* blockframe.c (inside_main_func): No longer use symbol_lookup()
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "value.h"
31 #include "regcache.h"
32 #include "completer.h"
33 #include "language.h"
34 #include "osabi.h"
35 #include "gdb_assert.h"
36 #include "infttrace.h"
37 /* For argument passing to the inferior */
38 #include "symtab.h"
39 #include "infcall.h"
40 #include "dis-asm.h"
41
42 #ifdef USG
43 #include <sys/types.h>
44 #endif
45
46 #include <dl.h>
47 #include <sys/param.h>
48 #include <signal.h>
49
50 #include <sys/ptrace.h>
51 #include <machine/save_state.h>
52
53 #ifdef COFF_ENCAPSULATE
54 #include "a.out.encap.h"
55 #else
56 #endif
57
58 /*#include <sys/user.h> After a.out.h */
59 #include <sys/file.h>
60 #include "gdb_stat.h"
61 #include "gdb_wait.h"
62
63 #include "gdbcore.h"
64 #include "gdbcmd.h"
65 #include "target.h"
66 #include "symfile.h"
67 #include "objfiles.h"
68 #include "hppa-tdep.h"
69
70 /* Some local constants. */
71 static const int hppa32_num_regs = 128;
72 static const int hppa64_num_regs = 96;
73
74 static const int hppa64_call_dummy_breakpoint_offset = 22 * 4;
75
76 /* DEPRECATED_CALL_DUMMY_LENGTH is computed based on the size of a
77 word on the target machine, not the size of an instruction. Since
78 a word on this target holds two instructions we have to divide the
79 instruction size by two to get the word size of the dummy. */
80 static const int hppa32_call_dummy_length = INSTRUCTION_SIZE * 28;
81 static const int hppa64_call_dummy_length = INSTRUCTION_SIZE * 26 / 2;
82
83 /* Get at various relevent fields of an instruction word. */
84 #define MASK_5 0x1f
85 #define MASK_11 0x7ff
86 #define MASK_14 0x3fff
87 #define MASK_21 0x1fffff
88
89 /* Define offsets into the call dummy for the target function address.
90 See comments related to CALL_DUMMY for more info. */
91 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
92 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
93
94 /* Define offsets into the call dummy for the _sr4export address.
95 See comments related to CALL_DUMMY for more info. */
96 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
97 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
98
99 /* To support detection of the pseudo-initial frame
100 that threads have. */
101 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
102 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
103
104 /* Sizes (in bytes) of the native unwind entries. */
105 #define UNWIND_ENTRY_SIZE 16
106 #define STUB_UNWIND_ENTRY_SIZE 8
107
108 static int get_field (unsigned word, int from, int to);
109
110 static int extract_5_load (unsigned int);
111
112 static unsigned extract_5R_store (unsigned int);
113
114 static unsigned extract_5r_store (unsigned int);
115
116 static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *);
117
118 static int find_proc_framesize (CORE_ADDR);
119
120 static int find_return_regnum (CORE_ADDR);
121
122 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
123
124 static int extract_17 (unsigned int);
125
126 static unsigned deposit_21 (unsigned int, unsigned int);
127
128 static int extract_21 (unsigned);
129
130 static unsigned deposit_14 (int, unsigned int);
131
132 static int extract_14 (unsigned);
133
134 static void unwind_command (char *, int);
135
136 static int low_sign_extend (unsigned int, unsigned int);
137
138 static int sign_extend (unsigned int, unsigned int);
139
140 static int restore_pc_queue (CORE_ADDR *);
141
142 static int hppa_alignof (struct type *);
143
144 static int prologue_inst_adjust_sp (unsigned long);
145
146 static int is_branch (unsigned long);
147
148 static int inst_saves_gr (unsigned long);
149
150 static int inst_saves_fr (unsigned long);
151
152 static int pc_in_interrupt_handler (CORE_ADDR);
153
154 static int pc_in_linker_stub (CORE_ADDR);
155
156 static int compare_unwind_entries (const void *, const void *);
157
158 static void read_unwind_info (struct objfile *);
159
160 static void internalize_unwinds (struct objfile *,
161 struct unwind_table_entry *,
162 asection *, unsigned int,
163 unsigned int, CORE_ADDR);
164 static void pa_print_registers (char *, int, int);
165 static void pa_strcat_registers (char *, int, int, struct ui_file *);
166 static void pa_register_look_aside (char *, int, long *);
167 static void pa_print_fp_reg (int);
168 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
169 static void record_text_segment_lowaddr (bfd *, asection *, void *);
170 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
171 following functions static, once we hppa is partially multiarched. */
172 int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
173 CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
174 CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
175 int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
176 int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
177 CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
178 int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
179 CORE_ADDR hppa32_stack_align (CORE_ADDR sp);
180 CORE_ADDR hppa64_stack_align (CORE_ADDR sp);
181 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
182 int hppa_instruction_nullified (void);
183 int hppa_register_raw_size (int reg_nr);
184 int hppa_register_byte (int reg_nr);
185 struct type * hppa32_register_virtual_type (int reg_nr);
186 struct type * hppa64_register_virtual_type (int reg_nr);
187 void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
188 void hppa32_extract_return_value (struct type *type, char *regbuf,
189 char *valbuf);
190 void hppa64_extract_return_value (struct type *type, char *regbuf,
191 char *valbuf);
192 int hppa32_use_struct_convention (int gcc_p, struct type *type);
193 int hppa64_use_struct_convention (int gcc_p, struct type *type);
194 void hppa32_store_return_value (struct type *type, char *valbuf);
195 void hppa64_store_return_value (struct type *type, char *valbuf);
196 CORE_ADDR hppa_extract_struct_value_address (char *regbuf);
197 int hppa_cannot_store_register (int regnum);
198 void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
199 CORE_ADDR hppa_frame_chain (struct frame_info *frame);
200 int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
201 int hppa_frameless_function_invocation (struct frame_info *frame);
202 CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
203 CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
204 int hppa_frame_num_args (struct frame_info *frame);
205 void hppa_push_dummy_frame (void);
206 void hppa_pop_frame (void);
207 CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
208 int nargs, struct value **args,
209 struct type *type, int gcc_p);
210 CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
211 int struct_return, CORE_ADDR struct_addr);
212 CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
213 CORE_ADDR hppa_target_read_pc (ptid_t ptid);
214 void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
215 CORE_ADDR hppa_target_read_fp (void);
216
217 typedef struct
218 {
219 struct minimal_symbol *msym;
220 CORE_ADDR solib_handle;
221 CORE_ADDR return_val;
222 }
223 args_for_find_stub;
224
225 static int cover_find_stub_with_shl_get (void *);
226
227 static int is_pa_2 = 0; /* False */
228
229 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
230 extern int hp_som_som_object_present;
231
232 /* In breakpoint.c */
233 extern int exception_catchpoints_are_fragile;
234
235 /* Should call_function allocate stack space for a struct return? */
236
237 int
238 hppa32_use_struct_convention (int gcc_p, struct type *type)
239 {
240 return (TYPE_LENGTH (type) > 2 * DEPRECATED_REGISTER_SIZE);
241 }
242
243 /* Same as hppa32_use_struct_convention() for the PA64 ABI. */
244
245 int
246 hppa64_use_struct_convention (int gcc_p, struct type *type)
247 {
248 /* RM: struct upto 128 bits are returned in registers */
249 return TYPE_LENGTH (type) > 16;
250 }
251
252 /* Routines to extract various sized constants out of hppa
253 instructions. */
254
255 /* This assumes that no garbage lies outside of the lower bits of
256 value. */
257
258 static int
259 sign_extend (unsigned val, unsigned bits)
260 {
261 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
262 }
263
264 /* For many immediate values the sign bit is the low bit! */
265
266 static int
267 low_sign_extend (unsigned val, unsigned bits)
268 {
269 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
270 }
271
272 /* Extract the bits at positions between FROM and TO, using HP's numbering
273 (MSB = 0). */
274
275 static int
276 get_field (unsigned word, int from, int to)
277 {
278 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
279 }
280
281 /* extract the immediate field from a ld{bhw}s instruction */
282
283 static int
284 extract_5_load (unsigned word)
285 {
286 return low_sign_extend (word >> 16 & MASK_5, 5);
287 }
288
289 /* extract the immediate field from a break instruction */
290
291 static unsigned
292 extract_5r_store (unsigned word)
293 {
294 return (word & MASK_5);
295 }
296
297 /* extract the immediate field from a {sr}sm instruction */
298
299 static unsigned
300 extract_5R_store (unsigned word)
301 {
302 return (word >> 16 & MASK_5);
303 }
304
305 /* extract a 14 bit immediate field */
306
307 static int
308 extract_14 (unsigned word)
309 {
310 return low_sign_extend (word & MASK_14, 14);
311 }
312
313 /* deposit a 14 bit constant in a word */
314
315 static unsigned
316 deposit_14 (int opnd, unsigned word)
317 {
318 unsigned sign = (opnd < 0 ? 1 : 0);
319
320 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
321 }
322
323 /* extract a 21 bit constant */
324
325 static int
326 extract_21 (unsigned word)
327 {
328 int val;
329
330 word &= MASK_21;
331 word <<= 11;
332 val = get_field (word, 20, 20);
333 val <<= 11;
334 val |= get_field (word, 9, 19);
335 val <<= 2;
336 val |= get_field (word, 5, 6);
337 val <<= 5;
338 val |= get_field (word, 0, 4);
339 val <<= 2;
340 val |= get_field (word, 7, 8);
341 return sign_extend (val, 21) << 11;
342 }
343
344 /* deposit a 21 bit constant in a word. Although 21 bit constants are
345 usually the top 21 bits of a 32 bit constant, we assume that only
346 the low 21 bits of opnd are relevant */
347
348 static unsigned
349 deposit_21 (unsigned opnd, unsigned word)
350 {
351 unsigned val = 0;
352
353 val |= get_field (opnd, 11 + 14, 11 + 18);
354 val <<= 2;
355 val |= get_field (opnd, 11 + 12, 11 + 13);
356 val <<= 2;
357 val |= get_field (opnd, 11 + 19, 11 + 20);
358 val <<= 11;
359 val |= get_field (opnd, 11 + 1, 11 + 11);
360 val <<= 1;
361 val |= get_field (opnd, 11 + 0, 11 + 0);
362 return word | val;
363 }
364
365 /* extract a 17 bit constant from branch instructions, returning the
366 19 bit signed value. */
367
368 static int
369 extract_17 (unsigned word)
370 {
371 return sign_extend (get_field (word, 19, 28) |
372 get_field (word, 29, 29) << 10 |
373 get_field (word, 11, 15) << 11 |
374 (word & 0x1) << 16, 17) << 2;
375 }
376 \f
377
378 /* Compare the start address for two unwind entries returning 1 if
379 the first address is larger than the second, -1 if the second is
380 larger than the first, and zero if they are equal. */
381
382 static int
383 compare_unwind_entries (const void *arg1, const void *arg2)
384 {
385 const struct unwind_table_entry *a = arg1;
386 const struct unwind_table_entry *b = arg2;
387
388 if (a->region_start > b->region_start)
389 return 1;
390 else if (a->region_start < b->region_start)
391 return -1;
392 else
393 return 0;
394 }
395
396 static CORE_ADDR low_text_segment_address;
397
398 static void
399 record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
400 {
401 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
402 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
403 && section->vma < low_text_segment_address)
404 low_text_segment_address = section->vma;
405 }
406
407 static void
408 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
409 asection *section, unsigned int entries, unsigned int size,
410 CORE_ADDR text_offset)
411 {
412 /* We will read the unwind entries into temporary memory, then
413 fill in the actual unwind table. */
414 if (size > 0)
415 {
416 unsigned long tmp;
417 unsigned i;
418 char *buf = alloca (size);
419
420 low_text_segment_address = -1;
421
422 /* If addresses are 64 bits wide, then unwinds are supposed to
423 be segment relative offsets instead of absolute addresses.
424
425 Note that when loading a shared library (text_offset != 0) the
426 unwinds are already relative to the text_offset that will be
427 passed in. */
428 if (TARGET_PTR_BIT == 64 && text_offset == 0)
429 {
430 bfd_map_over_sections (objfile->obfd,
431 record_text_segment_lowaddr, NULL);
432
433 /* ?!? Mask off some low bits. Should this instead subtract
434 out the lowest section's filepos or something like that?
435 This looks very hokey to me. */
436 low_text_segment_address &= ~0xfff;
437 text_offset += low_text_segment_address;
438 }
439
440 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
441
442 /* Now internalize the information being careful to handle host/target
443 endian issues. */
444 for (i = 0; i < entries; i++)
445 {
446 table[i].region_start = bfd_get_32 (objfile->obfd,
447 (bfd_byte *) buf);
448 table[i].region_start += text_offset;
449 buf += 4;
450 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
451 table[i].region_end += text_offset;
452 buf += 4;
453 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
454 buf += 4;
455 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
456 table[i].Millicode = (tmp >> 30) & 0x1;
457 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
458 table[i].Region_description = (tmp >> 27) & 0x3;
459 table[i].reserved1 = (tmp >> 26) & 0x1;
460 table[i].Entry_SR = (tmp >> 25) & 0x1;
461 table[i].Entry_FR = (tmp >> 21) & 0xf;
462 table[i].Entry_GR = (tmp >> 16) & 0x1f;
463 table[i].Args_stored = (tmp >> 15) & 0x1;
464 table[i].Variable_Frame = (tmp >> 14) & 0x1;
465 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
466 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
467 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
468 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
469 table[i].Ada_Region = (tmp >> 9) & 0x1;
470 table[i].cxx_info = (tmp >> 8) & 0x1;
471 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
472 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
473 table[i].reserved2 = (tmp >> 5) & 0x1;
474 table[i].Save_SP = (tmp >> 4) & 0x1;
475 table[i].Save_RP = (tmp >> 3) & 0x1;
476 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
477 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
478 table[i].Cleanup_defined = tmp & 0x1;
479 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
480 buf += 4;
481 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
482 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
483 table[i].Large_frame = (tmp >> 29) & 0x1;
484 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
485 table[i].reserved4 = (tmp >> 27) & 0x1;
486 table[i].Total_frame_size = tmp & 0x7ffffff;
487
488 /* Stub unwinds are handled elsewhere. */
489 table[i].stub_unwind.stub_type = 0;
490 table[i].stub_unwind.padding = 0;
491 }
492 }
493 }
494
495 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
496 the object file. This info is used mainly by find_unwind_entry() to find
497 out the stack frame size and frame pointer used by procedures. We put
498 everything on the psymbol obstack in the objfile so that it automatically
499 gets freed when the objfile is destroyed. */
500
501 static void
502 read_unwind_info (struct objfile *objfile)
503 {
504 asection *unwind_sec, *stub_unwind_sec;
505 unsigned unwind_size, stub_unwind_size, total_size;
506 unsigned index, unwind_entries;
507 unsigned stub_entries, total_entries;
508 CORE_ADDR text_offset;
509 struct obj_unwind_info *ui;
510 obj_private_data_t *obj_private;
511
512 text_offset = ANOFFSET (objfile->section_offsets, 0);
513 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
514 sizeof (struct obj_unwind_info));
515
516 ui->table = NULL;
517 ui->cache = NULL;
518 ui->last = -1;
519
520 /* For reasons unknown the HP PA64 tools generate multiple unwinder
521 sections in a single executable. So we just iterate over every
522 section in the BFD looking for unwinder sections intead of trying
523 to do a lookup with bfd_get_section_by_name.
524
525 First determine the total size of the unwind tables so that we
526 can allocate memory in a nice big hunk. */
527 total_entries = 0;
528 for (unwind_sec = objfile->obfd->sections;
529 unwind_sec;
530 unwind_sec = unwind_sec->next)
531 {
532 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
533 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
534 {
535 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
536 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
537
538 total_entries += unwind_entries;
539 }
540 }
541
542 /* Now compute the size of the stub unwinds. Note the ELF tools do not
543 use stub unwinds at the curren time. */
544 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
545
546 if (stub_unwind_sec)
547 {
548 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
549 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
550 }
551 else
552 {
553 stub_unwind_size = 0;
554 stub_entries = 0;
555 }
556
557 /* Compute total number of unwind entries and their total size. */
558 total_entries += stub_entries;
559 total_size = total_entries * sizeof (struct unwind_table_entry);
560
561 /* Allocate memory for the unwind table. */
562 ui->table = (struct unwind_table_entry *)
563 obstack_alloc (&objfile->psymbol_obstack, total_size);
564 ui->last = total_entries - 1;
565
566 /* Now read in each unwind section and internalize the standard unwind
567 entries. */
568 index = 0;
569 for (unwind_sec = objfile->obfd->sections;
570 unwind_sec;
571 unwind_sec = unwind_sec->next)
572 {
573 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
574 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
575 {
576 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
577 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
578
579 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
580 unwind_entries, unwind_size, text_offset);
581 index += unwind_entries;
582 }
583 }
584
585 /* Now read in and internalize the stub unwind entries. */
586 if (stub_unwind_size > 0)
587 {
588 unsigned int i;
589 char *buf = alloca (stub_unwind_size);
590
591 /* Read in the stub unwind entries. */
592 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
593 0, stub_unwind_size);
594
595 /* Now convert them into regular unwind entries. */
596 for (i = 0; i < stub_entries; i++, index++)
597 {
598 /* Clear out the next unwind entry. */
599 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
600
601 /* Convert offset & size into region_start and region_end.
602 Stuff away the stub type into "reserved" fields. */
603 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
604 (bfd_byte *) buf);
605 ui->table[index].region_start += text_offset;
606 buf += 4;
607 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
608 (bfd_byte *) buf);
609 buf += 2;
610 ui->table[index].region_end
611 = ui->table[index].region_start + 4 *
612 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
613 buf += 2;
614 }
615
616 }
617
618 /* Unwind table needs to be kept sorted. */
619 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
620 compare_unwind_entries);
621
622 /* Keep a pointer to the unwind information. */
623 if (objfile->obj_private == NULL)
624 {
625 obj_private = (obj_private_data_t *)
626 obstack_alloc (&objfile->psymbol_obstack,
627 sizeof (obj_private_data_t));
628 obj_private->unwind_info = NULL;
629 obj_private->so_info = NULL;
630 obj_private->dp = 0;
631
632 objfile->obj_private = obj_private;
633 }
634 obj_private = (obj_private_data_t *) objfile->obj_private;
635 obj_private->unwind_info = ui;
636 }
637
638 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
639 of the objfiles seeking the unwind table entry for this PC. Each objfile
640 contains a sorted list of struct unwind_table_entry. Since we do a binary
641 search of the unwind tables, we depend upon them to be sorted. */
642
643 struct unwind_table_entry *
644 find_unwind_entry (CORE_ADDR pc)
645 {
646 int first, middle, last;
647 struct objfile *objfile;
648
649 /* A function at address 0? Not in HP-UX! */
650 if (pc == (CORE_ADDR) 0)
651 return NULL;
652
653 ALL_OBJFILES (objfile)
654 {
655 struct obj_unwind_info *ui;
656 ui = NULL;
657 if (objfile->obj_private)
658 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
659
660 if (!ui)
661 {
662 read_unwind_info (objfile);
663 if (objfile->obj_private == NULL)
664 error ("Internal error reading unwind information.");
665 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
666 }
667
668 /* First, check the cache */
669
670 if (ui->cache
671 && pc >= ui->cache->region_start
672 && pc <= ui->cache->region_end)
673 return ui->cache;
674
675 /* Not in the cache, do a binary search */
676
677 first = 0;
678 last = ui->last;
679
680 while (first <= last)
681 {
682 middle = (first + last) / 2;
683 if (pc >= ui->table[middle].region_start
684 && pc <= ui->table[middle].region_end)
685 {
686 ui->cache = &ui->table[middle];
687 return &ui->table[middle];
688 }
689
690 if (pc < ui->table[middle].region_start)
691 last = middle - 1;
692 else
693 first = middle + 1;
694 }
695 } /* ALL_OBJFILES() */
696 return NULL;
697 }
698
699 const unsigned char *
700 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
701 {
702 static const char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
703 (*len) = sizeof (breakpoint);
704 return breakpoint;
705 }
706
707 /* Return the name of a register. */
708
709 const char *
710 hppa32_register_name (int i)
711 {
712 static char *names[] = {
713 "flags", "r1", "rp", "r3",
714 "r4", "r5", "r6", "r7",
715 "r8", "r9", "r10", "r11",
716 "r12", "r13", "r14", "r15",
717 "r16", "r17", "r18", "r19",
718 "r20", "r21", "r22", "r23",
719 "r24", "r25", "r26", "dp",
720 "ret0", "ret1", "sp", "r31",
721 "sar", "pcoqh", "pcsqh", "pcoqt",
722 "pcsqt", "eiem", "iir", "isr",
723 "ior", "ipsw", "goto", "sr4",
724 "sr0", "sr1", "sr2", "sr3",
725 "sr5", "sr6", "sr7", "cr0",
726 "cr8", "cr9", "ccr", "cr12",
727 "cr13", "cr24", "cr25", "cr26",
728 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
729 "fpsr", "fpe1", "fpe2", "fpe3",
730 "fpe4", "fpe5", "fpe6", "fpe7",
731 "fr4", "fr4R", "fr5", "fr5R",
732 "fr6", "fr6R", "fr7", "fr7R",
733 "fr8", "fr8R", "fr9", "fr9R",
734 "fr10", "fr10R", "fr11", "fr11R",
735 "fr12", "fr12R", "fr13", "fr13R",
736 "fr14", "fr14R", "fr15", "fr15R",
737 "fr16", "fr16R", "fr17", "fr17R",
738 "fr18", "fr18R", "fr19", "fr19R",
739 "fr20", "fr20R", "fr21", "fr21R",
740 "fr22", "fr22R", "fr23", "fr23R",
741 "fr24", "fr24R", "fr25", "fr25R",
742 "fr26", "fr26R", "fr27", "fr27R",
743 "fr28", "fr28R", "fr29", "fr29R",
744 "fr30", "fr30R", "fr31", "fr31R"
745 };
746 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
747 return NULL;
748 else
749 return names[i];
750 }
751
752 const char *
753 hppa64_register_name (int i)
754 {
755 static char *names[] = {
756 "flags", "r1", "rp", "r3",
757 "r4", "r5", "r6", "r7",
758 "r8", "r9", "r10", "r11",
759 "r12", "r13", "r14", "r15",
760 "r16", "r17", "r18", "r19",
761 "r20", "r21", "r22", "r23",
762 "r24", "r25", "r26", "dp",
763 "ret0", "ret1", "sp", "r31",
764 "sar", "pcoqh", "pcsqh", "pcoqt",
765 "pcsqt", "eiem", "iir", "isr",
766 "ior", "ipsw", "goto", "sr4",
767 "sr0", "sr1", "sr2", "sr3",
768 "sr5", "sr6", "sr7", "cr0",
769 "cr8", "cr9", "ccr", "cr12",
770 "cr13", "cr24", "cr25", "cr26",
771 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
772 "fpsr", "fpe1", "fpe2", "fpe3",
773 "fr4", "fr5", "fr6", "fr7",
774 "fr8", "fr9", "fr10", "fr11",
775 "fr12", "fr13", "fr14", "fr15",
776 "fr16", "fr17", "fr18", "fr19",
777 "fr20", "fr21", "fr22", "fr23",
778 "fr24", "fr25", "fr26", "fr27",
779 "fr28", "fr29", "fr30", "fr31"
780 };
781 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
782 return NULL;
783 else
784 return names[i];
785 }
786
787
788
789 /* Return the adjustment necessary to make for addresses on the stack
790 as presented by hpread.c.
791
792 This is necessary because of the stack direction on the PA and the
793 bizarre way in which someone (?) decided they wanted to handle
794 frame pointerless code in GDB. */
795 int
796 hpread_adjust_stack_address (CORE_ADDR func_addr)
797 {
798 struct unwind_table_entry *u;
799
800 u = find_unwind_entry (func_addr);
801 if (!u)
802 return 0;
803 else
804 return u->Total_frame_size << 3;
805 }
806
807 /* Called to determine if PC is in an interrupt handler of some
808 kind. */
809
810 static int
811 pc_in_interrupt_handler (CORE_ADDR pc)
812 {
813 struct unwind_table_entry *u;
814 struct minimal_symbol *msym_us;
815
816 u = find_unwind_entry (pc);
817 if (!u)
818 return 0;
819
820 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
821 its frame isn't a pure interrupt frame. Deal with this. */
822 msym_us = lookup_minimal_symbol_by_pc (pc);
823
824 return (u->HP_UX_interrupt_marker
825 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
826 }
827
828 /* Called when no unwind descriptor was found for PC. Returns 1 if it
829 appears that PC is in a linker stub.
830
831 ?!? Need to handle stubs which appear in PA64 code. */
832
833 static int
834 pc_in_linker_stub (CORE_ADDR pc)
835 {
836 int found_magic_instruction = 0;
837 int i;
838 char buf[4];
839
840 /* If unable to read memory, assume pc is not in a linker stub. */
841 if (target_read_memory (pc, buf, 4) != 0)
842 return 0;
843
844 /* We are looking for something like
845
846 ; $$dyncall jams RP into this special spot in the frame (RP')
847 ; before calling the "call stub"
848 ldw -18(sp),rp
849
850 ldsid (rp),r1 ; Get space associated with RP into r1
851 mtsp r1,sp ; Move it into space register 0
852 be,n 0(sr0),rp) ; back to your regularly scheduled program */
853
854 /* Maximum known linker stub size is 4 instructions. Search forward
855 from the given PC, then backward. */
856 for (i = 0; i < 4; i++)
857 {
858 /* If we hit something with an unwind, stop searching this direction. */
859
860 if (find_unwind_entry (pc + i * 4) != 0)
861 break;
862
863 /* Check for ldsid (rp),r1 which is the magic instruction for a
864 return from a cross-space function call. */
865 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
866 {
867 found_magic_instruction = 1;
868 break;
869 }
870 /* Add code to handle long call/branch and argument relocation stubs
871 here. */
872 }
873
874 if (found_magic_instruction != 0)
875 return 1;
876
877 /* Now look backward. */
878 for (i = 0; i < 4; i++)
879 {
880 /* If we hit something with an unwind, stop searching this direction. */
881
882 if (find_unwind_entry (pc - i * 4) != 0)
883 break;
884
885 /* Check for ldsid (rp),r1 which is the magic instruction for a
886 return from a cross-space function call. */
887 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
888 {
889 found_magic_instruction = 1;
890 break;
891 }
892 /* Add code to handle long call/branch and argument relocation stubs
893 here. */
894 }
895 return found_magic_instruction;
896 }
897
898 static int
899 find_return_regnum (CORE_ADDR pc)
900 {
901 struct unwind_table_entry *u;
902
903 u = find_unwind_entry (pc);
904
905 if (!u)
906 return RP_REGNUM;
907
908 if (u->Millicode)
909 return 31;
910
911 return RP_REGNUM;
912 }
913
914 /* Return size of frame, or -1 if we should use a frame pointer. */
915 static int
916 find_proc_framesize (CORE_ADDR pc)
917 {
918 struct unwind_table_entry *u;
919 struct minimal_symbol *msym_us;
920
921 /* This may indicate a bug in our callers... */
922 if (pc == (CORE_ADDR) 0)
923 return -1;
924
925 u = find_unwind_entry (pc);
926
927 if (!u)
928 {
929 if (pc_in_linker_stub (pc))
930 /* Linker stubs have a zero size frame. */
931 return 0;
932 else
933 return -1;
934 }
935
936 msym_us = lookup_minimal_symbol_by_pc (pc);
937
938 /* If Save_SP is set, and we're not in an interrupt or signal caller,
939 then we have a frame pointer. Use it. */
940 if (u->Save_SP
941 && !pc_in_interrupt_handler (pc)
942 && msym_us
943 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
944 return -1;
945
946 return u->Total_frame_size << 3;
947 }
948
949 /* Return offset from sp at which rp is saved, or 0 if not saved. */
950 static int rp_saved (CORE_ADDR);
951
952 static int
953 rp_saved (CORE_ADDR pc)
954 {
955 struct unwind_table_entry *u;
956
957 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
958 if (pc == (CORE_ADDR) 0)
959 return 0;
960
961 u = find_unwind_entry (pc);
962
963 if (!u)
964 {
965 if (pc_in_linker_stub (pc))
966 /* This is the so-called RP'. */
967 return -24;
968 else
969 return 0;
970 }
971
972 if (u->Save_RP)
973 return (TARGET_PTR_BIT == 64 ? -16 : -20);
974 else if (u->stub_unwind.stub_type != 0)
975 {
976 switch (u->stub_unwind.stub_type)
977 {
978 case EXPORT:
979 case IMPORT:
980 return -24;
981 case PARAMETER_RELOCATION:
982 return -8;
983 default:
984 return 0;
985 }
986 }
987 else
988 return 0;
989 }
990 \f
991 int
992 hppa_frameless_function_invocation (struct frame_info *frame)
993 {
994 struct unwind_table_entry *u;
995
996 u = find_unwind_entry (get_frame_pc (frame));
997
998 if (u == 0)
999 return 0;
1000
1001 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
1002 }
1003
1004 /* Immediately after a function call, return the saved pc.
1005 Can't go through the frames for this because on some machines
1006 the new frame is not set up until the new function executes
1007 some instructions. */
1008
1009 CORE_ADDR
1010 hppa_saved_pc_after_call (struct frame_info *frame)
1011 {
1012 int ret_regnum;
1013 CORE_ADDR pc;
1014 struct unwind_table_entry *u;
1015
1016 ret_regnum = find_return_regnum (get_frame_pc (frame));
1017 pc = read_register (ret_regnum) & ~0x3;
1018
1019 /* If PC is in a linker stub, then we need to dig the address
1020 the stub will return to out of the stack. */
1021 u = find_unwind_entry (pc);
1022 if (u && u->stub_unwind.stub_type != 0)
1023 return DEPRECATED_FRAME_SAVED_PC (frame);
1024 else
1025 return pc;
1026 }
1027 \f
1028 CORE_ADDR
1029 hppa_frame_saved_pc (struct frame_info *frame)
1030 {
1031 CORE_ADDR pc = get_frame_pc (frame);
1032 struct unwind_table_entry *u;
1033 CORE_ADDR old_pc = 0;
1034 int spun_around_loop = 0;
1035 int rp_offset = 0;
1036
1037 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
1038 at the base of the frame in an interrupt handler. Registers within
1039 are saved in the exact same order as GDB numbers registers. How
1040 convienent. */
1041 if (pc_in_interrupt_handler (pc))
1042 return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4,
1043 TARGET_PTR_BIT / 8) & ~0x3;
1044
1045 if ((get_frame_pc (frame) >= get_frame_base (frame)
1046 && (get_frame_pc (frame)
1047 <= (get_frame_base (frame)
1048 /* A call dummy is sized in words, but it is actually a
1049 series of instructions. Account for that scaling
1050 factor. */
1051 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
1052 * DEPRECATED_CALL_DUMMY_LENGTH)
1053 /* Similarly we have to account for 64bit wide register
1054 saves. */
1055 + (32 * DEPRECATED_REGISTER_SIZE)
1056 /* We always consider FP regs 8 bytes long. */
1057 + (NUM_REGS - FP0_REGNUM) * 8
1058 /* Similarly we have to account for 64bit wide register
1059 saves. */
1060 + (6 * DEPRECATED_REGISTER_SIZE)))))
1061 {
1062 return read_memory_integer ((get_frame_base (frame)
1063 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
1064 TARGET_PTR_BIT / 8) & ~0x3;
1065 }
1066
1067 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
1068 /* Deal with signal handler caller frames too. */
1069 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1070 {
1071 CORE_ADDR rp;
1072 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
1073 return rp & ~0x3;
1074 }
1075 #endif
1076
1077 if (hppa_frameless_function_invocation (frame))
1078 {
1079 int ret_regnum;
1080
1081 ret_regnum = find_return_regnum (pc);
1082
1083 /* If the next frame is an interrupt frame or a signal
1084 handler caller, then we need to look in the saved
1085 register area to get the return pointer (the values
1086 in the registers may not correspond to anything useful). */
1087 if (get_next_frame (frame)
1088 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1089 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1090 {
1091 CORE_ADDR *saved_regs;
1092 hppa_frame_init_saved_regs (get_next_frame (frame));
1093 saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame));
1094 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1095 TARGET_PTR_BIT / 8) & 0x2)
1096 {
1097 pc = read_memory_integer (saved_regs[31],
1098 TARGET_PTR_BIT / 8) & ~0x3;
1099
1100 /* Syscalls are really two frames. The syscall stub itself
1101 with a return pointer in %rp and the kernel call with
1102 a return pointer in %r31. We return the %rp variant
1103 if %r31 is the same as frame->pc. */
1104 if (pc == get_frame_pc (frame))
1105 pc = read_memory_integer (saved_regs[RP_REGNUM],
1106 TARGET_PTR_BIT / 8) & ~0x3;
1107 }
1108 else
1109 pc = read_memory_integer (saved_regs[RP_REGNUM],
1110 TARGET_PTR_BIT / 8) & ~0x3;
1111 }
1112 else
1113 pc = read_register (ret_regnum) & ~0x3;
1114 }
1115 else
1116 {
1117 spun_around_loop = 0;
1118 old_pc = pc;
1119
1120 restart:
1121 rp_offset = rp_saved (pc);
1122
1123 /* Similar to code in frameless function case. If the next
1124 frame is a signal or interrupt handler, then dig the right
1125 information out of the saved register info. */
1126 if (rp_offset == 0
1127 && get_next_frame (frame)
1128 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1129 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1130 {
1131 CORE_ADDR *saved_regs;
1132 hppa_frame_init_saved_regs (get_next_frame (frame));
1133 saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame));
1134 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1135 TARGET_PTR_BIT / 8) & 0x2)
1136 {
1137 pc = read_memory_integer (saved_regs[31],
1138 TARGET_PTR_BIT / 8) & ~0x3;
1139
1140 /* Syscalls are really two frames. The syscall stub itself
1141 with a return pointer in %rp and the kernel call with
1142 a return pointer in %r31. We return the %rp variant
1143 if %r31 is the same as frame->pc. */
1144 if (pc == get_frame_pc (frame))
1145 pc = read_memory_integer (saved_regs[RP_REGNUM],
1146 TARGET_PTR_BIT / 8) & ~0x3;
1147 }
1148 else
1149 pc = read_memory_integer (saved_regs[RP_REGNUM],
1150 TARGET_PTR_BIT / 8) & ~0x3;
1151 }
1152 else if (rp_offset == 0)
1153 {
1154 old_pc = pc;
1155 pc = read_register (RP_REGNUM) & ~0x3;
1156 }
1157 else
1158 {
1159 old_pc = pc;
1160 pc = read_memory_integer (get_frame_base (frame) + rp_offset,
1161 TARGET_PTR_BIT / 8) & ~0x3;
1162 }
1163 }
1164
1165 /* If PC is inside a linker stub, then dig out the address the stub
1166 will return to.
1167
1168 Don't do this for long branch stubs. Why? For some unknown reason
1169 _start is marked as a long branch stub in hpux10. */
1170 u = find_unwind_entry (pc);
1171 if (u && u->stub_unwind.stub_type != 0
1172 && u->stub_unwind.stub_type != LONG_BRANCH)
1173 {
1174 unsigned int insn;
1175
1176 /* If this is a dynamic executable, and we're in a signal handler,
1177 then the call chain will eventually point us into the stub for
1178 _sigreturn. Unlike most cases, we'll be pointed to the branch
1179 to the real sigreturn rather than the code after the real branch!.
1180
1181 Else, try to dig the address the stub will return to in the normal
1182 fashion. */
1183 insn = read_memory_integer (pc, 4);
1184 if ((insn & 0xfc00e000) == 0xe8000000)
1185 return (pc + extract_17 (insn) + 8) & ~0x3;
1186 else
1187 {
1188 if (old_pc == pc)
1189 spun_around_loop++;
1190
1191 if (spun_around_loop > 1)
1192 {
1193 /* We're just about to go around the loop again with
1194 no more hope of success. Die. */
1195 error ("Unable to find return pc for this frame");
1196 }
1197 else
1198 goto restart;
1199 }
1200 }
1201
1202 return pc;
1203 }
1204 \f
1205 /* We need to correct the PC and the FP for the outermost frame when we are
1206 in a system call. */
1207
1208 void
1209 hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
1210 {
1211 int flags;
1212 int framesize;
1213
1214 if (get_next_frame (frame) && !fromleaf)
1215 return;
1216
1217 /* If the next frame represents a frameless function invocation then
1218 we have to do some adjustments that are normally done by
1219 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1220 this case.) */
1221 if (fromleaf)
1222 {
1223 /* Find the framesize of *this* frame without peeking at the PC
1224 in the current frame structure (it isn't set yet). */
1225 framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
1226
1227 /* Now adjust our base frame accordingly. If we have a frame pointer
1228 use it, else subtract the size of this frame from the current
1229 frame. (we always want frame->frame to point at the lowest address
1230 in the frame). */
1231 if (framesize == -1)
1232 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1233 else
1234 deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize);
1235 return;
1236 }
1237
1238 flags = read_register (FLAGS_REGNUM);
1239 if (flags & 2) /* In system call? */
1240 deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3);
1241
1242 /* The outermost frame is always derived from PC-framesize
1243
1244 One might think frameless innermost frames should have
1245 a frame->frame that is the same as the parent's frame->frame.
1246 That is wrong; frame->frame in that case should be the *high*
1247 address of the parent's frame. It's complicated as hell to
1248 explain, but the parent *always* creates some stack space for
1249 the child. So the child actually does have a frame of some
1250 sorts, and its base is the high address in its parent's frame. */
1251 framesize = find_proc_framesize (get_frame_pc (frame));
1252 if (framesize == -1)
1253 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1254 else
1255 deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize);
1256 }
1257 \f
1258 /* Given a GDB frame, determine the address of the calling function's
1259 frame. This will be used to create a new GDB frame struct, and
1260 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1261 will be called for the new frame.
1262
1263 This may involve searching through prologues for several functions
1264 at boundaries where GCC calls HP C code, or where code which has
1265 a frame pointer calls code without a frame pointer. */
1266
1267 CORE_ADDR
1268 hppa_frame_chain (struct frame_info *frame)
1269 {
1270 int my_framesize, caller_framesize;
1271 struct unwind_table_entry *u;
1272 CORE_ADDR frame_base;
1273 struct frame_info *tmp_frame;
1274
1275 /* A frame in the current frame list, or zero. */
1276 struct frame_info *saved_regs_frame = 0;
1277 /* Where the registers were saved in saved_regs_frame. If
1278 saved_regs_frame is zero, this is garbage. */
1279 CORE_ADDR *saved_regs = NULL;
1280
1281 CORE_ADDR caller_pc;
1282
1283 struct minimal_symbol *min_frame_symbol;
1284 struct symbol *frame_symbol;
1285 char *frame_symbol_name;
1286
1287 /* If this is a threaded application, and we see the
1288 routine "__pthread_exit", treat it as the stack root
1289 for this thread. */
1290 min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame));
1291 frame_symbol = find_pc_function (get_frame_pc (frame));
1292
1293 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1294 {
1295 /* The test above for "no user function name" would defend
1296 against the slim likelihood that a user might define a
1297 routine named "__pthread_exit" and then try to debug it.
1298
1299 If it weren't commented out, and you tried to debug the
1300 pthread library itself, you'd get errors.
1301
1302 So for today, we don't make that check. */
1303 frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
1304 if (frame_symbol_name != 0)
1305 {
1306 if (0 == strncmp (frame_symbol_name,
1307 THREAD_INITIAL_FRAME_SYMBOL,
1308 THREAD_INITIAL_FRAME_SYM_LEN))
1309 {
1310 /* Pretend we've reached the bottom of the stack. */
1311 return (CORE_ADDR) 0;
1312 }
1313 }
1314 } /* End of hacky code for threads. */
1315
1316 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1317 are easy; at *sp we have a full save state strucutre which we can
1318 pull the old stack pointer from. Also see frame_saved_pc for
1319 code to dig a saved PC out of the save state structure. */
1320 if (pc_in_interrupt_handler (get_frame_pc (frame)))
1321 frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4,
1322 TARGET_PTR_BIT / 8);
1323 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1324 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1325 {
1326 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1327 }
1328 #endif
1329 else
1330 frame_base = get_frame_base (frame);
1331
1332 /* Get frame sizes for the current frame and the frame of the
1333 caller. */
1334 my_framesize = find_proc_framesize (get_frame_pc (frame));
1335 caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
1336
1337 /* If we can't determine the caller's PC, then it's not likely we can
1338 really determine anything meaningful about its frame. We'll consider
1339 this to be stack bottom. */
1340 if (caller_pc == (CORE_ADDR) 0)
1341 return (CORE_ADDR) 0;
1342
1343 caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
1344
1345 /* If caller does not have a frame pointer, then its frame
1346 can be found at current_frame - caller_framesize. */
1347 if (caller_framesize != -1)
1348 {
1349 return frame_base - caller_framesize;
1350 }
1351 /* Both caller and callee have frame pointers and are GCC compiled
1352 (SAVE_SP bit in unwind descriptor is on for both functions.
1353 The previous frame pointer is found at the top of the current frame. */
1354 if (caller_framesize == -1 && my_framesize == -1)
1355 {
1356 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1357 }
1358 /* Caller has a frame pointer, but callee does not. This is a little
1359 more difficult as GCC and HP C lay out locals and callee register save
1360 areas very differently.
1361
1362 The previous frame pointer could be in a register, or in one of
1363 several areas on the stack.
1364
1365 Walk from the current frame to the innermost frame examining
1366 unwind descriptors to determine if %r3 ever gets saved into the
1367 stack. If so return whatever value got saved into the stack.
1368 If it was never saved in the stack, then the value in %r3 is still
1369 valid, so use it.
1370
1371 We use information from unwind descriptors to determine if %r3
1372 is saved into the stack (Entry_GR field has this information). */
1373
1374 for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame))
1375 {
1376 u = find_unwind_entry (get_frame_pc (tmp_frame));
1377
1378 if (!u)
1379 {
1380 /* We could find this information by examining prologues. I don't
1381 think anyone has actually written any tools (not even "strip")
1382 which leave them out of an executable, so maybe this is a moot
1383 point. */
1384 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1385 code that doesn't have unwind entries. For example, stepping into
1386 the dynamic linker will give you a PC that has none. Thus, I've
1387 disabled this warning. */
1388 #if 0
1389 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame));
1390 #endif
1391 return (CORE_ADDR) 0;
1392 }
1393
1394 if (u->Save_SP
1395 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1396 || pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1397 break;
1398
1399 /* Entry_GR specifies the number of callee-saved general registers
1400 saved in the stack. It starts at %r3, so %r3 would be 1. */
1401 if (u->Entry_GR >= 1)
1402 {
1403 /* The unwind entry claims that r3 is saved here. However,
1404 in optimized code, GCC often doesn't actually save r3.
1405 We'll discover this if we look at the prologue. */
1406 hppa_frame_init_saved_regs (tmp_frame);
1407 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1408 saved_regs_frame = tmp_frame;
1409
1410 /* If we have an address for r3, that's good. */
1411 if (saved_regs[DEPRECATED_FP_REGNUM])
1412 break;
1413 }
1414 }
1415
1416 if (tmp_frame)
1417 {
1418 /* We may have walked down the chain into a function with a frame
1419 pointer. */
1420 if (u->Save_SP
1421 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1422 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1423 {
1424 return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8);
1425 }
1426 /* %r3 was saved somewhere in the stack. Dig it out. */
1427 else
1428 {
1429 /* Sick.
1430
1431 For optimization purposes many kernels don't have the
1432 callee saved registers into the save_state structure upon
1433 entry into the kernel for a syscall; the optimization
1434 is usually turned off if the process is being traced so
1435 that the debugger can get full register state for the
1436 process.
1437
1438 This scheme works well except for two cases:
1439
1440 * Attaching to a process when the process is in the
1441 kernel performing a system call (debugger can't get
1442 full register state for the inferior process since
1443 the process wasn't being traced when it entered the
1444 system call).
1445
1446 * Register state is not complete if the system call
1447 causes the process to core dump.
1448
1449
1450 The following heinous code is an attempt to deal with
1451 the lack of register state in a core dump. It will
1452 fail miserably if the function which performs the
1453 system call has a variable sized stack frame. */
1454
1455 if (tmp_frame != saved_regs_frame)
1456 {
1457 hppa_frame_init_saved_regs (tmp_frame);
1458 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1459 }
1460
1461 /* Abominable hack. */
1462 if (current_target.to_has_execution == 0
1463 && ((saved_regs[FLAGS_REGNUM]
1464 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1465 TARGET_PTR_BIT / 8)
1466 & 0x2))
1467 || (saved_regs[FLAGS_REGNUM] == 0
1468 && read_register (FLAGS_REGNUM) & 0x2)))
1469 {
1470 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1471 if (!u)
1472 {
1473 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1474 TARGET_PTR_BIT / 8);
1475 }
1476 else
1477 {
1478 return frame_base - (u->Total_frame_size << 3);
1479 }
1480 }
1481
1482 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1483 TARGET_PTR_BIT / 8);
1484 }
1485 }
1486 else
1487 {
1488 /* Get the innermost frame. */
1489 tmp_frame = frame;
1490 while (get_next_frame (tmp_frame) != NULL)
1491 tmp_frame = get_next_frame (tmp_frame);
1492
1493 if (tmp_frame != saved_regs_frame)
1494 {
1495 hppa_frame_init_saved_regs (tmp_frame);
1496 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1497 }
1498
1499 /* Abominable hack. See above. */
1500 if (current_target.to_has_execution == 0
1501 && ((saved_regs[FLAGS_REGNUM]
1502 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1503 TARGET_PTR_BIT / 8)
1504 & 0x2))
1505 || (saved_regs[FLAGS_REGNUM] == 0
1506 && read_register (FLAGS_REGNUM) & 0x2)))
1507 {
1508 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1509 if (!u)
1510 {
1511 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1512 TARGET_PTR_BIT / 8);
1513 }
1514 else
1515 {
1516 return frame_base - (u->Total_frame_size << 3);
1517 }
1518 }
1519
1520 /* The value in %r3 was never saved into the stack (thus %r3 still
1521 holds the value of the previous frame pointer). */
1522 return deprecated_read_fp ();
1523 }
1524 }
1525 \f
1526
1527 /* To see if a frame chain is valid, see if the caller looks like it
1528 was compiled with gcc. */
1529
1530 int
1531 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1532 {
1533 struct minimal_symbol *msym_us;
1534 struct minimal_symbol *msym_start;
1535 struct unwind_table_entry *u, *next_u = NULL;
1536 struct frame_info *next;
1537
1538 u = find_unwind_entry (get_frame_pc (thisframe));
1539
1540 if (u == NULL)
1541 return 1;
1542
1543 /* We can't just check that the same of msym_us is "_start", because
1544 someone idiotically decided that they were going to make a Ltext_end
1545 symbol with the same address. This Ltext_end symbol is totally
1546 indistinguishable (as nearly as I can tell) from the symbol for a function
1547 which is (legitimately, since it is in the user's namespace)
1548 named Ltext_end, so we can't just ignore it. */
1549 msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
1550 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1551 if (msym_us
1552 && msym_start
1553 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1554 return 0;
1555
1556 /* Grrrr. Some new idiot decided that they don't want _start for the
1557 PRO configurations; $START$ calls main directly.... Deal with it. */
1558 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1559 if (msym_us
1560 && msym_start
1561 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1562 return 0;
1563
1564 next = get_next_frame (thisframe);
1565 if (next)
1566 next_u = find_unwind_entry (get_frame_pc (next));
1567
1568 /* If this frame does not save SP, has no stack, isn't a stub,
1569 and doesn't "call" an interrupt routine or signal handler caller,
1570 then its not valid. */
1571 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1572 || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME))
1573 || (next_u && next_u->HP_UX_interrupt_marker))
1574 return 1;
1575
1576 if (pc_in_linker_stub (get_frame_pc (thisframe)))
1577 return 1;
1578
1579 return 0;
1580 }
1581
1582 /* These functions deal with saving and restoring register state
1583 around a function call in the inferior. They keep the stack
1584 double-word aligned; eventually, on an hp700, the stack will have
1585 to be aligned to a 64-byte boundary. */
1586
1587 void
1588 hppa_push_dummy_frame (void)
1589 {
1590 CORE_ADDR sp, pc, pcspace;
1591 int regnum;
1592 CORE_ADDR int_buffer;
1593 double freg_buffer;
1594
1595 pc = hppa_target_read_pc (inferior_ptid);
1596 int_buffer = read_register (FLAGS_REGNUM);
1597 if (int_buffer & 0x2)
1598 {
1599 const unsigned int sid = (pc >> 30) & 0x3;
1600 if (sid == 0)
1601 pcspace = read_register (SR4_REGNUM);
1602 else
1603 pcspace = read_register (SR4_REGNUM + 4 + sid);
1604 }
1605 else
1606 pcspace = read_register (PCSQ_HEAD_REGNUM);
1607
1608 /* Space for "arguments"; the RP goes in here. */
1609 sp = read_register (SP_REGNUM) + 48;
1610 int_buffer = read_register (RP_REGNUM) | 0x3;
1611
1612 /* The 32bit and 64bit ABIs save the return pointer into different
1613 stack slots. */
1614 if (DEPRECATED_REGISTER_SIZE == 8)
1615 write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1616 else
1617 write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1618
1619 int_buffer = deprecated_read_fp ();
1620 write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1621
1622 write_register (DEPRECATED_FP_REGNUM, sp);
1623
1624 sp += 2 * DEPRECATED_REGISTER_SIZE;
1625
1626 for (regnum = 1; regnum < 32; regnum++)
1627 if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM)
1628 sp = push_word (sp, read_register (regnum));
1629
1630 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1631 if (DEPRECATED_REGISTER_SIZE != 8)
1632 sp += 4;
1633
1634 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1635 {
1636 deprecated_read_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
1637 (char *) &freg_buffer, 8);
1638 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1639 }
1640 sp = push_word (sp, read_register (IPSW_REGNUM));
1641 sp = push_word (sp, read_register (SAR_REGNUM));
1642 sp = push_word (sp, pc);
1643 sp = push_word (sp, pcspace);
1644 sp = push_word (sp, pc + 4);
1645 sp = push_word (sp, pcspace);
1646 write_register (SP_REGNUM, sp);
1647 }
1648
1649 static void
1650 find_dummy_frame_regs (struct frame_info *frame,
1651 CORE_ADDR frame_saved_regs[])
1652 {
1653 CORE_ADDR fp = get_frame_base (frame);
1654 int i;
1655
1656 /* The 32bit and 64bit ABIs save RP into different locations. */
1657 if (DEPRECATED_REGISTER_SIZE == 8)
1658 frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3;
1659 else
1660 frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3;
1661
1662 frame_saved_regs[DEPRECATED_FP_REGNUM] = fp;
1663
1664 frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE);
1665
1666 for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++)
1667 {
1668 if (i != DEPRECATED_FP_REGNUM)
1669 {
1670 frame_saved_regs[i] = fp;
1671 fp += DEPRECATED_REGISTER_SIZE;
1672 }
1673 }
1674
1675 /* This is not necessary or desirable for the 64bit ABI. */
1676 if (DEPRECATED_REGISTER_SIZE != 8)
1677 fp += 4;
1678
1679 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1680 frame_saved_regs[i] = fp;
1681
1682 frame_saved_regs[IPSW_REGNUM] = fp;
1683 frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE;
1684 frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE;
1685 frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE;
1686 frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE;
1687 frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE;
1688 }
1689
1690 void
1691 hppa_pop_frame (void)
1692 {
1693 struct frame_info *frame = get_current_frame ();
1694 CORE_ADDR fp, npc, target_pc;
1695 int regnum;
1696 CORE_ADDR *fsr;
1697 double freg_buffer;
1698
1699 fp = get_frame_base (frame);
1700 hppa_frame_init_saved_regs (frame);
1701 fsr = deprecated_get_frame_saved_regs (frame);
1702
1703 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1704 if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */
1705 restore_pc_queue (fsr);
1706 #endif
1707
1708 for (regnum = 31; regnum > 0; regnum--)
1709 if (fsr[regnum])
1710 write_register (regnum, read_memory_integer (fsr[regnum],
1711 DEPRECATED_REGISTER_SIZE));
1712
1713 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1714 if (fsr[regnum])
1715 {
1716 read_memory (fsr[regnum], (char *) &freg_buffer, 8);
1717 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
1718 (char *) &freg_buffer, 8);
1719 }
1720
1721 if (fsr[IPSW_REGNUM])
1722 write_register (IPSW_REGNUM,
1723 read_memory_integer (fsr[IPSW_REGNUM],
1724 DEPRECATED_REGISTER_SIZE));
1725
1726 if (fsr[SAR_REGNUM])
1727 write_register (SAR_REGNUM,
1728 read_memory_integer (fsr[SAR_REGNUM],
1729 DEPRECATED_REGISTER_SIZE));
1730
1731 /* If the PC was explicitly saved, then just restore it. */
1732 if (fsr[PCOQ_TAIL_REGNUM])
1733 {
1734 npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM],
1735 DEPRECATED_REGISTER_SIZE);
1736 write_register (PCOQ_TAIL_REGNUM, npc);
1737 }
1738 /* Else use the value in %rp to set the new PC. */
1739 else
1740 {
1741 npc = read_register (RP_REGNUM);
1742 write_pc (npc);
1743 }
1744
1745 write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE));
1746
1747 if (fsr[IPSW_REGNUM]) /* call dummy */
1748 write_register (SP_REGNUM, fp - 48);
1749 else
1750 write_register (SP_REGNUM, fp);
1751
1752 /* The PC we just restored may be inside a return trampoline. If so
1753 we want to restart the inferior and run it through the trampoline.
1754
1755 Do this by setting a momentary breakpoint at the location the
1756 trampoline returns to.
1757
1758 Don't skip through the trampoline if we're popping a dummy frame. */
1759 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1760 if (target_pc && !fsr[IPSW_REGNUM])
1761 {
1762 struct symtab_and_line sal;
1763 struct breakpoint *breakpoint;
1764 struct cleanup *old_chain;
1765
1766 /* Set up our breakpoint. Set it to be silent as the MI code
1767 for "return_command" will print the frame we returned to. */
1768 sal = find_pc_line (target_pc, 0);
1769 sal.pc = target_pc;
1770 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
1771 breakpoint->silent = 1;
1772
1773 /* So we can clean things up. */
1774 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1775
1776 /* Start up the inferior. */
1777 clear_proceed_status ();
1778 proceed_to_finish = 1;
1779 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1780
1781 /* Perform our cleanups. */
1782 do_cleanups (old_chain);
1783 }
1784 flush_cached_frames ();
1785 }
1786
1787 /* After returning to a dummy on the stack, restore the instruction
1788 queue space registers. */
1789
1790 static int
1791 restore_pc_queue (CORE_ADDR *fsr)
1792 {
1793 CORE_ADDR pc = read_pc ();
1794 CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM],
1795 TARGET_PTR_BIT / 8);
1796 struct target_waitstatus w;
1797 int insn_count;
1798
1799 /* Advance past break instruction in the call dummy. */
1800 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1801 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1802
1803 /* HPUX doesn't let us set the space registers or the space
1804 registers of the PC queue through ptrace. Boo, hiss.
1805 Conveniently, the call dummy has this sequence of instructions
1806 after the break:
1807 mtsp r21, sr0
1808 ble,n 0(sr0, r22)
1809
1810 So, load up the registers and single step until we are in the
1811 right place. */
1812
1813 write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM],
1814 DEPRECATED_REGISTER_SIZE));
1815 write_register (22, new_pc);
1816
1817 for (insn_count = 0; insn_count < 3; insn_count++)
1818 {
1819 /* FIXME: What if the inferior gets a signal right now? Want to
1820 merge this into wait_for_inferior (as a special kind of
1821 watchpoint? By setting a breakpoint at the end? Is there
1822 any other choice? Is there *any* way to do this stuff with
1823 ptrace() or some equivalent?). */
1824 resume (1, 0);
1825 target_wait (inferior_ptid, &w);
1826
1827 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1828 {
1829 stop_signal = w.value.sig;
1830 terminal_ours_for_output ();
1831 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1832 target_signal_to_name (stop_signal),
1833 target_signal_to_string (stop_signal));
1834 gdb_flush (gdb_stdout);
1835 return 0;
1836 }
1837 }
1838 target_terminal_ours ();
1839 target_fetch_registers (-1);
1840 return 1;
1841 }
1842
1843
1844 #ifdef PA20W_CALLING_CONVENTIONS
1845
1846 /* This function pushes a stack frame with arguments as part of the
1847 inferior function calling mechanism.
1848
1849 This is the version for the PA64, in which later arguments appear
1850 at higher addresses. (The stack always grows towards higher
1851 addresses.)
1852
1853 We simply allocate the appropriate amount of stack space and put
1854 arguments into their proper slots. The call dummy code will copy
1855 arguments into registers as needed by the ABI.
1856
1857 This ABI also requires that the caller provide an argument pointer
1858 to the callee, so we do that too. */
1859
1860 CORE_ADDR
1861 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1862 int struct_return, CORE_ADDR struct_addr)
1863 {
1864 /* array of arguments' offsets */
1865 int *offset = (int *) alloca (nargs * sizeof (int));
1866
1867 /* array of arguments' lengths: real lengths in bytes, not aligned to
1868 word size */
1869 int *lengths = (int *) alloca (nargs * sizeof (int));
1870
1871 /* The value of SP as it was passed into this function after
1872 aligning. */
1873 CORE_ADDR orig_sp = DEPRECATED_STACK_ALIGN (sp);
1874
1875 /* The number of stack bytes occupied by the current argument. */
1876 int bytes_reserved;
1877
1878 /* The total number of bytes reserved for the arguments. */
1879 int cum_bytes_reserved = 0;
1880
1881 /* Similarly, but aligned. */
1882 int cum_bytes_aligned = 0;
1883 int i;
1884
1885 /* Iterate over each argument provided by the user. */
1886 for (i = 0; i < nargs; i++)
1887 {
1888 struct type *arg_type = VALUE_TYPE (args[i]);
1889
1890 /* Integral scalar values smaller than a register are padded on
1891 the left. We do this by promoting them to full-width,
1892 although the ABI says to pad them with garbage. */
1893 if (is_integral_type (arg_type)
1894 && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE)
1895 {
1896 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1897 ? builtin_type_unsigned_long
1898 : builtin_type_long),
1899 args[i]);
1900 arg_type = VALUE_TYPE (args[i]);
1901 }
1902
1903 lengths[i] = TYPE_LENGTH (arg_type);
1904
1905 /* Align the size of the argument to the word size for this
1906 target. */
1907 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
1908
1909 offset[i] = cum_bytes_reserved;
1910
1911 /* Aggregates larger than eight bytes (the only types larger
1912 than eight bytes we have) are aligned on a 16-byte boundary,
1913 possibly padded on the right with garbage. This may leave an
1914 empty word on the stack, and thus an unused register, as per
1915 the ABI. */
1916 if (bytes_reserved > 8)
1917 {
1918 /* Round up the offset to a multiple of two slots. */
1919 int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1)
1920 & -(2*DEPRECATED_REGISTER_SIZE));
1921
1922 /* Note the space we've wasted, if any. */
1923 bytes_reserved += new_offset - offset[i];
1924 offset[i] = new_offset;
1925 }
1926
1927 cum_bytes_reserved += bytes_reserved;
1928 }
1929
1930 /* CUM_BYTES_RESERVED already accounts for all the arguments
1931 passed by the user. However, the ABIs mandate minimum stack space
1932 allocations for outgoing arguments.
1933
1934 The ABIs also mandate minimum stack alignments which we must
1935 preserve. */
1936 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
1937 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1938
1939 /* Now write each of the args at the proper offset down the stack. */
1940 for (i = 0; i < nargs; i++)
1941 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1942
1943 /* If a structure has to be returned, set up register 28 to hold its
1944 address */
1945 if (struct_return)
1946 write_register (28, struct_addr);
1947
1948 /* For the PA64 we must pass a pointer to the outgoing argument list.
1949 The ABI mandates that the pointer should point to the first byte of
1950 storage beyond the register flushback area.
1951
1952 However, the call dummy expects the outgoing argument pointer to
1953 be passed in register %r4. */
1954 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1955
1956 /* ?!? This needs further work. We need to set up the global data
1957 pointer for this procedure. This assumes the same global pointer
1958 for every procedure. The call dummy expects the dp value to
1959 be passed in register %r6. */
1960 write_register (6, read_register (27));
1961
1962 /* The stack will have 64 bytes of additional space for a frame marker. */
1963 return sp + 64;
1964 }
1965
1966 #else
1967
1968 /* This function pushes a stack frame with arguments as part of the
1969 inferior function calling mechanism.
1970
1971 This is the version of the function for the 32-bit PA machines, in
1972 which later arguments appear at lower addresses. (The stack always
1973 grows towards higher addresses.)
1974
1975 We simply allocate the appropriate amount of stack space and put
1976 arguments into their proper slots. The call dummy code will copy
1977 arguments into registers as needed by the ABI. */
1978
1979 CORE_ADDR
1980 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1981 int struct_return, CORE_ADDR struct_addr)
1982 {
1983 /* array of arguments' offsets */
1984 int *offset = (int *) alloca (nargs * sizeof (int));
1985
1986 /* array of arguments' lengths: real lengths in bytes, not aligned to
1987 word size */
1988 int *lengths = (int *) alloca (nargs * sizeof (int));
1989
1990 /* The number of stack bytes occupied by the current argument. */
1991 int bytes_reserved;
1992
1993 /* The total number of bytes reserved for the arguments. */
1994 int cum_bytes_reserved = 0;
1995
1996 /* Similarly, but aligned. */
1997 int cum_bytes_aligned = 0;
1998 int i;
1999
2000 /* Iterate over each argument provided by the user. */
2001 for (i = 0; i < nargs; i++)
2002 {
2003 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
2004
2005 /* Align the size of the argument to the word size for this
2006 target. */
2007 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
2008
2009 offset[i] = (cum_bytes_reserved
2010 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
2011
2012 /* If the argument is a double word argument, then it needs to be
2013 double word aligned. */
2014 if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE)
2015 && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE))
2016 {
2017 int new_offset = 0;
2018 /* BYTES_RESERVED is already aligned to the word, so we put
2019 the argument at one word more down the stack.
2020
2021 This will leave one empty word on the stack, and one unused
2022 register as mandated by the ABI. */
2023 new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1)
2024 & -(2 * DEPRECATED_REGISTER_SIZE));
2025
2026 if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE)
2027 {
2028 bytes_reserved += DEPRECATED_REGISTER_SIZE;
2029 offset[i] += DEPRECATED_REGISTER_SIZE;
2030 }
2031 }
2032
2033 cum_bytes_reserved += bytes_reserved;
2034
2035 }
2036
2037 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
2038 by the user. However, the ABI mandates minimum stack space
2039 allocations for outgoing arguments.
2040
2041 The ABI also mandates minimum stack alignments which we must
2042 preserve. */
2043 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
2044 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
2045
2046 /* Now write each of the args at the proper offset down the stack.
2047 ?!? We need to promote values to a full register instead of skipping
2048 words in the stack. */
2049 for (i = 0; i < nargs; i++)
2050 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
2051
2052 /* If a structure has to be returned, set up register 28 to hold its
2053 address */
2054 if (struct_return)
2055 write_register (28, struct_addr);
2056
2057 /* The stack will have 32 bytes of additional space for a frame marker. */
2058 return sp + 32;
2059 }
2060
2061 #endif
2062
2063 /* elz: this function returns a value which is built looking at the given address.
2064 It is called from call_function_by_hand, in case we need to return a
2065 value which is larger than 64 bits, and it is stored in the stack rather than
2066 in the registers r28 and r29 or fr4.
2067 This function does the same stuff as value_being_returned in values.c, but
2068 gets the value from the stack rather than from the buffer where all the
2069 registers were saved when the function called completed. */
2070 /* FIXME: cagney/2003-09-27: This function is no longer needed. The
2071 inferior function call code now directly handles the case described
2072 above. */
2073 struct value *
2074 hppa_value_returned_from_stack (struct type *valtype, CORE_ADDR addr)
2075 {
2076 struct value *val;
2077
2078 val = allocate_value (valtype);
2079 CHECK_TYPEDEF (valtype);
2080 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
2081
2082 return val;
2083 }
2084
2085
2086
2087 /* elz: Used to lookup a symbol in the shared libraries.
2088 This function calls shl_findsym, indirectly through a
2089 call to __d_shl_get. __d_shl_get is in end.c, which is always
2090 linked in by the hp compilers/linkers.
2091 The call to shl_findsym cannot be made directly because it needs
2092 to be active in target address space.
2093 inputs: - minimal symbol pointer for the function we want to look up
2094 - address in target space of the descriptor for the library
2095 where we want to look the symbol up.
2096 This address is retrieved using the
2097 som_solib_get_solib_by_pc function (somsolib.c).
2098 output: - real address in the library of the function.
2099 note: the handle can be null, in which case shl_findsym will look for
2100 the symbol in all the loaded shared libraries.
2101 files to look at if you need reference on this stuff:
2102 dld.c, dld_shl_findsym.c
2103 end.c
2104 man entry for shl_findsym */
2105
2106 CORE_ADDR
2107 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
2108 {
2109 struct symbol *get_sym, *symbol2;
2110 struct minimal_symbol *buff_minsym, *msymbol;
2111 struct type *ftype;
2112 struct value **args;
2113 struct value *funcval;
2114 struct value *val;
2115
2116 int x, namelen, err_value, tmp = -1;
2117 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
2118 CORE_ADDR stub_addr;
2119
2120
2121 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
2122 funcval = find_function_in_inferior ("__d_shl_get");
2123 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL);
2124 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
2125 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
2126 symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL);
2127 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
2128 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
2129 value_return_addr = endo_buff_addr + namelen;
2130 ftype = check_typedef (SYMBOL_TYPE (get_sym));
2131
2132 /* do alignment */
2133 if ((x = value_return_addr % 64) != 0)
2134 value_return_addr = value_return_addr + 64 - x;
2135
2136 errno_return_addr = value_return_addr + 64;
2137
2138
2139 /* set up stuff needed by __d_shl_get in buffer in end.o */
2140
2141 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
2142
2143 target_write_memory (value_return_addr, (char *) &tmp, 4);
2144
2145 target_write_memory (errno_return_addr, (char *) &tmp, 4);
2146
2147 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2148 (char *) &handle, 4);
2149
2150 /* now prepare the arguments for the call */
2151
2152 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
2153 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2154 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
2155 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
2156 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2157 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
2158
2159 /* now call the function */
2160
2161 val = call_function_by_hand (funcval, 6, args);
2162
2163 /* now get the results */
2164
2165 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2166
2167 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2168 if (stub_addr <= 0)
2169 error ("call to __d_shl_get failed, error code is %d", err_value);
2170
2171 return (stub_addr);
2172 }
2173
2174 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
2175 static int
2176 cover_find_stub_with_shl_get (void *args_untyped)
2177 {
2178 args_for_find_stub *args = args_untyped;
2179 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2180 return 0;
2181 }
2182
2183 /* Insert the specified number of args and function address
2184 into a call sequence of the above form stored at DUMMYNAME.
2185
2186 On the hppa we need to call the stack dummy through $$dyncall.
2187 Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra
2188 argument, real_pc, which is the location where gdb should start up
2189 the inferior to do the function call.
2190
2191 This has to work across several versions of hpux, bsd, osf1. It has to
2192 work regardless of what compiler was used to build the inferior program.
2193 It should work regardless of whether or not end.o is available. It has
2194 to work even if gdb can not call into the dynamic loader in the inferior
2195 to query it for symbol names and addresses.
2196
2197 Yes, all those cases should work. Luckily code exists to handle most
2198 of them. The complexity is in selecting exactly what scheme should
2199 be used to perform the inferior call.
2200
2201 At the current time this routine is known not to handle cases where
2202 the program was linked with HP's compiler without including end.o.
2203
2204 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2205
2206 CORE_ADDR
2207 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2208 struct value **args, struct type *type, int gcc_p)
2209 {
2210 CORE_ADDR dyncall_addr;
2211 struct minimal_symbol *msymbol;
2212 struct minimal_symbol *trampoline;
2213 int flags = read_register (FLAGS_REGNUM);
2214 struct unwind_table_entry *u = NULL;
2215 CORE_ADDR new_stub = 0;
2216 CORE_ADDR solib_handle = 0;
2217
2218 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2219 passed an import stub, not a PLABEL. It is also necessary to set %r19
2220 (the PIC register) before performing the call.
2221
2222 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2223 are calling the target directly. When using __d_plt_call we want to
2224 use a PLABEL instead of an import stub. */
2225 int using_gcc_plt_call = 1;
2226
2227 #ifdef GDB_TARGET_IS_HPPA_20W
2228 /* We currently use completely different code for the PA2.0W inferior
2229 function call sequences. This needs to be cleaned up. */
2230 {
2231 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2232 struct target_waitstatus w;
2233 int inst1, inst2;
2234 char buf[4];
2235 int status;
2236 struct objfile *objfile;
2237
2238 /* We can not modify the PC space queues directly, so we start
2239 up the inferior and execute a couple instructions to set the
2240 space queues so that they point to the call dummy in the stack. */
2241 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2242 sr5 = read_register (SR5_REGNUM);
2243 if (1)
2244 {
2245 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2246 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2247 if (target_read_memory (pcoqh, buf, 4) != 0)
2248 error ("Couldn't modify space queue\n");
2249 inst1 = extract_unsigned_integer (buf, 4);
2250
2251 if (target_read_memory (pcoqt, buf, 4) != 0)
2252 error ("Couldn't modify space queue\n");
2253 inst2 = extract_unsigned_integer (buf, 4);
2254
2255 /* BVE (r1) */
2256 *((int *) buf) = 0xe820d000;
2257 if (target_write_memory (pcoqh, buf, 4) != 0)
2258 error ("Couldn't modify space queue\n");
2259
2260 /* NOP */
2261 *((int *) buf) = 0x08000240;
2262 if (target_write_memory (pcoqt, buf, 4) != 0)
2263 {
2264 *((int *) buf) = inst1;
2265 target_write_memory (pcoqh, buf, 4);
2266 error ("Couldn't modify space queue\n");
2267 }
2268
2269 write_register (1, pc);
2270
2271 /* Single step twice, the BVE instruction will set the space queue
2272 such that it points to the PC value written immediately above
2273 (ie the call dummy). */
2274 resume (1, 0);
2275 target_wait (inferior_ptid, &w);
2276 resume (1, 0);
2277 target_wait (inferior_ptid, &w);
2278
2279 /* Restore the two instructions at the old PC locations. */
2280 *((int *) buf) = inst1;
2281 target_write_memory (pcoqh, buf, 4);
2282 *((int *) buf) = inst2;
2283 target_write_memory (pcoqt, buf, 4);
2284 }
2285
2286 /* The call dummy wants the ultimate destination address initially
2287 in register %r5. */
2288 write_register (5, fun);
2289
2290 /* We need to see if this objfile has a different DP value than our
2291 own (it could be a shared library for example). */
2292 ALL_OBJFILES (objfile)
2293 {
2294 struct obj_section *s;
2295 obj_private_data_t *obj_private;
2296
2297 /* See if FUN is in any section within this shared library. */
2298 for (s = objfile->sections; s < objfile->sections_end; s++)
2299 if (s->addr <= fun && fun < s->endaddr)
2300 break;
2301
2302 if (s >= objfile->sections_end)
2303 continue;
2304
2305 obj_private = (obj_private_data_t *) objfile->obj_private;
2306
2307 /* The DP value may be different for each objfile. But within an
2308 objfile each function uses the same dp value. Thus we do not need
2309 to grope around the opd section looking for dp values.
2310
2311 ?!? This is not strictly correct since we may be in a shared library
2312 and want to call back into the main program. To make that case
2313 work correctly we need to set obj_private->dp for the main program's
2314 objfile, then remove this conditional. */
2315 if (obj_private->dp)
2316 write_register (27, obj_private->dp);
2317 break;
2318 }
2319 return pc;
2320 }
2321 #endif
2322
2323 #ifndef GDB_TARGET_IS_HPPA_20W
2324 /* Prefer __gcc_plt_call over the HP supplied routine because
2325 __gcc_plt_call works for any number of arguments. */
2326 trampoline = NULL;
2327 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2328 using_gcc_plt_call = 0;
2329
2330 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2331 if (msymbol == NULL)
2332 error ("Can't find an address for $$dyncall trampoline");
2333
2334 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2335
2336 /* FUN could be a procedure label, in which case we have to get
2337 its real address and the value of its GOT/DP if we plan to
2338 call the routine via gcc_plt_call. */
2339 if ((fun & 0x2) && using_gcc_plt_call)
2340 {
2341 /* Get the GOT/DP value for the target function. It's
2342 at *(fun+4). Note the call dummy is *NOT* allowed to
2343 trash %r19 before calling the target function. */
2344 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2345 DEPRECATED_REGISTER_SIZE));
2346
2347 /* Now get the real address for the function we are calling, it's
2348 at *fun. */
2349 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2350 TARGET_PTR_BIT / 8);
2351 }
2352 else
2353 {
2354
2355 #ifndef GDB_TARGET_IS_PA_ELF
2356 /* FUN could be an export stub, the real address of a function, or
2357 a PLABEL. When using gcc's PLT call routine we must call an import
2358 stub rather than the export stub or real function for lazy binding
2359 to work correctly
2360
2361 If we are using the gcc PLT call routine, then we need to
2362 get the import stub for the target function. */
2363 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2364 {
2365 struct objfile *objfile;
2366 struct minimal_symbol *funsymbol, *stub_symbol;
2367 CORE_ADDR newfun = 0;
2368
2369 funsymbol = lookup_minimal_symbol_by_pc (fun);
2370 if (!funsymbol)
2371 error ("Unable to find minimal symbol for target function.\n");
2372
2373 /* Search all the object files for an import symbol with the
2374 right name. */
2375 ALL_OBJFILES (objfile)
2376 {
2377 stub_symbol
2378 = lookup_minimal_symbol_solib_trampoline
2379 (DEPRECATED_SYMBOL_NAME (funsymbol), NULL, objfile);
2380
2381 if (!stub_symbol)
2382 stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
2383 NULL, objfile);
2384
2385 /* Found a symbol with the right name. */
2386 if (stub_symbol)
2387 {
2388 struct unwind_table_entry *u;
2389 /* It must be a shared library trampoline. */
2390 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2391 continue;
2392
2393 /* It must also be an import stub. */
2394 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2395 if (u == NULL
2396 || (u->stub_unwind.stub_type != IMPORT
2397 #ifdef GDB_NATIVE_HPUX_11
2398 /* Sigh. The hpux 10.20 dynamic linker will blow
2399 chunks if we perform a call to an unbound function
2400 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2401 linker will blow chunks if we do not call the
2402 unbound function via the IMPORT_SHLIB stub.
2403
2404 We currently have no way to select bevahior on just
2405 the target. However, we only support HPUX/SOM in
2406 native mode. So we conditinalize on a native
2407 #ifdef. Ugly. Ugly. Ugly */
2408 && u->stub_unwind.stub_type != IMPORT_SHLIB
2409 #endif
2410 ))
2411 continue;
2412
2413 /* OK. Looks like the correct import stub. */
2414 newfun = SYMBOL_VALUE (stub_symbol);
2415 fun = newfun;
2416
2417 /* If we found an IMPORT stub, then we want to stop
2418 searching now. If we found an IMPORT_SHLIB, we want
2419 to continue the search in the hopes that we will find
2420 an IMPORT stub. */
2421 if (u->stub_unwind.stub_type == IMPORT)
2422 break;
2423 }
2424 }
2425
2426 /* Ouch. We did not find an import stub. Make an attempt to
2427 do the right thing instead of just croaking. Most of the
2428 time this will actually work. */
2429 if (newfun == 0)
2430 write_register (19, som_solib_get_got_by_pc (fun));
2431
2432 u = find_unwind_entry (fun);
2433 if (u
2434 && (u->stub_unwind.stub_type == IMPORT
2435 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2436 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2437
2438 /* If we found the import stub in the shared library, then we have
2439 to set %r19 before we call the stub. */
2440 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2441 write_register (19, som_solib_get_got_by_pc (fun));
2442 }
2443 #endif
2444 }
2445
2446 /* If we are calling into another load module then have sr4export call the
2447 magic __d_plt_call routine which is linked in from end.o.
2448
2449 You can't use _sr4export to make the call as the value in sp-24 will get
2450 fried and you end up returning to the wrong location. You can't call the
2451 target as the code to bind the PLT entry to a function can't return to a
2452 stack address.
2453
2454 Also, query the dynamic linker in the inferior to provide a suitable
2455 PLABEL for the target function. */
2456 if (!using_gcc_plt_call)
2457 {
2458 CORE_ADDR new_fun;
2459
2460 /* Get a handle for the shared library containing FUN. Given the
2461 handle we can query the shared library for a PLABEL. */
2462 solib_handle = som_solib_get_solib_by_pc (fun);
2463
2464 if (solib_handle)
2465 {
2466 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2467
2468 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2469
2470 if (trampoline == NULL)
2471 {
2472 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2473 }
2474
2475 /* This is where sr4export will jump to. */
2476 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2477
2478 /* If the function is in a shared library, then call __d_shl_get to
2479 get a PLABEL for the target function. */
2480 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2481
2482 if (new_stub == 0)
2483 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
2484
2485 /* We have to store the address of the stub in __shlib_funcptr. */
2486 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2487 (struct objfile *) NULL);
2488
2489 if (msymbol == NULL)
2490 error ("Can't find an address for __shlib_funcptr");
2491 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2492 (char *) &new_stub, 4);
2493
2494 /* We want sr4export to call __d_plt_call, so we claim it is
2495 the final target. Clear trampoline. */
2496 fun = new_fun;
2497 trampoline = NULL;
2498 }
2499 }
2500
2501 /* Store upper 21 bits of function address into ldil. fun will either be
2502 the final target (most cases) or __d_plt_call when calling into a shared
2503 library and __gcc_plt_call is not available. */
2504 store_unsigned_integer
2505 (&dummy[FUNC_LDIL_OFFSET],
2506 INSTRUCTION_SIZE,
2507 deposit_21 (fun >> 11,
2508 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2509 INSTRUCTION_SIZE)));
2510
2511 /* Store lower 11 bits of function address into ldo */
2512 store_unsigned_integer
2513 (&dummy[FUNC_LDO_OFFSET],
2514 INSTRUCTION_SIZE,
2515 deposit_14 (fun & MASK_11,
2516 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2517 INSTRUCTION_SIZE)));
2518 #ifdef SR4EXPORT_LDIL_OFFSET
2519
2520 {
2521 CORE_ADDR trampoline_addr;
2522
2523 /* We may still need sr4export's address too. */
2524
2525 if (trampoline == NULL)
2526 {
2527 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2528 if (msymbol == NULL)
2529 error ("Can't find an address for _sr4export trampoline");
2530
2531 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2532 }
2533 else
2534 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2535
2536
2537 /* Store upper 21 bits of trampoline's address into ldil */
2538 store_unsigned_integer
2539 (&dummy[SR4EXPORT_LDIL_OFFSET],
2540 INSTRUCTION_SIZE,
2541 deposit_21 (trampoline_addr >> 11,
2542 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2543 INSTRUCTION_SIZE)));
2544
2545 /* Store lower 11 bits of trampoline's address into ldo */
2546 store_unsigned_integer
2547 (&dummy[SR4EXPORT_LDO_OFFSET],
2548 INSTRUCTION_SIZE,
2549 deposit_14 (trampoline_addr & MASK_11,
2550 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2551 INSTRUCTION_SIZE)));
2552 }
2553 #endif
2554
2555 write_register (22, pc);
2556
2557 /* If we are in a syscall, then we should call the stack dummy
2558 directly. $$dyncall is not needed as the kernel sets up the
2559 space id registers properly based on the value in %r31. In
2560 fact calling $$dyncall will not work because the value in %r22
2561 will be clobbered on the syscall exit path.
2562
2563 Similarly if the current PC is in a shared library. Note however,
2564 this scheme won't work if the shared library isn't mapped into
2565 the same space as the stack. */
2566 if (flags & 2)
2567 return pc;
2568 #ifndef GDB_TARGET_IS_PA_ELF
2569 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
2570 return pc;
2571 #endif
2572 else
2573 return dyncall_addr;
2574 #endif
2575 }
2576
2577 /* If the pid is in a syscall, then the FP register is not readable.
2578 We'll return zero in that case, rather than attempting to read it
2579 and cause a warning. */
2580
2581 CORE_ADDR
2582 hppa_read_fp (int pid)
2583 {
2584 int flags = read_register (FLAGS_REGNUM);
2585
2586 if (flags & 2)
2587 {
2588 return (CORE_ADDR) 0;
2589 }
2590
2591 /* This is the only site that may directly read_register () the FP
2592 register. All others must use deprecated_read_fp (). */
2593 return read_register (DEPRECATED_FP_REGNUM);
2594 }
2595
2596 CORE_ADDR
2597 hppa_target_read_fp (void)
2598 {
2599 return hppa_read_fp (PIDGET (inferior_ptid));
2600 }
2601
2602 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2603 bits. */
2604
2605 CORE_ADDR
2606 hppa_target_read_pc (ptid_t ptid)
2607 {
2608 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2609
2610 /* The following test does not belong here. It is OS-specific, and belongs
2611 in native code. */
2612 /* Test SS_INSYSCALL */
2613 if (flags & 2)
2614 return read_register_pid (31, ptid) & ~0x3;
2615
2616 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
2617 }
2618
2619 /* Write out the PC. If currently in a syscall, then also write the new
2620 PC value into %r31. */
2621
2622 void
2623 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
2624 {
2625 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2626
2627 /* The following test does not belong here. It is OS-specific, and belongs
2628 in native code. */
2629 /* If in a syscall, then set %r31. Also make sure to get the
2630 privilege bits set correctly. */
2631 /* Test SS_INSYSCALL */
2632 if (flags & 2)
2633 write_register_pid (31, v | 0x3, ptid);
2634
2635 write_register_pid (PC_REGNUM, v, ptid);
2636 write_register_pid (DEPRECATED_NPC_REGNUM, v + 4, ptid);
2637 }
2638
2639 /* return the alignment of a type in bytes. Structures have the maximum
2640 alignment required by their fields. */
2641
2642 static int
2643 hppa_alignof (struct type *type)
2644 {
2645 int max_align, align, i;
2646 CHECK_TYPEDEF (type);
2647 switch (TYPE_CODE (type))
2648 {
2649 case TYPE_CODE_PTR:
2650 case TYPE_CODE_INT:
2651 case TYPE_CODE_FLT:
2652 return TYPE_LENGTH (type);
2653 case TYPE_CODE_ARRAY:
2654 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2655 case TYPE_CODE_STRUCT:
2656 case TYPE_CODE_UNION:
2657 max_align = 1;
2658 for (i = 0; i < TYPE_NFIELDS (type); i++)
2659 {
2660 /* Bit fields have no real alignment. */
2661 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2662 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2663 {
2664 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2665 max_align = max (max_align, align);
2666 }
2667 }
2668 return max_align;
2669 default:
2670 return 4;
2671 }
2672 }
2673
2674 /* Print the register regnum, or all registers if regnum is -1 */
2675
2676 void
2677 pa_do_registers_info (int regnum, int fpregs)
2678 {
2679 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
2680 int i;
2681
2682 /* Make a copy of gdb's save area (may cause actual
2683 reads from the target). */
2684 for (i = 0; i < NUM_REGS; i++)
2685 frame_register_read (deprecated_selected_frame, i,
2686 raw_regs + DEPRECATED_REGISTER_BYTE (i));
2687
2688 if (regnum == -1)
2689 pa_print_registers (raw_regs, regnum, fpregs);
2690 else if (regnum < FP4_REGNUM)
2691 {
2692 long reg_val[2];
2693
2694 /* Why is the value not passed through "extract_signed_integer"
2695 as in "pa_print_registers" below? */
2696 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2697
2698 if (!is_pa_2)
2699 {
2700 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2701 }
2702 else
2703 {
2704 /* Fancy % formats to prevent leading zeros. */
2705 if (reg_val[0] == 0)
2706 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2707 else
2708 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
2709 reg_val[0], reg_val[1]);
2710 }
2711 }
2712 else
2713 /* Note that real floating point values only start at
2714 FP4_REGNUM. FP0 and up are just status and error
2715 registers, which have integral (bit) values. */
2716 pa_print_fp_reg (regnum);
2717 }
2718
2719 /********** new function ********************/
2720 void
2721 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2722 enum precision_type precision)
2723 {
2724 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
2725 int i;
2726
2727 /* Make a copy of gdb's save area (may cause actual
2728 reads from the target). */
2729 for (i = 0; i < NUM_REGS; i++)
2730 frame_register_read (deprecated_selected_frame, i,
2731 raw_regs + DEPRECATED_REGISTER_BYTE (i));
2732
2733 if (regnum == -1)
2734 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2735
2736 else if (regnum < FP4_REGNUM)
2737 {
2738 long reg_val[2];
2739
2740 /* Why is the value not passed through "extract_signed_integer"
2741 as in "pa_print_registers" below? */
2742 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2743
2744 if (!is_pa_2)
2745 {
2746 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
2747 }
2748 else
2749 {
2750 /* Fancy % formats to prevent leading zeros. */
2751 if (reg_val[0] == 0)
2752 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
2753 reg_val[1]);
2754 else
2755 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
2756 reg_val[0], reg_val[1]);
2757 }
2758 }
2759 else
2760 /* Note that real floating point values only start at
2761 FP4_REGNUM. FP0 and up are just status and error
2762 registers, which have integral (bit) values. */
2763 pa_strcat_fp_reg (regnum, stream, precision);
2764 }
2765
2766 /* If this is a PA2.0 machine, fetch the real 64-bit register
2767 value. Otherwise use the info from gdb's saved register area.
2768
2769 Note that reg_val is really expected to be an array of longs,
2770 with two elements. */
2771 static void
2772 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
2773 {
2774 static int know_which = 0; /* False */
2775
2776 int regaddr;
2777 unsigned int offset;
2778 int i;
2779 int start;
2780
2781
2782 char buf[MAX_REGISTER_SIZE];
2783 long long reg_val;
2784
2785 if (!know_which)
2786 {
2787 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2788 {
2789 is_pa_2 = (1 == 1);
2790 }
2791
2792 know_which = 1; /* True */
2793 }
2794
2795 raw_val[0] = 0;
2796 raw_val[1] = 0;
2797
2798 if (!is_pa_2)
2799 {
2800 raw_val[1] = *(long *) (raw_regs + DEPRECATED_REGISTER_BYTE (regnum));
2801 return;
2802 }
2803
2804 /* Code below copied from hppah-nat.c, with fixes for wide
2805 registers, using different area of save_state, etc. */
2806 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2807 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2808 {
2809 /* Use narrow regs area of save_state and default macro. */
2810 offset = U_REGS_OFFSET;
2811 regaddr = register_addr (regnum, offset);
2812 start = 1;
2813 }
2814 else
2815 {
2816 /* Use wide regs area, and calculate registers as 8 bytes wide.
2817
2818 We'd like to do this, but current version of "C" doesn't
2819 permit "offsetof":
2820
2821 offset = offsetof(save_state_t, ss_wide);
2822
2823 Note that to avoid "C" doing typed pointer arithmetic, we
2824 have to cast away the type in our offset calculation:
2825 otherwise we get an offset of 1! */
2826
2827 /* NB: save_state_t is not available before HPUX 9.
2828 The ss_wide field is not available previous to HPUX 10.20,
2829 so to avoid compile-time warnings, we only compile this for
2830 PA 2.0 processors. This control path should only be followed
2831 if we're debugging a PA 2.0 processor, so this should not cause
2832 problems. */
2833
2834 /* #if the following code out so that this file can still be
2835 compiled on older HPUX boxes (< 10.20) which don't have
2836 this structure/structure member. */
2837 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2838 save_state_t temp;
2839
2840 offset = ((int) &temp.ss_wide) - ((int) &temp);
2841 regaddr = offset + regnum * 8;
2842 start = 0;
2843 #endif
2844 }
2845
2846 for (i = start; i < 2; i++)
2847 {
2848 errno = 0;
2849 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
2850 (PTRACE_ARG3_TYPE) regaddr, 0);
2851 if (errno != 0)
2852 {
2853 /* Warning, not error, in case we are attached; sometimes the
2854 kernel doesn't let us at the registers. */
2855 char *err = safe_strerror (errno);
2856 char *msg = alloca (strlen (err) + 128);
2857 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2858 warning (msg);
2859 goto error_exit;
2860 }
2861
2862 regaddr += sizeof (long);
2863 }
2864
2865 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2866 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2867
2868 error_exit:
2869 ;
2870 }
2871
2872 /* "Info all-reg" command */
2873
2874 static void
2875 pa_print_registers (char *raw_regs, int regnum, int fpregs)
2876 {
2877 int i, j;
2878 /* Alas, we are compiled so that "long long" is 32 bits */
2879 long raw_val[2];
2880 long long_val;
2881 int rows = 48, columns = 2;
2882
2883 for (i = 0; i < rows; i++)
2884 {
2885 for (j = 0; j < columns; j++)
2886 {
2887 /* We display registers in column-major order. */
2888 int regnum = i + j * rows;
2889
2890 /* Q: Why is the value passed through "extract_signed_integer",
2891 while above, in "pa_do_registers_info" it isn't?
2892 A: ? */
2893 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2894
2895 /* Even fancier % formats to prevent leading zeros
2896 and still maintain the output in columns. */
2897 if (!is_pa_2)
2898 {
2899 /* Being big-endian, on this machine the low bits
2900 (the ones we want to look at) are in the second longword. */
2901 long_val = extract_signed_integer (&raw_val[1], 4);
2902 printf_filtered ("%10.10s: %8lx ",
2903 REGISTER_NAME (regnum), long_val);
2904 }
2905 else
2906 {
2907 /* raw_val = extract_signed_integer(&raw_val, 8); */
2908 if (raw_val[0] == 0)
2909 printf_filtered ("%10.10s: %8lx ",
2910 REGISTER_NAME (regnum), raw_val[1]);
2911 else
2912 printf_filtered ("%10.10s: %8lx%8.8lx ",
2913 REGISTER_NAME (regnum),
2914 raw_val[0], raw_val[1]);
2915 }
2916 }
2917 printf_unfiltered ("\n");
2918 }
2919
2920 if (fpregs)
2921 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2922 pa_print_fp_reg (i);
2923 }
2924
2925 /************* new function ******************/
2926 static void
2927 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2928 struct ui_file *stream)
2929 {
2930 int i, j;
2931 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2932 long long_val;
2933 enum precision_type precision;
2934
2935 precision = unspecified_precision;
2936
2937 for (i = 0; i < 18; i++)
2938 {
2939 for (j = 0; j < 4; j++)
2940 {
2941 /* Q: Why is the value passed through "extract_signed_integer",
2942 while above, in "pa_do_registers_info" it isn't?
2943 A: ? */
2944 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2945
2946 /* Even fancier % formats to prevent leading zeros
2947 and still maintain the output in columns. */
2948 if (!is_pa_2)
2949 {
2950 /* Being big-endian, on this machine the low bits
2951 (the ones we want to look at) are in the second longword. */
2952 long_val = extract_signed_integer (&raw_val[1], 4);
2953 fprintf_filtered (stream, "%8.8s: %8lx ",
2954 REGISTER_NAME (i + (j * 18)), long_val);
2955 }
2956 else
2957 {
2958 /* raw_val = extract_signed_integer(&raw_val, 8); */
2959 if (raw_val[0] == 0)
2960 fprintf_filtered (stream, "%8.8s: %8lx ",
2961 REGISTER_NAME (i + (j * 18)), raw_val[1]);
2962 else
2963 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2964 REGISTER_NAME (i + (j * 18)), raw_val[0],
2965 raw_val[1]);
2966 }
2967 }
2968 fprintf_unfiltered (stream, "\n");
2969 }
2970
2971 if (fpregs)
2972 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2973 pa_strcat_fp_reg (i, stream, precision);
2974 }
2975
2976 static void
2977 pa_print_fp_reg (int i)
2978 {
2979 char raw_buffer[MAX_REGISTER_SIZE];
2980 char virtual_buffer[MAX_REGISTER_SIZE];
2981
2982 /* Get 32bits of data. */
2983 frame_register_read (deprecated_selected_frame, i, raw_buffer);
2984
2985 /* Put it in the buffer. No conversions are ever necessary. */
2986 memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i));
2987
2988 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2989 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2990 fputs_filtered ("(single precision) ", gdb_stdout);
2991
2992 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2993 1, 0, Val_pretty_default);
2994 printf_filtered ("\n");
2995
2996 /* If "i" is even, then this register can also be a double-precision
2997 FP register. Dump it out as such. */
2998 if ((i % 2) == 0)
2999 {
3000 /* Get the data in raw format for the 2nd half. */
3001 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
3002
3003 /* Copy it into the appropriate part of the virtual buffer. */
3004 memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buffer,
3005 DEPRECATED_REGISTER_RAW_SIZE (i));
3006
3007 /* Dump it as a double. */
3008 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
3009 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
3010 fputs_filtered ("(double precision) ", gdb_stdout);
3011
3012 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
3013 1, 0, Val_pretty_default);
3014 printf_filtered ("\n");
3015 }
3016 }
3017
3018 /*************** new function ***********************/
3019 static void
3020 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
3021 {
3022 char raw_buffer[MAX_REGISTER_SIZE];
3023 char virtual_buffer[MAX_REGISTER_SIZE];
3024
3025 fputs_filtered (REGISTER_NAME (i), stream);
3026 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
3027
3028 /* Get 32bits of data. */
3029 frame_register_read (deprecated_selected_frame, i, raw_buffer);
3030
3031 /* Put it in the buffer. No conversions are ever necessary. */
3032 memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i));
3033
3034 if (precision == double_precision && (i % 2) == 0)
3035 {
3036
3037 char raw_buf[MAX_REGISTER_SIZE];
3038
3039 /* Get the data in raw format for the 2nd half. */
3040 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
3041
3042 /* Copy it into the appropriate part of the virtual buffer. */
3043 memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buf,
3044 DEPRECATED_REGISTER_RAW_SIZE (i));
3045
3046 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
3047 1, 0, Val_pretty_default);
3048
3049 }
3050 else
3051 {
3052 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
3053 1, 0, Val_pretty_default);
3054 }
3055
3056 }
3057
3058 /* Return one if PC is in the call path of a trampoline, else return zero.
3059
3060 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3061 just shared library trampolines (import, export). */
3062
3063 int
3064 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
3065 {
3066 struct minimal_symbol *minsym;
3067 struct unwind_table_entry *u;
3068 static CORE_ADDR dyncall = 0;
3069 static CORE_ADDR sr4export = 0;
3070
3071 #ifdef GDB_TARGET_IS_HPPA_20W
3072 /* PA64 has a completely different stub/trampoline scheme. Is it
3073 better? Maybe. It's certainly harder to determine with any
3074 certainty that we are in a stub because we can not refer to the
3075 unwinders to help.
3076
3077 The heuristic is simple. Try to lookup the current PC value in th
3078 minimal symbol table. If that fails, then assume we are not in a
3079 stub and return.
3080
3081 Then see if the PC value falls within the section bounds for the
3082 section containing the minimal symbol we found in the first
3083 step. If it does, then assume we are not in a stub and return.
3084
3085 Finally peek at the instructions to see if they look like a stub. */
3086 {
3087 struct minimal_symbol *minsym;
3088 asection *sec;
3089 CORE_ADDR addr;
3090 int insn, i;
3091
3092 minsym = lookup_minimal_symbol_by_pc (pc);
3093 if (! minsym)
3094 return 0;
3095
3096 sec = SYMBOL_BFD_SECTION (minsym);
3097
3098 if (sec->vma <= pc
3099 && sec->vma + sec->_cooked_size < pc)
3100 return 0;
3101
3102 /* We might be in a stub. Peek at the instructions. Stubs are 3
3103 instructions long. */
3104 insn = read_memory_integer (pc, 4);
3105
3106 /* Find out where we think we are within the stub. */
3107 if ((insn & 0xffffc00e) == 0x53610000)
3108 addr = pc;
3109 else if ((insn & 0xffffffff) == 0xe820d000)
3110 addr = pc - 4;
3111 else if ((insn & 0xffffc00e) == 0x537b0000)
3112 addr = pc - 8;
3113 else
3114 return 0;
3115
3116 /* Now verify each insn in the range looks like a stub instruction. */
3117 insn = read_memory_integer (addr, 4);
3118 if ((insn & 0xffffc00e) != 0x53610000)
3119 return 0;
3120
3121 /* Now verify each insn in the range looks like a stub instruction. */
3122 insn = read_memory_integer (addr + 4, 4);
3123 if ((insn & 0xffffffff) != 0xe820d000)
3124 return 0;
3125
3126 /* Now verify each insn in the range looks like a stub instruction. */
3127 insn = read_memory_integer (addr + 8, 4);
3128 if ((insn & 0xffffc00e) != 0x537b0000)
3129 return 0;
3130
3131 /* Looks like a stub. */
3132 return 1;
3133 }
3134 #endif
3135
3136 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3137 new exec file */
3138
3139 /* First see if PC is in one of the two C-library trampolines. */
3140 if (!dyncall)
3141 {
3142 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3143 if (minsym)
3144 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
3145 else
3146 dyncall = -1;
3147 }
3148
3149 if (!sr4export)
3150 {
3151 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3152 if (minsym)
3153 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3154 else
3155 sr4export = -1;
3156 }
3157
3158 if (pc == dyncall || pc == sr4export)
3159 return 1;
3160
3161 minsym = lookup_minimal_symbol_by_pc (pc);
3162 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
3163 return 1;
3164
3165 /* Get the unwind descriptor corresponding to PC, return zero
3166 if no unwind was found. */
3167 u = find_unwind_entry (pc);
3168 if (!u)
3169 return 0;
3170
3171 /* If this isn't a linker stub, then return now. */
3172 if (u->stub_unwind.stub_type == 0)
3173 return 0;
3174
3175 /* By definition a long-branch stub is a call stub. */
3176 if (u->stub_unwind.stub_type == LONG_BRANCH)
3177 return 1;
3178
3179 /* The call and return path execute the same instructions within
3180 an IMPORT stub! So an IMPORT stub is both a call and return
3181 trampoline. */
3182 if (u->stub_unwind.stub_type == IMPORT)
3183 return 1;
3184
3185 /* Parameter relocation stubs always have a call path and may have a
3186 return path. */
3187 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3188 || u->stub_unwind.stub_type == EXPORT)
3189 {
3190 CORE_ADDR addr;
3191
3192 /* Search forward from the current PC until we hit a branch
3193 or the end of the stub. */
3194 for (addr = pc; addr <= u->region_end; addr += 4)
3195 {
3196 unsigned long insn;
3197
3198 insn = read_memory_integer (addr, 4);
3199
3200 /* Does it look like a bl? If so then it's the call path, if
3201 we find a bv or be first, then we're on the return path. */
3202 if ((insn & 0xfc00e000) == 0xe8000000)
3203 return 1;
3204 else if ((insn & 0xfc00e001) == 0xe800c000
3205 || (insn & 0xfc000000) == 0xe0000000)
3206 return 0;
3207 }
3208
3209 /* Should never happen. */
3210 warning ("Unable to find branch in parameter relocation stub.\n");
3211 return 0;
3212 }
3213
3214 /* Unknown stub type. For now, just return zero. */
3215 return 0;
3216 }
3217
3218 /* Return one if PC is in the return path of a trampoline, else return zero.
3219
3220 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3221 just shared library trampolines (import, export). */
3222
3223 int
3224 hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
3225 {
3226 struct unwind_table_entry *u;
3227
3228 /* Get the unwind descriptor corresponding to PC, return zero
3229 if no unwind was found. */
3230 u = find_unwind_entry (pc);
3231 if (!u)
3232 return 0;
3233
3234 /* If this isn't a linker stub or it's just a long branch stub, then
3235 return zero. */
3236 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3237 return 0;
3238
3239 /* The call and return path execute the same instructions within
3240 an IMPORT stub! So an IMPORT stub is both a call and return
3241 trampoline. */
3242 if (u->stub_unwind.stub_type == IMPORT)
3243 return 1;
3244
3245 /* Parameter relocation stubs always have a call path and may have a
3246 return path. */
3247 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3248 || u->stub_unwind.stub_type == EXPORT)
3249 {
3250 CORE_ADDR addr;
3251
3252 /* Search forward from the current PC until we hit a branch
3253 or the end of the stub. */
3254 for (addr = pc; addr <= u->region_end; addr += 4)
3255 {
3256 unsigned long insn;
3257
3258 insn = read_memory_integer (addr, 4);
3259
3260 /* Does it look like a bl? If so then it's the call path, if
3261 we find a bv or be first, then we're on the return path. */
3262 if ((insn & 0xfc00e000) == 0xe8000000)
3263 return 0;
3264 else if ((insn & 0xfc00e001) == 0xe800c000
3265 || (insn & 0xfc000000) == 0xe0000000)
3266 return 1;
3267 }
3268
3269 /* Should never happen. */
3270 warning ("Unable to find branch in parameter relocation stub.\n");
3271 return 0;
3272 }
3273
3274 /* Unknown stub type. For now, just return zero. */
3275 return 0;
3276
3277 }
3278
3279 /* Figure out if PC is in a trampoline, and if so find out where
3280 the trampoline will jump to. If not in a trampoline, return zero.
3281
3282 Simple code examination probably is not a good idea since the code
3283 sequences in trampolines can also appear in user code.
3284
3285 We use unwinds and information from the minimal symbol table to
3286 determine when we're in a trampoline. This won't work for ELF
3287 (yet) since it doesn't create stub unwind entries. Whether or
3288 not ELF will create stub unwinds or normal unwinds for linker
3289 stubs is still being debated.
3290
3291 This should handle simple calls through dyncall or sr4export,
3292 long calls, argument relocation stubs, and dyncall/sr4export
3293 calling an argument relocation stub. It even handles some stubs
3294 used in dynamic executables. */
3295
3296 CORE_ADDR
3297 hppa_skip_trampoline_code (CORE_ADDR pc)
3298 {
3299 long orig_pc = pc;
3300 long prev_inst, curr_inst, loc;
3301 static CORE_ADDR dyncall = 0;
3302 static CORE_ADDR dyncall_external = 0;
3303 static CORE_ADDR sr4export = 0;
3304 struct minimal_symbol *msym;
3305 struct unwind_table_entry *u;
3306
3307 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3308 new exec file */
3309
3310 if (!dyncall)
3311 {
3312 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3313 if (msym)
3314 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3315 else
3316 dyncall = -1;
3317 }
3318
3319 if (!dyncall_external)
3320 {
3321 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3322 if (msym)
3323 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3324 else
3325 dyncall_external = -1;
3326 }
3327
3328 if (!sr4export)
3329 {
3330 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3331 if (msym)
3332 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3333 else
3334 sr4export = -1;
3335 }
3336
3337 /* Addresses passed to dyncall may *NOT* be the actual address
3338 of the function. So we may have to do something special. */
3339 if (pc == dyncall)
3340 {
3341 pc = (CORE_ADDR) read_register (22);
3342
3343 /* If bit 30 (counting from the left) is on, then pc is the address of
3344 the PLT entry for this function, not the address of the function
3345 itself. Bit 31 has meaning too, but only for MPE. */
3346 if (pc & 0x2)
3347 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3348 }
3349 if (pc == dyncall_external)
3350 {
3351 pc = (CORE_ADDR) read_register (22);
3352 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3353 }
3354 else if (pc == sr4export)
3355 pc = (CORE_ADDR) (read_register (22));
3356
3357 /* Get the unwind descriptor corresponding to PC, return zero
3358 if no unwind was found. */
3359 u = find_unwind_entry (pc);
3360 if (!u)
3361 return 0;
3362
3363 /* If this isn't a linker stub, then return now. */
3364 /* elz: attention here! (FIXME) because of a compiler/linker
3365 error, some stubs which should have a non zero stub_unwind.stub_type
3366 have unfortunately a value of zero. So this function would return here
3367 as if we were not in a trampoline. To fix this, we go look at the partial
3368 symbol information, which reports this guy as a stub.
3369 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3370 partial symbol information is also wrong sometimes. This is because
3371 when it is entered (somread.c::som_symtab_read()) it can happen that
3372 if the type of the symbol (from the som) is Entry, and the symbol is
3373 in a shared library, then it can also be a trampoline. This would
3374 be OK, except that I believe the way they decide if we are ina shared library
3375 does not work. SOOOO..., even if we have a regular function w/o trampolines
3376 its minimal symbol can be assigned type mst_solib_trampoline.
3377 Also, if we find that the symbol is a real stub, then we fix the unwind
3378 descriptor, and define the stub type to be EXPORT.
3379 Hopefully this is correct most of the times. */
3380 if (u->stub_unwind.stub_type == 0)
3381 {
3382
3383 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3384 we can delete all the code which appears between the lines */
3385 /*--------------------------------------------------------------------------*/
3386 msym = lookup_minimal_symbol_by_pc (pc);
3387
3388 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3389 return orig_pc == pc ? 0 : pc & ~0x3;
3390
3391 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3392 {
3393 struct objfile *objfile;
3394 struct minimal_symbol *msymbol;
3395 int function_found = 0;
3396
3397 /* go look if there is another minimal symbol with the same name as
3398 this one, but with type mst_text. This would happen if the msym
3399 is an actual trampoline, in which case there would be another
3400 symbol with the same name corresponding to the real function */
3401
3402 ALL_MSYMBOLS (objfile, msymbol)
3403 {
3404 if (MSYMBOL_TYPE (msymbol) == mst_text
3405 && STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
3406 {
3407 function_found = 1;
3408 break;
3409 }
3410 }
3411
3412 if (function_found)
3413 /* the type of msym is correct (mst_solib_trampoline), but
3414 the unwind info is wrong, so set it to the correct value */
3415 u->stub_unwind.stub_type = EXPORT;
3416 else
3417 /* the stub type info in the unwind is correct (this is not a
3418 trampoline), but the msym type information is wrong, it
3419 should be mst_text. So we need to fix the msym, and also
3420 get out of this function */
3421 {
3422 MSYMBOL_TYPE (msym) = mst_text;
3423 return orig_pc == pc ? 0 : pc & ~0x3;
3424 }
3425 }
3426
3427 /*--------------------------------------------------------------------------*/
3428 }
3429
3430 /* It's a stub. Search for a branch and figure out where it goes.
3431 Note we have to handle multi insn branch sequences like ldil;ble.
3432 Most (all?) other branches can be determined by examining the contents
3433 of certain registers and the stack. */
3434
3435 loc = pc;
3436 curr_inst = 0;
3437 prev_inst = 0;
3438 while (1)
3439 {
3440 /* Make sure we haven't walked outside the range of this stub. */
3441 if (u != find_unwind_entry (loc))
3442 {
3443 warning ("Unable to find branch in linker stub");
3444 return orig_pc == pc ? 0 : pc & ~0x3;
3445 }
3446
3447 prev_inst = curr_inst;
3448 curr_inst = read_memory_integer (loc, 4);
3449
3450 /* Does it look like a branch external using %r1? Then it's the
3451 branch from the stub to the actual function. */
3452 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3453 {
3454 /* Yup. See if the previous instruction loaded
3455 a value into %r1. If so compute and return the jump address. */
3456 if ((prev_inst & 0xffe00000) == 0x20200000)
3457 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3458 else
3459 {
3460 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3461 return orig_pc == pc ? 0 : pc & ~0x3;
3462 }
3463 }
3464
3465 /* Does it look like a be 0(sr0,%r21)? OR
3466 Does it look like a be, n 0(sr0,%r21)? OR
3467 Does it look like a bve (r21)? (this is on PA2.0)
3468 Does it look like a bve, n(r21)? (this is also on PA2.0)
3469 That's the branch from an
3470 import stub to an export stub.
3471
3472 It is impossible to determine the target of the branch via
3473 simple examination of instructions and/or data (consider
3474 that the address in the plabel may be the address of the
3475 bind-on-reference routine in the dynamic loader).
3476
3477 So we have try an alternative approach.
3478
3479 Get the name of the symbol at our current location; it should
3480 be a stub symbol with the same name as the symbol in the
3481 shared library.
3482
3483 Then lookup a minimal symbol with the same name; we should
3484 get the minimal symbol for the target routine in the shared
3485 library as those take precedence of import/export stubs. */
3486 if ((curr_inst == 0xe2a00000) ||
3487 (curr_inst == 0xe2a00002) ||
3488 (curr_inst == 0xeaa0d000) ||
3489 (curr_inst == 0xeaa0d002))
3490 {
3491 struct minimal_symbol *stubsym, *libsym;
3492
3493 stubsym = lookup_minimal_symbol_by_pc (loc);
3494 if (stubsym == NULL)
3495 {
3496 warning ("Unable to find symbol for 0x%lx", loc);
3497 return orig_pc == pc ? 0 : pc & ~0x3;
3498 }
3499
3500 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
3501 if (libsym == NULL)
3502 {
3503 warning ("Unable to find library symbol for %s\n",
3504 DEPRECATED_SYMBOL_NAME (stubsym));
3505 return orig_pc == pc ? 0 : pc & ~0x3;
3506 }
3507
3508 return SYMBOL_VALUE (libsym);
3509 }
3510
3511 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3512 branch from the stub to the actual function. */
3513 /*elz */
3514 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3515 || (curr_inst & 0xffe0e000) == 0xe8000000
3516 || (curr_inst & 0xffe0e000) == 0xe800A000)
3517 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3518
3519 /* Does it look like bv (rp)? Note this depends on the
3520 current stack pointer being the same as the stack
3521 pointer in the stub itself! This is a branch on from the
3522 stub back to the original caller. */
3523 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3524 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3525 {
3526 /* Yup. See if the previous instruction loaded
3527 rp from sp - 8. */
3528 if (prev_inst == 0x4bc23ff1)
3529 return (read_memory_integer
3530 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3531 else
3532 {
3533 warning ("Unable to find restore of %%rp before bv (%%rp).");
3534 return orig_pc == pc ? 0 : pc & ~0x3;
3535 }
3536 }
3537
3538 /* elz: added this case to capture the new instruction
3539 at the end of the return part of an export stub used by
3540 the PA2.0: BVE, n (rp) */
3541 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3542 {
3543 return (read_memory_integer
3544 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3545 }
3546
3547 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3548 the original caller from the stub. Used in dynamic executables. */
3549 else if (curr_inst == 0xe0400002)
3550 {
3551 /* The value we jump to is sitting in sp - 24. But that's
3552 loaded several instructions before the be instruction.
3553 I guess we could check for the previous instruction being
3554 mtsp %r1,%sr0 if we want to do sanity checking. */
3555 return (read_memory_integer
3556 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3557 }
3558
3559 /* Haven't found the branch yet, but we're still in the stub.
3560 Keep looking. */
3561 loc += 4;
3562 }
3563 }
3564
3565
3566 /* For the given instruction (INST), return any adjustment it makes
3567 to the stack pointer or zero for no adjustment.
3568
3569 This only handles instructions commonly found in prologues. */
3570
3571 static int
3572 prologue_inst_adjust_sp (unsigned long inst)
3573 {
3574 /* This must persist across calls. */
3575 static int save_high21;
3576
3577 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3578 if ((inst & 0xffffc000) == 0x37de0000)
3579 return extract_14 (inst);
3580
3581 /* stwm X,D(sp) */
3582 if ((inst & 0xffe00000) == 0x6fc00000)
3583 return extract_14 (inst);
3584
3585 /* std,ma X,D(sp) */
3586 if ((inst & 0xffe00008) == 0x73c00008)
3587 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3588
3589 /* addil high21,%r1; ldo low11,(%r1),%r30)
3590 save high bits in save_high21 for later use. */
3591 if ((inst & 0xffe00000) == 0x28200000)
3592 {
3593 save_high21 = extract_21 (inst);
3594 return 0;
3595 }
3596
3597 if ((inst & 0xffff0000) == 0x343e0000)
3598 return save_high21 + extract_14 (inst);
3599
3600 /* fstws as used by the HP compilers. */
3601 if ((inst & 0xffffffe0) == 0x2fd01220)
3602 return extract_5_load (inst);
3603
3604 /* No adjustment. */
3605 return 0;
3606 }
3607
3608 /* Return nonzero if INST is a branch of some kind, else return zero. */
3609
3610 static int
3611 is_branch (unsigned long inst)
3612 {
3613 switch (inst >> 26)
3614 {
3615 case 0x20:
3616 case 0x21:
3617 case 0x22:
3618 case 0x23:
3619 case 0x27:
3620 case 0x28:
3621 case 0x29:
3622 case 0x2a:
3623 case 0x2b:
3624 case 0x2f:
3625 case 0x30:
3626 case 0x31:
3627 case 0x32:
3628 case 0x33:
3629 case 0x38:
3630 case 0x39:
3631 case 0x3a:
3632 case 0x3b:
3633 return 1;
3634
3635 default:
3636 return 0;
3637 }
3638 }
3639
3640 /* Return the register number for a GR which is saved by INST or
3641 zero it INST does not save a GR. */
3642
3643 static int
3644 inst_saves_gr (unsigned long inst)
3645 {
3646 /* Does it look like a stw? */
3647 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3648 || (inst >> 26) == 0x1f
3649 || ((inst >> 26) == 0x1f
3650 && ((inst >> 6) == 0xa)))
3651 return extract_5R_store (inst);
3652
3653 /* Does it look like a std? */
3654 if ((inst >> 26) == 0x1c
3655 || ((inst >> 26) == 0x03
3656 && ((inst >> 6) & 0xf) == 0xb))
3657 return extract_5R_store (inst);
3658
3659 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3660 if ((inst >> 26) == 0x1b)
3661 return extract_5R_store (inst);
3662
3663 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3664 too. */
3665 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3666 || ((inst >> 26) == 0x3
3667 && (((inst >> 6) & 0xf) == 0x8
3668 || (inst >> 6) & 0xf) == 0x9))
3669 return extract_5R_store (inst);
3670
3671 return 0;
3672 }
3673
3674 /* Return the register number for a FR which is saved by INST or
3675 zero it INST does not save a FR.
3676
3677 Note we only care about full 64bit register stores (that's the only
3678 kind of stores the prologue will use).
3679
3680 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3681
3682 static int
3683 inst_saves_fr (unsigned long inst)
3684 {
3685 /* is this an FSTD ? */
3686 if ((inst & 0xfc00dfc0) == 0x2c001200)
3687 return extract_5r_store (inst);
3688 if ((inst & 0xfc000002) == 0x70000002)
3689 return extract_5R_store (inst);
3690 /* is this an FSTW ? */
3691 if ((inst & 0xfc00df80) == 0x24001200)
3692 return extract_5r_store (inst);
3693 if ((inst & 0xfc000002) == 0x7c000000)
3694 return extract_5R_store (inst);
3695 return 0;
3696 }
3697
3698 /* Advance PC across any function entry prologue instructions
3699 to reach some "real" code.
3700
3701 Use information in the unwind table to determine what exactly should
3702 be in the prologue. */
3703
3704
3705 CORE_ADDR
3706 skip_prologue_hard_way (CORE_ADDR pc)
3707 {
3708 char buf[4];
3709 CORE_ADDR orig_pc = pc;
3710 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3711 unsigned long args_stored, status, i, restart_gr, restart_fr;
3712 struct unwind_table_entry *u;
3713
3714 restart_gr = 0;
3715 restart_fr = 0;
3716
3717 restart:
3718 u = find_unwind_entry (pc);
3719 if (!u)
3720 return pc;
3721
3722 /* If we are not at the beginning of a function, then return now. */
3723 if ((pc & ~0x3) != u->region_start)
3724 return pc;
3725
3726 /* This is how much of a frame adjustment we need to account for. */
3727 stack_remaining = u->Total_frame_size << 3;
3728
3729 /* Magic register saves we want to know about. */
3730 save_rp = u->Save_RP;
3731 save_sp = u->Save_SP;
3732
3733 /* An indication that args may be stored into the stack. Unfortunately
3734 the HPUX compilers tend to set this in cases where no args were
3735 stored too!. */
3736 args_stored = 1;
3737
3738 /* Turn the Entry_GR field into a bitmask. */
3739 save_gr = 0;
3740 for (i = 3; i < u->Entry_GR + 3; i++)
3741 {
3742 /* Frame pointer gets saved into a special location. */
3743 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
3744 continue;
3745
3746 save_gr |= (1 << i);
3747 }
3748 save_gr &= ~restart_gr;
3749
3750 /* Turn the Entry_FR field into a bitmask too. */
3751 save_fr = 0;
3752 for (i = 12; i < u->Entry_FR + 12; i++)
3753 save_fr |= (1 << i);
3754 save_fr &= ~restart_fr;
3755
3756 /* Loop until we find everything of interest or hit a branch.
3757
3758 For unoptimized GCC code and for any HP CC code this will never ever
3759 examine any user instructions.
3760
3761 For optimzied GCC code we're faced with problems. GCC will schedule
3762 its prologue and make prologue instructions available for delay slot
3763 filling. The end result is user code gets mixed in with the prologue
3764 and a prologue instruction may be in the delay slot of the first branch
3765 or call.
3766
3767 Some unexpected things are expected with debugging optimized code, so
3768 we allow this routine to walk past user instructions in optimized
3769 GCC code. */
3770 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3771 || args_stored)
3772 {
3773 unsigned int reg_num;
3774 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3775 unsigned long old_save_rp, old_save_sp, next_inst;
3776
3777 /* Save copies of all the triggers so we can compare them later
3778 (only for HPC). */
3779 old_save_gr = save_gr;
3780 old_save_fr = save_fr;
3781 old_save_rp = save_rp;
3782 old_save_sp = save_sp;
3783 old_stack_remaining = stack_remaining;
3784
3785 status = target_read_memory (pc, buf, 4);
3786 inst = extract_unsigned_integer (buf, 4);
3787
3788 /* Yow! */
3789 if (status != 0)
3790 return pc;
3791
3792 /* Note the interesting effects of this instruction. */
3793 stack_remaining -= prologue_inst_adjust_sp (inst);
3794
3795 /* There are limited ways to store the return pointer into the
3796 stack. */
3797 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3798 save_rp = 0;
3799
3800 /* These are the only ways we save SP into the stack. At this time
3801 the HP compilers never bother to save SP into the stack. */
3802 if ((inst & 0xffffc000) == 0x6fc10000
3803 || (inst & 0xffffc00c) == 0x73c10008)
3804 save_sp = 0;
3805
3806 /* Are we loading some register with an offset from the argument
3807 pointer? */
3808 if ((inst & 0xffe00000) == 0x37a00000
3809 || (inst & 0xffffffe0) == 0x081d0240)
3810 {
3811 pc += 4;
3812 continue;
3813 }
3814
3815 /* Account for general and floating-point register saves. */
3816 reg_num = inst_saves_gr (inst);
3817 save_gr &= ~(1 << reg_num);
3818
3819 /* Ugh. Also account for argument stores into the stack.
3820 Unfortunately args_stored only tells us that some arguments
3821 where stored into the stack. Not how many or what kind!
3822
3823 This is a kludge as on the HP compiler sets this bit and it
3824 never does prologue scheduling. So once we see one, skip past
3825 all of them. We have similar code for the fp arg stores below.
3826
3827 FIXME. Can still die if we have a mix of GR and FR argument
3828 stores! */
3829 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3830 {
3831 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3832 {
3833 pc += 4;
3834 status = target_read_memory (pc, buf, 4);
3835 inst = extract_unsigned_integer (buf, 4);
3836 if (status != 0)
3837 return pc;
3838 reg_num = inst_saves_gr (inst);
3839 }
3840 args_stored = 0;
3841 continue;
3842 }
3843
3844 reg_num = inst_saves_fr (inst);
3845 save_fr &= ~(1 << reg_num);
3846
3847 status = target_read_memory (pc + 4, buf, 4);
3848 next_inst = extract_unsigned_integer (buf, 4);
3849
3850 /* Yow! */
3851 if (status != 0)
3852 return pc;
3853
3854 /* We've got to be read to handle the ldo before the fp register
3855 save. */
3856 if ((inst & 0xfc000000) == 0x34000000
3857 && inst_saves_fr (next_inst) >= 4
3858 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3859 {
3860 /* So we drop into the code below in a reasonable state. */
3861 reg_num = inst_saves_fr (next_inst);
3862 pc -= 4;
3863 }
3864
3865 /* Ugh. Also account for argument stores into the stack.
3866 This is a kludge as on the HP compiler sets this bit and it
3867 never does prologue scheduling. So once we see one, skip past
3868 all of them. */
3869 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3870 {
3871 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3872 {
3873 pc += 8;
3874 status = target_read_memory (pc, buf, 4);
3875 inst = extract_unsigned_integer (buf, 4);
3876 if (status != 0)
3877 return pc;
3878 if ((inst & 0xfc000000) != 0x34000000)
3879 break;
3880 status = target_read_memory (pc + 4, buf, 4);
3881 next_inst = extract_unsigned_integer (buf, 4);
3882 if (status != 0)
3883 return pc;
3884 reg_num = inst_saves_fr (next_inst);
3885 }
3886 args_stored = 0;
3887 continue;
3888 }
3889
3890 /* Quit if we hit any kind of branch. This can happen if a prologue
3891 instruction is in the delay slot of the first call/branch. */
3892 if (is_branch (inst))
3893 break;
3894
3895 /* What a crock. The HP compilers set args_stored even if no
3896 arguments were stored into the stack (boo hiss). This could
3897 cause this code to then skip a bunch of user insns (up to the
3898 first branch).
3899
3900 To combat this we try to identify when args_stored was bogusly
3901 set and clear it. We only do this when args_stored is nonzero,
3902 all other resources are accounted for, and nothing changed on
3903 this pass. */
3904 if (args_stored
3905 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3906 && old_save_gr == save_gr && old_save_fr == save_fr
3907 && old_save_rp == save_rp && old_save_sp == save_sp
3908 && old_stack_remaining == stack_remaining)
3909 break;
3910
3911 /* Bump the PC. */
3912 pc += 4;
3913 }
3914
3915 /* We've got a tenative location for the end of the prologue. However
3916 because of limitations in the unwind descriptor mechanism we may
3917 have went too far into user code looking for the save of a register
3918 that does not exist. So, if there registers we expected to be saved
3919 but never were, mask them out and restart.
3920
3921 This should only happen in optimized code, and should be very rare. */
3922 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3923 {
3924 pc = orig_pc;
3925 restart_gr = save_gr;
3926 restart_fr = save_fr;
3927 goto restart;
3928 }
3929
3930 return pc;
3931 }
3932
3933
3934 /* Return the address of the PC after the last prologue instruction if
3935 we can determine it from the debug symbols. Else return zero. */
3936
3937 static CORE_ADDR
3938 after_prologue (CORE_ADDR pc)
3939 {
3940 struct symtab_and_line sal;
3941 CORE_ADDR func_addr, func_end;
3942 struct symbol *f;
3943
3944 /* If we can not find the symbol in the partial symbol table, then
3945 there is no hope we can determine the function's start address
3946 with this code. */
3947 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3948 return 0;
3949
3950 /* Get the line associated with FUNC_ADDR. */
3951 sal = find_pc_line (func_addr, 0);
3952
3953 /* There are only two cases to consider. First, the end of the source line
3954 is within the function bounds. In that case we return the end of the
3955 source line. Second is the end of the source line extends beyond the
3956 bounds of the current function. We need to use the slow code to
3957 examine instructions in that case.
3958
3959 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3960 the wrong thing to do. In fact, it should be entirely possible for this
3961 function to always return zero since the slow instruction scanning code
3962 is supposed to *always* work. If it does not, then it is a bug. */
3963 if (sal.end < func_end)
3964 return sal.end;
3965 else
3966 return 0;
3967 }
3968
3969 /* To skip prologues, I use this predicate. Returns either PC itself
3970 if the code at PC does not look like a function prologue; otherwise
3971 returns an address that (if we're lucky) follows the prologue. If
3972 LENIENT, then we must skip everything which is involved in setting
3973 up the frame (it's OK to skip more, just so long as we don't skip
3974 anything which might clobber the registers which are being saved.
3975 Currently we must not skip more on the alpha, but we might the lenient
3976 stuff some day. */
3977
3978 CORE_ADDR
3979 hppa_skip_prologue (CORE_ADDR pc)
3980 {
3981 unsigned long inst;
3982 int offset;
3983 CORE_ADDR post_prologue_pc;
3984 char buf[4];
3985
3986 /* See if we can determine the end of the prologue via the symbol table.
3987 If so, then return either PC, or the PC after the prologue, whichever
3988 is greater. */
3989
3990 post_prologue_pc = after_prologue (pc);
3991
3992 /* If after_prologue returned a useful address, then use it. Else
3993 fall back on the instruction skipping code.
3994
3995 Some folks have claimed this causes problems because the breakpoint
3996 may be the first instruction of the prologue. If that happens, then
3997 the instruction skipping code has a bug that needs to be fixed. */
3998 if (post_prologue_pc != 0)
3999 return max (pc, post_prologue_pc);
4000 else
4001 return (skip_prologue_hard_way (pc));
4002 }
4003
4004 /* Put here the code to store, into the SAVED_REGS, the addresses of
4005 the saved registers of frame described by FRAME_INFO. This
4006 includes special registers such as pc and fp saved in special ways
4007 in the stack frame. sp is even more special: the address we return
4008 for it IS the sp for the next frame. */
4009
4010 void
4011 hppa_frame_find_saved_regs (struct frame_info *frame_info,
4012 CORE_ADDR frame_saved_regs[])
4013 {
4014 CORE_ADDR pc;
4015 struct unwind_table_entry *u;
4016 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
4017 int status, i, reg;
4018 char buf[4];
4019 int fp_loc = -1;
4020 int final_iteration;
4021
4022 /* Zero out everything. */
4023 memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
4024
4025 /* Call dummy frames always look the same, so there's no need to
4026 examine the dummy code to determine locations of saved registers;
4027 instead, let find_dummy_frame_regs fill in the correct offsets
4028 for the saved registers. */
4029 if ((get_frame_pc (frame_info) >= get_frame_base (frame_info)
4030 && (get_frame_pc (frame_info)
4031 <= (get_frame_base (frame_info)
4032 /* A call dummy is sized in words, but it is actually a
4033 series of instructions. Account for that scaling
4034 factor. */
4035 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
4036 * DEPRECATED_CALL_DUMMY_LENGTH)
4037 /* Similarly we have to account for 64bit wide register
4038 saves. */
4039 + (32 * DEPRECATED_REGISTER_SIZE)
4040 /* We always consider FP regs 8 bytes long. */
4041 + (NUM_REGS - FP0_REGNUM) * 8
4042 /* Similarly we have to account for 64bit wide register
4043 saves. */
4044 + (6 * DEPRECATED_REGISTER_SIZE)))))
4045 find_dummy_frame_regs (frame_info, frame_saved_regs);
4046
4047 /* Interrupt handlers are special too. They lay out the register
4048 state in the exact same order as the register numbers in GDB. */
4049 if (pc_in_interrupt_handler (get_frame_pc (frame_info)))
4050 {
4051 for (i = 0; i < NUM_REGS; i++)
4052 {
4053 /* SP is a little special. */
4054 if (i == SP_REGNUM)
4055 frame_saved_regs[SP_REGNUM]
4056 = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4,
4057 TARGET_PTR_BIT / 8);
4058 else
4059 frame_saved_regs[i] = get_frame_base (frame_info) + i * 4;
4060 }
4061 return;
4062 }
4063
4064 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
4065 /* Handle signal handler callers. */
4066 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
4067 {
4068 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
4069 return;
4070 }
4071 #endif
4072
4073 /* Get the starting address of the function referred to by the PC
4074 saved in frame. */
4075 pc = get_frame_func (frame_info);
4076
4077 /* Yow! */
4078 u = find_unwind_entry (pc);
4079 if (!u)
4080 return;
4081
4082 /* This is how much of a frame adjustment we need to account for. */
4083 stack_remaining = u->Total_frame_size << 3;
4084
4085 /* Magic register saves we want to know about. */
4086 save_rp = u->Save_RP;
4087 save_sp = u->Save_SP;
4088
4089 /* Turn the Entry_GR field into a bitmask. */
4090 save_gr = 0;
4091 for (i = 3; i < u->Entry_GR + 3; i++)
4092 {
4093 /* Frame pointer gets saved into a special location. */
4094 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
4095 continue;
4096
4097 save_gr |= (1 << i);
4098 }
4099
4100 /* Turn the Entry_FR field into a bitmask too. */
4101 save_fr = 0;
4102 for (i = 12; i < u->Entry_FR + 12; i++)
4103 save_fr |= (1 << i);
4104
4105 /* The frame always represents the value of %sp at entry to the
4106 current function (and is thus equivalent to the "saved" stack
4107 pointer. */
4108 frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info);
4109
4110 /* Loop until we find everything of interest or hit a branch.
4111
4112 For unoptimized GCC code and for any HP CC code this will never ever
4113 examine any user instructions.
4114
4115 For optimized GCC code we're faced with problems. GCC will schedule
4116 its prologue and make prologue instructions available for delay slot
4117 filling. The end result is user code gets mixed in with the prologue
4118 and a prologue instruction may be in the delay slot of the first branch
4119 or call.
4120
4121 Some unexpected things are expected with debugging optimized code, so
4122 we allow this routine to walk past user instructions in optimized
4123 GCC code. */
4124 final_iteration = 0;
4125 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
4126 && pc <= get_frame_pc (frame_info))
4127 {
4128 status = target_read_memory (pc, buf, 4);
4129 inst = extract_unsigned_integer (buf, 4);
4130
4131 /* Yow! */
4132 if (status != 0)
4133 return;
4134
4135 /* Note the interesting effects of this instruction. */
4136 stack_remaining -= prologue_inst_adjust_sp (inst);
4137
4138 /* There are limited ways to store the return pointer into the
4139 stack. */
4140 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4141 {
4142 save_rp = 0;
4143 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20;
4144 }
4145 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4146 {
4147 save_rp = 0;
4148 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16;
4149 }
4150
4151 /* Note if we saved SP into the stack. This also happens to indicate
4152 the location of the saved frame pointer. */
4153 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4154 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4155 {
4156 frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info);
4157 save_sp = 0;
4158 }
4159
4160 /* Account for general and floating-point register saves. */
4161 reg = inst_saves_gr (inst);
4162 if (reg >= 3 && reg <= 18
4163 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
4164 {
4165 save_gr &= ~(1 << reg);
4166
4167 /* stwm with a positive displacement is a *post modify*. */
4168 if ((inst >> 26) == 0x1b
4169 && extract_14 (inst) >= 0)
4170 frame_saved_regs[reg] = get_frame_base (frame_info);
4171 /* A std has explicit post_modify forms. */
4172 else if ((inst & 0xfc00000c0) == 0x70000008)
4173 frame_saved_regs[reg] = get_frame_base (frame_info);
4174 else
4175 {
4176 CORE_ADDR offset;
4177
4178 if ((inst >> 26) == 0x1c)
4179 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4180 else if ((inst >> 26) == 0x03)
4181 offset = low_sign_extend (inst & 0x1f, 5);
4182 else
4183 offset = extract_14 (inst);
4184
4185 /* Handle code with and without frame pointers. */
4186 if (u->Save_SP)
4187 frame_saved_regs[reg]
4188 = get_frame_base (frame_info) + offset;
4189 else
4190 frame_saved_regs[reg]
4191 = (get_frame_base (frame_info) + (u->Total_frame_size << 3)
4192 + offset);
4193 }
4194 }
4195
4196
4197 /* GCC handles callee saved FP regs a little differently.
4198
4199 It emits an instruction to put the value of the start of
4200 the FP store area into %r1. It then uses fstds,ma with
4201 a basereg of %r1 for the stores.
4202
4203 HP CC emits them at the current stack pointer modifying
4204 the stack pointer as it stores each register. */
4205
4206 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4207 if ((inst & 0xffffc000) == 0x34610000
4208 || (inst & 0xffffc000) == 0x37c10000)
4209 fp_loc = extract_14 (inst);
4210
4211 reg = inst_saves_fr (inst);
4212 if (reg >= 12 && reg <= 21)
4213 {
4214 /* Note +4 braindamage below is necessary because the FP status
4215 registers are internally 8 registers rather than the expected
4216 4 registers. */
4217 save_fr &= ~(1 << reg);
4218 if (fp_loc == -1)
4219 {
4220 /* 1st HP CC FP register store. After this instruction
4221 we've set enough state that the GCC and HPCC code are
4222 both handled in the same manner. */
4223 frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info);
4224 fp_loc = 8;
4225 }
4226 else
4227 {
4228 frame_saved_regs[reg + FP0_REGNUM + 4]
4229 = get_frame_base (frame_info) + fp_loc;
4230 fp_loc += 8;
4231 }
4232 }
4233
4234 /* Quit if we hit any kind of branch the previous iteration. */
4235 if (final_iteration)
4236 break;
4237
4238 /* We want to look precisely one instruction beyond the branch
4239 if we have not found everything yet. */
4240 if (is_branch (inst))
4241 final_iteration = 1;
4242
4243 /* Bump the PC. */
4244 pc += 4;
4245 }
4246 }
4247
4248 /* XXX - deprecated. This is a compatibility function for targets
4249 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4250 /* Find the addresses in which registers are saved in FRAME. */
4251
4252 void
4253 hppa_frame_init_saved_regs (struct frame_info *frame)
4254 {
4255 if (deprecated_get_frame_saved_regs (frame) == NULL)
4256 frame_saved_regs_zalloc (frame);
4257 hppa_frame_find_saved_regs (frame, deprecated_get_frame_saved_regs (frame));
4258 }
4259
4260 /* Exception handling support for the HP-UX ANSI C++ compiler.
4261 The compiler (aCC) provides a callback for exception events;
4262 GDB can set a breakpoint on this callback and find out what
4263 exception event has occurred. */
4264
4265 /* The name of the hook to be set to point to the callback function */
4266 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4267 /* The name of the function to be used to set the hook value */
4268 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4269 /* The name of the callback function in end.o */
4270 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4271 /* Name of function in end.o on which a break is set (called by above) */
4272 static char HP_ACC_EH_break[] = "__d_eh_break";
4273 /* Name of flag (in end.o) that enables catching throws */
4274 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4275 /* Name of flag (in end.o) that enables catching catching */
4276 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4277 /* The enum used by aCC */
4278 typedef enum
4279 {
4280 __EH_NOTIFY_THROW,
4281 __EH_NOTIFY_CATCH
4282 }
4283 __eh_notification;
4284
4285 /* Is exception-handling support available with this executable? */
4286 static int hp_cxx_exception_support = 0;
4287 /* Has the initialize function been run? */
4288 int hp_cxx_exception_support_initialized = 0;
4289 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4290 extern int exception_support_initialized;
4291 /* Address of __eh_notify_hook */
4292 static CORE_ADDR eh_notify_hook_addr = 0;
4293 /* Address of __d_eh_notify_callback */
4294 static CORE_ADDR eh_notify_callback_addr = 0;
4295 /* Address of __d_eh_break */
4296 static CORE_ADDR eh_break_addr = 0;
4297 /* Address of __d_eh_catch_catch */
4298 static CORE_ADDR eh_catch_catch_addr = 0;
4299 /* Address of __d_eh_catch_throw */
4300 static CORE_ADDR eh_catch_throw_addr = 0;
4301 /* Sal for __d_eh_break */
4302 static struct symtab_and_line *break_callback_sal = 0;
4303
4304 /* Code in end.c expects __d_pid to be set in the inferior,
4305 otherwise __d_eh_notify_callback doesn't bother to call
4306 __d_eh_break! So we poke the pid into this symbol
4307 ourselves.
4308 0 => success
4309 1 => failure */
4310 int
4311 setup_d_pid_in_inferior (void)
4312 {
4313 CORE_ADDR anaddr;
4314 struct minimal_symbol *msymbol;
4315 char buf[4]; /* FIXME 32x64? */
4316
4317 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4318 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4319 if (msymbol == NULL)
4320 {
4321 warning ("Unable to find __d_pid symbol in object file.");
4322 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4323 return 1;
4324 }
4325
4326 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4327 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4328 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4329 {
4330 warning ("Unable to write __d_pid");
4331 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4332 return 1;
4333 }
4334 return 0;
4335 }
4336
4337 /* Initialize exception catchpoint support by looking for the
4338 necessary hooks/callbacks in end.o, etc., and set the hook value to
4339 point to the required debug function
4340
4341 Return 0 => failure
4342 1 => success */
4343
4344 static int
4345 initialize_hp_cxx_exception_support (void)
4346 {
4347 struct symtabs_and_lines sals;
4348 struct cleanup *old_chain;
4349 struct cleanup *canonical_strings_chain = NULL;
4350 int i;
4351 char *addr_start;
4352 char *addr_end = NULL;
4353 char **canonical = (char **) NULL;
4354 int thread = -1;
4355 struct symbol *sym = NULL;
4356 struct minimal_symbol *msym = NULL;
4357 struct objfile *objfile;
4358 asection *shlib_info;
4359
4360 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4361 recursion is a possibility because finding the hook for exception
4362 callbacks involves making a call in the inferior, which means
4363 re-inserting breakpoints which can re-invoke this code */
4364
4365 static int recurse = 0;
4366 if (recurse > 0)
4367 {
4368 hp_cxx_exception_support_initialized = 0;
4369 exception_support_initialized = 0;
4370 return 0;
4371 }
4372
4373 hp_cxx_exception_support = 0;
4374
4375 /* First check if we have seen any HP compiled objects; if not,
4376 it is very unlikely that HP's idiosyncratic callback mechanism
4377 for exception handling debug support will be available!
4378 This will percolate back up to breakpoint.c, where our callers
4379 will decide to try the g++ exception-handling support instead. */
4380 if (!hp_som_som_object_present)
4381 return 0;
4382
4383 /* We have a SOM executable with SOM debug info; find the hooks */
4384
4385 /* First look for the notify hook provided by aCC runtime libs */
4386 /* If we find this symbol, we conclude that the executable must
4387 have HP aCC exception support built in. If this symbol is not
4388 found, even though we're a HP SOM-SOM file, we may have been
4389 built with some other compiler (not aCC). This results percolates
4390 back up to our callers in breakpoint.c which can decide to
4391 try the g++ style of exception support instead.
4392 If this symbol is found but the other symbols we require are
4393 not found, there is something weird going on, and g++ support
4394 should *not* be tried as an alternative.
4395
4396 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4397 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4398
4399 /* libCsup has this hook; it'll usually be non-debuggable */
4400 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4401 if (msym)
4402 {
4403 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4404 hp_cxx_exception_support = 1;
4405 }
4406 else
4407 {
4408 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4409 warning ("Executable may not have been compiled debuggable with HP aCC.");
4410 warning ("GDB will be unable to intercept exception events.");
4411 eh_notify_hook_addr = 0;
4412 hp_cxx_exception_support = 0;
4413 return 0;
4414 }
4415
4416 /* Next look for the notify callback routine in end.o */
4417 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4418 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4419 if (msym)
4420 {
4421 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4422 hp_cxx_exception_support = 1;
4423 }
4424 else
4425 {
4426 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4427 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4428 warning ("GDB will be unable to intercept exception events.");
4429 eh_notify_callback_addr = 0;
4430 return 0;
4431 }
4432
4433 #ifndef GDB_TARGET_IS_HPPA_20W
4434 /* Check whether the executable is dynamically linked or archive bound */
4435 /* With an archive-bound executable we can use the raw addresses we find
4436 for the callback function, etc. without modification. For an executable
4437 with shared libraries, we have to do more work to find the plabel, which
4438 can be the target of a call through $$dyncall from the aCC runtime support
4439 library (libCsup) which is linked shared by default by aCC. */
4440 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4441 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4442 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4443 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4444 {
4445 /* The minsym we have has the local code address, but that's not the
4446 plabel that can be used by an inter-load-module call. */
4447 /* Find solib handle for main image (which has end.o), and use that
4448 and the min sym as arguments to __d_shl_get() (which does the equivalent
4449 of shl_findsym()) to find the plabel. */
4450
4451 args_for_find_stub args;
4452 static char message[] = "Error while finding exception callback hook:\n";
4453
4454 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4455 args.msym = msym;
4456 args.return_val = 0;
4457
4458 recurse++;
4459 catch_errors (cover_find_stub_with_shl_get, &args, message,
4460 RETURN_MASK_ALL);
4461 eh_notify_callback_addr = args.return_val;
4462 recurse--;
4463
4464 exception_catchpoints_are_fragile = 1;
4465
4466 if (!eh_notify_callback_addr)
4467 {
4468 /* We can get here either if there is no plabel in the export list
4469 for the main image, or if something strange happened (?) */
4470 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4471 warning ("GDB will not be able to intercept exception events.");
4472 return 0;
4473 }
4474 }
4475 else
4476 exception_catchpoints_are_fragile = 0;
4477 #endif
4478
4479 /* Now, look for the breakpointable routine in end.o */
4480 /* This should also be available in the SOM symbol dict. if end.o linked in */
4481 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4482 if (msym)
4483 {
4484 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4485 hp_cxx_exception_support = 1;
4486 }
4487 else
4488 {
4489 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4490 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4491 warning ("GDB will be unable to intercept exception events.");
4492 eh_break_addr = 0;
4493 return 0;
4494 }
4495
4496 /* Next look for the catch enable flag provided in end.o */
4497 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4498 VAR_DOMAIN, 0, (struct symtab **) NULL);
4499 if (sym) /* sometimes present in debug info */
4500 {
4501 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4502 hp_cxx_exception_support = 1;
4503 }
4504 else
4505 /* otherwise look in SOM symbol dict. */
4506 {
4507 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4508 if (msym)
4509 {
4510 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4511 hp_cxx_exception_support = 1;
4512 }
4513 else
4514 {
4515 warning ("Unable to enable interception of exception catches.");
4516 warning ("Executable may not have been compiled debuggable with HP aCC.");
4517 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4518 return 0;
4519 }
4520 }
4521
4522 /* Next look for the catch enable flag provided end.o */
4523 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4524 VAR_DOMAIN, 0, (struct symtab **) NULL);
4525 if (sym) /* sometimes present in debug info */
4526 {
4527 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4528 hp_cxx_exception_support = 1;
4529 }
4530 else
4531 /* otherwise look in SOM symbol dict. */
4532 {
4533 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4534 if (msym)
4535 {
4536 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4537 hp_cxx_exception_support = 1;
4538 }
4539 else
4540 {
4541 warning ("Unable to enable interception of exception throws.");
4542 warning ("Executable may not have been compiled debuggable with HP aCC.");
4543 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4544 return 0;
4545 }
4546 }
4547
4548 /* Set the flags */
4549 hp_cxx_exception_support = 2; /* everything worked so far */
4550 hp_cxx_exception_support_initialized = 1;
4551 exception_support_initialized = 1;
4552
4553 return 1;
4554 }
4555
4556 /* Target operation for enabling or disabling interception of
4557 exception events.
4558 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4559 ENABLE is either 0 (disable) or 1 (enable).
4560 Return value is NULL if no support found;
4561 -1 if something went wrong,
4562 or a pointer to a symtab/line struct if the breakpointable
4563 address was found. */
4564
4565 struct symtab_and_line *
4566 child_enable_exception_callback (enum exception_event_kind kind, int enable)
4567 {
4568 char buf[4];
4569
4570 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4571 if (!initialize_hp_cxx_exception_support ())
4572 return NULL;
4573
4574 switch (hp_cxx_exception_support)
4575 {
4576 case 0:
4577 /* Assuming no HP support at all */
4578 return NULL;
4579 case 1:
4580 /* HP support should be present, but something went wrong */
4581 return (struct symtab_and_line *) -1; /* yuck! */
4582 /* there may be other cases in the future */
4583 }
4584
4585 /* Set the EH hook to point to the callback routine */
4586 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4587 /* pai: (temp) FIXME should there be a pack operation first? */
4588 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4589 {
4590 warning ("Could not write to target memory for exception event callback.");
4591 warning ("Interception of exception events may not work.");
4592 return (struct symtab_and_line *) -1;
4593 }
4594 if (enable)
4595 {
4596 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4597 if (PIDGET (inferior_ptid) > 0)
4598 {
4599 if (setup_d_pid_in_inferior ())
4600 return (struct symtab_and_line *) -1;
4601 }
4602 else
4603 {
4604 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4605 return (struct symtab_and_line *) -1;
4606 }
4607 }
4608
4609 switch (kind)
4610 {
4611 case EX_EVENT_THROW:
4612 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4613 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4614 {
4615 warning ("Couldn't enable exception throw interception.");
4616 return (struct symtab_and_line *) -1;
4617 }
4618 break;
4619 case EX_EVENT_CATCH:
4620 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4621 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4622 {
4623 warning ("Couldn't enable exception catch interception.");
4624 return (struct symtab_and_line *) -1;
4625 }
4626 break;
4627 default:
4628 error ("Request to enable unknown or unsupported exception event.");
4629 }
4630
4631 /* Copy break address into new sal struct, malloc'ing if needed. */
4632 if (!break_callback_sal)
4633 {
4634 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4635 }
4636 init_sal (break_callback_sal);
4637 break_callback_sal->symtab = NULL;
4638 break_callback_sal->pc = eh_break_addr;
4639 break_callback_sal->line = 0;
4640 break_callback_sal->end = eh_break_addr;
4641
4642 return break_callback_sal;
4643 }
4644
4645 /* Record some information about the current exception event */
4646 static struct exception_event_record current_ex_event;
4647 /* Convenience struct */
4648 static struct symtab_and_line null_symtab_and_line =
4649 {NULL, 0, 0, 0};
4650
4651 /* Report current exception event. Returns a pointer to a record
4652 that describes the kind of the event, where it was thrown from,
4653 and where it will be caught. More information may be reported
4654 in the future */
4655 struct exception_event_record *
4656 child_get_current_exception_event (void)
4657 {
4658 CORE_ADDR event_kind;
4659 CORE_ADDR throw_addr;
4660 CORE_ADDR catch_addr;
4661 struct frame_info *fi, *curr_frame;
4662 int level = 1;
4663
4664 curr_frame = get_current_frame ();
4665 if (!curr_frame)
4666 return (struct exception_event_record *) NULL;
4667
4668 /* Go up one frame to __d_eh_notify_callback, because at the
4669 point when this code is executed, there's garbage in the
4670 arguments of __d_eh_break. */
4671 fi = find_relative_frame (curr_frame, &level);
4672 if (level != 0)
4673 return (struct exception_event_record *) NULL;
4674
4675 select_frame (fi);
4676
4677 /* Read in the arguments */
4678 /* __d_eh_notify_callback() is called with 3 arguments:
4679 1. event kind catch or throw
4680 2. the target address if known
4681 3. a flag -- not sure what this is. pai/1997-07-17 */
4682 event_kind = read_register (ARG0_REGNUM);
4683 catch_addr = read_register (ARG1_REGNUM);
4684
4685 /* Now go down to a user frame */
4686 /* For a throw, __d_eh_break is called by
4687 __d_eh_notify_callback which is called by
4688 __notify_throw which is called
4689 from user code.
4690 For a catch, __d_eh_break is called by
4691 __d_eh_notify_callback which is called by
4692 <stackwalking stuff> which is called by
4693 __throw__<stuff> or __rethrow_<stuff> which is called
4694 from user code. */
4695 /* FIXME: Don't use such magic numbers; search for the frames */
4696 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4697 fi = find_relative_frame (curr_frame, &level);
4698 if (level != 0)
4699 return (struct exception_event_record *) NULL;
4700
4701 select_frame (fi);
4702 throw_addr = get_frame_pc (fi);
4703
4704 /* Go back to original (top) frame */
4705 select_frame (curr_frame);
4706
4707 current_ex_event.kind = (enum exception_event_kind) event_kind;
4708 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4709 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4710
4711 return &current_ex_event;
4712 }
4713
4714 /* Instead of this nasty cast, add a method pvoid() that prints out a
4715 host VOID data type (remember %p isn't portable). */
4716
4717 static CORE_ADDR
4718 hppa_pointer_to_address_hack (void *ptr)
4719 {
4720 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
4721 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
4722 }
4723
4724 static void
4725 unwind_command (char *exp, int from_tty)
4726 {
4727 CORE_ADDR address;
4728 struct unwind_table_entry *u;
4729
4730 /* If we have an expression, evaluate it and use it as the address. */
4731
4732 if (exp != 0 && *exp != 0)
4733 address = parse_and_eval_address (exp);
4734 else
4735 return;
4736
4737 u = find_unwind_entry (address);
4738
4739 if (!u)
4740 {
4741 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4742 return;
4743 }
4744
4745 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4746 paddr_nz (hppa_pointer_to_address_hack (u)));
4747
4748 printf_unfiltered ("\tregion_start = ");
4749 print_address (u->region_start, gdb_stdout);
4750
4751 printf_unfiltered ("\n\tregion_end = ");
4752 print_address (u->region_end, gdb_stdout);
4753
4754 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4755
4756 printf_unfiltered ("\n\tflags =");
4757 pif (Cannot_unwind);
4758 pif (Millicode);
4759 pif (Millicode_save_sr0);
4760 pif (Entry_SR);
4761 pif (Args_stored);
4762 pif (Variable_Frame);
4763 pif (Separate_Package_Body);
4764 pif (Frame_Extension_Millicode);
4765 pif (Stack_Overflow_Check);
4766 pif (Two_Instruction_SP_Increment);
4767 pif (Ada_Region);
4768 pif (Save_SP);
4769 pif (Save_RP);
4770 pif (Save_MRP_in_frame);
4771 pif (extn_ptr_defined);
4772 pif (Cleanup_defined);
4773 pif (MPE_XL_interrupt_marker);
4774 pif (HP_UX_interrupt_marker);
4775 pif (Large_frame);
4776
4777 putchar_unfiltered ('\n');
4778
4779 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4780
4781 pin (Region_description);
4782 pin (Entry_FR);
4783 pin (Entry_GR);
4784 pin (Total_frame_size);
4785 }
4786
4787 void
4788 hppa_skip_permanent_breakpoint (void)
4789 {
4790 /* To step over a breakpoint instruction on the PA takes some
4791 fiddling with the instruction address queue.
4792
4793 When we stop at a breakpoint, the IA queue front (the instruction
4794 we're executing now) points at the breakpoint instruction, and
4795 the IA queue back (the next instruction to execute) points to
4796 whatever instruction we would execute after the breakpoint, if it
4797 were an ordinary instruction. This is the case even if the
4798 breakpoint is in the delay slot of a branch instruction.
4799
4800 Clearly, to step past the breakpoint, we need to set the queue
4801 front to the back. But what do we put in the back? What
4802 instruction comes after that one? Because of the branch delay
4803 slot, the next insn is always at the back + 4. */
4804 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4805 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4806
4807 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4808 /* We can leave the tail's space the same, since there's no jump. */
4809 }
4810
4811 /* Copy the function value from VALBUF into the proper location
4812 for a function return.
4813
4814 Called only in the context of the "return" command. */
4815
4816 void
4817 hppa32_store_return_value (struct type *type, char *valbuf)
4818 {
4819 /* For software floating point, the return value goes into the
4820 integer registers. But we do not have any flag to key this on,
4821 so we always store the value into the integer registers.
4822
4823 If its a float value, then we also store it into the floating
4824 point registers. */
4825 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28)
4826 + (TYPE_LENGTH (type) > 4
4827 ? (8 - TYPE_LENGTH (type))
4828 : (4 - TYPE_LENGTH (type))),
4829 valbuf, TYPE_LENGTH (type));
4830 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4831 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP4_REGNUM),
4832 valbuf, TYPE_LENGTH (type));
4833 }
4834
4835 /* Same as hppa32_store_return_value(), but for the PA64 ABI. */
4836
4837 void
4838 hppa64_store_return_value (struct type *type, char *valbuf)
4839 {
4840 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4841 deprecated_write_register_bytes
4842 (DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
4843 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4844 valbuf, TYPE_LENGTH (type));
4845 else if (is_integral_type(type))
4846 deprecated_write_register_bytes
4847 (DEPRECATED_REGISTER_BYTE (28)
4848 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4849 valbuf, TYPE_LENGTH (type));
4850 else if (TYPE_LENGTH (type) <= 8)
4851 deprecated_write_register_bytes
4852 (DEPRECATED_REGISTER_BYTE (28),valbuf, TYPE_LENGTH (type));
4853 else if (TYPE_LENGTH (type) <= 16)
4854 {
4855 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28),valbuf, 8);
4856 deprecated_write_register_bytes
4857 (DEPRECATED_REGISTER_BYTE (29), valbuf + 8, TYPE_LENGTH (type) - 8);
4858 }
4859 }
4860
4861 /* Copy the function's return value into VALBUF.
4862
4863 This function is called only in the context of "target function calls",
4864 ie. when the debugger forces a function to be called in the child, and
4865 when the debugger forces a fucntion to return prematurely via the
4866 "return" command. */
4867
4868 void
4869 hppa32_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4870 {
4871 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4872 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM), TYPE_LENGTH (type));
4873 else
4874 memcpy (valbuf,
4875 (regbuf
4876 + DEPRECATED_REGISTER_BYTE (28)
4877 + (TYPE_LENGTH (type) > 4
4878 ? (8 - TYPE_LENGTH (type))
4879 : (4 - TYPE_LENGTH (type)))),
4880 TYPE_LENGTH (type));
4881 }
4882
4883 /* Same as hppa32_extract_return_value but for the PA64 ABI case. */
4884
4885 void
4886 hppa64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4887 {
4888 /* RM: Floats are returned in FR4R, doubles in FR4.
4889 Integral values are in r28, padded on the left.
4890 Aggregates less that 65 bits are in r28, right padded.
4891 Aggregates upto 128 bits are in r28 and r29, right padded. */
4892 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4893 memcpy (valbuf,
4894 regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
4895 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4896 TYPE_LENGTH (type));
4897 else if (is_integral_type(type))
4898 memcpy (valbuf,
4899 regbuf + DEPRECATED_REGISTER_BYTE (28)
4900 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4901 TYPE_LENGTH (type));
4902 else if (TYPE_LENGTH (type) <= 8)
4903 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28),
4904 TYPE_LENGTH (type));
4905 else if (TYPE_LENGTH (type) <= 16)
4906 {
4907 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28), 8);
4908 memcpy (valbuf + 8, regbuf + DEPRECATED_REGISTER_BYTE (29),
4909 TYPE_LENGTH (type) - 8);
4910 }
4911 }
4912
4913 int
4914 hppa_reg_struct_has_addr (int gcc_p, struct type *type)
4915 {
4916 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4917 via a pointer regardless of its type or the compiler used. */
4918 return (TYPE_LENGTH (type) > 8);
4919 }
4920
4921 int
4922 hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
4923 {
4924 /* Stack grows upward */
4925 return (lhs > rhs);
4926 }
4927
4928 CORE_ADDR
4929 hppa32_stack_align (CORE_ADDR sp)
4930 {
4931 /* elz: adjust the quantity to the next highest value which is
4932 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4933 On hppa the sp must always be kept 64-bit aligned */
4934 return ((sp % 8) ? (sp + 7) & -8 : sp);
4935 }
4936
4937 CORE_ADDR
4938 hppa64_stack_align (CORE_ADDR sp)
4939 {
4940 /* The PA64 ABI mandates a 16 byte stack alignment. */
4941 return ((sp % 16) ? (sp + 15) & -16 : sp);
4942 }
4943
4944 int
4945 hppa_pc_requires_run_before_use (CORE_ADDR pc)
4946 {
4947 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4948
4949 An example of this occurs when an a.out is linked against a foo.sl.
4950 The foo.sl defines a global bar(), and the a.out declares a signature
4951 for bar(). However, the a.out doesn't directly call bar(), but passes
4952 its address in another call.
4953
4954 If you have this scenario and attempt to "break bar" before running,
4955 gdb will find a minimal symbol for bar() in the a.out. But that
4956 symbol's address will be negative. What this appears to denote is
4957 an index backwards from the base of the procedure linkage table (PLT)
4958 into the data linkage table (DLT), the end of which is contiguous
4959 with the start of the PLT. This is clearly not a valid address for
4960 us to set a breakpoint on.
4961
4962 Note that one must be careful in how one checks for a negative address.
4963 0xc0000000 is a legitimate address of something in a shared text
4964 segment, for example. Since I don't know what the possible range
4965 is of these "really, truly negative" addresses that come from the
4966 minimal symbols, I'm resorting to the gross hack of checking the
4967 top byte of the address for all 1's. Sigh. */
4968
4969 return (!target_has_stack && (pc & 0xFF000000));
4970 }
4971
4972 int
4973 hppa_instruction_nullified (void)
4974 {
4975 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4976 avoid the type cast. I'm leaving it as is for now as I'm doing
4977 semi-mechanical multiarching-related changes. */
4978 const int ipsw = (int) read_register (IPSW_REGNUM);
4979 const int flags = (int) read_register (FLAGS_REGNUM);
4980
4981 return ((ipsw & 0x00200000) && !(flags & 0x2));
4982 }
4983
4984 int
4985 hppa_register_raw_size (int reg_nr)
4986 {
4987 /* All registers have the same size. */
4988 return DEPRECATED_REGISTER_SIZE;
4989 }
4990
4991 /* Index within the register vector of the first byte of the space i
4992 used for register REG_NR. */
4993
4994 int
4995 hppa_register_byte (int reg_nr)
4996 {
4997 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4998
4999 return reg_nr * tdep->bytes_per_address;
5000 }
5001
5002 /* Return the GDB type object for the "standard" data type of data
5003 in register N. */
5004
5005 struct type *
5006 hppa32_register_virtual_type (int reg_nr)
5007 {
5008 if (reg_nr < FP4_REGNUM)
5009 return builtin_type_int;
5010 else
5011 return builtin_type_float;
5012 }
5013
5014 /* Return the GDB type object for the "standard" data type of data
5015 in register N. hppa64 version. */
5016
5017 struct type *
5018 hppa64_register_virtual_type (int reg_nr)
5019 {
5020 if (reg_nr < FP4_REGNUM)
5021 return builtin_type_unsigned_long_long;
5022 else
5023 return builtin_type_double;
5024 }
5025
5026 /* Store the address of the place in which to copy the structure the
5027 subroutine will return. This is called from call_function. */
5028
5029 void
5030 hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
5031 {
5032 write_register (28, addr);
5033 }
5034
5035 CORE_ADDR
5036 hppa_extract_struct_value_address (char *regbuf)
5037 {
5038 /* Extract from an array REGBUF containing the (raw) register state
5039 the address in which a function should return its structure value,
5040 as a CORE_ADDR (or an expression that can be used as one). */
5041 /* FIXME: brobecker 2002-12-26.
5042 The current implementation is historical, but we should eventually
5043 implement it in a more robust manner as it relies on the fact that
5044 the address size is equal to the size of an int* _on the host_...
5045 One possible implementation that crossed my mind is to use
5046 extract_address. */
5047 /* FIXME: cagney/2003-09-27: This function can probably go. ELZ
5048 writes: We cannot assume on the pa that r28 still contains the
5049 address of the returned structure. Usually this will be
5050 overwritten by the callee. */
5051 return (*(int *)(regbuf + DEPRECATED_REGISTER_BYTE (28)));
5052 }
5053
5054 /* Return True if REGNUM is not a register available to the user
5055 through ptrace(). */
5056
5057 int
5058 hppa_cannot_store_register (int regnum)
5059 {
5060 return (regnum == 0
5061 || regnum == PCSQ_HEAD_REGNUM
5062 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
5063 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
5064
5065 }
5066
5067 CORE_ADDR
5068 hppa_smash_text_address (CORE_ADDR addr)
5069 {
5070 /* The low two bits of the PC on the PA contain the privilege level.
5071 Some genius implementing a (non-GCC) compiler apparently decided
5072 this means that "addresses" in a text section therefore include a
5073 privilege level, and thus symbol tables should contain these bits.
5074 This seems like a bonehead thing to do--anyway, it seems to work
5075 for our purposes to just ignore those bits. */
5076
5077 return (addr &= ~0x3);
5078 }
5079
5080 /* Get the ith function argument for the current function. */
5081 CORE_ADDR
5082 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
5083 struct type *type)
5084 {
5085 CORE_ADDR addr;
5086 get_frame_register (frame, R0_REGNUM + 26 - argi, &addr);
5087 return addr;
5088 }
5089
5090 static struct gdbarch *
5091 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5092 {
5093 struct gdbarch_tdep *tdep;
5094 struct gdbarch *gdbarch;
5095
5096 /* Try to determine the ABI of the object we are loading. */
5097 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
5098 {
5099 /* If it's a SOM file, assume it's HP/UX SOM. */
5100 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
5101 info.osabi = GDB_OSABI_HPUX_SOM;
5102 }
5103
5104 /* find a candidate among the list of pre-declared architectures. */
5105 arches = gdbarch_list_lookup_by_info (arches, &info);
5106 if (arches != NULL)
5107 return (arches->gdbarch);
5108
5109 /* If none found, then allocate and initialize one. */
5110 tdep = XMALLOC (struct gdbarch_tdep);
5111 gdbarch = gdbarch_alloc (&info, tdep);
5112
5113 /* Determine from the bfd_arch_info structure if we are dealing with
5114 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
5115 then default to a 32bit machine. */
5116 if (info.bfd_arch_info != NULL)
5117 tdep->bytes_per_address =
5118 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
5119 else
5120 tdep->bytes_per_address = 4;
5121
5122 /* Some parts of the gdbarch vector depend on whether we are running
5123 on a 32 bits or 64 bits target. */
5124 switch (tdep->bytes_per_address)
5125 {
5126 case 4:
5127 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
5128 set_gdbarch_register_name (gdbarch, hppa32_register_name);
5129 set_gdbarch_deprecated_register_virtual_type
5130 (gdbarch, hppa32_register_virtual_type);
5131 set_gdbarch_deprecated_call_dummy_length
5132 (gdbarch, hppa32_call_dummy_length);
5133 set_gdbarch_deprecated_stack_align (gdbarch, hppa32_stack_align);
5134 set_gdbarch_deprecated_reg_struct_has_addr
5135 (gdbarch, hppa_reg_struct_has_addr);
5136 set_gdbarch_deprecated_extract_return_value
5137 (gdbarch, hppa32_extract_return_value);
5138 set_gdbarch_use_struct_convention
5139 (gdbarch, hppa32_use_struct_convention);
5140 set_gdbarch_deprecated_store_return_value
5141 (gdbarch, hppa32_store_return_value);
5142 break;
5143 case 8:
5144 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
5145 set_gdbarch_register_name (gdbarch, hppa64_register_name);
5146 set_gdbarch_deprecated_register_virtual_type
5147 (gdbarch, hppa64_register_virtual_type);
5148 set_gdbarch_deprecated_call_dummy_breakpoint_offset
5149 (gdbarch, hppa64_call_dummy_breakpoint_offset);
5150 set_gdbarch_deprecated_call_dummy_length
5151 (gdbarch, hppa64_call_dummy_length);
5152 set_gdbarch_deprecated_stack_align (gdbarch, hppa64_stack_align);
5153 set_gdbarch_deprecated_extract_return_value
5154 (gdbarch, hppa64_extract_return_value);
5155 set_gdbarch_use_struct_convention
5156 (gdbarch, hppa64_use_struct_convention);
5157 set_gdbarch_deprecated_store_return_value
5158 (gdbarch, hppa64_store_return_value);
5159 break;
5160 default:
5161 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
5162 tdep->bytes_per_address);
5163 }
5164
5165 /* The following gdbarch vector elements depend on other parts of this
5166 vector which have been set above, depending on the ABI. */
5167 set_gdbarch_deprecated_register_bytes
5168 (gdbarch, gdbarch_num_regs (gdbarch) * tdep->bytes_per_address);
5169 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
5170 set_gdbarch_long_long_bit (gdbarch, 64);
5171 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
5172
5173 /* The following gdbarch vector elements do not depend on the address
5174 size, or in any other gdbarch element previously set. */
5175 set_gdbarch_function_start_offset (gdbarch, 0);
5176 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
5177 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
5178 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
5179 set_gdbarch_in_solib_return_trampoline (gdbarch,
5180 hppa_in_solib_return_trampoline);
5181 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
5182 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
5183 set_gdbarch_decr_pc_after_break (gdbarch, 0);
5184 set_gdbarch_deprecated_register_size (gdbarch, tdep->bytes_per_address);
5185 set_gdbarch_deprecated_fp_regnum (gdbarch, 3);
5186 set_gdbarch_sp_regnum (gdbarch, 30);
5187 set_gdbarch_fp0_regnum (gdbarch, 64);
5188 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
5189 set_gdbarch_deprecated_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM);
5190 set_gdbarch_deprecated_register_raw_size (gdbarch, hppa_register_raw_size);
5191 set_gdbarch_deprecated_register_byte (gdbarch, hppa_register_byte);
5192 set_gdbarch_deprecated_register_virtual_size (gdbarch, hppa_register_raw_size);
5193 set_gdbarch_deprecated_max_register_raw_size (gdbarch, tdep->bytes_per_address);
5194 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
5195 set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return);
5196 set_gdbarch_deprecated_extract_struct_value_address
5197 (gdbarch, hppa_extract_struct_value_address);
5198 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
5199 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
5200 set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain);
5201 set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
5202 set_gdbarch_frameless_function_invocation
5203 (gdbarch, hppa_frameless_function_invocation);
5204 set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
5205 set_gdbarch_frame_args_skip (gdbarch, 0);
5206 set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame);
5207 set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame);
5208 /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
5209 set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments);
5210 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
5211 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5212 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5213 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5214 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
5215 set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp);
5216
5217 /* Helper for function argument information. */
5218 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
5219
5220 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
5221
5222 /* When a hardware watchpoint triggers, we'll move the inferior past
5223 it by removing all eventpoints; stepping past the instruction
5224 that caused the trigger; reinserting eventpoints; and checking
5225 whether any watched location changed. */
5226 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5227
5228 /* Hook in ABI-specific overrides, if they have been registered. */
5229 gdbarch_init_osabi (info, gdbarch);
5230
5231 return gdbarch;
5232 }
5233
5234 static void
5235 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5236 {
5237 /* Nothing to print for the moment. */
5238 }
5239
5240 void
5241 _initialize_hppa_tdep (void)
5242 {
5243 struct cmd_list_element *c;
5244 void break_at_finish_command (char *arg, int from_tty);
5245 void tbreak_at_finish_command (char *arg, int from_tty);
5246 void break_at_finish_at_depth_command (char *arg, int from_tty);
5247
5248 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
5249
5250 add_cmd ("unwind", class_maintenance, unwind_command,
5251 "Print unwind table entry at given address.",
5252 &maintenanceprintlist);
5253
5254 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5255 break_at_finish_command,
5256 concat ("Set breakpoint at procedure exit. \n\
5257 Argument may be function name, or \"*\" and an address.\n\
5258 If function is specified, break at end of code for that function.\n\
5259 If an address is specified, break at the end of the function that contains \n\
5260 that exact address.\n",
5261 "With no arg, uses current execution address of selected stack frame.\n\
5262 This is useful for breaking on return to a stack frame.\n\
5263 \n\
5264 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5265 \n\
5266 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5267 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5268 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5269 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5270 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5271
5272 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5273 tbreak_at_finish_command,
5274 "Set temporary breakpoint at procedure exit. Either there should\n\
5275 be no argument or the argument must be a depth.\n"), NULL);
5276 set_cmd_completer (c, location_completer);
5277
5278 if (xdb_commands)
5279 deprecate_cmd (add_com ("bx", class_breakpoint,
5280 break_at_finish_at_depth_command,
5281 "Set breakpoint at procedure exit. Either there should\n\
5282 be no argument or the argument must be a depth.\n"), NULL);
5283 }
5284
This page took 0.143691 seconds and 4 git commands to generate.