1 /* Target-dependent code for the HP PA architecture, for GDB.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
32 #include "completer.h"
35 #include "gdb_assert.h"
36 #include "infttrace.h"
37 /* For argument passing to the inferior */
42 #include <sys/types.h>
46 #include <sys/param.h>
49 #include <sys/ptrace.h>
50 #include <machine/save_state.h>
52 #ifdef COFF_ENCAPSULATE
53 #include "a.out.encap.h"
57 /*#include <sys/user.h> After a.out.h */
68 /* Some local constants. */
69 static const int hppa_num_regs
= 128;
71 /* Get at various relevent fields of an instruction word. */
74 #define MASK_14 0x3fff
75 #define MASK_21 0x1fffff
77 /* Define offsets into the call dummy for the target function address.
78 See comments related to CALL_DUMMY for more info. */
79 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
80 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
82 /* Define offsets into the call dummy for the _sr4export address.
83 See comments related to CALL_DUMMY for more info. */
84 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
85 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
87 /* To support detection of the pseudo-initial frame
89 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
90 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
92 /* Sizes (in bytes) of the native unwind entries. */
93 #define UNWIND_ENTRY_SIZE 16
94 #define STUB_UNWIND_ENTRY_SIZE 8
96 static int get_field (unsigned word
, int from
, int to
);
98 static int extract_5_load (unsigned int);
100 static unsigned extract_5R_store (unsigned int);
102 static unsigned extract_5r_store (unsigned int);
104 static void find_dummy_frame_regs (struct frame_info
*, CORE_ADDR
*);
106 static int find_proc_framesize (CORE_ADDR
);
108 static int find_return_regnum (CORE_ADDR
);
110 struct unwind_table_entry
*find_unwind_entry (CORE_ADDR
);
112 static int extract_17 (unsigned int);
114 static unsigned deposit_21 (unsigned int, unsigned int);
116 static int extract_21 (unsigned);
118 static unsigned deposit_14 (int, unsigned int);
120 static int extract_14 (unsigned);
122 static void unwind_command (char *, int);
124 static int low_sign_extend (unsigned int, unsigned int);
126 static int sign_extend (unsigned int, unsigned int);
128 static int restore_pc_queue (CORE_ADDR
*);
130 static int hppa_alignof (struct type
*);
132 /* To support multi-threading and stepping. */
133 int hppa_prepare_to_proceed ();
135 static int prologue_inst_adjust_sp (unsigned long);
137 static int is_branch (unsigned long);
139 static int inst_saves_gr (unsigned long);
141 static int inst_saves_fr (unsigned long);
143 static int pc_in_interrupt_handler (CORE_ADDR
);
145 static int pc_in_linker_stub (CORE_ADDR
);
147 static int compare_unwind_entries (const void *, const void *);
149 static void read_unwind_info (struct objfile
*);
151 static void internalize_unwinds (struct objfile
*,
152 struct unwind_table_entry
*,
153 asection
*, unsigned int,
154 unsigned int, CORE_ADDR
);
155 static void pa_print_registers (char *, int, int);
156 static void pa_strcat_registers (char *, int, int, struct ui_file
*);
157 static void pa_register_look_aside (char *, int, long *);
158 static void pa_print_fp_reg (int);
159 static void pa_strcat_fp_reg (int, struct ui_file
*, enum precision_type
);
160 static void record_text_segment_lowaddr (bfd
*, asection
*, void *);
161 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
162 following functions static, once we hppa is partially multiarched. */
163 int hppa_reg_struct_has_addr (int gcc_p
, struct type
*type
);
164 CORE_ADDR
hppa_skip_prologue (CORE_ADDR pc
);
165 CORE_ADDR
hppa_skip_trampoline_code (CORE_ADDR pc
);
166 int hppa_in_solib_call_trampoline (CORE_ADDR pc
, char *name
);
167 int hppa_in_solib_return_trampoline (CORE_ADDR pc
, char *name
);
168 CORE_ADDR
hppa_saved_pc_after_call (struct frame_info
*frame
);
169 int hppa_inner_than (CORE_ADDR lhs
, CORE_ADDR rhs
);
170 CORE_ADDR
hppa_stack_align (CORE_ADDR sp
);
171 int hppa_pc_requires_run_before_use (CORE_ADDR pc
);
172 int hppa_instruction_nullified (void);
173 int hppa_register_raw_size (int reg_nr
);
174 int hppa_register_byte (int reg_nr
);
175 struct type
* hppa_register_virtual_type (int reg_nr
);
176 void hppa_store_struct_return (CORE_ADDR addr
, CORE_ADDR sp
);
177 void hppa_extract_return_value (struct type
*type
, char *regbuf
, char *valbuf
);
178 int hppa_use_struct_convention (int gcc_p
, struct type
*type
);
179 void hppa_store_return_value (struct type
*type
, char *valbuf
);
180 CORE_ADDR
hppa_extract_struct_value_address (char *regbuf
);
181 int hppa_cannot_store_register (int regnum
);
182 void hppa_init_extra_frame_info (int fromleaf
, struct frame_info
*frame
);
183 CORE_ADDR
hppa_frame_chain (struct frame_info
*frame
);
184 int hppa_frame_chain_valid (CORE_ADDR chain
, struct frame_info
*thisframe
);
185 int hppa_frameless_function_invocation (struct frame_info
*frame
);
186 CORE_ADDR
hppa_frame_saved_pc (struct frame_info
*frame
);
187 CORE_ADDR
hppa_frame_args_address (struct frame_info
*fi
);
188 CORE_ADDR
hppa_frame_locals_address (struct frame_info
*fi
);
189 int hppa_frame_num_args (struct frame_info
*frame
);
190 void hppa_push_dummy_frame (void);
191 void hppa_pop_frame (void);
192 CORE_ADDR
hppa_fix_call_dummy (char *dummy
, CORE_ADDR pc
, CORE_ADDR fun
,
193 int nargs
, struct value
**args
,
194 struct type
*type
, int gcc_p
);
195 CORE_ADDR
hppa_push_arguments (int nargs
, struct value
**args
, CORE_ADDR sp
,
196 int struct_return
, CORE_ADDR struct_addr
);
197 CORE_ADDR
hppa_smash_text_address (CORE_ADDR addr
);
198 CORE_ADDR
hppa_target_read_pc (ptid_t ptid
);
199 void hppa_target_write_pc (CORE_ADDR v
, ptid_t ptid
);
200 CORE_ADDR
hppa_target_read_fp (void);
204 struct minimal_symbol
*msym
;
205 CORE_ADDR solib_handle
;
206 CORE_ADDR return_val
;
210 static int cover_find_stub_with_shl_get (void *);
212 static int is_pa_2
= 0; /* False */
214 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
215 extern int hp_som_som_object_present
;
217 /* In breakpoint.c */
218 extern int exception_catchpoints_are_fragile
;
220 /* Should call_function allocate stack space for a struct return? */
223 hppa_use_struct_convention (int gcc_p
, struct type
*type
)
225 return (TYPE_LENGTH (type
) > 2 * DEPRECATED_REGISTER_SIZE
);
229 /* Routines to extract various sized constants out of hppa
232 /* This assumes that no garbage lies outside of the lower bits of
236 sign_extend (unsigned val
, unsigned bits
)
238 return (int) (val
>> (bits
- 1) ? (-1 << bits
) | val
: val
);
241 /* For many immediate values the sign bit is the low bit! */
244 low_sign_extend (unsigned val
, unsigned bits
)
246 return (int) ((val
& 0x1 ? (-1 << (bits
- 1)) : 0) | val
>> 1);
249 /* Extract the bits at positions between FROM and TO, using HP's numbering
253 get_field (unsigned word
, int from
, int to
)
255 return ((word
) >> (31 - (to
)) & ((1 << ((to
) - (from
) + 1)) - 1));
258 /* extract the immediate field from a ld{bhw}s instruction */
261 extract_5_load (unsigned word
)
263 return low_sign_extend (word
>> 16 & MASK_5
, 5);
266 /* extract the immediate field from a break instruction */
269 extract_5r_store (unsigned word
)
271 return (word
& MASK_5
);
274 /* extract the immediate field from a {sr}sm instruction */
277 extract_5R_store (unsigned word
)
279 return (word
>> 16 & MASK_5
);
282 /* extract a 14 bit immediate field */
285 extract_14 (unsigned word
)
287 return low_sign_extend (word
& MASK_14
, 14);
290 /* deposit a 14 bit constant in a word */
293 deposit_14 (int opnd
, unsigned word
)
295 unsigned sign
= (opnd
< 0 ? 1 : 0);
297 return word
| ((unsigned) opnd
<< 1 & MASK_14
) | sign
;
300 /* extract a 21 bit constant */
303 extract_21 (unsigned word
)
309 val
= get_field (word
, 20, 20);
311 val
|= get_field (word
, 9, 19);
313 val
|= get_field (word
, 5, 6);
315 val
|= get_field (word
, 0, 4);
317 val
|= get_field (word
, 7, 8);
318 return sign_extend (val
, 21) << 11;
321 /* deposit a 21 bit constant in a word. Although 21 bit constants are
322 usually the top 21 bits of a 32 bit constant, we assume that only
323 the low 21 bits of opnd are relevant */
326 deposit_21 (unsigned opnd
, unsigned word
)
330 val
|= get_field (opnd
, 11 + 14, 11 + 18);
332 val
|= get_field (opnd
, 11 + 12, 11 + 13);
334 val
|= get_field (opnd
, 11 + 19, 11 + 20);
336 val
|= get_field (opnd
, 11 + 1, 11 + 11);
338 val
|= get_field (opnd
, 11 + 0, 11 + 0);
342 /* extract a 17 bit constant from branch instructions, returning the
343 19 bit signed value. */
346 extract_17 (unsigned word
)
348 return sign_extend (get_field (word
, 19, 28) |
349 get_field (word
, 29, 29) << 10 |
350 get_field (word
, 11, 15) << 11 |
351 (word
& 0x1) << 16, 17) << 2;
355 /* Compare the start address for two unwind entries returning 1 if
356 the first address is larger than the second, -1 if the second is
357 larger than the first, and zero if they are equal. */
360 compare_unwind_entries (const void *arg1
, const void *arg2
)
362 const struct unwind_table_entry
*a
= arg1
;
363 const struct unwind_table_entry
*b
= arg2
;
365 if (a
->region_start
> b
->region_start
)
367 else if (a
->region_start
< b
->region_start
)
373 static CORE_ADDR low_text_segment_address
;
376 record_text_segment_lowaddr (bfd
*abfd
, asection
*section
, void *ignored
)
378 if (((section
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_READONLY
))
379 == (SEC_ALLOC
| SEC_LOAD
| SEC_READONLY
))
380 && section
->vma
< low_text_segment_address
)
381 low_text_segment_address
= section
->vma
;
385 internalize_unwinds (struct objfile
*objfile
, struct unwind_table_entry
*table
,
386 asection
*section
, unsigned int entries
, unsigned int size
,
387 CORE_ADDR text_offset
)
389 /* We will read the unwind entries into temporary memory, then
390 fill in the actual unwind table. */
395 char *buf
= alloca (size
);
397 low_text_segment_address
= -1;
399 /* If addresses are 64 bits wide, then unwinds are supposed to
400 be segment relative offsets instead of absolute addresses.
402 Note that when loading a shared library (text_offset != 0) the
403 unwinds are already relative to the text_offset that will be
405 if (TARGET_PTR_BIT
== 64 && text_offset
== 0)
407 bfd_map_over_sections (objfile
->obfd
,
408 record_text_segment_lowaddr
, NULL
);
410 /* ?!? Mask off some low bits. Should this instead subtract
411 out the lowest section's filepos or something like that?
412 This looks very hokey to me. */
413 low_text_segment_address
&= ~0xfff;
414 text_offset
+= low_text_segment_address
;
417 bfd_get_section_contents (objfile
->obfd
, section
, buf
, 0, size
);
419 /* Now internalize the information being careful to handle host/target
421 for (i
= 0; i
< entries
; i
++)
423 table
[i
].region_start
= bfd_get_32 (objfile
->obfd
,
425 table
[i
].region_start
+= text_offset
;
427 table
[i
].region_end
= bfd_get_32 (objfile
->obfd
, (bfd_byte
*) buf
);
428 table
[i
].region_end
+= text_offset
;
430 tmp
= bfd_get_32 (objfile
->obfd
, (bfd_byte
*) buf
);
432 table
[i
].Cannot_unwind
= (tmp
>> 31) & 0x1;
433 table
[i
].Millicode
= (tmp
>> 30) & 0x1;
434 table
[i
].Millicode_save_sr0
= (tmp
>> 29) & 0x1;
435 table
[i
].Region_description
= (tmp
>> 27) & 0x3;
436 table
[i
].reserved1
= (tmp
>> 26) & 0x1;
437 table
[i
].Entry_SR
= (tmp
>> 25) & 0x1;
438 table
[i
].Entry_FR
= (tmp
>> 21) & 0xf;
439 table
[i
].Entry_GR
= (tmp
>> 16) & 0x1f;
440 table
[i
].Args_stored
= (tmp
>> 15) & 0x1;
441 table
[i
].Variable_Frame
= (tmp
>> 14) & 0x1;
442 table
[i
].Separate_Package_Body
= (tmp
>> 13) & 0x1;
443 table
[i
].Frame_Extension_Millicode
= (tmp
>> 12) & 0x1;
444 table
[i
].Stack_Overflow_Check
= (tmp
>> 11) & 0x1;
445 table
[i
].Two_Instruction_SP_Increment
= (tmp
>> 10) & 0x1;
446 table
[i
].Ada_Region
= (tmp
>> 9) & 0x1;
447 table
[i
].cxx_info
= (tmp
>> 8) & 0x1;
448 table
[i
].cxx_try_catch
= (tmp
>> 7) & 0x1;
449 table
[i
].sched_entry_seq
= (tmp
>> 6) & 0x1;
450 table
[i
].reserved2
= (tmp
>> 5) & 0x1;
451 table
[i
].Save_SP
= (tmp
>> 4) & 0x1;
452 table
[i
].Save_RP
= (tmp
>> 3) & 0x1;
453 table
[i
].Save_MRP_in_frame
= (tmp
>> 2) & 0x1;
454 table
[i
].extn_ptr_defined
= (tmp
>> 1) & 0x1;
455 table
[i
].Cleanup_defined
= tmp
& 0x1;
456 tmp
= bfd_get_32 (objfile
->obfd
, (bfd_byte
*) buf
);
458 table
[i
].MPE_XL_interrupt_marker
= (tmp
>> 31) & 0x1;
459 table
[i
].HP_UX_interrupt_marker
= (tmp
>> 30) & 0x1;
460 table
[i
].Large_frame
= (tmp
>> 29) & 0x1;
461 table
[i
].Pseudo_SP_Set
= (tmp
>> 28) & 0x1;
462 table
[i
].reserved4
= (tmp
>> 27) & 0x1;
463 table
[i
].Total_frame_size
= tmp
& 0x7ffffff;
465 /* Stub unwinds are handled elsewhere. */
466 table
[i
].stub_unwind
.stub_type
= 0;
467 table
[i
].stub_unwind
.padding
= 0;
472 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
473 the object file. This info is used mainly by find_unwind_entry() to find
474 out the stack frame size and frame pointer used by procedures. We put
475 everything on the psymbol obstack in the objfile so that it automatically
476 gets freed when the objfile is destroyed. */
479 read_unwind_info (struct objfile
*objfile
)
481 asection
*unwind_sec
, *stub_unwind_sec
;
482 unsigned unwind_size
, stub_unwind_size
, total_size
;
483 unsigned index
, unwind_entries
;
484 unsigned stub_entries
, total_entries
;
485 CORE_ADDR text_offset
;
486 struct obj_unwind_info
*ui
;
487 obj_private_data_t
*obj_private
;
489 text_offset
= ANOFFSET (objfile
->section_offsets
, 0);
490 ui
= (struct obj_unwind_info
*) obstack_alloc (&objfile
->psymbol_obstack
,
491 sizeof (struct obj_unwind_info
));
497 /* For reasons unknown the HP PA64 tools generate multiple unwinder
498 sections in a single executable. So we just iterate over every
499 section in the BFD looking for unwinder sections intead of trying
500 to do a lookup with bfd_get_section_by_name.
502 First determine the total size of the unwind tables so that we
503 can allocate memory in a nice big hunk. */
505 for (unwind_sec
= objfile
->obfd
->sections
;
507 unwind_sec
= unwind_sec
->next
)
509 if (strcmp (unwind_sec
->name
, "$UNWIND_START$") == 0
510 || strcmp (unwind_sec
->name
, ".PARISC.unwind") == 0)
512 unwind_size
= bfd_section_size (objfile
->obfd
, unwind_sec
);
513 unwind_entries
= unwind_size
/ UNWIND_ENTRY_SIZE
;
515 total_entries
+= unwind_entries
;
519 /* Now compute the size of the stub unwinds. Note the ELF tools do not
520 use stub unwinds at the curren time. */
521 stub_unwind_sec
= bfd_get_section_by_name (objfile
->obfd
, "$UNWIND_END$");
525 stub_unwind_size
= bfd_section_size (objfile
->obfd
, stub_unwind_sec
);
526 stub_entries
= stub_unwind_size
/ STUB_UNWIND_ENTRY_SIZE
;
530 stub_unwind_size
= 0;
534 /* Compute total number of unwind entries and their total size. */
535 total_entries
+= stub_entries
;
536 total_size
= total_entries
* sizeof (struct unwind_table_entry
);
538 /* Allocate memory for the unwind table. */
539 ui
->table
= (struct unwind_table_entry
*)
540 obstack_alloc (&objfile
->psymbol_obstack
, total_size
);
541 ui
->last
= total_entries
- 1;
543 /* Now read in each unwind section and internalize the standard unwind
546 for (unwind_sec
= objfile
->obfd
->sections
;
548 unwind_sec
= unwind_sec
->next
)
550 if (strcmp (unwind_sec
->name
, "$UNWIND_START$") == 0
551 || strcmp (unwind_sec
->name
, ".PARISC.unwind") == 0)
553 unwind_size
= bfd_section_size (objfile
->obfd
, unwind_sec
);
554 unwind_entries
= unwind_size
/ UNWIND_ENTRY_SIZE
;
556 internalize_unwinds (objfile
, &ui
->table
[index
], unwind_sec
,
557 unwind_entries
, unwind_size
, text_offset
);
558 index
+= unwind_entries
;
562 /* Now read in and internalize the stub unwind entries. */
563 if (stub_unwind_size
> 0)
566 char *buf
= alloca (stub_unwind_size
);
568 /* Read in the stub unwind entries. */
569 bfd_get_section_contents (objfile
->obfd
, stub_unwind_sec
, buf
,
570 0, stub_unwind_size
);
572 /* Now convert them into regular unwind entries. */
573 for (i
= 0; i
< stub_entries
; i
++, index
++)
575 /* Clear out the next unwind entry. */
576 memset (&ui
->table
[index
], 0, sizeof (struct unwind_table_entry
));
578 /* Convert offset & size into region_start and region_end.
579 Stuff away the stub type into "reserved" fields. */
580 ui
->table
[index
].region_start
= bfd_get_32 (objfile
->obfd
,
582 ui
->table
[index
].region_start
+= text_offset
;
584 ui
->table
[index
].stub_unwind
.stub_type
= bfd_get_8 (objfile
->obfd
,
587 ui
->table
[index
].region_end
588 = ui
->table
[index
].region_start
+ 4 *
589 (bfd_get_16 (objfile
->obfd
, (bfd_byte
*) buf
) - 1);
595 /* Unwind table needs to be kept sorted. */
596 qsort (ui
->table
, total_entries
, sizeof (struct unwind_table_entry
),
597 compare_unwind_entries
);
599 /* Keep a pointer to the unwind information. */
600 if (objfile
->obj_private
== NULL
)
602 obj_private
= (obj_private_data_t
*)
603 obstack_alloc (&objfile
->psymbol_obstack
,
604 sizeof (obj_private_data_t
));
605 obj_private
->unwind_info
= NULL
;
606 obj_private
->so_info
= NULL
;
609 objfile
->obj_private
= obj_private
;
611 obj_private
= (obj_private_data_t
*) objfile
->obj_private
;
612 obj_private
->unwind_info
= ui
;
615 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
616 of the objfiles seeking the unwind table entry for this PC. Each objfile
617 contains a sorted list of struct unwind_table_entry. Since we do a binary
618 search of the unwind tables, we depend upon them to be sorted. */
620 struct unwind_table_entry
*
621 find_unwind_entry (CORE_ADDR pc
)
623 int first
, middle
, last
;
624 struct objfile
*objfile
;
626 /* A function at address 0? Not in HP-UX! */
627 if (pc
== (CORE_ADDR
) 0)
630 ALL_OBJFILES (objfile
)
632 struct obj_unwind_info
*ui
;
634 if (objfile
->obj_private
)
635 ui
= ((obj_private_data_t
*) (objfile
->obj_private
))->unwind_info
;
639 read_unwind_info (objfile
);
640 if (objfile
->obj_private
== NULL
)
641 error ("Internal error reading unwind information.");
642 ui
= ((obj_private_data_t
*) (objfile
->obj_private
))->unwind_info
;
645 /* First, check the cache */
648 && pc
>= ui
->cache
->region_start
649 && pc
<= ui
->cache
->region_end
)
652 /* Not in the cache, do a binary search */
657 while (first
<= last
)
659 middle
= (first
+ last
) / 2;
660 if (pc
>= ui
->table
[middle
].region_start
661 && pc
<= ui
->table
[middle
].region_end
)
663 ui
->cache
= &ui
->table
[middle
];
664 return &ui
->table
[middle
];
667 if (pc
< ui
->table
[middle
].region_start
)
672 } /* ALL_OBJFILES() */
676 const unsigned char *
677 hppa_breakpoint_from_pc (CORE_ADDR
*pc
, int *len
)
679 static const char breakpoint
[] = {0x00, 0x01, 0x00, 0x04};
680 (*len
) = sizeof (breakpoint
);
684 /* Return the adjustment necessary to make for addresses on the stack
685 as presented by hpread.c.
687 This is necessary because of the stack direction on the PA and the
688 bizarre way in which someone (?) decided they wanted to handle
689 frame pointerless code in GDB. */
691 hpread_adjust_stack_address (CORE_ADDR func_addr
)
693 struct unwind_table_entry
*u
;
695 u
= find_unwind_entry (func_addr
);
699 return u
->Total_frame_size
<< 3;
702 /* Called to determine if PC is in an interrupt handler of some
706 pc_in_interrupt_handler (CORE_ADDR pc
)
708 struct unwind_table_entry
*u
;
709 struct minimal_symbol
*msym_us
;
711 u
= find_unwind_entry (pc
);
715 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
716 its frame isn't a pure interrupt frame. Deal with this. */
717 msym_us
= lookup_minimal_symbol_by_pc (pc
);
719 return (u
->HP_UX_interrupt_marker
720 && !PC_IN_SIGTRAMP (pc
, DEPRECATED_SYMBOL_NAME (msym_us
)));
723 /* Called when no unwind descriptor was found for PC. Returns 1 if it
724 appears that PC is in a linker stub.
726 ?!? Need to handle stubs which appear in PA64 code. */
729 pc_in_linker_stub (CORE_ADDR pc
)
731 int found_magic_instruction
= 0;
735 /* If unable to read memory, assume pc is not in a linker stub. */
736 if (target_read_memory (pc
, buf
, 4) != 0)
739 /* We are looking for something like
741 ; $$dyncall jams RP into this special spot in the frame (RP')
742 ; before calling the "call stub"
745 ldsid (rp),r1 ; Get space associated with RP into r1
746 mtsp r1,sp ; Move it into space register 0
747 be,n 0(sr0),rp) ; back to your regularly scheduled program */
749 /* Maximum known linker stub size is 4 instructions. Search forward
750 from the given PC, then backward. */
751 for (i
= 0; i
< 4; i
++)
753 /* If we hit something with an unwind, stop searching this direction. */
755 if (find_unwind_entry (pc
+ i
* 4) != 0)
758 /* Check for ldsid (rp),r1 which is the magic instruction for a
759 return from a cross-space function call. */
760 if (read_memory_integer (pc
+ i
* 4, 4) == 0x004010a1)
762 found_magic_instruction
= 1;
765 /* Add code to handle long call/branch and argument relocation stubs
769 if (found_magic_instruction
!= 0)
772 /* Now look backward. */
773 for (i
= 0; i
< 4; i
++)
775 /* If we hit something with an unwind, stop searching this direction. */
777 if (find_unwind_entry (pc
- i
* 4) != 0)
780 /* Check for ldsid (rp),r1 which is the magic instruction for a
781 return from a cross-space function call. */
782 if (read_memory_integer (pc
- i
* 4, 4) == 0x004010a1)
784 found_magic_instruction
= 1;
787 /* Add code to handle long call/branch and argument relocation stubs
790 return found_magic_instruction
;
794 find_return_regnum (CORE_ADDR pc
)
796 struct unwind_table_entry
*u
;
798 u
= find_unwind_entry (pc
);
809 /* Return size of frame, or -1 if we should use a frame pointer. */
811 find_proc_framesize (CORE_ADDR pc
)
813 struct unwind_table_entry
*u
;
814 struct minimal_symbol
*msym_us
;
816 /* This may indicate a bug in our callers... */
817 if (pc
== (CORE_ADDR
) 0)
820 u
= find_unwind_entry (pc
);
824 if (pc_in_linker_stub (pc
))
825 /* Linker stubs have a zero size frame. */
831 msym_us
= lookup_minimal_symbol_by_pc (pc
);
833 /* If Save_SP is set, and we're not in an interrupt or signal caller,
834 then we have a frame pointer. Use it. */
836 && !pc_in_interrupt_handler (pc
)
838 && !PC_IN_SIGTRAMP (pc
, DEPRECATED_SYMBOL_NAME (msym_us
)))
841 return u
->Total_frame_size
<< 3;
844 /* Return offset from sp at which rp is saved, or 0 if not saved. */
845 static int rp_saved (CORE_ADDR
);
848 rp_saved (CORE_ADDR pc
)
850 struct unwind_table_entry
*u
;
852 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
853 if (pc
== (CORE_ADDR
) 0)
856 u
= find_unwind_entry (pc
);
860 if (pc_in_linker_stub (pc
))
861 /* This is the so-called RP'. */
868 return (TARGET_PTR_BIT
== 64 ? -16 : -20);
869 else if (u
->stub_unwind
.stub_type
!= 0)
871 switch (u
->stub_unwind
.stub_type
)
876 case PARAMETER_RELOCATION
:
887 hppa_frameless_function_invocation (struct frame_info
*frame
)
889 struct unwind_table_entry
*u
;
891 u
= find_unwind_entry (get_frame_pc (frame
));
896 return (u
->Total_frame_size
== 0 && u
->stub_unwind
.stub_type
== 0);
899 /* Immediately after a function call, return the saved pc.
900 Can't go through the frames for this because on some machines
901 the new frame is not set up until the new function executes
902 some instructions. */
905 hppa_saved_pc_after_call (struct frame_info
*frame
)
909 struct unwind_table_entry
*u
;
911 ret_regnum
= find_return_regnum (get_frame_pc (frame
));
912 pc
= read_register (ret_regnum
) & ~0x3;
914 /* If PC is in a linker stub, then we need to dig the address
915 the stub will return to out of the stack. */
916 u
= find_unwind_entry (pc
);
917 if (u
&& u
->stub_unwind
.stub_type
!= 0)
918 return DEPRECATED_FRAME_SAVED_PC (frame
);
924 hppa_frame_saved_pc (struct frame_info
*frame
)
926 CORE_ADDR pc
= get_frame_pc (frame
);
927 struct unwind_table_entry
*u
;
928 CORE_ADDR old_pc
= 0;
929 int spun_around_loop
= 0;
932 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
933 at the base of the frame in an interrupt handler. Registers within
934 are saved in the exact same order as GDB numbers registers. How
936 if (pc_in_interrupt_handler (pc
))
937 return read_memory_integer (get_frame_base (frame
) + PC_REGNUM
* 4,
938 TARGET_PTR_BIT
/ 8) & ~0x3;
940 if ((get_frame_pc (frame
) >= get_frame_base (frame
)
941 && (get_frame_pc (frame
)
942 <= (get_frame_base (frame
)
943 /* A call dummy is sized in words, but it is actually a
944 series of instructions. Account for that scaling
946 + ((DEPRECATED_REGISTER_SIZE
/ INSTRUCTION_SIZE
)
947 * DEPRECATED_CALL_DUMMY_LENGTH
)
948 /* Similarly we have to account for 64bit wide register
950 + (32 * DEPRECATED_REGISTER_SIZE
)
951 /* We always consider FP regs 8 bytes long. */
952 + (NUM_REGS
- FP0_REGNUM
) * 8
953 /* Similarly we have to account for 64bit wide register
955 + (6 * DEPRECATED_REGISTER_SIZE
)))))
957 return read_memory_integer ((get_frame_base (frame
)
958 + (TARGET_PTR_BIT
== 64 ? -16 : -20)),
959 TARGET_PTR_BIT
/ 8) & ~0x3;
962 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
963 /* Deal with signal handler caller frames too. */
964 if ((get_frame_type (frame
) == SIGTRAMP_FRAME
))
967 FRAME_SAVED_PC_IN_SIGTRAMP (frame
, &rp
);
972 if (hppa_frameless_function_invocation (frame
))
976 ret_regnum
= find_return_regnum (pc
);
978 /* If the next frame is an interrupt frame or a signal
979 handler caller, then we need to look in the saved
980 register area to get the return pointer (the values
981 in the registers may not correspond to anything useful). */
982 if (get_next_frame (frame
)
983 && ((get_frame_type (get_next_frame (frame
)) == SIGTRAMP_FRAME
)
984 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame
)))))
986 CORE_ADDR
*saved_regs
;
987 hppa_frame_init_saved_regs (get_next_frame (frame
));
988 saved_regs
= get_frame_saved_regs (get_next_frame (frame
));
989 if (read_memory_integer (saved_regs
[FLAGS_REGNUM
],
990 TARGET_PTR_BIT
/ 8) & 0x2)
992 pc
= read_memory_integer (saved_regs
[31],
993 TARGET_PTR_BIT
/ 8) & ~0x3;
995 /* Syscalls are really two frames. The syscall stub itself
996 with a return pointer in %rp and the kernel call with
997 a return pointer in %r31. We return the %rp variant
998 if %r31 is the same as frame->pc. */
999 if (pc
== get_frame_pc (frame
))
1000 pc
= read_memory_integer (saved_regs
[RP_REGNUM
],
1001 TARGET_PTR_BIT
/ 8) & ~0x3;
1004 pc
= read_memory_integer (saved_regs
[RP_REGNUM
],
1005 TARGET_PTR_BIT
/ 8) & ~0x3;
1008 pc
= read_register (ret_regnum
) & ~0x3;
1012 spun_around_loop
= 0;
1016 rp_offset
= rp_saved (pc
);
1018 /* Similar to code in frameless function case. If the next
1019 frame is a signal or interrupt handler, then dig the right
1020 information out of the saved register info. */
1022 && get_next_frame (frame
)
1023 && ((get_frame_type (get_next_frame (frame
)) == SIGTRAMP_FRAME
)
1024 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame
)))))
1026 CORE_ADDR
*saved_regs
;
1027 hppa_frame_init_saved_regs (get_next_frame (frame
));
1028 saved_regs
= get_frame_saved_regs (get_next_frame (frame
));
1029 if (read_memory_integer (saved_regs
[FLAGS_REGNUM
],
1030 TARGET_PTR_BIT
/ 8) & 0x2)
1032 pc
= read_memory_integer (saved_regs
[31],
1033 TARGET_PTR_BIT
/ 8) & ~0x3;
1035 /* Syscalls are really two frames. The syscall stub itself
1036 with a return pointer in %rp and the kernel call with
1037 a return pointer in %r31. We return the %rp variant
1038 if %r31 is the same as frame->pc. */
1039 if (pc
== get_frame_pc (frame
))
1040 pc
= read_memory_integer (saved_regs
[RP_REGNUM
],
1041 TARGET_PTR_BIT
/ 8) & ~0x3;
1044 pc
= read_memory_integer (saved_regs
[RP_REGNUM
],
1045 TARGET_PTR_BIT
/ 8) & ~0x3;
1047 else if (rp_offset
== 0)
1050 pc
= read_register (RP_REGNUM
) & ~0x3;
1055 pc
= read_memory_integer (get_frame_base (frame
) + rp_offset
,
1056 TARGET_PTR_BIT
/ 8) & ~0x3;
1060 /* If PC is inside a linker stub, then dig out the address the stub
1063 Don't do this for long branch stubs. Why? For some unknown reason
1064 _start is marked as a long branch stub in hpux10. */
1065 u
= find_unwind_entry (pc
);
1066 if (u
&& u
->stub_unwind
.stub_type
!= 0
1067 && u
->stub_unwind
.stub_type
!= LONG_BRANCH
)
1071 /* If this is a dynamic executable, and we're in a signal handler,
1072 then the call chain will eventually point us into the stub for
1073 _sigreturn. Unlike most cases, we'll be pointed to the branch
1074 to the real sigreturn rather than the code after the real branch!.
1076 Else, try to dig the address the stub will return to in the normal
1078 insn
= read_memory_integer (pc
, 4);
1079 if ((insn
& 0xfc00e000) == 0xe8000000)
1080 return (pc
+ extract_17 (insn
) + 8) & ~0x3;
1086 if (spun_around_loop
> 1)
1088 /* We're just about to go around the loop again with
1089 no more hope of success. Die. */
1090 error ("Unable to find return pc for this frame");
1100 /* We need to correct the PC and the FP for the outermost frame when we are
1101 in a system call. */
1104 hppa_init_extra_frame_info (int fromleaf
, struct frame_info
*frame
)
1109 if (get_next_frame (frame
) && !fromleaf
)
1112 /* If the next frame represents a frameless function invocation then
1113 we have to do some adjustments that are normally done by
1114 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1118 /* Find the framesize of *this* frame without peeking at the PC
1119 in the current frame structure (it isn't set yet). */
1120 framesize
= find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame
)));
1122 /* Now adjust our base frame accordingly. If we have a frame pointer
1123 use it, else subtract the size of this frame from the current
1124 frame. (we always want frame->frame to point at the lowest address
1126 if (framesize
== -1)
1127 deprecated_update_frame_base_hack (frame
, deprecated_read_fp ());
1129 deprecated_update_frame_base_hack (frame
, get_frame_base (frame
) - framesize
);
1133 flags
= read_register (FLAGS_REGNUM
);
1134 if (flags
& 2) /* In system call? */
1135 deprecated_update_frame_pc_hack (frame
, read_register (31) & ~0x3);
1137 /* The outermost frame is always derived from PC-framesize
1139 One might think frameless innermost frames should have
1140 a frame->frame that is the same as the parent's frame->frame.
1141 That is wrong; frame->frame in that case should be the *high*
1142 address of the parent's frame. It's complicated as hell to
1143 explain, but the parent *always* creates some stack space for
1144 the child. So the child actually does have a frame of some
1145 sorts, and its base is the high address in its parent's frame. */
1146 framesize
= find_proc_framesize (get_frame_pc (frame
));
1147 if (framesize
== -1)
1148 deprecated_update_frame_base_hack (frame
, deprecated_read_fp ());
1150 deprecated_update_frame_base_hack (frame
, read_register (SP_REGNUM
) - framesize
);
1153 /* Given a GDB frame, determine the address of the calling function's
1154 frame. This will be used to create a new GDB frame struct, and
1155 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1156 will be called for the new frame.
1158 This may involve searching through prologues for several functions
1159 at boundaries where GCC calls HP C code, or where code which has
1160 a frame pointer calls code without a frame pointer. */
1163 hppa_frame_chain (struct frame_info
*frame
)
1165 int my_framesize
, caller_framesize
;
1166 struct unwind_table_entry
*u
;
1167 CORE_ADDR frame_base
;
1168 struct frame_info
*tmp_frame
;
1170 /* A frame in the current frame list, or zero. */
1171 struct frame_info
*saved_regs_frame
= 0;
1172 /* Where the registers were saved in saved_regs_frame. If
1173 saved_regs_frame is zero, this is garbage. */
1174 CORE_ADDR
*saved_regs
= NULL
;
1176 CORE_ADDR caller_pc
;
1178 struct minimal_symbol
*min_frame_symbol
;
1179 struct symbol
*frame_symbol
;
1180 char *frame_symbol_name
;
1182 /* If this is a threaded application, and we see the
1183 routine "__pthread_exit", treat it as the stack root
1185 min_frame_symbol
= lookup_minimal_symbol_by_pc (get_frame_pc (frame
));
1186 frame_symbol
= find_pc_function (get_frame_pc (frame
));
1188 if ((min_frame_symbol
!= 0) /* && (frame_symbol == 0) */ )
1190 /* The test above for "no user function name" would defend
1191 against the slim likelihood that a user might define a
1192 routine named "__pthread_exit" and then try to debug it.
1194 If it weren't commented out, and you tried to debug the
1195 pthread library itself, you'd get errors.
1197 So for today, we don't make that check. */
1198 frame_symbol_name
= DEPRECATED_SYMBOL_NAME (min_frame_symbol
);
1199 if (frame_symbol_name
!= 0)
1201 if (0 == strncmp (frame_symbol_name
,
1202 THREAD_INITIAL_FRAME_SYMBOL
,
1203 THREAD_INITIAL_FRAME_SYM_LEN
))
1205 /* Pretend we've reached the bottom of the stack. */
1206 return (CORE_ADDR
) 0;
1209 } /* End of hacky code for threads. */
1211 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1212 are easy; at *sp we have a full save state strucutre which we can
1213 pull the old stack pointer from. Also see frame_saved_pc for
1214 code to dig a saved PC out of the save state structure. */
1215 if (pc_in_interrupt_handler (get_frame_pc (frame
)))
1216 frame_base
= read_memory_integer (get_frame_base (frame
) + SP_REGNUM
* 4,
1217 TARGET_PTR_BIT
/ 8);
1218 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1219 else if ((get_frame_type (frame
) == SIGTRAMP_FRAME
))
1221 FRAME_BASE_BEFORE_SIGTRAMP (frame
, &frame_base
);
1225 frame_base
= get_frame_base (frame
);
1227 /* Get frame sizes for the current frame and the frame of the
1229 my_framesize
= find_proc_framesize (get_frame_pc (frame
));
1230 caller_pc
= DEPRECATED_FRAME_SAVED_PC (frame
);
1232 /* If we can't determine the caller's PC, then it's not likely we can
1233 really determine anything meaningful about its frame. We'll consider
1234 this to be stack bottom. */
1235 if (caller_pc
== (CORE_ADDR
) 0)
1236 return (CORE_ADDR
) 0;
1238 caller_framesize
= find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame
));
1240 /* If caller does not have a frame pointer, then its frame
1241 can be found at current_frame - caller_framesize. */
1242 if (caller_framesize
!= -1)
1244 return frame_base
- caller_framesize
;
1246 /* Both caller and callee have frame pointers and are GCC compiled
1247 (SAVE_SP bit in unwind descriptor is on for both functions.
1248 The previous frame pointer is found at the top of the current frame. */
1249 if (caller_framesize
== -1 && my_framesize
== -1)
1251 return read_memory_integer (frame_base
, TARGET_PTR_BIT
/ 8);
1253 /* Caller has a frame pointer, but callee does not. This is a little
1254 more difficult as GCC and HP C lay out locals and callee register save
1255 areas very differently.
1257 The previous frame pointer could be in a register, or in one of
1258 several areas on the stack.
1260 Walk from the current frame to the innermost frame examining
1261 unwind descriptors to determine if %r3 ever gets saved into the
1262 stack. If so return whatever value got saved into the stack.
1263 If it was never saved in the stack, then the value in %r3 is still
1266 We use information from unwind descriptors to determine if %r3
1267 is saved into the stack (Entry_GR field has this information). */
1269 for (tmp_frame
= frame
; tmp_frame
; tmp_frame
= get_next_frame (tmp_frame
))
1271 u
= find_unwind_entry (get_frame_pc (tmp_frame
));
1275 /* We could find this information by examining prologues. I don't
1276 think anyone has actually written any tools (not even "strip")
1277 which leave them out of an executable, so maybe this is a moot
1279 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1280 code that doesn't have unwind entries. For example, stepping into
1281 the dynamic linker will give you a PC that has none. Thus, I've
1282 disabled this warning. */
1284 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame
));
1286 return (CORE_ADDR
) 0;
1290 || (get_frame_type (tmp_frame
) == SIGTRAMP_FRAME
)
1291 || pc_in_interrupt_handler (get_frame_pc (tmp_frame
)))
1294 /* Entry_GR specifies the number of callee-saved general registers
1295 saved in the stack. It starts at %r3, so %r3 would be 1. */
1296 if (u
->Entry_GR
>= 1)
1298 /* The unwind entry claims that r3 is saved here. However,
1299 in optimized code, GCC often doesn't actually save r3.
1300 We'll discover this if we look at the prologue. */
1301 hppa_frame_init_saved_regs (tmp_frame
);
1302 saved_regs
= get_frame_saved_regs (tmp_frame
);
1303 saved_regs_frame
= tmp_frame
;
1305 /* If we have an address for r3, that's good. */
1306 if (saved_regs
[DEPRECATED_FP_REGNUM
])
1313 /* We may have walked down the chain into a function with a frame
1316 && !(get_frame_type (tmp_frame
) == SIGTRAMP_FRAME
)
1317 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame
)))
1319 return read_memory_integer (get_frame_base (tmp_frame
), TARGET_PTR_BIT
/ 8);
1321 /* %r3 was saved somewhere in the stack. Dig it out. */
1326 For optimization purposes many kernels don't have the
1327 callee saved registers into the save_state structure upon
1328 entry into the kernel for a syscall; the optimization
1329 is usually turned off if the process is being traced so
1330 that the debugger can get full register state for the
1333 This scheme works well except for two cases:
1335 * Attaching to a process when the process is in the
1336 kernel performing a system call (debugger can't get
1337 full register state for the inferior process since
1338 the process wasn't being traced when it entered the
1341 * Register state is not complete if the system call
1342 causes the process to core dump.
1345 The following heinous code is an attempt to deal with
1346 the lack of register state in a core dump. It will
1347 fail miserably if the function which performs the
1348 system call has a variable sized stack frame. */
1350 if (tmp_frame
!= saved_regs_frame
)
1352 hppa_frame_init_saved_regs (tmp_frame
);
1353 saved_regs
= get_frame_saved_regs (tmp_frame
);
1356 /* Abominable hack. */
1357 if (current_target
.to_has_execution
== 0
1358 && ((saved_regs
[FLAGS_REGNUM
]
1359 && (read_memory_integer (saved_regs
[FLAGS_REGNUM
],
1362 || (saved_regs
[FLAGS_REGNUM
] == 0
1363 && read_register (FLAGS_REGNUM
) & 0x2)))
1365 u
= find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame
));
1368 return read_memory_integer (saved_regs
[DEPRECATED_FP_REGNUM
],
1369 TARGET_PTR_BIT
/ 8);
1373 return frame_base
- (u
->Total_frame_size
<< 3);
1377 return read_memory_integer (saved_regs
[DEPRECATED_FP_REGNUM
],
1378 TARGET_PTR_BIT
/ 8);
1383 /* Get the innermost frame. */
1385 while (get_next_frame (tmp_frame
) != NULL
)
1386 tmp_frame
= get_next_frame (tmp_frame
);
1388 if (tmp_frame
!= saved_regs_frame
)
1390 hppa_frame_init_saved_regs (tmp_frame
);
1391 saved_regs
= get_frame_saved_regs (tmp_frame
);
1394 /* Abominable hack. See above. */
1395 if (current_target
.to_has_execution
== 0
1396 && ((saved_regs
[FLAGS_REGNUM
]
1397 && (read_memory_integer (saved_regs
[FLAGS_REGNUM
],
1400 || (saved_regs
[FLAGS_REGNUM
] == 0
1401 && read_register (FLAGS_REGNUM
) & 0x2)))
1403 u
= find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame
));
1406 return read_memory_integer (saved_regs
[DEPRECATED_FP_REGNUM
],
1407 TARGET_PTR_BIT
/ 8);
1411 return frame_base
- (u
->Total_frame_size
<< 3);
1415 /* The value in %r3 was never saved into the stack (thus %r3 still
1416 holds the value of the previous frame pointer). */
1417 return deprecated_read_fp ();
1422 /* To see if a frame chain is valid, see if the caller looks like it
1423 was compiled with gcc. */
1426 hppa_frame_chain_valid (CORE_ADDR chain
, struct frame_info
*thisframe
)
1428 struct minimal_symbol
*msym_us
;
1429 struct minimal_symbol
*msym_start
;
1430 struct unwind_table_entry
*u
, *next_u
= NULL
;
1431 struct frame_info
*next
;
1433 u
= find_unwind_entry (get_frame_pc (thisframe
));
1438 /* We can't just check that the same of msym_us is "_start", because
1439 someone idiotically decided that they were going to make a Ltext_end
1440 symbol with the same address. This Ltext_end symbol is totally
1441 indistinguishable (as nearly as I can tell) from the symbol for a function
1442 which is (legitimately, since it is in the user's namespace)
1443 named Ltext_end, so we can't just ignore it. */
1444 msym_us
= lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe
));
1445 msym_start
= lookup_minimal_symbol ("_start", NULL
, NULL
);
1448 && SYMBOL_VALUE_ADDRESS (msym_us
) == SYMBOL_VALUE_ADDRESS (msym_start
))
1451 /* Grrrr. Some new idiot decided that they don't want _start for the
1452 PRO configurations; $START$ calls main directly.... Deal with it. */
1453 msym_start
= lookup_minimal_symbol ("$START$", NULL
, NULL
);
1456 && SYMBOL_VALUE_ADDRESS (msym_us
) == SYMBOL_VALUE_ADDRESS (msym_start
))
1459 next
= get_next_frame (thisframe
);
1461 next_u
= find_unwind_entry (get_frame_pc (next
));
1463 /* If this frame does not save SP, has no stack, isn't a stub,
1464 and doesn't "call" an interrupt routine or signal handler caller,
1465 then its not valid. */
1466 if (u
->Save_SP
|| u
->Total_frame_size
|| u
->stub_unwind
.stub_type
!= 0
1467 || (get_next_frame (thisframe
) && (get_frame_type (get_next_frame (thisframe
)) == SIGTRAMP_FRAME
))
1468 || (next_u
&& next_u
->HP_UX_interrupt_marker
))
1471 if (pc_in_linker_stub (get_frame_pc (thisframe
)))
1477 /* These functions deal with saving and restoring register state
1478 around a function call in the inferior. They keep the stack
1479 double-word aligned; eventually, on an hp700, the stack will have
1480 to be aligned to a 64-byte boundary. */
1483 hppa_push_dummy_frame (void)
1485 CORE_ADDR sp
, pc
, pcspace
;
1486 register int regnum
;
1487 CORE_ADDR int_buffer
;
1490 pc
= hppa_target_read_pc (inferior_ptid
);
1491 int_buffer
= read_register (FLAGS_REGNUM
);
1492 if (int_buffer
& 0x2)
1494 const unsigned int sid
= (pc
>> 30) & 0x3;
1496 pcspace
= read_register (SR4_REGNUM
);
1498 pcspace
= read_register (SR4_REGNUM
+ 4 + sid
);
1501 pcspace
= read_register (PCSQ_HEAD_REGNUM
);
1503 /* Space for "arguments"; the RP goes in here. */
1504 sp
= read_register (SP_REGNUM
) + 48;
1505 int_buffer
= read_register (RP_REGNUM
) | 0x3;
1507 /* The 32bit and 64bit ABIs save the return pointer into different
1509 if (DEPRECATED_REGISTER_SIZE
== 8)
1510 write_memory (sp
- 16, (char *) &int_buffer
, DEPRECATED_REGISTER_SIZE
);
1512 write_memory (sp
- 20, (char *) &int_buffer
, DEPRECATED_REGISTER_SIZE
);
1514 int_buffer
= deprecated_read_fp ();
1515 write_memory (sp
, (char *) &int_buffer
, DEPRECATED_REGISTER_SIZE
);
1517 write_register (DEPRECATED_FP_REGNUM
, sp
);
1519 sp
+= 2 * DEPRECATED_REGISTER_SIZE
;
1521 for (regnum
= 1; regnum
< 32; regnum
++)
1522 if (regnum
!= RP_REGNUM
&& regnum
!= DEPRECATED_FP_REGNUM
)
1523 sp
= push_word (sp
, read_register (regnum
));
1525 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1526 if (DEPRECATED_REGISTER_SIZE
!= 8)
1529 for (regnum
= FP0_REGNUM
; regnum
< NUM_REGS
; regnum
++)
1531 deprecated_read_register_bytes (REGISTER_BYTE (regnum
),
1532 (char *) &freg_buffer
, 8);
1533 sp
= push_bytes (sp
, (char *) &freg_buffer
, 8);
1535 sp
= push_word (sp
, read_register (IPSW_REGNUM
));
1536 sp
= push_word (sp
, read_register (SAR_REGNUM
));
1537 sp
= push_word (sp
, pc
);
1538 sp
= push_word (sp
, pcspace
);
1539 sp
= push_word (sp
, pc
+ 4);
1540 sp
= push_word (sp
, pcspace
);
1541 write_register (SP_REGNUM
, sp
);
1545 find_dummy_frame_regs (struct frame_info
*frame
,
1546 CORE_ADDR frame_saved_regs
[])
1548 CORE_ADDR fp
= get_frame_base (frame
);
1551 /* The 32bit and 64bit ABIs save RP into different locations. */
1552 if (DEPRECATED_REGISTER_SIZE
== 8)
1553 frame_saved_regs
[RP_REGNUM
] = (fp
- 16) & ~0x3;
1555 frame_saved_regs
[RP_REGNUM
] = (fp
- 20) & ~0x3;
1557 frame_saved_regs
[DEPRECATED_FP_REGNUM
] = fp
;
1559 frame_saved_regs
[1] = fp
+ (2 * DEPRECATED_REGISTER_SIZE
);
1561 for (fp
+= 3 * DEPRECATED_REGISTER_SIZE
, i
= 3; i
< 32; i
++)
1563 if (i
!= DEPRECATED_FP_REGNUM
)
1565 frame_saved_regs
[i
] = fp
;
1566 fp
+= DEPRECATED_REGISTER_SIZE
;
1570 /* This is not necessary or desirable for the 64bit ABI. */
1571 if (DEPRECATED_REGISTER_SIZE
!= 8)
1574 for (i
= FP0_REGNUM
; i
< NUM_REGS
; i
++, fp
+= 8)
1575 frame_saved_regs
[i
] = fp
;
1577 frame_saved_regs
[IPSW_REGNUM
] = fp
;
1578 frame_saved_regs
[SAR_REGNUM
] = fp
+ DEPRECATED_REGISTER_SIZE
;
1579 frame_saved_regs
[PCOQ_HEAD_REGNUM
] = fp
+ 2 * DEPRECATED_REGISTER_SIZE
;
1580 frame_saved_regs
[PCSQ_HEAD_REGNUM
] = fp
+ 3 * DEPRECATED_REGISTER_SIZE
;
1581 frame_saved_regs
[PCOQ_TAIL_REGNUM
] = fp
+ 4 * DEPRECATED_REGISTER_SIZE
;
1582 frame_saved_regs
[PCSQ_TAIL_REGNUM
] = fp
+ 5 * DEPRECATED_REGISTER_SIZE
;
1586 hppa_pop_frame (void)
1588 register struct frame_info
*frame
= get_current_frame ();
1589 register CORE_ADDR fp
, npc
, target_pc
;
1590 register int regnum
;
1594 fp
= get_frame_base (frame
);
1595 hppa_frame_init_saved_regs (frame
);
1596 fsr
= get_frame_saved_regs (frame
);
1598 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1599 if (fsr
[IPSW_REGNUM
]) /* Restoring a call dummy frame */
1600 restore_pc_queue (fsr
);
1603 for (regnum
= 31; regnum
> 0; regnum
--)
1605 write_register (regnum
, read_memory_integer (fsr
[regnum
],
1606 DEPRECATED_REGISTER_SIZE
));
1608 for (regnum
= NUM_REGS
- 1; regnum
>= FP0_REGNUM
; regnum
--)
1611 read_memory (fsr
[regnum
], (char *) &freg_buffer
, 8);
1612 deprecated_write_register_bytes (REGISTER_BYTE (regnum
),
1613 (char *) &freg_buffer
, 8);
1616 if (fsr
[IPSW_REGNUM
])
1617 write_register (IPSW_REGNUM
,
1618 read_memory_integer (fsr
[IPSW_REGNUM
],
1619 DEPRECATED_REGISTER_SIZE
));
1621 if (fsr
[SAR_REGNUM
])
1622 write_register (SAR_REGNUM
,
1623 read_memory_integer (fsr
[SAR_REGNUM
],
1624 DEPRECATED_REGISTER_SIZE
));
1626 /* If the PC was explicitly saved, then just restore it. */
1627 if (fsr
[PCOQ_TAIL_REGNUM
])
1629 npc
= read_memory_integer (fsr
[PCOQ_TAIL_REGNUM
],
1630 DEPRECATED_REGISTER_SIZE
);
1631 write_register (PCOQ_TAIL_REGNUM
, npc
);
1633 /* Else use the value in %rp to set the new PC. */
1636 npc
= read_register (RP_REGNUM
);
1640 write_register (DEPRECATED_FP_REGNUM
, read_memory_integer (fp
, DEPRECATED_REGISTER_SIZE
));
1642 if (fsr
[IPSW_REGNUM
]) /* call dummy */
1643 write_register (SP_REGNUM
, fp
- 48);
1645 write_register (SP_REGNUM
, fp
);
1647 /* The PC we just restored may be inside a return trampoline. If so
1648 we want to restart the inferior and run it through the trampoline.
1650 Do this by setting a momentary breakpoint at the location the
1651 trampoline returns to.
1653 Don't skip through the trampoline if we're popping a dummy frame. */
1654 target_pc
= SKIP_TRAMPOLINE_CODE (npc
& ~0x3) & ~0x3;
1655 if (target_pc
&& !fsr
[IPSW_REGNUM
])
1657 struct symtab_and_line sal
;
1658 struct breakpoint
*breakpoint
;
1659 struct cleanup
*old_chain
;
1661 /* Set up our breakpoint. Set it to be silent as the MI code
1662 for "return_command" will print the frame we returned to. */
1663 sal
= find_pc_line (target_pc
, 0);
1665 breakpoint
= set_momentary_breakpoint (sal
, null_frame_id
, bp_finish
);
1666 breakpoint
->silent
= 1;
1668 /* So we can clean things up. */
1669 old_chain
= make_cleanup_delete_breakpoint (breakpoint
);
1671 /* Start up the inferior. */
1672 clear_proceed_status ();
1673 proceed_to_finish
= 1;
1674 proceed ((CORE_ADDR
) -1, TARGET_SIGNAL_DEFAULT
, 0);
1676 /* Perform our cleanups. */
1677 do_cleanups (old_chain
);
1679 flush_cached_frames ();
1682 /* After returning to a dummy on the stack, restore the instruction
1683 queue space registers. */
1686 restore_pc_queue (CORE_ADDR
*fsr
)
1688 CORE_ADDR pc
= read_pc ();
1689 CORE_ADDR new_pc
= read_memory_integer (fsr
[PCOQ_HEAD_REGNUM
],
1690 TARGET_PTR_BIT
/ 8);
1691 struct target_waitstatus w
;
1694 /* Advance past break instruction in the call dummy. */
1695 write_register (PCOQ_HEAD_REGNUM
, pc
+ 4);
1696 write_register (PCOQ_TAIL_REGNUM
, pc
+ 8);
1698 /* HPUX doesn't let us set the space registers or the space
1699 registers of the PC queue through ptrace. Boo, hiss.
1700 Conveniently, the call dummy has this sequence of instructions
1705 So, load up the registers and single step until we are in the
1708 write_register (21, read_memory_integer (fsr
[PCSQ_HEAD_REGNUM
],
1709 DEPRECATED_REGISTER_SIZE
));
1710 write_register (22, new_pc
);
1712 for (insn_count
= 0; insn_count
< 3; insn_count
++)
1714 /* FIXME: What if the inferior gets a signal right now? Want to
1715 merge this into wait_for_inferior (as a special kind of
1716 watchpoint? By setting a breakpoint at the end? Is there
1717 any other choice? Is there *any* way to do this stuff with
1718 ptrace() or some equivalent?). */
1720 target_wait (inferior_ptid
, &w
);
1722 if (w
.kind
== TARGET_WAITKIND_SIGNALLED
)
1724 stop_signal
= w
.value
.sig
;
1725 terminal_ours_for_output ();
1726 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1727 target_signal_to_name (stop_signal
),
1728 target_signal_to_string (stop_signal
));
1729 gdb_flush (gdb_stdout
);
1733 target_terminal_ours ();
1734 target_fetch_registers (-1);
1739 #ifdef PA20W_CALLING_CONVENTIONS
1741 /* This function pushes a stack frame with arguments as part of the
1742 inferior function calling mechanism.
1744 This is the version for the PA64, in which later arguments appear
1745 at higher addresses. (The stack always grows towards higher
1748 We simply allocate the appropriate amount of stack space and put
1749 arguments into their proper slots. The call dummy code will copy
1750 arguments into registers as needed by the ABI.
1752 This ABI also requires that the caller provide an argument pointer
1753 to the callee, so we do that too. */
1756 hppa_push_arguments (int nargs
, struct value
**args
, CORE_ADDR sp
,
1757 int struct_return
, CORE_ADDR struct_addr
)
1759 /* array of arguments' offsets */
1760 int *offset
= (int *) alloca (nargs
* sizeof (int));
1762 /* array of arguments' lengths: real lengths in bytes, not aligned to
1764 int *lengths
= (int *) alloca (nargs
* sizeof (int));
1766 /* The value of SP as it was passed into this function after
1768 CORE_ADDR orig_sp
= STACK_ALIGN (sp
);
1770 /* The number of stack bytes occupied by the current argument. */
1773 /* The total number of bytes reserved for the arguments. */
1774 int cum_bytes_reserved
= 0;
1776 /* Similarly, but aligned. */
1777 int cum_bytes_aligned
= 0;
1780 /* Iterate over each argument provided by the user. */
1781 for (i
= 0; i
< nargs
; i
++)
1783 struct type
*arg_type
= VALUE_TYPE (args
[i
]);
1785 /* Integral scalar values smaller than a register are padded on
1786 the left. We do this by promoting them to full-width,
1787 although the ABI says to pad them with garbage. */
1788 if (is_integral_type (arg_type
)
1789 && TYPE_LENGTH (arg_type
) < DEPRECATED_REGISTER_SIZE
)
1791 args
[i
] = value_cast ((TYPE_UNSIGNED (arg_type
)
1792 ? builtin_type_unsigned_long
1793 : builtin_type_long
),
1795 arg_type
= VALUE_TYPE (args
[i
]);
1798 lengths
[i
] = TYPE_LENGTH (arg_type
);
1800 /* Align the size of the argument to the word size for this
1802 bytes_reserved
= (lengths
[i
] + DEPRECATED_REGISTER_SIZE
- 1) & -DEPRECATED_REGISTER_SIZE
;
1804 offset
[i
] = cum_bytes_reserved
;
1806 /* Aggregates larger than eight bytes (the only types larger
1807 than eight bytes we have) are aligned on a 16-byte boundary,
1808 possibly padded on the right with garbage. This may leave an
1809 empty word on the stack, and thus an unused register, as per
1811 if (bytes_reserved
> 8)
1813 /* Round up the offset to a multiple of two slots. */
1814 int new_offset
= ((offset
[i
] + 2*DEPRECATED_REGISTER_SIZE
-1)
1815 & -(2*DEPRECATED_REGISTER_SIZE
));
1817 /* Note the space we've wasted, if any. */
1818 bytes_reserved
+= new_offset
- offset
[i
];
1819 offset
[i
] = new_offset
;
1822 cum_bytes_reserved
+= bytes_reserved
;
1825 /* CUM_BYTES_RESERVED already accounts for all the arguments
1826 passed by the user. However, the ABIs mandate minimum stack space
1827 allocations for outgoing arguments.
1829 The ABIs also mandate minimum stack alignments which we must
1831 cum_bytes_aligned
= STACK_ALIGN (cum_bytes_reserved
);
1832 sp
+= max (cum_bytes_aligned
, REG_PARM_STACK_SPACE
);
1834 /* Now write each of the args at the proper offset down the stack. */
1835 for (i
= 0; i
< nargs
; i
++)
1836 write_memory (orig_sp
+ offset
[i
], VALUE_CONTENTS (args
[i
]), lengths
[i
]);
1838 /* If a structure has to be returned, set up register 28 to hold its
1841 write_register (28, struct_addr
);
1843 /* For the PA64 we must pass a pointer to the outgoing argument list.
1844 The ABI mandates that the pointer should point to the first byte of
1845 storage beyond the register flushback area.
1847 However, the call dummy expects the outgoing argument pointer to
1848 be passed in register %r4. */
1849 write_register (4, orig_sp
+ REG_PARM_STACK_SPACE
);
1851 /* ?!? This needs further work. We need to set up the global data
1852 pointer for this procedure. This assumes the same global pointer
1853 for every procedure. The call dummy expects the dp value to
1854 be passed in register %r6. */
1855 write_register (6, read_register (27));
1857 /* The stack will have 64 bytes of additional space for a frame marker. */
1863 /* This function pushes a stack frame with arguments as part of the
1864 inferior function calling mechanism.
1866 This is the version of the function for the 32-bit PA machines, in
1867 which later arguments appear at lower addresses. (The stack always
1868 grows towards higher addresses.)
1870 We simply allocate the appropriate amount of stack space and put
1871 arguments into their proper slots. The call dummy code will copy
1872 arguments into registers as needed by the ABI. */
1875 hppa_push_arguments (int nargs
, struct value
**args
, CORE_ADDR sp
,
1876 int struct_return
, CORE_ADDR struct_addr
)
1878 /* array of arguments' offsets */
1879 int *offset
= (int *) alloca (nargs
* sizeof (int));
1881 /* array of arguments' lengths: real lengths in bytes, not aligned to
1883 int *lengths
= (int *) alloca (nargs
* sizeof (int));
1885 /* The number of stack bytes occupied by the current argument. */
1888 /* The total number of bytes reserved for the arguments. */
1889 int cum_bytes_reserved
= 0;
1891 /* Similarly, but aligned. */
1892 int cum_bytes_aligned
= 0;
1895 /* Iterate over each argument provided by the user. */
1896 for (i
= 0; i
< nargs
; i
++)
1898 lengths
[i
] = TYPE_LENGTH (VALUE_TYPE (args
[i
]));
1900 /* Align the size of the argument to the word size for this
1902 bytes_reserved
= (lengths
[i
] + DEPRECATED_REGISTER_SIZE
- 1) & -DEPRECATED_REGISTER_SIZE
;
1904 offset
[i
] = (cum_bytes_reserved
1905 + (lengths
[i
] > 4 ? bytes_reserved
: lengths
[i
]));
1907 /* If the argument is a double word argument, then it needs to be
1908 double word aligned. */
1909 if ((bytes_reserved
== 2 * DEPRECATED_REGISTER_SIZE
)
1910 && (offset
[i
] % 2 * DEPRECATED_REGISTER_SIZE
))
1913 /* BYTES_RESERVED is already aligned to the word, so we put
1914 the argument at one word more down the stack.
1916 This will leave one empty word on the stack, and one unused
1917 register as mandated by the ABI. */
1918 new_offset
= ((offset
[i
] + 2 * DEPRECATED_REGISTER_SIZE
- 1)
1919 & -(2 * DEPRECATED_REGISTER_SIZE
));
1921 if ((new_offset
- offset
[i
]) >= 2 * DEPRECATED_REGISTER_SIZE
)
1923 bytes_reserved
+= DEPRECATED_REGISTER_SIZE
;
1924 offset
[i
] += DEPRECATED_REGISTER_SIZE
;
1928 cum_bytes_reserved
+= bytes_reserved
;
1932 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1933 by the user. However, the ABI mandates minimum stack space
1934 allocations for outgoing arguments.
1936 The ABI also mandates minimum stack alignments which we must
1938 cum_bytes_aligned
= STACK_ALIGN (cum_bytes_reserved
);
1939 sp
+= max (cum_bytes_aligned
, REG_PARM_STACK_SPACE
);
1941 /* Now write each of the args at the proper offset down the stack.
1942 ?!? We need to promote values to a full register instead of skipping
1943 words in the stack. */
1944 for (i
= 0; i
< nargs
; i
++)
1945 write_memory (sp
- offset
[i
], VALUE_CONTENTS (args
[i
]), lengths
[i
]);
1947 /* If a structure has to be returned, set up register 28 to hold its
1950 write_register (28, struct_addr
);
1952 /* The stack will have 32 bytes of additional space for a frame marker. */
1958 /* elz: this function returns a value which is built looking at the given address.
1959 It is called from call_function_by_hand, in case we need to return a
1960 value which is larger than 64 bits, and it is stored in the stack rather than
1961 in the registers r28 and r29 or fr4.
1962 This function does the same stuff as value_being_returned in values.c, but
1963 gets the value from the stack rather than from the buffer where all the
1964 registers were saved when the function called completed. */
1966 hppa_value_returned_from_stack (register struct type
*valtype
, CORE_ADDR addr
)
1968 register struct value
*val
;
1970 val
= allocate_value (valtype
);
1971 CHECK_TYPEDEF (valtype
);
1972 target_read_memory (addr
, VALUE_CONTENTS_RAW (val
), TYPE_LENGTH (valtype
));
1979 /* elz: Used to lookup a symbol in the shared libraries.
1980 This function calls shl_findsym, indirectly through a
1981 call to __d_shl_get. __d_shl_get is in end.c, which is always
1982 linked in by the hp compilers/linkers.
1983 The call to shl_findsym cannot be made directly because it needs
1984 to be active in target address space.
1985 inputs: - minimal symbol pointer for the function we want to look up
1986 - address in target space of the descriptor for the library
1987 where we want to look the symbol up.
1988 This address is retrieved using the
1989 som_solib_get_solib_by_pc function (somsolib.c).
1990 output: - real address in the library of the function.
1991 note: the handle can be null, in which case shl_findsym will look for
1992 the symbol in all the loaded shared libraries.
1993 files to look at if you need reference on this stuff:
1994 dld.c, dld_shl_findsym.c
1996 man entry for shl_findsym */
1999 find_stub_with_shl_get (struct minimal_symbol
*function
, CORE_ADDR handle
)
2001 struct symbol
*get_sym
, *symbol2
;
2002 struct minimal_symbol
*buff_minsym
, *msymbol
;
2004 struct value
**args
;
2005 struct value
*funcval
;
2008 int x
, namelen
, err_value
, tmp
= -1;
2009 CORE_ADDR endo_buff_addr
, value_return_addr
, errno_return_addr
;
2010 CORE_ADDR stub_addr
;
2013 args
= alloca (sizeof (struct value
*) * 8); /* 6 for the arguments and one null one??? */
2014 funcval
= find_function_in_inferior ("__d_shl_get");
2015 get_sym
= lookup_symbol ("__d_shl_get", NULL
, VAR_DOMAIN
, NULL
, NULL
);
2016 buff_minsym
= lookup_minimal_symbol ("__buffer", NULL
, NULL
);
2017 msymbol
= lookup_minimal_symbol ("__shldp", NULL
, NULL
);
2018 symbol2
= lookup_symbol ("__shldp", NULL
, VAR_DOMAIN
, NULL
, NULL
);
2019 endo_buff_addr
= SYMBOL_VALUE_ADDRESS (buff_minsym
);
2020 namelen
= strlen (DEPRECATED_SYMBOL_NAME (function
));
2021 value_return_addr
= endo_buff_addr
+ namelen
;
2022 ftype
= check_typedef (SYMBOL_TYPE (get_sym
));
2025 if ((x
= value_return_addr
% 64) != 0)
2026 value_return_addr
= value_return_addr
+ 64 - x
;
2028 errno_return_addr
= value_return_addr
+ 64;
2031 /* set up stuff needed by __d_shl_get in buffer in end.o */
2033 target_write_memory (endo_buff_addr
, DEPRECATED_SYMBOL_NAME (function
), namelen
);
2035 target_write_memory (value_return_addr
, (char *) &tmp
, 4);
2037 target_write_memory (errno_return_addr
, (char *) &tmp
, 4);
2039 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol
),
2040 (char *) &handle
, 4);
2042 /* now prepare the arguments for the call */
2044 args
[0] = value_from_longest (TYPE_FIELD_TYPE (ftype
, 0), 12);
2045 args
[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype
, 1), SYMBOL_VALUE_ADDRESS (msymbol
));
2046 args
[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype
, 2), endo_buff_addr
);
2047 args
[3] = value_from_longest (TYPE_FIELD_TYPE (ftype
, 3), TYPE_PROCEDURE
);
2048 args
[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype
, 4), value_return_addr
);
2049 args
[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype
, 5), errno_return_addr
);
2051 /* now call the function */
2053 val
= call_function_by_hand (funcval
, 6, args
);
2055 /* now get the results */
2057 target_read_memory (errno_return_addr
, (char *) &err_value
, sizeof (err_value
));
2059 target_read_memory (value_return_addr
, (char *) &stub_addr
, sizeof (stub_addr
));
2061 error ("call to __d_shl_get failed, error code is %d", err_value
);
2066 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
2068 cover_find_stub_with_shl_get (void *args_untyped
)
2070 args_for_find_stub
*args
= args_untyped
;
2071 args
->return_val
= find_stub_with_shl_get (args
->msym
, args
->solib_handle
);
2075 /* Insert the specified number of args and function address
2076 into a call sequence of the above form stored at DUMMYNAME.
2078 On the hppa we need to call the stack dummy through $$dyncall.
2079 Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra
2080 argument, real_pc, which is the location where gdb should start up
2081 the inferior to do the function call.
2083 This has to work across several versions of hpux, bsd, osf1. It has to
2084 work regardless of what compiler was used to build the inferior program.
2085 It should work regardless of whether or not end.o is available. It has
2086 to work even if gdb can not call into the dynamic loader in the inferior
2087 to query it for symbol names and addresses.
2089 Yes, all those cases should work. Luckily code exists to handle most
2090 of them. The complexity is in selecting exactly what scheme should
2091 be used to perform the inferior call.
2093 At the current time this routine is known not to handle cases where
2094 the program was linked with HP's compiler without including end.o.
2096 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2099 hppa_fix_call_dummy (char *dummy
, CORE_ADDR pc
, CORE_ADDR fun
, int nargs
,
2100 struct value
**args
, struct type
*type
, int gcc_p
)
2102 CORE_ADDR dyncall_addr
;
2103 struct minimal_symbol
*msymbol
;
2104 struct minimal_symbol
*trampoline
;
2105 int flags
= read_register (FLAGS_REGNUM
);
2106 struct unwind_table_entry
*u
= NULL
;
2107 CORE_ADDR new_stub
= 0;
2108 CORE_ADDR solib_handle
= 0;
2110 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2111 passed an import stub, not a PLABEL. It is also necessary to set %r19
2112 (the PIC register) before performing the call.
2114 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2115 are calling the target directly. When using __d_plt_call we want to
2116 use a PLABEL instead of an import stub. */
2117 int using_gcc_plt_call
= 1;
2119 #ifdef GDB_TARGET_IS_HPPA_20W
2120 /* We currently use completely different code for the PA2.0W inferior
2121 function call sequences. This needs to be cleaned up. */
2123 CORE_ADDR pcsqh
, pcsqt
, pcoqh
, pcoqt
, sr5
;
2124 struct target_waitstatus w
;
2128 struct objfile
*objfile
;
2130 /* We can not modify the PC space queues directly, so we start
2131 up the inferior and execute a couple instructions to set the
2132 space queues so that they point to the call dummy in the stack. */
2133 pcsqh
= read_register (PCSQ_HEAD_REGNUM
);
2134 sr5
= read_register (SR5_REGNUM
);
2137 pcoqh
= read_register (PCOQ_HEAD_REGNUM
);
2138 pcoqt
= read_register (PCOQ_TAIL_REGNUM
);
2139 if (target_read_memory (pcoqh
, buf
, 4) != 0)
2140 error ("Couldn't modify space queue\n");
2141 inst1
= extract_unsigned_integer (buf
, 4);
2143 if (target_read_memory (pcoqt
, buf
, 4) != 0)
2144 error ("Couldn't modify space queue\n");
2145 inst2
= extract_unsigned_integer (buf
, 4);
2148 *((int *) buf
) = 0xe820d000;
2149 if (target_write_memory (pcoqh
, buf
, 4) != 0)
2150 error ("Couldn't modify space queue\n");
2153 *((int *) buf
) = 0x08000240;
2154 if (target_write_memory (pcoqt
, buf
, 4) != 0)
2156 *((int *) buf
) = inst1
;
2157 target_write_memory (pcoqh
, buf
, 4);
2158 error ("Couldn't modify space queue\n");
2161 write_register (1, pc
);
2163 /* Single step twice, the BVE instruction will set the space queue
2164 such that it points to the PC value written immediately above
2165 (ie the call dummy). */
2167 target_wait (inferior_ptid
, &w
);
2169 target_wait (inferior_ptid
, &w
);
2171 /* Restore the two instructions at the old PC locations. */
2172 *((int *) buf
) = inst1
;
2173 target_write_memory (pcoqh
, buf
, 4);
2174 *((int *) buf
) = inst2
;
2175 target_write_memory (pcoqt
, buf
, 4);
2178 /* The call dummy wants the ultimate destination address initially
2180 write_register (5, fun
);
2182 /* We need to see if this objfile has a different DP value than our
2183 own (it could be a shared library for example). */
2184 ALL_OBJFILES (objfile
)
2186 struct obj_section
*s
;
2187 obj_private_data_t
*obj_private
;
2189 /* See if FUN is in any section within this shared library. */
2190 for (s
= objfile
->sections
; s
< objfile
->sections_end
; s
++)
2191 if (s
->addr
<= fun
&& fun
< s
->endaddr
)
2194 if (s
>= objfile
->sections_end
)
2197 obj_private
= (obj_private_data_t
*) objfile
->obj_private
;
2199 /* The DP value may be different for each objfile. But within an
2200 objfile each function uses the same dp value. Thus we do not need
2201 to grope around the opd section looking for dp values.
2203 ?!? This is not strictly correct since we may be in a shared library
2204 and want to call back into the main program. To make that case
2205 work correctly we need to set obj_private->dp for the main program's
2206 objfile, then remove this conditional. */
2207 if (obj_private
->dp
)
2208 write_register (27, obj_private
->dp
);
2215 #ifndef GDB_TARGET_IS_HPPA_20W
2216 /* Prefer __gcc_plt_call over the HP supplied routine because
2217 __gcc_plt_call works for any number of arguments. */
2219 if (lookup_minimal_symbol ("__gcc_plt_call", NULL
, NULL
) == NULL
)
2220 using_gcc_plt_call
= 0;
2222 msymbol
= lookup_minimal_symbol ("$$dyncall", NULL
, NULL
);
2223 if (msymbol
== NULL
)
2224 error ("Can't find an address for $$dyncall trampoline");
2226 dyncall_addr
= SYMBOL_VALUE_ADDRESS (msymbol
);
2228 /* FUN could be a procedure label, in which case we have to get
2229 its real address and the value of its GOT/DP if we plan to
2230 call the routine via gcc_plt_call. */
2231 if ((fun
& 0x2) && using_gcc_plt_call
)
2233 /* Get the GOT/DP value for the target function. It's
2234 at *(fun+4). Note the call dummy is *NOT* allowed to
2235 trash %r19 before calling the target function. */
2236 write_register (19, read_memory_integer ((fun
& ~0x3) + 4,
2237 DEPRECATED_REGISTER_SIZE
));
2239 /* Now get the real address for the function we are calling, it's
2241 fun
= (CORE_ADDR
) read_memory_integer (fun
& ~0x3,
2242 TARGET_PTR_BIT
/ 8);
2247 #ifndef GDB_TARGET_IS_PA_ELF
2248 /* FUN could be an export stub, the real address of a function, or
2249 a PLABEL. When using gcc's PLT call routine we must call an import
2250 stub rather than the export stub or real function for lazy binding
2253 If we are using the gcc PLT call routine, then we need to
2254 get the import stub for the target function. */
2255 if (using_gcc_plt_call
&& som_solib_get_got_by_pc (fun
))
2257 struct objfile
*objfile
;
2258 struct minimal_symbol
*funsymbol
, *stub_symbol
;
2259 CORE_ADDR newfun
= 0;
2261 funsymbol
= lookup_minimal_symbol_by_pc (fun
);
2263 error ("Unable to find minimal symbol for target function.\n");
2265 /* Search all the object files for an import symbol with the
2267 ALL_OBJFILES (objfile
)
2270 = lookup_minimal_symbol_solib_trampoline
2271 (DEPRECATED_SYMBOL_NAME (funsymbol
), NULL
, objfile
);
2274 stub_symbol
= lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol
),
2277 /* Found a symbol with the right name. */
2280 struct unwind_table_entry
*u
;
2281 /* It must be a shared library trampoline. */
2282 if (MSYMBOL_TYPE (stub_symbol
) != mst_solib_trampoline
)
2285 /* It must also be an import stub. */
2286 u
= find_unwind_entry (SYMBOL_VALUE (stub_symbol
));
2288 || (u
->stub_unwind
.stub_type
!= IMPORT
2289 #ifdef GDB_NATIVE_HPUX_11
2290 /* Sigh. The hpux 10.20 dynamic linker will blow
2291 chunks if we perform a call to an unbound function
2292 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2293 linker will blow chunks if we do not call the
2294 unbound function via the IMPORT_SHLIB stub.
2296 We currently have no way to select bevahior on just
2297 the target. However, we only support HPUX/SOM in
2298 native mode. So we conditinalize on a native
2299 #ifdef. Ugly. Ugly. Ugly */
2300 && u
->stub_unwind
.stub_type
!= IMPORT_SHLIB
2305 /* OK. Looks like the correct import stub. */
2306 newfun
= SYMBOL_VALUE (stub_symbol
);
2309 /* If we found an IMPORT stub, then we want to stop
2310 searching now. If we found an IMPORT_SHLIB, we want
2311 to continue the search in the hopes that we will find
2313 if (u
->stub_unwind
.stub_type
== IMPORT
)
2318 /* Ouch. We did not find an import stub. Make an attempt to
2319 do the right thing instead of just croaking. Most of the
2320 time this will actually work. */
2322 write_register (19, som_solib_get_got_by_pc (fun
));
2324 u
= find_unwind_entry (fun
);
2326 && (u
->stub_unwind
.stub_type
== IMPORT
2327 || u
->stub_unwind
.stub_type
== IMPORT_SHLIB
))
2328 trampoline
= lookup_minimal_symbol ("__gcc_plt_call", NULL
, NULL
);
2330 /* If we found the import stub in the shared library, then we have
2331 to set %r19 before we call the stub. */
2332 if (u
&& u
->stub_unwind
.stub_type
== IMPORT_SHLIB
)
2333 write_register (19, som_solib_get_got_by_pc (fun
));
2338 /* If we are calling into another load module then have sr4export call the
2339 magic __d_plt_call routine which is linked in from end.o.
2341 You can't use _sr4export to make the call as the value in sp-24 will get
2342 fried and you end up returning to the wrong location. You can't call the
2343 target as the code to bind the PLT entry to a function can't return to a
2346 Also, query the dynamic linker in the inferior to provide a suitable
2347 PLABEL for the target function. */
2348 if (!using_gcc_plt_call
)
2352 /* Get a handle for the shared library containing FUN. Given the
2353 handle we can query the shared library for a PLABEL. */
2354 solib_handle
= som_solib_get_solib_by_pc (fun
);
2358 struct minimal_symbol
*fmsymbol
= lookup_minimal_symbol_by_pc (fun
);
2360 trampoline
= lookup_minimal_symbol ("__d_plt_call", NULL
, NULL
);
2362 if (trampoline
== NULL
)
2364 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2367 /* This is where sr4export will jump to. */
2368 new_fun
= SYMBOL_VALUE_ADDRESS (trampoline
);
2370 /* If the function is in a shared library, then call __d_shl_get to
2371 get a PLABEL for the target function. */
2372 new_stub
= find_stub_with_shl_get (fmsymbol
, solib_handle
);
2375 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol
));
2377 /* We have to store the address of the stub in __shlib_funcptr. */
2378 msymbol
= lookup_minimal_symbol ("__shlib_funcptr", NULL
,
2379 (struct objfile
*) NULL
);
2381 if (msymbol
== NULL
)
2382 error ("Can't find an address for __shlib_funcptr");
2383 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol
),
2384 (char *) &new_stub
, 4);
2386 /* We want sr4export to call __d_plt_call, so we claim it is
2387 the final target. Clear trampoline. */
2393 /* Store upper 21 bits of function address into ldil. fun will either be
2394 the final target (most cases) or __d_plt_call when calling into a shared
2395 library and __gcc_plt_call is not available. */
2396 store_unsigned_integer
2397 (&dummy
[FUNC_LDIL_OFFSET
],
2399 deposit_21 (fun
>> 11,
2400 extract_unsigned_integer (&dummy
[FUNC_LDIL_OFFSET
],
2401 INSTRUCTION_SIZE
)));
2403 /* Store lower 11 bits of function address into ldo */
2404 store_unsigned_integer
2405 (&dummy
[FUNC_LDO_OFFSET
],
2407 deposit_14 (fun
& MASK_11
,
2408 extract_unsigned_integer (&dummy
[FUNC_LDO_OFFSET
],
2409 INSTRUCTION_SIZE
)));
2410 #ifdef SR4EXPORT_LDIL_OFFSET
2413 CORE_ADDR trampoline_addr
;
2415 /* We may still need sr4export's address too. */
2417 if (trampoline
== NULL
)
2419 msymbol
= lookup_minimal_symbol ("_sr4export", NULL
, NULL
);
2420 if (msymbol
== NULL
)
2421 error ("Can't find an address for _sr4export trampoline");
2423 trampoline_addr
= SYMBOL_VALUE_ADDRESS (msymbol
);
2426 trampoline_addr
= SYMBOL_VALUE_ADDRESS (trampoline
);
2429 /* Store upper 21 bits of trampoline's address into ldil */
2430 store_unsigned_integer
2431 (&dummy
[SR4EXPORT_LDIL_OFFSET
],
2433 deposit_21 (trampoline_addr
>> 11,
2434 extract_unsigned_integer (&dummy
[SR4EXPORT_LDIL_OFFSET
],
2435 INSTRUCTION_SIZE
)));
2437 /* Store lower 11 bits of trampoline's address into ldo */
2438 store_unsigned_integer
2439 (&dummy
[SR4EXPORT_LDO_OFFSET
],
2441 deposit_14 (trampoline_addr
& MASK_11
,
2442 extract_unsigned_integer (&dummy
[SR4EXPORT_LDO_OFFSET
],
2443 INSTRUCTION_SIZE
)));
2447 write_register (22, pc
);
2449 /* If we are in a syscall, then we should call the stack dummy
2450 directly. $$dyncall is not needed as the kernel sets up the
2451 space id registers properly based on the value in %r31. In
2452 fact calling $$dyncall will not work because the value in %r22
2453 will be clobbered on the syscall exit path.
2455 Similarly if the current PC is in a shared library. Note however,
2456 this scheme won't work if the shared library isn't mapped into
2457 the same space as the stack. */
2460 #ifndef GDB_TARGET_IS_PA_ELF
2461 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid
)))
2465 return dyncall_addr
;
2469 /* If the pid is in a syscall, then the FP register is not readable.
2470 We'll return zero in that case, rather than attempting to read it
2471 and cause a warning. */
2474 hppa_read_fp (int pid
)
2476 int flags
= read_register (FLAGS_REGNUM
);
2480 return (CORE_ADDR
) 0;
2483 /* This is the only site that may directly read_register () the FP
2484 register. All others must use deprecated_read_fp (). */
2485 return read_register (DEPRECATED_FP_REGNUM
);
2489 hppa_target_read_fp (void)
2491 return hppa_read_fp (PIDGET (inferior_ptid
));
2494 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2498 hppa_target_read_pc (ptid_t ptid
)
2500 int flags
= read_register_pid (FLAGS_REGNUM
, ptid
);
2502 /* The following test does not belong here. It is OS-specific, and belongs
2504 /* Test SS_INSYSCALL */
2506 return read_register_pid (31, ptid
) & ~0x3;
2508 return read_register_pid (PC_REGNUM
, ptid
) & ~0x3;
2511 /* Write out the PC. If currently in a syscall, then also write the new
2512 PC value into %r31. */
2515 hppa_target_write_pc (CORE_ADDR v
, ptid_t ptid
)
2517 int flags
= read_register_pid (FLAGS_REGNUM
, ptid
);
2519 /* The following test does not belong here. It is OS-specific, and belongs
2521 /* If in a syscall, then set %r31. Also make sure to get the
2522 privilege bits set correctly. */
2523 /* Test SS_INSYSCALL */
2525 write_register_pid (31, v
| 0x3, ptid
);
2527 write_register_pid (PC_REGNUM
, v
, ptid
);
2528 write_register_pid (NPC_REGNUM
, v
+ 4, ptid
);
2531 /* return the alignment of a type in bytes. Structures have the maximum
2532 alignment required by their fields. */
2535 hppa_alignof (struct type
*type
)
2537 int max_align
, align
, i
;
2538 CHECK_TYPEDEF (type
);
2539 switch (TYPE_CODE (type
))
2544 return TYPE_LENGTH (type
);
2545 case TYPE_CODE_ARRAY
:
2546 return hppa_alignof (TYPE_FIELD_TYPE (type
, 0));
2547 case TYPE_CODE_STRUCT
:
2548 case TYPE_CODE_UNION
:
2550 for (i
= 0; i
< TYPE_NFIELDS (type
); i
++)
2552 /* Bit fields have no real alignment. */
2553 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2554 if (!TYPE_FIELD_BITSIZE (type
, i
)) /* elz: this should be bitsize */
2556 align
= hppa_alignof (TYPE_FIELD_TYPE (type
, i
));
2557 max_align
= max (max_align
, align
);
2566 /* Print the register regnum, or all registers if regnum is -1 */
2569 pa_do_registers_info (int regnum
, int fpregs
)
2571 char *raw_regs
= alloca (DEPRECATED_REGISTER_BYTES
);
2574 /* Make a copy of gdb's save area (may cause actual
2575 reads from the target). */
2576 for (i
= 0; i
< NUM_REGS
; i
++)
2577 frame_register_read (deprecated_selected_frame
, i
, raw_regs
+ REGISTER_BYTE (i
));
2580 pa_print_registers (raw_regs
, regnum
, fpregs
);
2581 else if (regnum
< FP4_REGNUM
)
2585 /* Why is the value not passed through "extract_signed_integer"
2586 as in "pa_print_registers" below? */
2587 pa_register_look_aside (raw_regs
, regnum
, ®_val
[0]);
2591 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum
), reg_val
[1]);
2595 /* Fancy % formats to prevent leading zeros. */
2596 if (reg_val
[0] == 0)
2597 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum
), reg_val
[1]);
2599 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum
),
2600 reg_val
[0], reg_val
[1]);
2604 /* Note that real floating point values only start at
2605 FP4_REGNUM. FP0 and up are just status and error
2606 registers, which have integral (bit) values. */
2607 pa_print_fp_reg (regnum
);
2610 /********** new function ********************/
2612 pa_do_strcat_registers_info (int regnum
, int fpregs
, struct ui_file
*stream
,
2613 enum precision_type precision
)
2615 char *raw_regs
= alloca (DEPRECATED_REGISTER_BYTES
);
2618 /* Make a copy of gdb's save area (may cause actual
2619 reads from the target). */
2620 for (i
= 0; i
< NUM_REGS
; i
++)
2621 frame_register_read (deprecated_selected_frame
, i
, raw_regs
+ REGISTER_BYTE (i
));
2624 pa_strcat_registers (raw_regs
, regnum
, fpregs
, stream
);
2626 else if (regnum
< FP4_REGNUM
)
2630 /* Why is the value not passed through "extract_signed_integer"
2631 as in "pa_print_registers" below? */
2632 pa_register_look_aside (raw_regs
, regnum
, ®_val
[0]);
2636 fprintf_unfiltered (stream
, "%s %lx", REGISTER_NAME (regnum
), reg_val
[1]);
2640 /* Fancy % formats to prevent leading zeros. */
2641 if (reg_val
[0] == 0)
2642 fprintf_unfiltered (stream
, "%s %lx", REGISTER_NAME (regnum
),
2645 fprintf_unfiltered (stream
, "%s %lx%8.8lx", REGISTER_NAME (regnum
),
2646 reg_val
[0], reg_val
[1]);
2650 /* Note that real floating point values only start at
2651 FP4_REGNUM. FP0 and up are just status and error
2652 registers, which have integral (bit) values. */
2653 pa_strcat_fp_reg (regnum
, stream
, precision
);
2656 /* If this is a PA2.0 machine, fetch the real 64-bit register
2657 value. Otherwise use the info from gdb's saved register area.
2659 Note that reg_val is really expected to be an array of longs,
2660 with two elements. */
2662 pa_register_look_aside (char *raw_regs
, int regnum
, long *raw_val
)
2664 static int know_which
= 0; /* False */
2667 unsigned int offset
;
2672 char buf
[MAX_REGISTER_SIZE
];
2677 if (CPU_PA_RISC2_0
== sysconf (_SC_CPU_VERSION
))
2682 know_which
= 1; /* True */
2690 raw_val
[1] = *(long *) (raw_regs
+ REGISTER_BYTE (regnum
));
2694 /* Code below copied from hppah-nat.c, with fixes for wide
2695 registers, using different area of save_state, etc. */
2696 if (regnum
== FLAGS_REGNUM
|| regnum
>= FP0_REGNUM
||
2697 !HAVE_STRUCT_SAVE_STATE_T
|| !HAVE_STRUCT_MEMBER_SS_WIDE
)
2699 /* Use narrow regs area of save_state and default macro. */
2700 offset
= U_REGS_OFFSET
;
2701 regaddr
= register_addr (regnum
, offset
);
2706 /* Use wide regs area, and calculate registers as 8 bytes wide.
2708 We'd like to do this, but current version of "C" doesn't
2711 offset = offsetof(save_state_t, ss_wide);
2713 Note that to avoid "C" doing typed pointer arithmetic, we
2714 have to cast away the type in our offset calculation:
2715 otherwise we get an offset of 1! */
2717 /* NB: save_state_t is not available before HPUX 9.
2718 The ss_wide field is not available previous to HPUX 10.20,
2719 so to avoid compile-time warnings, we only compile this for
2720 PA 2.0 processors. This control path should only be followed
2721 if we're debugging a PA 2.0 processor, so this should not cause
2724 /* #if the following code out so that this file can still be
2725 compiled on older HPUX boxes (< 10.20) which don't have
2726 this structure/structure member. */
2727 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2730 offset
= ((int) &temp
.ss_wide
) - ((int) &temp
);
2731 regaddr
= offset
+ regnum
* 8;
2736 for (i
= start
; i
< 2; i
++)
2739 raw_val
[i
] = call_ptrace (PT_RUREGS
, PIDGET (inferior_ptid
),
2740 (PTRACE_ARG3_TYPE
) regaddr
, 0);
2743 /* Warning, not error, in case we are attached; sometimes the
2744 kernel doesn't let us at the registers. */
2745 char *err
= safe_strerror (errno
);
2746 char *msg
= alloca (strlen (err
) + 128);
2747 sprintf (msg
, "reading register %s: %s", REGISTER_NAME (regnum
), err
);
2752 regaddr
+= sizeof (long);
2755 if (regnum
== PCOQ_HEAD_REGNUM
|| regnum
== PCOQ_TAIL_REGNUM
)
2756 raw_val
[1] &= ~0x3; /* I think we're masking out space bits */
2762 /* "Info all-reg" command */
2765 pa_print_registers (char *raw_regs
, int regnum
, int fpregs
)
2768 /* Alas, we are compiled so that "long long" is 32 bits */
2771 int rows
= 48, columns
= 2;
2773 for (i
= 0; i
< rows
; i
++)
2775 for (j
= 0; j
< columns
; j
++)
2777 /* We display registers in column-major order. */
2778 int regnum
= i
+ j
* rows
;
2780 /* Q: Why is the value passed through "extract_signed_integer",
2781 while above, in "pa_do_registers_info" it isn't?
2783 pa_register_look_aside (raw_regs
, regnum
, &raw_val
[0]);
2785 /* Even fancier % formats to prevent leading zeros
2786 and still maintain the output in columns. */
2789 /* Being big-endian, on this machine the low bits
2790 (the ones we want to look at) are in the second longword. */
2791 long_val
= extract_signed_integer (&raw_val
[1], 4);
2792 printf_filtered ("%10.10s: %8lx ",
2793 REGISTER_NAME (regnum
), long_val
);
2797 /* raw_val = extract_signed_integer(&raw_val, 8); */
2798 if (raw_val
[0] == 0)
2799 printf_filtered ("%10.10s: %8lx ",
2800 REGISTER_NAME (regnum
), raw_val
[1]);
2802 printf_filtered ("%10.10s: %8lx%8.8lx ",
2803 REGISTER_NAME (regnum
),
2804 raw_val
[0], raw_val
[1]);
2807 printf_unfiltered ("\n");
2811 for (i
= FP4_REGNUM
; i
< NUM_REGS
; i
++) /* FP4_REGNUM == 72 */
2812 pa_print_fp_reg (i
);
2815 /************* new function ******************/
2817 pa_strcat_registers (char *raw_regs
, int regnum
, int fpregs
,
2818 struct ui_file
*stream
)
2821 long raw_val
[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2823 enum precision_type precision
;
2825 precision
= unspecified_precision
;
2827 for (i
= 0; i
< 18; i
++)
2829 for (j
= 0; j
< 4; j
++)
2831 /* Q: Why is the value passed through "extract_signed_integer",
2832 while above, in "pa_do_registers_info" it isn't?
2834 pa_register_look_aside (raw_regs
, i
+ (j
* 18), &raw_val
[0]);
2836 /* Even fancier % formats to prevent leading zeros
2837 and still maintain the output in columns. */
2840 /* Being big-endian, on this machine the low bits
2841 (the ones we want to look at) are in the second longword. */
2842 long_val
= extract_signed_integer (&raw_val
[1], 4);
2843 fprintf_filtered (stream
, "%8.8s: %8lx ",
2844 REGISTER_NAME (i
+ (j
* 18)), long_val
);
2848 /* raw_val = extract_signed_integer(&raw_val, 8); */
2849 if (raw_val
[0] == 0)
2850 fprintf_filtered (stream
, "%8.8s: %8lx ",
2851 REGISTER_NAME (i
+ (j
* 18)), raw_val
[1]);
2853 fprintf_filtered (stream
, "%8.8s: %8lx%8.8lx ",
2854 REGISTER_NAME (i
+ (j
* 18)), raw_val
[0],
2858 fprintf_unfiltered (stream
, "\n");
2862 for (i
= FP4_REGNUM
; i
< NUM_REGS
; i
++) /* FP4_REGNUM == 72 */
2863 pa_strcat_fp_reg (i
, stream
, precision
);
2867 pa_print_fp_reg (int i
)
2869 char raw_buffer
[MAX_REGISTER_SIZE
];
2870 char virtual_buffer
[MAX_REGISTER_SIZE
];
2872 /* Get 32bits of data. */
2873 frame_register_read (deprecated_selected_frame
, i
, raw_buffer
);
2875 /* Put it in the buffer. No conversions are ever necessary. */
2876 memcpy (virtual_buffer
, raw_buffer
, REGISTER_RAW_SIZE (i
));
2878 fputs_filtered (REGISTER_NAME (i
), gdb_stdout
);
2879 print_spaces_filtered (8 - strlen (REGISTER_NAME (i
)), gdb_stdout
);
2880 fputs_filtered ("(single precision) ", gdb_stdout
);
2882 val_print (REGISTER_VIRTUAL_TYPE (i
), virtual_buffer
, 0, 0, gdb_stdout
, 0,
2883 1, 0, Val_pretty_default
);
2884 printf_filtered ("\n");
2886 /* If "i" is even, then this register can also be a double-precision
2887 FP register. Dump it out as such. */
2890 /* Get the data in raw format for the 2nd half. */
2891 frame_register_read (deprecated_selected_frame
, i
+ 1, raw_buffer
);
2893 /* Copy it into the appropriate part of the virtual buffer. */
2894 memcpy (virtual_buffer
+ REGISTER_RAW_SIZE (i
), raw_buffer
,
2895 REGISTER_RAW_SIZE (i
));
2897 /* Dump it as a double. */
2898 fputs_filtered (REGISTER_NAME (i
), gdb_stdout
);
2899 print_spaces_filtered (8 - strlen (REGISTER_NAME (i
)), gdb_stdout
);
2900 fputs_filtered ("(double precision) ", gdb_stdout
);
2902 val_print (builtin_type_double
, virtual_buffer
, 0, 0, gdb_stdout
, 0,
2903 1, 0, Val_pretty_default
);
2904 printf_filtered ("\n");
2908 /*************** new function ***********************/
2910 pa_strcat_fp_reg (int i
, struct ui_file
*stream
, enum precision_type precision
)
2912 char raw_buffer
[MAX_REGISTER_SIZE
];
2913 char virtual_buffer
[MAX_REGISTER_SIZE
];
2915 fputs_filtered (REGISTER_NAME (i
), stream
);
2916 print_spaces_filtered (8 - strlen (REGISTER_NAME (i
)), stream
);
2918 /* Get 32bits of data. */
2919 frame_register_read (deprecated_selected_frame
, i
, raw_buffer
);
2921 /* Put it in the buffer. No conversions are ever necessary. */
2922 memcpy (virtual_buffer
, raw_buffer
, REGISTER_RAW_SIZE (i
));
2924 if (precision
== double_precision
&& (i
% 2) == 0)
2927 char raw_buf
[MAX_REGISTER_SIZE
];
2929 /* Get the data in raw format for the 2nd half. */
2930 frame_register_read (deprecated_selected_frame
, i
+ 1, raw_buf
);
2932 /* Copy it into the appropriate part of the virtual buffer. */
2933 memcpy (virtual_buffer
+ REGISTER_RAW_SIZE (i
), raw_buf
, REGISTER_RAW_SIZE (i
));
2935 val_print (builtin_type_double
, virtual_buffer
, 0, 0, stream
, 0,
2936 1, 0, Val_pretty_default
);
2941 val_print (REGISTER_VIRTUAL_TYPE (i
), virtual_buffer
, 0, 0, stream
, 0,
2942 1, 0, Val_pretty_default
);
2947 /* Return one if PC is in the call path of a trampoline, else return zero.
2949 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2950 just shared library trampolines (import, export). */
2953 hppa_in_solib_call_trampoline (CORE_ADDR pc
, char *name
)
2955 struct minimal_symbol
*minsym
;
2956 struct unwind_table_entry
*u
;
2957 static CORE_ADDR dyncall
= 0;
2958 static CORE_ADDR sr4export
= 0;
2960 #ifdef GDB_TARGET_IS_HPPA_20W
2961 /* PA64 has a completely different stub/trampoline scheme. Is it
2962 better? Maybe. It's certainly harder to determine with any
2963 certainty that we are in a stub because we can not refer to the
2966 The heuristic is simple. Try to lookup the current PC value in th
2967 minimal symbol table. If that fails, then assume we are not in a
2970 Then see if the PC value falls within the section bounds for the
2971 section containing the minimal symbol we found in the first
2972 step. If it does, then assume we are not in a stub and return.
2974 Finally peek at the instructions to see if they look like a stub. */
2976 struct minimal_symbol
*minsym
;
2981 minsym
= lookup_minimal_symbol_by_pc (pc
);
2985 sec
= SYMBOL_BFD_SECTION (minsym
);
2988 && sec
->vma
+ sec
->_cooked_size
< pc
)
2991 /* We might be in a stub. Peek at the instructions. Stubs are 3
2992 instructions long. */
2993 insn
= read_memory_integer (pc
, 4);
2995 /* Find out where we think we are within the stub. */
2996 if ((insn
& 0xffffc00e) == 0x53610000)
2998 else if ((insn
& 0xffffffff) == 0xe820d000)
3000 else if ((insn
& 0xffffc00e) == 0x537b0000)
3005 /* Now verify each insn in the range looks like a stub instruction. */
3006 insn
= read_memory_integer (addr
, 4);
3007 if ((insn
& 0xffffc00e) != 0x53610000)
3010 /* Now verify each insn in the range looks like a stub instruction. */
3011 insn
= read_memory_integer (addr
+ 4, 4);
3012 if ((insn
& 0xffffffff) != 0xe820d000)
3015 /* Now verify each insn in the range looks like a stub instruction. */
3016 insn
= read_memory_integer (addr
+ 8, 4);
3017 if ((insn
& 0xffffc00e) != 0x537b0000)
3020 /* Looks like a stub. */
3025 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3028 /* First see if PC is in one of the two C-library trampolines. */
3031 minsym
= lookup_minimal_symbol ("$$dyncall", NULL
, NULL
);
3033 dyncall
= SYMBOL_VALUE_ADDRESS (minsym
);
3040 minsym
= lookup_minimal_symbol ("_sr4export", NULL
, NULL
);
3042 sr4export
= SYMBOL_VALUE_ADDRESS (minsym
);
3047 if (pc
== dyncall
|| pc
== sr4export
)
3050 minsym
= lookup_minimal_symbol_by_pc (pc
);
3051 if (minsym
&& strcmp (DEPRECATED_SYMBOL_NAME (minsym
), ".stub") == 0)
3054 /* Get the unwind descriptor corresponding to PC, return zero
3055 if no unwind was found. */
3056 u
= find_unwind_entry (pc
);
3060 /* If this isn't a linker stub, then return now. */
3061 if (u
->stub_unwind
.stub_type
== 0)
3064 /* By definition a long-branch stub is a call stub. */
3065 if (u
->stub_unwind
.stub_type
== LONG_BRANCH
)
3068 /* The call and return path execute the same instructions within
3069 an IMPORT stub! So an IMPORT stub is both a call and return
3071 if (u
->stub_unwind
.stub_type
== IMPORT
)
3074 /* Parameter relocation stubs always have a call path and may have a
3076 if (u
->stub_unwind
.stub_type
== PARAMETER_RELOCATION
3077 || u
->stub_unwind
.stub_type
== EXPORT
)
3081 /* Search forward from the current PC until we hit a branch
3082 or the end of the stub. */
3083 for (addr
= pc
; addr
<= u
->region_end
; addr
+= 4)
3087 insn
= read_memory_integer (addr
, 4);
3089 /* Does it look like a bl? If so then it's the call path, if
3090 we find a bv or be first, then we're on the return path. */
3091 if ((insn
& 0xfc00e000) == 0xe8000000)
3093 else if ((insn
& 0xfc00e001) == 0xe800c000
3094 || (insn
& 0xfc000000) == 0xe0000000)
3098 /* Should never happen. */
3099 warning ("Unable to find branch in parameter relocation stub.\n");
3103 /* Unknown stub type. For now, just return zero. */
3107 /* Return one if PC is in the return path of a trampoline, else return zero.
3109 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3110 just shared library trampolines (import, export). */
3113 hppa_in_solib_return_trampoline (CORE_ADDR pc
, char *name
)
3115 struct unwind_table_entry
*u
;
3117 /* Get the unwind descriptor corresponding to PC, return zero
3118 if no unwind was found. */
3119 u
= find_unwind_entry (pc
);
3123 /* If this isn't a linker stub or it's just a long branch stub, then
3125 if (u
->stub_unwind
.stub_type
== 0 || u
->stub_unwind
.stub_type
== LONG_BRANCH
)
3128 /* The call and return path execute the same instructions within
3129 an IMPORT stub! So an IMPORT stub is both a call and return
3131 if (u
->stub_unwind
.stub_type
== IMPORT
)
3134 /* Parameter relocation stubs always have a call path and may have a
3136 if (u
->stub_unwind
.stub_type
== PARAMETER_RELOCATION
3137 || u
->stub_unwind
.stub_type
== EXPORT
)
3141 /* Search forward from the current PC until we hit a branch
3142 or the end of the stub. */
3143 for (addr
= pc
; addr
<= u
->region_end
; addr
+= 4)
3147 insn
= read_memory_integer (addr
, 4);
3149 /* Does it look like a bl? If so then it's the call path, if
3150 we find a bv or be first, then we're on the return path. */
3151 if ((insn
& 0xfc00e000) == 0xe8000000)
3153 else if ((insn
& 0xfc00e001) == 0xe800c000
3154 || (insn
& 0xfc000000) == 0xe0000000)
3158 /* Should never happen. */
3159 warning ("Unable to find branch in parameter relocation stub.\n");
3163 /* Unknown stub type. For now, just return zero. */
3168 /* Figure out if PC is in a trampoline, and if so find out where
3169 the trampoline will jump to. If not in a trampoline, return zero.
3171 Simple code examination probably is not a good idea since the code
3172 sequences in trampolines can also appear in user code.
3174 We use unwinds and information from the minimal symbol table to
3175 determine when we're in a trampoline. This won't work for ELF
3176 (yet) since it doesn't create stub unwind entries. Whether or
3177 not ELF will create stub unwinds or normal unwinds for linker
3178 stubs is still being debated.
3180 This should handle simple calls through dyncall or sr4export,
3181 long calls, argument relocation stubs, and dyncall/sr4export
3182 calling an argument relocation stub. It even handles some stubs
3183 used in dynamic executables. */
3186 hppa_skip_trampoline_code (CORE_ADDR pc
)
3189 long prev_inst
, curr_inst
, loc
;
3190 static CORE_ADDR dyncall
= 0;
3191 static CORE_ADDR dyncall_external
= 0;
3192 static CORE_ADDR sr4export
= 0;
3193 struct minimal_symbol
*msym
;
3194 struct unwind_table_entry
*u
;
3196 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3201 msym
= lookup_minimal_symbol ("$$dyncall", NULL
, NULL
);
3203 dyncall
= SYMBOL_VALUE_ADDRESS (msym
);
3208 if (!dyncall_external
)
3210 msym
= lookup_minimal_symbol ("$$dyncall_external", NULL
, NULL
);
3212 dyncall_external
= SYMBOL_VALUE_ADDRESS (msym
);
3214 dyncall_external
= -1;
3219 msym
= lookup_minimal_symbol ("_sr4export", NULL
, NULL
);
3221 sr4export
= SYMBOL_VALUE_ADDRESS (msym
);
3226 /* Addresses passed to dyncall may *NOT* be the actual address
3227 of the function. So we may have to do something special. */
3230 pc
= (CORE_ADDR
) read_register (22);
3232 /* If bit 30 (counting from the left) is on, then pc is the address of
3233 the PLT entry for this function, not the address of the function
3234 itself. Bit 31 has meaning too, but only for MPE. */
3236 pc
= (CORE_ADDR
) read_memory_integer (pc
& ~0x3, TARGET_PTR_BIT
/ 8);
3238 if (pc
== dyncall_external
)
3240 pc
= (CORE_ADDR
) read_register (22);
3241 pc
= (CORE_ADDR
) read_memory_integer (pc
& ~0x3, TARGET_PTR_BIT
/ 8);
3243 else if (pc
== sr4export
)
3244 pc
= (CORE_ADDR
) (read_register (22));
3246 /* Get the unwind descriptor corresponding to PC, return zero
3247 if no unwind was found. */
3248 u
= find_unwind_entry (pc
);
3252 /* If this isn't a linker stub, then return now. */
3253 /* elz: attention here! (FIXME) because of a compiler/linker
3254 error, some stubs which should have a non zero stub_unwind.stub_type
3255 have unfortunately a value of zero. So this function would return here
3256 as if we were not in a trampoline. To fix this, we go look at the partial
3257 symbol information, which reports this guy as a stub.
3258 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3259 partial symbol information is also wrong sometimes. This is because
3260 when it is entered (somread.c::som_symtab_read()) it can happen that
3261 if the type of the symbol (from the som) is Entry, and the symbol is
3262 in a shared library, then it can also be a trampoline. This would
3263 be OK, except that I believe the way they decide if we are ina shared library
3264 does not work. SOOOO..., even if we have a regular function w/o trampolines
3265 its minimal symbol can be assigned type mst_solib_trampoline.
3266 Also, if we find that the symbol is a real stub, then we fix the unwind
3267 descriptor, and define the stub type to be EXPORT.
3268 Hopefully this is correct most of the times. */
3269 if (u
->stub_unwind
.stub_type
== 0)
3272 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3273 we can delete all the code which appears between the lines */
3274 /*--------------------------------------------------------------------------*/
3275 msym
= lookup_minimal_symbol_by_pc (pc
);
3277 if (msym
== NULL
|| MSYMBOL_TYPE (msym
) != mst_solib_trampoline
)
3278 return orig_pc
== pc
? 0 : pc
& ~0x3;
3280 else if (msym
!= NULL
&& MSYMBOL_TYPE (msym
) == mst_solib_trampoline
)
3282 struct objfile
*objfile
;
3283 struct minimal_symbol
*msymbol
;
3284 int function_found
= 0;
3286 /* go look if there is another minimal symbol with the same name as
3287 this one, but with type mst_text. This would happen if the msym
3288 is an actual trampoline, in which case there would be another
3289 symbol with the same name corresponding to the real function */
3291 ALL_MSYMBOLS (objfile
, msymbol
)
3293 if (MSYMBOL_TYPE (msymbol
) == mst_text
3294 && STREQ (DEPRECATED_SYMBOL_NAME (msymbol
), DEPRECATED_SYMBOL_NAME (msym
)))
3302 /* the type of msym is correct (mst_solib_trampoline), but
3303 the unwind info is wrong, so set it to the correct value */
3304 u
->stub_unwind
.stub_type
= EXPORT
;
3306 /* the stub type info in the unwind is correct (this is not a
3307 trampoline), but the msym type information is wrong, it
3308 should be mst_text. So we need to fix the msym, and also
3309 get out of this function */
3311 MSYMBOL_TYPE (msym
) = mst_text
;
3312 return orig_pc
== pc
? 0 : pc
& ~0x3;
3316 /*--------------------------------------------------------------------------*/
3319 /* It's a stub. Search for a branch and figure out where it goes.
3320 Note we have to handle multi insn branch sequences like ldil;ble.
3321 Most (all?) other branches can be determined by examining the contents
3322 of certain registers and the stack. */
3329 /* Make sure we haven't walked outside the range of this stub. */
3330 if (u
!= find_unwind_entry (loc
))
3332 warning ("Unable to find branch in linker stub");
3333 return orig_pc
== pc
? 0 : pc
& ~0x3;
3336 prev_inst
= curr_inst
;
3337 curr_inst
= read_memory_integer (loc
, 4);
3339 /* Does it look like a branch external using %r1? Then it's the
3340 branch from the stub to the actual function. */
3341 if ((curr_inst
& 0xffe0e000) == 0xe0202000)
3343 /* Yup. See if the previous instruction loaded
3344 a value into %r1. If so compute and return the jump address. */
3345 if ((prev_inst
& 0xffe00000) == 0x20200000)
3346 return (extract_21 (prev_inst
) + extract_17 (curr_inst
)) & ~0x3;
3349 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3350 return orig_pc
== pc
? 0 : pc
& ~0x3;
3354 /* Does it look like a be 0(sr0,%r21)? OR
3355 Does it look like a be, n 0(sr0,%r21)? OR
3356 Does it look like a bve (r21)? (this is on PA2.0)
3357 Does it look like a bve, n(r21)? (this is also on PA2.0)
3358 That's the branch from an
3359 import stub to an export stub.
3361 It is impossible to determine the target of the branch via
3362 simple examination of instructions and/or data (consider
3363 that the address in the plabel may be the address of the
3364 bind-on-reference routine in the dynamic loader).
3366 So we have try an alternative approach.
3368 Get the name of the symbol at our current location; it should
3369 be a stub symbol with the same name as the symbol in the
3372 Then lookup a minimal symbol with the same name; we should
3373 get the minimal symbol for the target routine in the shared
3374 library as those take precedence of import/export stubs. */
3375 if ((curr_inst
== 0xe2a00000) ||
3376 (curr_inst
== 0xe2a00002) ||
3377 (curr_inst
== 0xeaa0d000) ||
3378 (curr_inst
== 0xeaa0d002))
3380 struct minimal_symbol
*stubsym
, *libsym
;
3382 stubsym
= lookup_minimal_symbol_by_pc (loc
);
3383 if (stubsym
== NULL
)
3385 warning ("Unable to find symbol for 0x%lx", loc
);
3386 return orig_pc
== pc
? 0 : pc
& ~0x3;
3389 libsym
= lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym
), NULL
, NULL
);
3392 warning ("Unable to find library symbol for %s\n",
3393 DEPRECATED_SYMBOL_NAME (stubsym
));
3394 return orig_pc
== pc
? 0 : pc
& ~0x3;
3397 return SYMBOL_VALUE (libsym
);
3400 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3401 branch from the stub to the actual function. */
3403 else if ((curr_inst
& 0xffe0e000) == 0xe8400000
3404 || (curr_inst
& 0xffe0e000) == 0xe8000000
3405 || (curr_inst
& 0xffe0e000) == 0xe800A000)
3406 return (loc
+ extract_17 (curr_inst
) + 8) & ~0x3;
3408 /* Does it look like bv (rp)? Note this depends on the
3409 current stack pointer being the same as the stack
3410 pointer in the stub itself! This is a branch on from the
3411 stub back to the original caller. */
3412 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3413 else if ((curr_inst
& 0xffe0f000) == 0xe840c000)
3415 /* Yup. See if the previous instruction loaded
3417 if (prev_inst
== 0x4bc23ff1)
3418 return (read_memory_integer
3419 (read_register (SP_REGNUM
) - 8, 4)) & ~0x3;
3422 warning ("Unable to find restore of %%rp before bv (%%rp).");
3423 return orig_pc
== pc
? 0 : pc
& ~0x3;
3427 /* elz: added this case to capture the new instruction
3428 at the end of the return part of an export stub used by
3429 the PA2.0: BVE, n (rp) */
3430 else if ((curr_inst
& 0xffe0f000) == 0xe840d000)
3432 return (read_memory_integer
3433 (read_register (SP_REGNUM
) - 24, TARGET_PTR_BIT
/ 8)) & ~0x3;
3436 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3437 the original caller from the stub. Used in dynamic executables. */
3438 else if (curr_inst
== 0xe0400002)
3440 /* The value we jump to is sitting in sp - 24. But that's
3441 loaded several instructions before the be instruction.
3442 I guess we could check for the previous instruction being
3443 mtsp %r1,%sr0 if we want to do sanity checking. */
3444 return (read_memory_integer
3445 (read_register (SP_REGNUM
) - 24, TARGET_PTR_BIT
/ 8)) & ~0x3;
3448 /* Haven't found the branch yet, but we're still in the stub.
3455 /* For the given instruction (INST), return any adjustment it makes
3456 to the stack pointer or zero for no adjustment.
3458 This only handles instructions commonly found in prologues. */
3461 prologue_inst_adjust_sp (unsigned long inst
)
3463 /* This must persist across calls. */
3464 static int save_high21
;
3466 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3467 if ((inst
& 0xffffc000) == 0x37de0000)
3468 return extract_14 (inst
);
3471 if ((inst
& 0xffe00000) == 0x6fc00000)
3472 return extract_14 (inst
);
3474 /* std,ma X,D(sp) */
3475 if ((inst
& 0xffe00008) == 0x73c00008)
3476 return (inst
& 0x1 ? -1 << 13 : 0) | (((inst
>> 4) & 0x3ff) << 3);
3478 /* addil high21,%r1; ldo low11,(%r1),%r30)
3479 save high bits in save_high21 for later use. */
3480 if ((inst
& 0xffe00000) == 0x28200000)
3482 save_high21
= extract_21 (inst
);
3486 if ((inst
& 0xffff0000) == 0x343e0000)
3487 return save_high21
+ extract_14 (inst
);
3489 /* fstws as used by the HP compilers. */
3490 if ((inst
& 0xffffffe0) == 0x2fd01220)
3491 return extract_5_load (inst
);
3493 /* No adjustment. */
3497 /* Return nonzero if INST is a branch of some kind, else return zero. */
3500 is_branch (unsigned long inst
)
3529 /* Return the register number for a GR which is saved by INST or
3530 zero it INST does not save a GR. */
3533 inst_saves_gr (unsigned long inst
)
3535 /* Does it look like a stw? */
3536 if ((inst
>> 26) == 0x1a || (inst
>> 26) == 0x1b
3537 || (inst
>> 26) == 0x1f
3538 || ((inst
>> 26) == 0x1f
3539 && ((inst
>> 6) == 0xa)))
3540 return extract_5R_store (inst
);
3542 /* Does it look like a std? */
3543 if ((inst
>> 26) == 0x1c
3544 || ((inst
>> 26) == 0x03
3545 && ((inst
>> 6) & 0xf) == 0xb))
3546 return extract_5R_store (inst
);
3548 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3549 if ((inst
>> 26) == 0x1b)
3550 return extract_5R_store (inst
);
3552 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3554 if ((inst
>> 26) == 0x19 || (inst
>> 26) == 0x18
3555 || ((inst
>> 26) == 0x3
3556 && (((inst
>> 6) & 0xf) == 0x8
3557 || (inst
>> 6) & 0xf) == 0x9))
3558 return extract_5R_store (inst
);
3563 /* Return the register number for a FR which is saved by INST or
3564 zero it INST does not save a FR.
3566 Note we only care about full 64bit register stores (that's the only
3567 kind of stores the prologue will use).
3569 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3572 inst_saves_fr (unsigned long inst
)
3574 /* is this an FSTD ? */
3575 if ((inst
& 0xfc00dfc0) == 0x2c001200)
3576 return extract_5r_store (inst
);
3577 if ((inst
& 0xfc000002) == 0x70000002)
3578 return extract_5R_store (inst
);
3579 /* is this an FSTW ? */
3580 if ((inst
& 0xfc00df80) == 0x24001200)
3581 return extract_5r_store (inst
);
3582 if ((inst
& 0xfc000002) == 0x7c000000)
3583 return extract_5R_store (inst
);
3587 /* Advance PC across any function entry prologue instructions
3588 to reach some "real" code.
3590 Use information in the unwind table to determine what exactly should
3591 be in the prologue. */
3595 skip_prologue_hard_way (CORE_ADDR pc
)
3598 CORE_ADDR orig_pc
= pc
;
3599 unsigned long inst
, stack_remaining
, save_gr
, save_fr
, save_rp
, save_sp
;
3600 unsigned long args_stored
, status
, i
, restart_gr
, restart_fr
;
3601 struct unwind_table_entry
*u
;
3607 u
= find_unwind_entry (pc
);
3611 /* If we are not at the beginning of a function, then return now. */
3612 if ((pc
& ~0x3) != u
->region_start
)
3615 /* This is how much of a frame adjustment we need to account for. */
3616 stack_remaining
= u
->Total_frame_size
<< 3;
3618 /* Magic register saves we want to know about. */
3619 save_rp
= u
->Save_RP
;
3620 save_sp
= u
->Save_SP
;
3622 /* An indication that args may be stored into the stack. Unfortunately
3623 the HPUX compilers tend to set this in cases where no args were
3627 /* Turn the Entry_GR field into a bitmask. */
3629 for (i
= 3; i
< u
->Entry_GR
+ 3; i
++)
3631 /* Frame pointer gets saved into a special location. */
3632 if (u
->Save_SP
&& i
== DEPRECATED_FP_REGNUM
)
3635 save_gr
|= (1 << i
);
3637 save_gr
&= ~restart_gr
;
3639 /* Turn the Entry_FR field into a bitmask too. */
3641 for (i
= 12; i
< u
->Entry_FR
+ 12; i
++)
3642 save_fr
|= (1 << i
);
3643 save_fr
&= ~restart_fr
;
3645 /* Loop until we find everything of interest or hit a branch.
3647 For unoptimized GCC code and for any HP CC code this will never ever
3648 examine any user instructions.
3650 For optimzied GCC code we're faced with problems. GCC will schedule
3651 its prologue and make prologue instructions available for delay slot
3652 filling. The end result is user code gets mixed in with the prologue
3653 and a prologue instruction may be in the delay slot of the first branch
3656 Some unexpected things are expected with debugging optimized code, so
3657 we allow this routine to walk past user instructions in optimized
3659 while (save_gr
|| save_fr
|| save_rp
|| save_sp
|| stack_remaining
> 0
3662 unsigned int reg_num
;
3663 unsigned long old_stack_remaining
, old_save_gr
, old_save_fr
;
3664 unsigned long old_save_rp
, old_save_sp
, next_inst
;
3666 /* Save copies of all the triggers so we can compare them later
3668 old_save_gr
= save_gr
;
3669 old_save_fr
= save_fr
;
3670 old_save_rp
= save_rp
;
3671 old_save_sp
= save_sp
;
3672 old_stack_remaining
= stack_remaining
;
3674 status
= target_read_memory (pc
, buf
, 4);
3675 inst
= extract_unsigned_integer (buf
, 4);
3681 /* Note the interesting effects of this instruction. */
3682 stack_remaining
-= prologue_inst_adjust_sp (inst
);
3684 /* There are limited ways to store the return pointer into the
3686 if (inst
== 0x6bc23fd9 || inst
== 0x0fc212c1)
3689 /* These are the only ways we save SP into the stack. At this time
3690 the HP compilers never bother to save SP into the stack. */
3691 if ((inst
& 0xffffc000) == 0x6fc10000
3692 || (inst
& 0xffffc00c) == 0x73c10008)
3695 /* Are we loading some register with an offset from the argument
3697 if ((inst
& 0xffe00000) == 0x37a00000
3698 || (inst
& 0xffffffe0) == 0x081d0240)
3704 /* Account for general and floating-point register saves. */
3705 reg_num
= inst_saves_gr (inst
);
3706 save_gr
&= ~(1 << reg_num
);
3708 /* Ugh. Also account for argument stores into the stack.
3709 Unfortunately args_stored only tells us that some arguments
3710 where stored into the stack. Not how many or what kind!
3712 This is a kludge as on the HP compiler sets this bit and it
3713 never does prologue scheduling. So once we see one, skip past
3714 all of them. We have similar code for the fp arg stores below.
3716 FIXME. Can still die if we have a mix of GR and FR argument
3718 if (reg_num
>= (TARGET_PTR_BIT
== 64 ? 19 : 23) && reg_num
<= 26)
3720 while (reg_num
>= (TARGET_PTR_BIT
== 64 ? 19 : 23) && reg_num
<= 26)
3723 status
= target_read_memory (pc
, buf
, 4);
3724 inst
= extract_unsigned_integer (buf
, 4);
3727 reg_num
= inst_saves_gr (inst
);
3733 reg_num
= inst_saves_fr (inst
);
3734 save_fr
&= ~(1 << reg_num
);
3736 status
= target_read_memory (pc
+ 4, buf
, 4);
3737 next_inst
= extract_unsigned_integer (buf
, 4);
3743 /* We've got to be read to handle the ldo before the fp register
3745 if ((inst
& 0xfc000000) == 0x34000000
3746 && inst_saves_fr (next_inst
) >= 4
3747 && inst_saves_fr (next_inst
) <= (TARGET_PTR_BIT
== 64 ? 11 : 7))
3749 /* So we drop into the code below in a reasonable state. */
3750 reg_num
= inst_saves_fr (next_inst
);
3754 /* Ugh. Also account for argument stores into the stack.
3755 This is a kludge as on the HP compiler sets this bit and it
3756 never does prologue scheduling. So once we see one, skip past
3758 if (reg_num
>= 4 && reg_num
<= (TARGET_PTR_BIT
== 64 ? 11 : 7))
3760 while (reg_num
>= 4 && reg_num
<= (TARGET_PTR_BIT
== 64 ? 11 : 7))
3763 status
= target_read_memory (pc
, buf
, 4);
3764 inst
= extract_unsigned_integer (buf
, 4);
3767 if ((inst
& 0xfc000000) != 0x34000000)
3769 status
= target_read_memory (pc
+ 4, buf
, 4);
3770 next_inst
= extract_unsigned_integer (buf
, 4);
3773 reg_num
= inst_saves_fr (next_inst
);
3779 /* Quit if we hit any kind of branch. This can happen if a prologue
3780 instruction is in the delay slot of the first call/branch. */
3781 if (is_branch (inst
))
3784 /* What a crock. The HP compilers set args_stored even if no
3785 arguments were stored into the stack (boo hiss). This could
3786 cause this code to then skip a bunch of user insns (up to the
3789 To combat this we try to identify when args_stored was bogusly
3790 set and clear it. We only do this when args_stored is nonzero,
3791 all other resources are accounted for, and nothing changed on
3794 && !(save_gr
|| save_fr
|| save_rp
|| save_sp
|| stack_remaining
> 0)
3795 && old_save_gr
== save_gr
&& old_save_fr
== save_fr
3796 && old_save_rp
== save_rp
&& old_save_sp
== save_sp
3797 && old_stack_remaining
== stack_remaining
)
3804 /* We've got a tenative location for the end of the prologue. However
3805 because of limitations in the unwind descriptor mechanism we may
3806 have went too far into user code looking for the save of a register
3807 that does not exist. So, if there registers we expected to be saved
3808 but never were, mask them out and restart.
3810 This should only happen in optimized code, and should be very rare. */
3811 if (save_gr
|| (save_fr
&& !(restart_fr
|| restart_gr
)))
3814 restart_gr
= save_gr
;
3815 restart_fr
= save_fr
;
3823 /* Return the address of the PC after the last prologue instruction if
3824 we can determine it from the debug symbols. Else return zero. */
3827 after_prologue (CORE_ADDR pc
)
3829 struct symtab_and_line sal
;
3830 CORE_ADDR func_addr
, func_end
;
3833 /* If we can not find the symbol in the partial symbol table, then
3834 there is no hope we can determine the function's start address
3836 if (!find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
3839 /* Get the line associated with FUNC_ADDR. */
3840 sal
= find_pc_line (func_addr
, 0);
3842 /* There are only two cases to consider. First, the end of the source line
3843 is within the function bounds. In that case we return the end of the
3844 source line. Second is the end of the source line extends beyond the
3845 bounds of the current function. We need to use the slow code to
3846 examine instructions in that case.
3848 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3849 the wrong thing to do. In fact, it should be entirely possible for this
3850 function to always return zero since the slow instruction scanning code
3851 is supposed to *always* work. If it does not, then it is a bug. */
3852 if (sal
.end
< func_end
)
3858 /* To skip prologues, I use this predicate. Returns either PC itself
3859 if the code at PC does not look like a function prologue; otherwise
3860 returns an address that (if we're lucky) follows the prologue. If
3861 LENIENT, then we must skip everything which is involved in setting
3862 up the frame (it's OK to skip more, just so long as we don't skip
3863 anything which might clobber the registers which are being saved.
3864 Currently we must not skip more on the alpha, but we might the lenient
3868 hppa_skip_prologue (CORE_ADDR pc
)
3872 CORE_ADDR post_prologue_pc
;
3875 /* See if we can determine the end of the prologue via the symbol table.
3876 If so, then return either PC, or the PC after the prologue, whichever
3879 post_prologue_pc
= after_prologue (pc
);
3881 /* If after_prologue returned a useful address, then use it. Else
3882 fall back on the instruction skipping code.
3884 Some folks have claimed this causes problems because the breakpoint
3885 may be the first instruction of the prologue. If that happens, then
3886 the instruction skipping code has a bug that needs to be fixed. */
3887 if (post_prologue_pc
!= 0)
3888 return max (pc
, post_prologue_pc
);
3890 return (skip_prologue_hard_way (pc
));
3893 /* Put here the code to store, into the SAVED_REGS, the addresses of
3894 the saved registers of frame described by FRAME_INFO. This
3895 includes special registers such as pc and fp saved in special ways
3896 in the stack frame. sp is even more special: the address we return
3897 for it IS the sp for the next frame. */
3900 hppa_frame_find_saved_regs (struct frame_info
*frame_info
,
3901 CORE_ADDR frame_saved_regs
[])
3904 struct unwind_table_entry
*u
;
3905 unsigned long inst
, stack_remaining
, save_gr
, save_fr
, save_rp
, save_sp
;
3909 int final_iteration
;
3911 /* Zero out everything. */
3912 memset (frame_saved_regs
, '\0', SIZEOF_FRAME_SAVED_REGS
);
3914 /* Call dummy frames always look the same, so there's no need to
3915 examine the dummy code to determine locations of saved registers;
3916 instead, let find_dummy_frame_regs fill in the correct offsets
3917 for the saved registers. */
3918 if ((get_frame_pc (frame_info
) >= get_frame_base (frame_info
)
3919 && (get_frame_pc (frame_info
)
3920 <= (get_frame_base (frame_info
)
3921 /* A call dummy is sized in words, but it is actually a
3922 series of instructions. Account for that scaling
3924 + ((DEPRECATED_REGISTER_SIZE
/ INSTRUCTION_SIZE
)
3925 * DEPRECATED_CALL_DUMMY_LENGTH
)
3926 /* Similarly we have to account for 64bit wide register
3928 + (32 * DEPRECATED_REGISTER_SIZE
)
3929 /* We always consider FP regs 8 bytes long. */
3930 + (NUM_REGS
- FP0_REGNUM
) * 8
3931 /* Similarly we have to account for 64bit wide register
3933 + (6 * DEPRECATED_REGISTER_SIZE
)))))
3934 find_dummy_frame_regs (frame_info
, frame_saved_regs
);
3936 /* Interrupt handlers are special too. They lay out the register
3937 state in the exact same order as the register numbers in GDB. */
3938 if (pc_in_interrupt_handler (get_frame_pc (frame_info
)))
3940 for (i
= 0; i
< NUM_REGS
; i
++)
3942 /* SP is a little special. */
3944 frame_saved_regs
[SP_REGNUM
]
3945 = read_memory_integer (get_frame_base (frame_info
) + SP_REGNUM
* 4,
3946 TARGET_PTR_BIT
/ 8);
3948 frame_saved_regs
[i
] = get_frame_base (frame_info
) + i
* 4;
3953 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3954 /* Handle signal handler callers. */
3955 if ((get_frame_type (frame_info
) == SIGTRAMP_FRAME
))
3957 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info
, frame_saved_regs
);
3962 /* Get the starting address of the function referred to by the PC
3964 pc
= get_frame_func (frame_info
);
3967 u
= find_unwind_entry (pc
);
3971 /* This is how much of a frame adjustment we need to account for. */
3972 stack_remaining
= u
->Total_frame_size
<< 3;
3974 /* Magic register saves we want to know about. */
3975 save_rp
= u
->Save_RP
;
3976 save_sp
= u
->Save_SP
;
3978 /* Turn the Entry_GR field into a bitmask. */
3980 for (i
= 3; i
< u
->Entry_GR
+ 3; i
++)
3982 /* Frame pointer gets saved into a special location. */
3983 if (u
->Save_SP
&& i
== DEPRECATED_FP_REGNUM
)
3986 save_gr
|= (1 << i
);
3989 /* Turn the Entry_FR field into a bitmask too. */
3991 for (i
= 12; i
< u
->Entry_FR
+ 12; i
++)
3992 save_fr
|= (1 << i
);
3994 /* The frame always represents the value of %sp at entry to the
3995 current function (and is thus equivalent to the "saved" stack
3997 frame_saved_regs
[SP_REGNUM
] = get_frame_base (frame_info
);
3999 /* Loop until we find everything of interest or hit a branch.
4001 For unoptimized GCC code and for any HP CC code this will never ever
4002 examine any user instructions.
4004 For optimized GCC code we're faced with problems. GCC will schedule
4005 its prologue and make prologue instructions available for delay slot
4006 filling. The end result is user code gets mixed in with the prologue
4007 and a prologue instruction may be in the delay slot of the first branch
4010 Some unexpected things are expected with debugging optimized code, so
4011 we allow this routine to walk past user instructions in optimized
4013 final_iteration
= 0;
4014 while ((save_gr
|| save_fr
|| save_rp
|| save_sp
|| stack_remaining
> 0)
4015 && pc
<= get_frame_pc (frame_info
))
4017 status
= target_read_memory (pc
, buf
, 4);
4018 inst
= extract_unsigned_integer (buf
, 4);
4024 /* Note the interesting effects of this instruction. */
4025 stack_remaining
-= prologue_inst_adjust_sp (inst
);
4027 /* There are limited ways to store the return pointer into the
4029 if (inst
== 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4032 frame_saved_regs
[RP_REGNUM
] = get_frame_base (frame_info
) - 20;
4034 else if (inst
== 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4037 frame_saved_regs
[RP_REGNUM
] = get_frame_base (frame_info
) - 16;
4040 /* Note if we saved SP into the stack. This also happens to indicate
4041 the location of the saved frame pointer. */
4042 if ( (inst
& 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4043 || (inst
& 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4045 frame_saved_regs
[DEPRECATED_FP_REGNUM
] = get_frame_base (frame_info
);
4049 /* Account for general and floating-point register saves. */
4050 reg
= inst_saves_gr (inst
);
4051 if (reg
>= 3 && reg
<= 18
4052 && (!u
->Save_SP
|| reg
!= DEPRECATED_FP_REGNUM
))
4054 save_gr
&= ~(1 << reg
);
4056 /* stwm with a positive displacement is a *post modify*. */
4057 if ((inst
>> 26) == 0x1b
4058 && extract_14 (inst
) >= 0)
4059 frame_saved_regs
[reg
] = get_frame_base (frame_info
);
4060 /* A std has explicit post_modify forms. */
4061 else if ((inst
& 0xfc00000c0) == 0x70000008)
4062 frame_saved_regs
[reg
] = get_frame_base (frame_info
);
4067 if ((inst
>> 26) == 0x1c)
4068 offset
= (inst
& 0x1 ? -1 << 13 : 0) | (((inst
>> 4) & 0x3ff) << 3);
4069 else if ((inst
>> 26) == 0x03)
4070 offset
= low_sign_extend (inst
& 0x1f, 5);
4072 offset
= extract_14 (inst
);
4074 /* Handle code with and without frame pointers. */
4076 frame_saved_regs
[reg
]
4077 = get_frame_base (frame_info
) + offset
;
4079 frame_saved_regs
[reg
]
4080 = (get_frame_base (frame_info
) + (u
->Total_frame_size
<< 3)
4086 /* GCC handles callee saved FP regs a little differently.
4088 It emits an instruction to put the value of the start of
4089 the FP store area into %r1. It then uses fstds,ma with
4090 a basereg of %r1 for the stores.
4092 HP CC emits them at the current stack pointer modifying
4093 the stack pointer as it stores each register. */
4095 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4096 if ((inst
& 0xffffc000) == 0x34610000
4097 || (inst
& 0xffffc000) == 0x37c10000)
4098 fp_loc
= extract_14 (inst
);
4100 reg
= inst_saves_fr (inst
);
4101 if (reg
>= 12 && reg
<= 21)
4103 /* Note +4 braindamage below is necessary because the FP status
4104 registers are internally 8 registers rather than the expected
4106 save_fr
&= ~(1 << reg
);
4109 /* 1st HP CC FP register store. After this instruction
4110 we've set enough state that the GCC and HPCC code are
4111 both handled in the same manner. */
4112 frame_saved_regs
[reg
+ FP4_REGNUM
+ 4] = get_frame_base (frame_info
);
4117 frame_saved_regs
[reg
+ FP0_REGNUM
+ 4]
4118 = get_frame_base (frame_info
) + fp_loc
;
4123 /* Quit if we hit any kind of branch the previous iteration. */
4124 if (final_iteration
)
4127 /* We want to look precisely one instruction beyond the branch
4128 if we have not found everything yet. */
4129 if (is_branch (inst
))
4130 final_iteration
= 1;
4137 /* XXX - deprecated. This is a compatibility function for targets
4138 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4139 /* Find the addresses in which registers are saved in FRAME. */
4142 hppa_frame_init_saved_regs (struct frame_info
*frame
)
4144 if (get_frame_saved_regs (frame
) == NULL
)
4145 frame_saved_regs_zalloc (frame
);
4146 hppa_frame_find_saved_regs (frame
, get_frame_saved_regs (frame
));
4149 /* Exception handling support for the HP-UX ANSI C++ compiler.
4150 The compiler (aCC) provides a callback for exception events;
4151 GDB can set a breakpoint on this callback and find out what
4152 exception event has occurred. */
4154 /* The name of the hook to be set to point to the callback function */
4155 static char HP_ACC_EH_notify_hook
[] = "__eh_notify_hook";
4156 /* The name of the function to be used to set the hook value */
4157 static char HP_ACC_EH_set_hook_value
[] = "__eh_set_hook_value";
4158 /* The name of the callback function in end.o */
4159 static char HP_ACC_EH_notify_callback
[] = "__d_eh_notify_callback";
4160 /* Name of function in end.o on which a break is set (called by above) */
4161 static char HP_ACC_EH_break
[] = "__d_eh_break";
4162 /* Name of flag (in end.o) that enables catching throws */
4163 static char HP_ACC_EH_catch_throw
[] = "__d_eh_catch_throw";
4164 /* Name of flag (in end.o) that enables catching catching */
4165 static char HP_ACC_EH_catch_catch
[] = "__d_eh_catch_catch";
4166 /* The enum used by aCC */
4174 /* Is exception-handling support available with this executable? */
4175 static int hp_cxx_exception_support
= 0;
4176 /* Has the initialize function been run? */
4177 int hp_cxx_exception_support_initialized
= 0;
4178 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4179 extern int exception_support_initialized
;
4180 /* Address of __eh_notify_hook */
4181 static CORE_ADDR eh_notify_hook_addr
= 0;
4182 /* Address of __d_eh_notify_callback */
4183 static CORE_ADDR eh_notify_callback_addr
= 0;
4184 /* Address of __d_eh_break */
4185 static CORE_ADDR eh_break_addr
= 0;
4186 /* Address of __d_eh_catch_catch */
4187 static CORE_ADDR eh_catch_catch_addr
= 0;
4188 /* Address of __d_eh_catch_throw */
4189 static CORE_ADDR eh_catch_throw_addr
= 0;
4190 /* Sal for __d_eh_break */
4191 static struct symtab_and_line
*break_callback_sal
= 0;
4193 /* Code in end.c expects __d_pid to be set in the inferior,
4194 otherwise __d_eh_notify_callback doesn't bother to call
4195 __d_eh_break! So we poke the pid into this symbol
4200 setup_d_pid_in_inferior (void)
4203 struct minimal_symbol
*msymbol
;
4204 char buf
[4]; /* FIXME 32x64? */
4206 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4207 msymbol
= lookup_minimal_symbol ("__d_pid", NULL
, symfile_objfile
);
4208 if (msymbol
== NULL
)
4210 warning ("Unable to find __d_pid symbol in object file.");
4211 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4215 anaddr
= SYMBOL_VALUE_ADDRESS (msymbol
);
4216 store_unsigned_integer (buf
, 4, PIDGET (inferior_ptid
)); /* FIXME 32x64? */
4217 if (target_write_memory (anaddr
, buf
, 4)) /* FIXME 32x64? */
4219 warning ("Unable to write __d_pid");
4220 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4226 /* Initialize exception catchpoint support by looking for the
4227 necessary hooks/callbacks in end.o, etc., and set the hook value to
4228 point to the required debug function
4234 initialize_hp_cxx_exception_support (void)
4236 struct symtabs_and_lines sals
;
4237 struct cleanup
*old_chain
;
4238 struct cleanup
*canonical_strings_chain
= NULL
;
4241 char *addr_end
= NULL
;
4242 char **canonical
= (char **) NULL
;
4244 struct symbol
*sym
= NULL
;
4245 struct minimal_symbol
*msym
= NULL
;
4246 struct objfile
*objfile
;
4247 asection
*shlib_info
;
4249 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4250 recursion is a possibility because finding the hook for exception
4251 callbacks involves making a call in the inferior, which means
4252 re-inserting breakpoints which can re-invoke this code */
4254 static int recurse
= 0;
4257 hp_cxx_exception_support_initialized
= 0;
4258 exception_support_initialized
= 0;
4262 hp_cxx_exception_support
= 0;
4264 /* First check if we have seen any HP compiled objects; if not,
4265 it is very unlikely that HP's idiosyncratic callback mechanism
4266 for exception handling debug support will be available!
4267 This will percolate back up to breakpoint.c, where our callers
4268 will decide to try the g++ exception-handling support instead. */
4269 if (!hp_som_som_object_present
)
4272 /* We have a SOM executable with SOM debug info; find the hooks */
4274 /* First look for the notify hook provided by aCC runtime libs */
4275 /* If we find this symbol, we conclude that the executable must
4276 have HP aCC exception support built in. If this symbol is not
4277 found, even though we're a HP SOM-SOM file, we may have been
4278 built with some other compiler (not aCC). This results percolates
4279 back up to our callers in breakpoint.c which can decide to
4280 try the g++ style of exception support instead.
4281 If this symbol is found but the other symbols we require are
4282 not found, there is something weird going on, and g++ support
4283 should *not* be tried as an alternative.
4285 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4286 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4288 /* libCsup has this hook; it'll usually be non-debuggable */
4289 msym
= lookup_minimal_symbol (HP_ACC_EH_notify_hook
, NULL
, NULL
);
4292 eh_notify_hook_addr
= SYMBOL_VALUE_ADDRESS (msym
);
4293 hp_cxx_exception_support
= 1;
4297 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook
);
4298 warning ("Executable may not have been compiled debuggable with HP aCC.");
4299 warning ("GDB will be unable to intercept exception events.");
4300 eh_notify_hook_addr
= 0;
4301 hp_cxx_exception_support
= 0;
4305 /* Next look for the notify callback routine in end.o */
4306 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4307 msym
= lookup_minimal_symbol (HP_ACC_EH_notify_callback
, NULL
, NULL
);
4310 eh_notify_callback_addr
= SYMBOL_VALUE_ADDRESS (msym
);
4311 hp_cxx_exception_support
= 1;
4315 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback
);
4316 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4317 warning ("GDB will be unable to intercept exception events.");
4318 eh_notify_callback_addr
= 0;
4322 #ifndef GDB_TARGET_IS_HPPA_20W
4323 /* Check whether the executable is dynamically linked or archive bound */
4324 /* With an archive-bound executable we can use the raw addresses we find
4325 for the callback function, etc. without modification. For an executable
4326 with shared libraries, we have to do more work to find the plabel, which
4327 can be the target of a call through $$dyncall from the aCC runtime support
4328 library (libCsup) which is linked shared by default by aCC. */
4329 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4330 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4331 shlib_info
= bfd_get_section_by_name (symfile_objfile
->obfd
, "$SHLIB_INFO$");
4332 if (shlib_info
&& (bfd_section_size (symfile_objfile
->obfd
, shlib_info
) != 0))
4334 /* The minsym we have has the local code address, but that's not the
4335 plabel that can be used by an inter-load-module call. */
4336 /* Find solib handle for main image (which has end.o), and use that
4337 and the min sym as arguments to __d_shl_get() (which does the equivalent
4338 of shl_findsym()) to find the plabel. */
4340 args_for_find_stub args
;
4341 static char message
[] = "Error while finding exception callback hook:\n";
4343 args
.solib_handle
= som_solib_get_solib_by_pc (eh_notify_callback_addr
);
4345 args
.return_val
= 0;
4348 catch_errors (cover_find_stub_with_shl_get
, &args
, message
,
4350 eh_notify_callback_addr
= args
.return_val
;
4353 exception_catchpoints_are_fragile
= 1;
4355 if (!eh_notify_callback_addr
)
4357 /* We can get here either if there is no plabel in the export list
4358 for the main image, or if something strange happened (?) */
4359 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4360 warning ("GDB will not be able to intercept exception events.");
4365 exception_catchpoints_are_fragile
= 0;
4368 /* Now, look for the breakpointable routine in end.o */
4369 /* This should also be available in the SOM symbol dict. if end.o linked in */
4370 msym
= lookup_minimal_symbol (HP_ACC_EH_break
, NULL
, NULL
);
4373 eh_break_addr
= SYMBOL_VALUE_ADDRESS (msym
);
4374 hp_cxx_exception_support
= 1;
4378 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break
);
4379 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4380 warning ("GDB will be unable to intercept exception events.");
4385 /* Next look for the catch enable flag provided in end.o */
4386 sym
= lookup_symbol (HP_ACC_EH_catch_catch
, (struct block
*) NULL
,
4387 VAR_DOMAIN
, 0, (struct symtab
**) NULL
);
4388 if (sym
) /* sometimes present in debug info */
4390 eh_catch_catch_addr
= SYMBOL_VALUE_ADDRESS (sym
);
4391 hp_cxx_exception_support
= 1;
4394 /* otherwise look in SOM symbol dict. */
4396 msym
= lookup_minimal_symbol (HP_ACC_EH_catch_catch
, NULL
, NULL
);
4399 eh_catch_catch_addr
= SYMBOL_VALUE_ADDRESS (msym
);
4400 hp_cxx_exception_support
= 1;
4404 warning ("Unable to enable interception of exception catches.");
4405 warning ("Executable may not have been compiled debuggable with HP aCC.");
4406 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4411 /* Next look for the catch enable flag provided end.o */
4412 sym
= lookup_symbol (HP_ACC_EH_catch_catch
, (struct block
*) NULL
,
4413 VAR_DOMAIN
, 0, (struct symtab
**) NULL
);
4414 if (sym
) /* sometimes present in debug info */
4416 eh_catch_throw_addr
= SYMBOL_VALUE_ADDRESS (sym
);
4417 hp_cxx_exception_support
= 1;
4420 /* otherwise look in SOM symbol dict. */
4422 msym
= lookup_minimal_symbol (HP_ACC_EH_catch_throw
, NULL
, NULL
);
4425 eh_catch_throw_addr
= SYMBOL_VALUE_ADDRESS (msym
);
4426 hp_cxx_exception_support
= 1;
4430 warning ("Unable to enable interception of exception throws.");
4431 warning ("Executable may not have been compiled debuggable with HP aCC.");
4432 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4438 hp_cxx_exception_support
= 2; /* everything worked so far */
4439 hp_cxx_exception_support_initialized
= 1;
4440 exception_support_initialized
= 1;
4445 /* Target operation for enabling or disabling interception of
4447 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4448 ENABLE is either 0 (disable) or 1 (enable).
4449 Return value is NULL if no support found;
4450 -1 if something went wrong,
4451 or a pointer to a symtab/line struct if the breakpointable
4452 address was found. */
4454 struct symtab_and_line
*
4455 child_enable_exception_callback (enum exception_event_kind kind
, int enable
)
4459 if (!exception_support_initialized
|| !hp_cxx_exception_support_initialized
)
4460 if (!initialize_hp_cxx_exception_support ())
4463 switch (hp_cxx_exception_support
)
4466 /* Assuming no HP support at all */
4469 /* HP support should be present, but something went wrong */
4470 return (struct symtab_and_line
*) -1; /* yuck! */
4471 /* there may be other cases in the future */
4474 /* Set the EH hook to point to the callback routine */
4475 store_unsigned_integer (buf
, 4, enable
? eh_notify_callback_addr
: 0); /* FIXME 32x64 problem */
4476 /* pai: (temp) FIXME should there be a pack operation first? */
4477 if (target_write_memory (eh_notify_hook_addr
, buf
, 4)) /* FIXME 32x64 problem */
4479 warning ("Could not write to target memory for exception event callback.");
4480 warning ("Interception of exception events may not work.");
4481 return (struct symtab_and_line
*) -1;
4485 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4486 if (PIDGET (inferior_ptid
) > 0)
4488 if (setup_d_pid_in_inferior ())
4489 return (struct symtab_and_line
*) -1;
4493 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4494 return (struct symtab_and_line
*) -1;
4500 case EX_EVENT_THROW
:
4501 store_unsigned_integer (buf
, 4, enable
? 1 : 0);
4502 if (target_write_memory (eh_catch_throw_addr
, buf
, 4)) /* FIXME 32x64? */
4504 warning ("Couldn't enable exception throw interception.");
4505 return (struct symtab_and_line
*) -1;
4508 case EX_EVENT_CATCH
:
4509 store_unsigned_integer (buf
, 4, enable
? 1 : 0);
4510 if (target_write_memory (eh_catch_catch_addr
, buf
, 4)) /* FIXME 32x64? */
4512 warning ("Couldn't enable exception catch interception.");
4513 return (struct symtab_and_line
*) -1;
4517 error ("Request to enable unknown or unsupported exception event.");
4520 /* Copy break address into new sal struct, malloc'ing if needed. */
4521 if (!break_callback_sal
)
4523 break_callback_sal
= (struct symtab_and_line
*) xmalloc (sizeof (struct symtab_and_line
));
4525 init_sal (break_callback_sal
);
4526 break_callback_sal
->symtab
= NULL
;
4527 break_callback_sal
->pc
= eh_break_addr
;
4528 break_callback_sal
->line
= 0;
4529 break_callback_sal
->end
= eh_break_addr
;
4531 return break_callback_sal
;
4534 /* Record some information about the current exception event */
4535 static struct exception_event_record current_ex_event
;
4536 /* Convenience struct */
4537 static struct symtab_and_line null_symtab_and_line
=
4540 /* Report current exception event. Returns a pointer to a record
4541 that describes the kind of the event, where it was thrown from,
4542 and where it will be caught. More information may be reported
4544 struct exception_event_record
*
4545 child_get_current_exception_event (void)
4547 CORE_ADDR event_kind
;
4548 CORE_ADDR throw_addr
;
4549 CORE_ADDR catch_addr
;
4550 struct frame_info
*fi
, *curr_frame
;
4553 curr_frame
= get_current_frame ();
4555 return (struct exception_event_record
*) NULL
;
4557 /* Go up one frame to __d_eh_notify_callback, because at the
4558 point when this code is executed, there's garbage in the
4559 arguments of __d_eh_break. */
4560 fi
= find_relative_frame (curr_frame
, &level
);
4562 return (struct exception_event_record
*) NULL
;
4566 /* Read in the arguments */
4567 /* __d_eh_notify_callback() is called with 3 arguments:
4568 1. event kind catch or throw
4569 2. the target address if known
4570 3. a flag -- not sure what this is. pai/1997-07-17 */
4571 event_kind
= read_register (ARG0_REGNUM
);
4572 catch_addr
= read_register (ARG1_REGNUM
);
4574 /* Now go down to a user frame */
4575 /* For a throw, __d_eh_break is called by
4576 __d_eh_notify_callback which is called by
4577 __notify_throw which is called
4579 For a catch, __d_eh_break is called by
4580 __d_eh_notify_callback which is called by
4581 <stackwalking stuff> which is called by
4582 __throw__<stuff> or __rethrow_<stuff> which is called
4584 /* FIXME: Don't use such magic numbers; search for the frames */
4585 level
= (event_kind
== EX_EVENT_THROW
) ? 3 : 4;
4586 fi
= find_relative_frame (curr_frame
, &level
);
4588 return (struct exception_event_record
*) NULL
;
4591 throw_addr
= get_frame_pc (fi
);
4593 /* Go back to original (top) frame */
4594 select_frame (curr_frame
);
4596 current_ex_event
.kind
= (enum exception_event_kind
) event_kind
;
4597 current_ex_event
.throw_sal
= find_pc_line (throw_addr
, 1);
4598 current_ex_event
.catch_sal
= find_pc_line (catch_addr
, 1);
4600 return ¤t_ex_event
;
4603 /* Instead of this nasty cast, add a method pvoid() that prints out a
4604 host VOID data type (remember %p isn't portable). */
4607 hppa_pointer_to_address_hack (void *ptr
)
4609 gdb_assert (sizeof (ptr
) == TYPE_LENGTH (builtin_type_void_data_ptr
));
4610 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr
, &ptr
);
4614 unwind_command (char *exp
, int from_tty
)
4617 struct unwind_table_entry
*u
;
4619 /* If we have an expression, evaluate it and use it as the address. */
4621 if (exp
!= 0 && *exp
!= 0)
4622 address
= parse_and_eval_address (exp
);
4626 u
= find_unwind_entry (address
);
4630 printf_unfiltered ("Can't find unwind table entry for %s\n", exp
);
4634 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4635 paddr_nz (hppa_pointer_to_address_hack (u
)));
4637 printf_unfiltered ("\tregion_start = ");
4638 print_address (u
->region_start
, gdb_stdout
);
4640 printf_unfiltered ("\n\tregion_end = ");
4641 print_address (u
->region_end
, gdb_stdout
);
4643 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4645 printf_unfiltered ("\n\tflags =");
4646 pif (Cannot_unwind
);
4648 pif (Millicode_save_sr0
);
4651 pif (Variable_Frame
);
4652 pif (Separate_Package_Body
);
4653 pif (Frame_Extension_Millicode
);
4654 pif (Stack_Overflow_Check
);
4655 pif (Two_Instruction_SP_Increment
);
4659 pif (Save_MRP_in_frame
);
4660 pif (extn_ptr_defined
);
4661 pif (Cleanup_defined
);
4662 pif (MPE_XL_interrupt_marker
);
4663 pif (HP_UX_interrupt_marker
);
4666 putchar_unfiltered ('\n');
4668 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4670 pin (Region_description
);
4673 pin (Total_frame_size
);
4676 #ifdef PREPARE_TO_PROCEED
4678 /* If the user has switched threads, and there is a breakpoint
4679 at the old thread's pc location, then switch to that thread
4680 and return TRUE, else return FALSE and don't do a thread
4681 switch (or rather, don't seem to have done a thread switch).
4683 Ptrace-based gdb will always return FALSE to the thread-switch
4684 query, and thus also to PREPARE_TO_PROCEED.
4686 The important thing is whether there is a BPT instruction,
4687 not how many user breakpoints there are. So we have to worry
4688 about things like these:
4692 o User hits bp, no switch -- NO
4694 o User hits bp, switches threads -- YES
4696 o User hits bp, deletes bp, switches threads -- NO
4698 o User hits bp, deletes one of two or more bps
4699 at that PC, user switches threads -- YES
4701 o Plus, since we're buffering events, the user may have hit a
4702 breakpoint, deleted the breakpoint and then gotten another
4703 hit on that same breakpoint on another thread which
4704 actually hit before the delete. (FIXME in breakpoint.c
4705 so that "dead" breakpoints are ignored?) -- NO
4707 For these reasons, we have to violate information hiding and
4708 call "breakpoint_here_p". If core gdb thinks there is a bpt
4709 here, that's what counts, as core gdb is the one which is
4710 putting the BPT instruction in and taking it out.
4712 Note that this implementation is potentially redundant now that
4713 default_prepare_to_proceed() has been added.
4715 FIXME This may not support switching threads after Ctrl-C
4716 correctly. The default implementation does support this. */
4718 hppa_prepare_to_proceed (void)
4721 pid_t current_thread
;
4723 old_thread
= hppa_switched_threads (PIDGET (inferior_ptid
));
4724 if (old_thread
!= 0)
4726 /* Switched over from "old_thread". Try to do
4727 as little work as possible, 'cause mostly
4728 we're going to switch back. */
4730 CORE_ADDR old_pc
= read_pc ();
4732 /* Yuk, shouldn't use global to specify current
4733 thread. But that's how gdb does it. */
4734 current_thread
= PIDGET (inferior_ptid
);
4735 inferior_ptid
= pid_to_ptid (old_thread
);
4737 new_pc
= read_pc ();
4738 if (new_pc
!= old_pc
/* If at same pc, no need */
4739 && breakpoint_here_p (new_pc
))
4741 /* User hasn't deleted the BP.
4742 Return TRUE, finishing switch to "old_thread". */
4743 flush_cached_frames ();
4744 registers_changed ();
4746 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
4747 current_thread
, PIDGET (inferior_ptid
));
4753 /* Otherwise switch back to the user-chosen thread. */
4754 inferior_ptid
= pid_to_ptid (current_thread
);
4755 new_pc
= read_pc (); /* Re-prime register cache */
4760 #endif /* PREPARE_TO_PROCEED */
4763 hppa_skip_permanent_breakpoint (void)
4765 /* To step over a breakpoint instruction on the PA takes some
4766 fiddling with the instruction address queue.
4768 When we stop at a breakpoint, the IA queue front (the instruction
4769 we're executing now) points at the breakpoint instruction, and
4770 the IA queue back (the next instruction to execute) points to
4771 whatever instruction we would execute after the breakpoint, if it
4772 were an ordinary instruction. This is the case even if the
4773 breakpoint is in the delay slot of a branch instruction.
4775 Clearly, to step past the breakpoint, we need to set the queue
4776 front to the back. But what do we put in the back? What
4777 instruction comes after that one? Because of the branch delay
4778 slot, the next insn is always at the back + 4. */
4779 write_register (PCOQ_HEAD_REGNUM
, read_register (PCOQ_TAIL_REGNUM
));
4780 write_register (PCSQ_HEAD_REGNUM
, read_register (PCSQ_TAIL_REGNUM
));
4782 write_register (PCOQ_TAIL_REGNUM
, read_register (PCOQ_TAIL_REGNUM
) + 4);
4783 /* We can leave the tail's space the same, since there's no jump. */
4786 /* Copy the function value from VALBUF into the proper location
4787 for a function return.
4789 Called only in the context of the "return" command. */
4792 hppa_store_return_value (struct type
*type
, char *valbuf
)
4794 /* For software floating point, the return value goes into the
4795 integer registers. But we do not have any flag to key this on,
4796 so we always store the value into the integer registers.
4798 If its a float value, then we also store it into the floating
4800 deprecated_write_register_bytes (REGISTER_BYTE (28)
4801 + (TYPE_LENGTH (type
) > 4
4802 ? (8 - TYPE_LENGTH (type
))
4803 : (4 - TYPE_LENGTH (type
))),
4804 valbuf
, TYPE_LENGTH (type
));
4805 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
4806 deprecated_write_register_bytes (REGISTER_BYTE (FP4_REGNUM
),
4807 valbuf
, TYPE_LENGTH (type
));
4810 /* Copy the function's return value into VALBUF.
4812 This function is called only in the context of "target function calls",
4813 ie. when the debugger forces a function to be called in the child, and
4814 when the debugger forces a fucntion to return prematurely via the
4815 "return" command. */
4818 hppa_extract_return_value (struct type
*type
, char *regbuf
, char *valbuf
)
4820 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
4822 (char *)regbuf
+ REGISTER_BYTE (FP4_REGNUM
),
4823 TYPE_LENGTH (type
));
4827 + REGISTER_BYTE (28)
4828 + (TYPE_LENGTH (type
) > 4
4829 ? (8 - TYPE_LENGTH (type
))
4830 : (4 - TYPE_LENGTH (type
)))),
4831 TYPE_LENGTH (type
));
4835 hppa_reg_struct_has_addr (int gcc_p
, struct type
*type
)
4837 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4838 via a pointer regardless of its type or the compiler used. */
4839 return (TYPE_LENGTH (type
) > 8);
4843 hppa_inner_than (CORE_ADDR lhs
, CORE_ADDR rhs
)
4845 /* Stack grows upward */
4850 hppa_stack_align (CORE_ADDR sp
)
4852 /* elz: adjust the quantity to the next highest value which is
4853 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4854 On hppa the sp must always be kept 64-bit aligned */
4855 return ((sp
% 8) ? (sp
+ 7) & -8 : sp
);
4859 hppa_pc_requires_run_before_use (CORE_ADDR pc
)
4861 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4863 An example of this occurs when an a.out is linked against a foo.sl.
4864 The foo.sl defines a global bar(), and the a.out declares a signature
4865 for bar(). However, the a.out doesn't directly call bar(), but passes
4866 its address in another call.
4868 If you have this scenario and attempt to "break bar" before running,
4869 gdb will find a minimal symbol for bar() in the a.out. But that
4870 symbol's address will be negative. What this appears to denote is
4871 an index backwards from the base of the procedure linkage table (PLT)
4872 into the data linkage table (DLT), the end of which is contiguous
4873 with the start of the PLT. This is clearly not a valid address for
4874 us to set a breakpoint on.
4876 Note that one must be careful in how one checks for a negative address.
4877 0xc0000000 is a legitimate address of something in a shared text
4878 segment, for example. Since I don't know what the possible range
4879 is of these "really, truly negative" addresses that come from the
4880 minimal symbols, I'm resorting to the gross hack of checking the
4881 top byte of the address for all 1's. Sigh. */
4883 return (!target_has_stack
&& (pc
& 0xFF000000));
4887 hppa_instruction_nullified (void)
4889 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4890 avoid the type cast. I'm leaving it as is for now as I'm doing
4891 semi-mechanical multiarching-related changes. */
4892 const int ipsw
= (int) read_register (IPSW_REGNUM
);
4893 const int flags
= (int) read_register (FLAGS_REGNUM
);
4895 return ((ipsw
& 0x00200000) && !(flags
& 0x2));
4899 hppa_register_raw_size (int reg_nr
)
4901 /* All registers have the same size. */
4902 return DEPRECATED_REGISTER_SIZE
;
4905 /* Index within the register vector of the first byte of the space i
4906 used for register REG_NR. */
4909 hppa_register_byte (int reg_nr
)
4914 /* Return the GDB type object for the "standard" data type of data
4918 hppa_register_virtual_type (int reg_nr
)
4920 if (reg_nr
< FP4_REGNUM
)
4921 return builtin_type_int
;
4923 return builtin_type_float
;
4926 /* Store the address of the place in which to copy the structure the
4927 subroutine will return. This is called from call_function. */
4930 hppa_store_struct_return (CORE_ADDR addr
, CORE_ADDR sp
)
4932 write_register (28, addr
);
4936 hppa_extract_struct_value_address (char *regbuf
)
4938 /* Extract from an array REGBUF containing the (raw) register state
4939 the address in which a function should return its structure value,
4940 as a CORE_ADDR (or an expression that can be used as one). */
4941 /* FIXME: brobecker 2002-12-26.
4942 The current implementation is historical, but we should eventually
4943 implement it in a more robust manner as it relies on the fact that
4944 the address size is equal to the size of an int* _on the host_...
4945 One possible implementation that crossed my mind is to use
4947 return (*(int *)(regbuf
+ REGISTER_BYTE (28)));
4950 /* Return True if REGNUM is not a register available to the user
4951 through ptrace(). */
4954 hppa_cannot_store_register (int regnum
)
4957 || regnum
== PCSQ_HEAD_REGNUM
4958 || (regnum
>= PCSQ_TAIL_REGNUM
&& regnum
< IPSW_REGNUM
)
4959 || (regnum
> IPSW_REGNUM
&& regnum
< FP4_REGNUM
));
4964 hppa_frame_args_address (struct frame_info
*fi
)
4966 return get_frame_base (fi
);
4970 hppa_frame_locals_address (struct frame_info
*fi
)
4972 return get_frame_base (fi
);
4976 hppa_frame_num_args (struct frame_info
*frame
)
4978 /* We can't tell how many args there are now that the C compiler delays
4984 hppa_smash_text_address (CORE_ADDR addr
)
4986 /* The low two bits of the PC on the PA contain the privilege level.
4987 Some genius implementing a (non-GCC) compiler apparently decided
4988 this means that "addresses" in a text section therefore include a
4989 privilege level, and thus symbol tables should contain these bits.
4990 This seems like a bonehead thing to do--anyway, it seems to work
4991 for our purposes to just ignore those bits. */
4993 return (addr
&= ~0x3);
4996 static struct gdbarch
*
4997 hppa_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
4999 struct gdbarch
*gdbarch
;
5001 /* Try to determine the ABI of the object we are loading. */
5002 if (info
.abfd
!= NULL
&& info
.osabi
== GDB_OSABI_UNKNOWN
)
5004 /* If it's a SOM file, assume it's HP/UX SOM. */
5005 if (bfd_get_flavour (info
.abfd
) == bfd_target_som_flavour
)
5006 info
.osabi
= GDB_OSABI_HPUX_SOM
;
5009 /* find a candidate among the list of pre-declared architectures. */
5010 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
5012 return (arches
->gdbarch
);
5014 /* If none found, then allocate and initialize one. */
5015 gdbarch
= gdbarch_alloc (&info
, NULL
);
5017 /* Hook in ABI-specific overrides, if they have been registered. */
5018 gdbarch_init_osabi (info
, gdbarch
);
5020 set_gdbarch_reg_struct_has_addr (gdbarch
, hppa_reg_struct_has_addr
);
5021 set_gdbarch_function_start_offset (gdbarch
, 0);
5022 set_gdbarch_skip_prologue (gdbarch
, hppa_skip_prologue
);
5023 set_gdbarch_skip_trampoline_code (gdbarch
, hppa_skip_trampoline_code
);
5024 set_gdbarch_in_solib_call_trampoline (gdbarch
, hppa_in_solib_call_trampoline
);
5025 set_gdbarch_in_solib_return_trampoline (gdbarch
,
5026 hppa_in_solib_return_trampoline
);
5027 set_gdbarch_deprecated_saved_pc_after_call (gdbarch
, hppa_saved_pc_after_call
);
5028 set_gdbarch_inner_than (gdbarch
, hppa_inner_than
);
5029 set_gdbarch_stack_align (gdbarch
, hppa_stack_align
);
5030 set_gdbarch_decr_pc_after_break (gdbarch
, 0);
5031 set_gdbarch_deprecated_register_size (gdbarch
, 4);
5032 set_gdbarch_num_regs (gdbarch
, hppa_num_regs
);
5033 set_gdbarch_deprecated_fp_regnum (gdbarch
, 3);
5034 set_gdbarch_sp_regnum (gdbarch
, 30);
5035 set_gdbarch_fp0_regnum (gdbarch
, 64);
5036 set_gdbarch_pc_regnum (gdbarch
, PCOQ_HEAD_REGNUM
);
5037 set_gdbarch_npc_regnum (gdbarch
, PCOQ_TAIL_REGNUM
);
5038 set_gdbarch_register_raw_size (gdbarch
, hppa_register_raw_size
);
5039 set_gdbarch_deprecated_register_bytes (gdbarch
, hppa_num_regs
* 4);
5040 set_gdbarch_register_byte (gdbarch
, hppa_register_byte
);
5041 set_gdbarch_register_virtual_size (gdbarch
, hppa_register_raw_size
);
5042 set_gdbarch_deprecated_max_register_raw_size (gdbarch
, 4);
5043 set_gdbarch_deprecated_max_register_virtual_size (gdbarch
, 8);
5044 set_gdbarch_register_virtual_type (gdbarch
, hppa_register_virtual_type
);
5045 set_gdbarch_deprecated_store_struct_return (gdbarch
, hppa_store_struct_return
);
5046 set_gdbarch_deprecated_extract_return_value (gdbarch
,
5047 hppa_extract_return_value
);
5048 set_gdbarch_use_struct_convention (gdbarch
, hppa_use_struct_convention
);
5049 set_gdbarch_deprecated_store_return_value (gdbarch
, hppa_store_return_value
);
5050 set_gdbarch_deprecated_extract_struct_value_address
5051 (gdbarch
, hppa_extract_struct_value_address
);
5052 set_gdbarch_cannot_store_register (gdbarch
, hppa_cannot_store_register
);
5053 set_gdbarch_deprecated_init_extra_frame_info (gdbarch
, hppa_init_extra_frame_info
);
5054 set_gdbarch_deprecated_frame_chain (gdbarch
, hppa_frame_chain
);
5055 set_gdbarch_deprecated_frame_chain_valid (gdbarch
, hppa_frame_chain_valid
);
5056 set_gdbarch_frameless_function_invocation
5057 (gdbarch
, hppa_frameless_function_invocation
);
5058 set_gdbarch_deprecated_frame_saved_pc (gdbarch
, hppa_frame_saved_pc
);
5059 set_gdbarch_frame_args_address (gdbarch
, hppa_frame_args_address
);
5060 set_gdbarch_frame_locals_address (gdbarch
, hppa_frame_locals_address
);
5061 set_gdbarch_frame_num_args (gdbarch
, hppa_frame_num_args
);
5062 set_gdbarch_frame_args_skip (gdbarch
, 0);
5063 set_gdbarch_deprecated_push_dummy_frame (gdbarch
, hppa_push_dummy_frame
);
5064 set_gdbarch_deprecated_pop_frame (gdbarch
, hppa_pop_frame
);
5065 set_gdbarch_deprecated_call_dummy_length (gdbarch
, INSTRUCTION_SIZE
* 28);
5066 /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
5067 set_gdbarch_deprecated_push_arguments (gdbarch
, hppa_push_arguments
);
5068 set_gdbarch_smash_text_address (gdbarch
, hppa_smash_text_address
);
5069 set_gdbarch_believe_pcc_promotion (gdbarch
, 1);
5070 set_gdbarch_read_pc (gdbarch
, hppa_target_read_pc
);
5071 set_gdbarch_write_pc (gdbarch
, hppa_target_write_pc
);
5072 set_gdbarch_deprecated_target_read_fp (gdbarch
, hppa_target_read_fp
);
5078 hppa_dump_tdep (struct gdbarch
*current_gdbarch
, struct ui_file
*file
)
5080 /* Nothing to print for the moment. */
5084 _initialize_hppa_tdep (void)
5086 struct cmd_list_element
*c
;
5087 void break_at_finish_command (char *arg
, int from_tty
);
5088 void tbreak_at_finish_command (char *arg
, int from_tty
);
5089 void break_at_finish_at_depth_command (char *arg
, int from_tty
);
5091 gdbarch_register (bfd_arch_hppa
, hppa_gdbarch_init
, hppa_dump_tdep
);
5092 deprecated_tm_print_insn
= print_insn_hppa
;
5094 add_cmd ("unwind", class_maintenance
, unwind_command
,
5095 "Print unwind table entry at given address.",
5096 &maintenanceprintlist
);
5098 deprecate_cmd (add_com ("xbreak", class_breakpoint
,
5099 break_at_finish_command
,
5100 concat ("Set breakpoint at procedure exit. \n\
5101 Argument may be function name, or \"*\" and an address.\n\
5102 If function is specified, break at end of code for that function.\n\
5103 If an address is specified, break at the end of the function that contains \n\
5104 that exact address.\n",
5105 "With no arg, uses current execution address of selected stack frame.\n\
5106 This is useful for breaking on return to a stack frame.\n\
5108 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5110 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL
)), NULL
);
5111 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint
, 1), NULL
);
5112 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint
, 1), NULL
);
5113 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint
, 1), NULL
);
5114 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint
, 1), NULL
);
5116 deprecate_cmd (c
= add_com ("txbreak", class_breakpoint
,
5117 tbreak_at_finish_command
,
5118 "Set temporary breakpoint at procedure exit. Either there should\n\
5119 be no argument or the argument must be a depth.\n"), NULL
);
5120 set_cmd_completer (c
, location_completer
);
5123 deprecate_cmd (add_com ("bx", class_breakpoint
,
5124 break_at_finish_at_depth_command
,
5125 "Set breakpoint at procedure exit. Either there should\n\
5126 be no argument or the argument must be a depth.\n"), NULL
);