 /* Deposit a 17 bit constant in an instruction (like bl). */
300
301 unsigned int
302 deposit_17 (opnd, word)
303 unsigned opnd, word;
304 {
305 word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */
306 word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */
307 word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */
308 word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */
309
310 return word;
311 }
312
313 #endif
314
315 /* extract a 17 bit constant from branch instructions, returning the
316 19 bit signed value. */
317
318 static int
319 extract_17 (word)
320 unsigned word;
321 {
322 return sign_extend (GET_FIELD (word, 19, 28) |
323 GET_FIELD (word, 29, 29) << 10 |
324 GET_FIELD (word, 11, 15) << 11 |
325 (word & 0x1) << 16, 17) << 2;
326 }
327 \f
328
329 /* Compare the start address for two unwind entries returning 1 if
330 the first address is larger than the second, -1 if the second is
331 larger than the first, and zero if they are equal. */
332
333 static int
334 compare_unwind_entries (arg1, arg2)
335 const void *arg1;
336 const void *arg2;
337 {
338 const struct unwind_table_entry *a = arg1;
339 const struct unwind_table_entry *b = arg2;
340
341 if (a->region_start > b->region_start)
342 return 1;
343 else if (a->region_start < b->region_start)
344 return -1;
345 else
346 return 0;
347 }
348
349 static void
350 internalize_unwinds (objfile, table, section, entries, size, text_offset)
351 struct objfile *objfile;
352 struct unwind_table_entry *table;
353 asection *section;
354 unsigned int entries, size;
355 CORE_ADDR text_offset;
356 {
357 /* We will read the unwind entries into temporary memory, then
358 fill in the actual unwind table. */
359 if (size > 0)
360 {
361 unsigned long tmp;
362 unsigned i;
363 char *buf = alloca (size);
364
365 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
366
367 /* Now internalize the information being careful to handle host/target
368 endian issues. */
369 for (i = 0; i < entries; i++)
370 {
371 table[i].region_start = bfd_get_32 (objfile->obfd,
372 (bfd_byte *)buf);
373 table[i].region_start += text_offset;
374 buf += 4;
375 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
376 table[i].region_end += text_offset;
377 buf += 4;
378 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
379 buf += 4;
380 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
381 table[i].Millicode = (tmp >> 30) & 0x1;
382 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
383 table[i].Region_description = (tmp >> 27) & 0x3;
384 table[i].reserved1 = (tmp >> 26) & 0x1;
385 table[i].Entry_SR = (tmp >> 25) & 0x1;
386 table[i].Entry_FR = (tmp >> 21) & 0xf;
387 table[i].Entry_GR = (tmp >> 16) & 0x1f;
388 table[i].Args_stored = (tmp >> 15) & 0x1;
389 table[i].Variable_Frame = (tmp >> 14) & 0x1;
390 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
391 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
392 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
393 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
394 table[i].Ada_Region = (tmp >> 9) & 0x1;
395 table[i].reserved2 = (tmp >> 5) & 0xf;
396 table[i].Save_SP = (tmp >> 4) & 0x1;
397 table[i].Save_RP = (tmp >> 3) & 0x1;
398 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
399 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
400 table[i].Cleanup_defined = tmp & 0x1;
401 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
402 buf += 4;
403 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
404 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
405 table[i].Large_frame = (tmp >> 29) & 0x1;
406 table[i].reserved4 = (tmp >> 27) & 0x3;
407 table[i].Total_frame_size = tmp & 0x7ffffff;
408 }
409 }
410 }
411
412 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
413 the object file. This info is used mainly by find_unwind_entry() to find
414 out the stack frame size and frame pointer used by procedures. We put
415 everything on the psymbol obstack in the objfile so that it automatically
416 gets freed when the objfile is destroyed. */
417
418 static void
419 read_unwind_info (objfile)
420 struct objfile *objfile;
421 {
422 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
423 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
424 unsigned index, unwind_entries, elf_unwind_entries;
425 unsigned stub_entries, total_entries;
426 CORE_ADDR text_offset;
427 struct obj_unwind_info *ui;
428
429 text_offset = ANOFFSET (objfile->section_offsets, 0);
430 ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack,
431 sizeof (struct obj_unwind_info));
432
433 ui->table = NULL;
434 ui->cache = NULL;
435 ui->last = -1;
436
437 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
438 section in ELF at the moment. */
439 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
440 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
441 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
442
443 /* Get sizes and unwind counts for all sections. */
444 if (unwind_sec)
445 {
446 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
447 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
448 }
449 else
450 {
451 unwind_size = 0;
452 unwind_entries = 0;
453 }
454
455 if (elf_unwind_sec)
456 {
457 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
458 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
459 }
460 else
461 {
462 elf_unwind_size = 0;
463 elf_unwind_entries = 0;
464 }
465
466 if (stub_unwind_sec)
467 {
468 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
469 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
470 }
471 else
472 {
473 stub_unwind_size = 0;
474 stub_entries = 0;
475 }
476
477 /* Compute total number of unwind entries and their total size. */
478 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
479 total_size = total_entries * sizeof (struct unwind_table_entry);
480
481 /* Allocate memory for the unwind table. */
482 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
483 ui->last = total_entries - 1;
484
485 /* Internalize the standard unwind entries. */
486 index = 0;
487 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
488 unwind_entries, unwind_size, text_offset);
489 index += unwind_entries;
490 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
491 elf_unwind_entries, elf_unwind_size, text_offset);
492 index += elf_unwind_entries;
493
494 /* Now internalize the stub unwind entries. */
495 if (stub_unwind_size > 0)
496 {
497 unsigned int i;
498 char *buf = alloca (stub_unwind_size);
499
500 /* Read in the stub unwind entries. */
501 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
502 0, stub_unwind_size);
503
504 /* Now convert them into regular unwind entries. */
505 for (i = 0; i < stub_entries; i++, index++)
506 {
507 /* Clear out the next unwind entry. */
508 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
509
510 /* Convert offset & size into region_start and region_end.
511 Stuff away the stub type into "reserved" fields. */
512 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
513 (bfd_byte *) buf);
514 ui->table[index].region_start += text_offset;
515 buf += 4;
516 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
517 (bfd_byte *) buf);
518 buf += 2;
519 ui->table[index].region_end
520 = ui->table[index].region_start + 4 *
521 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
522 buf += 2;
523 }
524
525 }
526
527 /* Unwind table needs to be kept sorted. */
528 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
529 compare_unwind_entries);
530
531 /* Keep a pointer to the unwind information. */
532 objfile->obj_private = (PTR) ui;
533 }
534
535 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
536 of the objfiles seeking the unwind table entry for this PC. Each objfile
537 contains a sorted list of struct unwind_table_entry. Since we do a binary
538 search of the unwind tables, we depend upon them to be sorted. */
539
540 struct unwind_table_entry *
541 find_unwind_entry(pc)
542 CORE_ADDR pc;
543 {
544 int first, middle, last;
545 struct objfile *objfile;
546
547 ALL_OBJFILES (objfile)
548 {
549 struct obj_unwind_info *ui;
550
551 ui = OBJ_UNWIND_INFO (objfile);
552
553 if (!ui)
554 {
555 read_unwind_info (objfile);
556 ui = OBJ_UNWIND_INFO (objfile);
557 }
558
559 /* First, check the cache */
560
561 if (ui->cache
562 && pc >= ui->cache->region_start
563 && pc <= ui->cache->region_end)
564 return ui->cache;
565
566 /* Not in the cache, do a binary search */
567
568 first = 0;
569 last = ui->last;
570
571 while (first <= last)
572 {
573 middle = (first + last) / 2;
574 if (pc >= ui->table[middle].region_start
575 && pc <= ui->table[middle].region_end)
576 {
577 ui->cache = &ui->table[middle];
578 return &ui->table[middle];
579 }
580
581 if (pc < ui->table[middle].region_start)
582 last = middle - 1;
583 else
584 first = middle + 1;
585 }
586 } /* ALL_OBJFILES() */
587 return NULL;
588 }
589
590 /* Return the adjustment necessary to make for addresses on the stack
591 as presented by hpread.c.
592
593 This is necessary because of the stack direction on the PA and the
594 bizarre way in which someone (?) decided they wanted to handle
595 frame pointerless code in GDB. */
596 int
597 hpread_adjust_stack_address (func_addr)
598 CORE_ADDR func_addr;
599 {
600 struct unwind_table_entry *u;
601
602 u = find_unwind_entry (func_addr);
603 if (!u)
604 return 0;
605 else
606 return u->Total_frame_size << 3;
607 }
608
609 /* Called to determine if PC is in an interrupt handler of some
610 kind. */
611
612 static int
613 pc_in_interrupt_handler (pc)
614 CORE_ADDR pc;
615 {
616 struct unwind_table_entry *u;
617 struct minimal_symbol *msym_us;
618
619 u = find_unwind_entry (pc);
620 if (!u)
621 return 0;
622
623 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
624 its frame isn't a pure interrupt frame. Deal with this. */
625 msym_us = lookup_minimal_symbol_by_pc (pc);
626
627 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
628 }
629
630 /* Called when no unwind descriptor was found for PC. Returns 1 if it
631 appears that PC is in a linker stub. */
632
633 static int
634 pc_in_linker_stub (pc)
635 CORE_ADDR pc;
636 {
637 int found_magic_instruction = 0;
638 int i;
639 char buf[4];
640
641 /* If unable to read memory, assume pc is not in a linker stub. */
642 if (target_read_memory (pc, buf, 4) != 0)
643 return 0;
644
645 /* We are looking for something like
646
647 ; $$dyncall jams RP into this special spot in the frame (RP')
648 ; before calling the "call stub"
649 ldw -18(sp),rp
650
651 ldsid (rp),r1 ; Get space associated with RP into r1
652 mtsp r1,sp ; Move it into space register 0
653 be,n 0(sr0),rp) ; back to your regularly scheduled program
654 */
655
656 /* Maximum known linker stub size is 4 instructions. Search forward
657 from the given PC, then backward. */
658 for (i = 0; i < 4; i++)
659 {
660 /* If we hit something with an unwind, stop searching this direction. */
661
662 if (find_unwind_entry (pc + i * 4) != 0)
663 break;
664
665 /* Check for ldsid (rp),r1 which is the magic instruction for a
666 return from a cross-space function call. */
667 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
668 {
669 found_magic_instruction = 1;
670 break;
671 }
672 /* Add code to handle long call/branch and argument relocation stubs
673 here. */
674 }
675
676 if (found_magic_instruction != 0)
677 return 1;
678
679 /* Now look backward. */
680 for (i = 0; i < 4; i++)
681 {
682 /* If we hit something with an unwind, stop searching this direction. */
683
684 if (find_unwind_entry (pc - i * 4) != 0)
685 break;
686
687 /* Check for ldsid (rp),r1 which is the magic instruction for a
688 return from a cross-space function call. */
689 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
690 {
691 found_magic_instruction = 1;
692 break;
693 }
694 /* Add code to handle long call/branch and argument relocation stubs
695 here. */
696 }
697 return found_magic_instruction;
698 }
699
700 static int
701 find_return_regnum(pc)
702 CORE_ADDR pc;
703 {
704 struct unwind_table_entry *u;
705
706 u = find_unwind_entry (pc);
707
708 if (!u)
709 return RP_REGNUM;
710
711 if (u->Millicode)
712 return 31;
713
714 return RP_REGNUM;
715 }
716
717 /* Return size of frame, or -1 if we should use a frame pointer. */
718 static int
719 find_proc_framesize (pc)
720 CORE_ADDR pc;
721 {
722 struct unwind_table_entry *u;
723 struct minimal_symbol *msym_us;
724
725 u = find_unwind_entry (pc);
726
727 if (!u)
728 {
729 if (pc_in_linker_stub (pc))
730 /* Linker stubs have a zero size frame. */
731 return 0;
732 else
733 return -1;
734 }
735
736 msym_us = lookup_minimal_symbol_by_pc (pc);
737
738 /* If Save_SP is set, and we're not in an interrupt or signal caller,
739 then we have a frame pointer. Use it. */
740 if (u->Save_SP && !pc_in_interrupt_handler (pc)
741 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
742 return -1;
743
744 return u->Total_frame_size << 3;
745 }
746
747 /* Return offset from sp at which rp is saved, or 0 if not saved. */
748 static int rp_saved PARAMS ((CORE_ADDR));
749
750 static int
751 rp_saved (pc)
752 CORE_ADDR pc;
753 {
754 struct unwind_table_entry *u;
755
756 u = find_unwind_entry (pc);
757
758 if (!u)
759 {
760 if (pc_in_linker_stub (pc))
761 /* This is the so-called RP'. */
762 return -24;
763 else
764 return 0;
765 }
766
767 if (u->Save_RP)
768 return -20;
769 else if (u->stub_type != 0)
770 {
771 switch (u->stub_type)
772 {
773 case EXPORT:
774 case IMPORT:
775 return -24;
776 case PARAMETER_RELOCATION:
777 return -8;
778 default:
779 return 0;
780 }
781 }
782 else
783 return 0;
784 }
785 \f
786 int
787 frameless_function_invocation (frame)
788 struct frame_info *frame;
789 {
790 struct unwind_table_entry *u;
791
792 u = find_unwind_entry (frame->pc);
793
794 if (u == 0)
795 return 0;
796
797 return (u->Total_frame_size == 0 && u->stub_type == 0);
798 }
799
800 CORE_ADDR
801 saved_pc_after_call (frame)
802 struct frame_info *frame;
803 {
804 int ret_regnum;
805 CORE_ADDR pc;
806 struct unwind_table_entry *u;
807
808 ret_regnum = find_return_regnum (get_frame_pc (frame));
809 pc = read_register (ret_regnum) & ~0x3;
810
811 /* If PC is in a linker stub, then we need to dig the address
812 the stub will return to out of the stack. */
813 u = find_unwind_entry (pc);
814 if (u && u->stub_type != 0)
815 return FRAME_SAVED_PC (frame);
816 else
817 return pc;
818 }
819 \f
820 CORE_ADDR
821 hppa_frame_saved_pc (frame)
822 struct frame_info *frame;
823 {
824 CORE_ADDR pc = get_frame_pc (frame);
825 struct unwind_table_entry *u;
826
827 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
828 at the base of the frame in an interrupt handler. Registers within
829 are saved in the exact same order as GDB numbers registers. How
830 convienent. */
831 if (pc_in_interrupt_handler (pc))
832 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
833
834 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
835 /* Deal with signal handler caller frames too. */
836 if (frame->signal_handler_caller)
837 {
838 CORE_ADDR rp;
839 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
840 return rp & ~0x3;
841 }
842 #endif
843
844 if (frameless_function_invocation (frame))
845 {
846 int ret_regnum;
847
848 ret_regnum = find_return_regnum (pc);
849
850 /* If the next frame is an interrupt frame or a signal
851 handler caller, then we need to look in the saved
852 register area to get the return pointer (the values
853 in the registers may not correspond to anything useful). */
854 if (frame->next
855 && (frame->next->signal_handler_caller
856 || pc_in_interrupt_handler (frame->next->pc)))
857 {
858 struct frame_saved_regs saved_regs;
859
860 get_frame_saved_regs (frame->next, &saved_regs);
861 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
862 {
863 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
864
865 /* Syscalls are really two frames. The syscall stub itself
866 with a return pointer in %rp and the kernel call with
867 a return pointer in %r31. We return the %rp variant
868 if %r31 is the same as frame->pc. */
869 if (pc == frame->pc)
870 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
871 }
872 else
873 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
874 }
875 else
876 pc = read_register (ret_regnum) & ~0x3;
877 }
878 else
879 {
880 int rp_offset;
881
882 restart:
883 rp_offset = rp_saved (pc);
884 /* Similar to code in frameless function case. If the next
885 frame is a signal or interrupt handler, then dig the right
886 information out of the saved register info. */
887 if (rp_offset == 0
888 && frame->next
889 && (frame->next->signal_handler_caller
890 || pc_in_interrupt_handler (frame->next->pc)))
891 {
892 struct frame_saved_regs saved_regs;
893
894 get_frame_saved_regs (frame->next, &saved_regs);
895 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
896 {
897 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
898
899 /* Syscalls are really two frames. The syscall stub itself
900 with a return pointer in %rp and the kernel call with
901 a return pointer in %r31. We return the %rp variant
902 if %r31 is the same as frame->pc. */
903 if (pc == frame->pc)
904 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
905 }
906 else
907 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
908 }
909 else if (rp_offset == 0)
910 pc = read_register (RP_REGNUM) & ~0x3;
911 else
912 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
913 }
914
915 /* If PC is inside a linker stub, then dig out the address the stub
916 will return to.
917
918 Don't do this for long branch stubs. Why? For some unknown reason
919 _start is marked as a long branch stub in hpux10. */
920 u = find_unwind_entry (pc);
921 if (u && u->stub_type != 0
922 && u->stub_type != LONG_BRANCH)
923 {
924 unsigned int insn;
925
926 /* If this is a dynamic executable, and we're in a signal handler,
927 then the call chain will eventually point us into the stub for
928 _sigreturn. Unlike most cases, we'll be pointed to the branch
929 to the real sigreturn rather than the code after the real branch!.
930
931 Else, try to dig the address the stub will return to in the normal
932 fashion. */
933 insn = read_memory_integer (pc, 4);
934 if ((insn & 0xfc00e000) == 0xe8000000)
935 return (pc + extract_17 (insn) + 8) & ~0x3;
936 else
937 goto restart;
938 }
939
940 return pc;
941 }
942 \f
943 /* We need to correct the PC and the FP for the outermost frame when we are
944 in a system call. */
945
946 void
947 init_extra_frame_info (fromleaf, frame)
948 int fromleaf;
949 struct frame_info *frame;
950 {
951 int flags;
952 int framesize;
953
954 if (frame->next && !fromleaf)
955 return;
956
957 /* If the next frame represents a frameless function invocation
958 then we have to do some adjustments that are normally done by
959 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
960 if (fromleaf)
961 {
962 /* Find the framesize of *this* frame without peeking at the PC
963 in the current frame structure (it isn't set yet). */
964 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
965
966 /* Now adjust our base frame accordingly. If we have a frame pointer
967 use it, else subtract the size of this frame from the current
968 frame. (we always want frame->frame to point at the lowest address
969 in the frame). */
970 if (framesize == -1)
971 frame->frame = read_register (FP_REGNUM);
972 else
973 frame->frame -= framesize;
974 return;
975 }
976
977 flags = read_register (FLAGS_REGNUM);
978 if (flags & 2) /* In system call? */
979 frame->pc = read_register (31) & ~0x3;
980
981 /* The outermost frame is always derived from PC-framesize
982
983 One might think frameless innermost frames should have
984 a frame->frame that is the same as the parent's frame->frame.
985 That is wrong; frame->frame in that case should be the *high*
986 address of the parent's frame. It's complicated as hell to
987 explain, but the parent *always* creates some stack space for
988 the child. So the child actually does have a frame of some
989 sorts, and its base is the high address in its parent's frame. */
990 framesize = find_proc_framesize(frame->pc);
991 if (framesize == -1)
992 frame->frame = read_register (FP_REGNUM);
993 else
994 frame->frame = read_register (SP_REGNUM) - framesize;
995 }
996 \f
997 /* Given a GDB frame, determine the address of the calling function's frame.
998 This will be used to create a new GDB frame struct, and then
999 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1000
1001 This may involve searching through prologues for several functions
1002 at boundaries where GCC calls HP C code, or where code which has
1003 a frame pointer calls code without a frame pointer. */
1004
1005 CORE_ADDR
1006 frame_chain (frame)
1007 struct frame_info *frame;
1008 {
1009 int my_framesize, caller_framesize;
1010 struct unwind_table_entry *u;
1011 CORE_ADDR frame_base;
1012 struct frame_info *tmp_frame;
1013
1014 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1015 are easy; at *sp we have a full save state strucutre which we can
1016 pull the old stack pointer from. Also see frame_saved_pc for
1017 code to dig a saved PC out of the save state structure. */
1018 if (pc_in_interrupt_handler (frame->pc))
1019 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
1020 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1021 else if (frame->signal_handler_caller)
1022 {
1023 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1024 }
1025 #endif
1026 else
1027 frame_base = frame->frame;
1028
1029 /* Get frame sizes for the current frame and the frame of the
1030 caller. */
1031 my_framesize = find_proc_framesize (frame->pc);
1032 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
1033
1034 /* If caller does not have a frame pointer, then its frame
1035 can be found at current_frame - caller_framesize. */
1036 if (caller_framesize != -1)
1037 return frame_base - caller_framesize;
1038
1039 /* Both caller and callee have frame pointers and are GCC compiled
1040 (SAVE_SP bit in unwind descriptor is on for both functions.
1041 The previous frame pointer is found at the top of the current frame. */
1042 if (caller_framesize == -1 && my_framesize == -1)
1043 return read_memory_integer (frame_base, 4);
1044
1045 /* Caller has a frame pointer, but callee does not. This is a little
1046 more difficult as GCC and HP C lay out locals and callee register save
1047 areas very differently.
1048
1049 The previous frame pointer could be in a register, or in one of
1050 several areas on the stack.
1051
1052 Walk from the current frame to the innermost frame examining
1053 unwind descriptors to determine if %r3 ever gets saved into the
1054 stack. If so return whatever value got saved into the stack.
1055 If it was never saved in the stack, then the value in %r3 is still
1056 valid, so use it.
1057
1058 We use information from unwind descriptors to determine if %r3
1059 is saved into the stack (Entry_GR field has this information). */
1060
1061 tmp_frame = frame;
1062 while (tmp_frame)
1063 {
1064 u = find_unwind_entry (tmp_frame->pc);
1065
1066 if (!u)
1067 {
1068 /* We could find this information by examining prologues. I don't
1069 think anyone has actually written any tools (not even "strip")
1070 which leave them out of an executable, so maybe this is a moot
1071 point. */
1072 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1073 return 0;
1074 }
1075
1076 /* Entry_GR specifies the number of callee-saved general registers
1077 saved in the stack. It starts at %r3, so %r3 would be 1. */
1078 if (u->Entry_GR >= 1 || u->Save_SP
1079 || tmp_frame->signal_handler_caller
1080 || pc_in_interrupt_handler (tmp_frame->pc))
1081 break;
1082 else
1083 tmp_frame = tmp_frame->next;
1084 }
1085
1086 if (tmp_frame)
1087 {
1088 /* We may have walked down the chain into a function with a frame
1089 pointer. */
1090 if (u->Save_SP
1091 && !tmp_frame->signal_handler_caller
1092 && !pc_in_interrupt_handler (tmp_frame->pc))
1093 return read_memory_integer (tmp_frame->frame, 4);
1094 /* %r3 was saved somewhere in the stack. Dig it out. */
1095 else
1096 {
1097 struct frame_saved_regs saved_regs;
1098
1099 /* Sick.
1100
1101 For optimization purposes many kernels don't have the
1102 callee saved registers into the save_state structure upon
1103 entry into the kernel for a syscall; the optimization
1104 is usually turned off if the process is being traced so
1105 that the debugger can get full register state for the
1106 process.
1107
1108 This scheme works well except for two cases:
1109
1110 * Attaching to a process when the process is in the
1111 kernel performing a system call (debugger can't get
1112 full register state for the inferior process since
1113 the process wasn't being traced when it entered the
1114 system call).
1115
1116 * Register state is not complete if the system call
1117 causes the process to core dump.
1118
1119
1120 The following heinous code is an attempt to deal with
1121 the lack of register state in a core dump. It will
1122 fail miserably if the function which performs the
1123 system call has a variable sized stack frame. */
1124
1125 get_frame_saved_regs (tmp_frame, &saved_regs);
1126
1127 /* Abominable hack. */
1128 if (current_target.to_has_execution == 0
1129 && ((saved_regs.regs[FLAGS_REGNUM]
1130 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1131 & 0x2))
1132 || (saved_regs.regs[FLAGS_REGNUM] == 0
1133 && read_register (FLAGS_REGNUM) & 0x2)))
1134 {
1135 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1136 if (!u)
1137 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1138 else
1139 return frame_base - (u->Total_frame_size << 3);
1140 }
1141
1142 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1143 }
1144 }
1145 else
1146 {
1147 struct frame_saved_regs saved_regs;
1148
1149 /* Get the innermost frame. */
1150 tmp_frame = frame;
1151 while (tmp_frame->next != NULL)
1152 tmp_frame = tmp_frame->next;
1153
1154 get_frame_saved_regs (tmp_frame, &saved_regs);
1155 /* Abominable hack. See above. */
1156 if (current_target.to_has_execution == 0
1157 && ((saved_regs.regs[FLAGS_REGNUM]
1158 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1159 & 0x2))
1160 || (saved_regs.regs[FLAGS_REGNUM] == 0
1161 && read_register (FLAGS_REGNUM) & 0x2)))
1162 {
1163 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1164 if (!u)
1165 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1166 else
1167 return frame_base - (u->Total_frame_size << 3);
1168 }
1169
1170 /* The value in %r3 was never saved into the stack (thus %r3 still
1171 holds the value of the previous frame pointer). */
1172 return read_register (FP_REGNUM);
1173 }
1174 }
1175
1176 \f
1177 /* To see if a frame chain is valid, see if the caller looks like it
1178 was compiled with gcc. */
1179
1180 int
1181 frame_chain_valid (chain, thisframe)
1182 CORE_ADDR chain;
1183 struct frame_info *thisframe;
1184 {
1185 struct minimal_symbol *msym_us;
1186 struct minimal_symbol *msym_start;
1187 struct unwind_table_entry *u, *next_u = NULL;
1188 struct frame_info *next;
1189
1190 if (!chain)
1191 return 0;
1192
1193 u = find_unwind_entry (thisframe->pc);
1194
1195 if (u == NULL)
1196 return 1;
1197
1198 /* We can't just check that the same of msym_us is "_start", because
1199 someone idiotically decided that they were going to make a Ltext_end
1200 symbol with the same address. This Ltext_end symbol is totally
1201 indistinguishable (as nearly as I can tell) from the symbol for a function
1202 which is (legitimately, since it is in the user's namespace)
1203 named Ltext_end, so we can't just ignore it. */
1204 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1205 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1206 if (msym_us
1207 && msym_start
1208 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1209 return 0;
1210
1211 /* Grrrr. Some new idiot decided that they don't want _start for the
1212 PRO configurations; $START$ calls main directly.... Deal with it. */
1213 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1214 if (msym_us
1215 && msym_start
1216 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1217 return 0;
1218
1219 next = get_next_frame (thisframe);
1220 if (next)
1221 next_u = find_unwind_entry (next->pc);
1222
1223 /* If this frame does not save SP, has no stack, isn't a stub,
1224 and doesn't "call" an interrupt routine or signal handler caller,
1225 then its not valid. */
1226 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1227 || (thisframe->next && thisframe->next->signal_handler_caller)
1228 || (next_u && next_u->HP_UX_interrupt_marker))
1229 return 1;
1230
1231 if (pc_in_linker_stub (thisframe->pc))
1232 return 1;
1233
1234 return 0;
1235 }
1236
1237 /*
1238 * These functions deal with saving and restoring register state
1239 * around a function call in the inferior. They keep the stack
1240 * double-word aligned; eventually, on an hp700, the stack will have
1241 * to be aligned to a 64-byte boundary.
1242 */
1243
1244 void
1245 push_dummy_frame (inf_status)
1246 struct inferior_status *inf_status;
1247 {
1248 CORE_ADDR sp, pc, pcspace;
1249 register int regnum;
1250 int int_buffer;
1251 double freg_buffer;
1252
1253 /* Oh, what a hack. If we're trying to perform an inferior call
1254 while the inferior is asleep, we have to make sure to clear
1255 the "in system call" bit in the flag register (the call will
1256 start after the syscall returns, so we're no longer in the system
1257 call!) This state is kept in "inf_status", change it there.
1258
1259 We also need a number of horrid hacks to deal with lossage in the
1260 PC queue registers (apparently they're not valid when the in syscall
1261 bit is set). */
1262 pc = target_read_pc (inferior_pid);
1263 int_buffer = read_register (FLAGS_REGNUM);
1264 if (int_buffer & 0x2)
1265 {
1266 unsigned int sid;
1267 int_buffer &= ~0x2;
1268 memcpy (inf_status->registers, &int_buffer, 4);
1269 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
1270 pc += 4;
1271 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
1272 pc -= 4;
1273 sid = (pc >> 30) & 0x3;
1274 if (sid == 0)
1275 pcspace = read_register (SR4_REGNUM);
1276 else
1277 pcspace = read_register (SR4_REGNUM + 4 + sid);
1278 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
1279 &pcspace, 4);
1280 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
1281 &pcspace, 4);
1282 }
1283 else
1284 pcspace = read_register (PCSQ_HEAD_REGNUM);
1285
1286 /* Space for "arguments"; the RP goes in here. */
1287 sp = read_register (SP_REGNUM) + 48;
1288 int_buffer = read_register (RP_REGNUM) | 0x3;
1289 write_memory (sp - 20, (char *)&int_buffer, 4);
1290
1291 int_buffer = read_register (FP_REGNUM);
1292 write_memory (sp, (char *)&int_buffer, 4);
1293
1294 write_register (FP_REGNUM, sp);
1295
1296 sp += 8;
1297
1298 for (regnum = 1; regnum < 32; regnum++)
1299 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1300 sp = push_word (sp, read_register (regnum));
1301
1302 sp += 4;
1303
1304 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1305 {
1306 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1307 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1308 }
1309 sp = push_word (sp, read_register (IPSW_REGNUM));
1310 sp = push_word (sp, read_register (SAR_REGNUM));
1311 sp = push_word (sp, pc);
1312 sp = push_word (sp, pcspace);
1313 sp = push_word (sp, pc + 4);
1314 sp = push_word (sp, pcspace);
1315 write_register (SP_REGNUM, sp);
1316 }
1317
1318 static void
1319 find_dummy_frame_regs (frame, frame_saved_regs)
1320 struct frame_info *frame;
1321 struct frame_saved_regs *frame_saved_regs;
1322 {
1323 CORE_ADDR fp = frame->frame;
1324 int i;
1325
1326 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1327 frame_saved_regs->regs[FP_REGNUM] = fp;
1328 frame_saved_regs->regs[1] = fp + 8;
1329
1330 for (fp += 12, i = 3; i < 32; i++)
1331 {
1332 if (i != FP_REGNUM)
1333 {
1334 frame_saved_regs->regs[i] = fp;
1335 fp += 4;
1336 }
1337 }
1338
1339 fp += 4;
1340 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1341 frame_saved_regs->regs[i] = fp;
1342
1343 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1344 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1345 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1346 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1347 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1348 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1349 }
1350
1351 void
1352 hppa_pop_frame ()
1353 {
1354 register struct frame_info *frame = get_current_frame ();
1355 register CORE_ADDR fp, npc, target_pc;
1356 register int regnum;
1357 struct frame_saved_regs fsr;
1358 double freg_buffer;
1359
1360 fp = FRAME_FP (frame);
1361 get_frame_saved_regs (frame, &fsr);
1362
1363 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1364 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1365 restore_pc_queue (&fsr);
1366 #endif
1367
1368 for (regnum = 31; regnum > 0; regnum--)
1369 if (fsr.regs[regnum])
1370 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1371
1372 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1373 if (fsr.regs[regnum])
1374 {
1375 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1376 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1377 }
1378
1379 if (fsr.regs[IPSW_REGNUM])
1380 write_register (IPSW_REGNUM,
1381 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1382
1383 if (fsr.regs[SAR_REGNUM])
1384 write_register (SAR_REGNUM,
1385 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1386
1387 /* If the PC was explicitly saved, then just restore it. */
1388 if (fsr.regs[PCOQ_TAIL_REGNUM])
1389 {
1390 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1391 write_register (PCOQ_TAIL_REGNUM, npc);
1392 }
1393 /* Else use the value in %rp to set the new PC. */
1394 else
1395 {
1396 npc = read_register (RP_REGNUM);
1397 write_pc (npc);
1398 }
1399
1400 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1401
1402 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1403 write_register (SP_REGNUM, fp - 48);
1404 else
1405 write_register (SP_REGNUM, fp);
1406
1407 /* The PC we just restored may be inside a return trampoline. If so
1408 we want to restart the inferior and run it through the trampoline.
1409
1410 Do this by setting a momentary breakpoint at the location the
1411 trampoline returns to.
1412
1413 Don't skip through the trampoline if we're popping a dummy frame. */
1414 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1415 if (target_pc && !fsr.regs[IPSW_REGNUM])
1416 {
1417 struct symtab_and_line sal;
1418 struct breakpoint *breakpoint;
1419 struct cleanup *old_chain;
1420
1421 /* Set up our breakpoint. Set it to be silent as the MI code
1422 for "return_command" will print the frame we returned to. */
1423 sal = find_pc_line (target_pc, 0);
1424 sal.pc = target_pc;
1425 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1426 breakpoint->silent = 1;
1427
1428 /* So we can clean things up. */
1429 old_chain = make_cleanup (delete_breakpoint, breakpoint);
1430
1431 /* Start up the inferior. */
1432 clear_proceed_status ();
1433 proceed_to_finish = 1;
1434 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1435
1436 /* Perform our cleanups. */
1437 do_cleanups (old_chain);
1438 }
1439 flush_cached_frames ();
1440 }
1441
1442 /*
1443 * After returning to a dummy on the stack, restore the instruction
1444 * queue space registers. */
1445
1446 static int
1447 restore_pc_queue (fsr)
1448 struct frame_saved_regs *fsr;
1449 {
1450 CORE_ADDR pc = read_pc ();
1451 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1452 struct target_waitstatus w;
1453 int insn_count;
1454
1455 /* Advance past break instruction in the call dummy. */
1456 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1457 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1458
1459 /*
1460 * HPUX doesn't let us set the space registers or the space
1461 * registers of the PC queue through ptrace. Boo, hiss.
1462 * Conveniently, the call dummy has this sequence of instructions
1463 * after the break:
1464 * mtsp r21, sr0
1465 * ble,n 0(sr0, r22)
1466 *
1467 * So, load up the registers and single step until we are in the
1468 * right place.
1469 */
1470
1471 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1472 write_register (22, new_pc);
1473
1474 for (insn_count = 0; insn_count < 3; insn_count++)
1475 {
1476 /* FIXME: What if the inferior gets a signal right now? Want to
1477 merge this into wait_for_inferior (as a special kind of
1478 watchpoint? By setting a breakpoint at the end? Is there
1479 any other choice? Is there *any* way to do this stuff with
1480 ptrace() or some equivalent?). */
1481 resume (1, 0);
1482 target_wait (inferior_pid, &w);
1483
1484 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1485 {
1486 stop_signal = w.value.sig;
1487 terminal_ours_for_output ();
1488 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1489 target_signal_to_name (stop_signal),
1490 target_signal_to_string (stop_signal));
1491 gdb_flush (gdb_stdout);
1492 return 0;
1493 }
1494 }
1495 target_terminal_ours ();
1496 target_fetch_registers (-1);
1497 return 1;
1498 }
1499
1500 CORE_ADDR
1501 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1502 int nargs;
1503 value_ptr *args;
1504 CORE_ADDR sp;
1505 int struct_return;
1506 CORE_ADDR struct_addr;
1507 {
1508 /* array of arguments' offsets */
1509 int *offset = (int *)alloca(nargs * sizeof (int));
1510 int cum = 0;
1511 int i, alignment;
1512
1513 for (i = 0; i < nargs; i++)
1514 {
1515 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1516
1517 /* value must go at proper alignment. Assume alignment is a
1518 power of two.*/
1519 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1520 if (cum % alignment)
1521 cum = (cum + alignment) & -alignment;
1522 offset[i] = -cum;
1523 }
1524 sp += max ((cum + 7) & -8, 16);
1525
1526 for (i = 0; i < nargs; i++)
1527 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1528 TYPE_LENGTH (VALUE_TYPE (args[i])));
1529
1530 if (struct_return)
1531 write_register (28, struct_addr);
1532 return sp + 32;
1533 }
1534
1535 /*
1536 * Insert the specified number of args and function address
1537 * into a call sequence of the above form stored at DUMMYNAME.
1538 *
1539 * On the hppa we need to call the stack dummy through $$dyncall.
1540 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1541 * real_pc, which is the location where gdb should start up the
1542 * inferior to do the function call.
1543 */
1544
1545 CORE_ADDR
1546 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1547 char *dummy;
1548 CORE_ADDR pc;
1549 CORE_ADDR fun;
1550 int nargs;
1551 value_ptr *args;
1552 struct type *type;
1553 int gcc_p;
1554 {
1555 CORE_ADDR dyncall_addr;
1556 struct minimal_symbol *msymbol;
1557 struct minimal_symbol *trampoline;
1558 int flags = read_register (FLAGS_REGNUM);
1559 struct unwind_table_entry *u;
1560
1561 trampoline = NULL;
1562 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1563 if (msymbol == NULL)
1564 error ("Can't find an address for $$dyncall trampoline");
1565
1566 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1567
1568 /* FUN could be a procedure label, in which case we have to get
1569 its real address and the value of its GOT/DP. */
1570 if (fun & 0x2)
1571 {
1572 /* Get the GOT/DP value for the target function. It's
1573 at *(fun+4). Note the call dummy is *NOT* allowed to
1574 trash %r19 before calling the target function. */
1575 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1576
1577 /* Now get the real address for the function we are calling, it's
1578 at *fun. */
1579 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1580 }
1581 else
1582 {
1583
1584 #ifndef GDB_TARGET_IS_PA_ELF
1585 /* FUN could be either an export stub, or the real address of a
1586 function in a shared library. We must call an import stub
1587 rather than the export stub or real function for lazy binding
1588 to work correctly. */
1589 if (som_solib_get_got_by_pc (fun))
1590 {
1591 struct objfile *objfile;
1592 struct minimal_symbol *funsymbol, *stub_symbol;
1593 CORE_ADDR newfun = 0;
1594
1595 funsymbol = lookup_minimal_symbol_by_pc (fun);
1596 if (!funsymbol)
1597 error ("Unable to find minimal symbol for target fucntion.\n");
1598
1599 /* Search all the object files for an import symbol with the
1600 right name. */
1601 ALL_OBJFILES (objfile)
1602 {
1603 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
1604 NULL, objfile);
1605 /* Found a symbol with the right name. */
1606 if (stub_symbol)
1607 {
1608 struct unwind_table_entry *u;
1609 /* It must be a shared library trampoline. */
1610 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
1611 continue;
1612
1613 /* It must also be an import stub. */
1614 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
1615 if (!u || u->stub_type != IMPORT)
1616 continue;
1617
1618 /* OK. Looks like the correct import stub. */
1619 newfun = SYMBOL_VALUE (stub_symbol);
1620 fun = newfun;
1621 }
1622 }
1623 if (newfun == 0)
1624 write_register (19, som_solib_get_got_by_pc (fun));
1625 }
1626 #endif
1627 }
1628
1629 /* If we are calling an import stub (eg calling into a dynamic library)
1630 then have sr4export call the magic __d_plt_call routine which is linked
1631 in from end.o. (You can't use _sr4export to call the import stub as
1632 the value in sp-24 will get fried and you end up returning to the
1633 wrong location. You can't call the import stub directly as the code
1634 to bind the PLT entry to a function can't return to a stack address.) */
1635 u = find_unwind_entry (fun);
1636 if (u && u->stub_type == IMPORT)
1637 {
1638 CORE_ADDR new_fun;
1639
1640 /* Prefer __gcc_plt_call over the HP supplied routine because
1641 __gcc_plt_call works for any number of arguments. */
1642 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
1643 if (trampoline == NULL)
1644 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
1645
1646 if (trampoline == NULL)
1647 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline");
1648
1649 /* This is where sr4export will jump to. */
1650 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
1651
1652 if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0)
1653 {
1654 /* We have to store the address of the stub in __shlib_funcptr. */
1655 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
1656 (struct objfile *)NULL);
1657 if (msymbol == NULL)
1658 error ("Can't find an address for __shlib_funcptr");
1659
1660 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1661
1662 /* We want sr4export to call __d_plt_call, so we claim it is
1663 the final target. Clear trampoline. */
1664 fun = new_fun;
1665 trampoline = NULL;
1666 }
1667 }
1668
1669 /* Store upper 21 bits of function address into ldil. fun will either be
1670 the final target (most cases) or __d_plt_call when calling into a shared
1671 library and __gcc_plt_call is not available. */
1672 store_unsigned_integer
1673 (&dummy[FUNC_LDIL_OFFSET],
1674 INSTRUCTION_SIZE,
1675 deposit_21 (fun >> 11,
1676 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
1677 INSTRUCTION_SIZE)));
1678
1679 /* Store lower 11 bits of function address into ldo */
1680 store_unsigned_integer
1681 (&dummy[FUNC_LDO_OFFSET],
1682 INSTRUCTION_SIZE,
1683 deposit_14 (fun & MASK_11,
1684 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
1685 INSTRUCTION_SIZE)));
1686 #ifdef SR4EXPORT_LDIL_OFFSET
1687
1688 {
1689 CORE_ADDR trampoline_addr;
1690
1691 /* We may still need sr4export's address too. */
1692
1693 if (trampoline == NULL)
1694 {
1695 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1696 if (msymbol == NULL)
1697 error ("Can't find an address for _sr4export trampoline");
1698
1699 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1700 }
1701 else
1702 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
1703
1704
1705 /* Store upper 21 bits of trampoline's address into ldil */
1706 store_unsigned_integer
1707 (&dummy[SR4EXPORT_LDIL_OFFSET],
1708 INSTRUCTION_SIZE,
1709 deposit_21 (trampoline_addr >> 11,
1710 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
1711 INSTRUCTION_SIZE)));
1712
1713 /* Store lower 11 bits of trampoline's address into ldo */
1714 store_unsigned_integer
1715 (&dummy[SR4EXPORT_LDO_OFFSET],
1716 INSTRUCTION_SIZE,
1717 deposit_14 (trampoline_addr & MASK_11,
1718 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
1719 INSTRUCTION_SIZE)));
1720 }
1721 #endif
1722
1723 write_register (22, pc);
1724
1725 /* If we are in a syscall, then we should call the stack dummy
1726 directly. $$dyncall is not needed as the kernel sets up the
1727 space id registers properly based on the value in %r31. In
1728 fact calling $$dyncall will not work because the value in %r22
1729 will be clobbered on the syscall exit path.
1730
1731 Similarly if the current PC is in a shared library. Note however,
1732 this scheme won't work if the shared library isn't mapped into
1733 the same space as the stack. */
1734 if (flags & 2)
1735 return pc;
1736 #ifndef GDB_TARGET_IS_PA_ELF
1737 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
1738 return pc;
1739 #endif
1740 else
1741 return dyncall_addr;
1742
1743 }
1744
1745 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1746 bits. */
1747
1748 CORE_ADDR
1749 target_read_pc (pid)
1750 int pid;
1751 {
1752 int flags = read_register_pid (FLAGS_REGNUM, pid);
1753
1754 /* The following test does not belong here. It is OS-specific, and belongs
1755 in native code. */
1756 /* Test SS_INSYSCALL */
1757 if (flags & 2)
1758 return read_register_pid (31, pid) & ~0x3;
1759
1760 return read_register_pid (PC_REGNUM, pid) & ~0x3;
1761 }
1762
1763 /* Write out the PC. If currently in a syscall, then also write the new
1764 PC value into %r31. */
1765
1766 void
1767 target_write_pc (v, pid)
1768 CORE_ADDR v;
1769 int pid;
1770 {
1771 int flags = read_register_pid (FLAGS_REGNUM, pid);
1772
1773 /* The following test does not belong here. It is OS-specific, and belongs
1774 in native code. */
1775 /* If in a syscall, then set %r31. Also make sure to get the
1776 privilege bits set correctly. */
1777 /* Test SS_INSYSCALL */
1778 if (flags & 2)
1779 write_register_pid (31, v | 0x3, pid);
1780
1781 write_register_pid (PC_REGNUM, v, pid);
1782 write_register_pid (NPC_REGNUM, v + 4, pid);
1783 }
1784
1785 /* return the alignment of a type in bytes. Structures have the maximum
1786 alignment required by their fields. */
1787
1788 static int
1789 hppa_alignof (type)
1790 struct type *type;
1791 {
1792 int max_align, align, i;
1793 CHECK_TYPEDEF (type);
1794 switch (TYPE_CODE (type))
1795 {
1796 case TYPE_CODE_PTR:
1797 case TYPE_CODE_INT:
1798 case TYPE_CODE_FLT:
1799 return TYPE_LENGTH (type);
1800 case TYPE_CODE_ARRAY:
1801 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1802 case TYPE_CODE_STRUCT:
1803 case TYPE_CODE_UNION:
1804 max_align = 1;
1805 for (i = 0; i < TYPE_NFIELDS (type); i++)
1806 {
1807 /* Bit fields have no real alignment. */
1808 if (!TYPE_FIELD_BITPOS (type, i))
1809 {
1810 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1811 max_align = max (max_align, align);
1812 }
1813 }
1814 return max_align;
1815 default:
1816 return 4;
1817 }
1818 }
1819
1820 /* Print the register regnum, or all registers if regnum is -1 */
1821
1822 void
1823 pa_do_registers_info (regnum, fpregs)
1824 int regnum;
1825 int fpregs;
1826 {
1827 char raw_regs [REGISTER_BYTES];
1828 int i;
1829
1830 for (i = 0; i < NUM_REGS; i++)
1831 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1832 if (regnum == -1)
1833 pa_print_registers (raw_regs, regnum, fpregs);
1834 else if (regnum < FP0_REGNUM)
1835 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1836 REGISTER_BYTE (regnum)));
1837 else
1838 pa_print_fp_reg (regnum);
1839 }
1840
1841 static void
1842 pa_print_registers (raw_regs, regnum, fpregs)
1843 char *raw_regs;
1844 int regnum;
1845 int fpregs;
1846 {
1847 int i,j;
1848 long val;
1849
1850 for (i = 0; i < 18; i++)
1851 {
1852 for (j = 0; j < 4; j++)
1853 {
1854 val =
1855 extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4);
1856 printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val);
1857 }
1858 printf_unfiltered ("\n");
1859 }
1860
1861 if (fpregs)
1862 for (i = 72; i < NUM_REGS; i++)
1863 pa_print_fp_reg (i);
1864 }
1865
1866 static void
1867 pa_print_fp_reg (i)
1868 int i;
1869 {
1870 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1871 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1872
1873 /* Get 32bits of data. */
1874 read_relative_register_raw_bytes (i, raw_buffer);
1875
1876 /* Put it in the buffer. No conversions are ever necessary. */
1877 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1878
1879 fputs_filtered (reg_names[i], gdb_stdout);
1880 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1881 fputs_filtered ("(single precision) ", gdb_stdout);
1882
1883 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1884 1, 0, Val_pretty_default);
1885 printf_filtered ("\n");
1886
1887 /* If "i" is even, then this register can also be a double-precision
1888 FP register. Dump it out as such. */
1889 if ((i % 2) == 0)
1890 {
1891 /* Get the data in raw format for the 2nd half. */
1892 read_relative_register_raw_bytes (i + 1, raw_buffer);
1893
1894 /* Copy it into the appropriate part of the virtual buffer. */
1895 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1896 REGISTER_RAW_SIZE (i));
1897
1898 /* Dump it as a double. */
1899 fputs_filtered (reg_names[i], gdb_stdout);
1900 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1901 fputs_filtered ("(double precision) ", gdb_stdout);
1902
1903 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1904 1, 0, Val_pretty_default);
1905 printf_filtered ("\n");
1906 }
1907 }
1908
1909 /* Return one if PC is in the call path of a trampoline, else return zero.
1910
1911 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1912 just shared library trampolines (import, export). */
1913
1914 int
1915 in_solib_call_trampoline (pc, name)
1916 CORE_ADDR pc;
1917 char *name;
1918 {
1919 struct minimal_symbol *minsym;
1920 struct unwind_table_entry *u;
1921 static CORE_ADDR dyncall = 0;
1922 static CORE_ADDR sr4export = 0;
1923
1924 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1925 new exec file */
1926
1927 /* First see if PC is in one of the two C-library trampolines. */
1928 if (!dyncall)
1929 {
1930 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1931 if (minsym)
1932 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1933 else
1934 dyncall = -1;
1935 }
1936
1937 if (!sr4export)
1938 {
1939 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1940 if (minsym)
1941 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1942 else
1943 sr4export = -1;
1944 }
1945
1946 if (pc == dyncall || pc == sr4export)
1947 return 1;
1948
1949 /* Get the unwind descriptor corresponding to PC, return zero
1950 if no unwind was found. */
1951 u = find_unwind_entry (pc);
1952 if (!u)
1953 return 0;
1954
1955 /* If this isn't a linker stub, then return now. */
1956 if (u->stub_type == 0)
1957 return 0;
1958
1959 /* By definition a long-branch stub is a call stub. */
1960 if (u->stub_type == LONG_BRANCH)
1961 return 1;
1962
1963 /* The call and return path execute the same instructions within
1964 an IMPORT stub! So an IMPORT stub is both a call and return
1965 trampoline. */
1966 if (u->stub_type == IMPORT)
1967 return 1;
1968
1969 /* Parameter relocation stubs always have a call path and may have a
1970 return path. */
1971 if (u->stub_type == PARAMETER_RELOCATION
1972 || u->stub_type == EXPORT)
1973 {
1974 CORE_ADDR addr;
1975
1976 /* Search forward from the current PC until we hit a branch
1977 or the end of the stub. */
1978 for (addr = pc; addr <= u->region_end; addr += 4)
1979 {
1980 unsigned long insn;
1981
1982 insn = read_memory_integer (addr, 4);
1983
1984 /* Does it look like a bl? If so then it's the call path, if
1985 we find a bv or be first, then we're on the return path. */
1986 if ((insn & 0xfc00e000) == 0xe8000000)
1987 return 1;
1988 else if ((insn & 0xfc00e001) == 0xe800c000
1989 || (insn & 0xfc000000) == 0xe0000000)
1990 return 0;
1991 }
1992
1993 /* Should never happen. */
1994 warning ("Unable to find branch in parameter relocation stub.\n");
1995 return 0;
1996 }
1997
1998 /* Unknown stub type. For now, just return zero. */
1999 return 0;
2000 }
2001
2002 /* Return one if PC is in the return path of a trampoline, else return zero.
2003
2004 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2005 just shared library trampolines (import, export). */
2006
2007 int
2008 in_solib_return_trampoline (pc, name)
2009 CORE_ADDR pc;
2010 char *name;
2011 {
2012 struct unwind_table_entry *u;
2013
2014 /* Get the unwind descriptor corresponding to PC, return zero
2015 if no unwind was found. */
2016 u = find_unwind_entry (pc);
2017 if (!u)
2018 return 0;
2019
2020 /* If this isn't a linker stub or it's just a long branch stub, then
2021 return zero. */
2022 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
2023 return 0;
2024
2025 /* The call and return path execute the same instructions within
2026 an IMPORT stub! So an IMPORT stub is both a call and return
2027 trampoline. */
2028 if (u->stub_type == IMPORT)
2029 return 1;
2030
2031 /* Parameter relocation stubs always have a call path and may have a
2032 return path. */
2033 if (u->stub_type == PARAMETER_RELOCATION
2034 || u->stub_type == EXPORT)
2035 {
2036 CORE_ADDR addr;
2037
2038 /* Search forward from the current PC until we hit a branch
2039 or the end of the stub. */
2040 for (addr = pc; addr <= u->region_end; addr += 4)
2041 {
2042 unsigned long insn;
2043
2044 insn = read_memory_integer (addr, 4);
2045
2046 /* Does it look like a bl? If so then it's the call path, if
2047 we find a bv or be first, then we're on the return path. */
2048 if ((insn & 0xfc00e000) == 0xe8000000)
2049 return 0;
2050 else if ((insn & 0xfc00e001) == 0xe800c000
2051 || (insn & 0xfc000000) == 0xe0000000)
2052 return 1;
2053 }
2054
2055 /* Should never happen. */
2056 warning ("Unable to find branch in parameter relocation stub.\n");
2057 return 0;
2058 }
2059
2060 /* Unknown stub type. For now, just return zero. */
2061 return 0;
2062
2063 }
2064
2065 /* Figure out if PC is in a trampoline, and if so find out where
2066 the trampoline will jump to. If not in a trampoline, return zero.
2067
2068 Simple code examination probably is not a good idea since the code
2069 sequences in trampolines can also appear in user code.
2070
2071 We use unwinds and information from the minimal symbol table to
2072 determine when we're in a trampoline. This won't work for ELF
2073 (yet) since it doesn't create stub unwind entries. Whether or
2074 not ELF will create stub unwinds or normal unwinds for linker
2075 stubs is still being debated.
2076
2077 This should handle simple calls through dyncall or sr4export,
2078 long calls, argument relocation stubs, and dyncall/sr4export
2079 calling an argument relocation stub. It even handles some stubs
2080 used in dynamic executables. */
2081
2082 CORE_ADDR
2083 skip_trampoline_code (pc, name)
2084 CORE_ADDR pc;
2085 char *name;
2086 {
2087 long orig_pc = pc;
2088 long prev_inst, curr_inst, loc;
2089 static CORE_ADDR dyncall = 0;
2090 static CORE_ADDR sr4export = 0;
2091 struct minimal_symbol *msym;
2092 struct unwind_table_entry *u;
2093
2094 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2095 new exec file */
2096
2097 if (!dyncall)
2098 {
2099 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2100 if (msym)
2101 dyncall = SYMBOL_VALUE_ADDRESS (msym);
2102 else
2103 dyncall = -1;
2104 }
2105
2106 if (!sr4export)
2107 {
2108 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2109 if (msym)
2110 sr4export = SYMBOL_VALUE_ADDRESS (msym);
2111 else
2112 sr4export = -1;
2113 }
2114
2115 /* Addresses passed to dyncall may *NOT* be the actual address
2116 of the function. So we may have to do something special. */
2117 if (pc == dyncall)
2118 {
2119 pc = (CORE_ADDR) read_register (22);
2120
2121 /* If bit 30 (counting from the left) is on, then pc is the address of
2122 the PLT entry for this function, not the address of the function
2123 itself. Bit 31 has meaning too, but only for MPE. */
2124 if (pc & 0x2)
2125 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
2126 }
2127 else if (pc == sr4export)
2128 pc = (CORE_ADDR) (read_register (22));
2129
2130 /* Get the unwind descriptor corresponding to PC, return zero
2131 if no unwind was found. */
2132 u = find_unwind_entry (pc);
2133 if (!u)
2134 return 0;
2135
2136 /* If this isn't a linker stub, then return now. */
2137 if (u->stub_type == 0)
2138 return orig_pc == pc ? 0 : pc & ~0x3;
2139
2140 /* It's a stub. Search for a branch and figure out where it goes.
2141 Note we have to handle multi insn branch sequences like ldil;ble.
2142 Most (all?) other branches can be determined by examining the contents
2143 of certain registers and the stack. */
2144 loc = pc;
2145 curr_inst = 0;
2146 prev_inst = 0;
2147 while (1)
2148 {
2149 /* Make sure we haven't walked outside the range of this stub. */
2150 if (u != find_unwind_entry (loc))
2151 {
2152 warning ("Unable to find branch in linker stub");
2153 return orig_pc == pc ? 0 : pc & ~0x3;
2154 }
2155
2156 prev_inst = curr_inst;
2157 curr_inst = read_memory_integer (loc, 4);
2158
2159 /* Does it look like a branch external using %r1? Then it's the
2160 branch from the stub to the actual function. */
2161 if ((curr_inst & 0xffe0e000) == 0xe0202000)
2162 {
2163 /* Yup. See if the previous instruction loaded
2164 a value into %r1. If so compute and return the jump address. */
2165 if ((prev_inst & 0xffe00000) == 0x20200000)
2166 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
2167 else
2168 {
2169 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
2170 return orig_pc == pc ? 0 : pc & ~0x3;
2171 }
2172 }
2173
2174 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
2175 import stub to an export stub.
2176
2177 It is impossible to determine the target of the branch via
2178 simple examination of instructions and/or data (consider
2179 that the address in the plabel may be the address of the
2180 bind-on-reference routine in the dynamic loader).
2181
2182 So we have try an alternative approach.
2183
2184 Get the name of the symbol at our current location; it should
2185 be a stub symbol with the same name as the symbol in the
2186 shared library.
2187
2188 Then lookup a minimal symbol with the same name; we should
2189 get the minimal symbol for the target routine in the shared
2190 library as those take precedence of import/export stubs. */
2191 if (curr_inst == 0xe2a00000)
2192 {
2193 struct minimal_symbol *stubsym, *libsym;
2194
2195 stubsym = lookup_minimal_symbol_by_pc (loc);
2196 if (stubsym == NULL)
2197 {
2198 warning ("Unable to find symbol for 0x%x", loc);
2199 return orig_pc == pc ? 0 : pc & ~0x3;
2200 }
2201
2202 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
2203 if (libsym == NULL)
2204 {
2205 warning ("Unable to find library symbol for %s\n",
2206 SYMBOL_NAME (stubsym));
2207 return orig_pc == pc ? 0 : pc & ~0x3;
2208 }
2209
2210 return SYMBOL_VALUE (libsym);
2211 }
2212
2213 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
2214 branch from the stub to the actual function. */
2215 else if ((curr_inst & 0xffe0e000) == 0xe8400000
2216 || (curr_inst & 0xffe0e000) == 0xe8000000)
2217 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
2218
2219 /* Does it look like bv (rp)? Note this depends on the
2220 current stack pointer being the same as the stack
2221 pointer in the stub itself! This is a branch on from the
2222 stub back to the original caller. */
2223 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
2224 {
2225 /* Yup. See if the previous instruction loaded
2226 rp from sp - 8. */
2227 if (prev_inst == 0x4bc23ff1)
2228 return (read_memory_integer
2229 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
2230 else
2231 {
2232 warning ("Unable to find restore of %%rp before bv (%%rp).");
2233 return orig_pc == pc ? 0 : pc & ~0x3;
2234 }
2235 }
2236
2237 /* What about be,n 0(sr0,%rp)? It's just another way we return to
2238 the original caller from the stub. Used in dynamic executables. */
2239 else if (curr_inst == 0xe0400002)
2240 {
2241 /* The value we jump to is sitting in sp - 24. But that's
2242 loaded several instructions before the be instruction.
2243 I guess we could check for the previous instruction being
2244 mtsp %r1,%sr0 if we want to do sanity checking. */
2245 return (read_memory_integer
2246 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
2247 }
2248
2249 /* Haven't found the branch yet, but we're still in the stub.
2250 Keep looking. */
2251 loc += 4;
2252 }
2253 }
2254
2255 /* For the given instruction (INST), return any adjustment it makes
2256 to the stack pointer or zero for no adjustment.
2257
2258 This only handles instructions commonly found in prologues. */
2259
2260 static int
2261 prologue_inst_adjust_sp (inst)
2262 unsigned long inst;
2263 {
2264 /* This must persist across calls. */
2265 static int save_high21;
2266
2267 /* The most common way to perform a stack adjustment ldo X(sp),sp */
2268 if ((inst & 0xffffc000) == 0x37de0000)
2269 return extract_14 (inst);
2270
2271 /* stwm X,D(sp) */
2272 if ((inst & 0xffe00000) == 0x6fc00000)
2273 return extract_14 (inst);
2274
2275 /* addil high21,%r1; ldo low11,(%r1),%r30)
2276 save high bits in save_high21 for later use. */
2277 if ((inst & 0xffe00000) == 0x28200000)
2278 {
2279 save_high21 = extract_21 (inst);
2280 return 0;
2281 }
2282
2283 if ((inst & 0xffff0000) == 0x343e0000)
2284 return save_high21 + extract_14 (inst);
2285
2286 /* fstws as used by the HP compilers. */
2287 if ((inst & 0xffffffe0) == 0x2fd01220)
2288 return extract_5_load (inst);
2289
2290 /* No adjustment. */
2291 return 0;
2292 }
2293
2294 /* Return nonzero if INST is a branch of some kind, else return zero. */
2295
2296 static int
2297 is_branch (inst)
2298 unsigned long inst;
2299 {
2300 switch (inst >> 26)
2301 {
2302 case 0x20:
2303 case 0x21:
2304 case 0x22:
2305 case 0x23:
2306 case 0x28:
2307 case 0x29:
2308 case 0x2a:
2309 case 0x2b:
2310 case 0x30:
2311 case 0x31:
2312 case 0x32:
2313 case 0x33:
2314 case 0x38:
2315 case 0x39:
2316 case 0x3a:
2317 return 1;
2318
2319 default:
2320 return 0;
2321 }
2322 }
2323
2324 /* Return the register number for a GR which is saved by INST or
2325 zero it INST does not save a GR. */
2326
2327 static int
2328 inst_saves_gr (inst)
2329 unsigned long inst;
2330 {
2331 /* Does it look like a stw? */
2332 if ((inst >> 26) == 0x1a)
2333 return extract_5R_store (inst);
2334
2335 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
2336 if ((inst >> 26) == 0x1b)
2337 return extract_5R_store (inst);
2338
2339 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2340 too. */
2341 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2342 return extract_5R_store (inst);
2343
2344 return 0;
2345 }
2346
2347 /* Return the register number for a FR which is saved by INST or
2348 zero it INST does not save a FR.
2349
2350 Note we only care about full 64bit register stores (that's the only
2351 kind of stores the prologue will use).
2352
2353 FIXME: What about argument stores with the HP compiler in ANSI mode? */
2354
2355 static int
2356 inst_saves_fr (inst)
2357 unsigned long inst;
2358 {
2359 if ((inst & 0xfc00dfc0) == 0x2c001200)
2360 return extract_5r_store (inst);
2361 return 0;
2362 }
2363
2364 /* Advance PC across any function entry prologue instructions
2365 to reach some "real" code.
2366
2367 Use information in the unwind table to determine what exactly should
2368 be in the prologue. */
2369
2370 CORE_ADDR
2371 skip_prologue (pc)
2372 CORE_ADDR pc;
2373 {
2374 char buf[4];
2375 CORE_ADDR orig_pc = pc;
2376 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2377 unsigned long args_stored, status, i, restart_gr, restart_fr;
2378 struct unwind_table_entry *u;
2379
2380 restart_gr = 0;
2381 restart_fr = 0;
2382
2383 restart:
2384 u = find_unwind_entry (pc);
2385 if (!u)
2386 return pc;
2387
2388 /* If we are not at the beginning of a function, then return now. */
2389 if ((pc & ~0x3) != u->region_start)
2390 return pc;
2391
2392 /* This is how much of a frame adjustment we need to account for. */
2393 stack_remaining = u->Total_frame_size << 3;
2394
2395 /* Magic register saves we want to know about. */
2396 save_rp = u->Save_RP;
2397 save_sp = u->Save_SP;
2398
2399 /* An indication that args may be stored into the stack. Unfortunately
2400 the HPUX compilers tend to set this in cases where no args were
2401 stored too!. */
2402 args_stored = 1;
2403
2404 /* Turn the Entry_GR field into a bitmask. */
2405 save_gr = 0;
2406 for (i = 3; i < u->Entry_GR + 3; i++)
2407 {
2408 /* Frame pointer gets saved into a special location. */
2409 if (u->Save_SP && i == FP_REGNUM)
2410 continue;
2411
2412 save_gr |= (1 << i);
2413 }
2414 save_gr &= ~restart_gr;
2415
2416 /* Turn the Entry_FR field into a bitmask too. */
2417 save_fr = 0;
2418 for (i = 12; i < u->Entry_FR + 12; i++)
2419 save_fr |= (1 << i);
2420 save_fr &= ~restart_fr;
2421
2422 /* Loop until we find everything of interest or hit a branch.
2423
2424 For unoptimized GCC code and for any HP CC code this will never ever
2425 examine any user instructions.
2426
2427 For optimzied GCC code we're faced with problems. GCC will schedule
2428 its prologue and make prologue instructions available for delay slot
2429 filling. The end result is user code gets mixed in with the prologue
2430 and a prologue instruction may be in the delay slot of the first branch
2431 or call.
2432
2433 Some unexpected things are expected with debugging optimized code, so
2434 we allow this routine to walk past user instructions in optimized
2435 GCC code. */
2436 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2437 || args_stored)
2438 {
2439 unsigned int reg_num;
2440 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
2441 unsigned long old_save_rp, old_save_sp, next_inst;
2442
2443 /* Save copies of all the triggers so we can compare them later
2444 (only for HPC). */
2445 old_save_gr = save_gr;
2446 old_save_fr = save_fr;
2447 old_save_rp = save_rp;
2448 old_save_sp = save_sp;
2449 old_stack_remaining = stack_remaining;
2450
2451 status = target_read_memory (pc, buf, 4);
2452 inst = extract_unsigned_integer (buf, 4);
2453
2454 /* Yow! */
2455 if (status != 0)
2456 return pc;
2457
2458 /* Note the interesting effects of this instruction. */
2459 stack_remaining -= prologue_inst_adjust_sp (inst);
2460
2461 /* There is only one instruction used for saving RP into the stack. */
2462 if (inst == 0x6bc23fd9)
2463 save_rp = 0;
2464
2465 /* This is the only way we save SP into the stack. At this time
2466 the HP compilers never bother to save SP into the stack. */
2467 if ((inst & 0xffffc000) == 0x6fc10000)
2468 save_sp = 0;
2469
2470 /* Account for general and floating-point register saves. */
2471 reg_num = inst_saves_gr (inst);
2472 save_gr &= ~(1 << reg_num);
2473
2474 /* Ugh. Also account for argument stores into the stack.
2475 Unfortunately args_stored only tells us that some arguments
2476 where stored into the stack. Not how many or what kind!
2477
2478 This is a kludge as on the HP compiler sets this bit and it
2479 never does prologue scheduling. So once we see one, skip past
2480 all of them. We have similar code for the fp arg stores below.
2481
2482 FIXME. Can still die if we have a mix of GR and FR argument
2483 stores! */
2484 if (reg_num >= 23 && reg_num <= 26)
2485 {
2486 while (reg_num >= 23 && reg_num <= 26)
2487 {
2488 pc += 4;
2489 status = target_read_memory (pc, buf, 4);
2490 inst = extract_unsigned_integer (buf, 4);
2491 if (status != 0)
2492 return pc;
2493 reg_num = inst_saves_gr (inst);
2494 }
2495 args_stored = 0;
2496 continue;
2497 }
2498
2499 reg_num = inst_saves_fr (inst);
2500 save_fr &= ~(1 << reg_num);
2501
2502 status = target_read_memory (pc + 4, buf, 4);
2503 next_inst = extract_unsigned_integer (buf, 4);
2504
2505 /* Yow! */
2506 if (status != 0)
2507 return pc;
2508
2509 /* We've got to be read to handle the ldo before the fp register
2510 save. */
2511 if ((inst & 0xfc000000) == 0x34000000
2512 && inst_saves_fr (next_inst) >= 4
2513 && inst_saves_fr (next_inst) <= 7)
2514 {
2515 /* So we drop into the code below in a reasonable state. */
2516 reg_num = inst_saves_fr (next_inst);
2517 pc -= 4;
2518 }
2519
2520 /* Ugh. Also account for argument stores into the stack.
2521 This is a kludge as on the HP compiler sets this bit and it
2522 never does prologue scheduling. So once we see one, skip past
2523 all of them. */
2524 if (reg_num >= 4 && reg_num <= 7)
2525 {
2526 while (reg_num >= 4 && reg_num <= 7)
2527 {
2528 pc += 8;
2529 status = target_read_memory (pc, buf, 4);
2530 inst = extract_unsigned_integer (buf, 4);
2531 if (status != 0)
2532 return pc;
2533 if ((inst & 0xfc000000) != 0x34000000)
2534 break;
2535 status = target_read_memory (pc + 4, buf, 4);
2536 next_inst = extract_unsigned_integer (buf, 4);
2537 if (status != 0)
2538 return pc;
2539 reg_num = inst_saves_fr (next_inst);
2540 }
2541 args_stored = 0;
2542 continue;
2543 }
2544
2545 /* Quit if we hit any kind of branch. This can happen if a prologue
2546 instruction is in the delay slot of the first call/branch. */
2547 if (is_branch (inst))
2548 break;
2549
2550 /* What a crock. The HP compilers set args_stored even if no
2551 arguments were stored into the stack (boo hiss). This could
2552 cause this code to then skip a bunch of user insns (up to the
2553 first branch).
2554
2555 To combat this we try to identify when args_stored was bogusly
2556 set and clear it. We only do this when args_stored is nonzero,
2557 all other resources are accounted for, and nothing changed on
2558 this pass. */
2559 if (args_stored
2560 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2561 && old_save_gr == save_gr && old_save_fr == save_fr
2562 && old_save_rp == save_rp && old_save_sp == save_sp
2563 && old_stack_remaining == stack_remaining)
2564 break;
2565
2566 /* Bump the PC. */
2567 pc += 4;
2568 }
2569
2570 /* We've got a tenative location for the end of the prologue. However
2571 because of limitations in the unwind descriptor mechanism we may
2572 have went too far into user code looking for the save of a register
2573 that does not exist. So, if there registers we expected to be saved
2574 but never were, mask them out and restart.
2575
2576 This should only happen in optimized code, and should be very rare. */
2577 if (save_gr || (save_fr && ! (restart_fr || restart_gr)))
2578 {
2579 pc = orig_pc;
2580 restart_gr = save_gr;
2581 restart_fr = save_fr;
2582 goto restart;
2583 }
2584
2585 return pc;
2586 }
2587
2588 /* Put here the code to store, into a struct frame_saved_regs,
2589 the addresses of the saved registers of frame described by FRAME_INFO.
2590 This includes special registers such as pc and fp saved in special
2591 ways in the stack frame. sp is even more special:
2592 the address we return for it IS the sp for the next frame. */
2593
2594 void
2595 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2596 struct frame_info *frame_info;
2597 struct frame_saved_regs *frame_saved_regs;
2598 {
2599 CORE_ADDR pc;
2600 struct unwind_table_entry *u;
2601 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2602 int status, i, reg;
2603 char buf[4];
2604 int fp_loc = -1;
2605
2606 /* Zero out everything. */
2607 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2608
2609 /* Call dummy frames always look the same, so there's no need to
2610 examine the dummy code to determine locations of saved registers;
2611 instead, let find_dummy_frame_regs fill in the correct offsets
2612 for the saved registers. */
2613 if ((frame_info->pc >= frame_info->frame
2614 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2615 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2616 + 6 * 4)))
2617 find_dummy_frame_regs (frame_info, frame_saved_regs);
2618
2619 /* Interrupt handlers are special too. They lay out the register
2620 state in the exact same order as the register numbers in GDB. */
2621 if (pc_in_interrupt_handler (frame_info->pc))
2622 {
2623 for (i = 0; i < NUM_REGS; i++)
2624 {
2625 /* SP is a little special. */
2626 if (i == SP_REGNUM)
2627 frame_saved_regs->regs[SP_REGNUM]
2628 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2629 else
2630 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2631 }
2632 return;
2633 }
2634
2635 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
2636 /* Handle signal handler callers. */
2637 if (frame_info->signal_handler_caller)
2638 {
2639 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2640 return;
2641 }
2642 #endif
2643
2644 /* Get the starting address of the function referred to by the PC
2645 saved in frame. */
2646 pc = get_pc_function_start (frame_info->pc);
2647
2648 /* Yow! */
2649 u = find_unwind_entry (pc);
2650 if (!u)
2651 return;
2652
2653 /* This is how much of a frame adjustment we need to account for. */
2654 stack_remaining = u->Total_frame_size << 3;
2655
2656 /* Magic register saves we want to know about. */
2657 save_rp = u->Save_RP;
2658 save_sp = u->Save_SP;
2659
2660 /* Turn the Entry_GR field into a bitmask. */
2661 save_gr = 0;
2662 for (i = 3; i < u->Entry_GR + 3; i++)
2663 {
2664 /* Frame pointer gets saved into a special location. */
2665 if (u->Save_SP && i == FP_REGNUM)
2666 continue;
2667
2668 save_gr |= (1 << i);
2669 }
2670
2671 /* Turn the Entry_FR field into a bitmask too. */
2672 save_fr = 0;
2673 for (i = 12; i < u->Entry_FR + 12; i++)
2674 save_fr |= (1 << i);
2675
2676 /* The frame always represents the value of %sp at entry to the
2677 current function (and is thus equivalent to the "saved" stack
2678 pointer. */
2679 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2680
2681 /* Loop until we find everything of interest or hit a branch.
2682
2683 For unoptimized GCC code and for any HP CC code this will never ever
2684 examine any user instructions.
2685
2686 For optimzied GCC code we're faced with problems. GCC will schedule
2687 its prologue and make prologue instructions available for delay slot
2688 filling. The end result is user code gets mixed in with the prologue
2689 and a prologue instruction may be in the delay slot of the first branch
2690 or call.
2691
2692 Some unexpected things are expected with debugging optimized code, so
2693 we allow this routine to walk past user instructions in optimized
2694 GCC code. */
2695 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2696 {
2697 status = target_read_memory (pc, buf, 4);
2698 inst = extract_unsigned_integer (buf, 4);
2699
2700 /* Yow! */
2701 if (status != 0)
2702 return;
2703
2704 /* Note the interesting effects of this instruction. */
2705 stack_remaining -= prologue_inst_adjust_sp (inst);
2706
2707 /* There is only one instruction used for saving RP into the stack. */
2708 if (inst == 0x6bc23fd9)
2709 {
2710 save_rp = 0;
2711 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2712 }
2713
2714 /* Just note that we found the save of SP into the stack. The
2715 value for frame_saved_regs was computed above. */
2716 if ((inst & 0xffffc000) == 0x6fc10000)
2717 save_sp = 0;
2718
2719 /* Account for general and floating-point register saves. */
2720 reg = inst_saves_gr (inst);
2721 if (reg >= 3 && reg <= 18
2722 && (!u->Save_SP || reg != FP_REGNUM))
2723 {
2724 save_gr &= ~(1 << reg);
2725
2726 /* stwm with a positive displacement is a *post modify*. */
2727 if ((inst >> 26) == 0x1b
2728 && extract_14 (inst) >= 0)
2729 frame_saved_regs->regs[reg] = frame_info->frame;
2730 else
2731 {
2732 /* Handle code with and without frame pointers. */
2733 if (u->Save_SP)
2734 frame_saved_regs->regs[reg]
2735 = frame_info->frame + extract_14 (inst);
2736 else
2737 frame_saved_regs->regs[reg]
2738 = frame_info->frame + (u->Total_frame_size << 3)
2739 + extract_14 (inst);
2740 }
2741 }
2742
2743
2744 /* GCC handles callee saved FP regs a little differently.
2745
2746 It emits an instruction to put the value of the start of
2747 the FP store area into %r1. It then uses fstds,ma with
2748 a basereg of %r1 for the stores.
2749
2750 HP CC emits them at the current stack pointer modifying
2751 the stack pointer as it stores each register. */
2752
2753 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2754 if ((inst & 0xffffc000) == 0x34610000
2755 || (inst & 0xffffc000) == 0x37c10000)
2756 fp_loc = extract_14 (inst);
2757
2758 reg = inst_saves_fr (inst);
2759 if (reg >= 12 && reg <= 21)
2760 {
2761 /* Note +4 braindamage below is necessary because the FP status
2762 registers are internally 8 registers rather than the expected
2763 4 registers. */
2764 save_fr &= ~(1 << reg);
2765 if (fp_loc == -1)
2766 {
2767 /* 1st HP CC FP register store. After this instruction
2768 we've set enough state that the GCC and HPCC code are
2769 both handled in the same manner. */
2770 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2771 fp_loc = 8;
2772 }
2773 else
2774 {
2775 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2776 = frame_info->frame + fp_loc;
2777 fp_loc += 8;
2778 }
2779 }
2780
2781 /* Quit if we hit any kind of branch. This can happen if a prologue
2782 instruction is in the delay slot of the first call/branch. */
2783 if (is_branch (inst))
2784 break;
2785
2786 /* Bump the PC. */
2787 pc += 4;
2788 }
2789 }
2790
2791 #ifdef MAINTENANCE_CMDS
2792
2793 static void
2794 unwind_command (exp, from_tty)
2795 char *exp;
2796 int from_tty;
2797 {
2798 CORE_ADDR address;
2799 struct unwind_table_entry *u;
2800
2801 /* If we have an expression, evaluate it and use it as the address. */
2802
2803 if (exp != 0 && *exp != 0)
2804 address = parse_and_eval_address (exp);
2805 else
2806 return;
2807
2808 u = find_unwind_entry (address);
2809
2810 if (!u)
2811 {
2812 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2813 return;
2814 }
2815
2816 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
2817
2818 printf_unfiltered ("\tregion_start = ");
2819 print_address (u->region_start, gdb_stdout);
2820
2821 printf_unfiltered ("\n\tregion_end = ");
2822 print_address (u->region_end, gdb_stdout);
2823
2824 #ifdef __STDC__
2825 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2826 #else
2827 #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
2828 #endif
2829
2830 printf_unfiltered ("\n\tflags =");
2831 pif (Cannot_unwind);
2832 pif (Millicode);
2833 pif (Millicode_save_sr0);
2834 pif (Entry_SR);
2835 pif (Args_stored);
2836 pif (Variable_Frame);
2837 pif (Separate_Package_Body);
2838 pif (Frame_Extension_Millicode);
2839 pif (Stack_Overflow_Check);
2840 pif (Two_Instruction_SP_Increment);
2841 pif (Ada_Region);
2842 pif (Save_SP);
2843 pif (Save_RP);
2844 pif (Save_MRP_in_frame);
2845 pif (extn_ptr_defined);
2846 pif (Cleanup_defined);
2847 pif (MPE_XL_interrupt_marker);
2848 pif (HP_UX_interrupt_marker);
2849 pif (Large_frame);
2850
2851 putchar_unfiltered ('\n');
2852
2853 #ifdef __STDC__
2854 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2855 #else
2856 #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
2857 #endif
2858
2859 pin (Region_description);
2860 pin (Entry_FR);
2861 pin (Entry_GR);
2862 pin (Total_frame_size);
2863 }
2864 #endif /* MAINTENANCE_CMDS */
2865
2866 void
2867 _initialize_hppa_tdep ()
2868 {
2869 tm_print_insn = print_insn_hppa;
2870
2871 #ifdef MAINTENANCE_CMDS
2872 add_cmd ("unwind", class_maintenance, unwind_command,
2873 "Print unwind table entry at given address.",
2874 &maintenanceprintlist);
2875 #endif /* MAINTENANCE_CMDS */
2876 }
This page took 0.156747 seconds and 4 git commands to generate.