2003-04-15 David Carlton <carlton@math.stanford.edu>
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "value.h"
31 #include "regcache.h"
32 #include "completer.h"
33 #include "language.h"
34 #include "osabi.h"
35 #include "gdb_assert.h"
36 #include "infttrace.h"
37 /* For argument passing to the inferior */
38 #include "symtab.h"
39
40 #ifdef USG
41 #include <sys/types.h>
42 #endif
43
44 #include <dl.h>
45 #include <sys/param.h>
46 #include <signal.h>
47
48 #include <sys/ptrace.h>
49 #include <machine/save_state.h>
50
51 #ifdef COFF_ENCAPSULATE
52 #include "a.out.encap.h"
53 #else
54 #endif
55
56 /*#include <sys/user.h> After a.out.h */
57 #include <sys/file.h>
58 #include "gdb_stat.h"
59 #include "gdb_wait.h"
60
61 #include "gdbcore.h"
62 #include "gdbcmd.h"
63 #include "target.h"
64 #include "symfile.h"
65 #include "objfiles.h"
66
67 /* Some local constants. */
68 static const int hppa_num_regs = 128;
69
70 /* To support detection of the pseudo-initial frame
71 that threads have. */
72 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
73 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
74
75 static int extract_5_load (unsigned int);
76
77 static unsigned extract_5R_store (unsigned int);
78
79 static unsigned extract_5r_store (unsigned int);
80
81 static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *);
82
83 static int find_proc_framesize (CORE_ADDR);
84
85 static int find_return_regnum (CORE_ADDR);
86
87 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
88
89 static int extract_17 (unsigned int);
90
91 static unsigned deposit_21 (unsigned int, unsigned int);
92
93 static int extract_21 (unsigned);
94
95 static unsigned deposit_14 (int, unsigned int);
96
97 static int extract_14 (unsigned);
98
99 static void unwind_command (char *, int);
100
101 static int low_sign_extend (unsigned int, unsigned int);
102
103 static int sign_extend (unsigned int, unsigned int);
104
105 static int restore_pc_queue (CORE_ADDR *);
106
107 static int hppa_alignof (struct type *);
108
109 /* To support multi-threading and stepping. */
110 int hppa_prepare_to_proceed ();
111
112 static int prologue_inst_adjust_sp (unsigned long);
113
114 static int is_branch (unsigned long);
115
116 static int inst_saves_gr (unsigned long);
117
118 static int inst_saves_fr (unsigned long);
119
120 static int pc_in_interrupt_handler (CORE_ADDR);
121
122 static int pc_in_linker_stub (CORE_ADDR);
123
124 static int compare_unwind_entries (const void *, const void *);
125
126 static void read_unwind_info (struct objfile *);
127
128 static void internalize_unwinds (struct objfile *,
129 struct unwind_table_entry *,
130 asection *, unsigned int,
131 unsigned int, CORE_ADDR);
132 static void pa_print_registers (char *, int, int);
133 static void pa_strcat_registers (char *, int, int, struct ui_file *);
134 static void pa_register_look_aside (char *, int, long *);
135 static void pa_print_fp_reg (int);
136 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
137 static void record_text_segment_lowaddr (bfd *, asection *, void *);
138 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
139 following functions static, once we hppa is partially multiarched. */
140 int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
141 CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
142 CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
143 int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
144 int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
145 CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
146 int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
147 CORE_ADDR hppa_stack_align (CORE_ADDR sp);
148 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
149 int hppa_instruction_nullified (void);
150 int hppa_register_raw_size (int reg_nr);
151 int hppa_register_byte (int reg_nr);
152 struct type * hppa_register_virtual_type (int reg_nr);
153 void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
154 void hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf);
155 int hppa_use_struct_convention (int gcc_p, struct type *type);
156 void hppa_store_return_value (struct type *type, char *valbuf);
157 CORE_ADDR hppa_extract_struct_value_address (char *regbuf);
158 int hppa_cannot_store_register (int regnum);
159 void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
160 CORE_ADDR hppa_frame_chain (struct frame_info *frame);
161 int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
162 int hppa_frameless_function_invocation (struct frame_info *frame);
163 CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
164 CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
165 CORE_ADDR hppa_frame_locals_address (struct frame_info *fi);
166 int hppa_frame_num_args (struct frame_info *frame);
167 void hppa_push_dummy_frame (void);
168 void hppa_pop_frame (void);
169 CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
170 int nargs, struct value **args,
171 struct type *type, int gcc_p);
172 CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
173 int struct_return, CORE_ADDR struct_addr);
174 CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
175 CORE_ADDR hppa_target_read_pc (ptid_t ptid);
176 void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
177 CORE_ADDR hppa_target_read_fp (void);
178
179 typedef struct
180 {
181 struct minimal_symbol *msym;
182 CORE_ADDR solib_handle;
183 CORE_ADDR return_val;
184 }
185 args_for_find_stub;
186
187 static int cover_find_stub_with_shl_get (void *);
188
189 static int is_pa_2 = 0; /* False */
190
191 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
192 extern int hp_som_som_object_present;
193
194 /* In breakpoint.c */
195 extern int exception_catchpoints_are_fragile;
196
197 /* Should call_function allocate stack space for a struct return? */
198
199 int
200 hppa_use_struct_convention (int gcc_p, struct type *type)
201 {
202 return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
203 }
204 \f
205
206 /* Routines to extract various sized constants out of hppa
207 instructions. */
208
209 /* This assumes that no garbage lies outside of the lower bits of
210 value. */
211
212 static int
213 sign_extend (unsigned val, unsigned bits)
214 {
215 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
216 }
217
218 /* For many immediate values the sign bit is the low bit! */
219
220 static int
221 low_sign_extend (unsigned val, unsigned bits)
222 {
223 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
224 }
225
226 /* extract the immediate field from a ld{bhw}s instruction */
227
228 static int
229 extract_5_load (unsigned word)
230 {
231 return low_sign_extend (word >> 16 & MASK_5, 5);
232 }
233
234 /* extract the immediate field from a break instruction */
235
236 static unsigned
237 extract_5r_store (unsigned word)
238 {
239 return (word & MASK_5);
240 }
241
242 /* extract the immediate field from a {sr}sm instruction */
243
244 static unsigned
245 extract_5R_store (unsigned word)
246 {
247 return (word >> 16 & MASK_5);
248 }
249
250 /* extract a 14 bit immediate field */
251
252 static int
253 extract_14 (unsigned word)
254 {
255 return low_sign_extend (word & MASK_14, 14);
256 }
257
258 /* deposit a 14 bit constant in a word */
259
260 static unsigned
261 deposit_14 (int opnd, unsigned word)
262 {
263 unsigned sign = (opnd < 0 ? 1 : 0);
264
265 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
266 }
267
268 /* extract a 21 bit constant */
269
270 static int
271 extract_21 (unsigned word)
272 {
273 int val;
274
275 word &= MASK_21;
276 word <<= 11;
277 val = GET_FIELD (word, 20, 20);
278 val <<= 11;
279 val |= GET_FIELD (word, 9, 19);
280 val <<= 2;
281 val |= GET_FIELD (word, 5, 6);
282 val <<= 5;
283 val |= GET_FIELD (word, 0, 4);
284 val <<= 2;
285 val |= GET_FIELD (word, 7, 8);
286 return sign_extend (val, 21) << 11;
287 }
288
289 /* deposit a 21 bit constant in a word. Although 21 bit constants are
290 usually the top 21 bits of a 32 bit constant, we assume that only
291 the low 21 bits of opnd are relevant */
292
293 static unsigned
294 deposit_21 (unsigned opnd, unsigned word)
295 {
296 unsigned val = 0;
297
298 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
299 val <<= 2;
300 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
301 val <<= 2;
302 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
303 val <<= 11;
304 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
305 val <<= 1;
306 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
307 return word | val;
308 }
309
310 /* extract a 17 bit constant from branch instructions, returning the
311 19 bit signed value. */
312
313 static int
314 extract_17 (unsigned word)
315 {
316 return sign_extend (GET_FIELD (word, 19, 28) |
317 GET_FIELD (word, 29, 29) << 10 |
318 GET_FIELD (word, 11, 15) << 11 |
319 (word & 0x1) << 16, 17) << 2;
320 }
321 \f
322
323 /* Compare the start address for two unwind entries returning 1 if
324 the first address is larger than the second, -1 if the second is
325 larger than the first, and zero if they are equal. */
326
327 static int
328 compare_unwind_entries (const void *arg1, const void *arg2)
329 {
330 const struct unwind_table_entry *a = arg1;
331 const struct unwind_table_entry *b = arg2;
332
333 if (a->region_start > b->region_start)
334 return 1;
335 else if (a->region_start < b->region_start)
336 return -1;
337 else
338 return 0;
339 }
340
341 static CORE_ADDR low_text_segment_address;
342
343 static void
344 record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
345 {
346 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
347 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
348 && section->vma < low_text_segment_address)
349 low_text_segment_address = section->vma;
350 }
351
352 static void
353 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
354 asection *section, unsigned int entries, unsigned int size,
355 CORE_ADDR text_offset)
356 {
357 /* We will read the unwind entries into temporary memory, then
358 fill in the actual unwind table. */
359 if (size > 0)
360 {
361 unsigned long tmp;
362 unsigned i;
363 char *buf = alloca (size);
364
365 low_text_segment_address = -1;
366
367 /* If addresses are 64 bits wide, then unwinds are supposed to
368 be segment relative offsets instead of absolute addresses.
369
370 Note that when loading a shared library (text_offset != 0) the
371 unwinds are already relative to the text_offset that will be
372 passed in. */
373 if (TARGET_PTR_BIT == 64 && text_offset == 0)
374 {
375 bfd_map_over_sections (objfile->obfd,
376 record_text_segment_lowaddr, NULL);
377
378 /* ?!? Mask off some low bits. Should this instead subtract
379 out the lowest section's filepos or something like that?
380 This looks very hokey to me. */
381 low_text_segment_address &= ~0xfff;
382 text_offset += low_text_segment_address;
383 }
384
385 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
386
387 /* Now internalize the information being careful to handle host/target
388 endian issues. */
389 for (i = 0; i < entries; i++)
390 {
391 table[i].region_start = bfd_get_32 (objfile->obfd,
392 (bfd_byte *) buf);
393 table[i].region_start += text_offset;
394 buf += 4;
395 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
396 table[i].region_end += text_offset;
397 buf += 4;
398 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
399 buf += 4;
400 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
401 table[i].Millicode = (tmp >> 30) & 0x1;
402 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
403 table[i].Region_description = (tmp >> 27) & 0x3;
404 table[i].reserved1 = (tmp >> 26) & 0x1;
405 table[i].Entry_SR = (tmp >> 25) & 0x1;
406 table[i].Entry_FR = (tmp >> 21) & 0xf;
407 table[i].Entry_GR = (tmp >> 16) & 0x1f;
408 table[i].Args_stored = (tmp >> 15) & 0x1;
409 table[i].Variable_Frame = (tmp >> 14) & 0x1;
410 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
411 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
412 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
413 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
414 table[i].Ada_Region = (tmp >> 9) & 0x1;
415 table[i].cxx_info = (tmp >> 8) & 0x1;
416 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
417 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
418 table[i].reserved2 = (tmp >> 5) & 0x1;
419 table[i].Save_SP = (tmp >> 4) & 0x1;
420 table[i].Save_RP = (tmp >> 3) & 0x1;
421 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
422 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
423 table[i].Cleanup_defined = tmp & 0x1;
424 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
425 buf += 4;
426 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
427 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
428 table[i].Large_frame = (tmp >> 29) & 0x1;
429 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
430 table[i].reserved4 = (tmp >> 27) & 0x1;
431 table[i].Total_frame_size = tmp & 0x7ffffff;
432
433 /* Stub unwinds are handled elsewhere. */
434 table[i].stub_unwind.stub_type = 0;
435 table[i].stub_unwind.padding = 0;
436 }
437 }
438 }
439
440 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
441 the object file. This info is used mainly by find_unwind_entry() to find
442 out the stack frame size and frame pointer used by procedures. We put
443 everything on the psymbol obstack in the objfile so that it automatically
444 gets freed when the objfile is destroyed. */
445
446 static void
447 read_unwind_info (struct objfile *objfile)
448 {
449 asection *unwind_sec, *stub_unwind_sec;
450 unsigned unwind_size, stub_unwind_size, total_size;
451 unsigned index, unwind_entries;
452 unsigned stub_entries, total_entries;
453 CORE_ADDR text_offset;
454 struct obj_unwind_info *ui;
455 obj_private_data_t *obj_private;
456
457 text_offset = ANOFFSET (objfile->section_offsets, 0);
458 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
459 sizeof (struct obj_unwind_info));
460
461 ui->table = NULL;
462 ui->cache = NULL;
463 ui->last = -1;
464
465 /* For reasons unknown the HP PA64 tools generate multiple unwinder
466 sections in a single executable. So we just iterate over every
467 section in the BFD looking for unwinder sections intead of trying
468 to do a lookup with bfd_get_section_by_name.
469
470 First determine the total size of the unwind tables so that we
471 can allocate memory in a nice big hunk. */
472 total_entries = 0;
473 for (unwind_sec = objfile->obfd->sections;
474 unwind_sec;
475 unwind_sec = unwind_sec->next)
476 {
477 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
478 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
479 {
480 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
481 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
482
483 total_entries += unwind_entries;
484 }
485 }
486
487 /* Now compute the size of the stub unwinds. Note the ELF tools do not
488 use stub unwinds at the curren time. */
489 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
490
491 if (stub_unwind_sec)
492 {
493 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
494 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
495 }
496 else
497 {
498 stub_unwind_size = 0;
499 stub_entries = 0;
500 }
501
502 /* Compute total number of unwind entries and their total size. */
503 total_entries += stub_entries;
504 total_size = total_entries * sizeof (struct unwind_table_entry);
505
506 /* Allocate memory for the unwind table. */
507 ui->table = (struct unwind_table_entry *)
508 obstack_alloc (&objfile->psymbol_obstack, total_size);
509 ui->last = total_entries - 1;
510
511 /* Now read in each unwind section and internalize the standard unwind
512 entries. */
513 index = 0;
514 for (unwind_sec = objfile->obfd->sections;
515 unwind_sec;
516 unwind_sec = unwind_sec->next)
517 {
518 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
519 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
520 {
521 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
522 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
523
524 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
525 unwind_entries, unwind_size, text_offset);
526 index += unwind_entries;
527 }
528 }
529
530 /* Now read in and internalize the stub unwind entries. */
531 if (stub_unwind_size > 0)
532 {
533 unsigned int i;
534 char *buf = alloca (stub_unwind_size);
535
536 /* Read in the stub unwind entries. */
537 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
538 0, stub_unwind_size);
539
540 /* Now convert them into regular unwind entries. */
541 for (i = 0; i < stub_entries; i++, index++)
542 {
543 /* Clear out the next unwind entry. */
544 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
545
546 /* Convert offset & size into region_start and region_end.
547 Stuff away the stub type into "reserved" fields. */
548 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
549 (bfd_byte *) buf);
550 ui->table[index].region_start += text_offset;
551 buf += 4;
552 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
553 (bfd_byte *) buf);
554 buf += 2;
555 ui->table[index].region_end
556 = ui->table[index].region_start + 4 *
557 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
558 buf += 2;
559 }
560
561 }
562
563 /* Unwind table needs to be kept sorted. */
564 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
565 compare_unwind_entries);
566
567 /* Keep a pointer to the unwind information. */
568 if (objfile->obj_private == NULL)
569 {
570 obj_private = (obj_private_data_t *)
571 obstack_alloc (&objfile->psymbol_obstack,
572 sizeof (obj_private_data_t));
573 obj_private->unwind_info = NULL;
574 obj_private->so_info = NULL;
575 obj_private->dp = 0;
576
577 objfile->obj_private = obj_private;
578 }
579 obj_private = (obj_private_data_t *) objfile->obj_private;
580 obj_private->unwind_info = ui;
581 }
582
583 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
584 of the objfiles seeking the unwind table entry for this PC. Each objfile
585 contains a sorted list of struct unwind_table_entry. Since we do a binary
586 search of the unwind tables, we depend upon them to be sorted. */
587
588 struct unwind_table_entry *
589 find_unwind_entry (CORE_ADDR pc)
590 {
591 int first, middle, last;
592 struct objfile *objfile;
593
594 /* A function at address 0? Not in HP-UX! */
595 if (pc == (CORE_ADDR) 0)
596 return NULL;
597
598 ALL_OBJFILES (objfile)
599 {
600 struct obj_unwind_info *ui;
601 ui = NULL;
602 if (objfile->obj_private)
603 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
604
605 if (!ui)
606 {
607 read_unwind_info (objfile);
608 if (objfile->obj_private == NULL)
609 error ("Internal error reading unwind information.");
610 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
611 }
612
613 /* First, check the cache */
614
615 if (ui->cache
616 && pc >= ui->cache->region_start
617 && pc <= ui->cache->region_end)
618 return ui->cache;
619
620 /* Not in the cache, do a binary search */
621
622 first = 0;
623 last = ui->last;
624
625 while (first <= last)
626 {
627 middle = (first + last) / 2;
628 if (pc >= ui->table[middle].region_start
629 && pc <= ui->table[middle].region_end)
630 {
631 ui->cache = &ui->table[middle];
632 return &ui->table[middle];
633 }
634
635 if (pc < ui->table[middle].region_start)
636 last = middle - 1;
637 else
638 first = middle + 1;
639 }
640 } /* ALL_OBJFILES() */
641 return NULL;
642 }
643
644 /* Return the adjustment necessary to make for addresses on the stack
645 as presented by hpread.c.
646
647 This is necessary because of the stack direction on the PA and the
648 bizarre way in which someone (?) decided they wanted to handle
649 frame pointerless code in GDB. */
650 int
651 hpread_adjust_stack_address (CORE_ADDR func_addr)
652 {
653 struct unwind_table_entry *u;
654
655 u = find_unwind_entry (func_addr);
656 if (!u)
657 return 0;
658 else
659 return u->Total_frame_size << 3;
660 }
661
662 /* Called to determine if PC is in an interrupt handler of some
663 kind. */
664
665 static int
666 pc_in_interrupt_handler (CORE_ADDR pc)
667 {
668 struct unwind_table_entry *u;
669 struct minimal_symbol *msym_us;
670
671 u = find_unwind_entry (pc);
672 if (!u)
673 return 0;
674
675 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
676 its frame isn't a pure interrupt frame. Deal with this. */
677 msym_us = lookup_minimal_symbol_by_pc (pc);
678
679 return (u->HP_UX_interrupt_marker
680 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
681 }
682
683 /* Called when no unwind descriptor was found for PC. Returns 1 if it
684 appears that PC is in a linker stub.
685
686 ?!? Need to handle stubs which appear in PA64 code. */
687
688 static int
689 pc_in_linker_stub (CORE_ADDR pc)
690 {
691 int found_magic_instruction = 0;
692 int i;
693 char buf[4];
694
695 /* If unable to read memory, assume pc is not in a linker stub. */
696 if (target_read_memory (pc, buf, 4) != 0)
697 return 0;
698
699 /* We are looking for something like
700
701 ; $$dyncall jams RP into this special spot in the frame (RP')
702 ; before calling the "call stub"
703 ldw -18(sp),rp
704
705 ldsid (rp),r1 ; Get space associated with RP into r1
706 mtsp r1,sp ; Move it into space register 0
707 be,n 0(sr0),rp) ; back to your regularly scheduled program */
708
709 /* Maximum known linker stub size is 4 instructions. Search forward
710 from the given PC, then backward. */
711 for (i = 0; i < 4; i++)
712 {
713 /* If we hit something with an unwind, stop searching this direction. */
714
715 if (find_unwind_entry (pc + i * 4) != 0)
716 break;
717
718 /* Check for ldsid (rp),r1 which is the magic instruction for a
719 return from a cross-space function call. */
720 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
721 {
722 found_magic_instruction = 1;
723 break;
724 }
725 /* Add code to handle long call/branch and argument relocation stubs
726 here. */
727 }
728
729 if (found_magic_instruction != 0)
730 return 1;
731
732 /* Now look backward. */
733 for (i = 0; i < 4; i++)
734 {
735 /* If we hit something with an unwind, stop searching this direction. */
736
737 if (find_unwind_entry (pc - i * 4) != 0)
738 break;
739
740 /* Check for ldsid (rp),r1 which is the magic instruction for a
741 return from a cross-space function call. */
742 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
743 {
744 found_magic_instruction = 1;
745 break;
746 }
747 /* Add code to handle long call/branch and argument relocation stubs
748 here. */
749 }
750 return found_magic_instruction;
751 }
752
753 static int
754 find_return_regnum (CORE_ADDR pc)
755 {
756 struct unwind_table_entry *u;
757
758 u = find_unwind_entry (pc);
759
760 if (!u)
761 return RP_REGNUM;
762
763 if (u->Millicode)
764 return 31;
765
766 return RP_REGNUM;
767 }
768
769 /* Return size of frame, or -1 if we should use a frame pointer. */
770 static int
771 find_proc_framesize (CORE_ADDR pc)
772 {
773 struct unwind_table_entry *u;
774 struct minimal_symbol *msym_us;
775
776 /* This may indicate a bug in our callers... */
777 if (pc == (CORE_ADDR) 0)
778 return -1;
779
780 u = find_unwind_entry (pc);
781
782 if (!u)
783 {
784 if (pc_in_linker_stub (pc))
785 /* Linker stubs have a zero size frame. */
786 return 0;
787 else
788 return -1;
789 }
790
791 msym_us = lookup_minimal_symbol_by_pc (pc);
792
793 /* If Save_SP is set, and we're not in an interrupt or signal caller,
794 then we have a frame pointer. Use it. */
795 if (u->Save_SP
796 && !pc_in_interrupt_handler (pc)
797 && msym_us
798 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
799 return -1;
800
801 return u->Total_frame_size << 3;
802 }
803
804 /* Return offset from sp at which rp is saved, or 0 if not saved. */
805 static int rp_saved (CORE_ADDR);
806
807 static int
808 rp_saved (CORE_ADDR pc)
809 {
810 struct unwind_table_entry *u;
811
812 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
813 if (pc == (CORE_ADDR) 0)
814 return 0;
815
816 u = find_unwind_entry (pc);
817
818 if (!u)
819 {
820 if (pc_in_linker_stub (pc))
821 /* This is the so-called RP'. */
822 return -24;
823 else
824 return 0;
825 }
826
827 if (u->Save_RP)
828 return (TARGET_PTR_BIT == 64 ? -16 : -20);
829 else if (u->stub_unwind.stub_type != 0)
830 {
831 switch (u->stub_unwind.stub_type)
832 {
833 case EXPORT:
834 case IMPORT:
835 return -24;
836 case PARAMETER_RELOCATION:
837 return -8;
838 default:
839 return 0;
840 }
841 }
842 else
843 return 0;
844 }
845 \f
846 int
847 hppa_frameless_function_invocation (struct frame_info *frame)
848 {
849 struct unwind_table_entry *u;
850
851 u = find_unwind_entry (get_frame_pc (frame));
852
853 if (u == 0)
854 return 0;
855
856 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
857 }
858
859 /* Immediately after a function call, return the saved pc.
860 Can't go through the frames for this because on some machines
861 the new frame is not set up until the new function executes
862 some instructions. */
863
864 CORE_ADDR
865 hppa_saved_pc_after_call (struct frame_info *frame)
866 {
867 int ret_regnum;
868 CORE_ADDR pc;
869 struct unwind_table_entry *u;
870
871 ret_regnum = find_return_regnum (get_frame_pc (frame));
872 pc = read_register (ret_regnum) & ~0x3;
873
874 /* If PC is in a linker stub, then we need to dig the address
875 the stub will return to out of the stack. */
876 u = find_unwind_entry (pc);
877 if (u && u->stub_unwind.stub_type != 0)
878 return DEPRECATED_FRAME_SAVED_PC (frame);
879 else
880 return pc;
881 }
882 \f
883 CORE_ADDR
884 hppa_frame_saved_pc (struct frame_info *frame)
885 {
886 CORE_ADDR pc = get_frame_pc (frame);
887 struct unwind_table_entry *u;
888 CORE_ADDR old_pc = 0;
889 int spun_around_loop = 0;
890 int rp_offset = 0;
891
892 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
893 at the base of the frame in an interrupt handler. Registers within
894 are saved in the exact same order as GDB numbers registers. How
895 convienent. */
896 if (pc_in_interrupt_handler (pc))
897 return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4,
898 TARGET_PTR_BIT / 8) & ~0x3;
899
900 if ((get_frame_pc (frame) >= get_frame_base (frame)
901 && (get_frame_pc (frame)
902 <= (get_frame_base (frame)
903 /* A call dummy is sized in words, but it is actually a
904 series of instructions. Account for that scaling
905 factor. */
906 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
907 * CALL_DUMMY_LENGTH)
908 /* Similarly we have to account for 64bit wide register
909 saves. */
910 + (32 * REGISTER_SIZE)
911 /* We always consider FP regs 8 bytes long. */
912 + (NUM_REGS - FP0_REGNUM) * 8
913 /* Similarly we have to account for 64bit wide register
914 saves. */
915 + (6 * REGISTER_SIZE)))))
916 {
917 return read_memory_integer ((get_frame_base (frame)
918 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
919 TARGET_PTR_BIT / 8) & ~0x3;
920 }
921
922 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
923 /* Deal with signal handler caller frames too. */
924 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
925 {
926 CORE_ADDR rp;
927 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
928 return rp & ~0x3;
929 }
930 #endif
931
932 if (hppa_frameless_function_invocation (frame))
933 {
934 int ret_regnum;
935
936 ret_regnum = find_return_regnum (pc);
937
938 /* If the next frame is an interrupt frame or a signal
939 handler caller, then we need to look in the saved
940 register area to get the return pointer (the values
941 in the registers may not correspond to anything useful). */
942 if (get_next_frame (frame)
943 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
944 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
945 {
946 CORE_ADDR *saved_regs;
947 hppa_frame_init_saved_regs (get_next_frame (frame));
948 saved_regs = get_frame_saved_regs (get_next_frame (frame));
949 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
950 TARGET_PTR_BIT / 8) & 0x2)
951 {
952 pc = read_memory_integer (saved_regs[31],
953 TARGET_PTR_BIT / 8) & ~0x3;
954
955 /* Syscalls are really two frames. The syscall stub itself
956 with a return pointer in %rp and the kernel call with
957 a return pointer in %r31. We return the %rp variant
958 if %r31 is the same as frame->pc. */
959 if (pc == get_frame_pc (frame))
960 pc = read_memory_integer (saved_regs[RP_REGNUM],
961 TARGET_PTR_BIT / 8) & ~0x3;
962 }
963 else
964 pc = read_memory_integer (saved_regs[RP_REGNUM],
965 TARGET_PTR_BIT / 8) & ~0x3;
966 }
967 else
968 pc = read_register (ret_regnum) & ~0x3;
969 }
970 else
971 {
972 spun_around_loop = 0;
973 old_pc = pc;
974
975 restart:
976 rp_offset = rp_saved (pc);
977
978 /* Similar to code in frameless function case. If the next
979 frame is a signal or interrupt handler, then dig the right
980 information out of the saved register info. */
981 if (rp_offset == 0
982 && get_next_frame (frame)
983 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
984 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
985 {
986 CORE_ADDR *saved_regs;
987 hppa_frame_init_saved_regs (get_next_frame (frame));
988 saved_regs = get_frame_saved_regs (get_next_frame (frame));
989 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
990 TARGET_PTR_BIT / 8) & 0x2)
991 {
992 pc = read_memory_integer (saved_regs[31],
993 TARGET_PTR_BIT / 8) & ~0x3;
994
995 /* Syscalls are really two frames. The syscall stub itself
996 with a return pointer in %rp and the kernel call with
997 a return pointer in %r31. We return the %rp variant
998 if %r31 is the same as frame->pc. */
999 if (pc == get_frame_pc (frame))
1000 pc = read_memory_integer (saved_regs[RP_REGNUM],
1001 TARGET_PTR_BIT / 8) & ~0x3;
1002 }
1003 else
1004 pc = read_memory_integer (saved_regs[RP_REGNUM],
1005 TARGET_PTR_BIT / 8) & ~0x3;
1006 }
1007 else if (rp_offset == 0)
1008 {
1009 old_pc = pc;
1010 pc = read_register (RP_REGNUM) & ~0x3;
1011 }
1012 else
1013 {
1014 old_pc = pc;
1015 pc = read_memory_integer (get_frame_base (frame) + rp_offset,
1016 TARGET_PTR_BIT / 8) & ~0x3;
1017 }
1018 }
1019
1020 /* If PC is inside a linker stub, then dig out the address the stub
1021 will return to.
1022
1023 Don't do this for long branch stubs. Why? For some unknown reason
1024 _start is marked as a long branch stub in hpux10. */
1025 u = find_unwind_entry (pc);
1026 if (u && u->stub_unwind.stub_type != 0
1027 && u->stub_unwind.stub_type != LONG_BRANCH)
1028 {
1029 unsigned int insn;
1030
1031 /* If this is a dynamic executable, and we're in a signal handler,
1032 then the call chain will eventually point us into the stub for
1033 _sigreturn. Unlike most cases, we'll be pointed to the branch
1034 to the real sigreturn rather than the code after the real branch!.
1035
1036 Else, try to dig the address the stub will return to in the normal
1037 fashion. */
1038 insn = read_memory_integer (pc, 4);
1039 if ((insn & 0xfc00e000) == 0xe8000000)
1040 return (pc + extract_17 (insn) + 8) & ~0x3;
1041 else
1042 {
1043 if (old_pc == pc)
1044 spun_around_loop++;
1045
1046 if (spun_around_loop > 1)
1047 {
1048 /* We're just about to go around the loop again with
1049 no more hope of success. Die. */
1050 error ("Unable to find return pc for this frame");
1051 }
1052 else
1053 goto restart;
1054 }
1055 }
1056
1057 return pc;
1058 }
1059 \f
1060 /* We need to correct the PC and the FP for the outermost frame when we are
1061 in a system call. */
1062
1063 void
1064 hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
1065 {
1066 int flags;
1067 int framesize;
1068
1069 if (get_next_frame (frame) && !fromleaf)
1070 return;
1071
1072 /* If the next frame represents a frameless function invocation then
1073 we have to do some adjustments that are normally done by
1074 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1075 this case.) */
1076 if (fromleaf)
1077 {
1078 /* Find the framesize of *this* frame without peeking at the PC
1079 in the current frame structure (it isn't set yet). */
1080 framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
1081
1082 /* Now adjust our base frame accordingly. If we have a frame pointer
1083 use it, else subtract the size of this frame from the current
1084 frame. (we always want frame->frame to point at the lowest address
1085 in the frame). */
1086 if (framesize == -1)
1087 deprecated_update_frame_base_hack (frame, TARGET_READ_FP ());
1088 else
1089 deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize);
1090 return;
1091 }
1092
1093 flags = read_register (FLAGS_REGNUM);
1094 if (flags & 2) /* In system call? */
1095 deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3);
1096
1097 /* The outermost frame is always derived from PC-framesize
1098
1099 One might think frameless innermost frames should have
1100 a frame->frame that is the same as the parent's frame->frame.
1101 That is wrong; frame->frame in that case should be the *high*
1102 address of the parent's frame. It's complicated as hell to
1103 explain, but the parent *always* creates some stack space for
1104 the child. So the child actually does have a frame of some
1105 sorts, and its base is the high address in its parent's frame. */
1106 framesize = find_proc_framesize (get_frame_pc (frame));
1107 if (framesize == -1)
1108 deprecated_update_frame_base_hack (frame, TARGET_READ_FP ());
1109 else
1110 deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize);
1111 }
1112 \f
1113 /* Given a GDB frame, determine the address of the calling function's
1114 frame. This will be used to create a new GDB frame struct, and
1115 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1116 will be called for the new frame.
1117
1118 This may involve searching through prologues for several functions
1119 at boundaries where GCC calls HP C code, or where code which has
1120 a frame pointer calls code without a frame pointer. */
1121
1122 CORE_ADDR
1123 hppa_frame_chain (struct frame_info *frame)
1124 {
1125 int my_framesize, caller_framesize;
1126 struct unwind_table_entry *u;
1127 CORE_ADDR frame_base;
1128 struct frame_info *tmp_frame;
1129
1130 /* A frame in the current frame list, or zero. */
1131 struct frame_info *saved_regs_frame = 0;
1132 /* Where the registers were saved in saved_regs_frame. If
1133 saved_regs_frame is zero, this is garbage. */
1134 CORE_ADDR *saved_regs = NULL;
1135
1136 CORE_ADDR caller_pc;
1137
1138 struct minimal_symbol *min_frame_symbol;
1139 struct symbol *frame_symbol;
1140 char *frame_symbol_name;
1141
1142 /* If this is a threaded application, and we see the
1143 routine "__pthread_exit", treat it as the stack root
1144 for this thread. */
1145 min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame));
1146 frame_symbol = find_pc_function (get_frame_pc (frame));
1147
1148 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1149 {
1150 /* The test above for "no user function name" would defend
1151 against the slim likelihood that a user might define a
1152 routine named "__pthread_exit" and then try to debug it.
1153
1154 If it weren't commented out, and you tried to debug the
1155 pthread library itself, you'd get errors.
1156
1157 So for today, we don't make that check. */
1158 frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
1159 if (frame_symbol_name != 0)
1160 {
1161 if (0 == strncmp (frame_symbol_name,
1162 THREAD_INITIAL_FRAME_SYMBOL,
1163 THREAD_INITIAL_FRAME_SYM_LEN))
1164 {
1165 /* Pretend we've reached the bottom of the stack. */
1166 return (CORE_ADDR) 0;
1167 }
1168 }
1169 } /* End of hacky code for threads. */
1170
1171 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1172 are easy; at *sp we have a full save state strucutre which we can
1173 pull the old stack pointer from. Also see frame_saved_pc for
1174 code to dig a saved PC out of the save state structure. */
1175 if (pc_in_interrupt_handler (get_frame_pc (frame)))
1176 frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4,
1177 TARGET_PTR_BIT / 8);
1178 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1179 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1180 {
1181 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1182 }
1183 #endif
1184 else
1185 frame_base = get_frame_base (frame);
1186
1187 /* Get frame sizes for the current frame and the frame of the
1188 caller. */
1189 my_framesize = find_proc_framesize (get_frame_pc (frame));
1190 caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
1191
1192 /* If we can't determine the caller's PC, then it's not likely we can
1193 really determine anything meaningful about its frame. We'll consider
1194 this to be stack bottom. */
1195 if (caller_pc == (CORE_ADDR) 0)
1196 return (CORE_ADDR) 0;
1197
1198 caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
1199
1200 /* If caller does not have a frame pointer, then its frame
1201 can be found at current_frame - caller_framesize. */
1202 if (caller_framesize != -1)
1203 {
1204 return frame_base - caller_framesize;
1205 }
1206 /* Both caller and callee have frame pointers and are GCC compiled
1207 (SAVE_SP bit in unwind descriptor is on for both functions.
1208 The previous frame pointer is found at the top of the current frame. */
1209 if (caller_framesize == -1 && my_framesize == -1)
1210 {
1211 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1212 }
1213 /* Caller has a frame pointer, but callee does not. This is a little
1214 more difficult as GCC and HP C lay out locals and callee register save
1215 areas very differently.
1216
1217 The previous frame pointer could be in a register, or in one of
1218 several areas on the stack.
1219
1220 Walk from the current frame to the innermost frame examining
1221 unwind descriptors to determine if %r3 ever gets saved into the
1222 stack. If so return whatever value got saved into the stack.
1223 If it was never saved in the stack, then the value in %r3 is still
1224 valid, so use it.
1225
1226 We use information from unwind descriptors to determine if %r3
1227 is saved into the stack (Entry_GR field has this information). */
1228
1229 for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame))
1230 {
1231 u = find_unwind_entry (get_frame_pc (tmp_frame));
1232
1233 if (!u)
1234 {
1235 /* We could find this information by examining prologues. I don't
1236 think anyone has actually written any tools (not even "strip")
1237 which leave them out of an executable, so maybe this is a moot
1238 point. */
1239 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1240 code that doesn't have unwind entries. For example, stepping into
1241 the dynamic linker will give you a PC that has none. Thus, I've
1242 disabled this warning. */
1243 #if 0
1244 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame));
1245 #endif
1246 return (CORE_ADDR) 0;
1247 }
1248
1249 if (u->Save_SP
1250 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1251 || pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1252 break;
1253
1254 /* Entry_GR specifies the number of callee-saved general registers
1255 saved in the stack. It starts at %r3, so %r3 would be 1. */
1256 if (u->Entry_GR >= 1)
1257 {
1258 /* The unwind entry claims that r3 is saved here. However,
1259 in optimized code, GCC often doesn't actually save r3.
1260 We'll discover this if we look at the prologue. */
1261 hppa_frame_init_saved_regs (tmp_frame);
1262 saved_regs = get_frame_saved_regs (tmp_frame);
1263 saved_regs_frame = tmp_frame;
1264
1265 /* If we have an address for r3, that's good. */
1266 if (saved_regs[FP_REGNUM])
1267 break;
1268 }
1269 }
1270
1271 if (tmp_frame)
1272 {
1273 /* We may have walked down the chain into a function with a frame
1274 pointer. */
1275 if (u->Save_SP
1276 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1277 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1278 {
1279 return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8);
1280 }
1281 /* %r3 was saved somewhere in the stack. Dig it out. */
1282 else
1283 {
1284 /* Sick.
1285
1286 For optimization purposes many kernels don't have the
1287 callee saved registers into the save_state structure upon
1288 entry into the kernel for a syscall; the optimization
1289 is usually turned off if the process is being traced so
1290 that the debugger can get full register state for the
1291 process.
1292
1293 This scheme works well except for two cases:
1294
1295 * Attaching to a process when the process is in the
1296 kernel performing a system call (debugger can't get
1297 full register state for the inferior process since
1298 the process wasn't being traced when it entered the
1299 system call).
1300
1301 * Register state is not complete if the system call
1302 causes the process to core dump.
1303
1304
1305 The following heinous code is an attempt to deal with
1306 the lack of register state in a core dump. It will
1307 fail miserably if the function which performs the
1308 system call has a variable sized stack frame. */
1309
1310 if (tmp_frame != saved_regs_frame)
1311 {
1312 hppa_frame_init_saved_regs (tmp_frame);
1313 saved_regs = get_frame_saved_regs (tmp_frame);
1314 }
1315
1316 /* Abominable hack. */
1317 if (current_target.to_has_execution == 0
1318 && ((saved_regs[FLAGS_REGNUM]
1319 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1320 TARGET_PTR_BIT / 8)
1321 & 0x2))
1322 || (saved_regs[FLAGS_REGNUM] == 0
1323 && read_register (FLAGS_REGNUM) & 0x2)))
1324 {
1325 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1326 if (!u)
1327 {
1328 return read_memory_integer (saved_regs[FP_REGNUM],
1329 TARGET_PTR_BIT / 8);
1330 }
1331 else
1332 {
1333 return frame_base - (u->Total_frame_size << 3);
1334 }
1335 }
1336
1337 return read_memory_integer (saved_regs[FP_REGNUM],
1338 TARGET_PTR_BIT / 8);
1339 }
1340 }
1341 else
1342 {
1343 /* Get the innermost frame. */
1344 tmp_frame = frame;
1345 while (get_next_frame (tmp_frame) != NULL)
1346 tmp_frame = get_next_frame (tmp_frame);
1347
1348 if (tmp_frame != saved_regs_frame)
1349 {
1350 hppa_frame_init_saved_regs (tmp_frame);
1351 saved_regs = get_frame_saved_regs (tmp_frame);
1352 }
1353
1354 /* Abominable hack. See above. */
1355 if (current_target.to_has_execution == 0
1356 && ((saved_regs[FLAGS_REGNUM]
1357 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1358 TARGET_PTR_BIT / 8)
1359 & 0x2))
1360 || (saved_regs[FLAGS_REGNUM] == 0
1361 && read_register (FLAGS_REGNUM) & 0x2)))
1362 {
1363 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1364 if (!u)
1365 {
1366 return read_memory_integer (saved_regs[FP_REGNUM],
1367 TARGET_PTR_BIT / 8);
1368 }
1369 else
1370 {
1371 return frame_base - (u->Total_frame_size << 3);
1372 }
1373 }
1374
1375 /* The value in %r3 was never saved into the stack (thus %r3 still
1376 holds the value of the previous frame pointer). */
1377 return TARGET_READ_FP ();
1378 }
1379 }
1380 \f
1381
1382 /* To see if a frame chain is valid, see if the caller looks like it
1383 was compiled with gcc. */
1384
1385 int
1386 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1387 {
1388 struct minimal_symbol *msym_us;
1389 struct minimal_symbol *msym_start;
1390 struct unwind_table_entry *u, *next_u = NULL;
1391 struct frame_info *next;
1392
1393 u = find_unwind_entry (get_frame_pc (thisframe));
1394
1395 if (u == NULL)
1396 return 1;
1397
1398 /* We can't just check that the same of msym_us is "_start", because
1399 someone idiotically decided that they were going to make a Ltext_end
1400 symbol with the same address. This Ltext_end symbol is totally
1401 indistinguishable (as nearly as I can tell) from the symbol for a function
1402 which is (legitimately, since it is in the user's namespace)
1403 named Ltext_end, so we can't just ignore it. */
1404 msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
1405 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1406 if (msym_us
1407 && msym_start
1408 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1409 return 0;
1410
1411 /* Grrrr. Some new idiot decided that they don't want _start for the
1412 PRO configurations; $START$ calls main directly.... Deal with it. */
1413 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1414 if (msym_us
1415 && msym_start
1416 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1417 return 0;
1418
1419 next = get_next_frame (thisframe);
1420 if (next)
1421 next_u = find_unwind_entry (get_frame_pc (next));
1422
1423 /* If this frame does not save SP, has no stack, isn't a stub,
1424 and doesn't "call" an interrupt routine or signal handler caller,
1425 then its not valid. */
1426 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1427 || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME))
1428 || (next_u && next_u->HP_UX_interrupt_marker))
1429 return 1;
1430
1431 if (pc_in_linker_stub (get_frame_pc (thisframe)))
1432 return 1;
1433
1434 return 0;
1435 }
1436
1437 /* These functions deal with saving and restoring register state
1438 around a function call in the inferior. They keep the stack
1439 double-word aligned; eventually, on an hp700, the stack will have
1440 to be aligned to a 64-byte boundary. */
1441
1442 void
1443 hppa_push_dummy_frame (void)
1444 {
1445 CORE_ADDR sp, pc, pcspace;
1446 register int regnum;
1447 CORE_ADDR int_buffer;
1448 double freg_buffer;
1449
1450 pc = hppa_target_read_pc (inferior_ptid);
1451 int_buffer = read_register (FLAGS_REGNUM);
1452 if (int_buffer & 0x2)
1453 {
1454 const unsigned int sid = (pc >> 30) & 0x3;
1455 if (sid == 0)
1456 pcspace = read_register (SR4_REGNUM);
1457 else
1458 pcspace = read_register (SR4_REGNUM + 4 + sid);
1459 }
1460 else
1461 pcspace = read_register (PCSQ_HEAD_REGNUM);
1462
1463 /* Space for "arguments"; the RP goes in here. */
1464 sp = read_register (SP_REGNUM) + 48;
1465 int_buffer = read_register (RP_REGNUM) | 0x3;
1466
1467 /* The 32bit and 64bit ABIs save the return pointer into different
1468 stack slots. */
1469 if (REGISTER_SIZE == 8)
1470 write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
1471 else
1472 write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
1473
1474 int_buffer = TARGET_READ_FP ();
1475 write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
1476
1477 write_register (FP_REGNUM, sp);
1478
1479 sp += 2 * REGISTER_SIZE;
1480
1481 for (regnum = 1; regnum < 32; regnum++)
1482 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1483 sp = push_word (sp, read_register (regnum));
1484
1485 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1486 if (REGISTER_SIZE != 8)
1487 sp += 4;
1488
1489 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1490 {
1491 deprecated_read_register_bytes (REGISTER_BYTE (regnum),
1492 (char *) &freg_buffer, 8);
1493 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1494 }
1495 sp = push_word (sp, read_register (IPSW_REGNUM));
1496 sp = push_word (sp, read_register (SAR_REGNUM));
1497 sp = push_word (sp, pc);
1498 sp = push_word (sp, pcspace);
1499 sp = push_word (sp, pc + 4);
1500 sp = push_word (sp, pcspace);
1501 write_register (SP_REGNUM, sp);
1502 }
1503
1504 static void
1505 find_dummy_frame_regs (struct frame_info *frame,
1506 CORE_ADDR frame_saved_regs[])
1507 {
1508 CORE_ADDR fp = get_frame_base (frame);
1509 int i;
1510
1511 /* The 32bit and 64bit ABIs save RP into different locations. */
1512 if (REGISTER_SIZE == 8)
1513 frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3;
1514 else
1515 frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3;
1516
1517 frame_saved_regs[FP_REGNUM] = fp;
1518
1519 frame_saved_regs[1] = fp + (2 * REGISTER_SIZE);
1520
1521 for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
1522 {
1523 if (i != FP_REGNUM)
1524 {
1525 frame_saved_regs[i] = fp;
1526 fp += REGISTER_SIZE;
1527 }
1528 }
1529
1530 /* This is not necessary or desirable for the 64bit ABI. */
1531 if (REGISTER_SIZE != 8)
1532 fp += 4;
1533
1534 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1535 frame_saved_regs[i] = fp;
1536
1537 frame_saved_regs[IPSW_REGNUM] = fp;
1538 frame_saved_regs[SAR_REGNUM] = fp + REGISTER_SIZE;
1539 frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
1540 frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
1541 frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
1542 frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
1543 }
1544
1545 void
1546 hppa_pop_frame (void)
1547 {
1548 register struct frame_info *frame = get_current_frame ();
1549 register CORE_ADDR fp, npc, target_pc;
1550 register int regnum;
1551 CORE_ADDR *fsr;
1552 double freg_buffer;
1553
1554 fp = get_frame_base (frame);
1555 hppa_frame_init_saved_regs (frame);
1556 fsr = get_frame_saved_regs (frame);
1557
1558 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1559 if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */
1560 restore_pc_queue (fsr);
1561 #endif
1562
1563 for (regnum = 31; regnum > 0; regnum--)
1564 if (fsr[regnum])
1565 write_register (regnum, read_memory_integer (fsr[regnum],
1566 REGISTER_SIZE));
1567
1568 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1569 if (fsr[regnum])
1570 {
1571 read_memory (fsr[regnum], (char *) &freg_buffer, 8);
1572 deprecated_write_register_bytes (REGISTER_BYTE (regnum),
1573 (char *) &freg_buffer, 8);
1574 }
1575
1576 if (fsr[IPSW_REGNUM])
1577 write_register (IPSW_REGNUM,
1578 read_memory_integer (fsr[IPSW_REGNUM],
1579 REGISTER_SIZE));
1580
1581 if (fsr[SAR_REGNUM])
1582 write_register (SAR_REGNUM,
1583 read_memory_integer (fsr[SAR_REGNUM],
1584 REGISTER_SIZE));
1585
1586 /* If the PC was explicitly saved, then just restore it. */
1587 if (fsr[PCOQ_TAIL_REGNUM])
1588 {
1589 npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM],
1590 REGISTER_SIZE);
1591 write_register (PCOQ_TAIL_REGNUM, npc);
1592 }
1593 /* Else use the value in %rp to set the new PC. */
1594 else
1595 {
1596 npc = read_register (RP_REGNUM);
1597 write_pc (npc);
1598 }
1599
1600 write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
1601
1602 if (fsr[IPSW_REGNUM]) /* call dummy */
1603 write_register (SP_REGNUM, fp - 48);
1604 else
1605 write_register (SP_REGNUM, fp);
1606
1607 /* The PC we just restored may be inside a return trampoline. If so
1608 we want to restart the inferior and run it through the trampoline.
1609
1610 Do this by setting a momentary breakpoint at the location the
1611 trampoline returns to.
1612
1613 Don't skip through the trampoline if we're popping a dummy frame. */
1614 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1615 if (target_pc && !fsr[IPSW_REGNUM])
1616 {
1617 struct symtab_and_line sal;
1618 struct breakpoint *breakpoint;
1619 struct cleanup *old_chain;
1620
1621 /* Set up our breakpoint. Set it to be silent as the MI code
1622 for "return_command" will print the frame we returned to. */
1623 sal = find_pc_line (target_pc, 0);
1624 sal.pc = target_pc;
1625 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
1626 breakpoint->silent = 1;
1627
1628 /* So we can clean things up. */
1629 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1630
1631 /* Start up the inferior. */
1632 clear_proceed_status ();
1633 proceed_to_finish = 1;
1634 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1635
1636 /* Perform our cleanups. */
1637 do_cleanups (old_chain);
1638 }
1639 flush_cached_frames ();
1640 }
1641
1642 /* After returning to a dummy on the stack, restore the instruction
1643 queue space registers. */
1644
1645 static int
1646 restore_pc_queue (CORE_ADDR *fsr)
1647 {
1648 CORE_ADDR pc = read_pc ();
1649 CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM],
1650 TARGET_PTR_BIT / 8);
1651 struct target_waitstatus w;
1652 int insn_count;
1653
1654 /* Advance past break instruction in the call dummy. */
1655 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1656 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1657
1658 /* HPUX doesn't let us set the space registers or the space
1659 registers of the PC queue through ptrace. Boo, hiss.
1660 Conveniently, the call dummy has this sequence of instructions
1661 after the break:
1662 mtsp r21, sr0
1663 ble,n 0(sr0, r22)
1664
1665 So, load up the registers and single step until we are in the
1666 right place. */
1667
1668 write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM],
1669 REGISTER_SIZE));
1670 write_register (22, new_pc);
1671
1672 for (insn_count = 0; insn_count < 3; insn_count++)
1673 {
1674 /* FIXME: What if the inferior gets a signal right now? Want to
1675 merge this into wait_for_inferior (as a special kind of
1676 watchpoint? By setting a breakpoint at the end? Is there
1677 any other choice? Is there *any* way to do this stuff with
1678 ptrace() or some equivalent?). */
1679 resume (1, 0);
1680 target_wait (inferior_ptid, &w);
1681
1682 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1683 {
1684 stop_signal = w.value.sig;
1685 terminal_ours_for_output ();
1686 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1687 target_signal_to_name (stop_signal),
1688 target_signal_to_string (stop_signal));
1689 gdb_flush (gdb_stdout);
1690 return 0;
1691 }
1692 }
1693 target_terminal_ours ();
1694 target_fetch_registers (-1);
1695 return 1;
1696 }
1697
1698
1699 #ifdef PA20W_CALLING_CONVENTIONS
1700
1701 /* This function pushes a stack frame with arguments as part of the
1702 inferior function calling mechanism.
1703
1704 This is the version for the PA64, in which later arguments appear
1705 at higher addresses. (The stack always grows towards higher
1706 addresses.)
1707
1708 We simply allocate the appropriate amount of stack space and put
1709 arguments into their proper slots. The call dummy code will copy
1710 arguments into registers as needed by the ABI.
1711
1712 This ABI also requires that the caller provide an argument pointer
1713 to the callee, so we do that too. */
1714
1715 CORE_ADDR
1716 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1717 int struct_return, CORE_ADDR struct_addr)
1718 {
1719 /* array of arguments' offsets */
1720 int *offset = (int *) alloca (nargs * sizeof (int));
1721
1722 /* array of arguments' lengths: real lengths in bytes, not aligned to
1723 word size */
1724 int *lengths = (int *) alloca (nargs * sizeof (int));
1725
1726 /* The value of SP as it was passed into this function after
1727 aligning. */
1728 CORE_ADDR orig_sp = STACK_ALIGN (sp);
1729
1730 /* The number of stack bytes occupied by the current argument. */
1731 int bytes_reserved;
1732
1733 /* The total number of bytes reserved for the arguments. */
1734 int cum_bytes_reserved = 0;
1735
1736 /* Similarly, but aligned. */
1737 int cum_bytes_aligned = 0;
1738 int i;
1739
1740 /* Iterate over each argument provided by the user. */
1741 for (i = 0; i < nargs; i++)
1742 {
1743 struct type *arg_type = VALUE_TYPE (args[i]);
1744
1745 /* Integral scalar values smaller than a register are padded on
1746 the left. We do this by promoting them to full-width,
1747 although the ABI says to pad them with garbage. */
1748 if (is_integral_type (arg_type)
1749 && TYPE_LENGTH (arg_type) < REGISTER_SIZE)
1750 {
1751 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1752 ? builtin_type_unsigned_long
1753 : builtin_type_long),
1754 args[i]);
1755 arg_type = VALUE_TYPE (args[i]);
1756 }
1757
1758 lengths[i] = TYPE_LENGTH (arg_type);
1759
1760 /* Align the size of the argument to the word size for this
1761 target. */
1762 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1763
1764 offset[i] = cum_bytes_reserved;
1765
1766 /* Aggregates larger than eight bytes (the only types larger
1767 than eight bytes we have) are aligned on a 16-byte boundary,
1768 possibly padded on the right with garbage. This may leave an
1769 empty word on the stack, and thus an unused register, as per
1770 the ABI. */
1771 if (bytes_reserved > 8)
1772 {
1773 /* Round up the offset to a multiple of two slots. */
1774 int new_offset = ((offset[i] + 2*REGISTER_SIZE-1)
1775 & -(2*REGISTER_SIZE));
1776
1777 /* Note the space we've wasted, if any. */
1778 bytes_reserved += new_offset - offset[i];
1779 offset[i] = new_offset;
1780 }
1781
1782 cum_bytes_reserved += bytes_reserved;
1783 }
1784
1785 /* CUM_BYTES_RESERVED already accounts for all the arguments
1786 passed by the user. However, the ABIs mandate minimum stack space
1787 allocations for outgoing arguments.
1788
1789 The ABIs also mandate minimum stack alignments which we must
1790 preserve. */
1791 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1792 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1793
1794 /* Now write each of the args at the proper offset down the stack. */
1795 for (i = 0; i < nargs; i++)
1796 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1797
1798 /* If a structure has to be returned, set up register 28 to hold its
1799 address */
1800 if (struct_return)
1801 write_register (28, struct_addr);
1802
1803 /* For the PA64 we must pass a pointer to the outgoing argument list.
1804 The ABI mandates that the pointer should point to the first byte of
1805 storage beyond the register flushback area.
1806
1807 However, the call dummy expects the outgoing argument pointer to
1808 be passed in register %r4. */
1809 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1810
1811 /* ?!? This needs further work. We need to set up the global data
1812 pointer for this procedure. This assumes the same global pointer
1813 for every procedure. The call dummy expects the dp value to
1814 be passed in register %r6. */
1815 write_register (6, read_register (27));
1816
1817 /* The stack will have 64 bytes of additional space for a frame marker. */
1818 return sp + 64;
1819 }
1820
1821 #else
1822
1823 /* This function pushes a stack frame with arguments as part of the
1824 inferior function calling mechanism.
1825
1826 This is the version of the function for the 32-bit PA machines, in
1827 which later arguments appear at lower addresses. (The stack always
1828 grows towards higher addresses.)
1829
1830 We simply allocate the appropriate amount of stack space and put
1831 arguments into their proper slots. The call dummy code will copy
1832 arguments into registers as needed by the ABI. */
1833
1834 CORE_ADDR
1835 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1836 int struct_return, CORE_ADDR struct_addr)
1837 {
1838 /* array of arguments' offsets */
1839 int *offset = (int *) alloca (nargs * sizeof (int));
1840
1841 /* array of arguments' lengths: real lengths in bytes, not aligned to
1842 word size */
1843 int *lengths = (int *) alloca (nargs * sizeof (int));
1844
1845 /* The number of stack bytes occupied by the current argument. */
1846 int bytes_reserved;
1847
1848 /* The total number of bytes reserved for the arguments. */
1849 int cum_bytes_reserved = 0;
1850
1851 /* Similarly, but aligned. */
1852 int cum_bytes_aligned = 0;
1853 int i;
1854
1855 /* Iterate over each argument provided by the user. */
1856 for (i = 0; i < nargs; i++)
1857 {
1858 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1859
1860 /* Align the size of the argument to the word size for this
1861 target. */
1862 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1863
1864 offset[i] = (cum_bytes_reserved
1865 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
1866
1867 /* If the argument is a double word argument, then it needs to be
1868 double word aligned. */
1869 if ((bytes_reserved == 2 * REGISTER_SIZE)
1870 && (offset[i] % 2 * REGISTER_SIZE))
1871 {
1872 int new_offset = 0;
1873 /* BYTES_RESERVED is already aligned to the word, so we put
1874 the argument at one word more down the stack.
1875
1876 This will leave one empty word on the stack, and one unused
1877 register as mandated by the ABI. */
1878 new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
1879 & -(2 * REGISTER_SIZE));
1880
1881 if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
1882 {
1883 bytes_reserved += REGISTER_SIZE;
1884 offset[i] += REGISTER_SIZE;
1885 }
1886 }
1887
1888 cum_bytes_reserved += bytes_reserved;
1889
1890 }
1891
1892 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1893 by the user. However, the ABI mandates minimum stack space
1894 allocations for outgoing arguments.
1895
1896 The ABI also mandates minimum stack alignments which we must
1897 preserve. */
1898 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1899 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1900
1901 /* Now write each of the args at the proper offset down the stack.
1902 ?!? We need to promote values to a full register instead of skipping
1903 words in the stack. */
1904 for (i = 0; i < nargs; i++)
1905 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1906
1907 /* If a structure has to be returned, set up register 28 to hold its
1908 address */
1909 if (struct_return)
1910 write_register (28, struct_addr);
1911
1912 /* The stack will have 32 bytes of additional space for a frame marker. */
1913 return sp + 32;
1914 }
1915
1916 #endif
1917
1918 /* elz: this function returns a value which is built looking at the given address.
1919 It is called from call_function_by_hand, in case we need to return a
1920 value which is larger than 64 bits, and it is stored in the stack rather than
1921 in the registers r28 and r29 or fr4.
1922 This function does the same stuff as value_being_returned in values.c, but
1923 gets the value from the stack rather than from the buffer where all the
1924 registers were saved when the function called completed. */
1925 struct value *
1926 hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
1927 {
1928 register struct value *val;
1929
1930 val = allocate_value (valtype);
1931 CHECK_TYPEDEF (valtype);
1932 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
1933
1934 return val;
1935 }
1936
1937
1938
1939 /* elz: Used to lookup a symbol in the shared libraries.
1940 This function calls shl_findsym, indirectly through a
1941 call to __d_shl_get. __d_shl_get is in end.c, which is always
1942 linked in by the hp compilers/linkers.
1943 The call to shl_findsym cannot be made directly because it needs
1944 to be active in target address space.
1945 inputs: - minimal symbol pointer for the function we want to look up
1946 - address in target space of the descriptor for the library
1947 where we want to look the symbol up.
1948 This address is retrieved using the
1949 som_solib_get_solib_by_pc function (somsolib.c).
1950 output: - real address in the library of the function.
1951 note: the handle can be null, in which case shl_findsym will look for
1952 the symbol in all the loaded shared libraries.
1953 files to look at if you need reference on this stuff:
1954 dld.c, dld_shl_findsym.c
1955 end.c
1956 man entry for shl_findsym */
1957
1958 CORE_ADDR
1959 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
1960 {
1961 struct symbol *get_sym, *symbol2;
1962 struct minimal_symbol *buff_minsym, *msymbol;
1963 struct type *ftype;
1964 struct value **args;
1965 struct value *funcval;
1966 struct value *val;
1967
1968 int x, namelen, err_value, tmp = -1;
1969 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1970 CORE_ADDR stub_addr;
1971
1972
1973 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
1974 funcval = find_function_in_inferior ("__d_shl_get");
1975 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1976 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1977 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1978 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1979 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
1980 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
1981 value_return_addr = endo_buff_addr + namelen;
1982 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1983
1984 /* do alignment */
1985 if ((x = value_return_addr % 64) != 0)
1986 value_return_addr = value_return_addr + 64 - x;
1987
1988 errno_return_addr = value_return_addr + 64;
1989
1990
1991 /* set up stuff needed by __d_shl_get in buffer in end.o */
1992
1993 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
1994
1995 target_write_memory (value_return_addr, (char *) &tmp, 4);
1996
1997 target_write_memory (errno_return_addr, (char *) &tmp, 4);
1998
1999 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2000 (char *) &handle, 4);
2001
2002 /* now prepare the arguments for the call */
2003
2004 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
2005 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2006 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
2007 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
2008 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2009 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
2010
2011 /* now call the function */
2012
2013 val = call_function_by_hand (funcval, 6, args);
2014
2015 /* now get the results */
2016
2017 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2018
2019 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2020 if (stub_addr <= 0)
2021 error ("call to __d_shl_get failed, error code is %d", err_value);
2022
2023 return (stub_addr);
2024 }
2025
2026 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
2027 static int
2028 cover_find_stub_with_shl_get (void *args_untyped)
2029 {
2030 args_for_find_stub *args = args_untyped;
2031 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2032 return 0;
2033 }
2034
2035 /* Insert the specified number of args and function address
2036 into a call sequence of the above form stored at DUMMYNAME.
2037
2038 On the hppa we need to call the stack dummy through $$dyncall.
2039 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
2040 real_pc, which is the location where gdb should start up the
2041 inferior to do the function call.
2042
2043 This has to work across several versions of hpux, bsd, osf1. It has to
2044 work regardless of what compiler was used to build the inferior program.
2045 It should work regardless of whether or not end.o is available. It has
2046 to work even if gdb can not call into the dynamic loader in the inferior
2047 to query it for symbol names and addresses.
2048
2049 Yes, all those cases should work. Luckily code exists to handle most
2050 of them. The complexity is in selecting exactly what scheme should
2051 be used to perform the inferior call.
2052
2053 At the current time this routine is known not to handle cases where
2054 the program was linked with HP's compiler without including end.o.
2055
2056 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2057
2058 CORE_ADDR
2059 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2060 struct value **args, struct type *type, int gcc_p)
2061 {
2062 CORE_ADDR dyncall_addr;
2063 struct minimal_symbol *msymbol;
2064 struct minimal_symbol *trampoline;
2065 int flags = read_register (FLAGS_REGNUM);
2066 struct unwind_table_entry *u = NULL;
2067 CORE_ADDR new_stub = 0;
2068 CORE_ADDR solib_handle = 0;
2069
2070 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2071 passed an import stub, not a PLABEL. It is also necessary to set %r19
2072 (the PIC register) before performing the call.
2073
2074 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2075 are calling the target directly. When using __d_plt_call we want to
2076 use a PLABEL instead of an import stub. */
2077 int using_gcc_plt_call = 1;
2078
2079 #ifdef GDB_TARGET_IS_HPPA_20W
2080 /* We currently use completely different code for the PA2.0W inferior
2081 function call sequences. This needs to be cleaned up. */
2082 {
2083 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2084 struct target_waitstatus w;
2085 int inst1, inst2;
2086 char buf[4];
2087 int status;
2088 struct objfile *objfile;
2089
2090 /* We can not modify the PC space queues directly, so we start
2091 up the inferior and execute a couple instructions to set the
2092 space queues so that they point to the call dummy in the stack. */
2093 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2094 sr5 = read_register (SR5_REGNUM);
2095 if (1)
2096 {
2097 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2098 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2099 if (target_read_memory (pcoqh, buf, 4) != 0)
2100 error ("Couldn't modify space queue\n");
2101 inst1 = extract_unsigned_integer (buf, 4);
2102
2103 if (target_read_memory (pcoqt, buf, 4) != 0)
2104 error ("Couldn't modify space queue\n");
2105 inst2 = extract_unsigned_integer (buf, 4);
2106
2107 /* BVE (r1) */
2108 *((int *) buf) = 0xe820d000;
2109 if (target_write_memory (pcoqh, buf, 4) != 0)
2110 error ("Couldn't modify space queue\n");
2111
2112 /* NOP */
2113 *((int *) buf) = 0x08000240;
2114 if (target_write_memory (pcoqt, buf, 4) != 0)
2115 {
2116 *((int *) buf) = inst1;
2117 target_write_memory (pcoqh, buf, 4);
2118 error ("Couldn't modify space queue\n");
2119 }
2120
2121 write_register (1, pc);
2122
2123 /* Single step twice, the BVE instruction will set the space queue
2124 such that it points to the PC value written immediately above
2125 (ie the call dummy). */
2126 resume (1, 0);
2127 target_wait (inferior_ptid, &w);
2128 resume (1, 0);
2129 target_wait (inferior_ptid, &w);
2130
2131 /* Restore the two instructions at the old PC locations. */
2132 *((int *) buf) = inst1;
2133 target_write_memory (pcoqh, buf, 4);
2134 *((int *) buf) = inst2;
2135 target_write_memory (pcoqt, buf, 4);
2136 }
2137
2138 /* The call dummy wants the ultimate destination address initially
2139 in register %r5. */
2140 write_register (5, fun);
2141
2142 /* We need to see if this objfile has a different DP value than our
2143 own (it could be a shared library for example). */
2144 ALL_OBJFILES (objfile)
2145 {
2146 struct obj_section *s;
2147 obj_private_data_t *obj_private;
2148
2149 /* See if FUN is in any section within this shared library. */
2150 for (s = objfile->sections; s < objfile->sections_end; s++)
2151 if (s->addr <= fun && fun < s->endaddr)
2152 break;
2153
2154 if (s >= objfile->sections_end)
2155 continue;
2156
2157 obj_private = (obj_private_data_t *) objfile->obj_private;
2158
2159 /* The DP value may be different for each objfile. But within an
2160 objfile each function uses the same dp value. Thus we do not need
2161 to grope around the opd section looking for dp values.
2162
2163 ?!? This is not strictly correct since we may be in a shared library
2164 and want to call back into the main program. To make that case
2165 work correctly we need to set obj_private->dp for the main program's
2166 objfile, then remove this conditional. */
2167 if (obj_private->dp)
2168 write_register (27, obj_private->dp);
2169 break;
2170 }
2171 return pc;
2172 }
2173 #endif
2174
2175 #ifndef GDB_TARGET_IS_HPPA_20W
2176 /* Prefer __gcc_plt_call over the HP supplied routine because
2177 __gcc_plt_call works for any number of arguments. */
2178 trampoline = NULL;
2179 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2180 using_gcc_plt_call = 0;
2181
2182 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2183 if (msymbol == NULL)
2184 error ("Can't find an address for $$dyncall trampoline");
2185
2186 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2187
2188 /* FUN could be a procedure label, in which case we have to get
2189 its real address and the value of its GOT/DP if we plan to
2190 call the routine via gcc_plt_call. */
2191 if ((fun & 0x2) && using_gcc_plt_call)
2192 {
2193 /* Get the GOT/DP value for the target function. It's
2194 at *(fun+4). Note the call dummy is *NOT* allowed to
2195 trash %r19 before calling the target function. */
2196 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2197 REGISTER_SIZE));
2198
2199 /* Now get the real address for the function we are calling, it's
2200 at *fun. */
2201 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2202 TARGET_PTR_BIT / 8);
2203 }
2204 else
2205 {
2206
2207 #ifndef GDB_TARGET_IS_PA_ELF
2208 /* FUN could be an export stub, the real address of a function, or
2209 a PLABEL. When using gcc's PLT call routine we must call an import
2210 stub rather than the export stub or real function for lazy binding
2211 to work correctly
2212
2213 If we are using the gcc PLT call routine, then we need to
2214 get the import stub for the target function. */
2215 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2216 {
2217 struct objfile *objfile;
2218 struct minimal_symbol *funsymbol, *stub_symbol;
2219 CORE_ADDR newfun = 0;
2220
2221 funsymbol = lookup_minimal_symbol_by_pc (fun);
2222 if (!funsymbol)
2223 error ("Unable to find minimal symbol for target function.\n");
2224
2225 /* Search all the object files for an import symbol with the
2226 right name. */
2227 ALL_OBJFILES (objfile)
2228 {
2229 stub_symbol
2230 = lookup_minimal_symbol_solib_trampoline
2231 (DEPRECATED_SYMBOL_NAME (funsymbol), NULL, objfile);
2232
2233 if (!stub_symbol)
2234 stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
2235 NULL, objfile);
2236
2237 /* Found a symbol with the right name. */
2238 if (stub_symbol)
2239 {
2240 struct unwind_table_entry *u;
2241 /* It must be a shared library trampoline. */
2242 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2243 continue;
2244
2245 /* It must also be an import stub. */
2246 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2247 if (u == NULL
2248 || (u->stub_unwind.stub_type != IMPORT
2249 #ifdef GDB_NATIVE_HPUX_11
2250 /* Sigh. The hpux 10.20 dynamic linker will blow
2251 chunks if we perform a call to an unbound function
2252 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2253 linker will blow chunks if we do not call the
2254 unbound function via the IMPORT_SHLIB stub.
2255
2256 We currently have no way to select bevahior on just
2257 the target. However, we only support HPUX/SOM in
2258 native mode. So we conditinalize on a native
2259 #ifdef. Ugly. Ugly. Ugly */
2260 && u->stub_unwind.stub_type != IMPORT_SHLIB
2261 #endif
2262 ))
2263 continue;
2264
2265 /* OK. Looks like the correct import stub. */
2266 newfun = SYMBOL_VALUE (stub_symbol);
2267 fun = newfun;
2268
2269 /* If we found an IMPORT stub, then we want to stop
2270 searching now. If we found an IMPORT_SHLIB, we want
2271 to continue the search in the hopes that we will find
2272 an IMPORT stub. */
2273 if (u->stub_unwind.stub_type == IMPORT)
2274 break;
2275 }
2276 }
2277
2278 /* Ouch. We did not find an import stub. Make an attempt to
2279 do the right thing instead of just croaking. Most of the
2280 time this will actually work. */
2281 if (newfun == 0)
2282 write_register (19, som_solib_get_got_by_pc (fun));
2283
2284 u = find_unwind_entry (fun);
2285 if (u
2286 && (u->stub_unwind.stub_type == IMPORT
2287 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2288 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2289
2290 /* If we found the import stub in the shared library, then we have
2291 to set %r19 before we call the stub. */
2292 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2293 write_register (19, som_solib_get_got_by_pc (fun));
2294 }
2295 #endif
2296 }
2297
2298 /* If we are calling into another load module then have sr4export call the
2299 magic __d_plt_call routine which is linked in from end.o.
2300
2301 You can't use _sr4export to make the call as the value in sp-24 will get
2302 fried and you end up returning to the wrong location. You can't call the
2303 target as the code to bind the PLT entry to a function can't return to a
2304 stack address.
2305
2306 Also, query the dynamic linker in the inferior to provide a suitable
2307 PLABEL for the target function. */
2308 if (!using_gcc_plt_call)
2309 {
2310 CORE_ADDR new_fun;
2311
2312 /* Get a handle for the shared library containing FUN. Given the
2313 handle we can query the shared library for a PLABEL. */
2314 solib_handle = som_solib_get_solib_by_pc (fun);
2315
2316 if (solib_handle)
2317 {
2318 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2319
2320 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2321
2322 if (trampoline == NULL)
2323 {
2324 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2325 }
2326
2327 /* This is where sr4export will jump to. */
2328 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2329
2330 /* If the function is in a shared library, then call __d_shl_get to
2331 get a PLABEL for the target function. */
2332 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2333
2334 if (new_stub == 0)
2335 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
2336
2337 /* We have to store the address of the stub in __shlib_funcptr. */
2338 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2339 (struct objfile *) NULL);
2340
2341 if (msymbol == NULL)
2342 error ("Can't find an address for __shlib_funcptr");
2343 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2344 (char *) &new_stub, 4);
2345
2346 /* We want sr4export to call __d_plt_call, so we claim it is
2347 the final target. Clear trampoline. */
2348 fun = new_fun;
2349 trampoline = NULL;
2350 }
2351 }
2352
2353 /* Store upper 21 bits of function address into ldil. fun will either be
2354 the final target (most cases) or __d_plt_call when calling into a shared
2355 library and __gcc_plt_call is not available. */
2356 store_unsigned_integer
2357 (&dummy[FUNC_LDIL_OFFSET],
2358 INSTRUCTION_SIZE,
2359 deposit_21 (fun >> 11,
2360 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2361 INSTRUCTION_SIZE)));
2362
2363 /* Store lower 11 bits of function address into ldo */
2364 store_unsigned_integer
2365 (&dummy[FUNC_LDO_OFFSET],
2366 INSTRUCTION_SIZE,
2367 deposit_14 (fun & MASK_11,
2368 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2369 INSTRUCTION_SIZE)));
2370 #ifdef SR4EXPORT_LDIL_OFFSET
2371
2372 {
2373 CORE_ADDR trampoline_addr;
2374
2375 /* We may still need sr4export's address too. */
2376
2377 if (trampoline == NULL)
2378 {
2379 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2380 if (msymbol == NULL)
2381 error ("Can't find an address for _sr4export trampoline");
2382
2383 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2384 }
2385 else
2386 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2387
2388
2389 /* Store upper 21 bits of trampoline's address into ldil */
2390 store_unsigned_integer
2391 (&dummy[SR4EXPORT_LDIL_OFFSET],
2392 INSTRUCTION_SIZE,
2393 deposit_21 (trampoline_addr >> 11,
2394 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2395 INSTRUCTION_SIZE)));
2396
2397 /* Store lower 11 bits of trampoline's address into ldo */
2398 store_unsigned_integer
2399 (&dummy[SR4EXPORT_LDO_OFFSET],
2400 INSTRUCTION_SIZE,
2401 deposit_14 (trampoline_addr & MASK_11,
2402 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2403 INSTRUCTION_SIZE)));
2404 }
2405 #endif
2406
2407 write_register (22, pc);
2408
2409 /* If we are in a syscall, then we should call the stack dummy
2410 directly. $$dyncall is not needed as the kernel sets up the
2411 space id registers properly based on the value in %r31. In
2412 fact calling $$dyncall will not work because the value in %r22
2413 will be clobbered on the syscall exit path.
2414
2415 Similarly if the current PC is in a shared library. Note however,
2416 this scheme won't work if the shared library isn't mapped into
2417 the same space as the stack. */
2418 if (flags & 2)
2419 return pc;
2420 #ifndef GDB_TARGET_IS_PA_ELF
2421 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
2422 return pc;
2423 #endif
2424 else
2425 return dyncall_addr;
2426 #endif
2427 }
2428
2429 /* If the pid is in a syscall, then the FP register is not readable.
2430 We'll return zero in that case, rather than attempting to read it
2431 and cause a warning. */
2432
2433 CORE_ADDR
2434 hppa_read_fp (int pid)
2435 {
2436 int flags = read_register (FLAGS_REGNUM);
2437
2438 if (flags & 2)
2439 {
2440 return (CORE_ADDR) 0;
2441 }
2442
2443 /* This is the only site that may directly read_register () the FP
2444 register. All others must use TARGET_READ_FP (). */
2445 return read_register (FP_REGNUM);
2446 }
2447
2448 CORE_ADDR
2449 hppa_target_read_fp (void)
2450 {
2451 return hppa_read_fp (PIDGET (inferior_ptid));
2452 }
2453
2454 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2455 bits. */
2456
2457 CORE_ADDR
2458 hppa_target_read_pc (ptid_t ptid)
2459 {
2460 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2461
2462 /* The following test does not belong here. It is OS-specific, and belongs
2463 in native code. */
2464 /* Test SS_INSYSCALL */
2465 if (flags & 2)
2466 return read_register_pid (31, ptid) & ~0x3;
2467
2468 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
2469 }
2470
2471 /* Write out the PC. If currently in a syscall, then also write the new
2472 PC value into %r31. */
2473
2474 void
2475 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
2476 {
2477 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2478
2479 /* The following test does not belong here. It is OS-specific, and belongs
2480 in native code. */
2481 /* If in a syscall, then set %r31. Also make sure to get the
2482 privilege bits set correctly. */
2483 /* Test SS_INSYSCALL */
2484 if (flags & 2)
2485 write_register_pid (31, v | 0x3, ptid);
2486
2487 write_register_pid (PC_REGNUM, v, ptid);
2488 write_register_pid (NPC_REGNUM, v + 4, ptid);
2489 }
2490
2491 /* return the alignment of a type in bytes. Structures have the maximum
2492 alignment required by their fields. */
2493
2494 static int
2495 hppa_alignof (struct type *type)
2496 {
2497 int max_align, align, i;
2498 CHECK_TYPEDEF (type);
2499 switch (TYPE_CODE (type))
2500 {
2501 case TYPE_CODE_PTR:
2502 case TYPE_CODE_INT:
2503 case TYPE_CODE_FLT:
2504 return TYPE_LENGTH (type);
2505 case TYPE_CODE_ARRAY:
2506 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2507 case TYPE_CODE_STRUCT:
2508 case TYPE_CODE_UNION:
2509 max_align = 1;
2510 for (i = 0; i < TYPE_NFIELDS (type); i++)
2511 {
2512 /* Bit fields have no real alignment. */
2513 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2514 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2515 {
2516 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2517 max_align = max (max_align, align);
2518 }
2519 }
2520 return max_align;
2521 default:
2522 return 4;
2523 }
2524 }
2525
2526 /* Print the register regnum, or all registers if regnum is -1 */
2527
2528 void
2529 pa_do_registers_info (int regnum, int fpregs)
2530 {
2531 char raw_regs[REGISTER_BYTES];
2532 int i;
2533
2534 /* Make a copy of gdb's save area (may cause actual
2535 reads from the target). */
2536 for (i = 0; i < NUM_REGS; i++)
2537 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
2538
2539 if (regnum == -1)
2540 pa_print_registers (raw_regs, regnum, fpregs);
2541 else if (regnum < FP4_REGNUM)
2542 {
2543 long reg_val[2];
2544
2545 /* Why is the value not passed through "extract_signed_integer"
2546 as in "pa_print_registers" below? */
2547 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2548
2549 if (!is_pa_2)
2550 {
2551 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2552 }
2553 else
2554 {
2555 /* Fancy % formats to prevent leading zeros. */
2556 if (reg_val[0] == 0)
2557 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2558 else
2559 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
2560 reg_val[0], reg_val[1]);
2561 }
2562 }
2563 else
2564 /* Note that real floating point values only start at
2565 FP4_REGNUM. FP0 and up are just status and error
2566 registers, which have integral (bit) values. */
2567 pa_print_fp_reg (regnum);
2568 }
2569
2570 /********** new function ********************/
2571 void
2572 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2573 enum precision_type precision)
2574 {
2575 char raw_regs[REGISTER_BYTES];
2576 int i;
2577
2578 /* Make a copy of gdb's save area (may cause actual
2579 reads from the target). */
2580 for (i = 0; i < NUM_REGS; i++)
2581 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
2582
2583 if (regnum == -1)
2584 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2585
2586 else if (regnum < FP4_REGNUM)
2587 {
2588 long reg_val[2];
2589
2590 /* Why is the value not passed through "extract_signed_integer"
2591 as in "pa_print_registers" below? */
2592 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2593
2594 if (!is_pa_2)
2595 {
2596 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
2597 }
2598 else
2599 {
2600 /* Fancy % formats to prevent leading zeros. */
2601 if (reg_val[0] == 0)
2602 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
2603 reg_val[1]);
2604 else
2605 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
2606 reg_val[0], reg_val[1]);
2607 }
2608 }
2609 else
2610 /* Note that real floating point values only start at
2611 FP4_REGNUM. FP0 and up are just status and error
2612 registers, which have integral (bit) values. */
2613 pa_strcat_fp_reg (regnum, stream, precision);
2614 }
2615
2616 /* If this is a PA2.0 machine, fetch the real 64-bit register
2617 value. Otherwise use the info from gdb's saved register area.
2618
2619 Note that reg_val is really expected to be an array of longs,
2620 with two elements. */
2621 static void
2622 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
2623 {
2624 static int know_which = 0; /* False */
2625
2626 int regaddr;
2627 unsigned int offset;
2628 register int i;
2629 int start;
2630
2631
2632 char *buf = alloca (max_register_size (current_gdbarch));
2633 long long reg_val;
2634
2635 if (!know_which)
2636 {
2637 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2638 {
2639 is_pa_2 = (1 == 1);
2640 }
2641
2642 know_which = 1; /* True */
2643 }
2644
2645 raw_val[0] = 0;
2646 raw_val[1] = 0;
2647
2648 if (!is_pa_2)
2649 {
2650 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
2651 return;
2652 }
2653
2654 /* Code below copied from hppah-nat.c, with fixes for wide
2655 registers, using different area of save_state, etc. */
2656 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2657 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2658 {
2659 /* Use narrow regs area of save_state and default macro. */
2660 offset = U_REGS_OFFSET;
2661 regaddr = register_addr (regnum, offset);
2662 start = 1;
2663 }
2664 else
2665 {
2666 /* Use wide regs area, and calculate registers as 8 bytes wide.
2667
2668 We'd like to do this, but current version of "C" doesn't
2669 permit "offsetof":
2670
2671 offset = offsetof(save_state_t, ss_wide);
2672
2673 Note that to avoid "C" doing typed pointer arithmetic, we
2674 have to cast away the type in our offset calculation:
2675 otherwise we get an offset of 1! */
2676
2677 /* NB: save_state_t is not available before HPUX 9.
2678 The ss_wide field is not available previous to HPUX 10.20,
2679 so to avoid compile-time warnings, we only compile this for
2680 PA 2.0 processors. This control path should only be followed
2681 if we're debugging a PA 2.0 processor, so this should not cause
2682 problems. */
2683
2684 /* #if the following code out so that this file can still be
2685 compiled on older HPUX boxes (< 10.20) which don't have
2686 this structure/structure member. */
2687 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2688 save_state_t temp;
2689
2690 offset = ((int) &temp.ss_wide) - ((int) &temp);
2691 regaddr = offset + regnum * 8;
2692 start = 0;
2693 #endif
2694 }
2695
2696 for (i = start; i < 2; i++)
2697 {
2698 errno = 0;
2699 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
2700 (PTRACE_ARG3_TYPE) regaddr, 0);
2701 if (errno != 0)
2702 {
2703 /* Warning, not error, in case we are attached; sometimes the
2704 kernel doesn't let us at the registers. */
2705 char *err = safe_strerror (errno);
2706 char *msg = alloca (strlen (err) + 128);
2707 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2708 warning (msg);
2709 goto error_exit;
2710 }
2711
2712 regaddr += sizeof (long);
2713 }
2714
2715 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2716 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2717
2718 error_exit:
2719 ;
2720 }
2721
2722 /* "Info all-reg" command */
2723
2724 static void
2725 pa_print_registers (char *raw_regs, int regnum, int fpregs)
2726 {
2727 int i, j;
2728 /* Alas, we are compiled so that "long long" is 32 bits */
2729 long raw_val[2];
2730 long long_val;
2731 int rows = 48, columns = 2;
2732
2733 for (i = 0; i < rows; i++)
2734 {
2735 for (j = 0; j < columns; j++)
2736 {
2737 /* We display registers in column-major order. */
2738 int regnum = i + j * rows;
2739
2740 /* Q: Why is the value passed through "extract_signed_integer",
2741 while above, in "pa_do_registers_info" it isn't?
2742 A: ? */
2743 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2744
2745 /* Even fancier % formats to prevent leading zeros
2746 and still maintain the output in columns. */
2747 if (!is_pa_2)
2748 {
2749 /* Being big-endian, on this machine the low bits
2750 (the ones we want to look at) are in the second longword. */
2751 long_val = extract_signed_integer (&raw_val[1], 4);
2752 printf_filtered ("%10.10s: %8lx ",
2753 REGISTER_NAME (regnum), long_val);
2754 }
2755 else
2756 {
2757 /* raw_val = extract_signed_integer(&raw_val, 8); */
2758 if (raw_val[0] == 0)
2759 printf_filtered ("%10.10s: %8lx ",
2760 REGISTER_NAME (regnum), raw_val[1]);
2761 else
2762 printf_filtered ("%10.10s: %8lx%8.8lx ",
2763 REGISTER_NAME (regnum),
2764 raw_val[0], raw_val[1]);
2765 }
2766 }
2767 printf_unfiltered ("\n");
2768 }
2769
2770 if (fpregs)
2771 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2772 pa_print_fp_reg (i);
2773 }
2774
2775 /************* new function ******************/
2776 static void
2777 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2778 struct ui_file *stream)
2779 {
2780 int i, j;
2781 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2782 long long_val;
2783 enum precision_type precision;
2784
2785 precision = unspecified_precision;
2786
2787 for (i = 0; i < 18; i++)
2788 {
2789 for (j = 0; j < 4; j++)
2790 {
2791 /* Q: Why is the value passed through "extract_signed_integer",
2792 while above, in "pa_do_registers_info" it isn't?
2793 A: ? */
2794 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2795
2796 /* Even fancier % formats to prevent leading zeros
2797 and still maintain the output in columns. */
2798 if (!is_pa_2)
2799 {
2800 /* Being big-endian, on this machine the low bits
2801 (the ones we want to look at) are in the second longword. */
2802 long_val = extract_signed_integer (&raw_val[1], 4);
2803 fprintf_filtered (stream, "%8.8s: %8lx ",
2804 REGISTER_NAME (i + (j * 18)), long_val);
2805 }
2806 else
2807 {
2808 /* raw_val = extract_signed_integer(&raw_val, 8); */
2809 if (raw_val[0] == 0)
2810 fprintf_filtered (stream, "%8.8s: %8lx ",
2811 REGISTER_NAME (i + (j * 18)), raw_val[1]);
2812 else
2813 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2814 REGISTER_NAME (i + (j * 18)), raw_val[0],
2815 raw_val[1]);
2816 }
2817 }
2818 fprintf_unfiltered (stream, "\n");
2819 }
2820
2821 if (fpregs)
2822 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2823 pa_strcat_fp_reg (i, stream, precision);
2824 }
2825
2826 static void
2827 pa_print_fp_reg (int i)
2828 {
2829 char *raw_buffer = alloca (max_register_size (current_gdbarch));
2830 char *virtual_buffer = alloca (max_register_size (current_gdbarch));
2831
2832 /* Get 32bits of data. */
2833 frame_register_read (deprecated_selected_frame, i, raw_buffer);
2834
2835 /* Put it in the buffer. No conversions are ever necessary. */
2836 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2837
2838 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2839 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2840 fputs_filtered ("(single precision) ", gdb_stdout);
2841
2842 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2843 1, 0, Val_pretty_default);
2844 printf_filtered ("\n");
2845
2846 /* If "i" is even, then this register can also be a double-precision
2847 FP register. Dump it out as such. */
2848 if ((i % 2) == 0)
2849 {
2850 /* Get the data in raw format for the 2nd half. */
2851 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
2852
2853 /* Copy it into the appropriate part of the virtual buffer. */
2854 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2855 REGISTER_RAW_SIZE (i));
2856
2857 /* Dump it as a double. */
2858 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2859 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2860 fputs_filtered ("(double precision) ", gdb_stdout);
2861
2862 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2863 1, 0, Val_pretty_default);
2864 printf_filtered ("\n");
2865 }
2866 }
2867
2868 /*************** new function ***********************/
2869 static void
2870 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
2871 {
2872 char *raw_buffer = alloca (max_register_size (current_gdbarch));
2873 char *virtual_buffer = alloca (max_register_size (current_gdbarch));
2874
2875 fputs_filtered (REGISTER_NAME (i), stream);
2876 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2877
2878 /* Get 32bits of data. */
2879 frame_register_read (deprecated_selected_frame, i, raw_buffer);
2880
2881 /* Put it in the buffer. No conversions are ever necessary. */
2882 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2883
2884 if (precision == double_precision && (i % 2) == 0)
2885 {
2886
2887 char *raw_buf = alloca (max_register_size (current_gdbarch));
2888
2889 /* Get the data in raw format for the 2nd half. */
2890 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
2891
2892 /* Copy it into the appropriate part of the virtual buffer. */
2893 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
2894
2895 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2896 1, 0, Val_pretty_default);
2897
2898 }
2899 else
2900 {
2901 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2902 1, 0, Val_pretty_default);
2903 }
2904
2905 }
2906
2907 /* Return one if PC is in the call path of a trampoline, else return zero.
2908
2909 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2910 just shared library trampolines (import, export). */
2911
2912 int
2913 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2914 {
2915 struct minimal_symbol *minsym;
2916 struct unwind_table_entry *u;
2917 static CORE_ADDR dyncall = 0;
2918 static CORE_ADDR sr4export = 0;
2919
2920 #ifdef GDB_TARGET_IS_HPPA_20W
2921 /* PA64 has a completely different stub/trampoline scheme. Is it
2922 better? Maybe. It's certainly harder to determine with any
2923 certainty that we are in a stub because we can not refer to the
2924 unwinders to help.
2925
2926 The heuristic is simple. Try to lookup the current PC value in th
2927 minimal symbol table. If that fails, then assume we are not in a
2928 stub and return.
2929
2930 Then see if the PC value falls within the section bounds for the
2931 section containing the minimal symbol we found in the first
2932 step. If it does, then assume we are not in a stub and return.
2933
2934 Finally peek at the instructions to see if they look like a stub. */
2935 {
2936 struct minimal_symbol *minsym;
2937 asection *sec;
2938 CORE_ADDR addr;
2939 int insn, i;
2940
2941 minsym = lookup_minimal_symbol_by_pc (pc);
2942 if (! minsym)
2943 return 0;
2944
2945 sec = SYMBOL_BFD_SECTION (minsym);
2946
2947 if (sec->vma <= pc
2948 && sec->vma + sec->_cooked_size < pc)
2949 return 0;
2950
2951 /* We might be in a stub. Peek at the instructions. Stubs are 3
2952 instructions long. */
2953 insn = read_memory_integer (pc, 4);
2954
2955 /* Find out where we think we are within the stub. */
2956 if ((insn & 0xffffc00e) == 0x53610000)
2957 addr = pc;
2958 else if ((insn & 0xffffffff) == 0xe820d000)
2959 addr = pc - 4;
2960 else if ((insn & 0xffffc00e) == 0x537b0000)
2961 addr = pc - 8;
2962 else
2963 return 0;
2964
2965 /* Now verify each insn in the range looks like a stub instruction. */
2966 insn = read_memory_integer (addr, 4);
2967 if ((insn & 0xffffc00e) != 0x53610000)
2968 return 0;
2969
2970 /* Now verify each insn in the range looks like a stub instruction. */
2971 insn = read_memory_integer (addr + 4, 4);
2972 if ((insn & 0xffffffff) != 0xe820d000)
2973 return 0;
2974
2975 /* Now verify each insn in the range looks like a stub instruction. */
2976 insn = read_memory_integer (addr + 8, 4);
2977 if ((insn & 0xffffc00e) != 0x537b0000)
2978 return 0;
2979
2980 /* Looks like a stub. */
2981 return 1;
2982 }
2983 #endif
2984
2985 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2986 new exec file */
2987
2988 /* First see if PC is in one of the two C-library trampolines. */
2989 if (!dyncall)
2990 {
2991 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2992 if (minsym)
2993 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
2994 else
2995 dyncall = -1;
2996 }
2997
2998 if (!sr4export)
2999 {
3000 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3001 if (minsym)
3002 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3003 else
3004 sr4export = -1;
3005 }
3006
3007 if (pc == dyncall || pc == sr4export)
3008 return 1;
3009
3010 minsym = lookup_minimal_symbol_by_pc (pc);
3011 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
3012 return 1;
3013
3014 /* Get the unwind descriptor corresponding to PC, return zero
3015 if no unwind was found. */
3016 u = find_unwind_entry (pc);
3017 if (!u)
3018 return 0;
3019
3020 /* If this isn't a linker stub, then return now. */
3021 if (u->stub_unwind.stub_type == 0)
3022 return 0;
3023
3024 /* By definition a long-branch stub is a call stub. */
3025 if (u->stub_unwind.stub_type == LONG_BRANCH)
3026 return 1;
3027
3028 /* The call and return path execute the same instructions within
3029 an IMPORT stub! So an IMPORT stub is both a call and return
3030 trampoline. */
3031 if (u->stub_unwind.stub_type == IMPORT)
3032 return 1;
3033
3034 /* Parameter relocation stubs always have a call path and may have a
3035 return path. */
3036 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3037 || u->stub_unwind.stub_type == EXPORT)
3038 {
3039 CORE_ADDR addr;
3040
3041 /* Search forward from the current PC until we hit a branch
3042 or the end of the stub. */
3043 for (addr = pc; addr <= u->region_end; addr += 4)
3044 {
3045 unsigned long insn;
3046
3047 insn = read_memory_integer (addr, 4);
3048
3049 /* Does it look like a bl? If so then it's the call path, if
3050 we find a bv or be first, then we're on the return path. */
3051 if ((insn & 0xfc00e000) == 0xe8000000)
3052 return 1;
3053 else if ((insn & 0xfc00e001) == 0xe800c000
3054 || (insn & 0xfc000000) == 0xe0000000)
3055 return 0;
3056 }
3057
3058 /* Should never happen. */
3059 warning ("Unable to find branch in parameter relocation stub.\n");
3060 return 0;
3061 }
3062
3063 /* Unknown stub type. For now, just return zero. */
3064 return 0;
3065 }
3066
3067 /* Return one if PC is in the return path of a trampoline, else return zero.
3068
3069 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3070 just shared library trampolines (import, export). */
3071
3072 int
3073 hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
3074 {
3075 struct unwind_table_entry *u;
3076
3077 /* Get the unwind descriptor corresponding to PC, return zero
3078 if no unwind was found. */
3079 u = find_unwind_entry (pc);
3080 if (!u)
3081 return 0;
3082
3083 /* If this isn't a linker stub or it's just a long branch stub, then
3084 return zero. */
3085 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3086 return 0;
3087
3088 /* The call and return path execute the same instructions within
3089 an IMPORT stub! So an IMPORT stub is both a call and return
3090 trampoline. */
3091 if (u->stub_unwind.stub_type == IMPORT)
3092 return 1;
3093
3094 /* Parameter relocation stubs always have a call path and may have a
3095 return path. */
3096 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3097 || u->stub_unwind.stub_type == EXPORT)
3098 {
3099 CORE_ADDR addr;
3100
3101 /* Search forward from the current PC until we hit a branch
3102 or the end of the stub. */
3103 for (addr = pc; addr <= u->region_end; addr += 4)
3104 {
3105 unsigned long insn;
3106
3107 insn = read_memory_integer (addr, 4);
3108
3109 /* Does it look like a bl? If so then it's the call path, if
3110 we find a bv or be first, then we're on the return path. */
3111 if ((insn & 0xfc00e000) == 0xe8000000)
3112 return 0;
3113 else if ((insn & 0xfc00e001) == 0xe800c000
3114 || (insn & 0xfc000000) == 0xe0000000)
3115 return 1;
3116 }
3117
3118 /* Should never happen. */
3119 warning ("Unable to find branch in parameter relocation stub.\n");
3120 return 0;
3121 }
3122
3123 /* Unknown stub type. For now, just return zero. */
3124 return 0;
3125
3126 }
3127
3128 /* Figure out if PC is in a trampoline, and if so find out where
3129 the trampoline will jump to. If not in a trampoline, return zero.
3130
3131 Simple code examination probably is not a good idea since the code
3132 sequences in trampolines can also appear in user code.
3133
3134 We use unwinds and information from the minimal symbol table to
3135 determine when we're in a trampoline. This won't work for ELF
3136 (yet) since it doesn't create stub unwind entries. Whether or
3137 not ELF will create stub unwinds or normal unwinds for linker
3138 stubs is still being debated.
3139
3140 This should handle simple calls through dyncall or sr4export,
3141 long calls, argument relocation stubs, and dyncall/sr4export
3142 calling an argument relocation stub. It even handles some stubs
3143 used in dynamic executables. */
3144
3145 CORE_ADDR
3146 hppa_skip_trampoline_code (CORE_ADDR pc)
3147 {
3148 long orig_pc = pc;
3149 long prev_inst, curr_inst, loc;
3150 static CORE_ADDR dyncall = 0;
3151 static CORE_ADDR dyncall_external = 0;
3152 static CORE_ADDR sr4export = 0;
3153 struct minimal_symbol *msym;
3154 struct unwind_table_entry *u;
3155
3156 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3157 new exec file */
3158
3159 if (!dyncall)
3160 {
3161 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3162 if (msym)
3163 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3164 else
3165 dyncall = -1;
3166 }
3167
3168 if (!dyncall_external)
3169 {
3170 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3171 if (msym)
3172 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3173 else
3174 dyncall_external = -1;
3175 }
3176
3177 if (!sr4export)
3178 {
3179 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3180 if (msym)
3181 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3182 else
3183 sr4export = -1;
3184 }
3185
3186 /* Addresses passed to dyncall may *NOT* be the actual address
3187 of the function. So we may have to do something special. */
3188 if (pc == dyncall)
3189 {
3190 pc = (CORE_ADDR) read_register (22);
3191
3192 /* If bit 30 (counting from the left) is on, then pc is the address of
3193 the PLT entry for this function, not the address of the function
3194 itself. Bit 31 has meaning too, but only for MPE. */
3195 if (pc & 0x2)
3196 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3197 }
3198 if (pc == dyncall_external)
3199 {
3200 pc = (CORE_ADDR) read_register (22);
3201 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3202 }
3203 else if (pc == sr4export)
3204 pc = (CORE_ADDR) (read_register (22));
3205
3206 /* Get the unwind descriptor corresponding to PC, return zero
3207 if no unwind was found. */
3208 u = find_unwind_entry (pc);
3209 if (!u)
3210 return 0;
3211
3212 /* If this isn't a linker stub, then return now. */
3213 /* elz: attention here! (FIXME) because of a compiler/linker
3214 error, some stubs which should have a non zero stub_unwind.stub_type
3215 have unfortunately a value of zero. So this function would return here
3216 as if we were not in a trampoline. To fix this, we go look at the partial
3217 symbol information, which reports this guy as a stub.
3218 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3219 partial symbol information is also wrong sometimes. This is because
3220 when it is entered (somread.c::som_symtab_read()) it can happen that
3221 if the type of the symbol (from the som) is Entry, and the symbol is
3222 in a shared library, then it can also be a trampoline. This would
3223 be OK, except that I believe the way they decide if we are ina shared library
3224 does not work. SOOOO..., even if we have a regular function w/o trampolines
3225 its minimal symbol can be assigned type mst_solib_trampoline.
3226 Also, if we find that the symbol is a real stub, then we fix the unwind
3227 descriptor, and define the stub type to be EXPORT.
3228 Hopefully this is correct most of the times. */
3229 if (u->stub_unwind.stub_type == 0)
3230 {
3231
3232 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3233 we can delete all the code which appears between the lines */
3234 /*--------------------------------------------------------------------------*/
3235 msym = lookup_minimal_symbol_by_pc (pc);
3236
3237 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3238 return orig_pc == pc ? 0 : pc & ~0x3;
3239
3240 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3241 {
3242 struct objfile *objfile;
3243 struct minimal_symbol *msymbol;
3244 int function_found = 0;
3245
3246 /* go look if there is another minimal symbol with the same name as
3247 this one, but with type mst_text. This would happen if the msym
3248 is an actual trampoline, in which case there would be another
3249 symbol with the same name corresponding to the real function */
3250
3251 ALL_MSYMBOLS (objfile, msymbol)
3252 {
3253 if (MSYMBOL_TYPE (msymbol) == mst_text
3254 && STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
3255 {
3256 function_found = 1;
3257 break;
3258 }
3259 }
3260
3261 if (function_found)
3262 /* the type of msym is correct (mst_solib_trampoline), but
3263 the unwind info is wrong, so set it to the correct value */
3264 u->stub_unwind.stub_type = EXPORT;
3265 else
3266 /* the stub type info in the unwind is correct (this is not a
3267 trampoline), but the msym type information is wrong, it
3268 should be mst_text. So we need to fix the msym, and also
3269 get out of this function */
3270 {
3271 MSYMBOL_TYPE (msym) = mst_text;
3272 return orig_pc == pc ? 0 : pc & ~0x3;
3273 }
3274 }
3275
3276 /*--------------------------------------------------------------------------*/
3277 }
3278
3279 /* It's a stub. Search for a branch and figure out where it goes.
3280 Note we have to handle multi insn branch sequences like ldil;ble.
3281 Most (all?) other branches can be determined by examining the contents
3282 of certain registers and the stack. */
3283
3284 loc = pc;
3285 curr_inst = 0;
3286 prev_inst = 0;
3287 while (1)
3288 {
3289 /* Make sure we haven't walked outside the range of this stub. */
3290 if (u != find_unwind_entry (loc))
3291 {
3292 warning ("Unable to find branch in linker stub");
3293 return orig_pc == pc ? 0 : pc & ~0x3;
3294 }
3295
3296 prev_inst = curr_inst;
3297 curr_inst = read_memory_integer (loc, 4);
3298
3299 /* Does it look like a branch external using %r1? Then it's the
3300 branch from the stub to the actual function. */
3301 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3302 {
3303 /* Yup. See if the previous instruction loaded
3304 a value into %r1. If so compute and return the jump address. */
3305 if ((prev_inst & 0xffe00000) == 0x20200000)
3306 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3307 else
3308 {
3309 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3310 return orig_pc == pc ? 0 : pc & ~0x3;
3311 }
3312 }
3313
3314 /* Does it look like a be 0(sr0,%r21)? OR
3315 Does it look like a be, n 0(sr0,%r21)? OR
3316 Does it look like a bve (r21)? (this is on PA2.0)
3317 Does it look like a bve, n(r21)? (this is also on PA2.0)
3318 That's the branch from an
3319 import stub to an export stub.
3320
3321 It is impossible to determine the target of the branch via
3322 simple examination of instructions and/or data (consider
3323 that the address in the plabel may be the address of the
3324 bind-on-reference routine in the dynamic loader).
3325
3326 So we have try an alternative approach.
3327
3328 Get the name of the symbol at our current location; it should
3329 be a stub symbol with the same name as the symbol in the
3330 shared library.
3331
3332 Then lookup a minimal symbol with the same name; we should
3333 get the minimal symbol for the target routine in the shared
3334 library as those take precedence of import/export stubs. */
3335 if ((curr_inst == 0xe2a00000) ||
3336 (curr_inst == 0xe2a00002) ||
3337 (curr_inst == 0xeaa0d000) ||
3338 (curr_inst == 0xeaa0d002))
3339 {
3340 struct minimal_symbol *stubsym, *libsym;
3341
3342 stubsym = lookup_minimal_symbol_by_pc (loc);
3343 if (stubsym == NULL)
3344 {
3345 warning ("Unable to find symbol for 0x%lx", loc);
3346 return orig_pc == pc ? 0 : pc & ~0x3;
3347 }
3348
3349 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
3350 if (libsym == NULL)
3351 {
3352 warning ("Unable to find library symbol for %s\n",
3353 DEPRECATED_SYMBOL_NAME (stubsym));
3354 return orig_pc == pc ? 0 : pc & ~0x3;
3355 }
3356
3357 return SYMBOL_VALUE (libsym);
3358 }
3359
3360 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3361 branch from the stub to the actual function. */
3362 /*elz */
3363 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3364 || (curr_inst & 0xffe0e000) == 0xe8000000
3365 || (curr_inst & 0xffe0e000) == 0xe800A000)
3366 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3367
3368 /* Does it look like bv (rp)? Note this depends on the
3369 current stack pointer being the same as the stack
3370 pointer in the stub itself! This is a branch on from the
3371 stub back to the original caller. */
3372 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3373 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3374 {
3375 /* Yup. See if the previous instruction loaded
3376 rp from sp - 8. */
3377 if (prev_inst == 0x4bc23ff1)
3378 return (read_memory_integer
3379 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3380 else
3381 {
3382 warning ("Unable to find restore of %%rp before bv (%%rp).");
3383 return orig_pc == pc ? 0 : pc & ~0x3;
3384 }
3385 }
3386
3387 /* elz: added this case to capture the new instruction
3388 at the end of the return part of an export stub used by
3389 the PA2.0: BVE, n (rp) */
3390 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3391 {
3392 return (read_memory_integer
3393 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3394 }
3395
3396 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3397 the original caller from the stub. Used in dynamic executables. */
3398 else if (curr_inst == 0xe0400002)
3399 {
3400 /* The value we jump to is sitting in sp - 24. But that's
3401 loaded several instructions before the be instruction.
3402 I guess we could check for the previous instruction being
3403 mtsp %r1,%sr0 if we want to do sanity checking. */
3404 return (read_memory_integer
3405 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3406 }
3407
3408 /* Haven't found the branch yet, but we're still in the stub.
3409 Keep looking. */
3410 loc += 4;
3411 }
3412 }
3413
3414
3415 /* For the given instruction (INST), return any adjustment it makes
3416 to the stack pointer or zero for no adjustment.
3417
3418 This only handles instructions commonly found in prologues. */
3419
3420 static int
3421 prologue_inst_adjust_sp (unsigned long inst)
3422 {
3423 /* This must persist across calls. */
3424 static int save_high21;
3425
3426 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3427 if ((inst & 0xffffc000) == 0x37de0000)
3428 return extract_14 (inst);
3429
3430 /* stwm X,D(sp) */
3431 if ((inst & 0xffe00000) == 0x6fc00000)
3432 return extract_14 (inst);
3433
3434 /* std,ma X,D(sp) */
3435 if ((inst & 0xffe00008) == 0x73c00008)
3436 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3437
3438 /* addil high21,%r1; ldo low11,(%r1),%r30)
3439 save high bits in save_high21 for later use. */
3440 if ((inst & 0xffe00000) == 0x28200000)
3441 {
3442 save_high21 = extract_21 (inst);
3443 return 0;
3444 }
3445
3446 if ((inst & 0xffff0000) == 0x343e0000)
3447 return save_high21 + extract_14 (inst);
3448
3449 /* fstws as used by the HP compilers. */
3450 if ((inst & 0xffffffe0) == 0x2fd01220)
3451 return extract_5_load (inst);
3452
3453 /* No adjustment. */
3454 return 0;
3455 }
3456
3457 /* Return nonzero if INST is a branch of some kind, else return zero. */
3458
3459 static int
3460 is_branch (unsigned long inst)
3461 {
3462 switch (inst >> 26)
3463 {
3464 case 0x20:
3465 case 0x21:
3466 case 0x22:
3467 case 0x23:
3468 case 0x27:
3469 case 0x28:
3470 case 0x29:
3471 case 0x2a:
3472 case 0x2b:
3473 case 0x2f:
3474 case 0x30:
3475 case 0x31:
3476 case 0x32:
3477 case 0x33:
3478 case 0x38:
3479 case 0x39:
3480 case 0x3a:
3481 case 0x3b:
3482 return 1;
3483
3484 default:
3485 return 0;
3486 }
3487 }
3488
3489 /* Return the register number for a GR which is saved by INST or
3490 zero it INST does not save a GR. */
3491
3492 static int
3493 inst_saves_gr (unsigned long inst)
3494 {
3495 /* Does it look like a stw? */
3496 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3497 || (inst >> 26) == 0x1f
3498 || ((inst >> 26) == 0x1f
3499 && ((inst >> 6) == 0xa)))
3500 return extract_5R_store (inst);
3501
3502 /* Does it look like a std? */
3503 if ((inst >> 26) == 0x1c
3504 || ((inst >> 26) == 0x03
3505 && ((inst >> 6) & 0xf) == 0xb))
3506 return extract_5R_store (inst);
3507
3508 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3509 if ((inst >> 26) == 0x1b)
3510 return extract_5R_store (inst);
3511
3512 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3513 too. */
3514 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3515 || ((inst >> 26) == 0x3
3516 && (((inst >> 6) & 0xf) == 0x8
3517 || (inst >> 6) & 0xf) == 0x9))
3518 return extract_5R_store (inst);
3519
3520 return 0;
3521 }
3522
3523 /* Return the register number for a FR which is saved by INST or
3524 zero it INST does not save a FR.
3525
3526 Note we only care about full 64bit register stores (that's the only
3527 kind of stores the prologue will use).
3528
3529 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3530
3531 static int
3532 inst_saves_fr (unsigned long inst)
3533 {
3534 /* is this an FSTD ? */
3535 if ((inst & 0xfc00dfc0) == 0x2c001200)
3536 return extract_5r_store (inst);
3537 if ((inst & 0xfc000002) == 0x70000002)
3538 return extract_5R_store (inst);
3539 /* is this an FSTW ? */
3540 if ((inst & 0xfc00df80) == 0x24001200)
3541 return extract_5r_store (inst);
3542 if ((inst & 0xfc000002) == 0x7c000000)
3543 return extract_5R_store (inst);
3544 return 0;
3545 }
3546
3547 /* Advance PC across any function entry prologue instructions
3548 to reach some "real" code.
3549
3550 Use information in the unwind table to determine what exactly should
3551 be in the prologue. */
3552
3553
3554 CORE_ADDR
3555 skip_prologue_hard_way (CORE_ADDR pc)
3556 {
3557 char buf[4];
3558 CORE_ADDR orig_pc = pc;
3559 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3560 unsigned long args_stored, status, i, restart_gr, restart_fr;
3561 struct unwind_table_entry *u;
3562
3563 restart_gr = 0;
3564 restart_fr = 0;
3565
3566 restart:
3567 u = find_unwind_entry (pc);
3568 if (!u)
3569 return pc;
3570
3571 /* If we are not at the beginning of a function, then return now. */
3572 if ((pc & ~0x3) != u->region_start)
3573 return pc;
3574
3575 /* This is how much of a frame adjustment we need to account for. */
3576 stack_remaining = u->Total_frame_size << 3;
3577
3578 /* Magic register saves we want to know about. */
3579 save_rp = u->Save_RP;
3580 save_sp = u->Save_SP;
3581
3582 /* An indication that args may be stored into the stack. Unfortunately
3583 the HPUX compilers tend to set this in cases where no args were
3584 stored too!. */
3585 args_stored = 1;
3586
3587 /* Turn the Entry_GR field into a bitmask. */
3588 save_gr = 0;
3589 for (i = 3; i < u->Entry_GR + 3; i++)
3590 {
3591 /* Frame pointer gets saved into a special location. */
3592 if (u->Save_SP && i == FP_REGNUM)
3593 continue;
3594
3595 save_gr |= (1 << i);
3596 }
3597 save_gr &= ~restart_gr;
3598
3599 /* Turn the Entry_FR field into a bitmask too. */
3600 save_fr = 0;
3601 for (i = 12; i < u->Entry_FR + 12; i++)
3602 save_fr |= (1 << i);
3603 save_fr &= ~restart_fr;
3604
3605 /* Loop until we find everything of interest or hit a branch.
3606
3607 For unoptimized GCC code and for any HP CC code this will never ever
3608 examine any user instructions.
3609
3610 For optimzied GCC code we're faced with problems. GCC will schedule
3611 its prologue and make prologue instructions available for delay slot
3612 filling. The end result is user code gets mixed in with the prologue
3613 and a prologue instruction may be in the delay slot of the first branch
3614 or call.
3615
3616 Some unexpected things are expected with debugging optimized code, so
3617 we allow this routine to walk past user instructions in optimized
3618 GCC code. */
3619 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3620 || args_stored)
3621 {
3622 unsigned int reg_num;
3623 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3624 unsigned long old_save_rp, old_save_sp, next_inst;
3625
3626 /* Save copies of all the triggers so we can compare them later
3627 (only for HPC). */
3628 old_save_gr = save_gr;
3629 old_save_fr = save_fr;
3630 old_save_rp = save_rp;
3631 old_save_sp = save_sp;
3632 old_stack_remaining = stack_remaining;
3633
3634 status = target_read_memory (pc, buf, 4);
3635 inst = extract_unsigned_integer (buf, 4);
3636
3637 /* Yow! */
3638 if (status != 0)
3639 return pc;
3640
3641 /* Note the interesting effects of this instruction. */
3642 stack_remaining -= prologue_inst_adjust_sp (inst);
3643
3644 /* There are limited ways to store the return pointer into the
3645 stack. */
3646 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3647 save_rp = 0;
3648
3649 /* These are the only ways we save SP into the stack. At this time
3650 the HP compilers never bother to save SP into the stack. */
3651 if ((inst & 0xffffc000) == 0x6fc10000
3652 || (inst & 0xffffc00c) == 0x73c10008)
3653 save_sp = 0;
3654
3655 /* Are we loading some register with an offset from the argument
3656 pointer? */
3657 if ((inst & 0xffe00000) == 0x37a00000
3658 || (inst & 0xffffffe0) == 0x081d0240)
3659 {
3660 pc += 4;
3661 continue;
3662 }
3663
3664 /* Account for general and floating-point register saves. */
3665 reg_num = inst_saves_gr (inst);
3666 save_gr &= ~(1 << reg_num);
3667
3668 /* Ugh. Also account for argument stores into the stack.
3669 Unfortunately args_stored only tells us that some arguments
3670 where stored into the stack. Not how many or what kind!
3671
3672 This is a kludge as on the HP compiler sets this bit and it
3673 never does prologue scheduling. So once we see one, skip past
3674 all of them. We have similar code for the fp arg stores below.
3675
3676 FIXME. Can still die if we have a mix of GR and FR argument
3677 stores! */
3678 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3679 {
3680 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3681 {
3682 pc += 4;
3683 status = target_read_memory (pc, buf, 4);
3684 inst = extract_unsigned_integer (buf, 4);
3685 if (status != 0)
3686 return pc;
3687 reg_num = inst_saves_gr (inst);
3688 }
3689 args_stored = 0;
3690 continue;
3691 }
3692
3693 reg_num = inst_saves_fr (inst);
3694 save_fr &= ~(1 << reg_num);
3695
3696 status = target_read_memory (pc + 4, buf, 4);
3697 next_inst = extract_unsigned_integer (buf, 4);
3698
3699 /* Yow! */
3700 if (status != 0)
3701 return pc;
3702
3703 /* We've got to be read to handle the ldo before the fp register
3704 save. */
3705 if ((inst & 0xfc000000) == 0x34000000
3706 && inst_saves_fr (next_inst) >= 4
3707 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3708 {
3709 /* So we drop into the code below in a reasonable state. */
3710 reg_num = inst_saves_fr (next_inst);
3711 pc -= 4;
3712 }
3713
3714 /* Ugh. Also account for argument stores into the stack.
3715 This is a kludge as on the HP compiler sets this bit and it
3716 never does prologue scheduling. So once we see one, skip past
3717 all of them. */
3718 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3719 {
3720 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3721 {
3722 pc += 8;
3723 status = target_read_memory (pc, buf, 4);
3724 inst = extract_unsigned_integer (buf, 4);
3725 if (status != 0)
3726 return pc;
3727 if ((inst & 0xfc000000) != 0x34000000)
3728 break;
3729 status = target_read_memory (pc + 4, buf, 4);
3730 next_inst = extract_unsigned_integer (buf, 4);
3731 if (status != 0)
3732 return pc;
3733 reg_num = inst_saves_fr (next_inst);
3734 }
3735 args_stored = 0;
3736 continue;
3737 }
3738
3739 /* Quit if we hit any kind of branch. This can happen if a prologue
3740 instruction is in the delay slot of the first call/branch. */
3741 if (is_branch (inst))
3742 break;
3743
3744 /* What a crock. The HP compilers set args_stored even if no
3745 arguments were stored into the stack (boo hiss). This could
3746 cause this code to then skip a bunch of user insns (up to the
3747 first branch).
3748
3749 To combat this we try to identify when args_stored was bogusly
3750 set and clear it. We only do this when args_stored is nonzero,
3751 all other resources are accounted for, and nothing changed on
3752 this pass. */
3753 if (args_stored
3754 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3755 && old_save_gr == save_gr && old_save_fr == save_fr
3756 && old_save_rp == save_rp && old_save_sp == save_sp
3757 && old_stack_remaining == stack_remaining)
3758 break;
3759
3760 /* Bump the PC. */
3761 pc += 4;
3762 }
3763
3764 /* We've got a tenative location for the end of the prologue. However
3765 because of limitations in the unwind descriptor mechanism we may
3766 have went too far into user code looking for the save of a register
3767 that does not exist. So, if there registers we expected to be saved
3768 but never were, mask them out and restart.
3769
3770 This should only happen in optimized code, and should be very rare. */
3771 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3772 {
3773 pc = orig_pc;
3774 restart_gr = save_gr;
3775 restart_fr = save_fr;
3776 goto restart;
3777 }
3778
3779 return pc;
3780 }
3781
3782
3783 /* Return the address of the PC after the last prologue instruction if
3784 we can determine it from the debug symbols. Else return zero. */
3785
3786 static CORE_ADDR
3787 after_prologue (CORE_ADDR pc)
3788 {
3789 struct symtab_and_line sal;
3790 CORE_ADDR func_addr, func_end;
3791 struct symbol *f;
3792
3793 /* If we can not find the symbol in the partial symbol table, then
3794 there is no hope we can determine the function's start address
3795 with this code. */
3796 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3797 return 0;
3798
3799 /* Get the line associated with FUNC_ADDR. */
3800 sal = find_pc_line (func_addr, 0);
3801
3802 /* There are only two cases to consider. First, the end of the source line
3803 is within the function bounds. In that case we return the end of the
3804 source line. Second is the end of the source line extends beyond the
3805 bounds of the current function. We need to use the slow code to
3806 examine instructions in that case.
3807
3808 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3809 the wrong thing to do. In fact, it should be entirely possible for this
3810 function to always return zero since the slow instruction scanning code
3811 is supposed to *always* work. If it does not, then it is a bug. */
3812 if (sal.end < func_end)
3813 return sal.end;
3814 else
3815 return 0;
3816 }
3817
3818 /* To skip prologues, I use this predicate. Returns either PC itself
3819 if the code at PC does not look like a function prologue; otherwise
3820 returns an address that (if we're lucky) follows the prologue. If
3821 LENIENT, then we must skip everything which is involved in setting
3822 up the frame (it's OK to skip more, just so long as we don't skip
3823 anything which might clobber the registers which are being saved.
3824 Currently we must not skip more on the alpha, but we might the lenient
3825 stuff some day. */
3826
3827 CORE_ADDR
3828 hppa_skip_prologue (CORE_ADDR pc)
3829 {
3830 unsigned long inst;
3831 int offset;
3832 CORE_ADDR post_prologue_pc;
3833 char buf[4];
3834
3835 /* See if we can determine the end of the prologue via the symbol table.
3836 If so, then return either PC, or the PC after the prologue, whichever
3837 is greater. */
3838
3839 post_prologue_pc = after_prologue (pc);
3840
3841 /* If after_prologue returned a useful address, then use it. Else
3842 fall back on the instruction skipping code.
3843
3844 Some folks have claimed this causes problems because the breakpoint
3845 may be the first instruction of the prologue. If that happens, then
3846 the instruction skipping code has a bug that needs to be fixed. */
3847 if (post_prologue_pc != 0)
3848 return max (pc, post_prologue_pc);
3849 else
3850 return (skip_prologue_hard_way (pc));
3851 }
3852
3853 /* Put here the code to store, into the SAVED_REGS, the addresses of
3854 the saved registers of frame described by FRAME_INFO. This
3855 includes special registers such as pc and fp saved in special ways
3856 in the stack frame. sp is even more special: the address we return
3857 for it IS the sp for the next frame. */
3858
3859 void
3860 hppa_frame_find_saved_regs (struct frame_info *frame_info,
3861 CORE_ADDR frame_saved_regs[])
3862 {
3863 CORE_ADDR pc;
3864 struct unwind_table_entry *u;
3865 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3866 int status, i, reg;
3867 char buf[4];
3868 int fp_loc = -1;
3869 int final_iteration;
3870
3871 /* Zero out everything. */
3872 memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
3873
3874 /* Call dummy frames always look the same, so there's no need to
3875 examine the dummy code to determine locations of saved registers;
3876 instead, let find_dummy_frame_regs fill in the correct offsets
3877 for the saved registers. */
3878 if ((get_frame_pc (frame_info) >= get_frame_base (frame_info)
3879 && (get_frame_pc (frame_info)
3880 <= (get_frame_base (frame_info)
3881 /* A call dummy is sized in words, but it is actually a
3882 series of instructions. Account for that scaling
3883 factor. */
3884 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
3885 * CALL_DUMMY_LENGTH)
3886 /* Similarly we have to account for 64bit wide register
3887 saves. */
3888 + (32 * REGISTER_SIZE)
3889 /* We always consider FP regs 8 bytes long. */
3890 + (NUM_REGS - FP0_REGNUM) * 8
3891 /* Similarly we have to account for 64bit wide register
3892 saves. */
3893 + (6 * REGISTER_SIZE)))))
3894 find_dummy_frame_regs (frame_info, frame_saved_regs);
3895
3896 /* Interrupt handlers are special too. They lay out the register
3897 state in the exact same order as the register numbers in GDB. */
3898 if (pc_in_interrupt_handler (get_frame_pc (frame_info)))
3899 {
3900 for (i = 0; i < NUM_REGS; i++)
3901 {
3902 /* SP is a little special. */
3903 if (i == SP_REGNUM)
3904 frame_saved_regs[SP_REGNUM]
3905 = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4,
3906 TARGET_PTR_BIT / 8);
3907 else
3908 frame_saved_regs[i] = get_frame_base (frame_info) + i * 4;
3909 }
3910 return;
3911 }
3912
3913 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3914 /* Handle signal handler callers. */
3915 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
3916 {
3917 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3918 return;
3919 }
3920 #endif
3921
3922 /* Get the starting address of the function referred to by the PC
3923 saved in frame. */
3924 pc = get_frame_func (frame_info);
3925
3926 /* Yow! */
3927 u = find_unwind_entry (pc);
3928 if (!u)
3929 return;
3930
3931 /* This is how much of a frame adjustment we need to account for. */
3932 stack_remaining = u->Total_frame_size << 3;
3933
3934 /* Magic register saves we want to know about. */
3935 save_rp = u->Save_RP;
3936 save_sp = u->Save_SP;
3937
3938 /* Turn the Entry_GR field into a bitmask. */
3939 save_gr = 0;
3940 for (i = 3; i < u->Entry_GR + 3; i++)
3941 {
3942 /* Frame pointer gets saved into a special location. */
3943 if (u->Save_SP && i == FP_REGNUM)
3944 continue;
3945
3946 save_gr |= (1 << i);
3947 }
3948
3949 /* Turn the Entry_FR field into a bitmask too. */
3950 save_fr = 0;
3951 for (i = 12; i < u->Entry_FR + 12; i++)
3952 save_fr |= (1 << i);
3953
3954 /* The frame always represents the value of %sp at entry to the
3955 current function (and is thus equivalent to the "saved" stack
3956 pointer. */
3957 frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info);
3958
3959 /* Loop until we find everything of interest or hit a branch.
3960
3961 For unoptimized GCC code and for any HP CC code this will never ever
3962 examine any user instructions.
3963
3964 For optimized GCC code we're faced with problems. GCC will schedule
3965 its prologue and make prologue instructions available for delay slot
3966 filling. The end result is user code gets mixed in with the prologue
3967 and a prologue instruction may be in the delay slot of the first branch
3968 or call.
3969
3970 Some unexpected things are expected with debugging optimized code, so
3971 we allow this routine to walk past user instructions in optimized
3972 GCC code. */
3973 final_iteration = 0;
3974 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3975 && pc <= get_frame_pc (frame_info))
3976 {
3977 status = target_read_memory (pc, buf, 4);
3978 inst = extract_unsigned_integer (buf, 4);
3979
3980 /* Yow! */
3981 if (status != 0)
3982 return;
3983
3984 /* Note the interesting effects of this instruction. */
3985 stack_remaining -= prologue_inst_adjust_sp (inst);
3986
3987 /* There are limited ways to store the return pointer into the
3988 stack. */
3989 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
3990 {
3991 save_rp = 0;
3992 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20;
3993 }
3994 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
3995 {
3996 save_rp = 0;
3997 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16;
3998 }
3999
4000 /* Note if we saved SP into the stack. This also happens to indicate
4001 the location of the saved frame pointer. */
4002 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4003 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4004 {
4005 frame_saved_regs[FP_REGNUM] = get_frame_base (frame_info);
4006 save_sp = 0;
4007 }
4008
4009 /* Account for general and floating-point register saves. */
4010 reg = inst_saves_gr (inst);
4011 if (reg >= 3 && reg <= 18
4012 && (!u->Save_SP || reg != FP_REGNUM))
4013 {
4014 save_gr &= ~(1 << reg);
4015
4016 /* stwm with a positive displacement is a *post modify*. */
4017 if ((inst >> 26) == 0x1b
4018 && extract_14 (inst) >= 0)
4019 frame_saved_regs[reg] = get_frame_base (frame_info);
4020 /* A std has explicit post_modify forms. */
4021 else if ((inst & 0xfc00000c0) == 0x70000008)
4022 frame_saved_regs[reg] = get_frame_base (frame_info);
4023 else
4024 {
4025 CORE_ADDR offset;
4026
4027 if ((inst >> 26) == 0x1c)
4028 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4029 else if ((inst >> 26) == 0x03)
4030 offset = low_sign_extend (inst & 0x1f, 5);
4031 else
4032 offset = extract_14 (inst);
4033
4034 /* Handle code with and without frame pointers. */
4035 if (u->Save_SP)
4036 frame_saved_regs[reg]
4037 = get_frame_base (frame_info) + offset;
4038 else
4039 frame_saved_regs[reg]
4040 = (get_frame_base (frame_info) + (u->Total_frame_size << 3)
4041 + offset);
4042 }
4043 }
4044
4045
4046 /* GCC handles callee saved FP regs a little differently.
4047
4048 It emits an instruction to put the value of the start of
4049 the FP store area into %r1. It then uses fstds,ma with
4050 a basereg of %r1 for the stores.
4051
4052 HP CC emits them at the current stack pointer modifying
4053 the stack pointer as it stores each register. */
4054
4055 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4056 if ((inst & 0xffffc000) == 0x34610000
4057 || (inst & 0xffffc000) == 0x37c10000)
4058 fp_loc = extract_14 (inst);
4059
4060 reg = inst_saves_fr (inst);
4061 if (reg >= 12 && reg <= 21)
4062 {
4063 /* Note +4 braindamage below is necessary because the FP status
4064 registers are internally 8 registers rather than the expected
4065 4 registers. */
4066 save_fr &= ~(1 << reg);
4067 if (fp_loc == -1)
4068 {
4069 /* 1st HP CC FP register store. After this instruction
4070 we've set enough state that the GCC and HPCC code are
4071 both handled in the same manner. */
4072 frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info);
4073 fp_loc = 8;
4074 }
4075 else
4076 {
4077 frame_saved_regs[reg + FP0_REGNUM + 4]
4078 = get_frame_base (frame_info) + fp_loc;
4079 fp_loc += 8;
4080 }
4081 }
4082
4083 /* Quit if we hit any kind of branch the previous iteration. */
4084 if (final_iteration)
4085 break;
4086
4087 /* We want to look precisely one instruction beyond the branch
4088 if we have not found everything yet. */
4089 if (is_branch (inst))
4090 final_iteration = 1;
4091
4092 /* Bump the PC. */
4093 pc += 4;
4094 }
4095 }
4096
4097 /* XXX - deprecated. This is a compatibility function for targets
4098 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4099 /* Find the addresses in which registers are saved in FRAME. */
4100
4101 void
4102 hppa_frame_init_saved_regs (struct frame_info *frame)
4103 {
4104 if (get_frame_saved_regs (frame) == NULL)
4105 frame_saved_regs_zalloc (frame);
4106 hppa_frame_find_saved_regs (frame, get_frame_saved_regs (frame));
4107 }
4108
4109 /* Exception handling support for the HP-UX ANSI C++ compiler.
4110 The compiler (aCC) provides a callback for exception events;
4111 GDB can set a breakpoint on this callback and find out what
4112 exception event has occurred. */
4113
4114 /* The name of the hook to be set to point to the callback function */
4115 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4116 /* The name of the function to be used to set the hook value */
4117 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4118 /* The name of the callback function in end.o */
4119 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4120 /* Name of function in end.o on which a break is set (called by above) */
4121 static char HP_ACC_EH_break[] = "__d_eh_break";
4122 /* Name of flag (in end.o) that enables catching throws */
4123 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4124 /* Name of flag (in end.o) that enables catching catching */
4125 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4126 /* The enum used by aCC */
4127 typedef enum
4128 {
4129 __EH_NOTIFY_THROW,
4130 __EH_NOTIFY_CATCH
4131 }
4132 __eh_notification;
4133
4134 /* Is exception-handling support available with this executable? */
4135 static int hp_cxx_exception_support = 0;
4136 /* Has the initialize function been run? */
4137 int hp_cxx_exception_support_initialized = 0;
4138 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4139 extern int exception_support_initialized;
4140 /* Address of __eh_notify_hook */
4141 static CORE_ADDR eh_notify_hook_addr = 0;
4142 /* Address of __d_eh_notify_callback */
4143 static CORE_ADDR eh_notify_callback_addr = 0;
4144 /* Address of __d_eh_break */
4145 static CORE_ADDR eh_break_addr = 0;
4146 /* Address of __d_eh_catch_catch */
4147 static CORE_ADDR eh_catch_catch_addr = 0;
4148 /* Address of __d_eh_catch_throw */
4149 static CORE_ADDR eh_catch_throw_addr = 0;
4150 /* Sal for __d_eh_break */
4151 static struct symtab_and_line *break_callback_sal = 0;
4152
4153 /* Code in end.c expects __d_pid to be set in the inferior,
4154 otherwise __d_eh_notify_callback doesn't bother to call
4155 __d_eh_break! So we poke the pid into this symbol
4156 ourselves.
4157 0 => success
4158 1 => failure */
4159 int
4160 setup_d_pid_in_inferior (void)
4161 {
4162 CORE_ADDR anaddr;
4163 struct minimal_symbol *msymbol;
4164 char buf[4]; /* FIXME 32x64? */
4165
4166 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4167 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4168 if (msymbol == NULL)
4169 {
4170 warning ("Unable to find __d_pid symbol in object file.");
4171 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4172 return 1;
4173 }
4174
4175 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4176 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4177 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4178 {
4179 warning ("Unable to write __d_pid");
4180 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4181 return 1;
4182 }
4183 return 0;
4184 }
4185
4186 /* Initialize exception catchpoint support by looking for the
4187 necessary hooks/callbacks in end.o, etc., and set the hook value to
4188 point to the required debug function
4189
4190 Return 0 => failure
4191 1 => success */
4192
4193 static int
4194 initialize_hp_cxx_exception_support (void)
4195 {
4196 struct symtabs_and_lines sals;
4197 struct cleanup *old_chain;
4198 struct cleanup *canonical_strings_chain = NULL;
4199 int i;
4200 char *addr_start;
4201 char *addr_end = NULL;
4202 char **canonical = (char **) NULL;
4203 int thread = -1;
4204 struct symbol *sym = NULL;
4205 struct minimal_symbol *msym = NULL;
4206 struct objfile *objfile;
4207 asection *shlib_info;
4208
4209 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4210 recursion is a possibility because finding the hook for exception
4211 callbacks involves making a call in the inferior, which means
4212 re-inserting breakpoints which can re-invoke this code */
4213
4214 static int recurse = 0;
4215 if (recurse > 0)
4216 {
4217 hp_cxx_exception_support_initialized = 0;
4218 exception_support_initialized = 0;
4219 return 0;
4220 }
4221
4222 hp_cxx_exception_support = 0;
4223
4224 /* First check if we have seen any HP compiled objects; if not,
4225 it is very unlikely that HP's idiosyncratic callback mechanism
4226 for exception handling debug support will be available!
4227 This will percolate back up to breakpoint.c, where our callers
4228 will decide to try the g++ exception-handling support instead. */
4229 if (!hp_som_som_object_present)
4230 return 0;
4231
4232 /* We have a SOM executable with SOM debug info; find the hooks */
4233
4234 /* First look for the notify hook provided by aCC runtime libs */
4235 /* If we find this symbol, we conclude that the executable must
4236 have HP aCC exception support built in. If this symbol is not
4237 found, even though we're a HP SOM-SOM file, we may have been
4238 built with some other compiler (not aCC). This results percolates
4239 back up to our callers in breakpoint.c which can decide to
4240 try the g++ style of exception support instead.
4241 If this symbol is found but the other symbols we require are
4242 not found, there is something weird going on, and g++ support
4243 should *not* be tried as an alternative.
4244
4245 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4246 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4247
4248 /* libCsup has this hook; it'll usually be non-debuggable */
4249 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4250 if (msym)
4251 {
4252 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4253 hp_cxx_exception_support = 1;
4254 }
4255 else
4256 {
4257 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4258 warning ("Executable may not have been compiled debuggable with HP aCC.");
4259 warning ("GDB will be unable to intercept exception events.");
4260 eh_notify_hook_addr = 0;
4261 hp_cxx_exception_support = 0;
4262 return 0;
4263 }
4264
4265 /* Next look for the notify callback routine in end.o */
4266 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4267 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4268 if (msym)
4269 {
4270 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4271 hp_cxx_exception_support = 1;
4272 }
4273 else
4274 {
4275 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4276 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4277 warning ("GDB will be unable to intercept exception events.");
4278 eh_notify_callback_addr = 0;
4279 return 0;
4280 }
4281
4282 #ifndef GDB_TARGET_IS_HPPA_20W
4283 /* Check whether the executable is dynamically linked or archive bound */
4284 /* With an archive-bound executable we can use the raw addresses we find
4285 for the callback function, etc. without modification. For an executable
4286 with shared libraries, we have to do more work to find the plabel, which
4287 can be the target of a call through $$dyncall from the aCC runtime support
4288 library (libCsup) which is linked shared by default by aCC. */
4289 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4290 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4291 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4292 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4293 {
4294 /* The minsym we have has the local code address, but that's not the
4295 plabel that can be used by an inter-load-module call. */
4296 /* Find solib handle for main image (which has end.o), and use that
4297 and the min sym as arguments to __d_shl_get() (which does the equivalent
4298 of shl_findsym()) to find the plabel. */
4299
4300 args_for_find_stub args;
4301 static char message[] = "Error while finding exception callback hook:\n";
4302
4303 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4304 args.msym = msym;
4305 args.return_val = 0;
4306
4307 recurse++;
4308 catch_errors (cover_find_stub_with_shl_get, &args, message,
4309 RETURN_MASK_ALL);
4310 eh_notify_callback_addr = args.return_val;
4311 recurse--;
4312
4313 exception_catchpoints_are_fragile = 1;
4314
4315 if (!eh_notify_callback_addr)
4316 {
4317 /* We can get here either if there is no plabel in the export list
4318 for the main image, or if something strange happened (?) */
4319 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4320 warning ("GDB will not be able to intercept exception events.");
4321 return 0;
4322 }
4323 }
4324 else
4325 exception_catchpoints_are_fragile = 0;
4326 #endif
4327
4328 /* Now, look for the breakpointable routine in end.o */
4329 /* This should also be available in the SOM symbol dict. if end.o linked in */
4330 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4331 if (msym)
4332 {
4333 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4334 hp_cxx_exception_support = 1;
4335 }
4336 else
4337 {
4338 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4339 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4340 warning ("GDB will be unable to intercept exception events.");
4341 eh_break_addr = 0;
4342 return 0;
4343 }
4344
4345 /* Next look for the catch enable flag provided in end.o */
4346 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4347 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4348 if (sym) /* sometimes present in debug info */
4349 {
4350 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4351 hp_cxx_exception_support = 1;
4352 }
4353 else
4354 /* otherwise look in SOM symbol dict. */
4355 {
4356 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4357 if (msym)
4358 {
4359 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4360 hp_cxx_exception_support = 1;
4361 }
4362 else
4363 {
4364 warning ("Unable to enable interception of exception catches.");
4365 warning ("Executable may not have been compiled debuggable with HP aCC.");
4366 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4367 return 0;
4368 }
4369 }
4370
4371 /* Next look for the catch enable flag provided end.o */
4372 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4373 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4374 if (sym) /* sometimes present in debug info */
4375 {
4376 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4377 hp_cxx_exception_support = 1;
4378 }
4379 else
4380 /* otherwise look in SOM symbol dict. */
4381 {
4382 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4383 if (msym)
4384 {
4385 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4386 hp_cxx_exception_support = 1;
4387 }
4388 else
4389 {
4390 warning ("Unable to enable interception of exception throws.");
4391 warning ("Executable may not have been compiled debuggable with HP aCC.");
4392 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4393 return 0;
4394 }
4395 }
4396
4397 /* Set the flags */
4398 hp_cxx_exception_support = 2; /* everything worked so far */
4399 hp_cxx_exception_support_initialized = 1;
4400 exception_support_initialized = 1;
4401
4402 return 1;
4403 }
4404
4405 /* Target operation for enabling or disabling interception of
4406 exception events.
4407 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4408 ENABLE is either 0 (disable) or 1 (enable).
4409 Return value is NULL if no support found;
4410 -1 if something went wrong,
4411 or a pointer to a symtab/line struct if the breakpointable
4412 address was found. */
4413
4414 struct symtab_and_line *
4415 child_enable_exception_callback (enum exception_event_kind kind, int enable)
4416 {
4417 char buf[4];
4418
4419 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4420 if (!initialize_hp_cxx_exception_support ())
4421 return NULL;
4422
4423 switch (hp_cxx_exception_support)
4424 {
4425 case 0:
4426 /* Assuming no HP support at all */
4427 return NULL;
4428 case 1:
4429 /* HP support should be present, but something went wrong */
4430 return (struct symtab_and_line *) -1; /* yuck! */
4431 /* there may be other cases in the future */
4432 }
4433
4434 /* Set the EH hook to point to the callback routine */
4435 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4436 /* pai: (temp) FIXME should there be a pack operation first? */
4437 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4438 {
4439 warning ("Could not write to target memory for exception event callback.");
4440 warning ("Interception of exception events may not work.");
4441 return (struct symtab_and_line *) -1;
4442 }
4443 if (enable)
4444 {
4445 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4446 if (PIDGET (inferior_ptid) > 0)
4447 {
4448 if (setup_d_pid_in_inferior ())
4449 return (struct symtab_and_line *) -1;
4450 }
4451 else
4452 {
4453 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4454 return (struct symtab_and_line *) -1;
4455 }
4456 }
4457
4458 switch (kind)
4459 {
4460 case EX_EVENT_THROW:
4461 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4462 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4463 {
4464 warning ("Couldn't enable exception throw interception.");
4465 return (struct symtab_and_line *) -1;
4466 }
4467 break;
4468 case EX_EVENT_CATCH:
4469 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4470 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4471 {
4472 warning ("Couldn't enable exception catch interception.");
4473 return (struct symtab_and_line *) -1;
4474 }
4475 break;
4476 default:
4477 error ("Request to enable unknown or unsupported exception event.");
4478 }
4479
4480 /* Copy break address into new sal struct, malloc'ing if needed. */
4481 if (!break_callback_sal)
4482 {
4483 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4484 }
4485 init_sal (break_callback_sal);
4486 break_callback_sal->symtab = NULL;
4487 break_callback_sal->pc = eh_break_addr;
4488 break_callback_sal->line = 0;
4489 break_callback_sal->end = eh_break_addr;
4490
4491 return break_callback_sal;
4492 }
4493
4494 /* Record some information about the current exception event */
4495 static struct exception_event_record current_ex_event;
4496 /* Convenience struct */
4497 static struct symtab_and_line null_symtab_and_line =
4498 {NULL, 0, 0, 0};
4499
4500 /* Report current exception event. Returns a pointer to a record
4501 that describes the kind of the event, where it was thrown from,
4502 and where it will be caught. More information may be reported
4503 in the future */
4504 struct exception_event_record *
4505 child_get_current_exception_event (void)
4506 {
4507 CORE_ADDR event_kind;
4508 CORE_ADDR throw_addr;
4509 CORE_ADDR catch_addr;
4510 struct frame_info *fi, *curr_frame;
4511 int level = 1;
4512
4513 curr_frame = get_current_frame ();
4514 if (!curr_frame)
4515 return (struct exception_event_record *) NULL;
4516
4517 /* Go up one frame to __d_eh_notify_callback, because at the
4518 point when this code is executed, there's garbage in the
4519 arguments of __d_eh_break. */
4520 fi = find_relative_frame (curr_frame, &level);
4521 if (level != 0)
4522 return (struct exception_event_record *) NULL;
4523
4524 select_frame (fi);
4525
4526 /* Read in the arguments */
4527 /* __d_eh_notify_callback() is called with 3 arguments:
4528 1. event kind catch or throw
4529 2. the target address if known
4530 3. a flag -- not sure what this is. pai/1997-07-17 */
4531 event_kind = read_register (ARG0_REGNUM);
4532 catch_addr = read_register (ARG1_REGNUM);
4533
4534 /* Now go down to a user frame */
4535 /* For a throw, __d_eh_break is called by
4536 __d_eh_notify_callback which is called by
4537 __notify_throw which is called
4538 from user code.
4539 For a catch, __d_eh_break is called by
4540 __d_eh_notify_callback which is called by
4541 <stackwalking stuff> which is called by
4542 __throw__<stuff> or __rethrow_<stuff> which is called
4543 from user code. */
4544 /* FIXME: Don't use such magic numbers; search for the frames */
4545 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4546 fi = find_relative_frame (curr_frame, &level);
4547 if (level != 0)
4548 return (struct exception_event_record *) NULL;
4549
4550 select_frame (fi);
4551 throw_addr = get_frame_pc (fi);
4552
4553 /* Go back to original (top) frame */
4554 select_frame (curr_frame);
4555
4556 current_ex_event.kind = (enum exception_event_kind) event_kind;
4557 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4558 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4559
4560 return &current_ex_event;
4561 }
4562
4563 /* Instead of this nasty cast, add a method pvoid() that prints out a
4564 host VOID data type (remember %p isn't portable). */
4565
4566 static CORE_ADDR
4567 hppa_pointer_to_address_hack (void *ptr)
4568 {
4569 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
4570 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
4571 }
4572
4573 static void
4574 unwind_command (char *exp, int from_tty)
4575 {
4576 CORE_ADDR address;
4577 struct unwind_table_entry *u;
4578
4579 /* If we have an expression, evaluate it and use it as the address. */
4580
4581 if (exp != 0 && *exp != 0)
4582 address = parse_and_eval_address (exp);
4583 else
4584 return;
4585
4586 u = find_unwind_entry (address);
4587
4588 if (!u)
4589 {
4590 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4591 return;
4592 }
4593
4594 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4595 paddr_nz (hppa_pointer_to_address_hack (u)));
4596
4597 printf_unfiltered ("\tregion_start = ");
4598 print_address (u->region_start, gdb_stdout);
4599
4600 printf_unfiltered ("\n\tregion_end = ");
4601 print_address (u->region_end, gdb_stdout);
4602
4603 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4604
4605 printf_unfiltered ("\n\tflags =");
4606 pif (Cannot_unwind);
4607 pif (Millicode);
4608 pif (Millicode_save_sr0);
4609 pif (Entry_SR);
4610 pif (Args_stored);
4611 pif (Variable_Frame);
4612 pif (Separate_Package_Body);
4613 pif (Frame_Extension_Millicode);
4614 pif (Stack_Overflow_Check);
4615 pif (Two_Instruction_SP_Increment);
4616 pif (Ada_Region);
4617 pif (Save_SP);
4618 pif (Save_RP);
4619 pif (Save_MRP_in_frame);
4620 pif (extn_ptr_defined);
4621 pif (Cleanup_defined);
4622 pif (MPE_XL_interrupt_marker);
4623 pif (HP_UX_interrupt_marker);
4624 pif (Large_frame);
4625
4626 putchar_unfiltered ('\n');
4627
4628 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4629
4630 pin (Region_description);
4631 pin (Entry_FR);
4632 pin (Entry_GR);
4633 pin (Total_frame_size);
4634 }
4635
4636 #ifdef PREPARE_TO_PROCEED
4637
4638 /* If the user has switched threads, and there is a breakpoint
4639 at the old thread's pc location, then switch to that thread
4640 and return TRUE, else return FALSE and don't do a thread
4641 switch (or rather, don't seem to have done a thread switch).
4642
4643 Ptrace-based gdb will always return FALSE to the thread-switch
4644 query, and thus also to PREPARE_TO_PROCEED.
4645
4646 The important thing is whether there is a BPT instruction,
4647 not how many user breakpoints there are. So we have to worry
4648 about things like these:
4649
4650 o Non-bp stop -- NO
4651
4652 o User hits bp, no switch -- NO
4653
4654 o User hits bp, switches threads -- YES
4655
4656 o User hits bp, deletes bp, switches threads -- NO
4657
4658 o User hits bp, deletes one of two or more bps
4659 at that PC, user switches threads -- YES
4660
4661 o Plus, since we're buffering events, the user may have hit a
4662 breakpoint, deleted the breakpoint and then gotten another
4663 hit on that same breakpoint on another thread which
4664 actually hit before the delete. (FIXME in breakpoint.c
4665 so that "dead" breakpoints are ignored?) -- NO
4666
4667 For these reasons, we have to violate information hiding and
4668 call "breakpoint_here_p". If core gdb thinks there is a bpt
4669 here, that's what counts, as core gdb is the one which is
4670 putting the BPT instruction in and taking it out.
4671
4672 Note that this implementation is potentially redundant now that
4673 default_prepare_to_proceed() has been added.
4674
4675 FIXME This may not support switching threads after Ctrl-C
4676 correctly. The default implementation does support this. */
4677 int
4678 hppa_prepare_to_proceed (void)
4679 {
4680 pid_t old_thread;
4681 pid_t current_thread;
4682
4683 old_thread = hppa_switched_threads (PIDGET (inferior_ptid));
4684 if (old_thread != 0)
4685 {
4686 /* Switched over from "old_thread". Try to do
4687 as little work as possible, 'cause mostly
4688 we're going to switch back. */
4689 CORE_ADDR new_pc;
4690 CORE_ADDR old_pc = read_pc ();
4691
4692 /* Yuk, shouldn't use global to specify current
4693 thread. But that's how gdb does it. */
4694 current_thread = PIDGET (inferior_ptid);
4695 inferior_ptid = pid_to_ptid (old_thread);
4696
4697 new_pc = read_pc ();
4698 if (new_pc != old_pc /* If at same pc, no need */
4699 && breakpoint_here_p (new_pc))
4700 {
4701 /* User hasn't deleted the BP.
4702 Return TRUE, finishing switch to "old_thread". */
4703 flush_cached_frames ();
4704 registers_changed ();
4705 #if 0
4706 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
4707 current_thread, PIDGET (inferior_ptid));
4708 #endif
4709
4710 return 1;
4711 }
4712
4713 /* Otherwise switch back to the user-chosen thread. */
4714 inferior_ptid = pid_to_ptid (current_thread);
4715 new_pc = read_pc (); /* Re-prime register cache */
4716 }
4717
4718 return 0;
4719 }
4720 #endif /* PREPARE_TO_PROCEED */
4721
4722 void
4723 hppa_skip_permanent_breakpoint (void)
4724 {
4725 /* To step over a breakpoint instruction on the PA takes some
4726 fiddling with the instruction address queue.
4727
4728 When we stop at a breakpoint, the IA queue front (the instruction
4729 we're executing now) points at the breakpoint instruction, and
4730 the IA queue back (the next instruction to execute) points to
4731 whatever instruction we would execute after the breakpoint, if it
4732 were an ordinary instruction. This is the case even if the
4733 breakpoint is in the delay slot of a branch instruction.
4734
4735 Clearly, to step past the breakpoint, we need to set the queue
4736 front to the back. But what do we put in the back? What
4737 instruction comes after that one? Because of the branch delay
4738 slot, the next insn is always at the back + 4. */
4739 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4740 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4741
4742 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4743 /* We can leave the tail's space the same, since there's no jump. */
4744 }
4745
4746 /* Copy the function value from VALBUF into the proper location
4747 for a function return.
4748
4749 Called only in the context of the "return" command. */
4750
4751 void
4752 hppa_store_return_value (struct type *type, char *valbuf)
4753 {
4754 /* For software floating point, the return value goes into the
4755 integer registers. But we do not have any flag to key this on,
4756 so we always store the value into the integer registers.
4757
4758 If its a float value, then we also store it into the floating
4759 point registers. */
4760 deprecated_write_register_bytes (REGISTER_BYTE (28)
4761 + (TYPE_LENGTH (type) > 4
4762 ? (8 - TYPE_LENGTH (type))
4763 : (4 - TYPE_LENGTH (type))),
4764 valbuf, TYPE_LENGTH (type));
4765 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
4766 deprecated_write_register_bytes (REGISTER_BYTE (FP4_REGNUM),
4767 valbuf, TYPE_LENGTH (type));
4768 }
4769
4770 /* Copy the function's return value into VALBUF.
4771
4772 This function is called only in the context of "target function calls",
4773 ie. when the debugger forces a function to be called in the child, and
4774 when the debugger forces a fucntion to return prematurely via the
4775 "return" command. */
4776
4777 void
4778 hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4779 {
4780 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
4781 memcpy (valbuf,
4782 (char *)regbuf + REGISTER_BYTE (FP4_REGNUM),
4783 TYPE_LENGTH (type));
4784 else
4785 memcpy (valbuf,
4786 ((char *)regbuf
4787 + REGISTER_BYTE (28)
4788 + (TYPE_LENGTH (type) > 4
4789 ? (8 - TYPE_LENGTH (type))
4790 : (4 - TYPE_LENGTH (type)))),
4791 TYPE_LENGTH (type));
4792 }
4793
4794 int
4795 hppa_reg_struct_has_addr (int gcc_p, struct type *type)
4796 {
4797 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4798 via a pointer regardless of its type or the compiler used. */
4799 return (TYPE_LENGTH (type) > 8);
4800 }
4801
4802 int
4803 hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
4804 {
4805 /* Stack grows upward */
4806 return (lhs > rhs);
4807 }
4808
4809 CORE_ADDR
4810 hppa_stack_align (CORE_ADDR sp)
4811 {
4812 /* elz: adjust the quantity to the next highest value which is
4813 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4814 On hppa the sp must always be kept 64-bit aligned */
4815 return ((sp % 8) ? (sp + 7) & -8 : sp);
4816 }
4817
4818 int
4819 hppa_pc_requires_run_before_use (CORE_ADDR pc)
4820 {
4821 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4822
4823 An example of this occurs when an a.out is linked against a foo.sl.
4824 The foo.sl defines a global bar(), and the a.out declares a signature
4825 for bar(). However, the a.out doesn't directly call bar(), but passes
4826 its address in another call.
4827
4828 If you have this scenario and attempt to "break bar" before running,
4829 gdb will find a minimal symbol for bar() in the a.out. But that
4830 symbol's address will be negative. What this appears to denote is
4831 an index backwards from the base of the procedure linkage table (PLT)
4832 into the data linkage table (DLT), the end of which is contiguous
4833 with the start of the PLT. This is clearly not a valid address for
4834 us to set a breakpoint on.
4835
4836 Note that one must be careful in how one checks for a negative address.
4837 0xc0000000 is a legitimate address of something in a shared text
4838 segment, for example. Since I don't know what the possible range
4839 is of these "really, truly negative" addresses that come from the
4840 minimal symbols, I'm resorting to the gross hack of checking the
4841 top byte of the address for all 1's. Sigh. */
4842
4843 return (!target_has_stack && (pc & 0xFF000000));
4844 }
4845
4846 int
4847 hppa_instruction_nullified (void)
4848 {
4849 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4850 avoid the type cast. I'm leaving it as is for now as I'm doing
4851 semi-mechanical multiarching-related changes. */
4852 const int ipsw = (int) read_register (IPSW_REGNUM);
4853 const int flags = (int) read_register (FLAGS_REGNUM);
4854
4855 return ((ipsw & 0x00200000) && !(flags & 0x2));
4856 }
4857
4858 int
4859 hppa_register_raw_size (int reg_nr)
4860 {
4861 /* All registers have the same size. */
4862 return REGISTER_SIZE;
4863 }
4864
4865 /* Index within the register vector of the first byte of the space i
4866 used for register REG_NR. */
4867
4868 int
4869 hppa_register_byte (int reg_nr)
4870 {
4871 return reg_nr * 4;
4872 }
4873
4874 /* Return the GDB type object for the "standard" data type of data
4875 in register N. */
4876
4877 struct type *
4878 hppa_register_virtual_type (int reg_nr)
4879 {
4880 if (reg_nr < FP4_REGNUM)
4881 return builtin_type_int;
4882 else
4883 return builtin_type_float;
4884 }
4885
4886 /* Store the address of the place in which to copy the structure the
4887 subroutine will return. This is called from call_function. */
4888
4889 void
4890 hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4891 {
4892 write_register (28, addr);
4893 }
4894
4895 CORE_ADDR
4896 hppa_extract_struct_value_address (char *regbuf)
4897 {
4898 /* Extract from an array REGBUF containing the (raw) register state
4899 the address in which a function should return its structure value,
4900 as a CORE_ADDR (or an expression that can be used as one). */
4901 /* FIXME: brobecker 2002-12-26.
4902 The current implementation is historical, but we should eventually
4903 implement it in a more robust manner as it relies on the fact that
4904 the address size is equal to the size of an int* _on the host_...
4905 One possible implementation that crossed my mind is to use
4906 extract_address. */
4907 return (*(int *)(regbuf + REGISTER_BYTE (28)));
4908 }
4909
4910 /* Return True if REGNUM is not a register available to the user
4911 through ptrace(). */
4912
4913 int
4914 hppa_cannot_store_register (int regnum)
4915 {
4916 return (regnum == 0
4917 || regnum == PCSQ_HEAD_REGNUM
4918 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
4919 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
4920
4921 }
4922
4923 CORE_ADDR
4924 hppa_frame_args_address (struct frame_info *fi)
4925 {
4926 return get_frame_base (fi);
4927 }
4928
4929 CORE_ADDR
4930 hppa_frame_locals_address (struct frame_info *fi)
4931 {
4932 return get_frame_base (fi);
4933 }
4934
4935 int
4936 hppa_frame_num_args (struct frame_info *frame)
4937 {
4938 /* We can't tell how many args there are now that the C compiler delays
4939 popping them. */
4940 return -1;
4941 }
4942
4943 CORE_ADDR
4944 hppa_smash_text_address (CORE_ADDR addr)
4945 {
4946 /* The low two bits of the PC on the PA contain the privilege level.
4947 Some genius implementing a (non-GCC) compiler apparently decided
4948 this means that "addresses" in a text section therefore include a
4949 privilege level, and thus symbol tables should contain these bits.
4950 This seems like a bonehead thing to do--anyway, it seems to work
4951 for our purposes to just ignore those bits. */
4952
4953 return (addr &= ~0x3);
4954 }
4955
4956 static struct gdbarch *
4957 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4958 {
4959 struct gdbarch *gdbarch;
4960
4961 /* Try to determine the ABI of the object we are loading. */
4962 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
4963 {
4964 /* If it's a SOM file, assume it's HP/UX SOM. */
4965 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
4966 info.osabi = GDB_OSABI_HPUX_SOM;
4967 }
4968
4969 /* find a candidate among the list of pre-declared architectures. */
4970 arches = gdbarch_list_lookup_by_info (arches, &info);
4971 if (arches != NULL)
4972 return (arches->gdbarch);
4973
4974 /* If none found, then allocate and initialize one. */
4975 gdbarch = gdbarch_alloc (&info, NULL);
4976
4977 /* Hook in ABI-specific overrides, if they have been registered. */
4978 gdbarch_init_osabi (info, gdbarch);
4979
4980 set_gdbarch_reg_struct_has_addr (gdbarch, hppa_reg_struct_has_addr);
4981 set_gdbarch_function_start_offset (gdbarch, 0);
4982 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
4983 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
4984 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
4985 set_gdbarch_in_solib_return_trampoline (gdbarch,
4986 hppa_in_solib_return_trampoline);
4987 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
4988 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
4989 set_gdbarch_stack_align (gdbarch, hppa_stack_align);
4990 set_gdbarch_decr_pc_after_break (gdbarch, 0);
4991 set_gdbarch_register_size (gdbarch, 4);
4992 set_gdbarch_num_regs (gdbarch, hppa_num_regs);
4993 set_gdbarch_fp_regnum (gdbarch, 3);
4994 set_gdbarch_sp_regnum (gdbarch, 30);
4995 set_gdbarch_fp0_regnum (gdbarch, 64);
4996 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
4997 set_gdbarch_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM);
4998 set_gdbarch_register_raw_size (gdbarch, hppa_register_raw_size);
4999 set_gdbarch_register_bytes (gdbarch, hppa_num_regs * 4);
5000 set_gdbarch_register_byte (gdbarch, hppa_register_byte);
5001 set_gdbarch_register_virtual_size (gdbarch, hppa_register_raw_size);
5002 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4);
5003 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
5004 set_gdbarch_register_virtual_type (gdbarch, hppa_register_virtual_type);
5005 set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return);
5006 set_gdbarch_deprecated_extract_return_value (gdbarch,
5007 hppa_extract_return_value);
5008 set_gdbarch_use_struct_convention (gdbarch, hppa_use_struct_convention);
5009 set_gdbarch_deprecated_store_return_value (gdbarch, hppa_store_return_value);
5010 set_gdbarch_deprecated_extract_struct_value_address
5011 (gdbarch, hppa_extract_struct_value_address);
5012 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
5013 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
5014 set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain);
5015 set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
5016 set_gdbarch_frameless_function_invocation
5017 (gdbarch, hppa_frameless_function_invocation);
5018 set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
5019 set_gdbarch_frame_args_address (gdbarch, hppa_frame_args_address);
5020 set_gdbarch_frame_locals_address (gdbarch, hppa_frame_locals_address);
5021 set_gdbarch_frame_num_args (gdbarch, hppa_frame_num_args);
5022 set_gdbarch_frame_args_skip (gdbarch, 0);
5023 set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame);
5024 set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame);
5025 set_gdbarch_call_dummy_length (gdbarch, INSTRUCTION_SIZE * 28);
5026 /* set_gdbarch_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
5027 set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments);
5028 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5029 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5030 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5031 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
5032 set_gdbarch_read_fp (gdbarch, hppa_target_read_fp);
5033
5034 return gdbarch;
5035 }
5036
5037 static void
5038 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5039 {
5040 /* Nothing to print for the moment. */
5041 }
5042
5043 void
5044 _initialize_hppa_tdep (void)
5045 {
5046 struct cmd_list_element *c;
5047 void break_at_finish_command (char *arg, int from_tty);
5048 void tbreak_at_finish_command (char *arg, int from_tty);
5049 void break_at_finish_at_depth_command (char *arg, int from_tty);
5050
5051 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
5052 tm_print_insn = print_insn_hppa;
5053
5054 add_cmd ("unwind", class_maintenance, unwind_command,
5055 "Print unwind table entry at given address.",
5056 &maintenanceprintlist);
5057
5058 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5059 break_at_finish_command,
5060 concat ("Set breakpoint at procedure exit. \n\
5061 Argument may be function name, or \"*\" and an address.\n\
5062 If function is specified, break at end of code for that function.\n\
5063 If an address is specified, break at the end of the function that contains \n\
5064 that exact address.\n",
5065 "With no arg, uses current execution address of selected stack frame.\n\
5066 This is useful for breaking on return to a stack frame.\n\
5067 \n\
5068 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5069 \n\
5070 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5071 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5072 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5073 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5074 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5075
5076 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5077 tbreak_at_finish_command,
5078 "Set temporary breakpoint at procedure exit. Either there should\n\
5079 be no argument or the argument must be a depth.\n"), NULL);
5080 set_cmd_completer (c, location_completer);
5081
5082 if (xdb_commands)
5083 deprecate_cmd (add_com ("bx", class_breakpoint,
5084 break_at_finish_at_depth_command,
5085 "Set breakpoint at procedure exit. Either there should\n\
5086 be no argument or the argument must be a depth.\n"), NULL);
5087 }
5088
This page took 0.134988 seconds and 4 git commands to generate.