* arm-tdep.c (arm_pc_is_thumb): Use obj_section_addr.
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25 #include "defs.h"
26 #include "bfd.h"
27 #include "inferior.h"
28 #include "regcache.h"
29 #include "completer.h"
30 #include "osabi.h"
31 #include "gdb_assert.h"
32 #include "arch-utils.h"
33 /* For argument passing to the inferior */
34 #include "symtab.h"
35 #include "dis-asm.h"
36 #include "trad-frame.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39
40 #include "gdbcore.h"
41 #include "gdbcmd.h"
42 #include "gdbtypes.h"
43 #include "objfiles.h"
44 #include "hppa-tdep.h"
45
46 static int hppa_debug = 0;
47
48 /* Some local constants. */
49 static const int hppa32_num_regs = 128;
50 static const int hppa64_num_regs = 96;
51
52 /* hppa-specific object data -- unwind and solib info.
53 TODO/maybe: think about splitting this into two parts; the unwind data is
54 common to all hppa targets, but is only used in this file; we can register
55 that separately and make this static. The solib data is probably hpux-
56 specific, so we can create a separate extern objfile_data that is registered
57 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
58 const struct objfile_data *hppa_objfile_priv_data = NULL;
59
60 /* Get at various relevent fields of an instruction word. */
61 #define MASK_5 0x1f
62 #define MASK_11 0x7ff
63 #define MASK_14 0x3fff
64 #define MASK_21 0x1fffff
65
66 /* Sizes (in bytes) of the native unwind entries. */
67 #define UNWIND_ENTRY_SIZE 16
68 #define STUB_UNWIND_ENTRY_SIZE 8
69
70 /* Routines to extract various sized constants out of hppa
71 instructions. */
72
73 /* This assumes that no garbage lies outside of the lower bits of
74 value. */
75
76 int
77 hppa_sign_extend (unsigned val, unsigned bits)
78 {
79 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
80 }
81
82 /* For many immediate values the sign bit is the low bit! */
83
84 int
85 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
86 {
87 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
88 }
89
90 /* Extract the bits at positions between FROM and TO, using HP's numbering
91 (MSB = 0). */
92
93 int
94 hppa_get_field (unsigned word, int from, int to)
95 {
96 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
97 }
98
99 /* extract the immediate field from a ld{bhw}s instruction */
100
101 int
102 hppa_extract_5_load (unsigned word)
103 {
104 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
105 }
106
107 /* extract the immediate field from a break instruction */
108
109 unsigned
110 hppa_extract_5r_store (unsigned word)
111 {
112 return (word & MASK_5);
113 }
114
115 /* extract the immediate field from a {sr}sm instruction */
116
117 unsigned
118 hppa_extract_5R_store (unsigned word)
119 {
120 return (word >> 16 & MASK_5);
121 }
122
123 /* extract a 14 bit immediate field */
124
125 int
126 hppa_extract_14 (unsigned word)
127 {
128 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
129 }
130
131 /* extract a 21 bit constant */
132
133 int
134 hppa_extract_21 (unsigned word)
135 {
136 int val;
137
138 word &= MASK_21;
139 word <<= 11;
140 val = hppa_get_field (word, 20, 20);
141 val <<= 11;
142 val |= hppa_get_field (word, 9, 19);
143 val <<= 2;
144 val |= hppa_get_field (word, 5, 6);
145 val <<= 5;
146 val |= hppa_get_field (word, 0, 4);
147 val <<= 2;
148 val |= hppa_get_field (word, 7, 8);
149 return hppa_sign_extend (val, 21) << 11;
150 }
151
152 /* extract a 17 bit constant from branch instructions, returning the
153 19 bit signed value. */
154
155 int
156 hppa_extract_17 (unsigned word)
157 {
158 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
159 hppa_get_field (word, 29, 29) << 10 |
160 hppa_get_field (word, 11, 15) << 11 |
161 (word & 0x1) << 16, 17) << 2;
162 }
163
164 CORE_ADDR
165 hppa_symbol_address(const char *sym)
166 {
167 struct minimal_symbol *minsym;
168
169 minsym = lookup_minimal_symbol (sym, NULL, NULL);
170 if (minsym)
171 return SYMBOL_VALUE_ADDRESS (minsym);
172 else
173 return (CORE_ADDR)-1;
174 }
175
176 struct hppa_objfile_private *
177 hppa_init_objfile_priv_data (struct objfile *objfile)
178 {
179 struct hppa_objfile_private *priv;
180
181 priv = (struct hppa_objfile_private *)
182 obstack_alloc (&objfile->objfile_obstack,
183 sizeof (struct hppa_objfile_private));
184 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
185 memset (priv, 0, sizeof (*priv));
186
187 return priv;
188 }
189 \f
190
191 /* Compare the start address for two unwind entries returning 1 if
192 the first address is larger than the second, -1 if the second is
193 larger than the first, and zero if they are equal. */
194
195 static int
196 compare_unwind_entries (const void *arg1, const void *arg2)
197 {
198 const struct unwind_table_entry *a = arg1;
199 const struct unwind_table_entry *b = arg2;
200
201 if (a->region_start > b->region_start)
202 return 1;
203 else if (a->region_start < b->region_start)
204 return -1;
205 else
206 return 0;
207 }
208
209 static void
210 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
211 {
212 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
213 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
214 {
215 bfd_vma value = section->vma - section->filepos;
216 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
217
218 if (value < *low_text_segment_address)
219 *low_text_segment_address = value;
220 }
221 }
222
223 static void
224 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
225 asection *section, unsigned int entries, unsigned int size,
226 CORE_ADDR text_offset)
227 {
228 /* We will read the unwind entries into temporary memory, then
229 fill in the actual unwind table. */
230
231 if (size > 0)
232 {
233 unsigned long tmp;
234 unsigned i;
235 char *buf = alloca (size);
236 CORE_ADDR low_text_segment_address;
237
238 /* For ELF targets, then unwinds are supposed to
239 be segment relative offsets instead of absolute addresses.
240
241 Note that when loading a shared library (text_offset != 0) the
242 unwinds are already relative to the text_offset that will be
243 passed in. */
244 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
245 {
246 low_text_segment_address = -1;
247
248 bfd_map_over_sections (objfile->obfd,
249 record_text_segment_lowaddr,
250 &low_text_segment_address);
251
252 text_offset = low_text_segment_address;
253 }
254 else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base)
255 {
256 text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile);
257 }
258
259 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
260
261 /* Now internalize the information being careful to handle host/target
262 endian issues. */
263 for (i = 0; i < entries; i++)
264 {
265 table[i].region_start = bfd_get_32 (objfile->obfd,
266 (bfd_byte *) buf);
267 table[i].region_start += text_offset;
268 buf += 4;
269 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
270 table[i].region_end += text_offset;
271 buf += 4;
272 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
273 buf += 4;
274 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
275 table[i].Millicode = (tmp >> 30) & 0x1;
276 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
277 table[i].Region_description = (tmp >> 27) & 0x3;
278 table[i].reserved = (tmp >> 26) & 0x1;
279 table[i].Entry_SR = (tmp >> 25) & 0x1;
280 table[i].Entry_FR = (tmp >> 21) & 0xf;
281 table[i].Entry_GR = (tmp >> 16) & 0x1f;
282 table[i].Args_stored = (tmp >> 15) & 0x1;
283 table[i].Variable_Frame = (tmp >> 14) & 0x1;
284 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
285 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
286 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
287 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
288 table[i].sr4export = (tmp >> 9) & 0x1;
289 table[i].cxx_info = (tmp >> 8) & 0x1;
290 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
291 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
292 table[i].reserved1 = (tmp >> 5) & 0x1;
293 table[i].Save_SP = (tmp >> 4) & 0x1;
294 table[i].Save_RP = (tmp >> 3) & 0x1;
295 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
296 table[i].save_r19 = (tmp >> 1) & 0x1;
297 table[i].Cleanup_defined = tmp & 0x1;
298 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
299 buf += 4;
300 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
301 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
302 table[i].Large_frame = (tmp >> 29) & 0x1;
303 table[i].alloca_frame = (tmp >> 28) & 0x1;
304 table[i].reserved2 = (tmp >> 27) & 0x1;
305 table[i].Total_frame_size = tmp & 0x7ffffff;
306
307 /* Stub unwinds are handled elsewhere. */
308 table[i].stub_unwind.stub_type = 0;
309 table[i].stub_unwind.padding = 0;
310 }
311 }
312 }
313
314 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
315 the object file. This info is used mainly by find_unwind_entry() to find
316 out the stack frame size and frame pointer used by procedures. We put
317 everything on the psymbol obstack in the objfile so that it automatically
318 gets freed when the objfile is destroyed. */
319
320 static void
321 read_unwind_info (struct objfile *objfile)
322 {
323 asection *unwind_sec, *stub_unwind_sec;
324 unsigned unwind_size, stub_unwind_size, total_size;
325 unsigned index, unwind_entries;
326 unsigned stub_entries, total_entries;
327 CORE_ADDR text_offset;
328 struct hppa_unwind_info *ui;
329 struct hppa_objfile_private *obj_private;
330
331 text_offset = ANOFFSET (objfile->section_offsets, 0);
332 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
333 sizeof (struct hppa_unwind_info));
334
335 ui->table = NULL;
336 ui->cache = NULL;
337 ui->last = -1;
338
339 /* For reasons unknown the HP PA64 tools generate multiple unwinder
340 sections in a single executable. So we just iterate over every
341 section in the BFD looking for unwinder sections intead of trying
342 to do a lookup with bfd_get_section_by_name.
343
344 First determine the total size of the unwind tables so that we
345 can allocate memory in a nice big hunk. */
346 total_entries = 0;
347 for (unwind_sec = objfile->obfd->sections;
348 unwind_sec;
349 unwind_sec = unwind_sec->next)
350 {
351 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
352 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
353 {
354 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
355 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
356
357 total_entries += unwind_entries;
358 }
359 }
360
361 /* Now compute the size of the stub unwinds. Note the ELF tools do not
362 use stub unwinds at the current time. */
363 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
364
365 if (stub_unwind_sec)
366 {
367 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
368 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
369 }
370 else
371 {
372 stub_unwind_size = 0;
373 stub_entries = 0;
374 }
375
376 /* Compute total number of unwind entries and their total size. */
377 total_entries += stub_entries;
378 total_size = total_entries * sizeof (struct unwind_table_entry);
379
380 /* Allocate memory for the unwind table. */
381 ui->table = (struct unwind_table_entry *)
382 obstack_alloc (&objfile->objfile_obstack, total_size);
383 ui->last = total_entries - 1;
384
385 /* Now read in each unwind section and internalize the standard unwind
386 entries. */
387 index = 0;
388 for (unwind_sec = objfile->obfd->sections;
389 unwind_sec;
390 unwind_sec = unwind_sec->next)
391 {
392 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
393 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
394 {
395 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
396 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
397
398 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
399 unwind_entries, unwind_size, text_offset);
400 index += unwind_entries;
401 }
402 }
403
404 /* Now read in and internalize the stub unwind entries. */
405 if (stub_unwind_size > 0)
406 {
407 unsigned int i;
408 char *buf = alloca (stub_unwind_size);
409
410 /* Read in the stub unwind entries. */
411 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
412 0, stub_unwind_size);
413
414 /* Now convert them into regular unwind entries. */
415 for (i = 0; i < stub_entries; i++, index++)
416 {
417 /* Clear out the next unwind entry. */
418 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
419
420 /* Convert offset & size into region_start and region_end.
421 Stuff away the stub type into "reserved" fields. */
422 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
423 (bfd_byte *) buf);
424 ui->table[index].region_start += text_offset;
425 buf += 4;
426 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
427 (bfd_byte *) buf);
428 buf += 2;
429 ui->table[index].region_end
430 = ui->table[index].region_start + 4 *
431 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
432 buf += 2;
433 }
434
435 }
436
437 /* Unwind table needs to be kept sorted. */
438 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
439 compare_unwind_entries);
440
441 /* Keep a pointer to the unwind information. */
442 obj_private = (struct hppa_objfile_private *)
443 objfile_data (objfile, hppa_objfile_priv_data);
444 if (obj_private == NULL)
445 obj_private = hppa_init_objfile_priv_data (objfile);
446
447 obj_private->unwind_info = ui;
448 }
449
450 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
451 of the objfiles seeking the unwind table entry for this PC. Each objfile
452 contains a sorted list of struct unwind_table_entry. Since we do a binary
453 search of the unwind tables, we depend upon them to be sorted. */
454
455 struct unwind_table_entry *
456 find_unwind_entry (CORE_ADDR pc)
457 {
458 int first, middle, last;
459 struct objfile *objfile;
460 struct hppa_objfile_private *priv;
461
462 if (hppa_debug)
463 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
464 paddr_nz (pc));
465
466 /* A function at address 0? Not in HP-UX! */
467 if (pc == (CORE_ADDR) 0)
468 {
469 if (hppa_debug)
470 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
471 return NULL;
472 }
473
474 ALL_OBJFILES (objfile)
475 {
476 struct hppa_unwind_info *ui;
477 ui = NULL;
478 priv = objfile_data (objfile, hppa_objfile_priv_data);
479 if (priv)
480 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
481
482 if (!ui)
483 {
484 read_unwind_info (objfile);
485 priv = objfile_data (objfile, hppa_objfile_priv_data);
486 if (priv == NULL)
487 error (_("Internal error reading unwind information."));
488 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
489 }
490
491 /* First, check the cache */
492
493 if (ui->cache
494 && pc >= ui->cache->region_start
495 && pc <= ui->cache->region_end)
496 {
497 if (hppa_debug)
498 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
499 paddr_nz ((uintptr_t) ui->cache));
500 return ui->cache;
501 }
502
503 /* Not in the cache, do a binary search */
504
505 first = 0;
506 last = ui->last;
507
508 while (first <= last)
509 {
510 middle = (first + last) / 2;
511 if (pc >= ui->table[middle].region_start
512 && pc <= ui->table[middle].region_end)
513 {
514 ui->cache = &ui->table[middle];
515 if (hppa_debug)
516 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
517 paddr_nz ((uintptr_t) ui->cache));
518 return &ui->table[middle];
519 }
520
521 if (pc < ui->table[middle].region_start)
522 last = middle - 1;
523 else
524 first = middle + 1;
525 }
526 } /* ALL_OBJFILES() */
527
528 if (hppa_debug)
529 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
530
531 return NULL;
532 }
533
534 /* The epilogue is defined here as the area either on the `bv' instruction
535 itself or an instruction which destroys the function's stack frame.
536
537 We do not assume that the epilogue is at the end of a function as we can
538 also have return sequences in the middle of a function. */
539 static int
540 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
541 {
542 unsigned long status;
543 unsigned int inst;
544 char buf[4];
545 int off;
546
547 status = target_read_memory (pc, buf, 4);
548 if (status != 0)
549 return 0;
550
551 inst = extract_unsigned_integer (buf, 4);
552
553 /* The most common way to perform a stack adjustment ldo X(sp),sp
554 We are destroying a stack frame if the offset is negative. */
555 if ((inst & 0xffffc000) == 0x37de0000
556 && hppa_extract_14 (inst) < 0)
557 return 1;
558
559 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
560 if (((inst & 0x0fc010e0) == 0x0fc010e0
561 || (inst & 0x0fc010e0) == 0x0fc010e0)
562 && hppa_extract_14 (inst) < 0)
563 return 1;
564
565 /* bv %r0(%rp) or bv,n %r0(%rp) */
566 if (inst == 0xe840c000 || inst == 0xe840c002)
567 return 1;
568
569 return 0;
570 }
571
572 static const unsigned char *
573 hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
574 {
575 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
576 (*len) = sizeof (breakpoint);
577 return breakpoint;
578 }
579
580 /* Return the name of a register. */
581
582 static const char *
583 hppa32_register_name (struct gdbarch *gdbarch, int i)
584 {
585 static char *names[] = {
586 "flags", "r1", "rp", "r3",
587 "r4", "r5", "r6", "r7",
588 "r8", "r9", "r10", "r11",
589 "r12", "r13", "r14", "r15",
590 "r16", "r17", "r18", "r19",
591 "r20", "r21", "r22", "r23",
592 "r24", "r25", "r26", "dp",
593 "ret0", "ret1", "sp", "r31",
594 "sar", "pcoqh", "pcsqh", "pcoqt",
595 "pcsqt", "eiem", "iir", "isr",
596 "ior", "ipsw", "goto", "sr4",
597 "sr0", "sr1", "sr2", "sr3",
598 "sr5", "sr6", "sr7", "cr0",
599 "cr8", "cr9", "ccr", "cr12",
600 "cr13", "cr24", "cr25", "cr26",
601 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
602 "fpsr", "fpe1", "fpe2", "fpe3",
603 "fpe4", "fpe5", "fpe6", "fpe7",
604 "fr4", "fr4R", "fr5", "fr5R",
605 "fr6", "fr6R", "fr7", "fr7R",
606 "fr8", "fr8R", "fr9", "fr9R",
607 "fr10", "fr10R", "fr11", "fr11R",
608 "fr12", "fr12R", "fr13", "fr13R",
609 "fr14", "fr14R", "fr15", "fr15R",
610 "fr16", "fr16R", "fr17", "fr17R",
611 "fr18", "fr18R", "fr19", "fr19R",
612 "fr20", "fr20R", "fr21", "fr21R",
613 "fr22", "fr22R", "fr23", "fr23R",
614 "fr24", "fr24R", "fr25", "fr25R",
615 "fr26", "fr26R", "fr27", "fr27R",
616 "fr28", "fr28R", "fr29", "fr29R",
617 "fr30", "fr30R", "fr31", "fr31R"
618 };
619 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
620 return NULL;
621 else
622 return names[i];
623 }
624
625 static const char *
626 hppa64_register_name (struct gdbarch *gdbarch, int i)
627 {
628 static char *names[] = {
629 "flags", "r1", "rp", "r3",
630 "r4", "r5", "r6", "r7",
631 "r8", "r9", "r10", "r11",
632 "r12", "r13", "r14", "r15",
633 "r16", "r17", "r18", "r19",
634 "r20", "r21", "r22", "r23",
635 "r24", "r25", "r26", "dp",
636 "ret0", "ret1", "sp", "r31",
637 "sar", "pcoqh", "pcsqh", "pcoqt",
638 "pcsqt", "eiem", "iir", "isr",
639 "ior", "ipsw", "goto", "sr4",
640 "sr0", "sr1", "sr2", "sr3",
641 "sr5", "sr6", "sr7", "cr0",
642 "cr8", "cr9", "ccr", "cr12",
643 "cr13", "cr24", "cr25", "cr26",
644 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
645 "fpsr", "fpe1", "fpe2", "fpe3",
646 "fr4", "fr5", "fr6", "fr7",
647 "fr8", "fr9", "fr10", "fr11",
648 "fr12", "fr13", "fr14", "fr15",
649 "fr16", "fr17", "fr18", "fr19",
650 "fr20", "fr21", "fr22", "fr23",
651 "fr24", "fr25", "fr26", "fr27",
652 "fr28", "fr29", "fr30", "fr31"
653 };
654 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
655 return NULL;
656 else
657 return names[i];
658 }
659
660 static int
661 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
662 {
663 /* r0-r31 and sar map one-to-one. */
664 if (reg <= 32)
665 return reg;
666
667 /* fr4-fr31 are mapped from 72 in steps of 2. */
668 if (reg >= 72 || reg < 72 + 28 * 2)
669 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
670
671 error ("Invalid DWARF register num %d.", reg);
672 return -1;
673 }
674
675 /* This function pushes a stack frame with arguments as part of the
676 inferior function calling mechanism.
677
678 This is the version of the function for the 32-bit PA machines, in
679 which later arguments appear at lower addresses. (The stack always
680 grows towards higher addresses.)
681
682 We simply allocate the appropriate amount of stack space and put
683 arguments into their proper slots. */
684
685 static CORE_ADDR
686 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
687 struct regcache *regcache, CORE_ADDR bp_addr,
688 int nargs, struct value **args, CORE_ADDR sp,
689 int struct_return, CORE_ADDR struct_addr)
690 {
691 /* Stack base address at which any pass-by-reference parameters are
692 stored. */
693 CORE_ADDR struct_end = 0;
694 /* Stack base address at which the first parameter is stored. */
695 CORE_ADDR param_end = 0;
696
697 /* The inner most end of the stack after all the parameters have
698 been pushed. */
699 CORE_ADDR new_sp = 0;
700
701 /* Two passes. First pass computes the location of everything,
702 second pass writes the bytes out. */
703 int write_pass;
704
705 /* Global pointer (r19) of the function we are trying to call. */
706 CORE_ADDR gp;
707
708 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
709
710 for (write_pass = 0; write_pass < 2; write_pass++)
711 {
712 CORE_ADDR struct_ptr = 0;
713 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
714 struct_ptr is adjusted for each argument below, so the first
715 argument will end up at sp-36. */
716 CORE_ADDR param_ptr = 32;
717 int i;
718 int small_struct = 0;
719
720 for (i = 0; i < nargs; i++)
721 {
722 struct value *arg = args[i];
723 struct type *type = check_typedef (value_type (arg));
724 /* The corresponding parameter that is pushed onto the
725 stack, and [possibly] passed in a register. */
726 char param_val[8];
727 int param_len;
728 memset (param_val, 0, sizeof param_val);
729 if (TYPE_LENGTH (type) > 8)
730 {
731 /* Large parameter, pass by reference. Store the value
732 in "struct" area and then pass its address. */
733 param_len = 4;
734 struct_ptr += align_up (TYPE_LENGTH (type), 8);
735 if (write_pass)
736 write_memory (struct_end - struct_ptr, value_contents (arg),
737 TYPE_LENGTH (type));
738 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
739 }
740 else if (TYPE_CODE (type) == TYPE_CODE_INT
741 || TYPE_CODE (type) == TYPE_CODE_ENUM)
742 {
743 /* Integer value store, right aligned. "unpack_long"
744 takes care of any sign-extension problems. */
745 param_len = align_up (TYPE_LENGTH (type), 4);
746 store_unsigned_integer (param_val, param_len,
747 unpack_long (type,
748 value_contents (arg)));
749 }
750 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
751 {
752 /* Floating point value store, right aligned. */
753 param_len = align_up (TYPE_LENGTH (type), 4);
754 memcpy (param_val, value_contents (arg), param_len);
755 }
756 else
757 {
758 param_len = align_up (TYPE_LENGTH (type), 4);
759
760 /* Small struct value are stored right-aligned. */
761 memcpy (param_val + param_len - TYPE_LENGTH (type),
762 value_contents (arg), TYPE_LENGTH (type));
763
764 /* Structures of size 5, 6 and 7 bytes are special in that
765 the higher-ordered word is stored in the lower-ordered
766 argument, and even though it is a 8-byte quantity the
767 registers need not be 8-byte aligned. */
768 if (param_len > 4 && param_len < 8)
769 small_struct = 1;
770 }
771
772 param_ptr += param_len;
773 if (param_len == 8 && !small_struct)
774 param_ptr = align_up (param_ptr, 8);
775
776 /* First 4 non-FP arguments are passed in gr26-gr23.
777 First 4 32-bit FP arguments are passed in fr4L-fr7L.
778 First 2 64-bit FP arguments are passed in fr5 and fr7.
779
780 The rest go on the stack, starting at sp-36, towards lower
781 addresses. 8-byte arguments must be aligned to a 8-byte
782 stack boundary. */
783 if (write_pass)
784 {
785 write_memory (param_end - param_ptr, param_val, param_len);
786
787 /* There are some cases when we don't know the type
788 expected by the callee (e.g. for variadic functions), so
789 pass the parameters in both general and fp regs. */
790 if (param_ptr <= 48)
791 {
792 int grreg = 26 - (param_ptr - 36) / 4;
793 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
794 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
795
796 regcache_cooked_write (regcache, grreg, param_val);
797 regcache_cooked_write (regcache, fpLreg, param_val);
798
799 if (param_len > 4)
800 {
801 regcache_cooked_write (regcache, grreg + 1,
802 param_val + 4);
803
804 regcache_cooked_write (regcache, fpreg, param_val);
805 regcache_cooked_write (regcache, fpreg + 1,
806 param_val + 4);
807 }
808 }
809 }
810 }
811
812 /* Update the various stack pointers. */
813 if (!write_pass)
814 {
815 struct_end = sp + align_up (struct_ptr, 64);
816 /* PARAM_PTR already accounts for all the arguments passed
817 by the user. However, the ABI mandates minimum stack
818 space allocations for outgoing arguments. The ABI also
819 mandates minimum stack alignments which we must
820 preserve. */
821 param_end = struct_end + align_up (param_ptr, 64);
822 }
823 }
824
825 /* If a structure has to be returned, set up register 28 to hold its
826 address */
827 if (struct_return)
828 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
829
830 gp = tdep->find_global_pointer (gdbarch, function);
831
832 if (gp != 0)
833 regcache_cooked_write_unsigned (regcache, 19, gp);
834
835 /* Set the return address. */
836 if (!gdbarch_push_dummy_code_p (gdbarch))
837 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
838
839 /* Update the Stack Pointer. */
840 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
841
842 return param_end;
843 }
844
845 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
846 Runtime Architecture for PA-RISC 2.0", which is distributed as part
847 as of the HP-UX Software Transition Kit (STK). This implementation
848 is based on version 3.3, dated October 6, 1997. */
849
850 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
851
852 static int
853 hppa64_integral_or_pointer_p (const struct type *type)
854 {
855 switch (TYPE_CODE (type))
856 {
857 case TYPE_CODE_INT:
858 case TYPE_CODE_BOOL:
859 case TYPE_CODE_CHAR:
860 case TYPE_CODE_ENUM:
861 case TYPE_CODE_RANGE:
862 {
863 int len = TYPE_LENGTH (type);
864 return (len == 1 || len == 2 || len == 4 || len == 8);
865 }
866 case TYPE_CODE_PTR:
867 case TYPE_CODE_REF:
868 return (TYPE_LENGTH (type) == 8);
869 default:
870 break;
871 }
872
873 return 0;
874 }
875
876 /* Check whether TYPE is a "Floating Scalar Type". */
877
878 static int
879 hppa64_floating_p (const struct type *type)
880 {
881 switch (TYPE_CODE (type))
882 {
883 case TYPE_CODE_FLT:
884 {
885 int len = TYPE_LENGTH (type);
886 return (len == 4 || len == 8 || len == 16);
887 }
888 default:
889 break;
890 }
891
892 return 0;
893 }
894
895 /* If CODE points to a function entry address, try to look up the corresponding
896 function descriptor and return its address instead. If CODE is not a
897 function entry address, then just return it unchanged. */
898 static CORE_ADDR
899 hppa64_convert_code_addr_to_fptr (CORE_ADDR code)
900 {
901 struct obj_section *sec, *opd;
902
903 sec = find_pc_section (code);
904
905 if (!sec)
906 return code;
907
908 /* If CODE is in a data section, assume it's already a fptr. */
909 if (!(sec->the_bfd_section->flags & SEC_CODE))
910 return code;
911
912 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
913 {
914 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
915 break;
916 }
917
918 if (opd < sec->objfile->sections_end)
919 {
920 CORE_ADDR addr;
921
922 for (addr = obj_section_addr (opd);
923 addr < obj_section_endaddr (opd);
924 addr += 2 * 8)
925 {
926 ULONGEST opdaddr;
927 char tmp[8];
928
929 if (target_read_memory (addr, tmp, sizeof (tmp)))
930 break;
931 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp));
932
933 if (opdaddr == code)
934 return addr - 16;
935 }
936 }
937
938 return code;
939 }
940
941 static CORE_ADDR
942 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
943 struct regcache *regcache, CORE_ADDR bp_addr,
944 int nargs, struct value **args, CORE_ADDR sp,
945 int struct_return, CORE_ADDR struct_addr)
946 {
947 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
948 int i, offset = 0;
949 CORE_ADDR gp;
950
951 /* "The outgoing parameter area [...] must be aligned at a 16-byte
952 boundary." */
953 sp = align_up (sp, 16);
954
955 for (i = 0; i < nargs; i++)
956 {
957 struct value *arg = args[i];
958 struct type *type = value_type (arg);
959 int len = TYPE_LENGTH (type);
960 const bfd_byte *valbuf;
961 bfd_byte fptrbuf[8];
962 int regnum;
963
964 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
965 offset = align_up (offset, 8);
966
967 if (hppa64_integral_or_pointer_p (type))
968 {
969 /* "Integral scalar parameters smaller than 64 bits are
970 padded on the left (i.e., the value is in the
971 least-significant bits of the 64-bit storage unit, and
972 the high-order bits are undefined)." Therefore we can
973 safely sign-extend them. */
974 if (len < 8)
975 {
976 arg = value_cast (builtin_type_int64, arg);
977 len = 8;
978 }
979 }
980 else if (hppa64_floating_p (type))
981 {
982 if (len > 8)
983 {
984 /* "Quad-precision (128-bit) floating-point scalar
985 parameters are aligned on a 16-byte boundary." */
986 offset = align_up (offset, 16);
987
988 /* "Double-extended- and quad-precision floating-point
989 parameters within the first 64 bytes of the parameter
990 list are always passed in general registers." */
991 }
992 else
993 {
994 if (len == 4)
995 {
996 /* "Single-precision (32-bit) floating-point scalar
997 parameters are padded on the left with 32 bits of
998 garbage (i.e., the floating-point value is in the
999 least-significant 32 bits of a 64-bit storage
1000 unit)." */
1001 offset += 4;
1002 }
1003
1004 /* "Single- and double-precision floating-point
1005 parameters in this area are passed according to the
1006 available formal parameter information in a function
1007 prototype. [...] If no prototype is in scope,
1008 floating-point parameters must be passed both in the
1009 corresponding general registers and in the
1010 corresponding floating-point registers." */
1011 regnum = HPPA64_FP4_REGNUM + offset / 8;
1012
1013 if (regnum < HPPA64_FP4_REGNUM + 8)
1014 {
1015 /* "Single-precision floating-point parameters, when
1016 passed in floating-point registers, are passed in
1017 the right halves of the floating point registers;
1018 the left halves are unused." */
1019 regcache_cooked_write_part (regcache, regnum, offset % 8,
1020 len, value_contents (arg));
1021 }
1022 }
1023 }
1024 else
1025 {
1026 if (len > 8)
1027 {
1028 /* "Aggregates larger than 8 bytes are aligned on a
1029 16-byte boundary, possibly leaving an unused argument
1030 slot, which is filled with garbage. If necessary,
1031 they are padded on the right (with garbage), to a
1032 multiple of 8 bytes." */
1033 offset = align_up (offset, 16);
1034 }
1035 }
1036
1037 /* If we are passing a function pointer, make sure we pass a function
1038 descriptor instead of the function entry address. */
1039 if (TYPE_CODE (type) == TYPE_CODE_PTR
1040 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1041 {
1042 ULONGEST codeptr, fptr;
1043
1044 codeptr = unpack_long (type, value_contents (arg));
1045 fptr = hppa64_convert_code_addr_to_fptr (codeptr);
1046 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), fptr);
1047 valbuf = fptrbuf;
1048 }
1049 else
1050 {
1051 valbuf = value_contents (arg);
1052 }
1053
1054 /* Always store the argument in memory. */
1055 write_memory (sp + offset, valbuf, len);
1056
1057 regnum = HPPA_ARG0_REGNUM - offset / 8;
1058 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1059 {
1060 regcache_cooked_write_part (regcache, regnum,
1061 offset % 8, min (len, 8), valbuf);
1062 offset += min (len, 8);
1063 valbuf += min (len, 8);
1064 len -= min (len, 8);
1065 regnum--;
1066 }
1067
1068 offset += len;
1069 }
1070
1071 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1072 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1073
1074 /* Allocate the outgoing parameter area. Make sure the outgoing
1075 parameter area is multiple of 16 bytes in length. */
1076 sp += max (align_up (offset, 16), 64);
1077
1078 /* Allocate 32-bytes of scratch space. The documentation doesn't
1079 mention this, but it seems to be needed. */
1080 sp += 32;
1081
1082 /* Allocate the frame marker area. */
1083 sp += 16;
1084
1085 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1086 its address. */
1087 if (struct_return)
1088 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1089
1090 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1091 gp = tdep->find_global_pointer (gdbarch, function);
1092 if (gp != 0)
1093 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1094
1095 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1096 if (!gdbarch_push_dummy_code_p (gdbarch))
1097 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1098
1099 /* Set up GR30 to hold the stack pointer (sp). */
1100 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1101
1102 return sp;
1103 }
1104 \f
1105
1106 /* Handle 32/64-bit struct return conventions. */
1107
1108 static enum return_value_convention
1109 hppa32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1110 struct type *type, struct regcache *regcache,
1111 gdb_byte *readbuf, const gdb_byte *writebuf)
1112 {
1113 if (TYPE_LENGTH (type) <= 2 * 4)
1114 {
1115 /* The value always lives in the right hand end of the register
1116 (or register pair)? */
1117 int b;
1118 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1119 int part = TYPE_LENGTH (type) % 4;
1120 /* The left hand register contains only part of the value,
1121 transfer that first so that the rest can be xfered as entire
1122 4-byte registers. */
1123 if (part > 0)
1124 {
1125 if (readbuf != NULL)
1126 regcache_cooked_read_part (regcache, reg, 4 - part,
1127 part, readbuf);
1128 if (writebuf != NULL)
1129 regcache_cooked_write_part (regcache, reg, 4 - part,
1130 part, writebuf);
1131 reg++;
1132 }
1133 /* Now transfer the remaining register values. */
1134 for (b = part; b < TYPE_LENGTH (type); b += 4)
1135 {
1136 if (readbuf != NULL)
1137 regcache_cooked_read (regcache, reg, readbuf + b);
1138 if (writebuf != NULL)
1139 regcache_cooked_write (regcache, reg, writebuf + b);
1140 reg++;
1141 }
1142 return RETURN_VALUE_REGISTER_CONVENTION;
1143 }
1144 else
1145 return RETURN_VALUE_STRUCT_CONVENTION;
1146 }
1147
1148 static enum return_value_convention
1149 hppa64_return_value (struct gdbarch *gdbarch, struct type *func_type,
1150 struct type *type, struct regcache *regcache,
1151 gdb_byte *readbuf, const gdb_byte *writebuf)
1152 {
1153 int len = TYPE_LENGTH (type);
1154 int regnum, offset;
1155
1156 if (len > 16)
1157 {
1158 /* All return values larget than 128 bits must be aggregate
1159 return values. */
1160 gdb_assert (!hppa64_integral_or_pointer_p (type));
1161 gdb_assert (!hppa64_floating_p (type));
1162
1163 /* "Aggregate return values larger than 128 bits are returned in
1164 a buffer allocated by the caller. The address of the buffer
1165 must be passed in GR 28." */
1166 return RETURN_VALUE_STRUCT_CONVENTION;
1167 }
1168
1169 if (hppa64_integral_or_pointer_p (type))
1170 {
1171 /* "Integral return values are returned in GR 28. Values
1172 smaller than 64 bits are padded on the left (with garbage)." */
1173 regnum = HPPA_RET0_REGNUM;
1174 offset = 8 - len;
1175 }
1176 else if (hppa64_floating_p (type))
1177 {
1178 if (len > 8)
1179 {
1180 /* "Double-extended- and quad-precision floating-point
1181 values are returned in GRs 28 and 29. The sign,
1182 exponent, and most-significant bits of the mantissa are
1183 returned in GR 28; the least-significant bits of the
1184 mantissa are passed in GR 29. For double-extended
1185 precision values, GR 29 is padded on the right with 48
1186 bits of garbage." */
1187 regnum = HPPA_RET0_REGNUM;
1188 offset = 0;
1189 }
1190 else
1191 {
1192 /* "Single-precision and double-precision floating-point
1193 return values are returned in FR 4R (single precision) or
1194 FR 4 (double-precision)." */
1195 regnum = HPPA64_FP4_REGNUM;
1196 offset = 8 - len;
1197 }
1198 }
1199 else
1200 {
1201 /* "Aggregate return values up to 64 bits in size are returned
1202 in GR 28. Aggregates smaller than 64 bits are left aligned
1203 in the register; the pad bits on the right are undefined."
1204
1205 "Aggregate return values between 65 and 128 bits are returned
1206 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1207 the remaining bits are placed, left aligned, in GR 29. The
1208 pad bits on the right of GR 29 (if any) are undefined." */
1209 regnum = HPPA_RET0_REGNUM;
1210 offset = 0;
1211 }
1212
1213 if (readbuf)
1214 {
1215 while (len > 0)
1216 {
1217 regcache_cooked_read_part (regcache, regnum, offset,
1218 min (len, 8), readbuf);
1219 readbuf += min (len, 8);
1220 len -= min (len, 8);
1221 regnum++;
1222 }
1223 }
1224
1225 if (writebuf)
1226 {
1227 while (len > 0)
1228 {
1229 regcache_cooked_write_part (regcache, regnum, offset,
1230 min (len, 8), writebuf);
1231 writebuf += min (len, 8);
1232 len -= min (len, 8);
1233 regnum++;
1234 }
1235 }
1236
1237 return RETURN_VALUE_REGISTER_CONVENTION;
1238 }
1239 \f
1240
1241 static CORE_ADDR
1242 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1243 struct target_ops *targ)
1244 {
1245 if (addr & 2)
1246 {
1247 CORE_ADDR plabel = addr & ~3;
1248 return read_memory_typed_address (plabel, builtin_type_void_func_ptr);
1249 }
1250
1251 return addr;
1252 }
1253
1254 static CORE_ADDR
1255 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1256 {
1257 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1258 and not _bit_)! */
1259 return align_up (addr, 64);
1260 }
1261
1262 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1263
1264 static CORE_ADDR
1265 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1266 {
1267 /* Just always 16-byte align. */
1268 return align_up (addr, 16);
1269 }
1270
1271 CORE_ADDR
1272 hppa_read_pc (struct regcache *regcache)
1273 {
1274 ULONGEST ipsw;
1275 ULONGEST pc;
1276
1277 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1278 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
1279
1280 /* If the current instruction is nullified, then we are effectively
1281 still executing the previous instruction. Pretend we are still
1282 there. This is needed when single stepping; if the nullified
1283 instruction is on a different line, we don't want GDB to think
1284 we've stepped onto that line. */
1285 if (ipsw & 0x00200000)
1286 pc -= 4;
1287
1288 return pc & ~0x3;
1289 }
1290
1291 void
1292 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1293 {
1294 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1295 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1296 }
1297
1298 /* return the alignment of a type in bytes. Structures have the maximum
1299 alignment required by their fields. */
1300
1301 static int
1302 hppa_alignof (struct type *type)
1303 {
1304 int max_align, align, i;
1305 CHECK_TYPEDEF (type);
1306 switch (TYPE_CODE (type))
1307 {
1308 case TYPE_CODE_PTR:
1309 case TYPE_CODE_INT:
1310 case TYPE_CODE_FLT:
1311 return TYPE_LENGTH (type);
1312 case TYPE_CODE_ARRAY:
1313 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1314 case TYPE_CODE_STRUCT:
1315 case TYPE_CODE_UNION:
1316 max_align = 1;
1317 for (i = 0; i < TYPE_NFIELDS (type); i++)
1318 {
1319 /* Bit fields have no real alignment. */
1320 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1321 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1322 {
1323 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1324 max_align = max (max_align, align);
1325 }
1326 }
1327 return max_align;
1328 default:
1329 return 4;
1330 }
1331 }
1332
1333 /* For the given instruction (INST), return any adjustment it makes
1334 to the stack pointer or zero for no adjustment.
1335
1336 This only handles instructions commonly found in prologues. */
1337
1338 static int
1339 prologue_inst_adjust_sp (unsigned long inst)
1340 {
1341 /* This must persist across calls. */
1342 static int save_high21;
1343
1344 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1345 if ((inst & 0xffffc000) == 0x37de0000)
1346 return hppa_extract_14 (inst);
1347
1348 /* stwm X,D(sp) */
1349 if ((inst & 0xffe00000) == 0x6fc00000)
1350 return hppa_extract_14 (inst);
1351
1352 /* std,ma X,D(sp) */
1353 if ((inst & 0xffe00008) == 0x73c00008)
1354 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1355
1356 /* addil high21,%r30; ldo low11,(%r1),%r30)
1357 save high bits in save_high21 for later use. */
1358 if ((inst & 0xffe00000) == 0x2bc00000)
1359 {
1360 save_high21 = hppa_extract_21 (inst);
1361 return 0;
1362 }
1363
1364 if ((inst & 0xffff0000) == 0x343e0000)
1365 return save_high21 + hppa_extract_14 (inst);
1366
1367 /* fstws as used by the HP compilers. */
1368 if ((inst & 0xffffffe0) == 0x2fd01220)
1369 return hppa_extract_5_load (inst);
1370
1371 /* No adjustment. */
1372 return 0;
1373 }
1374
1375 /* Return nonzero if INST is a branch of some kind, else return zero. */
1376
1377 static int
1378 is_branch (unsigned long inst)
1379 {
1380 switch (inst >> 26)
1381 {
1382 case 0x20:
1383 case 0x21:
1384 case 0x22:
1385 case 0x23:
1386 case 0x27:
1387 case 0x28:
1388 case 0x29:
1389 case 0x2a:
1390 case 0x2b:
1391 case 0x2f:
1392 case 0x30:
1393 case 0x31:
1394 case 0x32:
1395 case 0x33:
1396 case 0x38:
1397 case 0x39:
1398 case 0x3a:
1399 case 0x3b:
1400 return 1;
1401
1402 default:
1403 return 0;
1404 }
1405 }
1406
1407 /* Return the register number for a GR which is saved by INST or
1408 zero it INST does not save a GR. */
1409
1410 static int
1411 inst_saves_gr (unsigned long inst)
1412 {
1413 /* Does it look like a stw? */
1414 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1415 || (inst >> 26) == 0x1f
1416 || ((inst >> 26) == 0x1f
1417 && ((inst >> 6) == 0xa)))
1418 return hppa_extract_5R_store (inst);
1419
1420 /* Does it look like a std? */
1421 if ((inst >> 26) == 0x1c
1422 || ((inst >> 26) == 0x03
1423 && ((inst >> 6) & 0xf) == 0xb))
1424 return hppa_extract_5R_store (inst);
1425
1426 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1427 if ((inst >> 26) == 0x1b)
1428 return hppa_extract_5R_store (inst);
1429
1430 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1431 too. */
1432 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1433 || ((inst >> 26) == 0x3
1434 && (((inst >> 6) & 0xf) == 0x8
1435 || (inst >> 6) & 0xf) == 0x9))
1436 return hppa_extract_5R_store (inst);
1437
1438 return 0;
1439 }
1440
1441 /* Return the register number for a FR which is saved by INST or
1442 zero it INST does not save a FR.
1443
1444 Note we only care about full 64bit register stores (that's the only
1445 kind of stores the prologue will use).
1446
1447 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1448
1449 static int
1450 inst_saves_fr (unsigned long inst)
1451 {
1452 /* is this an FSTD ? */
1453 if ((inst & 0xfc00dfc0) == 0x2c001200)
1454 return hppa_extract_5r_store (inst);
1455 if ((inst & 0xfc000002) == 0x70000002)
1456 return hppa_extract_5R_store (inst);
1457 /* is this an FSTW ? */
1458 if ((inst & 0xfc00df80) == 0x24001200)
1459 return hppa_extract_5r_store (inst);
1460 if ((inst & 0xfc000002) == 0x7c000000)
1461 return hppa_extract_5R_store (inst);
1462 return 0;
1463 }
1464
1465 /* Advance PC across any function entry prologue instructions
1466 to reach some "real" code.
1467
1468 Use information in the unwind table to determine what exactly should
1469 be in the prologue. */
1470
1471
1472 static CORE_ADDR
1473 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1474 int stop_before_branch)
1475 {
1476 char buf[4];
1477 CORE_ADDR orig_pc = pc;
1478 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1479 unsigned long args_stored, status, i, restart_gr, restart_fr;
1480 struct unwind_table_entry *u;
1481 int final_iteration;
1482
1483 restart_gr = 0;
1484 restart_fr = 0;
1485
1486 restart:
1487 u = find_unwind_entry (pc);
1488 if (!u)
1489 return pc;
1490
1491 /* If we are not at the beginning of a function, then return now. */
1492 if ((pc & ~0x3) != u->region_start)
1493 return pc;
1494
1495 /* This is how much of a frame adjustment we need to account for. */
1496 stack_remaining = u->Total_frame_size << 3;
1497
1498 /* Magic register saves we want to know about. */
1499 save_rp = u->Save_RP;
1500 save_sp = u->Save_SP;
1501
1502 /* An indication that args may be stored into the stack. Unfortunately
1503 the HPUX compilers tend to set this in cases where no args were
1504 stored too!. */
1505 args_stored = 1;
1506
1507 /* Turn the Entry_GR field into a bitmask. */
1508 save_gr = 0;
1509 for (i = 3; i < u->Entry_GR + 3; i++)
1510 {
1511 /* Frame pointer gets saved into a special location. */
1512 if (u->Save_SP && i == HPPA_FP_REGNUM)
1513 continue;
1514
1515 save_gr |= (1 << i);
1516 }
1517 save_gr &= ~restart_gr;
1518
1519 /* Turn the Entry_FR field into a bitmask too. */
1520 save_fr = 0;
1521 for (i = 12; i < u->Entry_FR + 12; i++)
1522 save_fr |= (1 << i);
1523 save_fr &= ~restart_fr;
1524
1525 final_iteration = 0;
1526
1527 /* Loop until we find everything of interest or hit a branch.
1528
1529 For unoptimized GCC code and for any HP CC code this will never ever
1530 examine any user instructions.
1531
1532 For optimzied GCC code we're faced with problems. GCC will schedule
1533 its prologue and make prologue instructions available for delay slot
1534 filling. The end result is user code gets mixed in with the prologue
1535 and a prologue instruction may be in the delay slot of the first branch
1536 or call.
1537
1538 Some unexpected things are expected with debugging optimized code, so
1539 we allow this routine to walk past user instructions in optimized
1540 GCC code. */
1541 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1542 || args_stored)
1543 {
1544 unsigned int reg_num;
1545 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1546 unsigned long old_save_rp, old_save_sp, next_inst;
1547
1548 /* Save copies of all the triggers so we can compare them later
1549 (only for HPC). */
1550 old_save_gr = save_gr;
1551 old_save_fr = save_fr;
1552 old_save_rp = save_rp;
1553 old_save_sp = save_sp;
1554 old_stack_remaining = stack_remaining;
1555
1556 status = target_read_memory (pc, buf, 4);
1557 inst = extract_unsigned_integer (buf, 4);
1558
1559 /* Yow! */
1560 if (status != 0)
1561 return pc;
1562
1563 /* Note the interesting effects of this instruction. */
1564 stack_remaining -= prologue_inst_adjust_sp (inst);
1565
1566 /* There are limited ways to store the return pointer into the
1567 stack. */
1568 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1569 save_rp = 0;
1570
1571 /* These are the only ways we save SP into the stack. At this time
1572 the HP compilers never bother to save SP into the stack. */
1573 if ((inst & 0xffffc000) == 0x6fc10000
1574 || (inst & 0xffffc00c) == 0x73c10008)
1575 save_sp = 0;
1576
1577 /* Are we loading some register with an offset from the argument
1578 pointer? */
1579 if ((inst & 0xffe00000) == 0x37a00000
1580 || (inst & 0xffffffe0) == 0x081d0240)
1581 {
1582 pc += 4;
1583 continue;
1584 }
1585
1586 /* Account for general and floating-point register saves. */
1587 reg_num = inst_saves_gr (inst);
1588 save_gr &= ~(1 << reg_num);
1589
1590 /* Ugh. Also account for argument stores into the stack.
1591 Unfortunately args_stored only tells us that some arguments
1592 where stored into the stack. Not how many or what kind!
1593
1594 This is a kludge as on the HP compiler sets this bit and it
1595 never does prologue scheduling. So once we see one, skip past
1596 all of them. We have similar code for the fp arg stores below.
1597
1598 FIXME. Can still die if we have a mix of GR and FR argument
1599 stores! */
1600 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1601 && reg_num <= 26)
1602 {
1603 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1604 && reg_num <= 26)
1605 {
1606 pc += 4;
1607 status = target_read_memory (pc, buf, 4);
1608 inst = extract_unsigned_integer (buf, 4);
1609 if (status != 0)
1610 return pc;
1611 reg_num = inst_saves_gr (inst);
1612 }
1613 args_stored = 0;
1614 continue;
1615 }
1616
1617 reg_num = inst_saves_fr (inst);
1618 save_fr &= ~(1 << reg_num);
1619
1620 status = target_read_memory (pc + 4, buf, 4);
1621 next_inst = extract_unsigned_integer (buf, 4);
1622
1623 /* Yow! */
1624 if (status != 0)
1625 return pc;
1626
1627 /* We've got to be read to handle the ldo before the fp register
1628 save. */
1629 if ((inst & 0xfc000000) == 0x34000000
1630 && inst_saves_fr (next_inst) >= 4
1631 && inst_saves_fr (next_inst)
1632 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1633 {
1634 /* So we drop into the code below in a reasonable state. */
1635 reg_num = inst_saves_fr (next_inst);
1636 pc -= 4;
1637 }
1638
1639 /* Ugh. Also account for argument stores into the stack.
1640 This is a kludge as on the HP compiler sets this bit and it
1641 never does prologue scheduling. So once we see one, skip past
1642 all of them. */
1643 if (reg_num >= 4
1644 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1645 {
1646 while (reg_num >= 4
1647 && reg_num
1648 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1649 {
1650 pc += 8;
1651 status = target_read_memory (pc, buf, 4);
1652 inst = extract_unsigned_integer (buf, 4);
1653 if (status != 0)
1654 return pc;
1655 if ((inst & 0xfc000000) != 0x34000000)
1656 break;
1657 status = target_read_memory (pc + 4, buf, 4);
1658 next_inst = extract_unsigned_integer (buf, 4);
1659 if (status != 0)
1660 return pc;
1661 reg_num = inst_saves_fr (next_inst);
1662 }
1663 args_stored = 0;
1664 continue;
1665 }
1666
1667 /* Quit if we hit any kind of branch. This can happen if a prologue
1668 instruction is in the delay slot of the first call/branch. */
1669 if (is_branch (inst) && stop_before_branch)
1670 break;
1671
1672 /* What a crock. The HP compilers set args_stored even if no
1673 arguments were stored into the stack (boo hiss). This could
1674 cause this code to then skip a bunch of user insns (up to the
1675 first branch).
1676
1677 To combat this we try to identify when args_stored was bogusly
1678 set and clear it. We only do this when args_stored is nonzero,
1679 all other resources are accounted for, and nothing changed on
1680 this pass. */
1681 if (args_stored
1682 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1683 && old_save_gr == save_gr && old_save_fr == save_fr
1684 && old_save_rp == save_rp && old_save_sp == save_sp
1685 && old_stack_remaining == stack_remaining)
1686 break;
1687
1688 /* Bump the PC. */
1689 pc += 4;
1690
1691 /* !stop_before_branch, so also look at the insn in the delay slot
1692 of the branch. */
1693 if (final_iteration)
1694 break;
1695 if (is_branch (inst))
1696 final_iteration = 1;
1697 }
1698
1699 /* We've got a tenative location for the end of the prologue. However
1700 because of limitations in the unwind descriptor mechanism we may
1701 have went too far into user code looking for the save of a register
1702 that does not exist. So, if there registers we expected to be saved
1703 but never were, mask them out and restart.
1704
1705 This should only happen in optimized code, and should be very rare. */
1706 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1707 {
1708 pc = orig_pc;
1709 restart_gr = save_gr;
1710 restart_fr = save_fr;
1711 goto restart;
1712 }
1713
1714 return pc;
1715 }
1716
1717
1718 /* Return the address of the PC after the last prologue instruction if
1719 we can determine it from the debug symbols. Else return zero. */
1720
1721 static CORE_ADDR
1722 after_prologue (CORE_ADDR pc)
1723 {
1724 struct symtab_and_line sal;
1725 CORE_ADDR func_addr, func_end;
1726 struct symbol *f;
1727
1728 /* If we can not find the symbol in the partial symbol table, then
1729 there is no hope we can determine the function's start address
1730 with this code. */
1731 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1732 return 0;
1733
1734 /* Get the line associated with FUNC_ADDR. */
1735 sal = find_pc_line (func_addr, 0);
1736
1737 /* There are only two cases to consider. First, the end of the source line
1738 is within the function bounds. In that case we return the end of the
1739 source line. Second is the end of the source line extends beyond the
1740 bounds of the current function. We need to use the slow code to
1741 examine instructions in that case.
1742
1743 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1744 the wrong thing to do. In fact, it should be entirely possible for this
1745 function to always return zero since the slow instruction scanning code
1746 is supposed to *always* work. If it does not, then it is a bug. */
1747 if (sal.end < func_end)
1748 return sal.end;
1749 else
1750 return 0;
1751 }
1752
1753 /* To skip prologues, I use this predicate. Returns either PC itself
1754 if the code at PC does not look like a function prologue; otherwise
1755 returns an address that (if we're lucky) follows the prologue.
1756
1757 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1758 It doesn't necessarily skips all the insns in the prologue. In fact
1759 we might not want to skip all the insns because a prologue insn may
1760 appear in the delay slot of the first branch, and we don't want to
1761 skip over the branch in that case. */
1762
1763 static CORE_ADDR
1764 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1765 {
1766 unsigned long inst;
1767 int offset;
1768 CORE_ADDR post_prologue_pc;
1769 char buf[4];
1770
1771 /* See if we can determine the end of the prologue via the symbol table.
1772 If so, then return either PC, or the PC after the prologue, whichever
1773 is greater. */
1774
1775 post_prologue_pc = after_prologue (pc);
1776
1777 /* If after_prologue returned a useful address, then use it. Else
1778 fall back on the instruction skipping code.
1779
1780 Some folks have claimed this causes problems because the breakpoint
1781 may be the first instruction of the prologue. If that happens, then
1782 the instruction skipping code has a bug that needs to be fixed. */
1783 if (post_prologue_pc != 0)
1784 return max (pc, post_prologue_pc);
1785 else
1786 return (skip_prologue_hard_way (gdbarch, pc, 1));
1787 }
1788
1789 /* Return an unwind entry that falls within the frame's code block. */
1790
1791 static struct unwind_table_entry *
1792 hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
1793 {
1794 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1795
1796 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1797 result of get_frame_address_in_block implies a problem.
1798 The bits should have been removed earlier, before the return
1799 value of frame_pc_unwind. That might be happening already;
1800 if it isn't, it should be fixed. Then this call can be
1801 removed. */
1802 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1803 return find_unwind_entry (pc);
1804 }
1805
1806 struct hppa_frame_cache
1807 {
1808 CORE_ADDR base;
1809 struct trad_frame_saved_reg *saved_regs;
1810 };
1811
1812 static struct hppa_frame_cache *
1813 hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
1814 {
1815 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1816 struct hppa_frame_cache *cache;
1817 long saved_gr_mask;
1818 long saved_fr_mask;
1819 CORE_ADDR this_sp;
1820 long frame_size;
1821 struct unwind_table_entry *u;
1822 CORE_ADDR prologue_end;
1823 int fp_in_r1 = 0;
1824 int i;
1825
1826 if (hppa_debug)
1827 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1828 frame_relative_level(this_frame));
1829
1830 if ((*this_cache) != NULL)
1831 {
1832 if (hppa_debug)
1833 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1834 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1835 return (*this_cache);
1836 }
1837 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1838 (*this_cache) = cache;
1839 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1840
1841 /* Yow! */
1842 u = hppa_find_unwind_entry_in_block (this_frame);
1843 if (!u)
1844 {
1845 if (hppa_debug)
1846 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1847 return (*this_cache);
1848 }
1849
1850 /* Turn the Entry_GR field into a bitmask. */
1851 saved_gr_mask = 0;
1852 for (i = 3; i < u->Entry_GR + 3; i++)
1853 {
1854 /* Frame pointer gets saved into a special location. */
1855 if (u->Save_SP && i == HPPA_FP_REGNUM)
1856 continue;
1857
1858 saved_gr_mask |= (1 << i);
1859 }
1860
1861 /* Turn the Entry_FR field into a bitmask too. */
1862 saved_fr_mask = 0;
1863 for (i = 12; i < u->Entry_FR + 12; i++)
1864 saved_fr_mask |= (1 << i);
1865
1866 /* Loop until we find everything of interest or hit a branch.
1867
1868 For unoptimized GCC code and for any HP CC code this will never ever
1869 examine any user instructions.
1870
1871 For optimized GCC code we're faced with problems. GCC will schedule
1872 its prologue and make prologue instructions available for delay slot
1873 filling. The end result is user code gets mixed in with the prologue
1874 and a prologue instruction may be in the delay slot of the first branch
1875 or call.
1876
1877 Some unexpected things are expected with debugging optimized code, so
1878 we allow this routine to walk past user instructions in optimized
1879 GCC code. */
1880 {
1881 int final_iteration = 0;
1882 CORE_ADDR pc, start_pc, end_pc;
1883 int looking_for_sp = u->Save_SP;
1884 int looking_for_rp = u->Save_RP;
1885 int fp_loc = -1;
1886
1887 /* We have to use skip_prologue_hard_way instead of just
1888 skip_prologue_using_sal, in case we stepped into a function without
1889 symbol information. hppa_skip_prologue also bounds the returned
1890 pc by the passed in pc, so it will not return a pc in the next
1891 function.
1892
1893 We used to call hppa_skip_prologue to find the end of the prologue,
1894 but if some non-prologue instructions get scheduled into the prologue,
1895 and the program is compiled with debug information, the "easy" way
1896 in hppa_skip_prologue will return a prologue end that is too early
1897 for us to notice any potential frame adjustments. */
1898
1899 /* We used to use get_frame_func to locate the beginning of the
1900 function to pass to skip_prologue. However, when objects are
1901 compiled without debug symbols, get_frame_func can return the wrong
1902 function (or 0). We can do better than that by using unwind records.
1903 This only works if the Region_description of the unwind record
1904 indicates that it includes the entry point of the function.
1905 HP compilers sometimes generate unwind records for regions that
1906 do not include the entry or exit point of a function. GNU tools
1907 do not do this. */
1908
1909 if ((u->Region_description & 0x2) == 0)
1910 start_pc = u->region_start;
1911 else
1912 start_pc = get_frame_func (this_frame);
1913
1914 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1915 end_pc = get_frame_pc (this_frame);
1916
1917 if (prologue_end != 0 && end_pc > prologue_end)
1918 end_pc = prologue_end;
1919
1920 frame_size = 0;
1921
1922 for (pc = start_pc;
1923 ((saved_gr_mask || saved_fr_mask
1924 || looking_for_sp || looking_for_rp
1925 || frame_size < (u->Total_frame_size << 3))
1926 && pc < end_pc);
1927 pc += 4)
1928 {
1929 int reg;
1930 char buf4[4];
1931 long inst;
1932
1933 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
1934 {
1935 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
1936 return (*this_cache);
1937 }
1938
1939 inst = extract_unsigned_integer (buf4, sizeof buf4);
1940
1941 /* Note the interesting effects of this instruction. */
1942 frame_size += prologue_inst_adjust_sp (inst);
1943
1944 /* There are limited ways to store the return pointer into the
1945 stack. */
1946 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1947 {
1948 looking_for_rp = 0;
1949 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1950 }
1951 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1952 {
1953 looking_for_rp = 0;
1954 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1955 }
1956 else if (inst == 0x0fc212c1
1957 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
1958 {
1959 looking_for_rp = 0;
1960 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1961 }
1962
1963 /* Check to see if we saved SP into the stack. This also
1964 happens to indicate the location of the saved frame
1965 pointer. */
1966 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1967 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1968 {
1969 looking_for_sp = 0;
1970 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1971 }
1972 else if (inst == 0x08030241) /* copy %r3, %r1 */
1973 {
1974 fp_in_r1 = 1;
1975 }
1976
1977 /* Account for general and floating-point register saves. */
1978 reg = inst_saves_gr (inst);
1979 if (reg >= 3 && reg <= 18
1980 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1981 {
1982 saved_gr_mask &= ~(1 << reg);
1983 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1984 /* stwm with a positive displacement is a _post_
1985 _modify_. */
1986 cache->saved_regs[reg].addr = 0;
1987 else if ((inst & 0xfc00000c) == 0x70000008)
1988 /* A std has explicit post_modify forms. */
1989 cache->saved_regs[reg].addr = 0;
1990 else
1991 {
1992 CORE_ADDR offset;
1993
1994 if ((inst >> 26) == 0x1c)
1995 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1996 else if ((inst >> 26) == 0x03)
1997 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1998 else
1999 offset = hppa_extract_14 (inst);
2000
2001 /* Handle code with and without frame pointers. */
2002 if (u->Save_SP)
2003 cache->saved_regs[reg].addr = offset;
2004 else
2005 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
2006 }
2007 }
2008
2009 /* GCC handles callee saved FP regs a little differently.
2010
2011 It emits an instruction to put the value of the start of
2012 the FP store area into %r1. It then uses fstds,ma with a
2013 basereg of %r1 for the stores.
2014
2015 HP CC emits them at the current stack pointer modifying the
2016 stack pointer as it stores each register. */
2017
2018 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2019 if ((inst & 0xffffc000) == 0x34610000
2020 || (inst & 0xffffc000) == 0x37c10000)
2021 fp_loc = hppa_extract_14 (inst);
2022
2023 reg = inst_saves_fr (inst);
2024 if (reg >= 12 && reg <= 21)
2025 {
2026 /* Note +4 braindamage below is necessary because the FP
2027 status registers are internally 8 registers rather than
2028 the expected 4 registers. */
2029 saved_fr_mask &= ~(1 << reg);
2030 if (fp_loc == -1)
2031 {
2032 /* 1st HP CC FP register store. After this
2033 instruction we've set enough state that the GCC and
2034 HPCC code are both handled in the same manner. */
2035 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2036 fp_loc = 8;
2037 }
2038 else
2039 {
2040 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2041 fp_loc += 8;
2042 }
2043 }
2044
2045 /* Quit if we hit any kind of branch the previous iteration. */
2046 if (final_iteration)
2047 break;
2048 /* We want to look precisely one instruction beyond the branch
2049 if we have not found everything yet. */
2050 if (is_branch (inst))
2051 final_iteration = 1;
2052 }
2053 }
2054
2055 {
2056 /* The frame base always represents the value of %sp at entry to
2057 the current function (and is thus equivalent to the "saved"
2058 stack pointer. */
2059 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2060 HPPA_SP_REGNUM);
2061 CORE_ADDR fp;
2062
2063 if (hppa_debug)
2064 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
2065 "prologue_end=0x%s) ",
2066 paddr_nz (this_sp),
2067 paddr_nz (get_frame_pc (this_frame)),
2068 paddr_nz (prologue_end));
2069
2070 /* Check to see if a frame pointer is available, and use it for
2071 frame unwinding if it is.
2072
2073 There are some situations where we need to rely on the frame
2074 pointer to do stack unwinding. For example, if a function calls
2075 alloca (), the stack pointer can get adjusted inside the body of
2076 the function. In this case, the ABI requires that the compiler
2077 maintain a frame pointer for the function.
2078
2079 The unwind record has a flag (alloca_frame) that indicates that
2080 a function has a variable frame; unfortunately, gcc/binutils
2081 does not set this flag. Instead, whenever a frame pointer is used
2082 and saved on the stack, the Save_SP flag is set. We use this to
2083 decide whether to use the frame pointer for unwinding.
2084
2085 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2086 instead of Save_SP. */
2087
2088 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2089
2090 if (u->alloca_frame)
2091 fp -= u->Total_frame_size << 3;
2092
2093 if (get_frame_pc (this_frame) >= prologue_end
2094 && (u->Save_SP || u->alloca_frame) && fp != 0)
2095 {
2096 cache->base = fp;
2097
2098 if (hppa_debug)
2099 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]",
2100 paddr_nz (cache->base));
2101 }
2102 else if (u->Save_SP
2103 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2104 {
2105 /* Both we're expecting the SP to be saved and the SP has been
2106 saved. The entry SP value is saved at this frame's SP
2107 address. */
2108 cache->base = read_memory_integer
2109 (this_sp, gdbarch_ptr_bit (gdbarch) / 8);
2110
2111 if (hppa_debug)
2112 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]",
2113 paddr_nz (cache->base));
2114 }
2115 else
2116 {
2117 /* The prologue has been slowly allocating stack space. Adjust
2118 the SP back. */
2119 cache->base = this_sp - frame_size;
2120 if (hppa_debug)
2121 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]",
2122 paddr_nz (cache->base));
2123
2124 }
2125 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2126 }
2127
2128 /* The PC is found in the "return register", "Millicode" uses "r31"
2129 as the return register while normal code uses "rp". */
2130 if (u->Millicode)
2131 {
2132 if (trad_frame_addr_p (cache->saved_regs, 31))
2133 {
2134 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2135 if (hppa_debug)
2136 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2137 }
2138 else
2139 {
2140 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2141 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2142 if (hppa_debug)
2143 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2144 }
2145 }
2146 else
2147 {
2148 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2149 {
2150 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2151 cache->saved_regs[HPPA_RP_REGNUM];
2152 if (hppa_debug)
2153 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2154 }
2155 else
2156 {
2157 ULONGEST rp = get_frame_register_unsigned (this_frame,
2158 HPPA_RP_REGNUM);
2159 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2160 if (hppa_debug)
2161 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2162 }
2163 }
2164
2165 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2166 frame. However, there is a one-insn window where we haven't saved it
2167 yet, but we've already clobbered it. Detect this case and fix it up.
2168
2169 The prologue sequence for frame-pointer functions is:
2170 0: stw %rp, -20(%sp)
2171 4: copy %r3, %r1
2172 8: copy %sp, %r3
2173 c: stw,ma %r1, XX(%sp)
2174
2175 So if we are at offset c, the r3 value that we want is not yet saved
2176 on the stack, but it's been overwritten. The prologue analyzer will
2177 set fp_in_r1 when it sees the copy insn so we know to get the value
2178 from r1 instead. */
2179 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2180 && fp_in_r1)
2181 {
2182 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2183 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2184 }
2185
2186 {
2187 /* Convert all the offsets into addresses. */
2188 int reg;
2189 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2190 {
2191 if (trad_frame_addr_p (cache->saved_regs, reg))
2192 cache->saved_regs[reg].addr += cache->base;
2193 }
2194 }
2195
2196 {
2197 struct gdbarch_tdep *tdep;
2198
2199 tdep = gdbarch_tdep (gdbarch);
2200
2201 if (tdep->unwind_adjust_stub)
2202 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2203 }
2204
2205 if (hppa_debug)
2206 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2207 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
2208 return (*this_cache);
2209 }
2210
2211 static void
2212 hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2213 struct frame_id *this_id)
2214 {
2215 struct hppa_frame_cache *info;
2216 CORE_ADDR pc = get_frame_pc (this_frame);
2217 struct unwind_table_entry *u;
2218
2219 info = hppa_frame_cache (this_frame, this_cache);
2220 u = hppa_find_unwind_entry_in_block (this_frame);
2221
2222 (*this_id) = frame_id_build (info->base, u->region_start);
2223 }
2224
2225 static struct value *
2226 hppa_frame_prev_register (struct frame_info *this_frame,
2227 void **this_cache, int regnum)
2228 {
2229 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2230
2231 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
2232 }
2233
2234 static int
2235 hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2236 struct frame_info *this_frame, void **this_cache)
2237 {
2238 if (hppa_find_unwind_entry_in_block (this_frame))
2239 return 1;
2240
2241 return 0;
2242 }
2243
2244 static const struct frame_unwind hppa_frame_unwind =
2245 {
2246 NORMAL_FRAME,
2247 hppa_frame_this_id,
2248 hppa_frame_prev_register,
2249 NULL,
2250 hppa_frame_unwind_sniffer
2251 };
2252
2253 /* This is a generic fallback frame unwinder that kicks in if we fail all
2254 the other ones. Normally we would expect the stub and regular unwinder
2255 to work, but in some cases we might hit a function that just doesn't
2256 have any unwind information available. In this case we try to do
2257 unwinding solely based on code reading. This is obviously going to be
2258 slow, so only use this as a last resort. Currently this will only
2259 identify the stack and pc for the frame. */
2260
2261 static struct hppa_frame_cache *
2262 hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
2263 {
2264 struct hppa_frame_cache *cache;
2265 unsigned int frame_size = 0;
2266 int found_rp = 0;
2267 CORE_ADDR start_pc;
2268
2269 if (hppa_debug)
2270 fprintf_unfiltered (gdb_stdlog,
2271 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2272 frame_relative_level (this_frame));
2273
2274 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2275 (*this_cache) = cache;
2276 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2277
2278 start_pc = get_frame_func (this_frame);
2279 if (start_pc)
2280 {
2281 CORE_ADDR cur_pc = get_frame_pc (this_frame);
2282 CORE_ADDR pc;
2283
2284 for (pc = start_pc; pc < cur_pc; pc += 4)
2285 {
2286 unsigned int insn;
2287
2288 insn = read_memory_unsigned_integer (pc, 4);
2289 frame_size += prologue_inst_adjust_sp (insn);
2290
2291 /* There are limited ways to store the return pointer into the
2292 stack. */
2293 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2294 {
2295 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2296 found_rp = 1;
2297 }
2298 else if (insn == 0x0fc212c1
2299 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2300 {
2301 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2302 found_rp = 1;
2303 }
2304 }
2305 }
2306
2307 if (hppa_debug)
2308 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2309 frame_size, found_rp);
2310
2311 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2312 cache->base -= frame_size;
2313 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2314
2315 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2316 {
2317 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2318 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2319 cache->saved_regs[HPPA_RP_REGNUM];
2320 }
2321 else
2322 {
2323 ULONGEST rp;
2324 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2325 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2326 }
2327
2328 return cache;
2329 }
2330
2331 static void
2332 hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
2333 struct frame_id *this_id)
2334 {
2335 struct hppa_frame_cache *info =
2336 hppa_fallback_frame_cache (this_frame, this_cache);
2337
2338 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2339 }
2340
2341 static struct value *
2342 hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2343 void **this_cache, int regnum)
2344 {
2345 struct hppa_frame_cache *info =
2346 hppa_fallback_frame_cache (this_frame, this_cache);
2347
2348 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
2349 }
2350
2351 static const struct frame_unwind hppa_fallback_frame_unwind =
2352 {
2353 NORMAL_FRAME,
2354 hppa_fallback_frame_this_id,
2355 hppa_fallback_frame_prev_register,
2356 NULL,
2357 default_frame_sniffer
2358 };
2359
2360 /* Stub frames, used for all kinds of call stubs. */
2361 struct hppa_stub_unwind_cache
2362 {
2363 CORE_ADDR base;
2364 struct trad_frame_saved_reg *saved_regs;
2365 };
2366
2367 static struct hppa_stub_unwind_cache *
2368 hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
2369 void **this_cache)
2370 {
2371 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2372 struct hppa_stub_unwind_cache *info;
2373 struct unwind_table_entry *u;
2374
2375 if (*this_cache)
2376 return *this_cache;
2377
2378 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2379 *this_cache = info;
2380 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2381
2382 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2383
2384 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2385 {
2386 /* HPUX uses export stubs in function calls; the export stub clobbers
2387 the return value of the caller, and, later restores it from the
2388 stack. */
2389 u = find_unwind_entry (get_frame_pc (this_frame));
2390
2391 if (u && u->stub_unwind.stub_type == EXPORT)
2392 {
2393 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2394
2395 return info;
2396 }
2397 }
2398
2399 /* By default we assume that stubs do not change the rp. */
2400 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2401
2402 return info;
2403 }
2404
2405 static void
2406 hppa_stub_frame_this_id (struct frame_info *this_frame,
2407 void **this_prologue_cache,
2408 struct frame_id *this_id)
2409 {
2410 struct hppa_stub_unwind_cache *info
2411 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2412
2413 if (info)
2414 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2415 else
2416 *this_id = null_frame_id;
2417 }
2418
2419 static struct value *
2420 hppa_stub_frame_prev_register (struct frame_info *this_frame,
2421 void **this_prologue_cache, int regnum)
2422 {
2423 struct hppa_stub_unwind_cache *info
2424 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2425
2426 if (info == NULL)
2427 error (_("Requesting registers from null frame."));
2428
2429 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
2430 }
2431
2432 static int
2433 hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2434 struct frame_info *this_frame,
2435 void **this_cache)
2436 {
2437 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2438 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2439 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2440
2441 if (pc == 0
2442 || (tdep->in_solib_call_trampoline != NULL
2443 && tdep->in_solib_call_trampoline (pc, NULL))
2444 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2445 return 1;
2446 return 0;
2447 }
2448
2449 static const struct frame_unwind hppa_stub_frame_unwind = {
2450 NORMAL_FRAME,
2451 hppa_stub_frame_this_id,
2452 hppa_stub_frame_prev_register,
2453 NULL,
2454 hppa_stub_unwind_sniffer
2455 };
2456
2457 static struct frame_id
2458 hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2459 {
2460 return frame_id_build (get_frame_register_unsigned (this_frame,
2461 HPPA_SP_REGNUM),
2462 get_frame_pc (this_frame));
2463 }
2464
2465 CORE_ADDR
2466 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2467 {
2468 ULONGEST ipsw;
2469 CORE_ADDR pc;
2470
2471 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2472 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2473
2474 /* If the current instruction is nullified, then we are effectively
2475 still executing the previous instruction. Pretend we are still
2476 there. This is needed when single stepping; if the nullified
2477 instruction is on a different line, we don't want GDB to think
2478 we've stepped onto that line. */
2479 if (ipsw & 0x00200000)
2480 pc -= 4;
2481
2482 return pc & ~0x3;
2483 }
2484
2485 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2486 Return NULL if no such symbol was found. */
2487
2488 struct minimal_symbol *
2489 hppa_lookup_stub_minimal_symbol (const char *name,
2490 enum unwind_stub_types stub_type)
2491 {
2492 struct objfile *objfile;
2493 struct minimal_symbol *msym;
2494
2495 ALL_MSYMBOLS (objfile, msym)
2496 {
2497 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2498 {
2499 struct unwind_table_entry *u;
2500
2501 u = find_unwind_entry (SYMBOL_VALUE (msym));
2502 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2503 return msym;
2504 }
2505 }
2506
2507 return NULL;
2508 }
2509
2510 static void
2511 unwind_command (char *exp, int from_tty)
2512 {
2513 CORE_ADDR address;
2514 struct unwind_table_entry *u;
2515
2516 /* If we have an expression, evaluate it and use it as the address. */
2517
2518 if (exp != 0 && *exp != 0)
2519 address = parse_and_eval_address (exp);
2520 else
2521 return;
2522
2523 u = find_unwind_entry (address);
2524
2525 if (!u)
2526 {
2527 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2528 return;
2529 }
2530
2531 printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
2532
2533 printf_unfiltered ("\tregion_start = ");
2534 print_address (u->region_start, gdb_stdout);
2535 gdb_flush (gdb_stdout);
2536
2537 printf_unfiltered ("\n\tregion_end = ");
2538 print_address (u->region_end, gdb_stdout);
2539 gdb_flush (gdb_stdout);
2540
2541 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2542
2543 printf_unfiltered ("\n\tflags =");
2544 pif (Cannot_unwind);
2545 pif (Millicode);
2546 pif (Millicode_save_sr0);
2547 pif (Entry_SR);
2548 pif (Args_stored);
2549 pif (Variable_Frame);
2550 pif (Separate_Package_Body);
2551 pif (Frame_Extension_Millicode);
2552 pif (Stack_Overflow_Check);
2553 pif (Two_Instruction_SP_Increment);
2554 pif (sr4export);
2555 pif (cxx_info);
2556 pif (cxx_try_catch);
2557 pif (sched_entry_seq);
2558 pif (Save_SP);
2559 pif (Save_RP);
2560 pif (Save_MRP_in_frame);
2561 pif (save_r19);
2562 pif (Cleanup_defined);
2563 pif (MPE_XL_interrupt_marker);
2564 pif (HP_UX_interrupt_marker);
2565 pif (Large_frame);
2566 pif (alloca_frame);
2567
2568 putchar_unfiltered ('\n');
2569
2570 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2571
2572 pin (Region_description);
2573 pin (Entry_FR);
2574 pin (Entry_GR);
2575 pin (Total_frame_size);
2576
2577 if (u->stub_unwind.stub_type)
2578 {
2579 printf_unfiltered ("\tstub type = ");
2580 switch (u->stub_unwind.stub_type)
2581 {
2582 case LONG_BRANCH:
2583 printf_unfiltered ("long branch\n");
2584 break;
2585 case PARAMETER_RELOCATION:
2586 printf_unfiltered ("parameter relocation\n");
2587 break;
2588 case EXPORT:
2589 printf_unfiltered ("export\n");
2590 break;
2591 case IMPORT:
2592 printf_unfiltered ("import\n");
2593 break;
2594 case IMPORT_SHLIB:
2595 printf_unfiltered ("import shlib\n");
2596 break;
2597 default:
2598 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2599 }
2600 }
2601 }
2602
2603 /* Return the GDB type object for the "standard" data type of data in
2604 register REGNUM. */
2605
2606 static struct type *
2607 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2608 {
2609 if (regnum < HPPA_FP4_REGNUM)
2610 return builtin_type_uint32;
2611 else
2612 return builtin_type_ieee_single;
2613 }
2614
2615 static struct type *
2616 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2617 {
2618 if (regnum < HPPA64_FP4_REGNUM)
2619 return builtin_type_uint64;
2620 else
2621 return builtin_type_ieee_double;
2622 }
2623
2624 /* Return non-zero if REGNUM is not a register available to the user
2625 through ptrace/ttrace. */
2626
2627 static int
2628 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2629 {
2630 return (regnum == 0
2631 || regnum == HPPA_PCSQ_HEAD_REGNUM
2632 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2633 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2634 }
2635
2636 static int
2637 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2638 {
2639 /* cr26 and cr27 are readable (but not writable) from userspace. */
2640 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2641 return 0;
2642 else
2643 return hppa32_cannot_store_register (gdbarch, regnum);
2644 }
2645
2646 static int
2647 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2648 {
2649 return (regnum == 0
2650 || regnum == HPPA_PCSQ_HEAD_REGNUM
2651 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2652 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2653 }
2654
2655 static int
2656 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2657 {
2658 /* cr26 and cr27 are readable (but not writable) from userspace. */
2659 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2660 return 0;
2661 else
2662 return hppa64_cannot_store_register (gdbarch, regnum);
2663 }
2664
2665 static CORE_ADDR
2666 hppa_smash_text_address (CORE_ADDR addr)
2667 {
2668 /* The low two bits of the PC on the PA contain the privilege level.
2669 Some genius implementing a (non-GCC) compiler apparently decided
2670 this means that "addresses" in a text section therefore include a
2671 privilege level, and thus symbol tables should contain these bits.
2672 This seems like a bonehead thing to do--anyway, it seems to work
2673 for our purposes to just ignore those bits. */
2674
2675 return (addr &= ~0x3);
2676 }
2677
2678 /* Get the ARGIth function argument for the current function. */
2679
2680 static CORE_ADDR
2681 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2682 struct type *type)
2683 {
2684 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2685 }
2686
2687 static void
2688 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2689 int regnum, gdb_byte *buf)
2690 {
2691 ULONGEST tmp;
2692
2693 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2694 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2695 tmp &= ~0x3;
2696 store_unsigned_integer (buf, sizeof tmp, tmp);
2697 }
2698
2699 static CORE_ADDR
2700 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2701 {
2702 return 0;
2703 }
2704
2705 struct value *
2706 hppa_frame_prev_register_helper (struct frame_info *this_frame,
2707 struct trad_frame_saved_reg saved_regs[],
2708 int regnum)
2709 {
2710 struct gdbarch *arch = get_frame_arch (this_frame);
2711
2712 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2713 {
2714 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2715 CORE_ADDR pc;
2716 struct value *pcoq_val =
2717 trad_frame_get_prev_register (this_frame, saved_regs,
2718 HPPA_PCOQ_HEAD_REGNUM);
2719
2720 pc = extract_unsigned_integer (value_contents_all (pcoq_val), size);
2721 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2722 }
2723
2724 /* Make sure the "flags" register is zero in all unwound frames.
2725 The "flags" registers is a HP-UX specific wart, and only the code
2726 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2727 with it here. This shouldn't affect other systems since those
2728 should provide zero for the "flags" register anyway. */
2729 if (regnum == HPPA_FLAGS_REGNUM)
2730 return frame_unwind_got_constant (this_frame, regnum, 0);
2731
2732 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2733 }
2734 \f
2735
2736 /* An instruction to match. */
2737 struct insn_pattern
2738 {
2739 unsigned int data; /* See if it matches this.... */
2740 unsigned int mask; /* ... with this mask. */
2741 };
2742
2743 /* See bfd/elf32-hppa.c */
2744 static struct insn_pattern hppa_long_branch_stub[] = {
2745 /* ldil LR'xxx,%r1 */
2746 { 0x20200000, 0xffe00000 },
2747 /* be,n RR'xxx(%sr4,%r1) */
2748 { 0xe0202002, 0xffe02002 },
2749 { 0, 0 }
2750 };
2751
2752 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2753 /* b,l .+8, %r1 */
2754 { 0xe8200000, 0xffe00000 },
2755 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2756 { 0x28200000, 0xffe00000 },
2757 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2758 { 0xe0202002, 0xffe02002 },
2759 { 0, 0 }
2760 };
2761
2762 static struct insn_pattern hppa_import_stub[] = {
2763 /* addil LR'xxx, %dp */
2764 { 0x2b600000, 0xffe00000 },
2765 /* ldw RR'xxx(%r1), %r21 */
2766 { 0x48350000, 0xffffb000 },
2767 /* bv %r0(%r21) */
2768 { 0xeaa0c000, 0xffffffff },
2769 /* ldw RR'xxx+4(%r1), %r19 */
2770 { 0x48330000, 0xffffb000 },
2771 { 0, 0 }
2772 };
2773
2774 static struct insn_pattern hppa_import_pic_stub[] = {
2775 /* addil LR'xxx,%r19 */
2776 { 0x2a600000, 0xffe00000 },
2777 /* ldw RR'xxx(%r1),%r21 */
2778 { 0x48350000, 0xffffb000 },
2779 /* bv %r0(%r21) */
2780 { 0xeaa0c000, 0xffffffff },
2781 /* ldw RR'xxx+4(%r1),%r19 */
2782 { 0x48330000, 0xffffb000 },
2783 { 0, 0 },
2784 };
2785
2786 static struct insn_pattern hppa_plt_stub[] = {
2787 /* b,l 1b, %r20 - 1b is 3 insns before here */
2788 { 0xea9f1fdd, 0xffffffff },
2789 /* depi 0,31,2,%r20 */
2790 { 0xd6801c1e, 0xffffffff },
2791 { 0, 0 }
2792 };
2793
2794 static struct insn_pattern hppa_sigtramp[] = {
2795 /* ldi 0, %r25 or ldi 1, %r25 */
2796 { 0x34190000, 0xfffffffd },
2797 /* ldi __NR_rt_sigreturn, %r20 */
2798 { 0x3414015a, 0xffffffff },
2799 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
2800 { 0xe4008200, 0xffffffff },
2801 /* nop */
2802 { 0x08000240, 0xffffffff },
2803 { 0, 0 }
2804 };
2805
2806 /* Maximum number of instructions on the patterns above. */
2807 #define HPPA_MAX_INSN_PATTERN_LEN 4
2808
2809 /* Return non-zero if the instructions at PC match the series
2810 described in PATTERN, or zero otherwise. PATTERN is an array of
2811 'struct insn_pattern' objects, terminated by an entry whose mask is
2812 zero.
2813
2814 When the match is successful, fill INSN[i] with what PATTERN[i]
2815 matched. */
2816
2817 static int
2818 hppa_match_insns (CORE_ADDR pc, struct insn_pattern *pattern,
2819 unsigned int *insn)
2820 {
2821 CORE_ADDR npc = pc;
2822 int i;
2823
2824 for (i = 0; pattern[i].mask; i++)
2825 {
2826 gdb_byte buf[HPPA_INSN_SIZE];
2827
2828 target_read_memory (npc, buf, HPPA_INSN_SIZE);
2829 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE);
2830 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2831 npc += 4;
2832 else
2833 return 0;
2834 }
2835
2836 return 1;
2837 }
2838
2839 /* This relaxed version of the insstruction matcher allows us to match
2840 from somewhere inside the pattern, by looking backwards in the
2841 instruction scheme. */
2842
2843 static int
2844 hppa_match_insns_relaxed (CORE_ADDR pc, struct insn_pattern *pattern,
2845 unsigned int *insn)
2846 {
2847 int offset, len = 0;
2848
2849 while (pattern[len].mask)
2850 len++;
2851
2852 for (offset = 0; offset < len; offset++)
2853 if (hppa_match_insns (pc - offset * HPPA_INSN_SIZE, pattern, insn))
2854 return 1;
2855
2856 return 0;
2857 }
2858
2859 static int
2860 hppa_in_dyncall (CORE_ADDR pc)
2861 {
2862 struct unwind_table_entry *u;
2863
2864 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2865 if (!u)
2866 return 0;
2867
2868 return (pc >= u->region_start && pc <= u->region_end);
2869 }
2870
2871 int
2872 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2873 {
2874 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2875 struct unwind_table_entry *u;
2876
2877 if (in_plt_section (pc, name) || hppa_in_dyncall (pc))
2878 return 1;
2879
2880 /* The GNU toolchain produces linker stubs without unwind
2881 information. Since the pattern matching for linker stubs can be
2882 quite slow, so bail out if we do have an unwind entry. */
2883
2884 u = find_unwind_entry (pc);
2885 if (u != NULL)
2886 return 0;
2887
2888 return (hppa_match_insns_relaxed (pc, hppa_import_stub, insn)
2889 || hppa_match_insns_relaxed (pc, hppa_import_pic_stub, insn)
2890 || hppa_match_insns_relaxed (pc, hppa_long_branch_stub, insn)
2891 || hppa_match_insns_relaxed (pc, hppa_long_branch_pic_stub, insn));
2892 }
2893
2894 /* This code skips several kind of "trampolines" used on PA-RISC
2895 systems: $$dyncall, import stubs and PLT stubs. */
2896
2897 CORE_ADDR
2898 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2899 {
2900 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2901 int dp_rel;
2902
2903 /* $$dyncall handles both PLABELs and direct addresses. */
2904 if (hppa_in_dyncall (pc))
2905 {
2906 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2907
2908 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2909 if (pc & 0x2)
2910 pc = read_memory_typed_address (pc & ~0x3, builtin_type_void_func_ptr);
2911
2912 return pc;
2913 }
2914
2915 dp_rel = hppa_match_insns (pc, hppa_import_stub, insn);
2916 if (dp_rel || hppa_match_insns (pc, hppa_import_pic_stub, insn))
2917 {
2918 /* Extract the target address from the addil/ldw sequence. */
2919 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2920
2921 if (dp_rel)
2922 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2923 else
2924 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2925
2926 /* fallthrough */
2927 }
2928
2929 if (in_plt_section (pc, NULL))
2930 {
2931 pc = read_memory_typed_address (pc, builtin_type_void_func_ptr);
2932
2933 /* If the PLT slot has not yet been resolved, the target will be
2934 the PLT stub. */
2935 if (in_plt_section (pc, NULL))
2936 {
2937 /* Sanity check: are we pointing to the PLT stub? */
2938 if (!hppa_match_insns (pc, hppa_plt_stub, insn))
2939 {
2940 warning (_("Cannot resolve PLT stub at 0x%s."), paddr_nz (pc));
2941 return 0;
2942 }
2943
2944 /* This should point to the fixup routine. */
2945 pc = read_memory_typed_address (pc + 8, builtin_type_void_func_ptr);
2946 }
2947 }
2948
2949 return pc;
2950 }
2951 \f
2952
2953 /* Here is a table of C type sizes on hppa with various compiles
2954 and options. I measured this on PA 9000/800 with HP-UX 11.11
2955 and these compilers:
2956
2957 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2958 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2959 /opt/aCC/bin/aCC B3910B A.03.45
2960 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2961
2962 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2963 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2964 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2965 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2966 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2967 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2968 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2969 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2970
2971 Each line is:
2972
2973 compiler and options
2974 char, short, int, long, long long
2975 float, double, long double
2976 char *, void (*)()
2977
2978 So all these compilers use either ILP32 or LP64 model.
2979 TODO: gcc has more options so it needs more investigation.
2980
2981 For floating point types, see:
2982
2983 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2984 HP-UX floating-point guide, hpux 11.00
2985
2986 -- chastain 2003-12-18 */
2987
2988 static struct gdbarch *
2989 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2990 {
2991 struct gdbarch_tdep *tdep;
2992 struct gdbarch *gdbarch;
2993
2994 /* Try to determine the ABI of the object we are loading. */
2995 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2996 {
2997 /* If it's a SOM file, assume it's HP/UX SOM. */
2998 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2999 info.osabi = GDB_OSABI_HPUX_SOM;
3000 }
3001
3002 /* find a candidate among the list of pre-declared architectures. */
3003 arches = gdbarch_list_lookup_by_info (arches, &info);
3004 if (arches != NULL)
3005 return (arches->gdbarch);
3006
3007 /* If none found, then allocate and initialize one. */
3008 tdep = XZALLOC (struct gdbarch_tdep);
3009 gdbarch = gdbarch_alloc (&info, tdep);
3010
3011 /* Determine from the bfd_arch_info structure if we are dealing with
3012 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3013 then default to a 32bit machine. */
3014 if (info.bfd_arch_info != NULL)
3015 tdep->bytes_per_address =
3016 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3017 else
3018 tdep->bytes_per_address = 4;
3019
3020 tdep->find_global_pointer = hppa_find_global_pointer;
3021
3022 /* Some parts of the gdbarch vector depend on whether we are running
3023 on a 32 bits or 64 bits target. */
3024 switch (tdep->bytes_per_address)
3025 {
3026 case 4:
3027 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3028 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3029 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3030 set_gdbarch_cannot_store_register (gdbarch,
3031 hppa32_cannot_store_register);
3032 set_gdbarch_cannot_fetch_register (gdbarch,
3033 hppa32_cannot_fetch_register);
3034 break;
3035 case 8:
3036 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3037 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3038 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3039 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3040 set_gdbarch_cannot_store_register (gdbarch,
3041 hppa64_cannot_store_register);
3042 set_gdbarch_cannot_fetch_register (gdbarch,
3043 hppa64_cannot_fetch_register);
3044 break;
3045 default:
3046 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3047 tdep->bytes_per_address);
3048 }
3049
3050 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3051 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3052
3053 /* The following gdbarch vector elements are the same in both ILP32
3054 and LP64, but might show differences some day. */
3055 set_gdbarch_long_long_bit (gdbarch, 64);
3056 set_gdbarch_long_double_bit (gdbarch, 128);
3057 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3058
3059 /* The following gdbarch vector elements do not depend on the address
3060 size, or in any other gdbarch element previously set. */
3061 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3062 set_gdbarch_in_function_epilogue_p (gdbarch,
3063 hppa_in_function_epilogue_p);
3064 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3065 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3066 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3067 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
3068 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
3069 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3070 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3071 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3072
3073 /* Helper for function argument information. */
3074 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3075
3076 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3077
3078 /* When a hardware watchpoint triggers, we'll move the inferior past
3079 it by removing all eventpoints; stepping past the instruction
3080 that caused the trigger; reinserting eventpoints; and checking
3081 whether any watched location changed. */
3082 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3083
3084 /* Inferior function call methods. */
3085 switch (tdep->bytes_per_address)
3086 {
3087 case 4:
3088 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3089 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3090 set_gdbarch_convert_from_func_ptr_addr
3091 (gdbarch, hppa32_convert_from_func_ptr_addr);
3092 break;
3093 case 8:
3094 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3095 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3096 break;
3097 default:
3098 internal_error (__FILE__, __LINE__, _("bad switch"));
3099 }
3100
3101 /* Struct return methods. */
3102 switch (tdep->bytes_per_address)
3103 {
3104 case 4:
3105 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3106 break;
3107 case 8:
3108 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3109 break;
3110 default:
3111 internal_error (__FILE__, __LINE__, _("bad switch"));
3112 }
3113
3114 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3115 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3116
3117 /* Frame unwind methods. */
3118 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
3119 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3120
3121 /* Hook in ABI-specific overrides, if they have been registered. */
3122 gdbarch_init_osabi (info, gdbarch);
3123
3124 /* Hook in the default unwinders. */
3125 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3126 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3127 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3128
3129 return gdbarch;
3130 }
3131
3132 static void
3133 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3134 {
3135 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3136
3137 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3138 tdep->bytes_per_address);
3139 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3140 }
3141
3142 void
3143 _initialize_hppa_tdep (void)
3144 {
3145 struct cmd_list_element *c;
3146
3147 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3148
3149 hppa_objfile_priv_data = register_objfile_data ();
3150
3151 add_cmd ("unwind", class_maintenance, unwind_command,
3152 _("Print unwind table entry at given address."),
3153 &maintenanceprintlist);
3154
3155 /* Debug this files internals. */
3156 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3157 Set whether hppa target specific debugging information should be displayed."),
3158 _("\
3159 Show whether hppa target specific debugging information is displayed."), _("\
3160 This flag controls whether hppa target specific debugging information is\n\
3161 displayed. This information is particularly useful for debugging frame\n\
3162 unwinding problems."),
3163 NULL,
3164 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3165 &setdebuglist, &showdebuglist);
3166 }
This page took 0.117602 seconds and 4 git commands to generate.