* symtab.c (decode_line_1): Use end of block to figure out whether
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Machine-dependent code which would otherwise be in inflow.c and core.c,
2 for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <sys/dir.h>
38 #include <signal.h>
39 #include <sys/ioctl.h>
40
41 #ifdef COFF_ENCAPSULATE
42 #include "a.out.encap.h"
43 #else
44 #include <a.out.h>
45 #endif
46 #ifndef N_SET_MAGIC
47 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
48 #endif
49
50 /*#include <sys/user.h> After a.out.h */
51 #include <sys/file.h>
52 #include <sys/stat.h>
53 #include <machine/psl.h>
54 #include "wait.h"
55
56 #include "gdbcore.h"
57 #include "gdbcmd.h"
58 #include "target.h"
59 #include "symfile.h"
60 #include "objfiles.h"
61
62 static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr));
63 static int hppa_alignof PARAMS ((struct type *arg));
64 CORE_ADDR frame_saved_pc PARAMS ((FRAME frame));
65
66 \f
67 /* Routines to extract various sized constants out of hppa
68 instructions. */
69
70 /* This assumes that no garbage lies outside of the lower bits of
71 value. */
72
73 int
74 sign_extend (val, bits)
75 unsigned val, bits;
76 {
77 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
78 }
79
80 /* For many immediate values the sign bit is the low bit! */
81
82 int
83 low_sign_extend (val, bits)
84 unsigned val, bits;
85 {
86 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
87 }
88 /* extract the immediate field from a ld{bhw}s instruction */
89
90 unsigned
91 get_field (val, from, to)
92 unsigned val, from, to;
93 {
94 val = val >> 31 - to;
95 return val & ((1 << 32 - from) - 1);
96 }
97
98 unsigned
99 set_field (val, from, to, new_val)
100 unsigned *val, from, to;
101 {
102 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
103 return *val = *val & mask | (new_val << (31 - from));
104 }
105
106 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
107
108 extract_3 (word)
109 unsigned word;
110 {
111 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
112 }
113
114 extract_5_load (word)
115 unsigned word;
116 {
117 return low_sign_extend (word >> 16 & MASK_5, 5);
118 }
119
120 /* extract the immediate field from a st{bhw}s instruction */
121
122 int
123 extract_5_store (word)
124 unsigned word;
125 {
126 return low_sign_extend (word & MASK_5, 5);
127 }
128
129 /* extract the immediate field from a break instruction */
130
131 unsigned
132 extract_5r_store (word)
133 unsigned word;
134 {
135 return (word & MASK_5);
136 }
137
138 /* extract the immediate field from a {sr}sm instruction */
139
140 unsigned
141 extract_5R_store (word)
142 unsigned word;
143 {
144 return (word >> 16 & MASK_5);
145 }
146
147 /* extract an 11 bit immediate field */
148
149 int
150 extract_11 (word)
151 unsigned word;
152 {
153 return low_sign_extend (word & MASK_11, 11);
154 }
155
156 /* extract a 14 bit immediate field */
157
158 int
159 extract_14 (word)
160 unsigned word;
161 {
162 return low_sign_extend (word & MASK_14, 14);
163 }
164
165 /* deposit a 14 bit constant in a word */
166
167 unsigned
168 deposit_14 (opnd, word)
169 int opnd;
170 unsigned word;
171 {
172 unsigned sign = (opnd < 0 ? 1 : 0);
173
174 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
175 }
176
177 /* extract a 21 bit constant */
178
179 int
180 extract_21 (word)
181 unsigned word;
182 {
183 int val;
184
185 word &= MASK_21;
186 word <<= 11;
187 val = GET_FIELD (word, 20, 20);
188 val <<= 11;
189 val |= GET_FIELD (word, 9, 19);
190 val <<= 2;
191 val |= GET_FIELD (word, 5, 6);
192 val <<= 5;
193 val |= GET_FIELD (word, 0, 4);
194 val <<= 2;
195 val |= GET_FIELD (word, 7, 8);
196 return sign_extend (val, 21) << 11;
197 }
198
199 /* deposit a 21 bit constant in a word. Although 21 bit constants are
200 usually the top 21 bits of a 32 bit constant, we assume that only
201 the low 21 bits of opnd are relevant */
202
203 unsigned
204 deposit_21 (opnd, word)
205 unsigned opnd, word;
206 {
207 unsigned val = 0;
208
209 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
210 val <<= 2;
211 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
212 val <<= 2;
213 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
214 val <<= 11;
215 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
216 val <<= 1;
217 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
218 return word | val;
219 }
220
221 /* extract a 12 bit constant from branch instructions */
222
223 int
224 extract_12 (word)
225 unsigned word;
226 {
227 return sign_extend (GET_FIELD (word, 19, 28) |
228 GET_FIELD (word, 29, 29) << 10 |
229 (word & 0x1) << 11, 12) << 2;
230 }
231
232 /* extract a 17 bit constant from branch instructions, returning the
233 19 bit signed value. */
234
235 int
236 extract_17 (word)
237 unsigned word;
238 {
239 return sign_extend (GET_FIELD (word, 19, 28) |
240 GET_FIELD (word, 29, 29) << 10 |
241 GET_FIELD (word, 11, 15) << 11 |
242 (word & 0x1) << 16, 17) << 2;
243 }
244 \f
245 static int use_unwind = 0;
246
247 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
248 of the objfiles seeking the unwind table entry for this PC. Each objfile
249 contains a sorted list of struct unwind_table_entry. Since we do a binary
250 search of the unwind tables, we depend upon them to be sorted. */
251
252 static struct unwind_table_entry *
253 find_unwind_entry(pc)
254 CORE_ADDR pc;
255 {
256 int first, middle, last;
257 struct objfile *objfile;
258
259 ALL_OBJFILES (objfile)
260 {
261 struct obj_unwind_info *ui;
262
263 ui = OBJ_UNWIND_INFO (objfile);
264
265 if (!ui)
266 continue;
267
268 /* First, check the cache */
269
270 if (ui->cache
271 && pc >= ui->cache->region_start
272 && pc <= ui->cache->region_end)
273 return ui->cache;
274
275 /* Not in the cache, do a binary search */
276
277 first = 0;
278 last = ui->last;
279
280 while (first <= last)
281 {
282 middle = (first + last) / 2;
283 if (pc >= ui->table[middle].region_start
284 && pc <= ui->table[middle].region_end)
285 {
286 ui->cache = &ui->table[middle];
287 return &ui->table[middle];
288 }
289
290 if (pc < ui->table[middle].region_start)
291 last = middle - 1;
292 else
293 first = middle + 1;
294 }
295 } /* ALL_OBJFILES() */
296 return NULL;
297 }
298
299 static int
300 find_return_regnum(pc)
301 CORE_ADDR pc;
302 {
303 struct unwind_table_entry *u;
304
305 u = find_unwind_entry (pc);
306
307 if (!u)
308 return RP_REGNUM;
309
310 if (u->Millicode)
311 return 31;
312
313 return RP_REGNUM;
314 }
315
316 int
317 find_proc_framesize(pc)
318 CORE_ADDR pc;
319 {
320 struct unwind_table_entry *u;
321
322 if (!use_unwind)
323 return -1;
324
325 u = find_unwind_entry (pc);
326
327 if (!u)
328 return -1;
329
330 return u->Total_frame_size << 3;
331 }
332
333 int
334 rp_saved(pc)
335 {
336 struct unwind_table_entry *u;
337
338 u = find_unwind_entry (pc);
339
340 if (!u)
341 return 0;
342
343 if (u->Save_RP)
344 return 1;
345 else
346 return 0;
347 }
348 \f
349 int
350 frameless_function_invocation (frame)
351 FRAME frame;
352 {
353
354 if (use_unwind)
355 {
356 struct unwind_table_entry *u;
357
358 u = find_unwind_entry (frame->pc);
359
360 if (u == 0)
361 return 0;
362
363 return (u->Total_frame_size == 0);
364 }
365 else
366 return frameless_look_for_prologue (frame);
367 }
368
369 CORE_ADDR
370 saved_pc_after_call (frame)
371 FRAME frame;
372 {
373 int ret_regnum;
374
375 ret_regnum = find_return_regnum (get_frame_pc (frame));
376
377 return read_register (ret_regnum) & ~0x3;
378 }
379 \f
380 CORE_ADDR
381 frame_saved_pc (frame)
382 FRAME frame;
383 {
384 CORE_ADDR pc = get_frame_pc (frame);
385
386 if (frameless_function_invocation (frame))
387 {
388 int ret_regnum;
389
390 ret_regnum = find_return_regnum (pc);
391
392 return read_register (ret_regnum) & ~0x3;
393 }
394 else if (rp_saved (pc))
395 return read_memory_integer (frame->frame - 20, 4) & ~0x3;
396 else
397 return read_register (RP_REGNUM) & ~0x3;
398 }
399 \f
400 /* We need to correct the PC and the FP for the outermost frame when we are
401 in a system call. */
402
403 void
404 init_extra_frame_info (fromleaf, frame)
405 int fromleaf;
406 struct frame_info *frame;
407 {
408 int flags;
409 int framesize;
410
411 if (frame->next) /* Only do this for outermost frame */
412 return;
413
414 flags = read_register (FLAGS_REGNUM);
415 if (flags & 2) /* In system call? */
416 frame->pc = read_register (31) & ~0x3;
417
418 /* The outermost frame is always derived from PC-framesize */
419 framesize = find_proc_framesize(frame->pc);
420 if (framesize == -1)
421 frame->frame = read_register (FP_REGNUM);
422 else
423 frame->frame = read_register (SP_REGNUM) - framesize;
424
425 if (!frameless_function_invocation (frame)) /* Frameless? */
426 return; /* No, quit now */
427
428 /* For frameless functions, we need to look at the caller's frame */
429 framesize = find_proc_framesize(FRAME_SAVED_PC(frame));
430 if (framesize != -1)
431 frame->frame -= framesize;
432 }
433 \f
434 FRAME_ADDR
435 frame_chain (frame)
436 struct frame_info *frame;
437 {
438 int framesize;
439
440 framesize = find_proc_framesize(FRAME_SAVED_PC(frame));
441
442 if (framesize != -1)
443 return frame->frame - framesize;
444
445 return read_memory_integer (frame->frame, 4);
446 }
447 \f
448 /* To see if a frame chain is valid, see if the caller looks like it
449 was compiled with gcc. */
450
451 int
452 frame_chain_valid (chain, thisframe)
453 FRAME_ADDR chain;
454 FRAME thisframe;
455 {
456 struct minimal_symbol *msym;
457
458 if (!chain)
459 return 0;
460
461 if (use_unwind)
462 {
463
464 struct unwind_table_entry *u;
465
466 u = find_unwind_entry (thisframe->pc);
467
468 if (u && (u->Save_SP || u->Total_frame_size))
469 return 1;
470 else
471 return 0;
472 }
473 else
474 {
475 msym = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
476
477 if (msym
478 && (strcmp (SYMBOL_NAME (msym), "_start") == 0))
479 return 0;
480 else
481 return 1;
482 }
483 }
484
485 /*
486 * These functions deal with saving and restoring register state
487 * around a function call in the inferior. They keep the stack
488 * double-word aligned; eventually, on an hp700, the stack will have
489 * to be aligned to a 64-byte boundary.
490 */
491
492 int
493 push_dummy_frame ()
494 {
495 register CORE_ADDR sp;
496 register int regnum;
497 int int_buffer;
498 double freg_buffer;
499
500 /* Space for "arguments"; the RP goes in here. */
501 sp = read_register (SP_REGNUM) + 48;
502 int_buffer = read_register (RP_REGNUM) | 0x3;
503 write_memory (sp - 20, (char *)&int_buffer, 4);
504
505 int_buffer = read_register (FP_REGNUM);
506 write_memory (sp, (char *)&int_buffer, 4);
507
508 write_register (FP_REGNUM, sp);
509
510 sp += 8;
511
512 for (regnum = 1; regnum < 32; regnum++)
513 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
514 sp = push_word (sp, read_register (regnum));
515
516 sp += 4;
517
518 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
519 {
520 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
521 sp = push_bytes (sp, (char *)&freg_buffer, 8);
522 }
523 sp = push_word (sp, read_register (IPSW_REGNUM));
524 sp = push_word (sp, read_register (SAR_REGNUM));
525 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
526 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
527 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
528 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
529 write_register (SP_REGNUM, sp);
530 }
531
532 find_dummy_frame_regs (frame, frame_saved_regs)
533 struct frame_info *frame;
534 struct frame_saved_regs *frame_saved_regs;
535 {
536 CORE_ADDR fp = frame->frame;
537 int i;
538
539 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
540 frame_saved_regs->regs[FP_REGNUM] = fp;
541 frame_saved_regs->regs[1] = fp + 8;
542
543 for (fp += 12, i = 3; i < 32; i++)
544 {
545 if (i != FP_REGNUM)
546 {
547 frame_saved_regs->regs[i] = fp;
548 fp += 4;
549 }
550 }
551
552 fp += 4;
553 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
554 frame_saved_regs->regs[i] = fp;
555
556 frame_saved_regs->regs[IPSW_REGNUM] = fp;
557 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
558 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
559 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
560 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
561 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
562 }
563
564 int
565 hppa_pop_frame ()
566 {
567 register FRAME frame = get_current_frame ();
568 register CORE_ADDR fp;
569 register int regnum;
570 struct frame_saved_regs fsr;
571 struct frame_info *fi;
572 double freg_buffer;
573
574 fi = get_frame_info (frame);
575 fp = fi->frame;
576 get_frame_saved_regs (fi, &fsr);
577
578 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
579 restore_pc_queue (&fsr);
580
581 for (regnum = 31; regnum > 0; regnum--)
582 if (fsr.regs[regnum])
583 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
584
585 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
586 if (fsr.regs[regnum])
587 {
588 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
589 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
590 }
591
592 if (fsr.regs[IPSW_REGNUM])
593 write_register (IPSW_REGNUM,
594 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
595
596 if (fsr.regs[SAR_REGNUM])
597 write_register (SAR_REGNUM,
598 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
599
600 if (fsr.regs[PCOQ_TAIL_REGNUM])
601 write_register (PCOQ_TAIL_REGNUM,
602 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
603
604 write_register (FP_REGNUM, read_memory_integer (fp, 4));
605
606 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
607 write_register (SP_REGNUM, fp - 48);
608 else
609 write_register (SP_REGNUM, fp);
610
611 flush_cached_frames ();
612 set_current_frame (create_new_frame (read_register (FP_REGNUM),
613 read_pc ()));
614 }
615
616 /*
617 * After returning to a dummy on the stack, restore the instruction
618 * queue space registers. */
619
620 static int
621 restore_pc_queue (fsr)
622 struct frame_saved_regs *fsr;
623 {
624 CORE_ADDR pc = read_pc ();
625 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
626 int pid;
627 WAITTYPE w;
628 int insn_count;
629
630 /* Advance past break instruction in the call dummy. */
631 write_register (PCOQ_HEAD_REGNUM, pc + 4);
632 write_register (PCOQ_TAIL_REGNUM, pc + 8);
633
634 /*
635 * HPUX doesn't let us set the space registers or the space
636 * registers of the PC queue through ptrace. Boo, hiss.
637 * Conveniently, the call dummy has this sequence of instructions
638 * after the break:
639 * mtsp r21, sr0
640 * ble,n 0(sr0, r22)
641 *
642 * So, load up the registers and single step until we are in the
643 * right place.
644 */
645
646 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
647 write_register (22, new_pc);
648
649 for (insn_count = 0; insn_count < 3; insn_count++)
650 {
651 resume (1, 0);
652 target_wait(&w);
653
654 if (!WIFSTOPPED (w))
655 {
656 stop_signal = WTERMSIG (w);
657 terminal_ours_for_output ();
658 printf ("\nProgram terminated with signal %d, %s\n",
659 stop_signal, safe_strsignal (stop_signal));
660 fflush (stdout);
661 return 0;
662 }
663 }
664 fetch_inferior_registers (-1);
665 return 1;
666 }
667
668 CORE_ADDR
669 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
670 int nargs;
671 value *args;
672 CORE_ADDR sp;
673 int struct_return;
674 CORE_ADDR struct_addr;
675 {
676 /* array of arguments' offsets */
677 int *offset = (int *)alloca(nargs * sizeof (int));
678 int cum = 0;
679 int i, alignment;
680
681 for (i = 0; i < nargs; i++)
682 {
683 /* Coerce chars to int & float to double if necessary */
684 args[i] = value_arg_coerce (args[i]);
685
686 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
687
688 /* value must go at proper alignment. Assume alignment is a
689 power of two.*/
690 alignment = hppa_alignof (VALUE_TYPE (args[i]));
691 if (cum % alignment)
692 cum = (cum + alignment) & -alignment;
693 offset[i] = -cum;
694 }
695 sp += max ((cum + 7) & -8, 16);
696
697 for (i = 0; i < nargs; i++)
698 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
699 TYPE_LENGTH (VALUE_TYPE (args[i])));
700
701 if (struct_return)
702 write_register (28, struct_addr);
703 return sp + 32;
704 }
705
706 /*
707 * Insert the specified number of args and function address
708 * into a call sequence of the above form stored at DUMMYNAME.
709 *
710 * On the hppa we need to call the stack dummy through $$dyncall.
711 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
712 * real_pc, which is the location where gdb should start up the
713 * inferior to do the function call.
714 */
715
716 CORE_ADDR
717 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
718 REGISTER_TYPE *dummy;
719 CORE_ADDR pc;
720 CORE_ADDR fun;
721 int nargs;
722 value *args;
723 struct type *type;
724 int gcc_p;
725 {
726 CORE_ADDR dyncall_addr, sr4export_addr;
727 struct minimal_symbol *msymbol;
728
729 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
730 if (msymbol == NULL)
731 error ("Can't find an address for $$dyncall trampoline");
732
733 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
734
735 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
736 if (msymbol == NULL)
737 error ("Can't find an address for _sr4export trampoline");
738
739 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
740
741 dummy[9] = deposit_21 (fun >> 11, dummy[9]);
742 dummy[10] = deposit_14 (fun & MASK_11, dummy[10]);
743 dummy[12] = deposit_21 (sr4export_addr >> 11, dummy[12]);
744 dummy[13] = deposit_14 (sr4export_addr & MASK_11, dummy[13]);
745
746 write_register (22, pc);
747
748 return dyncall_addr;
749 }
750
751 /* return the alignment of a type in bytes. Structures have the maximum
752 alignment required by their fields. */
753
754 static int
755 hppa_alignof (arg)
756 struct type *arg;
757 {
758 int max_align, align, i;
759 switch (TYPE_CODE (arg))
760 {
761 case TYPE_CODE_PTR:
762 case TYPE_CODE_INT:
763 case TYPE_CODE_FLT:
764 return TYPE_LENGTH (arg);
765 case TYPE_CODE_ARRAY:
766 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
767 case TYPE_CODE_STRUCT:
768 case TYPE_CODE_UNION:
769 max_align = 2;
770 for (i = 0; i < TYPE_NFIELDS (arg); i++)
771 {
772 /* Bit fields have no real alignment. */
773 if (!TYPE_FIELD_BITPOS (arg, i))
774 {
775 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
776 max_align = max (max_align, align);
777 }
778 }
779 return max_align;
780 default:
781 return 4;
782 }
783 }
784
785 /* Print the register regnum, or all registers if regnum is -1 */
786
787 pa_do_registers_info (regnum, fpregs)
788 int regnum;
789 int fpregs;
790 {
791 char raw_regs [REGISTER_BYTES];
792 int i;
793
794 for (i = 0; i < NUM_REGS; i++)
795 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
796 if (regnum == -1)
797 pa_print_registers (raw_regs, regnum, fpregs);
798 else if (regnum < FP0_REGNUM)
799 printf ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
800 REGISTER_BYTE (regnum)));
801 else
802 pa_print_fp_reg (regnum);
803 }
804
805 pa_print_registers (raw_regs, regnum, fpregs)
806 char *raw_regs;
807 int regnum;
808 int fpregs;
809 {
810 int i;
811
812 for (i = 0; i < 18; i++)
813 printf ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
814 reg_names[i],
815 *(int *)(raw_regs + REGISTER_BYTE (i)),
816 reg_names[i + 18],
817 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
818 reg_names[i + 36],
819 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
820 reg_names[i + 54],
821 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
822
823 if (fpregs)
824 for (i = 72; i < NUM_REGS; i++)
825 pa_print_fp_reg (i);
826 }
827
828 pa_print_fp_reg (i)
829 int i;
830 {
831 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
832 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
833 REGISTER_TYPE val;
834
835 /* Get the data in raw format, then convert also to virtual format. */
836 read_relative_register_raw_bytes (i, raw_buffer);
837 REGISTER_CONVERT_TO_VIRTUAL (i, raw_buffer, virtual_buffer);
838
839 fputs_filtered (reg_names[i], stdout);
840 print_spaces_filtered (15 - strlen (reg_names[i]), stdout);
841
842 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, stdout, 0,
843 1, 0, Val_pretty_default);
844 printf_filtered ("\n");
845 }
846
847 /* Function calls that pass into a new compilation unit must pass through a
848 small piece of code that does long format (`external' in HPPA parlance)
849 jumps. We figure out where the trampoline is going to end up, and return
850 the PC of the final destination. If we aren't in a trampoline, we just
851 return NULL.
852
853 For computed calls, we just extract the new PC from r22. */
854
855 CORE_ADDR
856 skip_trampoline_code (pc, name)
857 CORE_ADDR pc;
858 char *name;
859 {
860 long inst0, inst1;
861 static CORE_ADDR dyncall = 0;
862 struct minimal_symbol *msym;
863
864 /* FIXME XXX - dyncall must be initialized whenever we get a new exec file */
865
866 if (!dyncall)
867 {
868 msym = lookup_minimal_symbol ("$$dyncall", NULL);
869 if (msym)
870 dyncall = SYMBOL_VALUE_ADDRESS (msym);
871 else
872 dyncall = -1;
873 }
874
875 if (pc == dyncall)
876 return (CORE_ADDR)(read_register (22) & ~0x3);
877
878 inst0 = read_memory_integer (pc, 4);
879 inst1 = read_memory_integer (pc+4, 4);
880
881 if ( (inst0 & 0xffe00000) == 0x20200000 /* ldil xxx, r1 */
882 && (inst1 & 0xffe0e002) == 0xe0202002) /* be,n yyy(sr4, r1) */
883 pc = extract_21 (inst0) + extract_17 (inst1);
884 else
885 pc = (CORE_ADDR)NULL;
886
887 return pc;
888 }
889
890 /* Advance PC across any function entry prologue instructions
891 to reach some "real" code. */
892
893 /* skip (stw rp, -20(0,sp)); copy 4,1; copy sp, 4; stwm 1,framesize(sp)
894 for gcc, or (stw rp, -20(0,sp); stwm 1, framesize(sp) for hcc */
895
896 CORE_ADDR
897 skip_prologue(pc)
898 CORE_ADDR pc;
899 {
900 char buf[4];
901 unsigned long inst;
902 int status;
903
904 status = target_read_memory (pc, buf, 4);
905 inst = extract_unsigned_integer (buf, 4);
906 if (status != 0)
907 return pc;
908
909 if (inst == 0x6BC23FD9) /* stw rp,-20(sp) */
910 {
911 if (read_memory_integer (pc + 4, 4) == 0x8040241) /* copy r4,r1 */
912 pc += 16;
913 else if ((read_memory_integer (pc + 4, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */
914 pc += 8;
915 }
916 else if (read_memory_integer (pc, 4) == 0x8040241) /* copy r4,r1 */
917 pc += 12;
918 else if ((read_memory_integer (pc, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */
919 pc += 4;
920
921 return pc;
922 }
923
924 static void
925 unwind_command (exp, from_tty)
926 char *exp;
927 int from_tty;
928 {
929 CORE_ADDR address;
930 union
931 {
932 int *foo;
933 struct unwind_table_entry *u;
934 } xxx;
935
936 /* If we have an expression, evaluate it and use it as the address. */
937
938 if (exp != 0 && *exp != 0)
939 address = parse_and_eval_address (exp);
940 else
941 return;
942
943 xxx.u = find_unwind_entry (address);
944
945 if (!xxx.u)
946 {
947 printf ("Can't find unwind table entry for PC 0x%x\n", address);
948 return;
949 }
950
951 printf ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
952 xxx.foo[3]);
953 }
954
955 void
956 _initialize_hppa_tdep ()
957 {
958 add_com ("unwind", class_obscure, unwind_command, "Print unwind info\n");
959 add_show_from_set
960 (add_set_cmd ("use_unwind", class_obscure, var_boolean,
961 (char *)&use_unwind,
962 "Set the usage of unwind info", &setlist),
963 &showlist);
964 }
This page took 0.04952 seconds and 4 git commands to generate.