1f78d06d164723cfb940f0247184f54e2c7f7ed0
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "value.h"
31 #include "regcache.h"
32 #include "completer.h"
33 #include "language.h"
34 #include "osabi.h"
35 #include "gdb_assert.h"
36 #include "infttrace.h"
37 /* For argument passing to the inferior */
38 #include "symtab.h"
39 #include "infcall.h"
40
41 #ifdef USG
42 #include <sys/types.h>
43 #endif
44
45 #include <dl.h>
46 #include <sys/param.h>
47 #include <signal.h>
48
49 #include <sys/ptrace.h>
50 #include <machine/save_state.h>
51
52 #ifdef COFF_ENCAPSULATE
53 #include "a.out.encap.h"
54 #else
55 #endif
56
57 /*#include <sys/user.h> After a.out.h */
58 #include <sys/file.h>
59 #include "gdb_stat.h"
60 #include "gdb_wait.h"
61
62 #include "gdbcore.h"
63 #include "gdbcmd.h"
64 #include "target.h"
65 #include "symfile.h"
66 #include "objfiles.h"
67
68 /* Some local constants. */
69 static const int hppa_num_regs = 128;
70
71 /* Get at various relevent fields of an instruction word. */
72 #define MASK_5 0x1f
73 #define MASK_11 0x7ff
74 #define MASK_14 0x3fff
75 #define MASK_21 0x1fffff
76
77 /* Define offsets into the call dummy for the target function address.
78 See comments related to CALL_DUMMY for more info. */
79 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
80 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
81
82 /* Define offsets into the call dummy for the _sr4export address.
83 See comments related to CALL_DUMMY for more info. */
84 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
85 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
86
87 /* To support detection of the pseudo-initial frame
88 that threads have. */
89 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
90 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
91
92 /* Sizes (in bytes) of the native unwind entries. */
93 #define UNWIND_ENTRY_SIZE 16
94 #define STUB_UNWIND_ENTRY_SIZE 8
95
96 static int get_field (unsigned word, int from, int to);
97
98 static int extract_5_load (unsigned int);
99
100 static unsigned extract_5R_store (unsigned int);
101
102 static unsigned extract_5r_store (unsigned int);
103
104 static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *);
105
106 static int find_proc_framesize (CORE_ADDR);
107
108 static int find_return_regnum (CORE_ADDR);
109
110 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
111
112 static int extract_17 (unsigned int);
113
114 static unsigned deposit_21 (unsigned int, unsigned int);
115
116 static int extract_21 (unsigned);
117
118 static unsigned deposit_14 (int, unsigned int);
119
120 static int extract_14 (unsigned);
121
122 static void unwind_command (char *, int);
123
124 static int low_sign_extend (unsigned int, unsigned int);
125
126 static int sign_extend (unsigned int, unsigned int);
127
128 static int restore_pc_queue (CORE_ADDR *);
129
130 static int hppa_alignof (struct type *);
131
132 /* To support multi-threading and stepping. */
133 int hppa_prepare_to_proceed ();
134
135 static int prologue_inst_adjust_sp (unsigned long);
136
137 static int is_branch (unsigned long);
138
139 static int inst_saves_gr (unsigned long);
140
141 static int inst_saves_fr (unsigned long);
142
143 static int pc_in_interrupt_handler (CORE_ADDR);
144
145 static int pc_in_linker_stub (CORE_ADDR);
146
147 static int compare_unwind_entries (const void *, const void *);
148
149 static void read_unwind_info (struct objfile *);
150
151 static void internalize_unwinds (struct objfile *,
152 struct unwind_table_entry *,
153 asection *, unsigned int,
154 unsigned int, CORE_ADDR);
155 static void pa_print_registers (char *, int, int);
156 static void pa_strcat_registers (char *, int, int, struct ui_file *);
157 static void pa_register_look_aside (char *, int, long *);
158 static void pa_print_fp_reg (int);
159 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
160 static void record_text_segment_lowaddr (bfd *, asection *, void *);
161 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
162 following functions static, once we hppa is partially multiarched. */
163 int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
164 CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
165 CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
166 int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
167 int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
168 CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
169 int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
170 CORE_ADDR hppa_stack_align (CORE_ADDR sp);
171 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
172 int hppa_instruction_nullified (void);
173 int hppa_register_raw_size (int reg_nr);
174 int hppa_register_byte (int reg_nr);
175 struct type * hppa_register_virtual_type (int reg_nr);
176 void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
177 void hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf);
178 int hppa_use_struct_convention (int gcc_p, struct type *type);
179 void hppa_store_return_value (struct type *type, char *valbuf);
180 CORE_ADDR hppa_extract_struct_value_address (char *regbuf);
181 int hppa_cannot_store_register (int regnum);
182 void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
183 CORE_ADDR hppa_frame_chain (struct frame_info *frame);
184 int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
185 int hppa_frameless_function_invocation (struct frame_info *frame);
186 CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
187 CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
188 CORE_ADDR hppa_frame_locals_address (struct frame_info *fi);
189 int hppa_frame_num_args (struct frame_info *frame);
190 void hppa_push_dummy_frame (void);
191 void hppa_pop_frame (void);
192 CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
193 int nargs, struct value **args,
194 struct type *type, int gcc_p);
195 CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
196 int struct_return, CORE_ADDR struct_addr);
197 CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
198 CORE_ADDR hppa_target_read_pc (ptid_t ptid);
199 void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
200 CORE_ADDR hppa_target_read_fp (void);
201
202 typedef struct
203 {
204 struct minimal_symbol *msym;
205 CORE_ADDR solib_handle;
206 CORE_ADDR return_val;
207 }
208 args_for_find_stub;
209
210 static int cover_find_stub_with_shl_get (void *);
211
212 static int is_pa_2 = 0; /* False */
213
214 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
215 extern int hp_som_som_object_present;
216
217 /* In breakpoint.c */
218 extern int exception_catchpoints_are_fragile;
219
220 /* Should call_function allocate stack space for a struct return? */
221
222 int
223 hppa_use_struct_convention (int gcc_p, struct type *type)
224 {
225 return (TYPE_LENGTH (type) > 2 * DEPRECATED_REGISTER_SIZE);
226 }
227 \f
228
229 /* Routines to extract various sized constants out of hppa
230 instructions. */
231
232 /* This assumes that no garbage lies outside of the lower bits of
233 value. */
234
235 static int
236 sign_extend (unsigned val, unsigned bits)
237 {
238 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
239 }
240
241 /* For many immediate values the sign bit is the low bit! */
242
243 static int
244 low_sign_extend (unsigned val, unsigned bits)
245 {
246 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
247 }
248
249 /* Extract the bits at positions between FROM and TO, using HP's numbering
250 (MSB = 0). */
251
252 static int
253 get_field (unsigned word, int from, int to)
254 {
255 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
256 }
257
258 /* extract the immediate field from a ld{bhw}s instruction */
259
260 static int
261 extract_5_load (unsigned word)
262 {
263 return low_sign_extend (word >> 16 & MASK_5, 5);
264 }
265
266 /* extract the immediate field from a break instruction */
267
268 static unsigned
269 extract_5r_store (unsigned word)
270 {
271 return (word & MASK_5);
272 }
273
274 /* extract the immediate field from a {sr}sm instruction */
275
276 static unsigned
277 extract_5R_store (unsigned word)
278 {
279 return (word >> 16 & MASK_5);
280 }
281
282 /* extract a 14 bit immediate field */
283
284 static int
285 extract_14 (unsigned word)
286 {
287 return low_sign_extend (word & MASK_14, 14);
288 }
289
290 /* deposit a 14 bit constant in a word */
291
292 static unsigned
293 deposit_14 (int opnd, unsigned word)
294 {
295 unsigned sign = (opnd < 0 ? 1 : 0);
296
297 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
298 }
299
300 /* extract a 21 bit constant */
301
302 static int
303 extract_21 (unsigned word)
304 {
305 int val;
306
307 word &= MASK_21;
308 word <<= 11;
309 val = get_field (word, 20, 20);
310 val <<= 11;
311 val |= get_field (word, 9, 19);
312 val <<= 2;
313 val |= get_field (word, 5, 6);
314 val <<= 5;
315 val |= get_field (word, 0, 4);
316 val <<= 2;
317 val |= get_field (word, 7, 8);
318 return sign_extend (val, 21) << 11;
319 }
320
321 /* deposit a 21 bit constant in a word. Although 21 bit constants are
322 usually the top 21 bits of a 32 bit constant, we assume that only
323 the low 21 bits of opnd are relevant */
324
325 static unsigned
326 deposit_21 (unsigned opnd, unsigned word)
327 {
328 unsigned val = 0;
329
330 val |= get_field (opnd, 11 + 14, 11 + 18);
331 val <<= 2;
332 val |= get_field (opnd, 11 + 12, 11 + 13);
333 val <<= 2;
334 val |= get_field (opnd, 11 + 19, 11 + 20);
335 val <<= 11;
336 val |= get_field (opnd, 11 + 1, 11 + 11);
337 val <<= 1;
338 val |= get_field (opnd, 11 + 0, 11 + 0);
339 return word | val;
340 }
341
342 /* extract a 17 bit constant from branch instructions, returning the
343 19 bit signed value. */
344
345 static int
346 extract_17 (unsigned word)
347 {
348 return sign_extend (get_field (word, 19, 28) |
349 get_field (word, 29, 29) << 10 |
350 get_field (word, 11, 15) << 11 |
351 (word & 0x1) << 16, 17) << 2;
352 }
353 \f
354
355 /* Compare the start address for two unwind entries returning 1 if
356 the first address is larger than the second, -1 if the second is
357 larger than the first, and zero if they are equal. */
358
359 static int
360 compare_unwind_entries (const void *arg1, const void *arg2)
361 {
362 const struct unwind_table_entry *a = arg1;
363 const struct unwind_table_entry *b = arg2;
364
365 if (a->region_start > b->region_start)
366 return 1;
367 else if (a->region_start < b->region_start)
368 return -1;
369 else
370 return 0;
371 }
372
373 static CORE_ADDR low_text_segment_address;
374
375 static void
376 record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
377 {
378 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
379 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
380 && section->vma < low_text_segment_address)
381 low_text_segment_address = section->vma;
382 }
383
384 static void
385 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
386 asection *section, unsigned int entries, unsigned int size,
387 CORE_ADDR text_offset)
388 {
389 /* We will read the unwind entries into temporary memory, then
390 fill in the actual unwind table. */
391 if (size > 0)
392 {
393 unsigned long tmp;
394 unsigned i;
395 char *buf = alloca (size);
396
397 low_text_segment_address = -1;
398
399 /* If addresses are 64 bits wide, then unwinds are supposed to
400 be segment relative offsets instead of absolute addresses.
401
402 Note that when loading a shared library (text_offset != 0) the
403 unwinds are already relative to the text_offset that will be
404 passed in. */
405 if (TARGET_PTR_BIT == 64 && text_offset == 0)
406 {
407 bfd_map_over_sections (objfile->obfd,
408 record_text_segment_lowaddr, NULL);
409
410 /* ?!? Mask off some low bits. Should this instead subtract
411 out the lowest section's filepos or something like that?
412 This looks very hokey to me. */
413 low_text_segment_address &= ~0xfff;
414 text_offset += low_text_segment_address;
415 }
416
417 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
418
419 /* Now internalize the information being careful to handle host/target
420 endian issues. */
421 for (i = 0; i < entries; i++)
422 {
423 table[i].region_start = bfd_get_32 (objfile->obfd,
424 (bfd_byte *) buf);
425 table[i].region_start += text_offset;
426 buf += 4;
427 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
428 table[i].region_end += text_offset;
429 buf += 4;
430 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
431 buf += 4;
432 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
433 table[i].Millicode = (tmp >> 30) & 0x1;
434 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
435 table[i].Region_description = (tmp >> 27) & 0x3;
436 table[i].reserved1 = (tmp >> 26) & 0x1;
437 table[i].Entry_SR = (tmp >> 25) & 0x1;
438 table[i].Entry_FR = (tmp >> 21) & 0xf;
439 table[i].Entry_GR = (tmp >> 16) & 0x1f;
440 table[i].Args_stored = (tmp >> 15) & 0x1;
441 table[i].Variable_Frame = (tmp >> 14) & 0x1;
442 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
443 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
444 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
445 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
446 table[i].Ada_Region = (tmp >> 9) & 0x1;
447 table[i].cxx_info = (tmp >> 8) & 0x1;
448 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
449 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
450 table[i].reserved2 = (tmp >> 5) & 0x1;
451 table[i].Save_SP = (tmp >> 4) & 0x1;
452 table[i].Save_RP = (tmp >> 3) & 0x1;
453 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
454 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
455 table[i].Cleanup_defined = tmp & 0x1;
456 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
457 buf += 4;
458 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
459 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
460 table[i].Large_frame = (tmp >> 29) & 0x1;
461 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
462 table[i].reserved4 = (tmp >> 27) & 0x1;
463 table[i].Total_frame_size = tmp & 0x7ffffff;
464
465 /* Stub unwinds are handled elsewhere. */
466 table[i].stub_unwind.stub_type = 0;
467 table[i].stub_unwind.padding = 0;
468 }
469 }
470 }
471
472 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
473 the object file. This info is used mainly by find_unwind_entry() to find
474 out the stack frame size and frame pointer used by procedures. We put
475 everything on the psymbol obstack in the objfile so that it automatically
476 gets freed when the objfile is destroyed. */
477
478 static void
479 read_unwind_info (struct objfile *objfile)
480 {
481 asection *unwind_sec, *stub_unwind_sec;
482 unsigned unwind_size, stub_unwind_size, total_size;
483 unsigned index, unwind_entries;
484 unsigned stub_entries, total_entries;
485 CORE_ADDR text_offset;
486 struct obj_unwind_info *ui;
487 obj_private_data_t *obj_private;
488
489 text_offset = ANOFFSET (objfile->section_offsets, 0);
490 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
491 sizeof (struct obj_unwind_info));
492
493 ui->table = NULL;
494 ui->cache = NULL;
495 ui->last = -1;
496
497 /* For reasons unknown the HP PA64 tools generate multiple unwinder
498 sections in a single executable. So we just iterate over every
499 section in the BFD looking for unwinder sections intead of trying
500 to do a lookup with bfd_get_section_by_name.
501
502 First determine the total size of the unwind tables so that we
503 can allocate memory in a nice big hunk. */
504 total_entries = 0;
505 for (unwind_sec = objfile->obfd->sections;
506 unwind_sec;
507 unwind_sec = unwind_sec->next)
508 {
509 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
510 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
511 {
512 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
513 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
514
515 total_entries += unwind_entries;
516 }
517 }
518
519 /* Now compute the size of the stub unwinds. Note the ELF tools do not
520 use stub unwinds at the curren time. */
521 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
522
523 if (stub_unwind_sec)
524 {
525 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
526 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
527 }
528 else
529 {
530 stub_unwind_size = 0;
531 stub_entries = 0;
532 }
533
534 /* Compute total number of unwind entries and their total size. */
535 total_entries += stub_entries;
536 total_size = total_entries * sizeof (struct unwind_table_entry);
537
538 /* Allocate memory for the unwind table. */
539 ui->table = (struct unwind_table_entry *)
540 obstack_alloc (&objfile->psymbol_obstack, total_size);
541 ui->last = total_entries - 1;
542
543 /* Now read in each unwind section and internalize the standard unwind
544 entries. */
545 index = 0;
546 for (unwind_sec = objfile->obfd->sections;
547 unwind_sec;
548 unwind_sec = unwind_sec->next)
549 {
550 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
551 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
552 {
553 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
554 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
555
556 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
557 unwind_entries, unwind_size, text_offset);
558 index += unwind_entries;
559 }
560 }
561
562 /* Now read in and internalize the stub unwind entries. */
563 if (stub_unwind_size > 0)
564 {
565 unsigned int i;
566 char *buf = alloca (stub_unwind_size);
567
568 /* Read in the stub unwind entries. */
569 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
570 0, stub_unwind_size);
571
572 /* Now convert them into regular unwind entries. */
573 for (i = 0; i < stub_entries; i++, index++)
574 {
575 /* Clear out the next unwind entry. */
576 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
577
578 /* Convert offset & size into region_start and region_end.
579 Stuff away the stub type into "reserved" fields. */
580 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
581 (bfd_byte *) buf);
582 ui->table[index].region_start += text_offset;
583 buf += 4;
584 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
585 (bfd_byte *) buf);
586 buf += 2;
587 ui->table[index].region_end
588 = ui->table[index].region_start + 4 *
589 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
590 buf += 2;
591 }
592
593 }
594
595 /* Unwind table needs to be kept sorted. */
596 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
597 compare_unwind_entries);
598
599 /* Keep a pointer to the unwind information. */
600 if (objfile->obj_private == NULL)
601 {
602 obj_private = (obj_private_data_t *)
603 obstack_alloc (&objfile->psymbol_obstack,
604 sizeof (obj_private_data_t));
605 obj_private->unwind_info = NULL;
606 obj_private->so_info = NULL;
607 obj_private->dp = 0;
608
609 objfile->obj_private = obj_private;
610 }
611 obj_private = (obj_private_data_t *) objfile->obj_private;
612 obj_private->unwind_info = ui;
613 }
614
615 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
616 of the objfiles seeking the unwind table entry for this PC. Each objfile
617 contains a sorted list of struct unwind_table_entry. Since we do a binary
618 search of the unwind tables, we depend upon them to be sorted. */
619
620 struct unwind_table_entry *
621 find_unwind_entry (CORE_ADDR pc)
622 {
623 int first, middle, last;
624 struct objfile *objfile;
625
626 /* A function at address 0? Not in HP-UX! */
627 if (pc == (CORE_ADDR) 0)
628 return NULL;
629
630 ALL_OBJFILES (objfile)
631 {
632 struct obj_unwind_info *ui;
633 ui = NULL;
634 if (objfile->obj_private)
635 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
636
637 if (!ui)
638 {
639 read_unwind_info (objfile);
640 if (objfile->obj_private == NULL)
641 error ("Internal error reading unwind information.");
642 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
643 }
644
645 /* First, check the cache */
646
647 if (ui->cache
648 && pc >= ui->cache->region_start
649 && pc <= ui->cache->region_end)
650 return ui->cache;
651
652 /* Not in the cache, do a binary search */
653
654 first = 0;
655 last = ui->last;
656
657 while (first <= last)
658 {
659 middle = (first + last) / 2;
660 if (pc >= ui->table[middle].region_start
661 && pc <= ui->table[middle].region_end)
662 {
663 ui->cache = &ui->table[middle];
664 return &ui->table[middle];
665 }
666
667 if (pc < ui->table[middle].region_start)
668 last = middle - 1;
669 else
670 first = middle + 1;
671 }
672 } /* ALL_OBJFILES() */
673 return NULL;
674 }
675
676 const unsigned char *
677 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
678 {
679 static const char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
680 (*len) = sizeof (breakpoint);
681 return breakpoint;
682 }
683
684 /* Return the adjustment necessary to make for addresses on the stack
685 as presented by hpread.c.
686
687 This is necessary because of the stack direction on the PA and the
688 bizarre way in which someone (?) decided they wanted to handle
689 frame pointerless code in GDB. */
690 int
691 hpread_adjust_stack_address (CORE_ADDR func_addr)
692 {
693 struct unwind_table_entry *u;
694
695 u = find_unwind_entry (func_addr);
696 if (!u)
697 return 0;
698 else
699 return u->Total_frame_size << 3;
700 }
701
702 /* Called to determine if PC is in an interrupt handler of some
703 kind. */
704
705 static int
706 pc_in_interrupt_handler (CORE_ADDR pc)
707 {
708 struct unwind_table_entry *u;
709 struct minimal_symbol *msym_us;
710
711 u = find_unwind_entry (pc);
712 if (!u)
713 return 0;
714
715 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
716 its frame isn't a pure interrupt frame. Deal with this. */
717 msym_us = lookup_minimal_symbol_by_pc (pc);
718
719 return (u->HP_UX_interrupt_marker
720 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
721 }
722
723 /* Called when no unwind descriptor was found for PC. Returns 1 if it
724 appears that PC is in a linker stub.
725
726 ?!? Need to handle stubs which appear in PA64 code. */
727
728 static int
729 pc_in_linker_stub (CORE_ADDR pc)
730 {
731 int found_magic_instruction = 0;
732 int i;
733 char buf[4];
734
735 /* If unable to read memory, assume pc is not in a linker stub. */
736 if (target_read_memory (pc, buf, 4) != 0)
737 return 0;
738
739 /* We are looking for something like
740
741 ; $$dyncall jams RP into this special spot in the frame (RP')
742 ; before calling the "call stub"
743 ldw -18(sp),rp
744
745 ldsid (rp),r1 ; Get space associated with RP into r1
746 mtsp r1,sp ; Move it into space register 0
747 be,n 0(sr0),rp) ; back to your regularly scheduled program */
748
749 /* Maximum known linker stub size is 4 instructions. Search forward
750 from the given PC, then backward. */
751 for (i = 0; i < 4; i++)
752 {
753 /* If we hit something with an unwind, stop searching this direction. */
754
755 if (find_unwind_entry (pc + i * 4) != 0)
756 break;
757
758 /* Check for ldsid (rp),r1 which is the magic instruction for a
759 return from a cross-space function call. */
760 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
761 {
762 found_magic_instruction = 1;
763 break;
764 }
765 /* Add code to handle long call/branch and argument relocation stubs
766 here. */
767 }
768
769 if (found_magic_instruction != 0)
770 return 1;
771
772 /* Now look backward. */
773 for (i = 0; i < 4; i++)
774 {
775 /* If we hit something with an unwind, stop searching this direction. */
776
777 if (find_unwind_entry (pc - i * 4) != 0)
778 break;
779
780 /* Check for ldsid (rp),r1 which is the magic instruction for a
781 return from a cross-space function call. */
782 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
783 {
784 found_magic_instruction = 1;
785 break;
786 }
787 /* Add code to handle long call/branch and argument relocation stubs
788 here. */
789 }
790 return found_magic_instruction;
791 }
792
793 static int
794 find_return_regnum (CORE_ADDR pc)
795 {
796 struct unwind_table_entry *u;
797
798 u = find_unwind_entry (pc);
799
800 if (!u)
801 return RP_REGNUM;
802
803 if (u->Millicode)
804 return 31;
805
806 return RP_REGNUM;
807 }
808
809 /* Return size of frame, or -1 if we should use a frame pointer. */
810 static int
811 find_proc_framesize (CORE_ADDR pc)
812 {
813 struct unwind_table_entry *u;
814 struct minimal_symbol *msym_us;
815
816 /* This may indicate a bug in our callers... */
817 if (pc == (CORE_ADDR) 0)
818 return -1;
819
820 u = find_unwind_entry (pc);
821
822 if (!u)
823 {
824 if (pc_in_linker_stub (pc))
825 /* Linker stubs have a zero size frame. */
826 return 0;
827 else
828 return -1;
829 }
830
831 msym_us = lookup_minimal_symbol_by_pc (pc);
832
833 /* If Save_SP is set, and we're not in an interrupt or signal caller,
834 then we have a frame pointer. Use it. */
835 if (u->Save_SP
836 && !pc_in_interrupt_handler (pc)
837 && msym_us
838 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
839 return -1;
840
841 return u->Total_frame_size << 3;
842 }
843
844 /* Return offset from sp at which rp is saved, or 0 if not saved. */
845 static int rp_saved (CORE_ADDR);
846
847 static int
848 rp_saved (CORE_ADDR pc)
849 {
850 struct unwind_table_entry *u;
851
852 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
853 if (pc == (CORE_ADDR) 0)
854 return 0;
855
856 u = find_unwind_entry (pc);
857
858 if (!u)
859 {
860 if (pc_in_linker_stub (pc))
861 /* This is the so-called RP'. */
862 return -24;
863 else
864 return 0;
865 }
866
867 if (u->Save_RP)
868 return (TARGET_PTR_BIT == 64 ? -16 : -20);
869 else if (u->stub_unwind.stub_type != 0)
870 {
871 switch (u->stub_unwind.stub_type)
872 {
873 case EXPORT:
874 case IMPORT:
875 return -24;
876 case PARAMETER_RELOCATION:
877 return -8;
878 default:
879 return 0;
880 }
881 }
882 else
883 return 0;
884 }
885 \f
886 int
887 hppa_frameless_function_invocation (struct frame_info *frame)
888 {
889 struct unwind_table_entry *u;
890
891 u = find_unwind_entry (get_frame_pc (frame));
892
893 if (u == 0)
894 return 0;
895
896 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
897 }
898
899 /* Immediately after a function call, return the saved pc.
900 Can't go through the frames for this because on some machines
901 the new frame is not set up until the new function executes
902 some instructions. */
903
904 CORE_ADDR
905 hppa_saved_pc_after_call (struct frame_info *frame)
906 {
907 int ret_regnum;
908 CORE_ADDR pc;
909 struct unwind_table_entry *u;
910
911 ret_regnum = find_return_regnum (get_frame_pc (frame));
912 pc = read_register (ret_regnum) & ~0x3;
913
914 /* If PC is in a linker stub, then we need to dig the address
915 the stub will return to out of the stack. */
916 u = find_unwind_entry (pc);
917 if (u && u->stub_unwind.stub_type != 0)
918 return DEPRECATED_FRAME_SAVED_PC (frame);
919 else
920 return pc;
921 }
922 \f
923 CORE_ADDR
924 hppa_frame_saved_pc (struct frame_info *frame)
925 {
926 CORE_ADDR pc = get_frame_pc (frame);
927 struct unwind_table_entry *u;
928 CORE_ADDR old_pc = 0;
929 int spun_around_loop = 0;
930 int rp_offset = 0;
931
932 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
933 at the base of the frame in an interrupt handler. Registers within
934 are saved in the exact same order as GDB numbers registers. How
935 convienent. */
936 if (pc_in_interrupt_handler (pc))
937 return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4,
938 TARGET_PTR_BIT / 8) & ~0x3;
939
940 if ((get_frame_pc (frame) >= get_frame_base (frame)
941 && (get_frame_pc (frame)
942 <= (get_frame_base (frame)
943 /* A call dummy is sized in words, but it is actually a
944 series of instructions. Account for that scaling
945 factor. */
946 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
947 * DEPRECATED_CALL_DUMMY_LENGTH)
948 /* Similarly we have to account for 64bit wide register
949 saves. */
950 + (32 * DEPRECATED_REGISTER_SIZE)
951 /* We always consider FP regs 8 bytes long. */
952 + (NUM_REGS - FP0_REGNUM) * 8
953 /* Similarly we have to account for 64bit wide register
954 saves. */
955 + (6 * DEPRECATED_REGISTER_SIZE)))))
956 {
957 return read_memory_integer ((get_frame_base (frame)
958 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
959 TARGET_PTR_BIT / 8) & ~0x3;
960 }
961
962 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
963 /* Deal with signal handler caller frames too. */
964 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
965 {
966 CORE_ADDR rp;
967 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
968 return rp & ~0x3;
969 }
970 #endif
971
972 if (hppa_frameless_function_invocation (frame))
973 {
974 int ret_regnum;
975
976 ret_regnum = find_return_regnum (pc);
977
978 /* If the next frame is an interrupt frame or a signal
979 handler caller, then we need to look in the saved
980 register area to get the return pointer (the values
981 in the registers may not correspond to anything useful). */
982 if (get_next_frame (frame)
983 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
984 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
985 {
986 CORE_ADDR *saved_regs;
987 hppa_frame_init_saved_regs (get_next_frame (frame));
988 saved_regs = get_frame_saved_regs (get_next_frame (frame));
989 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
990 TARGET_PTR_BIT / 8) & 0x2)
991 {
992 pc = read_memory_integer (saved_regs[31],
993 TARGET_PTR_BIT / 8) & ~0x3;
994
995 /* Syscalls are really two frames. The syscall stub itself
996 with a return pointer in %rp and the kernel call with
997 a return pointer in %r31. We return the %rp variant
998 if %r31 is the same as frame->pc. */
999 if (pc == get_frame_pc (frame))
1000 pc = read_memory_integer (saved_regs[RP_REGNUM],
1001 TARGET_PTR_BIT / 8) & ~0x3;
1002 }
1003 else
1004 pc = read_memory_integer (saved_regs[RP_REGNUM],
1005 TARGET_PTR_BIT / 8) & ~0x3;
1006 }
1007 else
1008 pc = read_register (ret_regnum) & ~0x3;
1009 }
1010 else
1011 {
1012 spun_around_loop = 0;
1013 old_pc = pc;
1014
1015 restart:
1016 rp_offset = rp_saved (pc);
1017
1018 /* Similar to code in frameless function case. If the next
1019 frame is a signal or interrupt handler, then dig the right
1020 information out of the saved register info. */
1021 if (rp_offset == 0
1022 && get_next_frame (frame)
1023 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1024 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1025 {
1026 CORE_ADDR *saved_regs;
1027 hppa_frame_init_saved_regs (get_next_frame (frame));
1028 saved_regs = get_frame_saved_regs (get_next_frame (frame));
1029 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1030 TARGET_PTR_BIT / 8) & 0x2)
1031 {
1032 pc = read_memory_integer (saved_regs[31],
1033 TARGET_PTR_BIT / 8) & ~0x3;
1034
1035 /* Syscalls are really two frames. The syscall stub itself
1036 with a return pointer in %rp and the kernel call with
1037 a return pointer in %r31. We return the %rp variant
1038 if %r31 is the same as frame->pc. */
1039 if (pc == get_frame_pc (frame))
1040 pc = read_memory_integer (saved_regs[RP_REGNUM],
1041 TARGET_PTR_BIT / 8) & ~0x3;
1042 }
1043 else
1044 pc = read_memory_integer (saved_regs[RP_REGNUM],
1045 TARGET_PTR_BIT / 8) & ~0x3;
1046 }
1047 else if (rp_offset == 0)
1048 {
1049 old_pc = pc;
1050 pc = read_register (RP_REGNUM) & ~0x3;
1051 }
1052 else
1053 {
1054 old_pc = pc;
1055 pc = read_memory_integer (get_frame_base (frame) + rp_offset,
1056 TARGET_PTR_BIT / 8) & ~0x3;
1057 }
1058 }
1059
1060 /* If PC is inside a linker stub, then dig out the address the stub
1061 will return to.
1062
1063 Don't do this for long branch stubs. Why? For some unknown reason
1064 _start is marked as a long branch stub in hpux10. */
1065 u = find_unwind_entry (pc);
1066 if (u && u->stub_unwind.stub_type != 0
1067 && u->stub_unwind.stub_type != LONG_BRANCH)
1068 {
1069 unsigned int insn;
1070
1071 /* If this is a dynamic executable, and we're in a signal handler,
1072 then the call chain will eventually point us into the stub for
1073 _sigreturn. Unlike most cases, we'll be pointed to the branch
1074 to the real sigreturn rather than the code after the real branch!.
1075
1076 Else, try to dig the address the stub will return to in the normal
1077 fashion. */
1078 insn = read_memory_integer (pc, 4);
1079 if ((insn & 0xfc00e000) == 0xe8000000)
1080 return (pc + extract_17 (insn) + 8) & ~0x3;
1081 else
1082 {
1083 if (old_pc == pc)
1084 spun_around_loop++;
1085
1086 if (spun_around_loop > 1)
1087 {
1088 /* We're just about to go around the loop again with
1089 no more hope of success. Die. */
1090 error ("Unable to find return pc for this frame");
1091 }
1092 else
1093 goto restart;
1094 }
1095 }
1096
1097 return pc;
1098 }
1099 \f
1100 /* We need to correct the PC and the FP for the outermost frame when we are
1101 in a system call. */
1102
1103 void
1104 hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
1105 {
1106 int flags;
1107 int framesize;
1108
1109 if (get_next_frame (frame) && !fromleaf)
1110 return;
1111
1112 /* If the next frame represents a frameless function invocation then
1113 we have to do some adjustments that are normally done by
1114 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1115 this case.) */
1116 if (fromleaf)
1117 {
1118 /* Find the framesize of *this* frame without peeking at the PC
1119 in the current frame structure (it isn't set yet). */
1120 framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
1121
1122 /* Now adjust our base frame accordingly. If we have a frame pointer
1123 use it, else subtract the size of this frame from the current
1124 frame. (we always want frame->frame to point at the lowest address
1125 in the frame). */
1126 if (framesize == -1)
1127 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1128 else
1129 deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize);
1130 return;
1131 }
1132
1133 flags = read_register (FLAGS_REGNUM);
1134 if (flags & 2) /* In system call? */
1135 deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3);
1136
1137 /* The outermost frame is always derived from PC-framesize
1138
1139 One might think frameless innermost frames should have
1140 a frame->frame that is the same as the parent's frame->frame.
1141 That is wrong; frame->frame in that case should be the *high*
1142 address of the parent's frame. It's complicated as hell to
1143 explain, but the parent *always* creates some stack space for
1144 the child. So the child actually does have a frame of some
1145 sorts, and its base is the high address in its parent's frame. */
1146 framesize = find_proc_framesize (get_frame_pc (frame));
1147 if (framesize == -1)
1148 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1149 else
1150 deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize);
1151 }
1152 \f
1153 /* Given a GDB frame, determine the address of the calling function's
1154 frame. This will be used to create a new GDB frame struct, and
1155 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1156 will be called for the new frame.
1157
1158 This may involve searching through prologues for several functions
1159 at boundaries where GCC calls HP C code, or where code which has
1160 a frame pointer calls code without a frame pointer. */
1161
1162 CORE_ADDR
1163 hppa_frame_chain (struct frame_info *frame)
1164 {
1165 int my_framesize, caller_framesize;
1166 struct unwind_table_entry *u;
1167 CORE_ADDR frame_base;
1168 struct frame_info *tmp_frame;
1169
1170 /* A frame in the current frame list, or zero. */
1171 struct frame_info *saved_regs_frame = 0;
1172 /* Where the registers were saved in saved_regs_frame. If
1173 saved_regs_frame is zero, this is garbage. */
1174 CORE_ADDR *saved_regs = NULL;
1175
1176 CORE_ADDR caller_pc;
1177
1178 struct minimal_symbol *min_frame_symbol;
1179 struct symbol *frame_symbol;
1180 char *frame_symbol_name;
1181
1182 /* If this is a threaded application, and we see the
1183 routine "__pthread_exit", treat it as the stack root
1184 for this thread. */
1185 min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame));
1186 frame_symbol = find_pc_function (get_frame_pc (frame));
1187
1188 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1189 {
1190 /* The test above for "no user function name" would defend
1191 against the slim likelihood that a user might define a
1192 routine named "__pthread_exit" and then try to debug it.
1193
1194 If it weren't commented out, and you tried to debug the
1195 pthread library itself, you'd get errors.
1196
1197 So for today, we don't make that check. */
1198 frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
1199 if (frame_symbol_name != 0)
1200 {
1201 if (0 == strncmp (frame_symbol_name,
1202 THREAD_INITIAL_FRAME_SYMBOL,
1203 THREAD_INITIAL_FRAME_SYM_LEN))
1204 {
1205 /* Pretend we've reached the bottom of the stack. */
1206 return (CORE_ADDR) 0;
1207 }
1208 }
1209 } /* End of hacky code for threads. */
1210
1211 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1212 are easy; at *sp we have a full save state strucutre which we can
1213 pull the old stack pointer from. Also see frame_saved_pc for
1214 code to dig a saved PC out of the save state structure. */
1215 if (pc_in_interrupt_handler (get_frame_pc (frame)))
1216 frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4,
1217 TARGET_PTR_BIT / 8);
1218 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1219 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1220 {
1221 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1222 }
1223 #endif
1224 else
1225 frame_base = get_frame_base (frame);
1226
1227 /* Get frame sizes for the current frame and the frame of the
1228 caller. */
1229 my_framesize = find_proc_framesize (get_frame_pc (frame));
1230 caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
1231
1232 /* If we can't determine the caller's PC, then it's not likely we can
1233 really determine anything meaningful about its frame. We'll consider
1234 this to be stack bottom. */
1235 if (caller_pc == (CORE_ADDR) 0)
1236 return (CORE_ADDR) 0;
1237
1238 caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
1239
1240 /* If caller does not have a frame pointer, then its frame
1241 can be found at current_frame - caller_framesize. */
1242 if (caller_framesize != -1)
1243 {
1244 return frame_base - caller_framesize;
1245 }
1246 /* Both caller and callee have frame pointers and are GCC compiled
1247 (SAVE_SP bit in unwind descriptor is on for both functions.
1248 The previous frame pointer is found at the top of the current frame. */
1249 if (caller_framesize == -1 && my_framesize == -1)
1250 {
1251 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1252 }
1253 /* Caller has a frame pointer, but callee does not. This is a little
1254 more difficult as GCC and HP C lay out locals and callee register save
1255 areas very differently.
1256
1257 The previous frame pointer could be in a register, or in one of
1258 several areas on the stack.
1259
1260 Walk from the current frame to the innermost frame examining
1261 unwind descriptors to determine if %r3 ever gets saved into the
1262 stack. If so return whatever value got saved into the stack.
1263 If it was never saved in the stack, then the value in %r3 is still
1264 valid, so use it.
1265
1266 We use information from unwind descriptors to determine if %r3
1267 is saved into the stack (Entry_GR field has this information). */
1268
1269 for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame))
1270 {
1271 u = find_unwind_entry (get_frame_pc (tmp_frame));
1272
1273 if (!u)
1274 {
1275 /* We could find this information by examining prologues. I don't
1276 think anyone has actually written any tools (not even "strip")
1277 which leave them out of an executable, so maybe this is a moot
1278 point. */
1279 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1280 code that doesn't have unwind entries. For example, stepping into
1281 the dynamic linker will give you a PC that has none. Thus, I've
1282 disabled this warning. */
1283 #if 0
1284 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame));
1285 #endif
1286 return (CORE_ADDR) 0;
1287 }
1288
1289 if (u->Save_SP
1290 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1291 || pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1292 break;
1293
1294 /* Entry_GR specifies the number of callee-saved general registers
1295 saved in the stack. It starts at %r3, so %r3 would be 1. */
1296 if (u->Entry_GR >= 1)
1297 {
1298 /* The unwind entry claims that r3 is saved here. However,
1299 in optimized code, GCC often doesn't actually save r3.
1300 We'll discover this if we look at the prologue. */
1301 hppa_frame_init_saved_regs (tmp_frame);
1302 saved_regs = get_frame_saved_regs (tmp_frame);
1303 saved_regs_frame = tmp_frame;
1304
1305 /* If we have an address for r3, that's good. */
1306 if (saved_regs[DEPRECATED_FP_REGNUM])
1307 break;
1308 }
1309 }
1310
1311 if (tmp_frame)
1312 {
1313 /* We may have walked down the chain into a function with a frame
1314 pointer. */
1315 if (u->Save_SP
1316 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1317 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1318 {
1319 return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8);
1320 }
1321 /* %r3 was saved somewhere in the stack. Dig it out. */
1322 else
1323 {
1324 /* Sick.
1325
1326 For optimization purposes many kernels don't have the
1327 callee saved registers into the save_state structure upon
1328 entry into the kernel for a syscall; the optimization
1329 is usually turned off if the process is being traced so
1330 that the debugger can get full register state for the
1331 process.
1332
1333 This scheme works well except for two cases:
1334
1335 * Attaching to a process when the process is in the
1336 kernel performing a system call (debugger can't get
1337 full register state for the inferior process since
1338 the process wasn't being traced when it entered the
1339 system call).
1340
1341 * Register state is not complete if the system call
1342 causes the process to core dump.
1343
1344
1345 The following heinous code is an attempt to deal with
1346 the lack of register state in a core dump. It will
1347 fail miserably if the function which performs the
1348 system call has a variable sized stack frame. */
1349
1350 if (tmp_frame != saved_regs_frame)
1351 {
1352 hppa_frame_init_saved_regs (tmp_frame);
1353 saved_regs = get_frame_saved_regs (tmp_frame);
1354 }
1355
1356 /* Abominable hack. */
1357 if (current_target.to_has_execution == 0
1358 && ((saved_regs[FLAGS_REGNUM]
1359 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1360 TARGET_PTR_BIT / 8)
1361 & 0x2))
1362 || (saved_regs[FLAGS_REGNUM] == 0
1363 && read_register (FLAGS_REGNUM) & 0x2)))
1364 {
1365 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1366 if (!u)
1367 {
1368 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1369 TARGET_PTR_BIT / 8);
1370 }
1371 else
1372 {
1373 return frame_base - (u->Total_frame_size << 3);
1374 }
1375 }
1376
1377 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1378 TARGET_PTR_BIT / 8);
1379 }
1380 }
1381 else
1382 {
1383 /* Get the innermost frame. */
1384 tmp_frame = frame;
1385 while (get_next_frame (tmp_frame) != NULL)
1386 tmp_frame = get_next_frame (tmp_frame);
1387
1388 if (tmp_frame != saved_regs_frame)
1389 {
1390 hppa_frame_init_saved_regs (tmp_frame);
1391 saved_regs = get_frame_saved_regs (tmp_frame);
1392 }
1393
1394 /* Abominable hack. See above. */
1395 if (current_target.to_has_execution == 0
1396 && ((saved_regs[FLAGS_REGNUM]
1397 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1398 TARGET_PTR_BIT / 8)
1399 & 0x2))
1400 || (saved_regs[FLAGS_REGNUM] == 0
1401 && read_register (FLAGS_REGNUM) & 0x2)))
1402 {
1403 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1404 if (!u)
1405 {
1406 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1407 TARGET_PTR_BIT / 8);
1408 }
1409 else
1410 {
1411 return frame_base - (u->Total_frame_size << 3);
1412 }
1413 }
1414
1415 /* The value in %r3 was never saved into the stack (thus %r3 still
1416 holds the value of the previous frame pointer). */
1417 return deprecated_read_fp ();
1418 }
1419 }
1420 \f
1421
1422 /* To see if a frame chain is valid, see if the caller looks like it
1423 was compiled with gcc. */
1424
1425 int
1426 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1427 {
1428 struct minimal_symbol *msym_us;
1429 struct minimal_symbol *msym_start;
1430 struct unwind_table_entry *u, *next_u = NULL;
1431 struct frame_info *next;
1432
1433 u = find_unwind_entry (get_frame_pc (thisframe));
1434
1435 if (u == NULL)
1436 return 1;
1437
1438 /* We can't just check that the same of msym_us is "_start", because
1439 someone idiotically decided that they were going to make a Ltext_end
1440 symbol with the same address. This Ltext_end symbol is totally
1441 indistinguishable (as nearly as I can tell) from the symbol for a function
1442 which is (legitimately, since it is in the user's namespace)
1443 named Ltext_end, so we can't just ignore it. */
1444 msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
1445 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1446 if (msym_us
1447 && msym_start
1448 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1449 return 0;
1450
1451 /* Grrrr. Some new idiot decided that they don't want _start for the
1452 PRO configurations; $START$ calls main directly.... Deal with it. */
1453 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1454 if (msym_us
1455 && msym_start
1456 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1457 return 0;
1458
1459 next = get_next_frame (thisframe);
1460 if (next)
1461 next_u = find_unwind_entry (get_frame_pc (next));
1462
1463 /* If this frame does not save SP, has no stack, isn't a stub,
1464 and doesn't "call" an interrupt routine or signal handler caller,
1465 then its not valid. */
1466 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1467 || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME))
1468 || (next_u && next_u->HP_UX_interrupt_marker))
1469 return 1;
1470
1471 if (pc_in_linker_stub (get_frame_pc (thisframe)))
1472 return 1;
1473
1474 return 0;
1475 }
1476
1477 /* These functions deal with saving and restoring register state
1478 around a function call in the inferior. They keep the stack
1479 double-word aligned; eventually, on an hp700, the stack will have
1480 to be aligned to a 64-byte boundary. */
1481
1482 void
1483 hppa_push_dummy_frame (void)
1484 {
1485 CORE_ADDR sp, pc, pcspace;
1486 register int regnum;
1487 CORE_ADDR int_buffer;
1488 double freg_buffer;
1489
1490 pc = hppa_target_read_pc (inferior_ptid);
1491 int_buffer = read_register (FLAGS_REGNUM);
1492 if (int_buffer & 0x2)
1493 {
1494 const unsigned int sid = (pc >> 30) & 0x3;
1495 if (sid == 0)
1496 pcspace = read_register (SR4_REGNUM);
1497 else
1498 pcspace = read_register (SR4_REGNUM + 4 + sid);
1499 }
1500 else
1501 pcspace = read_register (PCSQ_HEAD_REGNUM);
1502
1503 /* Space for "arguments"; the RP goes in here. */
1504 sp = read_register (SP_REGNUM) + 48;
1505 int_buffer = read_register (RP_REGNUM) | 0x3;
1506
1507 /* The 32bit and 64bit ABIs save the return pointer into different
1508 stack slots. */
1509 if (DEPRECATED_REGISTER_SIZE == 8)
1510 write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1511 else
1512 write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1513
1514 int_buffer = deprecated_read_fp ();
1515 write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1516
1517 write_register (DEPRECATED_FP_REGNUM, sp);
1518
1519 sp += 2 * DEPRECATED_REGISTER_SIZE;
1520
1521 for (regnum = 1; regnum < 32; regnum++)
1522 if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM)
1523 sp = push_word (sp, read_register (regnum));
1524
1525 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1526 if (DEPRECATED_REGISTER_SIZE != 8)
1527 sp += 4;
1528
1529 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1530 {
1531 deprecated_read_register_bytes (REGISTER_BYTE (regnum),
1532 (char *) &freg_buffer, 8);
1533 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1534 }
1535 sp = push_word (sp, read_register (IPSW_REGNUM));
1536 sp = push_word (sp, read_register (SAR_REGNUM));
1537 sp = push_word (sp, pc);
1538 sp = push_word (sp, pcspace);
1539 sp = push_word (sp, pc + 4);
1540 sp = push_word (sp, pcspace);
1541 write_register (SP_REGNUM, sp);
1542 }
1543
1544 static void
1545 find_dummy_frame_regs (struct frame_info *frame,
1546 CORE_ADDR frame_saved_regs[])
1547 {
1548 CORE_ADDR fp = get_frame_base (frame);
1549 int i;
1550
1551 /* The 32bit and 64bit ABIs save RP into different locations. */
1552 if (DEPRECATED_REGISTER_SIZE == 8)
1553 frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3;
1554 else
1555 frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3;
1556
1557 frame_saved_regs[DEPRECATED_FP_REGNUM] = fp;
1558
1559 frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE);
1560
1561 for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++)
1562 {
1563 if (i != DEPRECATED_FP_REGNUM)
1564 {
1565 frame_saved_regs[i] = fp;
1566 fp += DEPRECATED_REGISTER_SIZE;
1567 }
1568 }
1569
1570 /* This is not necessary or desirable for the 64bit ABI. */
1571 if (DEPRECATED_REGISTER_SIZE != 8)
1572 fp += 4;
1573
1574 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1575 frame_saved_regs[i] = fp;
1576
1577 frame_saved_regs[IPSW_REGNUM] = fp;
1578 frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE;
1579 frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE;
1580 frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE;
1581 frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE;
1582 frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE;
1583 }
1584
1585 void
1586 hppa_pop_frame (void)
1587 {
1588 register struct frame_info *frame = get_current_frame ();
1589 register CORE_ADDR fp, npc, target_pc;
1590 register int regnum;
1591 CORE_ADDR *fsr;
1592 double freg_buffer;
1593
1594 fp = get_frame_base (frame);
1595 hppa_frame_init_saved_regs (frame);
1596 fsr = get_frame_saved_regs (frame);
1597
1598 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1599 if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */
1600 restore_pc_queue (fsr);
1601 #endif
1602
1603 for (regnum = 31; regnum > 0; regnum--)
1604 if (fsr[regnum])
1605 write_register (regnum, read_memory_integer (fsr[regnum],
1606 DEPRECATED_REGISTER_SIZE));
1607
1608 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1609 if (fsr[regnum])
1610 {
1611 read_memory (fsr[regnum], (char *) &freg_buffer, 8);
1612 deprecated_write_register_bytes (REGISTER_BYTE (regnum),
1613 (char *) &freg_buffer, 8);
1614 }
1615
1616 if (fsr[IPSW_REGNUM])
1617 write_register (IPSW_REGNUM,
1618 read_memory_integer (fsr[IPSW_REGNUM],
1619 DEPRECATED_REGISTER_SIZE));
1620
1621 if (fsr[SAR_REGNUM])
1622 write_register (SAR_REGNUM,
1623 read_memory_integer (fsr[SAR_REGNUM],
1624 DEPRECATED_REGISTER_SIZE));
1625
1626 /* If the PC was explicitly saved, then just restore it. */
1627 if (fsr[PCOQ_TAIL_REGNUM])
1628 {
1629 npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM],
1630 DEPRECATED_REGISTER_SIZE);
1631 write_register (PCOQ_TAIL_REGNUM, npc);
1632 }
1633 /* Else use the value in %rp to set the new PC. */
1634 else
1635 {
1636 npc = read_register (RP_REGNUM);
1637 write_pc (npc);
1638 }
1639
1640 write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE));
1641
1642 if (fsr[IPSW_REGNUM]) /* call dummy */
1643 write_register (SP_REGNUM, fp - 48);
1644 else
1645 write_register (SP_REGNUM, fp);
1646
1647 /* The PC we just restored may be inside a return trampoline. If so
1648 we want to restart the inferior and run it through the trampoline.
1649
1650 Do this by setting a momentary breakpoint at the location the
1651 trampoline returns to.
1652
1653 Don't skip through the trampoline if we're popping a dummy frame. */
1654 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1655 if (target_pc && !fsr[IPSW_REGNUM])
1656 {
1657 struct symtab_and_line sal;
1658 struct breakpoint *breakpoint;
1659 struct cleanup *old_chain;
1660
1661 /* Set up our breakpoint. Set it to be silent as the MI code
1662 for "return_command" will print the frame we returned to. */
1663 sal = find_pc_line (target_pc, 0);
1664 sal.pc = target_pc;
1665 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
1666 breakpoint->silent = 1;
1667
1668 /* So we can clean things up. */
1669 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1670
1671 /* Start up the inferior. */
1672 clear_proceed_status ();
1673 proceed_to_finish = 1;
1674 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1675
1676 /* Perform our cleanups. */
1677 do_cleanups (old_chain);
1678 }
1679 flush_cached_frames ();
1680 }
1681
1682 /* After returning to a dummy on the stack, restore the instruction
1683 queue space registers. */
1684
1685 static int
1686 restore_pc_queue (CORE_ADDR *fsr)
1687 {
1688 CORE_ADDR pc = read_pc ();
1689 CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM],
1690 TARGET_PTR_BIT / 8);
1691 struct target_waitstatus w;
1692 int insn_count;
1693
1694 /* Advance past break instruction in the call dummy. */
1695 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1696 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1697
1698 /* HPUX doesn't let us set the space registers or the space
1699 registers of the PC queue through ptrace. Boo, hiss.
1700 Conveniently, the call dummy has this sequence of instructions
1701 after the break:
1702 mtsp r21, sr0
1703 ble,n 0(sr0, r22)
1704
1705 So, load up the registers and single step until we are in the
1706 right place. */
1707
1708 write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM],
1709 DEPRECATED_REGISTER_SIZE));
1710 write_register (22, new_pc);
1711
1712 for (insn_count = 0; insn_count < 3; insn_count++)
1713 {
1714 /* FIXME: What if the inferior gets a signal right now? Want to
1715 merge this into wait_for_inferior (as a special kind of
1716 watchpoint? By setting a breakpoint at the end? Is there
1717 any other choice? Is there *any* way to do this stuff with
1718 ptrace() or some equivalent?). */
1719 resume (1, 0);
1720 target_wait (inferior_ptid, &w);
1721
1722 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1723 {
1724 stop_signal = w.value.sig;
1725 terminal_ours_for_output ();
1726 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1727 target_signal_to_name (stop_signal),
1728 target_signal_to_string (stop_signal));
1729 gdb_flush (gdb_stdout);
1730 return 0;
1731 }
1732 }
1733 target_terminal_ours ();
1734 target_fetch_registers (-1);
1735 return 1;
1736 }
1737
1738
1739 #ifdef PA20W_CALLING_CONVENTIONS
1740
1741 /* This function pushes a stack frame with arguments as part of the
1742 inferior function calling mechanism.
1743
1744 This is the version for the PA64, in which later arguments appear
1745 at higher addresses. (The stack always grows towards higher
1746 addresses.)
1747
1748 We simply allocate the appropriate amount of stack space and put
1749 arguments into their proper slots. The call dummy code will copy
1750 arguments into registers as needed by the ABI.
1751
1752 This ABI also requires that the caller provide an argument pointer
1753 to the callee, so we do that too. */
1754
1755 CORE_ADDR
1756 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1757 int struct_return, CORE_ADDR struct_addr)
1758 {
1759 /* array of arguments' offsets */
1760 int *offset = (int *) alloca (nargs * sizeof (int));
1761
1762 /* array of arguments' lengths: real lengths in bytes, not aligned to
1763 word size */
1764 int *lengths = (int *) alloca (nargs * sizeof (int));
1765
1766 /* The value of SP as it was passed into this function after
1767 aligning. */
1768 CORE_ADDR orig_sp = STACK_ALIGN (sp);
1769
1770 /* The number of stack bytes occupied by the current argument. */
1771 int bytes_reserved;
1772
1773 /* The total number of bytes reserved for the arguments. */
1774 int cum_bytes_reserved = 0;
1775
1776 /* Similarly, but aligned. */
1777 int cum_bytes_aligned = 0;
1778 int i;
1779
1780 /* Iterate over each argument provided by the user. */
1781 for (i = 0; i < nargs; i++)
1782 {
1783 struct type *arg_type = VALUE_TYPE (args[i]);
1784
1785 /* Integral scalar values smaller than a register are padded on
1786 the left. We do this by promoting them to full-width,
1787 although the ABI says to pad them with garbage. */
1788 if (is_integral_type (arg_type)
1789 && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE)
1790 {
1791 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1792 ? builtin_type_unsigned_long
1793 : builtin_type_long),
1794 args[i]);
1795 arg_type = VALUE_TYPE (args[i]);
1796 }
1797
1798 lengths[i] = TYPE_LENGTH (arg_type);
1799
1800 /* Align the size of the argument to the word size for this
1801 target. */
1802 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
1803
1804 offset[i] = cum_bytes_reserved;
1805
1806 /* Aggregates larger than eight bytes (the only types larger
1807 than eight bytes we have) are aligned on a 16-byte boundary,
1808 possibly padded on the right with garbage. This may leave an
1809 empty word on the stack, and thus an unused register, as per
1810 the ABI. */
1811 if (bytes_reserved > 8)
1812 {
1813 /* Round up the offset to a multiple of two slots. */
1814 int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1)
1815 & -(2*DEPRECATED_REGISTER_SIZE));
1816
1817 /* Note the space we've wasted, if any. */
1818 bytes_reserved += new_offset - offset[i];
1819 offset[i] = new_offset;
1820 }
1821
1822 cum_bytes_reserved += bytes_reserved;
1823 }
1824
1825 /* CUM_BYTES_RESERVED already accounts for all the arguments
1826 passed by the user. However, the ABIs mandate minimum stack space
1827 allocations for outgoing arguments.
1828
1829 The ABIs also mandate minimum stack alignments which we must
1830 preserve. */
1831 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1832 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1833
1834 /* Now write each of the args at the proper offset down the stack. */
1835 for (i = 0; i < nargs; i++)
1836 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1837
1838 /* If a structure has to be returned, set up register 28 to hold its
1839 address */
1840 if (struct_return)
1841 write_register (28, struct_addr);
1842
1843 /* For the PA64 we must pass a pointer to the outgoing argument list.
1844 The ABI mandates that the pointer should point to the first byte of
1845 storage beyond the register flushback area.
1846
1847 However, the call dummy expects the outgoing argument pointer to
1848 be passed in register %r4. */
1849 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1850
1851 /* ?!? This needs further work. We need to set up the global data
1852 pointer for this procedure. This assumes the same global pointer
1853 for every procedure. The call dummy expects the dp value to
1854 be passed in register %r6. */
1855 write_register (6, read_register (27));
1856
1857 /* The stack will have 64 bytes of additional space for a frame marker. */
1858 return sp + 64;
1859 }
1860
1861 #else
1862
1863 /* This function pushes a stack frame with arguments as part of the
1864 inferior function calling mechanism.
1865
1866 This is the version of the function for the 32-bit PA machines, in
1867 which later arguments appear at lower addresses. (The stack always
1868 grows towards higher addresses.)
1869
1870 We simply allocate the appropriate amount of stack space and put
1871 arguments into their proper slots. The call dummy code will copy
1872 arguments into registers as needed by the ABI. */
1873
1874 CORE_ADDR
1875 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1876 int struct_return, CORE_ADDR struct_addr)
1877 {
1878 /* array of arguments' offsets */
1879 int *offset = (int *) alloca (nargs * sizeof (int));
1880
1881 /* array of arguments' lengths: real lengths in bytes, not aligned to
1882 word size */
1883 int *lengths = (int *) alloca (nargs * sizeof (int));
1884
1885 /* The number of stack bytes occupied by the current argument. */
1886 int bytes_reserved;
1887
1888 /* The total number of bytes reserved for the arguments. */
1889 int cum_bytes_reserved = 0;
1890
1891 /* Similarly, but aligned. */
1892 int cum_bytes_aligned = 0;
1893 int i;
1894
1895 /* Iterate over each argument provided by the user. */
1896 for (i = 0; i < nargs; i++)
1897 {
1898 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1899
1900 /* Align the size of the argument to the word size for this
1901 target. */
1902 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
1903
1904 offset[i] = (cum_bytes_reserved
1905 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
1906
1907 /* If the argument is a double word argument, then it needs to be
1908 double word aligned. */
1909 if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE)
1910 && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE))
1911 {
1912 int new_offset = 0;
1913 /* BYTES_RESERVED is already aligned to the word, so we put
1914 the argument at one word more down the stack.
1915
1916 This will leave one empty word on the stack, and one unused
1917 register as mandated by the ABI. */
1918 new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1)
1919 & -(2 * DEPRECATED_REGISTER_SIZE));
1920
1921 if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE)
1922 {
1923 bytes_reserved += DEPRECATED_REGISTER_SIZE;
1924 offset[i] += DEPRECATED_REGISTER_SIZE;
1925 }
1926 }
1927
1928 cum_bytes_reserved += bytes_reserved;
1929
1930 }
1931
1932 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1933 by the user. However, the ABI mandates minimum stack space
1934 allocations for outgoing arguments.
1935
1936 The ABI also mandates minimum stack alignments which we must
1937 preserve. */
1938 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1939 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1940
1941 /* Now write each of the args at the proper offset down the stack.
1942 ?!? We need to promote values to a full register instead of skipping
1943 words in the stack. */
1944 for (i = 0; i < nargs; i++)
1945 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1946
1947 /* If a structure has to be returned, set up register 28 to hold its
1948 address */
1949 if (struct_return)
1950 write_register (28, struct_addr);
1951
1952 /* The stack will have 32 bytes of additional space for a frame marker. */
1953 return sp + 32;
1954 }
1955
1956 #endif
1957
1958 /* elz: this function returns a value which is built looking at the given address.
1959 It is called from call_function_by_hand, in case we need to return a
1960 value which is larger than 64 bits, and it is stored in the stack rather than
1961 in the registers r28 and r29 or fr4.
1962 This function does the same stuff as value_being_returned in values.c, but
1963 gets the value from the stack rather than from the buffer where all the
1964 registers were saved when the function called completed. */
1965 struct value *
1966 hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
1967 {
1968 register struct value *val;
1969
1970 val = allocate_value (valtype);
1971 CHECK_TYPEDEF (valtype);
1972 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
1973
1974 return val;
1975 }
1976
1977
1978
1979 /* elz: Used to lookup a symbol in the shared libraries.
1980 This function calls shl_findsym, indirectly through a
1981 call to __d_shl_get. __d_shl_get is in end.c, which is always
1982 linked in by the hp compilers/linkers.
1983 The call to shl_findsym cannot be made directly because it needs
1984 to be active in target address space.
1985 inputs: - minimal symbol pointer for the function we want to look up
1986 - address in target space of the descriptor for the library
1987 where we want to look the symbol up.
1988 This address is retrieved using the
1989 som_solib_get_solib_by_pc function (somsolib.c).
1990 output: - real address in the library of the function.
1991 note: the handle can be null, in which case shl_findsym will look for
1992 the symbol in all the loaded shared libraries.
1993 files to look at if you need reference on this stuff:
1994 dld.c, dld_shl_findsym.c
1995 end.c
1996 man entry for shl_findsym */
1997
1998 CORE_ADDR
1999 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
2000 {
2001 struct symbol *get_sym, *symbol2;
2002 struct minimal_symbol *buff_minsym, *msymbol;
2003 struct type *ftype;
2004 struct value **args;
2005 struct value *funcval;
2006 struct value *val;
2007
2008 int x, namelen, err_value, tmp = -1;
2009 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
2010 CORE_ADDR stub_addr;
2011
2012
2013 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
2014 funcval = find_function_in_inferior ("__d_shl_get");
2015 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL);
2016 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
2017 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
2018 symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL);
2019 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
2020 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
2021 value_return_addr = endo_buff_addr + namelen;
2022 ftype = check_typedef (SYMBOL_TYPE (get_sym));
2023
2024 /* do alignment */
2025 if ((x = value_return_addr % 64) != 0)
2026 value_return_addr = value_return_addr + 64 - x;
2027
2028 errno_return_addr = value_return_addr + 64;
2029
2030
2031 /* set up stuff needed by __d_shl_get in buffer in end.o */
2032
2033 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
2034
2035 target_write_memory (value_return_addr, (char *) &tmp, 4);
2036
2037 target_write_memory (errno_return_addr, (char *) &tmp, 4);
2038
2039 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2040 (char *) &handle, 4);
2041
2042 /* now prepare the arguments for the call */
2043
2044 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
2045 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2046 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
2047 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
2048 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2049 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
2050
2051 /* now call the function */
2052
2053 val = call_function_by_hand (funcval, 6, args);
2054
2055 /* now get the results */
2056
2057 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2058
2059 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2060 if (stub_addr <= 0)
2061 error ("call to __d_shl_get failed, error code is %d", err_value);
2062
2063 return (stub_addr);
2064 }
2065
2066 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
2067 static int
2068 cover_find_stub_with_shl_get (void *args_untyped)
2069 {
2070 args_for_find_stub *args = args_untyped;
2071 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2072 return 0;
2073 }
2074
2075 /* Insert the specified number of args and function address
2076 into a call sequence of the above form stored at DUMMYNAME.
2077
2078 On the hppa we need to call the stack dummy through $$dyncall.
2079 Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra
2080 argument, real_pc, which is the location where gdb should start up
2081 the inferior to do the function call.
2082
2083 This has to work across several versions of hpux, bsd, osf1. It has to
2084 work regardless of what compiler was used to build the inferior program.
2085 It should work regardless of whether or not end.o is available. It has
2086 to work even if gdb can not call into the dynamic loader in the inferior
2087 to query it for symbol names and addresses.
2088
2089 Yes, all those cases should work. Luckily code exists to handle most
2090 of them. The complexity is in selecting exactly what scheme should
2091 be used to perform the inferior call.
2092
2093 At the current time this routine is known not to handle cases where
2094 the program was linked with HP's compiler without including end.o.
2095
2096 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2097
2098 CORE_ADDR
2099 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2100 struct value **args, struct type *type, int gcc_p)
2101 {
2102 CORE_ADDR dyncall_addr;
2103 struct minimal_symbol *msymbol;
2104 struct minimal_symbol *trampoline;
2105 int flags = read_register (FLAGS_REGNUM);
2106 struct unwind_table_entry *u = NULL;
2107 CORE_ADDR new_stub = 0;
2108 CORE_ADDR solib_handle = 0;
2109
2110 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2111 passed an import stub, not a PLABEL. It is also necessary to set %r19
2112 (the PIC register) before performing the call.
2113
2114 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2115 are calling the target directly. When using __d_plt_call we want to
2116 use a PLABEL instead of an import stub. */
2117 int using_gcc_plt_call = 1;
2118
2119 #ifdef GDB_TARGET_IS_HPPA_20W
2120 /* We currently use completely different code for the PA2.0W inferior
2121 function call sequences. This needs to be cleaned up. */
2122 {
2123 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2124 struct target_waitstatus w;
2125 int inst1, inst2;
2126 char buf[4];
2127 int status;
2128 struct objfile *objfile;
2129
2130 /* We can not modify the PC space queues directly, so we start
2131 up the inferior and execute a couple instructions to set the
2132 space queues so that they point to the call dummy in the stack. */
2133 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2134 sr5 = read_register (SR5_REGNUM);
2135 if (1)
2136 {
2137 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2138 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2139 if (target_read_memory (pcoqh, buf, 4) != 0)
2140 error ("Couldn't modify space queue\n");
2141 inst1 = extract_unsigned_integer (buf, 4);
2142
2143 if (target_read_memory (pcoqt, buf, 4) != 0)
2144 error ("Couldn't modify space queue\n");
2145 inst2 = extract_unsigned_integer (buf, 4);
2146
2147 /* BVE (r1) */
2148 *((int *) buf) = 0xe820d000;
2149 if (target_write_memory (pcoqh, buf, 4) != 0)
2150 error ("Couldn't modify space queue\n");
2151
2152 /* NOP */
2153 *((int *) buf) = 0x08000240;
2154 if (target_write_memory (pcoqt, buf, 4) != 0)
2155 {
2156 *((int *) buf) = inst1;
2157 target_write_memory (pcoqh, buf, 4);
2158 error ("Couldn't modify space queue\n");
2159 }
2160
2161 write_register (1, pc);
2162
2163 /* Single step twice, the BVE instruction will set the space queue
2164 such that it points to the PC value written immediately above
2165 (ie the call dummy). */
2166 resume (1, 0);
2167 target_wait (inferior_ptid, &w);
2168 resume (1, 0);
2169 target_wait (inferior_ptid, &w);
2170
2171 /* Restore the two instructions at the old PC locations. */
2172 *((int *) buf) = inst1;
2173 target_write_memory (pcoqh, buf, 4);
2174 *((int *) buf) = inst2;
2175 target_write_memory (pcoqt, buf, 4);
2176 }
2177
2178 /* The call dummy wants the ultimate destination address initially
2179 in register %r5. */
2180 write_register (5, fun);
2181
2182 /* We need to see if this objfile has a different DP value than our
2183 own (it could be a shared library for example). */
2184 ALL_OBJFILES (objfile)
2185 {
2186 struct obj_section *s;
2187 obj_private_data_t *obj_private;
2188
2189 /* See if FUN is in any section within this shared library. */
2190 for (s = objfile->sections; s < objfile->sections_end; s++)
2191 if (s->addr <= fun && fun < s->endaddr)
2192 break;
2193
2194 if (s >= objfile->sections_end)
2195 continue;
2196
2197 obj_private = (obj_private_data_t *) objfile->obj_private;
2198
2199 /* The DP value may be different for each objfile. But within an
2200 objfile each function uses the same dp value. Thus we do not need
2201 to grope around the opd section looking for dp values.
2202
2203 ?!? This is not strictly correct since we may be in a shared library
2204 and want to call back into the main program. To make that case
2205 work correctly we need to set obj_private->dp for the main program's
2206 objfile, then remove this conditional. */
2207 if (obj_private->dp)
2208 write_register (27, obj_private->dp);
2209 break;
2210 }
2211 return pc;
2212 }
2213 #endif
2214
2215 #ifndef GDB_TARGET_IS_HPPA_20W
2216 /* Prefer __gcc_plt_call over the HP supplied routine because
2217 __gcc_plt_call works for any number of arguments. */
2218 trampoline = NULL;
2219 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2220 using_gcc_plt_call = 0;
2221
2222 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2223 if (msymbol == NULL)
2224 error ("Can't find an address for $$dyncall trampoline");
2225
2226 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2227
2228 /* FUN could be a procedure label, in which case we have to get
2229 its real address and the value of its GOT/DP if we plan to
2230 call the routine via gcc_plt_call. */
2231 if ((fun & 0x2) && using_gcc_plt_call)
2232 {
2233 /* Get the GOT/DP value for the target function. It's
2234 at *(fun+4). Note the call dummy is *NOT* allowed to
2235 trash %r19 before calling the target function. */
2236 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2237 DEPRECATED_REGISTER_SIZE));
2238
2239 /* Now get the real address for the function we are calling, it's
2240 at *fun. */
2241 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2242 TARGET_PTR_BIT / 8);
2243 }
2244 else
2245 {
2246
2247 #ifndef GDB_TARGET_IS_PA_ELF
2248 /* FUN could be an export stub, the real address of a function, or
2249 a PLABEL. When using gcc's PLT call routine we must call an import
2250 stub rather than the export stub or real function for lazy binding
2251 to work correctly
2252
2253 If we are using the gcc PLT call routine, then we need to
2254 get the import stub for the target function. */
2255 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2256 {
2257 struct objfile *objfile;
2258 struct minimal_symbol *funsymbol, *stub_symbol;
2259 CORE_ADDR newfun = 0;
2260
2261 funsymbol = lookup_minimal_symbol_by_pc (fun);
2262 if (!funsymbol)
2263 error ("Unable to find minimal symbol for target function.\n");
2264
2265 /* Search all the object files for an import symbol with the
2266 right name. */
2267 ALL_OBJFILES (objfile)
2268 {
2269 stub_symbol
2270 = lookup_minimal_symbol_solib_trampoline
2271 (DEPRECATED_SYMBOL_NAME (funsymbol), NULL, objfile);
2272
2273 if (!stub_symbol)
2274 stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
2275 NULL, objfile);
2276
2277 /* Found a symbol with the right name. */
2278 if (stub_symbol)
2279 {
2280 struct unwind_table_entry *u;
2281 /* It must be a shared library trampoline. */
2282 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2283 continue;
2284
2285 /* It must also be an import stub. */
2286 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2287 if (u == NULL
2288 || (u->stub_unwind.stub_type != IMPORT
2289 #ifdef GDB_NATIVE_HPUX_11
2290 /* Sigh. The hpux 10.20 dynamic linker will blow
2291 chunks if we perform a call to an unbound function
2292 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2293 linker will blow chunks if we do not call the
2294 unbound function via the IMPORT_SHLIB stub.
2295
2296 We currently have no way to select bevahior on just
2297 the target. However, we only support HPUX/SOM in
2298 native mode. So we conditinalize on a native
2299 #ifdef. Ugly. Ugly. Ugly */
2300 && u->stub_unwind.stub_type != IMPORT_SHLIB
2301 #endif
2302 ))
2303 continue;
2304
2305 /* OK. Looks like the correct import stub. */
2306 newfun = SYMBOL_VALUE (stub_symbol);
2307 fun = newfun;
2308
2309 /* If we found an IMPORT stub, then we want to stop
2310 searching now. If we found an IMPORT_SHLIB, we want
2311 to continue the search in the hopes that we will find
2312 an IMPORT stub. */
2313 if (u->stub_unwind.stub_type == IMPORT)
2314 break;
2315 }
2316 }
2317
2318 /* Ouch. We did not find an import stub. Make an attempt to
2319 do the right thing instead of just croaking. Most of the
2320 time this will actually work. */
2321 if (newfun == 0)
2322 write_register (19, som_solib_get_got_by_pc (fun));
2323
2324 u = find_unwind_entry (fun);
2325 if (u
2326 && (u->stub_unwind.stub_type == IMPORT
2327 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2328 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2329
2330 /* If we found the import stub in the shared library, then we have
2331 to set %r19 before we call the stub. */
2332 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2333 write_register (19, som_solib_get_got_by_pc (fun));
2334 }
2335 #endif
2336 }
2337
2338 /* If we are calling into another load module then have sr4export call the
2339 magic __d_plt_call routine which is linked in from end.o.
2340
2341 You can't use _sr4export to make the call as the value in sp-24 will get
2342 fried and you end up returning to the wrong location. You can't call the
2343 target as the code to bind the PLT entry to a function can't return to a
2344 stack address.
2345
2346 Also, query the dynamic linker in the inferior to provide a suitable
2347 PLABEL for the target function. */
2348 if (!using_gcc_plt_call)
2349 {
2350 CORE_ADDR new_fun;
2351
2352 /* Get a handle for the shared library containing FUN. Given the
2353 handle we can query the shared library for a PLABEL. */
2354 solib_handle = som_solib_get_solib_by_pc (fun);
2355
2356 if (solib_handle)
2357 {
2358 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2359
2360 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2361
2362 if (trampoline == NULL)
2363 {
2364 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2365 }
2366
2367 /* This is where sr4export will jump to. */
2368 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2369
2370 /* If the function is in a shared library, then call __d_shl_get to
2371 get a PLABEL for the target function. */
2372 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2373
2374 if (new_stub == 0)
2375 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
2376
2377 /* We have to store the address of the stub in __shlib_funcptr. */
2378 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2379 (struct objfile *) NULL);
2380
2381 if (msymbol == NULL)
2382 error ("Can't find an address for __shlib_funcptr");
2383 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2384 (char *) &new_stub, 4);
2385
2386 /* We want sr4export to call __d_plt_call, so we claim it is
2387 the final target. Clear trampoline. */
2388 fun = new_fun;
2389 trampoline = NULL;
2390 }
2391 }
2392
2393 /* Store upper 21 bits of function address into ldil. fun will either be
2394 the final target (most cases) or __d_plt_call when calling into a shared
2395 library and __gcc_plt_call is not available. */
2396 store_unsigned_integer
2397 (&dummy[FUNC_LDIL_OFFSET],
2398 INSTRUCTION_SIZE,
2399 deposit_21 (fun >> 11,
2400 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2401 INSTRUCTION_SIZE)));
2402
2403 /* Store lower 11 bits of function address into ldo */
2404 store_unsigned_integer
2405 (&dummy[FUNC_LDO_OFFSET],
2406 INSTRUCTION_SIZE,
2407 deposit_14 (fun & MASK_11,
2408 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2409 INSTRUCTION_SIZE)));
2410 #ifdef SR4EXPORT_LDIL_OFFSET
2411
2412 {
2413 CORE_ADDR trampoline_addr;
2414
2415 /* We may still need sr4export's address too. */
2416
2417 if (trampoline == NULL)
2418 {
2419 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2420 if (msymbol == NULL)
2421 error ("Can't find an address for _sr4export trampoline");
2422
2423 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2424 }
2425 else
2426 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2427
2428
2429 /* Store upper 21 bits of trampoline's address into ldil */
2430 store_unsigned_integer
2431 (&dummy[SR4EXPORT_LDIL_OFFSET],
2432 INSTRUCTION_SIZE,
2433 deposit_21 (trampoline_addr >> 11,
2434 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2435 INSTRUCTION_SIZE)));
2436
2437 /* Store lower 11 bits of trampoline's address into ldo */
2438 store_unsigned_integer
2439 (&dummy[SR4EXPORT_LDO_OFFSET],
2440 INSTRUCTION_SIZE,
2441 deposit_14 (trampoline_addr & MASK_11,
2442 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2443 INSTRUCTION_SIZE)));
2444 }
2445 #endif
2446
2447 write_register (22, pc);
2448
2449 /* If we are in a syscall, then we should call the stack dummy
2450 directly. $$dyncall is not needed as the kernel sets up the
2451 space id registers properly based on the value in %r31. In
2452 fact calling $$dyncall will not work because the value in %r22
2453 will be clobbered on the syscall exit path.
2454
2455 Similarly if the current PC is in a shared library. Note however,
2456 this scheme won't work if the shared library isn't mapped into
2457 the same space as the stack. */
2458 if (flags & 2)
2459 return pc;
2460 #ifndef GDB_TARGET_IS_PA_ELF
2461 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
2462 return pc;
2463 #endif
2464 else
2465 return dyncall_addr;
2466 #endif
2467 }
2468
2469 /* If the pid is in a syscall, then the FP register is not readable.
2470 We'll return zero in that case, rather than attempting to read it
2471 and cause a warning. */
2472
2473 CORE_ADDR
2474 hppa_read_fp (int pid)
2475 {
2476 int flags = read_register (FLAGS_REGNUM);
2477
2478 if (flags & 2)
2479 {
2480 return (CORE_ADDR) 0;
2481 }
2482
2483 /* This is the only site that may directly read_register () the FP
2484 register. All others must use deprecated_read_fp (). */
2485 return read_register (DEPRECATED_FP_REGNUM);
2486 }
2487
2488 CORE_ADDR
2489 hppa_target_read_fp (void)
2490 {
2491 return hppa_read_fp (PIDGET (inferior_ptid));
2492 }
2493
2494 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2495 bits. */
2496
2497 CORE_ADDR
2498 hppa_target_read_pc (ptid_t ptid)
2499 {
2500 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2501
2502 /* The following test does not belong here. It is OS-specific, and belongs
2503 in native code. */
2504 /* Test SS_INSYSCALL */
2505 if (flags & 2)
2506 return read_register_pid (31, ptid) & ~0x3;
2507
2508 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
2509 }
2510
2511 /* Write out the PC. If currently in a syscall, then also write the new
2512 PC value into %r31. */
2513
2514 void
2515 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
2516 {
2517 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2518
2519 /* The following test does not belong here. It is OS-specific, and belongs
2520 in native code. */
2521 /* If in a syscall, then set %r31. Also make sure to get the
2522 privilege bits set correctly. */
2523 /* Test SS_INSYSCALL */
2524 if (flags & 2)
2525 write_register_pid (31, v | 0x3, ptid);
2526
2527 write_register_pid (PC_REGNUM, v, ptid);
2528 write_register_pid (NPC_REGNUM, v + 4, ptid);
2529 }
2530
2531 /* return the alignment of a type in bytes. Structures have the maximum
2532 alignment required by their fields. */
2533
2534 static int
2535 hppa_alignof (struct type *type)
2536 {
2537 int max_align, align, i;
2538 CHECK_TYPEDEF (type);
2539 switch (TYPE_CODE (type))
2540 {
2541 case TYPE_CODE_PTR:
2542 case TYPE_CODE_INT:
2543 case TYPE_CODE_FLT:
2544 return TYPE_LENGTH (type);
2545 case TYPE_CODE_ARRAY:
2546 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2547 case TYPE_CODE_STRUCT:
2548 case TYPE_CODE_UNION:
2549 max_align = 1;
2550 for (i = 0; i < TYPE_NFIELDS (type); i++)
2551 {
2552 /* Bit fields have no real alignment. */
2553 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2554 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2555 {
2556 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2557 max_align = max (max_align, align);
2558 }
2559 }
2560 return max_align;
2561 default:
2562 return 4;
2563 }
2564 }
2565
2566 /* Print the register regnum, or all registers if regnum is -1 */
2567
2568 void
2569 pa_do_registers_info (int regnum, int fpregs)
2570 {
2571 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
2572 int i;
2573
2574 /* Make a copy of gdb's save area (may cause actual
2575 reads from the target). */
2576 for (i = 0; i < NUM_REGS; i++)
2577 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
2578
2579 if (regnum == -1)
2580 pa_print_registers (raw_regs, regnum, fpregs);
2581 else if (regnum < FP4_REGNUM)
2582 {
2583 long reg_val[2];
2584
2585 /* Why is the value not passed through "extract_signed_integer"
2586 as in "pa_print_registers" below? */
2587 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2588
2589 if (!is_pa_2)
2590 {
2591 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2592 }
2593 else
2594 {
2595 /* Fancy % formats to prevent leading zeros. */
2596 if (reg_val[0] == 0)
2597 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2598 else
2599 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
2600 reg_val[0], reg_val[1]);
2601 }
2602 }
2603 else
2604 /* Note that real floating point values only start at
2605 FP4_REGNUM. FP0 and up are just status and error
2606 registers, which have integral (bit) values. */
2607 pa_print_fp_reg (regnum);
2608 }
2609
2610 /********** new function ********************/
2611 void
2612 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2613 enum precision_type precision)
2614 {
2615 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
2616 int i;
2617
2618 /* Make a copy of gdb's save area (may cause actual
2619 reads from the target). */
2620 for (i = 0; i < NUM_REGS; i++)
2621 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
2622
2623 if (regnum == -1)
2624 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2625
2626 else if (regnum < FP4_REGNUM)
2627 {
2628 long reg_val[2];
2629
2630 /* Why is the value not passed through "extract_signed_integer"
2631 as in "pa_print_registers" below? */
2632 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2633
2634 if (!is_pa_2)
2635 {
2636 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
2637 }
2638 else
2639 {
2640 /* Fancy % formats to prevent leading zeros. */
2641 if (reg_val[0] == 0)
2642 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
2643 reg_val[1]);
2644 else
2645 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
2646 reg_val[0], reg_val[1]);
2647 }
2648 }
2649 else
2650 /* Note that real floating point values only start at
2651 FP4_REGNUM. FP0 and up are just status and error
2652 registers, which have integral (bit) values. */
2653 pa_strcat_fp_reg (regnum, stream, precision);
2654 }
2655
2656 /* If this is a PA2.0 machine, fetch the real 64-bit register
2657 value. Otherwise use the info from gdb's saved register area.
2658
2659 Note that reg_val is really expected to be an array of longs,
2660 with two elements. */
2661 static void
2662 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
2663 {
2664 static int know_which = 0; /* False */
2665
2666 int regaddr;
2667 unsigned int offset;
2668 register int i;
2669 int start;
2670
2671
2672 char buf[MAX_REGISTER_SIZE];
2673 long long reg_val;
2674
2675 if (!know_which)
2676 {
2677 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2678 {
2679 is_pa_2 = (1 == 1);
2680 }
2681
2682 know_which = 1; /* True */
2683 }
2684
2685 raw_val[0] = 0;
2686 raw_val[1] = 0;
2687
2688 if (!is_pa_2)
2689 {
2690 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
2691 return;
2692 }
2693
2694 /* Code below copied from hppah-nat.c, with fixes for wide
2695 registers, using different area of save_state, etc. */
2696 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2697 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2698 {
2699 /* Use narrow regs area of save_state and default macro. */
2700 offset = U_REGS_OFFSET;
2701 regaddr = register_addr (regnum, offset);
2702 start = 1;
2703 }
2704 else
2705 {
2706 /* Use wide regs area, and calculate registers as 8 bytes wide.
2707
2708 We'd like to do this, but current version of "C" doesn't
2709 permit "offsetof":
2710
2711 offset = offsetof(save_state_t, ss_wide);
2712
2713 Note that to avoid "C" doing typed pointer arithmetic, we
2714 have to cast away the type in our offset calculation:
2715 otherwise we get an offset of 1! */
2716
2717 /* NB: save_state_t is not available before HPUX 9.
2718 The ss_wide field is not available previous to HPUX 10.20,
2719 so to avoid compile-time warnings, we only compile this for
2720 PA 2.0 processors. This control path should only be followed
2721 if we're debugging a PA 2.0 processor, so this should not cause
2722 problems. */
2723
2724 /* #if the following code out so that this file can still be
2725 compiled on older HPUX boxes (< 10.20) which don't have
2726 this structure/structure member. */
2727 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2728 save_state_t temp;
2729
2730 offset = ((int) &temp.ss_wide) - ((int) &temp);
2731 regaddr = offset + regnum * 8;
2732 start = 0;
2733 #endif
2734 }
2735
2736 for (i = start; i < 2; i++)
2737 {
2738 errno = 0;
2739 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
2740 (PTRACE_ARG3_TYPE) regaddr, 0);
2741 if (errno != 0)
2742 {
2743 /* Warning, not error, in case we are attached; sometimes the
2744 kernel doesn't let us at the registers. */
2745 char *err = safe_strerror (errno);
2746 char *msg = alloca (strlen (err) + 128);
2747 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2748 warning (msg);
2749 goto error_exit;
2750 }
2751
2752 regaddr += sizeof (long);
2753 }
2754
2755 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2756 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2757
2758 error_exit:
2759 ;
2760 }
2761
2762 /* "Info all-reg" command */
2763
2764 static void
2765 pa_print_registers (char *raw_regs, int regnum, int fpregs)
2766 {
2767 int i, j;
2768 /* Alas, we are compiled so that "long long" is 32 bits */
2769 long raw_val[2];
2770 long long_val;
2771 int rows = 48, columns = 2;
2772
2773 for (i = 0; i < rows; i++)
2774 {
2775 for (j = 0; j < columns; j++)
2776 {
2777 /* We display registers in column-major order. */
2778 int regnum = i + j * rows;
2779
2780 /* Q: Why is the value passed through "extract_signed_integer",
2781 while above, in "pa_do_registers_info" it isn't?
2782 A: ? */
2783 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2784
2785 /* Even fancier % formats to prevent leading zeros
2786 and still maintain the output in columns. */
2787 if (!is_pa_2)
2788 {
2789 /* Being big-endian, on this machine the low bits
2790 (the ones we want to look at) are in the second longword. */
2791 long_val = extract_signed_integer (&raw_val[1], 4);
2792 printf_filtered ("%10.10s: %8lx ",
2793 REGISTER_NAME (regnum), long_val);
2794 }
2795 else
2796 {
2797 /* raw_val = extract_signed_integer(&raw_val, 8); */
2798 if (raw_val[0] == 0)
2799 printf_filtered ("%10.10s: %8lx ",
2800 REGISTER_NAME (regnum), raw_val[1]);
2801 else
2802 printf_filtered ("%10.10s: %8lx%8.8lx ",
2803 REGISTER_NAME (regnum),
2804 raw_val[0], raw_val[1]);
2805 }
2806 }
2807 printf_unfiltered ("\n");
2808 }
2809
2810 if (fpregs)
2811 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2812 pa_print_fp_reg (i);
2813 }
2814
2815 /************* new function ******************/
2816 static void
2817 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2818 struct ui_file *stream)
2819 {
2820 int i, j;
2821 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2822 long long_val;
2823 enum precision_type precision;
2824
2825 precision = unspecified_precision;
2826
2827 for (i = 0; i < 18; i++)
2828 {
2829 for (j = 0; j < 4; j++)
2830 {
2831 /* Q: Why is the value passed through "extract_signed_integer",
2832 while above, in "pa_do_registers_info" it isn't?
2833 A: ? */
2834 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2835
2836 /* Even fancier % formats to prevent leading zeros
2837 and still maintain the output in columns. */
2838 if (!is_pa_2)
2839 {
2840 /* Being big-endian, on this machine the low bits
2841 (the ones we want to look at) are in the second longword. */
2842 long_val = extract_signed_integer (&raw_val[1], 4);
2843 fprintf_filtered (stream, "%8.8s: %8lx ",
2844 REGISTER_NAME (i + (j * 18)), long_val);
2845 }
2846 else
2847 {
2848 /* raw_val = extract_signed_integer(&raw_val, 8); */
2849 if (raw_val[0] == 0)
2850 fprintf_filtered (stream, "%8.8s: %8lx ",
2851 REGISTER_NAME (i + (j * 18)), raw_val[1]);
2852 else
2853 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2854 REGISTER_NAME (i + (j * 18)), raw_val[0],
2855 raw_val[1]);
2856 }
2857 }
2858 fprintf_unfiltered (stream, "\n");
2859 }
2860
2861 if (fpregs)
2862 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2863 pa_strcat_fp_reg (i, stream, precision);
2864 }
2865
2866 static void
2867 pa_print_fp_reg (int i)
2868 {
2869 char raw_buffer[MAX_REGISTER_SIZE];
2870 char virtual_buffer[MAX_REGISTER_SIZE];
2871
2872 /* Get 32bits of data. */
2873 frame_register_read (deprecated_selected_frame, i, raw_buffer);
2874
2875 /* Put it in the buffer. No conversions are ever necessary. */
2876 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2877
2878 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2879 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2880 fputs_filtered ("(single precision) ", gdb_stdout);
2881
2882 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2883 1, 0, Val_pretty_default);
2884 printf_filtered ("\n");
2885
2886 /* If "i" is even, then this register can also be a double-precision
2887 FP register. Dump it out as such. */
2888 if ((i % 2) == 0)
2889 {
2890 /* Get the data in raw format for the 2nd half. */
2891 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
2892
2893 /* Copy it into the appropriate part of the virtual buffer. */
2894 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2895 REGISTER_RAW_SIZE (i));
2896
2897 /* Dump it as a double. */
2898 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2899 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2900 fputs_filtered ("(double precision) ", gdb_stdout);
2901
2902 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2903 1, 0, Val_pretty_default);
2904 printf_filtered ("\n");
2905 }
2906 }
2907
2908 /*************** new function ***********************/
2909 static void
2910 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
2911 {
2912 char raw_buffer[MAX_REGISTER_SIZE];
2913 char virtual_buffer[MAX_REGISTER_SIZE];
2914
2915 fputs_filtered (REGISTER_NAME (i), stream);
2916 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2917
2918 /* Get 32bits of data. */
2919 frame_register_read (deprecated_selected_frame, i, raw_buffer);
2920
2921 /* Put it in the buffer. No conversions are ever necessary. */
2922 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2923
2924 if (precision == double_precision && (i % 2) == 0)
2925 {
2926
2927 char raw_buf[MAX_REGISTER_SIZE];
2928
2929 /* Get the data in raw format for the 2nd half. */
2930 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
2931
2932 /* Copy it into the appropriate part of the virtual buffer. */
2933 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
2934
2935 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2936 1, 0, Val_pretty_default);
2937
2938 }
2939 else
2940 {
2941 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2942 1, 0, Val_pretty_default);
2943 }
2944
2945 }
2946
2947 /* Return one if PC is in the call path of a trampoline, else return zero.
2948
2949 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2950 just shared library trampolines (import, export). */
2951
2952 int
2953 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2954 {
2955 struct minimal_symbol *minsym;
2956 struct unwind_table_entry *u;
2957 static CORE_ADDR dyncall = 0;
2958 static CORE_ADDR sr4export = 0;
2959
2960 #ifdef GDB_TARGET_IS_HPPA_20W
2961 /* PA64 has a completely different stub/trampoline scheme. Is it
2962 better? Maybe. It's certainly harder to determine with any
2963 certainty that we are in a stub because we can not refer to the
2964 unwinders to help.
2965
2966 The heuristic is simple. Try to lookup the current PC value in th
2967 minimal symbol table. If that fails, then assume we are not in a
2968 stub and return.
2969
2970 Then see if the PC value falls within the section bounds for the
2971 section containing the minimal symbol we found in the first
2972 step. If it does, then assume we are not in a stub and return.
2973
2974 Finally peek at the instructions to see if they look like a stub. */
2975 {
2976 struct minimal_symbol *minsym;
2977 asection *sec;
2978 CORE_ADDR addr;
2979 int insn, i;
2980
2981 minsym = lookup_minimal_symbol_by_pc (pc);
2982 if (! minsym)
2983 return 0;
2984
2985 sec = SYMBOL_BFD_SECTION (minsym);
2986
2987 if (sec->vma <= pc
2988 && sec->vma + sec->_cooked_size < pc)
2989 return 0;
2990
2991 /* We might be in a stub. Peek at the instructions. Stubs are 3
2992 instructions long. */
2993 insn = read_memory_integer (pc, 4);
2994
2995 /* Find out where we think we are within the stub. */
2996 if ((insn & 0xffffc00e) == 0x53610000)
2997 addr = pc;
2998 else if ((insn & 0xffffffff) == 0xe820d000)
2999 addr = pc - 4;
3000 else if ((insn & 0xffffc00e) == 0x537b0000)
3001 addr = pc - 8;
3002 else
3003 return 0;
3004
3005 /* Now verify each insn in the range looks like a stub instruction. */
3006 insn = read_memory_integer (addr, 4);
3007 if ((insn & 0xffffc00e) != 0x53610000)
3008 return 0;
3009
3010 /* Now verify each insn in the range looks like a stub instruction. */
3011 insn = read_memory_integer (addr + 4, 4);
3012 if ((insn & 0xffffffff) != 0xe820d000)
3013 return 0;
3014
3015 /* Now verify each insn in the range looks like a stub instruction. */
3016 insn = read_memory_integer (addr + 8, 4);
3017 if ((insn & 0xffffc00e) != 0x537b0000)
3018 return 0;
3019
3020 /* Looks like a stub. */
3021 return 1;
3022 }
3023 #endif
3024
3025 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3026 new exec file */
3027
3028 /* First see if PC is in one of the two C-library trampolines. */
3029 if (!dyncall)
3030 {
3031 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3032 if (minsym)
3033 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
3034 else
3035 dyncall = -1;
3036 }
3037
3038 if (!sr4export)
3039 {
3040 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3041 if (minsym)
3042 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3043 else
3044 sr4export = -1;
3045 }
3046
3047 if (pc == dyncall || pc == sr4export)
3048 return 1;
3049
3050 minsym = lookup_minimal_symbol_by_pc (pc);
3051 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
3052 return 1;
3053
3054 /* Get the unwind descriptor corresponding to PC, return zero
3055 if no unwind was found. */
3056 u = find_unwind_entry (pc);
3057 if (!u)
3058 return 0;
3059
3060 /* If this isn't a linker stub, then return now. */
3061 if (u->stub_unwind.stub_type == 0)
3062 return 0;
3063
3064 /* By definition a long-branch stub is a call stub. */
3065 if (u->stub_unwind.stub_type == LONG_BRANCH)
3066 return 1;
3067
3068 /* The call and return path execute the same instructions within
3069 an IMPORT stub! So an IMPORT stub is both a call and return
3070 trampoline. */
3071 if (u->stub_unwind.stub_type == IMPORT)
3072 return 1;
3073
3074 /* Parameter relocation stubs always have a call path and may have a
3075 return path. */
3076 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3077 || u->stub_unwind.stub_type == EXPORT)
3078 {
3079 CORE_ADDR addr;
3080
3081 /* Search forward from the current PC until we hit a branch
3082 or the end of the stub. */
3083 for (addr = pc; addr <= u->region_end; addr += 4)
3084 {
3085 unsigned long insn;
3086
3087 insn = read_memory_integer (addr, 4);
3088
3089 /* Does it look like a bl? If so then it's the call path, if
3090 we find a bv or be first, then we're on the return path. */
3091 if ((insn & 0xfc00e000) == 0xe8000000)
3092 return 1;
3093 else if ((insn & 0xfc00e001) == 0xe800c000
3094 || (insn & 0xfc000000) == 0xe0000000)
3095 return 0;
3096 }
3097
3098 /* Should never happen. */
3099 warning ("Unable to find branch in parameter relocation stub.\n");
3100 return 0;
3101 }
3102
3103 /* Unknown stub type. For now, just return zero. */
3104 return 0;
3105 }
3106
3107 /* Return one if PC is in the return path of a trampoline, else return zero.
3108
3109 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3110 just shared library trampolines (import, export). */
3111
3112 int
3113 hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
3114 {
3115 struct unwind_table_entry *u;
3116
3117 /* Get the unwind descriptor corresponding to PC, return zero
3118 if no unwind was found. */
3119 u = find_unwind_entry (pc);
3120 if (!u)
3121 return 0;
3122
3123 /* If this isn't a linker stub or it's just a long branch stub, then
3124 return zero. */
3125 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3126 return 0;
3127
3128 /* The call and return path execute the same instructions within
3129 an IMPORT stub! So an IMPORT stub is both a call and return
3130 trampoline. */
3131 if (u->stub_unwind.stub_type == IMPORT)
3132 return 1;
3133
3134 /* Parameter relocation stubs always have a call path and may have a
3135 return path. */
3136 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3137 || u->stub_unwind.stub_type == EXPORT)
3138 {
3139 CORE_ADDR addr;
3140
3141 /* Search forward from the current PC until we hit a branch
3142 or the end of the stub. */
3143 for (addr = pc; addr <= u->region_end; addr += 4)
3144 {
3145 unsigned long insn;
3146
3147 insn = read_memory_integer (addr, 4);
3148
3149 /* Does it look like a bl? If so then it's the call path, if
3150 we find a bv or be first, then we're on the return path. */
3151 if ((insn & 0xfc00e000) == 0xe8000000)
3152 return 0;
3153 else if ((insn & 0xfc00e001) == 0xe800c000
3154 || (insn & 0xfc000000) == 0xe0000000)
3155 return 1;
3156 }
3157
3158 /* Should never happen. */
3159 warning ("Unable to find branch in parameter relocation stub.\n");
3160 return 0;
3161 }
3162
3163 /* Unknown stub type. For now, just return zero. */
3164 return 0;
3165
3166 }
3167
3168 /* Figure out if PC is in a trampoline, and if so find out where
3169 the trampoline will jump to. If not in a trampoline, return zero.
3170
3171 Simple code examination probably is not a good idea since the code
3172 sequences in trampolines can also appear in user code.
3173
3174 We use unwinds and information from the minimal symbol table to
3175 determine when we're in a trampoline. This won't work for ELF
3176 (yet) since it doesn't create stub unwind entries. Whether or
3177 not ELF will create stub unwinds or normal unwinds for linker
3178 stubs is still being debated.
3179
3180 This should handle simple calls through dyncall or sr4export,
3181 long calls, argument relocation stubs, and dyncall/sr4export
3182 calling an argument relocation stub. It even handles some stubs
3183 used in dynamic executables. */
3184
3185 CORE_ADDR
3186 hppa_skip_trampoline_code (CORE_ADDR pc)
3187 {
3188 long orig_pc = pc;
3189 long prev_inst, curr_inst, loc;
3190 static CORE_ADDR dyncall = 0;
3191 static CORE_ADDR dyncall_external = 0;
3192 static CORE_ADDR sr4export = 0;
3193 struct minimal_symbol *msym;
3194 struct unwind_table_entry *u;
3195
3196 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3197 new exec file */
3198
3199 if (!dyncall)
3200 {
3201 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3202 if (msym)
3203 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3204 else
3205 dyncall = -1;
3206 }
3207
3208 if (!dyncall_external)
3209 {
3210 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3211 if (msym)
3212 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3213 else
3214 dyncall_external = -1;
3215 }
3216
3217 if (!sr4export)
3218 {
3219 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3220 if (msym)
3221 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3222 else
3223 sr4export = -1;
3224 }
3225
3226 /* Addresses passed to dyncall may *NOT* be the actual address
3227 of the function. So we may have to do something special. */
3228 if (pc == dyncall)
3229 {
3230 pc = (CORE_ADDR) read_register (22);
3231
3232 /* If bit 30 (counting from the left) is on, then pc is the address of
3233 the PLT entry for this function, not the address of the function
3234 itself. Bit 31 has meaning too, but only for MPE. */
3235 if (pc & 0x2)
3236 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3237 }
3238 if (pc == dyncall_external)
3239 {
3240 pc = (CORE_ADDR) read_register (22);
3241 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3242 }
3243 else if (pc == sr4export)
3244 pc = (CORE_ADDR) (read_register (22));
3245
3246 /* Get the unwind descriptor corresponding to PC, return zero
3247 if no unwind was found. */
3248 u = find_unwind_entry (pc);
3249 if (!u)
3250 return 0;
3251
3252 /* If this isn't a linker stub, then return now. */
3253 /* elz: attention here! (FIXME) because of a compiler/linker
3254 error, some stubs which should have a non zero stub_unwind.stub_type
3255 have unfortunately a value of zero. So this function would return here
3256 as if we were not in a trampoline. To fix this, we go look at the partial
3257 symbol information, which reports this guy as a stub.
3258 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3259 partial symbol information is also wrong sometimes. This is because
3260 when it is entered (somread.c::som_symtab_read()) it can happen that
3261 if the type of the symbol (from the som) is Entry, and the symbol is
3262 in a shared library, then it can also be a trampoline. This would
3263 be OK, except that I believe the way they decide if we are ina shared library
3264 does not work. SOOOO..., even if we have a regular function w/o trampolines
3265 its minimal symbol can be assigned type mst_solib_trampoline.
3266 Also, if we find that the symbol is a real stub, then we fix the unwind
3267 descriptor, and define the stub type to be EXPORT.
3268 Hopefully this is correct most of the times. */
3269 if (u->stub_unwind.stub_type == 0)
3270 {
3271
3272 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3273 we can delete all the code which appears between the lines */
3274 /*--------------------------------------------------------------------------*/
3275 msym = lookup_minimal_symbol_by_pc (pc);
3276
3277 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3278 return orig_pc == pc ? 0 : pc & ~0x3;
3279
3280 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3281 {
3282 struct objfile *objfile;
3283 struct minimal_symbol *msymbol;
3284 int function_found = 0;
3285
3286 /* go look if there is another minimal symbol with the same name as
3287 this one, but with type mst_text. This would happen if the msym
3288 is an actual trampoline, in which case there would be another
3289 symbol with the same name corresponding to the real function */
3290
3291 ALL_MSYMBOLS (objfile, msymbol)
3292 {
3293 if (MSYMBOL_TYPE (msymbol) == mst_text
3294 && STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
3295 {
3296 function_found = 1;
3297 break;
3298 }
3299 }
3300
3301 if (function_found)
3302 /* the type of msym is correct (mst_solib_trampoline), but
3303 the unwind info is wrong, so set it to the correct value */
3304 u->stub_unwind.stub_type = EXPORT;
3305 else
3306 /* the stub type info in the unwind is correct (this is not a
3307 trampoline), but the msym type information is wrong, it
3308 should be mst_text. So we need to fix the msym, and also
3309 get out of this function */
3310 {
3311 MSYMBOL_TYPE (msym) = mst_text;
3312 return orig_pc == pc ? 0 : pc & ~0x3;
3313 }
3314 }
3315
3316 /*--------------------------------------------------------------------------*/
3317 }
3318
3319 /* It's a stub. Search for a branch and figure out where it goes.
3320 Note we have to handle multi insn branch sequences like ldil;ble.
3321 Most (all?) other branches can be determined by examining the contents
3322 of certain registers and the stack. */
3323
3324 loc = pc;
3325 curr_inst = 0;
3326 prev_inst = 0;
3327 while (1)
3328 {
3329 /* Make sure we haven't walked outside the range of this stub. */
3330 if (u != find_unwind_entry (loc))
3331 {
3332 warning ("Unable to find branch in linker stub");
3333 return orig_pc == pc ? 0 : pc & ~0x3;
3334 }
3335
3336 prev_inst = curr_inst;
3337 curr_inst = read_memory_integer (loc, 4);
3338
3339 /* Does it look like a branch external using %r1? Then it's the
3340 branch from the stub to the actual function. */
3341 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3342 {
3343 /* Yup. See if the previous instruction loaded
3344 a value into %r1. If so compute and return the jump address. */
3345 if ((prev_inst & 0xffe00000) == 0x20200000)
3346 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3347 else
3348 {
3349 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3350 return orig_pc == pc ? 0 : pc & ~0x3;
3351 }
3352 }
3353
3354 /* Does it look like a be 0(sr0,%r21)? OR
3355 Does it look like a be, n 0(sr0,%r21)? OR
3356 Does it look like a bve (r21)? (this is on PA2.0)
3357 Does it look like a bve, n(r21)? (this is also on PA2.0)
3358 That's the branch from an
3359 import stub to an export stub.
3360
3361 It is impossible to determine the target of the branch via
3362 simple examination of instructions and/or data (consider
3363 that the address in the plabel may be the address of the
3364 bind-on-reference routine in the dynamic loader).
3365
3366 So we have try an alternative approach.
3367
3368 Get the name of the symbol at our current location; it should
3369 be a stub symbol with the same name as the symbol in the
3370 shared library.
3371
3372 Then lookup a minimal symbol with the same name; we should
3373 get the minimal symbol for the target routine in the shared
3374 library as those take precedence of import/export stubs. */
3375 if ((curr_inst == 0xe2a00000) ||
3376 (curr_inst == 0xe2a00002) ||
3377 (curr_inst == 0xeaa0d000) ||
3378 (curr_inst == 0xeaa0d002))
3379 {
3380 struct minimal_symbol *stubsym, *libsym;
3381
3382 stubsym = lookup_minimal_symbol_by_pc (loc);
3383 if (stubsym == NULL)
3384 {
3385 warning ("Unable to find symbol for 0x%lx", loc);
3386 return orig_pc == pc ? 0 : pc & ~0x3;
3387 }
3388
3389 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
3390 if (libsym == NULL)
3391 {
3392 warning ("Unable to find library symbol for %s\n",
3393 DEPRECATED_SYMBOL_NAME (stubsym));
3394 return orig_pc == pc ? 0 : pc & ~0x3;
3395 }
3396
3397 return SYMBOL_VALUE (libsym);
3398 }
3399
3400 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3401 branch from the stub to the actual function. */
3402 /*elz */
3403 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3404 || (curr_inst & 0xffe0e000) == 0xe8000000
3405 || (curr_inst & 0xffe0e000) == 0xe800A000)
3406 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3407
3408 /* Does it look like bv (rp)? Note this depends on the
3409 current stack pointer being the same as the stack
3410 pointer in the stub itself! This is a branch on from the
3411 stub back to the original caller. */
3412 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3413 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3414 {
3415 /* Yup. See if the previous instruction loaded
3416 rp from sp - 8. */
3417 if (prev_inst == 0x4bc23ff1)
3418 return (read_memory_integer
3419 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3420 else
3421 {
3422 warning ("Unable to find restore of %%rp before bv (%%rp).");
3423 return orig_pc == pc ? 0 : pc & ~0x3;
3424 }
3425 }
3426
3427 /* elz: added this case to capture the new instruction
3428 at the end of the return part of an export stub used by
3429 the PA2.0: BVE, n (rp) */
3430 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3431 {
3432 return (read_memory_integer
3433 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3434 }
3435
3436 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3437 the original caller from the stub. Used in dynamic executables. */
3438 else if (curr_inst == 0xe0400002)
3439 {
3440 /* The value we jump to is sitting in sp - 24. But that's
3441 loaded several instructions before the be instruction.
3442 I guess we could check for the previous instruction being
3443 mtsp %r1,%sr0 if we want to do sanity checking. */
3444 return (read_memory_integer
3445 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3446 }
3447
3448 /* Haven't found the branch yet, but we're still in the stub.
3449 Keep looking. */
3450 loc += 4;
3451 }
3452 }
3453
3454
3455 /* For the given instruction (INST), return any adjustment it makes
3456 to the stack pointer or zero for no adjustment.
3457
3458 This only handles instructions commonly found in prologues. */
3459
3460 static int
3461 prologue_inst_adjust_sp (unsigned long inst)
3462 {
3463 /* This must persist across calls. */
3464 static int save_high21;
3465
3466 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3467 if ((inst & 0xffffc000) == 0x37de0000)
3468 return extract_14 (inst);
3469
3470 /* stwm X,D(sp) */
3471 if ((inst & 0xffe00000) == 0x6fc00000)
3472 return extract_14 (inst);
3473
3474 /* std,ma X,D(sp) */
3475 if ((inst & 0xffe00008) == 0x73c00008)
3476 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3477
3478 /* addil high21,%r1; ldo low11,(%r1),%r30)
3479 save high bits in save_high21 for later use. */
3480 if ((inst & 0xffe00000) == 0x28200000)
3481 {
3482 save_high21 = extract_21 (inst);
3483 return 0;
3484 }
3485
3486 if ((inst & 0xffff0000) == 0x343e0000)
3487 return save_high21 + extract_14 (inst);
3488
3489 /* fstws as used by the HP compilers. */
3490 if ((inst & 0xffffffe0) == 0x2fd01220)
3491 return extract_5_load (inst);
3492
3493 /* No adjustment. */
3494 return 0;
3495 }
3496
3497 /* Return nonzero if INST is a branch of some kind, else return zero. */
3498
3499 static int
3500 is_branch (unsigned long inst)
3501 {
3502 switch (inst >> 26)
3503 {
3504 case 0x20:
3505 case 0x21:
3506 case 0x22:
3507 case 0x23:
3508 case 0x27:
3509 case 0x28:
3510 case 0x29:
3511 case 0x2a:
3512 case 0x2b:
3513 case 0x2f:
3514 case 0x30:
3515 case 0x31:
3516 case 0x32:
3517 case 0x33:
3518 case 0x38:
3519 case 0x39:
3520 case 0x3a:
3521 case 0x3b:
3522 return 1;
3523
3524 default:
3525 return 0;
3526 }
3527 }
3528
3529 /* Return the register number for a GR which is saved by INST or
3530 zero it INST does not save a GR. */
3531
3532 static int
3533 inst_saves_gr (unsigned long inst)
3534 {
3535 /* Does it look like a stw? */
3536 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3537 || (inst >> 26) == 0x1f
3538 || ((inst >> 26) == 0x1f
3539 && ((inst >> 6) == 0xa)))
3540 return extract_5R_store (inst);
3541
3542 /* Does it look like a std? */
3543 if ((inst >> 26) == 0x1c
3544 || ((inst >> 26) == 0x03
3545 && ((inst >> 6) & 0xf) == 0xb))
3546 return extract_5R_store (inst);
3547
3548 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3549 if ((inst >> 26) == 0x1b)
3550 return extract_5R_store (inst);
3551
3552 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3553 too. */
3554 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3555 || ((inst >> 26) == 0x3
3556 && (((inst >> 6) & 0xf) == 0x8
3557 || (inst >> 6) & 0xf) == 0x9))
3558 return extract_5R_store (inst);
3559
3560 return 0;
3561 }
3562
3563 /* Return the register number for a FR which is saved by INST or
3564 zero it INST does not save a FR.
3565
3566 Note we only care about full 64bit register stores (that's the only
3567 kind of stores the prologue will use).
3568
3569 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3570
3571 static int
3572 inst_saves_fr (unsigned long inst)
3573 {
3574 /* is this an FSTD ? */
3575 if ((inst & 0xfc00dfc0) == 0x2c001200)
3576 return extract_5r_store (inst);
3577 if ((inst & 0xfc000002) == 0x70000002)
3578 return extract_5R_store (inst);
3579 /* is this an FSTW ? */
3580 if ((inst & 0xfc00df80) == 0x24001200)
3581 return extract_5r_store (inst);
3582 if ((inst & 0xfc000002) == 0x7c000000)
3583 return extract_5R_store (inst);
3584 return 0;
3585 }
3586
3587 /* Advance PC across any function entry prologue instructions
3588 to reach some "real" code.
3589
3590 Use information in the unwind table to determine what exactly should
3591 be in the prologue. */
3592
3593
3594 CORE_ADDR
3595 skip_prologue_hard_way (CORE_ADDR pc)
3596 {
3597 char buf[4];
3598 CORE_ADDR orig_pc = pc;
3599 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3600 unsigned long args_stored, status, i, restart_gr, restart_fr;
3601 struct unwind_table_entry *u;
3602
3603 restart_gr = 0;
3604 restart_fr = 0;
3605
3606 restart:
3607 u = find_unwind_entry (pc);
3608 if (!u)
3609 return pc;
3610
3611 /* If we are not at the beginning of a function, then return now. */
3612 if ((pc & ~0x3) != u->region_start)
3613 return pc;
3614
3615 /* This is how much of a frame adjustment we need to account for. */
3616 stack_remaining = u->Total_frame_size << 3;
3617
3618 /* Magic register saves we want to know about. */
3619 save_rp = u->Save_RP;
3620 save_sp = u->Save_SP;
3621
3622 /* An indication that args may be stored into the stack. Unfortunately
3623 the HPUX compilers tend to set this in cases where no args were
3624 stored too!. */
3625 args_stored = 1;
3626
3627 /* Turn the Entry_GR field into a bitmask. */
3628 save_gr = 0;
3629 for (i = 3; i < u->Entry_GR + 3; i++)
3630 {
3631 /* Frame pointer gets saved into a special location. */
3632 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
3633 continue;
3634
3635 save_gr |= (1 << i);
3636 }
3637 save_gr &= ~restart_gr;
3638
3639 /* Turn the Entry_FR field into a bitmask too. */
3640 save_fr = 0;
3641 for (i = 12; i < u->Entry_FR + 12; i++)
3642 save_fr |= (1 << i);
3643 save_fr &= ~restart_fr;
3644
3645 /* Loop until we find everything of interest or hit a branch.
3646
3647 For unoptimized GCC code and for any HP CC code this will never ever
3648 examine any user instructions.
3649
3650 For optimzied GCC code we're faced with problems. GCC will schedule
3651 its prologue and make prologue instructions available for delay slot
3652 filling. The end result is user code gets mixed in with the prologue
3653 and a prologue instruction may be in the delay slot of the first branch
3654 or call.
3655
3656 Some unexpected things are expected with debugging optimized code, so
3657 we allow this routine to walk past user instructions in optimized
3658 GCC code. */
3659 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3660 || args_stored)
3661 {
3662 unsigned int reg_num;
3663 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3664 unsigned long old_save_rp, old_save_sp, next_inst;
3665
3666 /* Save copies of all the triggers so we can compare them later
3667 (only for HPC). */
3668 old_save_gr = save_gr;
3669 old_save_fr = save_fr;
3670 old_save_rp = save_rp;
3671 old_save_sp = save_sp;
3672 old_stack_remaining = stack_remaining;
3673
3674 status = target_read_memory (pc, buf, 4);
3675 inst = extract_unsigned_integer (buf, 4);
3676
3677 /* Yow! */
3678 if (status != 0)
3679 return pc;
3680
3681 /* Note the interesting effects of this instruction. */
3682 stack_remaining -= prologue_inst_adjust_sp (inst);
3683
3684 /* There are limited ways to store the return pointer into the
3685 stack. */
3686 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3687 save_rp = 0;
3688
3689 /* These are the only ways we save SP into the stack. At this time
3690 the HP compilers never bother to save SP into the stack. */
3691 if ((inst & 0xffffc000) == 0x6fc10000
3692 || (inst & 0xffffc00c) == 0x73c10008)
3693 save_sp = 0;
3694
3695 /* Are we loading some register with an offset from the argument
3696 pointer? */
3697 if ((inst & 0xffe00000) == 0x37a00000
3698 || (inst & 0xffffffe0) == 0x081d0240)
3699 {
3700 pc += 4;
3701 continue;
3702 }
3703
3704 /* Account for general and floating-point register saves. */
3705 reg_num = inst_saves_gr (inst);
3706 save_gr &= ~(1 << reg_num);
3707
3708 /* Ugh. Also account for argument stores into the stack.
3709 Unfortunately args_stored only tells us that some arguments
3710 where stored into the stack. Not how many or what kind!
3711
3712 This is a kludge as on the HP compiler sets this bit and it
3713 never does prologue scheduling. So once we see one, skip past
3714 all of them. We have similar code for the fp arg stores below.
3715
3716 FIXME. Can still die if we have a mix of GR and FR argument
3717 stores! */
3718 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3719 {
3720 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3721 {
3722 pc += 4;
3723 status = target_read_memory (pc, buf, 4);
3724 inst = extract_unsigned_integer (buf, 4);
3725 if (status != 0)
3726 return pc;
3727 reg_num = inst_saves_gr (inst);
3728 }
3729 args_stored = 0;
3730 continue;
3731 }
3732
3733 reg_num = inst_saves_fr (inst);
3734 save_fr &= ~(1 << reg_num);
3735
3736 status = target_read_memory (pc + 4, buf, 4);
3737 next_inst = extract_unsigned_integer (buf, 4);
3738
3739 /* Yow! */
3740 if (status != 0)
3741 return pc;
3742
3743 /* We've got to be read to handle the ldo before the fp register
3744 save. */
3745 if ((inst & 0xfc000000) == 0x34000000
3746 && inst_saves_fr (next_inst) >= 4
3747 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3748 {
3749 /* So we drop into the code below in a reasonable state. */
3750 reg_num = inst_saves_fr (next_inst);
3751 pc -= 4;
3752 }
3753
3754 /* Ugh. Also account for argument stores into the stack.
3755 This is a kludge as on the HP compiler sets this bit and it
3756 never does prologue scheduling. So once we see one, skip past
3757 all of them. */
3758 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3759 {
3760 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3761 {
3762 pc += 8;
3763 status = target_read_memory (pc, buf, 4);
3764 inst = extract_unsigned_integer (buf, 4);
3765 if (status != 0)
3766 return pc;
3767 if ((inst & 0xfc000000) != 0x34000000)
3768 break;
3769 status = target_read_memory (pc + 4, buf, 4);
3770 next_inst = extract_unsigned_integer (buf, 4);
3771 if (status != 0)
3772 return pc;
3773 reg_num = inst_saves_fr (next_inst);
3774 }
3775 args_stored = 0;
3776 continue;
3777 }
3778
3779 /* Quit if we hit any kind of branch. This can happen if a prologue
3780 instruction is in the delay slot of the first call/branch. */
3781 if (is_branch (inst))
3782 break;
3783
3784 /* What a crock. The HP compilers set args_stored even if no
3785 arguments were stored into the stack (boo hiss). This could
3786 cause this code to then skip a bunch of user insns (up to the
3787 first branch).
3788
3789 To combat this we try to identify when args_stored was bogusly
3790 set and clear it. We only do this when args_stored is nonzero,
3791 all other resources are accounted for, and nothing changed on
3792 this pass. */
3793 if (args_stored
3794 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3795 && old_save_gr == save_gr && old_save_fr == save_fr
3796 && old_save_rp == save_rp && old_save_sp == save_sp
3797 && old_stack_remaining == stack_remaining)
3798 break;
3799
3800 /* Bump the PC. */
3801 pc += 4;
3802 }
3803
3804 /* We've got a tenative location for the end of the prologue. However
3805 because of limitations in the unwind descriptor mechanism we may
3806 have went too far into user code looking for the save of a register
3807 that does not exist. So, if there registers we expected to be saved
3808 but never were, mask them out and restart.
3809
3810 This should only happen in optimized code, and should be very rare. */
3811 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3812 {
3813 pc = orig_pc;
3814 restart_gr = save_gr;
3815 restart_fr = save_fr;
3816 goto restart;
3817 }
3818
3819 return pc;
3820 }
3821
3822
3823 /* Return the address of the PC after the last prologue instruction if
3824 we can determine it from the debug symbols. Else return zero. */
3825
3826 static CORE_ADDR
3827 after_prologue (CORE_ADDR pc)
3828 {
3829 struct symtab_and_line sal;
3830 CORE_ADDR func_addr, func_end;
3831 struct symbol *f;
3832
3833 /* If we can not find the symbol in the partial symbol table, then
3834 there is no hope we can determine the function's start address
3835 with this code. */
3836 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3837 return 0;
3838
3839 /* Get the line associated with FUNC_ADDR. */
3840 sal = find_pc_line (func_addr, 0);
3841
3842 /* There are only two cases to consider. First, the end of the source line
3843 is within the function bounds. In that case we return the end of the
3844 source line. Second is the end of the source line extends beyond the
3845 bounds of the current function. We need to use the slow code to
3846 examine instructions in that case.
3847
3848 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3849 the wrong thing to do. In fact, it should be entirely possible for this
3850 function to always return zero since the slow instruction scanning code
3851 is supposed to *always* work. If it does not, then it is a bug. */
3852 if (sal.end < func_end)
3853 return sal.end;
3854 else
3855 return 0;
3856 }
3857
3858 /* To skip prologues, I use this predicate. Returns either PC itself
3859 if the code at PC does not look like a function prologue; otherwise
3860 returns an address that (if we're lucky) follows the prologue. If
3861 LENIENT, then we must skip everything which is involved in setting
3862 up the frame (it's OK to skip more, just so long as we don't skip
3863 anything which might clobber the registers which are being saved.
3864 Currently we must not skip more on the alpha, but we might the lenient
3865 stuff some day. */
3866
3867 CORE_ADDR
3868 hppa_skip_prologue (CORE_ADDR pc)
3869 {
3870 unsigned long inst;
3871 int offset;
3872 CORE_ADDR post_prologue_pc;
3873 char buf[4];
3874
3875 /* See if we can determine the end of the prologue via the symbol table.
3876 If so, then return either PC, or the PC after the prologue, whichever
3877 is greater. */
3878
3879 post_prologue_pc = after_prologue (pc);
3880
3881 /* If after_prologue returned a useful address, then use it. Else
3882 fall back on the instruction skipping code.
3883
3884 Some folks have claimed this causes problems because the breakpoint
3885 may be the first instruction of the prologue. If that happens, then
3886 the instruction skipping code has a bug that needs to be fixed. */
3887 if (post_prologue_pc != 0)
3888 return max (pc, post_prologue_pc);
3889 else
3890 return (skip_prologue_hard_way (pc));
3891 }
3892
3893 /* Put here the code to store, into the SAVED_REGS, the addresses of
3894 the saved registers of frame described by FRAME_INFO. This
3895 includes special registers such as pc and fp saved in special ways
3896 in the stack frame. sp is even more special: the address we return
3897 for it IS the sp for the next frame. */
3898
3899 void
3900 hppa_frame_find_saved_regs (struct frame_info *frame_info,
3901 CORE_ADDR frame_saved_regs[])
3902 {
3903 CORE_ADDR pc;
3904 struct unwind_table_entry *u;
3905 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3906 int status, i, reg;
3907 char buf[4];
3908 int fp_loc = -1;
3909 int final_iteration;
3910
3911 /* Zero out everything. */
3912 memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
3913
3914 /* Call dummy frames always look the same, so there's no need to
3915 examine the dummy code to determine locations of saved registers;
3916 instead, let find_dummy_frame_regs fill in the correct offsets
3917 for the saved registers. */
3918 if ((get_frame_pc (frame_info) >= get_frame_base (frame_info)
3919 && (get_frame_pc (frame_info)
3920 <= (get_frame_base (frame_info)
3921 /* A call dummy is sized in words, but it is actually a
3922 series of instructions. Account for that scaling
3923 factor. */
3924 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
3925 * DEPRECATED_CALL_DUMMY_LENGTH)
3926 /* Similarly we have to account for 64bit wide register
3927 saves. */
3928 + (32 * DEPRECATED_REGISTER_SIZE)
3929 /* We always consider FP regs 8 bytes long. */
3930 + (NUM_REGS - FP0_REGNUM) * 8
3931 /* Similarly we have to account for 64bit wide register
3932 saves. */
3933 + (6 * DEPRECATED_REGISTER_SIZE)))))
3934 find_dummy_frame_regs (frame_info, frame_saved_regs);
3935
3936 /* Interrupt handlers are special too. They lay out the register
3937 state in the exact same order as the register numbers in GDB. */
3938 if (pc_in_interrupt_handler (get_frame_pc (frame_info)))
3939 {
3940 for (i = 0; i < NUM_REGS; i++)
3941 {
3942 /* SP is a little special. */
3943 if (i == SP_REGNUM)
3944 frame_saved_regs[SP_REGNUM]
3945 = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4,
3946 TARGET_PTR_BIT / 8);
3947 else
3948 frame_saved_regs[i] = get_frame_base (frame_info) + i * 4;
3949 }
3950 return;
3951 }
3952
3953 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3954 /* Handle signal handler callers. */
3955 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
3956 {
3957 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3958 return;
3959 }
3960 #endif
3961
3962 /* Get the starting address of the function referred to by the PC
3963 saved in frame. */
3964 pc = get_frame_func (frame_info);
3965
3966 /* Yow! */
3967 u = find_unwind_entry (pc);
3968 if (!u)
3969 return;
3970
3971 /* This is how much of a frame adjustment we need to account for. */
3972 stack_remaining = u->Total_frame_size << 3;
3973
3974 /* Magic register saves we want to know about. */
3975 save_rp = u->Save_RP;
3976 save_sp = u->Save_SP;
3977
3978 /* Turn the Entry_GR field into a bitmask. */
3979 save_gr = 0;
3980 for (i = 3; i < u->Entry_GR + 3; i++)
3981 {
3982 /* Frame pointer gets saved into a special location. */
3983 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
3984 continue;
3985
3986 save_gr |= (1 << i);
3987 }
3988
3989 /* Turn the Entry_FR field into a bitmask too. */
3990 save_fr = 0;
3991 for (i = 12; i < u->Entry_FR + 12; i++)
3992 save_fr |= (1 << i);
3993
3994 /* The frame always represents the value of %sp at entry to the
3995 current function (and is thus equivalent to the "saved" stack
3996 pointer. */
3997 frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info);
3998
3999 /* Loop until we find everything of interest or hit a branch.
4000
4001 For unoptimized GCC code and for any HP CC code this will never ever
4002 examine any user instructions.
4003
4004 For optimized GCC code we're faced with problems. GCC will schedule
4005 its prologue and make prologue instructions available for delay slot
4006 filling. The end result is user code gets mixed in with the prologue
4007 and a prologue instruction may be in the delay slot of the first branch
4008 or call.
4009
4010 Some unexpected things are expected with debugging optimized code, so
4011 we allow this routine to walk past user instructions in optimized
4012 GCC code. */
4013 final_iteration = 0;
4014 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
4015 && pc <= get_frame_pc (frame_info))
4016 {
4017 status = target_read_memory (pc, buf, 4);
4018 inst = extract_unsigned_integer (buf, 4);
4019
4020 /* Yow! */
4021 if (status != 0)
4022 return;
4023
4024 /* Note the interesting effects of this instruction. */
4025 stack_remaining -= prologue_inst_adjust_sp (inst);
4026
4027 /* There are limited ways to store the return pointer into the
4028 stack. */
4029 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4030 {
4031 save_rp = 0;
4032 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20;
4033 }
4034 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4035 {
4036 save_rp = 0;
4037 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16;
4038 }
4039
4040 /* Note if we saved SP into the stack. This also happens to indicate
4041 the location of the saved frame pointer. */
4042 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4043 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4044 {
4045 frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info);
4046 save_sp = 0;
4047 }
4048
4049 /* Account for general and floating-point register saves. */
4050 reg = inst_saves_gr (inst);
4051 if (reg >= 3 && reg <= 18
4052 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
4053 {
4054 save_gr &= ~(1 << reg);
4055
4056 /* stwm with a positive displacement is a *post modify*. */
4057 if ((inst >> 26) == 0x1b
4058 && extract_14 (inst) >= 0)
4059 frame_saved_regs[reg] = get_frame_base (frame_info);
4060 /* A std has explicit post_modify forms. */
4061 else if ((inst & 0xfc00000c0) == 0x70000008)
4062 frame_saved_regs[reg] = get_frame_base (frame_info);
4063 else
4064 {
4065 CORE_ADDR offset;
4066
4067 if ((inst >> 26) == 0x1c)
4068 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4069 else if ((inst >> 26) == 0x03)
4070 offset = low_sign_extend (inst & 0x1f, 5);
4071 else
4072 offset = extract_14 (inst);
4073
4074 /* Handle code with and without frame pointers. */
4075 if (u->Save_SP)
4076 frame_saved_regs[reg]
4077 = get_frame_base (frame_info) + offset;
4078 else
4079 frame_saved_regs[reg]
4080 = (get_frame_base (frame_info) + (u->Total_frame_size << 3)
4081 + offset);
4082 }
4083 }
4084
4085
4086 /* GCC handles callee saved FP regs a little differently.
4087
4088 It emits an instruction to put the value of the start of
4089 the FP store area into %r1. It then uses fstds,ma with
4090 a basereg of %r1 for the stores.
4091
4092 HP CC emits them at the current stack pointer modifying
4093 the stack pointer as it stores each register. */
4094
4095 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4096 if ((inst & 0xffffc000) == 0x34610000
4097 || (inst & 0xffffc000) == 0x37c10000)
4098 fp_loc = extract_14 (inst);
4099
4100 reg = inst_saves_fr (inst);
4101 if (reg >= 12 && reg <= 21)
4102 {
4103 /* Note +4 braindamage below is necessary because the FP status
4104 registers are internally 8 registers rather than the expected
4105 4 registers. */
4106 save_fr &= ~(1 << reg);
4107 if (fp_loc == -1)
4108 {
4109 /* 1st HP CC FP register store. After this instruction
4110 we've set enough state that the GCC and HPCC code are
4111 both handled in the same manner. */
4112 frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info);
4113 fp_loc = 8;
4114 }
4115 else
4116 {
4117 frame_saved_regs[reg + FP0_REGNUM + 4]
4118 = get_frame_base (frame_info) + fp_loc;
4119 fp_loc += 8;
4120 }
4121 }
4122
4123 /* Quit if we hit any kind of branch the previous iteration. */
4124 if (final_iteration)
4125 break;
4126
4127 /* We want to look precisely one instruction beyond the branch
4128 if we have not found everything yet. */
4129 if (is_branch (inst))
4130 final_iteration = 1;
4131
4132 /* Bump the PC. */
4133 pc += 4;
4134 }
4135 }
4136
4137 /* XXX - deprecated. This is a compatibility function for targets
4138 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4139 /* Find the addresses in which registers are saved in FRAME. */
4140
4141 void
4142 hppa_frame_init_saved_regs (struct frame_info *frame)
4143 {
4144 if (get_frame_saved_regs (frame) == NULL)
4145 frame_saved_regs_zalloc (frame);
4146 hppa_frame_find_saved_regs (frame, get_frame_saved_regs (frame));
4147 }
4148
4149 /* Exception handling support for the HP-UX ANSI C++ compiler.
4150 The compiler (aCC) provides a callback for exception events;
4151 GDB can set a breakpoint on this callback and find out what
4152 exception event has occurred. */
4153
4154 /* The name of the hook to be set to point to the callback function */
4155 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4156 /* The name of the function to be used to set the hook value */
4157 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4158 /* The name of the callback function in end.o */
4159 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4160 /* Name of function in end.o on which a break is set (called by above) */
4161 static char HP_ACC_EH_break[] = "__d_eh_break";
4162 /* Name of flag (in end.o) that enables catching throws */
4163 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4164 /* Name of flag (in end.o) that enables catching catching */
4165 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4166 /* The enum used by aCC */
4167 typedef enum
4168 {
4169 __EH_NOTIFY_THROW,
4170 __EH_NOTIFY_CATCH
4171 }
4172 __eh_notification;
4173
4174 /* Is exception-handling support available with this executable? */
4175 static int hp_cxx_exception_support = 0;
4176 /* Has the initialize function been run? */
4177 int hp_cxx_exception_support_initialized = 0;
4178 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4179 extern int exception_support_initialized;
4180 /* Address of __eh_notify_hook */
4181 static CORE_ADDR eh_notify_hook_addr = 0;
4182 /* Address of __d_eh_notify_callback */
4183 static CORE_ADDR eh_notify_callback_addr = 0;
4184 /* Address of __d_eh_break */
4185 static CORE_ADDR eh_break_addr = 0;
4186 /* Address of __d_eh_catch_catch */
4187 static CORE_ADDR eh_catch_catch_addr = 0;
4188 /* Address of __d_eh_catch_throw */
4189 static CORE_ADDR eh_catch_throw_addr = 0;
4190 /* Sal for __d_eh_break */
4191 static struct symtab_and_line *break_callback_sal = 0;
4192
4193 /* Code in end.c expects __d_pid to be set in the inferior,
4194 otherwise __d_eh_notify_callback doesn't bother to call
4195 __d_eh_break! So we poke the pid into this symbol
4196 ourselves.
4197 0 => success
4198 1 => failure */
4199 int
4200 setup_d_pid_in_inferior (void)
4201 {
4202 CORE_ADDR anaddr;
4203 struct minimal_symbol *msymbol;
4204 char buf[4]; /* FIXME 32x64? */
4205
4206 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4207 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4208 if (msymbol == NULL)
4209 {
4210 warning ("Unable to find __d_pid symbol in object file.");
4211 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4212 return 1;
4213 }
4214
4215 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4216 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4217 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4218 {
4219 warning ("Unable to write __d_pid");
4220 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4221 return 1;
4222 }
4223 return 0;
4224 }
4225
4226 /* Initialize exception catchpoint support by looking for the
4227 necessary hooks/callbacks in end.o, etc., and set the hook value to
4228 point to the required debug function
4229
4230 Return 0 => failure
4231 1 => success */
4232
4233 static int
4234 initialize_hp_cxx_exception_support (void)
4235 {
4236 struct symtabs_and_lines sals;
4237 struct cleanup *old_chain;
4238 struct cleanup *canonical_strings_chain = NULL;
4239 int i;
4240 char *addr_start;
4241 char *addr_end = NULL;
4242 char **canonical = (char **) NULL;
4243 int thread = -1;
4244 struct symbol *sym = NULL;
4245 struct minimal_symbol *msym = NULL;
4246 struct objfile *objfile;
4247 asection *shlib_info;
4248
4249 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4250 recursion is a possibility because finding the hook for exception
4251 callbacks involves making a call in the inferior, which means
4252 re-inserting breakpoints which can re-invoke this code */
4253
4254 static int recurse = 0;
4255 if (recurse > 0)
4256 {
4257 hp_cxx_exception_support_initialized = 0;
4258 exception_support_initialized = 0;
4259 return 0;
4260 }
4261
4262 hp_cxx_exception_support = 0;
4263
4264 /* First check if we have seen any HP compiled objects; if not,
4265 it is very unlikely that HP's idiosyncratic callback mechanism
4266 for exception handling debug support will be available!
4267 This will percolate back up to breakpoint.c, where our callers
4268 will decide to try the g++ exception-handling support instead. */
4269 if (!hp_som_som_object_present)
4270 return 0;
4271
4272 /* We have a SOM executable with SOM debug info; find the hooks */
4273
4274 /* First look for the notify hook provided by aCC runtime libs */
4275 /* If we find this symbol, we conclude that the executable must
4276 have HP aCC exception support built in. If this symbol is not
4277 found, even though we're a HP SOM-SOM file, we may have been
4278 built with some other compiler (not aCC). This results percolates
4279 back up to our callers in breakpoint.c which can decide to
4280 try the g++ style of exception support instead.
4281 If this symbol is found but the other symbols we require are
4282 not found, there is something weird going on, and g++ support
4283 should *not* be tried as an alternative.
4284
4285 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4286 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4287
4288 /* libCsup has this hook; it'll usually be non-debuggable */
4289 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4290 if (msym)
4291 {
4292 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4293 hp_cxx_exception_support = 1;
4294 }
4295 else
4296 {
4297 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4298 warning ("Executable may not have been compiled debuggable with HP aCC.");
4299 warning ("GDB will be unable to intercept exception events.");
4300 eh_notify_hook_addr = 0;
4301 hp_cxx_exception_support = 0;
4302 return 0;
4303 }
4304
4305 /* Next look for the notify callback routine in end.o */
4306 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4307 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4308 if (msym)
4309 {
4310 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4311 hp_cxx_exception_support = 1;
4312 }
4313 else
4314 {
4315 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4316 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4317 warning ("GDB will be unable to intercept exception events.");
4318 eh_notify_callback_addr = 0;
4319 return 0;
4320 }
4321
4322 #ifndef GDB_TARGET_IS_HPPA_20W
4323 /* Check whether the executable is dynamically linked or archive bound */
4324 /* With an archive-bound executable we can use the raw addresses we find
4325 for the callback function, etc. without modification. For an executable
4326 with shared libraries, we have to do more work to find the plabel, which
4327 can be the target of a call through $$dyncall from the aCC runtime support
4328 library (libCsup) which is linked shared by default by aCC. */
4329 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4330 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4331 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4332 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4333 {
4334 /* The minsym we have has the local code address, but that's not the
4335 plabel that can be used by an inter-load-module call. */
4336 /* Find solib handle for main image (which has end.o), and use that
4337 and the min sym as arguments to __d_shl_get() (which does the equivalent
4338 of shl_findsym()) to find the plabel. */
4339
4340 args_for_find_stub args;
4341 static char message[] = "Error while finding exception callback hook:\n";
4342
4343 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4344 args.msym = msym;
4345 args.return_val = 0;
4346
4347 recurse++;
4348 catch_errors (cover_find_stub_with_shl_get, &args, message,
4349 RETURN_MASK_ALL);
4350 eh_notify_callback_addr = args.return_val;
4351 recurse--;
4352
4353 exception_catchpoints_are_fragile = 1;
4354
4355 if (!eh_notify_callback_addr)
4356 {
4357 /* We can get here either if there is no plabel in the export list
4358 for the main image, or if something strange happened (?) */
4359 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4360 warning ("GDB will not be able to intercept exception events.");
4361 return 0;
4362 }
4363 }
4364 else
4365 exception_catchpoints_are_fragile = 0;
4366 #endif
4367
4368 /* Now, look for the breakpointable routine in end.o */
4369 /* This should also be available in the SOM symbol dict. if end.o linked in */
4370 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4371 if (msym)
4372 {
4373 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4374 hp_cxx_exception_support = 1;
4375 }
4376 else
4377 {
4378 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4379 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4380 warning ("GDB will be unable to intercept exception events.");
4381 eh_break_addr = 0;
4382 return 0;
4383 }
4384
4385 /* Next look for the catch enable flag provided in end.o */
4386 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4387 VAR_DOMAIN, 0, (struct symtab **) NULL);
4388 if (sym) /* sometimes present in debug info */
4389 {
4390 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4391 hp_cxx_exception_support = 1;
4392 }
4393 else
4394 /* otherwise look in SOM symbol dict. */
4395 {
4396 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4397 if (msym)
4398 {
4399 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4400 hp_cxx_exception_support = 1;
4401 }
4402 else
4403 {
4404 warning ("Unable to enable interception of exception catches.");
4405 warning ("Executable may not have been compiled debuggable with HP aCC.");
4406 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4407 return 0;
4408 }
4409 }
4410
4411 /* Next look for the catch enable flag provided end.o */
4412 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4413 VAR_DOMAIN, 0, (struct symtab **) NULL);
4414 if (sym) /* sometimes present in debug info */
4415 {
4416 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4417 hp_cxx_exception_support = 1;
4418 }
4419 else
4420 /* otherwise look in SOM symbol dict. */
4421 {
4422 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4423 if (msym)
4424 {
4425 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4426 hp_cxx_exception_support = 1;
4427 }
4428 else
4429 {
4430 warning ("Unable to enable interception of exception throws.");
4431 warning ("Executable may not have been compiled debuggable with HP aCC.");
4432 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4433 return 0;
4434 }
4435 }
4436
4437 /* Set the flags */
4438 hp_cxx_exception_support = 2; /* everything worked so far */
4439 hp_cxx_exception_support_initialized = 1;
4440 exception_support_initialized = 1;
4441
4442 return 1;
4443 }
4444
4445 /* Target operation for enabling or disabling interception of
4446 exception events.
4447 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4448 ENABLE is either 0 (disable) or 1 (enable).
4449 Return value is NULL if no support found;
4450 -1 if something went wrong,
4451 or a pointer to a symtab/line struct if the breakpointable
4452 address was found. */
4453
4454 struct symtab_and_line *
4455 child_enable_exception_callback (enum exception_event_kind kind, int enable)
4456 {
4457 char buf[4];
4458
4459 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4460 if (!initialize_hp_cxx_exception_support ())
4461 return NULL;
4462
4463 switch (hp_cxx_exception_support)
4464 {
4465 case 0:
4466 /* Assuming no HP support at all */
4467 return NULL;
4468 case 1:
4469 /* HP support should be present, but something went wrong */
4470 return (struct symtab_and_line *) -1; /* yuck! */
4471 /* there may be other cases in the future */
4472 }
4473
4474 /* Set the EH hook to point to the callback routine */
4475 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4476 /* pai: (temp) FIXME should there be a pack operation first? */
4477 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4478 {
4479 warning ("Could not write to target memory for exception event callback.");
4480 warning ("Interception of exception events may not work.");
4481 return (struct symtab_and_line *) -1;
4482 }
4483 if (enable)
4484 {
4485 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4486 if (PIDGET (inferior_ptid) > 0)
4487 {
4488 if (setup_d_pid_in_inferior ())
4489 return (struct symtab_and_line *) -1;
4490 }
4491 else
4492 {
4493 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4494 return (struct symtab_and_line *) -1;
4495 }
4496 }
4497
4498 switch (kind)
4499 {
4500 case EX_EVENT_THROW:
4501 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4502 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4503 {
4504 warning ("Couldn't enable exception throw interception.");
4505 return (struct symtab_and_line *) -1;
4506 }
4507 break;
4508 case EX_EVENT_CATCH:
4509 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4510 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4511 {
4512 warning ("Couldn't enable exception catch interception.");
4513 return (struct symtab_and_line *) -1;
4514 }
4515 break;
4516 default:
4517 error ("Request to enable unknown or unsupported exception event.");
4518 }
4519
4520 /* Copy break address into new sal struct, malloc'ing if needed. */
4521 if (!break_callback_sal)
4522 {
4523 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4524 }
4525 init_sal (break_callback_sal);
4526 break_callback_sal->symtab = NULL;
4527 break_callback_sal->pc = eh_break_addr;
4528 break_callback_sal->line = 0;
4529 break_callback_sal->end = eh_break_addr;
4530
4531 return break_callback_sal;
4532 }
4533
4534 /* Record some information about the current exception event */
4535 static struct exception_event_record current_ex_event;
4536 /* Convenience struct */
4537 static struct symtab_and_line null_symtab_and_line =
4538 {NULL, 0, 0, 0};
4539
4540 /* Report current exception event. Returns a pointer to a record
4541 that describes the kind of the event, where it was thrown from,
4542 and where it will be caught. More information may be reported
4543 in the future */
4544 struct exception_event_record *
4545 child_get_current_exception_event (void)
4546 {
4547 CORE_ADDR event_kind;
4548 CORE_ADDR throw_addr;
4549 CORE_ADDR catch_addr;
4550 struct frame_info *fi, *curr_frame;
4551 int level = 1;
4552
4553 curr_frame = get_current_frame ();
4554 if (!curr_frame)
4555 return (struct exception_event_record *) NULL;
4556
4557 /* Go up one frame to __d_eh_notify_callback, because at the
4558 point when this code is executed, there's garbage in the
4559 arguments of __d_eh_break. */
4560 fi = find_relative_frame (curr_frame, &level);
4561 if (level != 0)
4562 return (struct exception_event_record *) NULL;
4563
4564 select_frame (fi);
4565
4566 /* Read in the arguments */
4567 /* __d_eh_notify_callback() is called with 3 arguments:
4568 1. event kind catch or throw
4569 2. the target address if known
4570 3. a flag -- not sure what this is. pai/1997-07-17 */
4571 event_kind = read_register (ARG0_REGNUM);
4572 catch_addr = read_register (ARG1_REGNUM);
4573
4574 /* Now go down to a user frame */
4575 /* For a throw, __d_eh_break is called by
4576 __d_eh_notify_callback which is called by
4577 __notify_throw which is called
4578 from user code.
4579 For a catch, __d_eh_break is called by
4580 __d_eh_notify_callback which is called by
4581 <stackwalking stuff> which is called by
4582 __throw__<stuff> or __rethrow_<stuff> which is called
4583 from user code. */
4584 /* FIXME: Don't use such magic numbers; search for the frames */
4585 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4586 fi = find_relative_frame (curr_frame, &level);
4587 if (level != 0)
4588 return (struct exception_event_record *) NULL;
4589
4590 select_frame (fi);
4591 throw_addr = get_frame_pc (fi);
4592
4593 /* Go back to original (top) frame */
4594 select_frame (curr_frame);
4595
4596 current_ex_event.kind = (enum exception_event_kind) event_kind;
4597 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4598 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4599
4600 return &current_ex_event;
4601 }
4602
4603 /* Instead of this nasty cast, add a method pvoid() that prints out a
4604 host VOID data type (remember %p isn't portable). */
4605
4606 static CORE_ADDR
4607 hppa_pointer_to_address_hack (void *ptr)
4608 {
4609 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
4610 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
4611 }
4612
4613 static void
4614 unwind_command (char *exp, int from_tty)
4615 {
4616 CORE_ADDR address;
4617 struct unwind_table_entry *u;
4618
4619 /* If we have an expression, evaluate it and use it as the address. */
4620
4621 if (exp != 0 && *exp != 0)
4622 address = parse_and_eval_address (exp);
4623 else
4624 return;
4625
4626 u = find_unwind_entry (address);
4627
4628 if (!u)
4629 {
4630 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4631 return;
4632 }
4633
4634 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4635 paddr_nz (hppa_pointer_to_address_hack (u)));
4636
4637 printf_unfiltered ("\tregion_start = ");
4638 print_address (u->region_start, gdb_stdout);
4639
4640 printf_unfiltered ("\n\tregion_end = ");
4641 print_address (u->region_end, gdb_stdout);
4642
4643 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4644
4645 printf_unfiltered ("\n\tflags =");
4646 pif (Cannot_unwind);
4647 pif (Millicode);
4648 pif (Millicode_save_sr0);
4649 pif (Entry_SR);
4650 pif (Args_stored);
4651 pif (Variable_Frame);
4652 pif (Separate_Package_Body);
4653 pif (Frame_Extension_Millicode);
4654 pif (Stack_Overflow_Check);
4655 pif (Two_Instruction_SP_Increment);
4656 pif (Ada_Region);
4657 pif (Save_SP);
4658 pif (Save_RP);
4659 pif (Save_MRP_in_frame);
4660 pif (extn_ptr_defined);
4661 pif (Cleanup_defined);
4662 pif (MPE_XL_interrupt_marker);
4663 pif (HP_UX_interrupt_marker);
4664 pif (Large_frame);
4665
4666 putchar_unfiltered ('\n');
4667
4668 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4669
4670 pin (Region_description);
4671 pin (Entry_FR);
4672 pin (Entry_GR);
4673 pin (Total_frame_size);
4674 }
4675
4676 #ifdef PREPARE_TO_PROCEED
4677
4678 /* If the user has switched threads, and there is a breakpoint
4679 at the old thread's pc location, then switch to that thread
4680 and return TRUE, else return FALSE and don't do a thread
4681 switch (or rather, don't seem to have done a thread switch).
4682
4683 Ptrace-based gdb will always return FALSE to the thread-switch
4684 query, and thus also to PREPARE_TO_PROCEED.
4685
4686 The important thing is whether there is a BPT instruction,
4687 not how many user breakpoints there are. So we have to worry
4688 about things like these:
4689
4690 o Non-bp stop -- NO
4691
4692 o User hits bp, no switch -- NO
4693
4694 o User hits bp, switches threads -- YES
4695
4696 o User hits bp, deletes bp, switches threads -- NO
4697
4698 o User hits bp, deletes one of two or more bps
4699 at that PC, user switches threads -- YES
4700
4701 o Plus, since we're buffering events, the user may have hit a
4702 breakpoint, deleted the breakpoint and then gotten another
4703 hit on that same breakpoint on another thread which
4704 actually hit before the delete. (FIXME in breakpoint.c
4705 so that "dead" breakpoints are ignored?) -- NO
4706
4707 For these reasons, we have to violate information hiding and
4708 call "breakpoint_here_p". If core gdb thinks there is a bpt
4709 here, that's what counts, as core gdb is the one which is
4710 putting the BPT instruction in and taking it out.
4711
4712 Note that this implementation is potentially redundant now that
4713 default_prepare_to_proceed() has been added.
4714
4715 FIXME This may not support switching threads after Ctrl-C
4716 correctly. The default implementation does support this. */
4717 int
4718 hppa_prepare_to_proceed (void)
4719 {
4720 pid_t old_thread;
4721 pid_t current_thread;
4722
4723 old_thread = hppa_switched_threads (PIDGET (inferior_ptid));
4724 if (old_thread != 0)
4725 {
4726 /* Switched over from "old_thread". Try to do
4727 as little work as possible, 'cause mostly
4728 we're going to switch back. */
4729 CORE_ADDR new_pc;
4730 CORE_ADDR old_pc = read_pc ();
4731
4732 /* Yuk, shouldn't use global to specify current
4733 thread. But that's how gdb does it. */
4734 current_thread = PIDGET (inferior_ptid);
4735 inferior_ptid = pid_to_ptid (old_thread);
4736
4737 new_pc = read_pc ();
4738 if (new_pc != old_pc /* If at same pc, no need */
4739 && breakpoint_here_p (new_pc))
4740 {
4741 /* User hasn't deleted the BP.
4742 Return TRUE, finishing switch to "old_thread". */
4743 flush_cached_frames ();
4744 registers_changed ();
4745 #if 0
4746 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
4747 current_thread, PIDGET (inferior_ptid));
4748 #endif
4749
4750 return 1;
4751 }
4752
4753 /* Otherwise switch back to the user-chosen thread. */
4754 inferior_ptid = pid_to_ptid (current_thread);
4755 new_pc = read_pc (); /* Re-prime register cache */
4756 }
4757
4758 return 0;
4759 }
4760 #endif /* PREPARE_TO_PROCEED */
4761
4762 void
4763 hppa_skip_permanent_breakpoint (void)
4764 {
4765 /* To step over a breakpoint instruction on the PA takes some
4766 fiddling with the instruction address queue.
4767
4768 When we stop at a breakpoint, the IA queue front (the instruction
4769 we're executing now) points at the breakpoint instruction, and
4770 the IA queue back (the next instruction to execute) points to
4771 whatever instruction we would execute after the breakpoint, if it
4772 were an ordinary instruction. This is the case even if the
4773 breakpoint is in the delay slot of a branch instruction.
4774
4775 Clearly, to step past the breakpoint, we need to set the queue
4776 front to the back. But what do we put in the back? What
4777 instruction comes after that one? Because of the branch delay
4778 slot, the next insn is always at the back + 4. */
4779 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4780 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4781
4782 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4783 /* We can leave the tail's space the same, since there's no jump. */
4784 }
4785
4786 /* Copy the function value from VALBUF into the proper location
4787 for a function return.
4788
4789 Called only in the context of the "return" command. */
4790
4791 void
4792 hppa_store_return_value (struct type *type, char *valbuf)
4793 {
4794 /* For software floating point, the return value goes into the
4795 integer registers. But we do not have any flag to key this on,
4796 so we always store the value into the integer registers.
4797
4798 If its a float value, then we also store it into the floating
4799 point registers. */
4800 deprecated_write_register_bytes (REGISTER_BYTE (28)
4801 + (TYPE_LENGTH (type) > 4
4802 ? (8 - TYPE_LENGTH (type))
4803 : (4 - TYPE_LENGTH (type))),
4804 valbuf, TYPE_LENGTH (type));
4805 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4806 deprecated_write_register_bytes (REGISTER_BYTE (FP4_REGNUM),
4807 valbuf, TYPE_LENGTH (type));
4808 }
4809
4810 /* Copy the function's return value into VALBUF.
4811
4812 This function is called only in the context of "target function calls",
4813 ie. when the debugger forces a function to be called in the child, and
4814 when the debugger forces a fucntion to return prematurely via the
4815 "return" command. */
4816
4817 void
4818 hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4819 {
4820 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4821 memcpy (valbuf,
4822 (char *)regbuf + REGISTER_BYTE (FP4_REGNUM),
4823 TYPE_LENGTH (type));
4824 else
4825 memcpy (valbuf,
4826 ((char *)regbuf
4827 + REGISTER_BYTE (28)
4828 + (TYPE_LENGTH (type) > 4
4829 ? (8 - TYPE_LENGTH (type))
4830 : (4 - TYPE_LENGTH (type)))),
4831 TYPE_LENGTH (type));
4832 }
4833
4834 int
4835 hppa_reg_struct_has_addr (int gcc_p, struct type *type)
4836 {
4837 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4838 via a pointer regardless of its type or the compiler used. */
4839 return (TYPE_LENGTH (type) > 8);
4840 }
4841
4842 int
4843 hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
4844 {
4845 /* Stack grows upward */
4846 return (lhs > rhs);
4847 }
4848
4849 CORE_ADDR
4850 hppa_stack_align (CORE_ADDR sp)
4851 {
4852 /* elz: adjust the quantity to the next highest value which is
4853 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4854 On hppa the sp must always be kept 64-bit aligned */
4855 return ((sp % 8) ? (sp + 7) & -8 : sp);
4856 }
4857
4858 int
4859 hppa_pc_requires_run_before_use (CORE_ADDR pc)
4860 {
4861 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4862
4863 An example of this occurs when an a.out is linked against a foo.sl.
4864 The foo.sl defines a global bar(), and the a.out declares a signature
4865 for bar(). However, the a.out doesn't directly call bar(), but passes
4866 its address in another call.
4867
4868 If you have this scenario and attempt to "break bar" before running,
4869 gdb will find a minimal symbol for bar() in the a.out. But that
4870 symbol's address will be negative. What this appears to denote is
4871 an index backwards from the base of the procedure linkage table (PLT)
4872 into the data linkage table (DLT), the end of which is contiguous
4873 with the start of the PLT. This is clearly not a valid address for
4874 us to set a breakpoint on.
4875
4876 Note that one must be careful in how one checks for a negative address.
4877 0xc0000000 is a legitimate address of something in a shared text
4878 segment, for example. Since I don't know what the possible range
4879 is of these "really, truly negative" addresses that come from the
4880 minimal symbols, I'm resorting to the gross hack of checking the
4881 top byte of the address for all 1's. Sigh. */
4882
4883 return (!target_has_stack && (pc & 0xFF000000));
4884 }
4885
4886 int
4887 hppa_instruction_nullified (void)
4888 {
4889 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4890 avoid the type cast. I'm leaving it as is for now as I'm doing
4891 semi-mechanical multiarching-related changes. */
4892 const int ipsw = (int) read_register (IPSW_REGNUM);
4893 const int flags = (int) read_register (FLAGS_REGNUM);
4894
4895 return ((ipsw & 0x00200000) && !(flags & 0x2));
4896 }
4897
4898 int
4899 hppa_register_raw_size (int reg_nr)
4900 {
4901 /* All registers have the same size. */
4902 return DEPRECATED_REGISTER_SIZE;
4903 }
4904
4905 /* Index within the register vector of the first byte of the space i
4906 used for register REG_NR. */
4907
4908 int
4909 hppa_register_byte (int reg_nr)
4910 {
4911 return reg_nr * 4;
4912 }
4913
4914 /* Return the GDB type object for the "standard" data type of data
4915 in register N. */
4916
4917 struct type *
4918 hppa_register_virtual_type (int reg_nr)
4919 {
4920 if (reg_nr < FP4_REGNUM)
4921 return builtin_type_int;
4922 else
4923 return builtin_type_float;
4924 }
4925
4926 /* Store the address of the place in which to copy the structure the
4927 subroutine will return. This is called from call_function. */
4928
4929 void
4930 hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4931 {
4932 write_register (28, addr);
4933 }
4934
4935 CORE_ADDR
4936 hppa_extract_struct_value_address (char *regbuf)
4937 {
4938 /* Extract from an array REGBUF containing the (raw) register state
4939 the address in which a function should return its structure value,
4940 as a CORE_ADDR (or an expression that can be used as one). */
4941 /* FIXME: brobecker 2002-12-26.
4942 The current implementation is historical, but we should eventually
4943 implement it in a more robust manner as it relies on the fact that
4944 the address size is equal to the size of an int* _on the host_...
4945 One possible implementation that crossed my mind is to use
4946 extract_address. */
4947 return (*(int *)(regbuf + REGISTER_BYTE (28)));
4948 }
4949
4950 /* Return True if REGNUM is not a register available to the user
4951 through ptrace(). */
4952
4953 int
4954 hppa_cannot_store_register (int regnum)
4955 {
4956 return (regnum == 0
4957 || regnum == PCSQ_HEAD_REGNUM
4958 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
4959 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
4960
4961 }
4962
4963 CORE_ADDR
4964 hppa_frame_args_address (struct frame_info *fi)
4965 {
4966 return get_frame_base (fi);
4967 }
4968
4969 CORE_ADDR
4970 hppa_frame_locals_address (struct frame_info *fi)
4971 {
4972 return get_frame_base (fi);
4973 }
4974
4975 int
4976 hppa_frame_num_args (struct frame_info *frame)
4977 {
4978 /* We can't tell how many args there are now that the C compiler delays
4979 popping them. */
4980 return -1;
4981 }
4982
4983 CORE_ADDR
4984 hppa_smash_text_address (CORE_ADDR addr)
4985 {
4986 /* The low two bits of the PC on the PA contain the privilege level.
4987 Some genius implementing a (non-GCC) compiler apparently decided
4988 this means that "addresses" in a text section therefore include a
4989 privilege level, and thus symbol tables should contain these bits.
4990 This seems like a bonehead thing to do--anyway, it seems to work
4991 for our purposes to just ignore those bits. */
4992
4993 return (addr &= ~0x3);
4994 }
4995
4996 static struct gdbarch *
4997 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4998 {
4999 struct gdbarch *gdbarch;
5000
5001 /* Try to determine the ABI of the object we are loading. */
5002 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
5003 {
5004 /* If it's a SOM file, assume it's HP/UX SOM. */
5005 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
5006 info.osabi = GDB_OSABI_HPUX_SOM;
5007 }
5008
5009 /* find a candidate among the list of pre-declared architectures. */
5010 arches = gdbarch_list_lookup_by_info (arches, &info);
5011 if (arches != NULL)
5012 return (arches->gdbarch);
5013
5014 /* If none found, then allocate and initialize one. */
5015 gdbarch = gdbarch_alloc (&info, NULL);
5016
5017 /* Hook in ABI-specific overrides, if they have been registered. */
5018 gdbarch_init_osabi (info, gdbarch);
5019
5020 set_gdbarch_reg_struct_has_addr (gdbarch, hppa_reg_struct_has_addr);
5021 set_gdbarch_function_start_offset (gdbarch, 0);
5022 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
5023 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
5024 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
5025 set_gdbarch_in_solib_return_trampoline (gdbarch,
5026 hppa_in_solib_return_trampoline);
5027 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
5028 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
5029 set_gdbarch_stack_align (gdbarch, hppa_stack_align);
5030 set_gdbarch_decr_pc_after_break (gdbarch, 0);
5031 set_gdbarch_deprecated_register_size (gdbarch, 4);
5032 set_gdbarch_num_regs (gdbarch, hppa_num_regs);
5033 set_gdbarch_deprecated_fp_regnum (gdbarch, 3);
5034 set_gdbarch_sp_regnum (gdbarch, 30);
5035 set_gdbarch_fp0_regnum (gdbarch, 64);
5036 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
5037 set_gdbarch_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM);
5038 set_gdbarch_register_raw_size (gdbarch, hppa_register_raw_size);
5039 set_gdbarch_deprecated_register_bytes (gdbarch, hppa_num_regs * 4);
5040 set_gdbarch_register_byte (gdbarch, hppa_register_byte);
5041 set_gdbarch_register_virtual_size (gdbarch, hppa_register_raw_size);
5042 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4);
5043 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
5044 set_gdbarch_register_virtual_type (gdbarch, hppa_register_virtual_type);
5045 set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return);
5046 set_gdbarch_deprecated_extract_return_value (gdbarch,
5047 hppa_extract_return_value);
5048 set_gdbarch_use_struct_convention (gdbarch, hppa_use_struct_convention);
5049 set_gdbarch_deprecated_store_return_value (gdbarch, hppa_store_return_value);
5050 set_gdbarch_deprecated_extract_struct_value_address
5051 (gdbarch, hppa_extract_struct_value_address);
5052 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
5053 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
5054 set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain);
5055 set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
5056 set_gdbarch_frameless_function_invocation
5057 (gdbarch, hppa_frameless_function_invocation);
5058 set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
5059 set_gdbarch_frame_args_address (gdbarch, hppa_frame_args_address);
5060 set_gdbarch_frame_locals_address (gdbarch, hppa_frame_locals_address);
5061 set_gdbarch_frame_num_args (gdbarch, hppa_frame_num_args);
5062 set_gdbarch_frame_args_skip (gdbarch, 0);
5063 set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame);
5064 set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame);
5065 set_gdbarch_deprecated_call_dummy_length (gdbarch, INSTRUCTION_SIZE * 28);
5066 /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
5067 set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments);
5068 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5069 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5070 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5071 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
5072 set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp);
5073
5074 return gdbarch;
5075 }
5076
5077 static void
5078 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5079 {
5080 /* Nothing to print for the moment. */
5081 }
5082
5083 void
5084 _initialize_hppa_tdep (void)
5085 {
5086 struct cmd_list_element *c;
5087 void break_at_finish_command (char *arg, int from_tty);
5088 void tbreak_at_finish_command (char *arg, int from_tty);
5089 void break_at_finish_at_depth_command (char *arg, int from_tty);
5090
5091 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
5092 deprecated_tm_print_insn = print_insn_hppa;
5093
5094 add_cmd ("unwind", class_maintenance, unwind_command,
5095 "Print unwind table entry at given address.",
5096 &maintenanceprintlist);
5097
5098 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5099 break_at_finish_command,
5100 concat ("Set breakpoint at procedure exit. \n\
5101 Argument may be function name, or \"*\" and an address.\n\
5102 If function is specified, break at end of code for that function.\n\
5103 If an address is specified, break at the end of the function that contains \n\
5104 that exact address.\n",
5105 "With no arg, uses current execution address of selected stack frame.\n\
5106 This is useful for breaking on return to a stack frame.\n\
5107 \n\
5108 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5109 \n\
5110 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5111 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5112 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5113 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5114 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5115
5116 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5117 tbreak_at_finish_command,
5118 "Set temporary breakpoint at procedure exit. Either there should\n\
5119 be no argument or the argument must be a depth.\n"), NULL);
5120 set_cmd_completer (c, location_completer);
5121
5122 if (xdb_commands)
5123 deprecate_cmd (add_com ("bx", class_breakpoint,
5124 break_at_finish_at_depth_command,
5125 "Set breakpoint at procedure exit. Either there should\n\
5126 be no argument or the argument must be a depth.\n"), NULL);
5127 }
5128
This page took 0.147265 seconds and 4 git commands to generate.