* valprint.c (print_longest): Fix a syntax error in #ifdef
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <signal.h>
38
39 #ifdef COFF_ENCAPSULATE
40 #include "a.out.encap.h"
41 #else
42 #endif
43 #ifndef N_SET_MAGIC
44 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
45 #endif
46
47 /*#include <sys/user.h> After a.out.h */
48 #include <sys/file.h>
49 #include <sys/stat.h>
50 #include "wait.h"
51
52 #include "gdbcore.h"
53 #include "gdbcmd.h"
54 #include "target.h"
55 #include "symfile.h"
56 #include "objfiles.h"
57
58 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
59
60 static int hppa_alignof PARAMS ((struct type *));
61
62 CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
63
64 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
65
66 static int is_branch PARAMS ((unsigned long));
67
68 static int inst_saves_gr PARAMS ((unsigned long));
69
70 static int inst_saves_fr PARAMS ((unsigned long));
71
72 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
73
74 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
75
76 static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
77 const struct unwind_table_entry *));
78
79 static void read_unwind_info PARAMS ((struct objfile *));
80
81 static void internalize_unwinds PARAMS ((struct objfile *,
82 struct unwind_table_entry *,
83 asection *, unsigned int,
84 unsigned int, CORE_ADDR));
85 static void pa_print_registers PARAMS ((char *, int, int));
86 static void pa_print_fp_reg PARAMS ((int));
87
88 \f
89 /* Routines to extract various sized constants out of hppa
90 instructions. */
91
92 /* This assumes that no garbage lies outside of the lower bits of
93 value. */
94
95 int
96 sign_extend (val, bits)
97 unsigned val, bits;
98 {
99 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
100 }
101
102 /* For many immediate values the sign bit is the low bit! */
103
104 int
105 low_sign_extend (val, bits)
106 unsigned val, bits;
107 {
108 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
109 }
110 /* extract the immediate field from a ld{bhw}s instruction */
111
112 unsigned
113 get_field (val, from, to)
114 unsigned val, from, to;
115 {
116 val = val >> 31 - to;
117 return val & ((1 << 32 - from) - 1);
118 }
119
120 unsigned
121 set_field (val, from, to, new_val)
122 unsigned *val, from, to;
123 {
124 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
125 return *val = *val & mask | (new_val << (31 - from));
126 }
127
128 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
129
130 extract_3 (word)
131 unsigned word;
132 {
133 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
134 }
135
136 extract_5_load (word)
137 unsigned word;
138 {
139 return low_sign_extend (word >> 16 & MASK_5, 5);
140 }
141
142 /* extract the immediate field from a st{bhw}s instruction */
143
144 int
145 extract_5_store (word)
146 unsigned word;
147 {
148 return low_sign_extend (word & MASK_5, 5);
149 }
150
151 /* extract the immediate field from a break instruction */
152
153 unsigned
154 extract_5r_store (word)
155 unsigned word;
156 {
157 return (word & MASK_5);
158 }
159
160 /* extract the immediate field from a {sr}sm instruction */
161
162 unsigned
163 extract_5R_store (word)
164 unsigned word;
165 {
166 return (word >> 16 & MASK_5);
167 }
168
169 /* extract an 11 bit immediate field */
170
171 int
172 extract_11 (word)
173 unsigned word;
174 {
175 return low_sign_extend (word & MASK_11, 11);
176 }
177
178 /* extract a 14 bit immediate field */
179
180 int
181 extract_14 (word)
182 unsigned word;
183 {
184 return low_sign_extend (word & MASK_14, 14);
185 }
186
187 /* deposit a 14 bit constant in a word */
188
189 unsigned
190 deposit_14 (opnd, word)
191 int opnd;
192 unsigned word;
193 {
194 unsigned sign = (opnd < 0 ? 1 : 0);
195
196 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
197 }
198
199 /* extract a 21 bit constant */
200
201 int
202 extract_21 (word)
203 unsigned word;
204 {
205 int val;
206
207 word &= MASK_21;
208 word <<= 11;
209 val = GET_FIELD (word, 20, 20);
210 val <<= 11;
211 val |= GET_FIELD (word, 9, 19);
212 val <<= 2;
213 val |= GET_FIELD (word, 5, 6);
214 val <<= 5;
215 val |= GET_FIELD (word, 0, 4);
216 val <<= 2;
217 val |= GET_FIELD (word, 7, 8);
218 return sign_extend (val, 21) << 11;
219 }
220
221 /* deposit a 21 bit constant in a word. Although 21 bit constants are
222 usually the top 21 bits of a 32 bit constant, we assume that only
223 the low 21 bits of opnd are relevant */
224
225 unsigned
226 deposit_21 (opnd, word)
227 unsigned opnd, word;
228 {
229 unsigned val = 0;
230
231 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
232 val <<= 2;
233 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
234 val <<= 2;
235 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
236 val <<= 11;
237 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
238 val <<= 1;
239 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
240 return word | val;
241 }
242
243 /* extract a 12 bit constant from branch instructions */
244
245 int
246 extract_12 (word)
247 unsigned word;
248 {
249 return sign_extend (GET_FIELD (word, 19, 28) |
250 GET_FIELD (word, 29, 29) << 10 |
251 (word & 0x1) << 11, 12) << 2;
252 }
253
254 /* extract a 17 bit constant from branch instructions, returning the
255 19 bit signed value. */
256
257 int
258 extract_17 (word)
259 unsigned word;
260 {
261 return sign_extend (GET_FIELD (word, 19, 28) |
262 GET_FIELD (word, 29, 29) << 10 |
263 GET_FIELD (word, 11, 15) << 11 |
264 (word & 0x1) << 16, 17) << 2;
265 }
266 \f
267
268 /* Compare the start address for two unwind entries returning 1 if
269 the first address is larger than the second, -1 if the second is
270 larger than the first, and zero if they are equal. */
271
272 static int
273 compare_unwind_entries (a, b)
274 const struct unwind_table_entry *a;
275 const struct unwind_table_entry *b;
276 {
277 if (a->region_start > b->region_start)
278 return 1;
279 else if (a->region_start < b->region_start)
280 return -1;
281 else
282 return 0;
283 }
284
285 static void
286 internalize_unwinds (objfile, table, section, entries, size, text_offset)
287 struct objfile *objfile;
288 struct unwind_table_entry *table;
289 asection *section;
290 unsigned int entries, size;
291 CORE_ADDR text_offset;
292 {
293 /* We will read the unwind entries into temporary memory, then
294 fill in the actual unwind table. */
295 if (size > 0)
296 {
297 unsigned long tmp;
298 unsigned i;
299 char *buf = alloca (size);
300
301 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
302
303 /* Now internalize the information being careful to handle host/target
304 endian issues. */
305 for (i = 0; i < entries; i++)
306 {
307 table[i].region_start = bfd_get_32 (objfile->obfd,
308 (bfd_byte *)buf);
309 table[i].region_start += text_offset;
310 buf += 4;
311 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
312 table[i].region_end += text_offset;
313 buf += 4;
314 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
315 buf += 4;
316 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
317 table[i].Millicode = (tmp >> 30) & 0x1;
318 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
319 table[i].Region_description = (tmp >> 27) & 0x3;
320 table[i].reserved1 = (tmp >> 26) & 0x1;
321 table[i].Entry_SR = (tmp >> 25) & 0x1;
322 table[i].Entry_FR = (tmp >> 21) & 0xf;
323 table[i].Entry_GR = (tmp >> 16) & 0x1f;
324 table[i].Args_stored = (tmp >> 15) & 0x1;
325 table[i].Variable_Frame = (tmp >> 14) & 0x1;
326 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
327 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
328 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
329 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
330 table[i].Ada_Region = (tmp >> 9) & 0x1;
331 table[i].reserved2 = (tmp >> 5) & 0xf;
332 table[i].Save_SP = (tmp >> 4) & 0x1;
333 table[i].Save_RP = (tmp >> 3) & 0x1;
334 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
335 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
336 table[i].Cleanup_defined = tmp & 0x1;
337 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
338 buf += 4;
339 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
340 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
341 table[i].Large_frame = (tmp >> 29) & 0x1;
342 table[i].reserved4 = (tmp >> 27) & 0x3;
343 table[i].Total_frame_size = tmp & 0x7ffffff;
344 }
345 }
346 }
347
348 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
349 the object file. This info is used mainly by find_unwind_entry() to find
350 out the stack frame size and frame pointer used by procedures. We put
351 everything on the psymbol obstack in the objfile so that it automatically
352 gets freed when the objfile is destroyed. */
353
354 static void
355 read_unwind_info (objfile)
356 struct objfile *objfile;
357 {
358 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
359 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
360 unsigned index, unwind_entries, elf_unwind_entries;
361 unsigned stub_entries, total_entries;
362 CORE_ADDR text_offset;
363 struct obj_unwind_info *ui;
364
365 text_offset = ANOFFSET (objfile->section_offsets, 0);
366 ui = obstack_alloc (&objfile->psymbol_obstack,
367 sizeof (struct obj_unwind_info));
368
369 ui->table = NULL;
370 ui->cache = NULL;
371 ui->last = -1;
372
373 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
374 section in ELF at the moment. */
375 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
376 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
377 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
378
379 /* Get sizes and unwind counts for all sections. */
380 if (unwind_sec)
381 {
382 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
383 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
384 }
385 else
386 {
387 unwind_size = 0;
388 unwind_entries = 0;
389 }
390
391 if (elf_unwind_sec)
392 {
393 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
394 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
395 }
396 else
397 {
398 elf_unwind_size = 0;
399 elf_unwind_entries = 0;
400 }
401
402 if (stub_unwind_sec)
403 {
404 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
405 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
406 }
407 else
408 {
409 stub_unwind_size = 0;
410 stub_entries = 0;
411 }
412
413 /* Compute total number of unwind entries and their total size. */
414 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
415 total_size = total_entries * sizeof (struct unwind_table_entry);
416
417 /* Allocate memory for the unwind table. */
418 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
419 ui->last = total_entries - 1;
420
421 /* Internalize the standard unwind entries. */
422 index = 0;
423 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
424 unwind_entries, unwind_size, text_offset);
425 index += unwind_entries;
426 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
427 elf_unwind_entries, elf_unwind_size, text_offset);
428 index += elf_unwind_entries;
429
430 /* Now internalize the stub unwind entries. */
431 if (stub_unwind_size > 0)
432 {
433 unsigned int i;
434 char *buf = alloca (stub_unwind_size);
435
436 /* Read in the stub unwind entries. */
437 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
438 0, stub_unwind_size);
439
440 /* Now convert them into regular unwind entries. */
441 for (i = 0; i < stub_entries; i++, index++)
442 {
443 /* Clear out the next unwind entry. */
444 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
445
446 /* Convert offset & size into region_start and region_end.
447 Stuff away the stub type into "reserved" fields. */
448 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
449 (bfd_byte *) buf);
450 ui->table[index].region_start += text_offset;
451 buf += 4;
452 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
453 (bfd_byte *) buf);
454 buf += 2;
455 ui->table[index].region_end
456 = ui->table[index].region_start + 4 *
457 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
458 buf += 2;
459 }
460
461 }
462
463 /* Unwind table needs to be kept sorted. */
464 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
465 compare_unwind_entries);
466
467 /* Keep a pointer to the unwind information. */
468 objfile->obj_private = (PTR) ui;
469 }
470
471 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
472 of the objfiles seeking the unwind table entry for this PC. Each objfile
473 contains a sorted list of struct unwind_table_entry. Since we do a binary
474 search of the unwind tables, we depend upon them to be sorted. */
475
476 static struct unwind_table_entry *
477 find_unwind_entry(pc)
478 CORE_ADDR pc;
479 {
480 int first, middle, last;
481 struct objfile *objfile;
482
483 ALL_OBJFILES (objfile)
484 {
485 struct obj_unwind_info *ui;
486
487 ui = OBJ_UNWIND_INFO (objfile);
488
489 if (!ui)
490 {
491 read_unwind_info (objfile);
492 ui = OBJ_UNWIND_INFO (objfile);
493 }
494
495 /* First, check the cache */
496
497 if (ui->cache
498 && pc >= ui->cache->region_start
499 && pc <= ui->cache->region_end)
500 return ui->cache;
501
502 /* Not in the cache, do a binary search */
503
504 first = 0;
505 last = ui->last;
506
507 while (first <= last)
508 {
509 middle = (first + last) / 2;
510 if (pc >= ui->table[middle].region_start
511 && pc <= ui->table[middle].region_end)
512 {
513 ui->cache = &ui->table[middle];
514 return &ui->table[middle];
515 }
516
517 if (pc < ui->table[middle].region_start)
518 last = middle - 1;
519 else
520 first = middle + 1;
521 }
522 } /* ALL_OBJFILES() */
523 return NULL;
524 }
525
526 /* Return the adjustment necessary to make for addresses on the stack
527 as presented by hpread.c.
528
529 This is necessary because of the stack direction on the PA and the
530 bizarre way in which someone (?) decided they wanted to handle
531 frame pointerless code in GDB. */
532 int
533 hpread_adjust_stack_address (func_addr)
534 CORE_ADDR func_addr;
535 {
536 struct unwind_table_entry *u;
537
538 u = find_unwind_entry (func_addr);
539 if (!u)
540 return 0;
541 else
542 return u->Total_frame_size << 3;
543 }
544
545 /* Called to determine if PC is in an interrupt handler of some
546 kind. */
547
548 static int
549 pc_in_interrupt_handler (pc)
550 CORE_ADDR pc;
551 {
552 struct unwind_table_entry *u;
553 struct minimal_symbol *msym_us;
554
555 u = find_unwind_entry (pc);
556 if (!u)
557 return 0;
558
559 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
560 its frame isn't a pure interrupt frame. Deal with this. */
561 msym_us = lookup_minimal_symbol_by_pc (pc);
562
563 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
564 }
565
566 /* Called when no unwind descriptor was found for PC. Returns 1 if it
567 appears that PC is in a linker stub. */
568
569 static int
570 pc_in_linker_stub (pc)
571 CORE_ADDR pc;
572 {
573 int found_magic_instruction = 0;
574 int i;
575 char buf[4];
576
577 /* If unable to read memory, assume pc is not in a linker stub. */
578 if (target_read_memory (pc, buf, 4) != 0)
579 return 0;
580
581 /* We are looking for something like
582
583 ; $$dyncall jams RP into this special spot in the frame (RP')
584 ; before calling the "call stub"
585 ldw -18(sp),rp
586
587 ldsid (rp),r1 ; Get space associated with RP into r1
588 mtsp r1,sp ; Move it into space register 0
589 be,n 0(sr0),rp) ; back to your regularly scheduled program
590 */
591
592 /* Maximum known linker stub size is 4 instructions. Search forward
593 from the given PC, then backward. */
594 for (i = 0; i < 4; i++)
595 {
596 /* If we hit something with an unwind, stop searching this direction. */
597
598 if (find_unwind_entry (pc + i * 4) != 0)
599 break;
600
601 /* Check for ldsid (rp),r1 which is the magic instruction for a
602 return from a cross-space function call. */
603 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
604 {
605 found_magic_instruction = 1;
606 break;
607 }
608 /* Add code to handle long call/branch and argument relocation stubs
609 here. */
610 }
611
612 if (found_magic_instruction != 0)
613 return 1;
614
615 /* Now look backward. */
616 for (i = 0; i < 4; i++)
617 {
618 /* If we hit something with an unwind, stop searching this direction. */
619
620 if (find_unwind_entry (pc - i * 4) != 0)
621 break;
622
623 /* Check for ldsid (rp),r1 which is the magic instruction for a
624 return from a cross-space function call. */
625 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
626 {
627 found_magic_instruction = 1;
628 break;
629 }
630 /* Add code to handle long call/branch and argument relocation stubs
631 here. */
632 }
633 return found_magic_instruction;
634 }
635
636 static int
637 find_return_regnum(pc)
638 CORE_ADDR pc;
639 {
640 struct unwind_table_entry *u;
641
642 u = find_unwind_entry (pc);
643
644 if (!u)
645 return RP_REGNUM;
646
647 if (u->Millicode)
648 return 31;
649
650 return RP_REGNUM;
651 }
652
653 /* Return size of frame, or -1 if we should use a frame pointer. */
654 int
655 find_proc_framesize (pc)
656 CORE_ADDR pc;
657 {
658 struct unwind_table_entry *u;
659 struct minimal_symbol *msym_us;
660
661 u = find_unwind_entry (pc);
662
663 if (!u)
664 {
665 if (pc_in_linker_stub (pc))
666 /* Linker stubs have a zero size frame. */
667 return 0;
668 else
669 return -1;
670 }
671
672 msym_us = lookup_minimal_symbol_by_pc (pc);
673
674 /* If Save_SP is set, and we're not in an interrupt or signal caller,
675 then we have a frame pointer. Use it. */
676 if (u->Save_SP && !pc_in_interrupt_handler (pc)
677 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
678 return -1;
679
680 return u->Total_frame_size << 3;
681 }
682
683 /* Return offset from sp at which rp is saved, or 0 if not saved. */
684 static int rp_saved PARAMS ((CORE_ADDR));
685
686 static int
687 rp_saved (pc)
688 CORE_ADDR pc;
689 {
690 struct unwind_table_entry *u;
691
692 u = find_unwind_entry (pc);
693
694 if (!u)
695 {
696 if (pc_in_linker_stub (pc))
697 /* This is the so-called RP'. */
698 return -24;
699 else
700 return 0;
701 }
702
703 if (u->Save_RP)
704 return -20;
705 else if (u->stub_type != 0)
706 {
707 switch (u->stub_type)
708 {
709 case EXPORT:
710 case IMPORT:
711 return -24;
712 case PARAMETER_RELOCATION:
713 return -8;
714 default:
715 return 0;
716 }
717 }
718 else
719 return 0;
720 }
721 \f
722 int
723 frameless_function_invocation (frame)
724 struct frame_info *frame;
725 {
726 struct unwind_table_entry *u;
727
728 u = find_unwind_entry (frame->pc);
729
730 if (u == 0)
731 return 0;
732
733 return (u->Total_frame_size == 0 && u->stub_type == 0);
734 }
735
736 CORE_ADDR
737 saved_pc_after_call (frame)
738 struct frame_info *frame;
739 {
740 int ret_regnum;
741 CORE_ADDR pc;
742 struct unwind_table_entry *u;
743
744 ret_regnum = find_return_regnum (get_frame_pc (frame));
745 pc = read_register (ret_regnum) & ~0x3;
746
747 /* If PC is in a linker stub, then we need to dig the address
748 the stub will return to out of the stack. */
749 u = find_unwind_entry (pc);
750 if (u && u->stub_type != 0)
751 return frame_saved_pc (frame);
752 else
753 return pc;
754 }
755 \f
756 CORE_ADDR
757 frame_saved_pc (frame)
758 struct frame_info *frame;
759 {
760 CORE_ADDR pc = get_frame_pc (frame);
761 struct unwind_table_entry *u;
762
763 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
764 at the base of the frame in an interrupt handler. Registers within
765 are saved in the exact same order as GDB numbers registers. How
766 convienent. */
767 if (pc_in_interrupt_handler (pc))
768 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
769
770 /* Deal with signal handler caller frames too. */
771 if (frame->signal_handler_caller)
772 {
773 CORE_ADDR rp;
774 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
775 return rp & ~0x3;
776 }
777
778 if (frameless_function_invocation (frame))
779 {
780 int ret_regnum;
781
782 ret_regnum = find_return_regnum (pc);
783
784 /* If the next frame is an interrupt frame or a signal
785 handler caller, then we need to look in the saved
786 register area to get the return pointer (the values
787 in the registers may not correspond to anything useful). */
788 if (frame->next
789 && (frame->next->signal_handler_caller
790 || pc_in_interrupt_handler (frame->next->pc)))
791 {
792 struct frame_saved_regs saved_regs;
793
794 get_frame_saved_regs (frame->next, &saved_regs);
795 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
796 {
797 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
798
799 /* Syscalls are really two frames. The syscall stub itself
800 with a return pointer in %rp and the kernel call with
801 a return pointer in %r31. We return the %rp variant
802 if %r31 is the same as frame->pc. */
803 if (pc == frame->pc)
804 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
805 }
806 else
807 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
808 }
809 else
810 pc = read_register (ret_regnum) & ~0x3;
811 }
812 else
813 {
814 int rp_offset;
815
816 restart:
817 rp_offset = rp_saved (pc);
818 /* Similar to code in frameless function case. If the next
819 frame is a signal or interrupt handler, then dig the right
820 information out of the saved register info. */
821 if (rp_offset == 0
822 && frame->next
823 && (frame->next->signal_handler_caller
824 || pc_in_interrupt_handler (frame->next->pc)))
825 {
826 struct frame_saved_regs saved_regs;
827
828 get_frame_saved_regs (frame->next, &saved_regs);
829 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
830 {
831 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
832
833 /* Syscalls are really two frames. The syscall stub itself
834 with a return pointer in %rp and the kernel call with
835 a return pointer in %r31. We return the %rp variant
836 if %r31 is the same as frame->pc. */
837 if (pc == frame->pc)
838 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
839 }
840 else
841 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
842 }
843 else if (rp_offset == 0)
844 pc = read_register (RP_REGNUM) & ~0x3;
845 else
846 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
847 }
848
849 /* If PC is inside a linker stub, then dig out the address the stub
850 will return to. */
851 u = find_unwind_entry (pc);
852 if (u && u->stub_type != 0)
853 goto restart;
854
855 return pc;
856 }
857 \f
858 /* We need to correct the PC and the FP for the outermost frame when we are
859 in a system call. */
860
861 void
862 init_extra_frame_info (fromleaf, frame)
863 int fromleaf;
864 struct frame_info *frame;
865 {
866 int flags;
867 int framesize;
868
869 if (frame->next && !fromleaf)
870 return;
871
872 /* If the next frame represents a frameless function invocation
873 then we have to do some adjustments that are normally done by
874 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
875 if (fromleaf)
876 {
877 /* Find the framesize of *this* frame without peeking at the PC
878 in the current frame structure (it isn't set yet). */
879 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
880
881 /* Now adjust our base frame accordingly. If we have a frame pointer
882 use it, else subtract the size of this frame from the current
883 frame. (we always want frame->frame to point at the lowest address
884 in the frame). */
885 if (framesize == -1)
886 frame->frame = read_register (FP_REGNUM);
887 else
888 frame->frame -= framesize;
889 return;
890 }
891
892 flags = read_register (FLAGS_REGNUM);
893 if (flags & 2) /* In system call? */
894 frame->pc = read_register (31) & ~0x3;
895
896 /* The outermost frame is always derived from PC-framesize
897
898 One might think frameless innermost frames should have
899 a frame->frame that is the same as the parent's frame->frame.
900 That is wrong; frame->frame in that case should be the *high*
901 address of the parent's frame. It's complicated as hell to
902 explain, but the parent *always* creates some stack space for
903 the child. So the child actually does have a frame of some
904 sorts, and its base is the high address in its parent's frame. */
905 framesize = find_proc_framesize(frame->pc);
906 if (framesize == -1)
907 frame->frame = read_register (FP_REGNUM);
908 else
909 frame->frame = read_register (SP_REGNUM) - framesize;
910 }
911 \f
912 /* Given a GDB frame, determine the address of the calling function's frame.
913 This will be used to create a new GDB frame struct, and then
914 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
915
916 This may involve searching through prologues for several functions
917 at boundaries where GCC calls HP C code, or where code which has
918 a frame pointer calls code without a frame pointer. */
919
920 CORE_ADDR
921 frame_chain (frame)
922 struct frame_info *frame;
923 {
924 int my_framesize, caller_framesize;
925 struct unwind_table_entry *u;
926 CORE_ADDR frame_base;
927
928 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
929 are easy; at *sp we have a full save state strucutre which we can
930 pull the old stack pointer from. Also see frame_saved_pc for
931 code to dig a saved PC out of the save state structure. */
932 if (pc_in_interrupt_handler (frame->pc))
933 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
934 else if (frame->signal_handler_caller)
935 {
936 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
937 }
938 else
939 frame_base = frame->frame;
940
941 /* Get frame sizes for the current frame and the frame of the
942 caller. */
943 my_framesize = find_proc_framesize (frame->pc);
944 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
945
946 /* If caller does not have a frame pointer, then its frame
947 can be found at current_frame - caller_framesize. */
948 if (caller_framesize != -1)
949 return frame_base - caller_framesize;
950
951 /* Both caller and callee have frame pointers and are GCC compiled
952 (SAVE_SP bit in unwind descriptor is on for both functions.
953 The previous frame pointer is found at the top of the current frame. */
954 if (caller_framesize == -1 && my_framesize == -1)
955 return read_memory_integer (frame_base, 4);
956
957 /* Caller has a frame pointer, but callee does not. This is a little
958 more difficult as GCC and HP C lay out locals and callee register save
959 areas very differently.
960
961 The previous frame pointer could be in a register, or in one of
962 several areas on the stack.
963
964 Walk from the current frame to the innermost frame examining
965 unwind descriptors to determine if %r3 ever gets saved into the
966 stack. If so return whatever value got saved into the stack.
967 If it was never saved in the stack, then the value in %r3 is still
968 valid, so use it.
969
970 We use information from unwind descriptors to determine if %r3
971 is saved into the stack (Entry_GR field has this information). */
972
973 while (frame)
974 {
975 u = find_unwind_entry (frame->pc);
976
977 if (!u)
978 {
979 /* We could find this information by examining prologues. I don't
980 think anyone has actually written any tools (not even "strip")
981 which leave them out of an executable, so maybe this is a moot
982 point. */
983 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
984 return 0;
985 }
986
987 /* Entry_GR specifies the number of callee-saved general registers
988 saved in the stack. It starts at %r3, so %r3 would be 1. */
989 if (u->Entry_GR >= 1 || u->Save_SP
990 || frame->signal_handler_caller
991 || pc_in_interrupt_handler (frame->pc))
992 break;
993 else
994 frame = frame->next;
995 }
996
997 if (frame)
998 {
999 /* We may have walked down the chain into a function with a frame
1000 pointer. */
1001 if (u->Save_SP
1002 && !frame->signal_handler_caller
1003 && !pc_in_interrupt_handler (frame->pc))
1004 return read_memory_integer (frame->frame, 4);
1005 /* %r3 was saved somewhere in the stack. Dig it out. */
1006 else
1007 {
1008 struct frame_saved_regs saved_regs;
1009
1010 get_frame_saved_regs (frame, &saved_regs);
1011 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1012 }
1013 }
1014 else
1015 {
1016 /* The value in %r3 was never saved into the stack (thus %r3 still
1017 holds the value of the previous frame pointer). */
1018 return read_register (FP_REGNUM);
1019 }
1020 }
1021
1022 \f
1023 /* To see if a frame chain is valid, see if the caller looks like it
1024 was compiled with gcc. */
1025
1026 int
1027 frame_chain_valid (chain, thisframe)
1028 CORE_ADDR chain;
1029 struct frame_info *thisframe;
1030 {
1031 struct minimal_symbol *msym_us;
1032 struct minimal_symbol *msym_start;
1033 struct unwind_table_entry *u, *next_u = NULL;
1034 struct frame_info *next;
1035
1036 if (!chain)
1037 return 0;
1038
1039 u = find_unwind_entry (thisframe->pc);
1040
1041 if (u == NULL)
1042 return 1;
1043
1044 /* We can't just check that the same of msym_us is "_start", because
1045 someone idiotically decided that they were going to make a Ltext_end
1046 symbol with the same address. This Ltext_end symbol is totally
1047 indistinguishable (as nearly as I can tell) from the symbol for a function
1048 which is (legitimately, since it is in the user's namespace)
1049 named Ltext_end, so we can't just ignore it. */
1050 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1051 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1052 if (msym_us
1053 && msym_start
1054 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1055 return 0;
1056
1057 next = get_next_frame (thisframe);
1058 if (next)
1059 next_u = find_unwind_entry (next->pc);
1060
1061 /* If this frame does not save SP, has no stack, isn't a stub,
1062 and doesn't "call" an interrupt routine or signal handler caller,
1063 then its not valid. */
1064 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1065 || (thisframe->next && thisframe->next->signal_handler_caller)
1066 || (next_u && next_u->HP_UX_interrupt_marker))
1067 return 1;
1068
1069 if (pc_in_linker_stub (thisframe->pc))
1070 return 1;
1071
1072 return 0;
1073 }
1074
1075 /*
1076 * These functions deal with saving and restoring register state
1077 * around a function call in the inferior. They keep the stack
1078 * double-word aligned; eventually, on an hp700, the stack will have
1079 * to be aligned to a 64-byte boundary.
1080 */
1081
1082 void
1083 push_dummy_frame (inf_status)
1084 struct inferior_status *inf_status;
1085 {
1086 CORE_ADDR sp, pc, pcspace;
1087 register int regnum;
1088 int int_buffer;
1089 double freg_buffer;
1090
1091 /* Oh, what a hack. If we're trying to perform an inferior call
1092 while the inferior is asleep, we have to make sure to clear
1093 the "in system call" bit in the flag register (the call will
1094 start after the syscall returns, so we're no longer in the system
1095 call!) This state is kept in "inf_status", change it there.
1096
1097 We also need a number of horrid hacks to deal with lossage in the
1098 PC queue registers (apparently they're not valid when the in syscall
1099 bit is set). */
1100 pc = target_read_pc (inferior_pid);
1101 int_buffer = read_register (FLAGS_REGNUM);
1102 if (int_buffer & 0x2)
1103 {
1104 unsigned int sid;
1105 int_buffer &= ~0x2;
1106 memcpy (inf_status->registers, &int_buffer, 4);
1107 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
1108 pc += 4;
1109 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
1110 pc -= 4;
1111 sid = (pc >> 30) & 0x3;
1112 if (sid == 0)
1113 pcspace = read_register (SR4_REGNUM);
1114 else
1115 pcspace = read_register (SR4_REGNUM + 4 + sid);
1116 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
1117 &pcspace, 4);
1118 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
1119 &pcspace, 4);
1120 }
1121 else
1122 pcspace = read_register (PCSQ_HEAD_REGNUM);
1123
1124 /* Space for "arguments"; the RP goes in here. */
1125 sp = read_register (SP_REGNUM) + 48;
1126 int_buffer = read_register (RP_REGNUM) | 0x3;
1127 write_memory (sp - 20, (char *)&int_buffer, 4);
1128
1129 int_buffer = read_register (FP_REGNUM);
1130 write_memory (sp, (char *)&int_buffer, 4);
1131
1132 write_register (FP_REGNUM, sp);
1133
1134 sp += 8;
1135
1136 for (regnum = 1; regnum < 32; regnum++)
1137 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1138 sp = push_word (sp, read_register (regnum));
1139
1140 sp += 4;
1141
1142 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1143 {
1144 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1145 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1146 }
1147 sp = push_word (sp, read_register (IPSW_REGNUM));
1148 sp = push_word (sp, read_register (SAR_REGNUM));
1149 sp = push_word (sp, pc);
1150 sp = push_word (sp, pcspace);
1151 sp = push_word (sp, pc + 4);
1152 sp = push_word (sp, pcspace);
1153 write_register (SP_REGNUM, sp);
1154 }
1155
1156 void
1157 find_dummy_frame_regs (frame, frame_saved_regs)
1158 struct frame_info *frame;
1159 struct frame_saved_regs *frame_saved_regs;
1160 {
1161 CORE_ADDR fp = frame->frame;
1162 int i;
1163
1164 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1165 frame_saved_regs->regs[FP_REGNUM] = fp;
1166 frame_saved_regs->regs[1] = fp + 8;
1167
1168 for (fp += 12, i = 3; i < 32; i++)
1169 {
1170 if (i != FP_REGNUM)
1171 {
1172 frame_saved_regs->regs[i] = fp;
1173 fp += 4;
1174 }
1175 }
1176
1177 fp += 4;
1178 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1179 frame_saved_regs->regs[i] = fp;
1180
1181 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1182 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1183 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1184 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1185 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1186 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1187 }
1188
1189 void
1190 hppa_pop_frame ()
1191 {
1192 register struct frame_info *frame = get_current_frame ();
1193 register CORE_ADDR fp, npc, target_pc;
1194 register int regnum;
1195 struct frame_saved_regs fsr;
1196 double freg_buffer;
1197
1198 fp = FRAME_FP (frame);
1199 get_frame_saved_regs (frame, &fsr);
1200
1201 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1202 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1203 restore_pc_queue (&fsr);
1204 #endif
1205
1206 for (regnum = 31; regnum > 0; regnum--)
1207 if (fsr.regs[regnum])
1208 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1209
1210 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1211 if (fsr.regs[regnum])
1212 {
1213 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1214 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1215 }
1216
1217 if (fsr.regs[IPSW_REGNUM])
1218 write_register (IPSW_REGNUM,
1219 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1220
1221 if (fsr.regs[SAR_REGNUM])
1222 write_register (SAR_REGNUM,
1223 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1224
1225 /* If the PC was explicitly saved, then just restore it. */
1226 if (fsr.regs[PCOQ_TAIL_REGNUM])
1227 {
1228 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1229 write_register (PCOQ_TAIL_REGNUM, npc);
1230 }
1231 /* Else use the value in %rp to set the new PC. */
1232 else
1233 {
1234 npc = read_register (RP_REGNUM);
1235 target_write_pc (npc, 0);
1236 }
1237
1238 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1239
1240 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1241 write_register (SP_REGNUM, fp - 48);
1242 else
1243 write_register (SP_REGNUM, fp);
1244
1245 /* The PC we just restored may be inside a return trampoline. If so
1246 we want to restart the inferior and run it through the trampoline.
1247
1248 Do this by setting a momentary breakpoint at the location the
1249 trampoline returns to.
1250
1251 Don't skip through the trampoline if we're popping a dummy frame. */
1252 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1253 if (target_pc && !fsr.regs[IPSW_REGNUM])
1254 {
1255 struct symtab_and_line sal;
1256 struct breakpoint *breakpoint;
1257 struct cleanup *old_chain;
1258
1259 /* Set up our breakpoint. Set it to be silent as the MI code
1260 for "return_command" will print the frame we returned to. */
1261 sal = find_pc_line (target_pc, 0);
1262 sal.pc = target_pc;
1263 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1264 breakpoint->silent = 1;
1265
1266 /* So we can clean things up. */
1267 old_chain = make_cleanup (delete_breakpoint, breakpoint);
1268
1269 /* Start up the inferior. */
1270 proceed_to_finish = 1;
1271 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1272
1273 /* Perform our cleanups. */
1274 do_cleanups (old_chain);
1275 }
1276 flush_cached_frames ();
1277 }
1278
1279 /*
1280 * After returning to a dummy on the stack, restore the instruction
1281 * queue space registers. */
1282
1283 static int
1284 restore_pc_queue (fsr)
1285 struct frame_saved_regs *fsr;
1286 {
1287 CORE_ADDR pc = read_pc ();
1288 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1289 struct target_waitstatus w;
1290 int insn_count;
1291
1292 /* Advance past break instruction in the call dummy. */
1293 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1294 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1295
1296 /*
1297 * HPUX doesn't let us set the space registers or the space
1298 * registers of the PC queue through ptrace. Boo, hiss.
1299 * Conveniently, the call dummy has this sequence of instructions
1300 * after the break:
1301 * mtsp r21, sr0
1302 * ble,n 0(sr0, r22)
1303 *
1304 * So, load up the registers and single step until we are in the
1305 * right place.
1306 */
1307
1308 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1309 write_register (22, new_pc);
1310
1311 for (insn_count = 0; insn_count < 3; insn_count++)
1312 {
1313 /* FIXME: What if the inferior gets a signal right now? Want to
1314 merge this into wait_for_inferior (as a special kind of
1315 watchpoint? By setting a breakpoint at the end? Is there
1316 any other choice? Is there *any* way to do this stuff with
1317 ptrace() or some equivalent?). */
1318 resume (1, 0);
1319 target_wait (inferior_pid, &w);
1320
1321 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1322 {
1323 stop_signal = w.value.sig;
1324 terminal_ours_for_output ();
1325 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1326 target_signal_to_name (stop_signal),
1327 target_signal_to_string (stop_signal));
1328 gdb_flush (gdb_stdout);
1329 return 0;
1330 }
1331 }
1332 target_terminal_ours ();
1333 target_fetch_registers (-1);
1334 return 1;
1335 }
1336
1337 CORE_ADDR
1338 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1339 int nargs;
1340 value_ptr *args;
1341 CORE_ADDR sp;
1342 int struct_return;
1343 CORE_ADDR struct_addr;
1344 {
1345 /* array of arguments' offsets */
1346 int *offset = (int *)alloca(nargs * sizeof (int));
1347 int cum = 0;
1348 int i, alignment;
1349
1350 for (i = 0; i < nargs; i++)
1351 {
1352 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1353
1354 /* value must go at proper alignment. Assume alignment is a
1355 power of two.*/
1356 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1357 if (cum % alignment)
1358 cum = (cum + alignment) & -alignment;
1359 offset[i] = -cum;
1360 }
1361 sp += max ((cum + 7) & -8, 16);
1362
1363 for (i = 0; i < nargs; i++)
1364 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1365 TYPE_LENGTH (VALUE_TYPE (args[i])));
1366
1367 if (struct_return)
1368 write_register (28, struct_addr);
1369 return sp + 32;
1370 }
1371
1372 /*
1373 * Insert the specified number of args and function address
1374 * into a call sequence of the above form stored at DUMMYNAME.
1375 *
1376 * On the hppa we need to call the stack dummy through $$dyncall.
1377 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1378 * real_pc, which is the location where gdb should start up the
1379 * inferior to do the function call.
1380 */
1381
1382 CORE_ADDR
1383 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1384 char *dummy;
1385 CORE_ADDR pc;
1386 CORE_ADDR fun;
1387 int nargs;
1388 value_ptr *args;
1389 struct type *type;
1390 int gcc_p;
1391 {
1392 CORE_ADDR dyncall_addr, sr4export_addr;
1393 struct minimal_symbol *msymbol;
1394 int flags = read_register (FLAGS_REGNUM);
1395 struct unwind_table_entry *u;
1396
1397 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1398 if (msymbol == NULL)
1399 error ("Can't find an address for $$dyncall trampoline");
1400
1401 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1402
1403 /* FUN could be a procedure label, in which case we have to get
1404 its real address and the value of its GOT/DP. */
1405 if (fun & 0x2)
1406 {
1407 /* Get the GOT/DP value for the target function. It's
1408 at *(fun+4). Note the call dummy is *NOT* allowed to
1409 trash %r19 before calling the target function. */
1410 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1411
1412 /* Now get the real address for the function we are calling, it's
1413 at *fun. */
1414 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1415 }
1416 else
1417 {
1418
1419 #ifndef GDB_TARGET_IS_PA_ELF
1420 /* FUN could be either an export stub, or the real address of a
1421 function in a shared library. We must call an import stub
1422 rather than the export stub or real function for lazy binding
1423 to work correctly. */
1424 if (som_solib_get_got_by_pc (fun))
1425 {
1426 struct objfile *objfile;
1427 struct minimal_symbol *funsymbol, *stub_symbol;
1428 CORE_ADDR newfun = 0;
1429
1430 funsymbol = lookup_minimal_symbol_by_pc (fun);
1431 if (!funsymbol)
1432 error ("Unable to find minimal symbol for target fucntion.\n");
1433
1434 /* Search all the object files for an import symbol with the
1435 right name. */
1436 ALL_OBJFILES (objfile)
1437 {
1438 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
1439 NULL, objfile);
1440 /* Found a symbol with the right name. */
1441 if (stub_symbol)
1442 {
1443 struct unwind_table_entry *u;
1444 /* It must be a shared library trampoline. */
1445 if (SYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
1446 continue;
1447
1448 /* It must also be an import stub. */
1449 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
1450 if (!u || u->stub_type != IMPORT)
1451 continue;
1452
1453 /* OK. Looks like the correct import stub. */
1454 newfun = SYMBOL_VALUE (stub_symbol);
1455 fun = newfun;
1456 }
1457 }
1458 if (newfun == 0)
1459 write_register (19, som_solib_get_got_by_pc (fun));
1460 }
1461 #endif
1462 }
1463
1464 /* If we are calling an import stub (eg calling into a dynamic library)
1465 then have sr4export call the magic __d_plt_call routine which is linked
1466 in from end.o. (You can't use _sr4export to call the import stub as
1467 the value in sp-24 will get fried and you end up returning to the
1468 wrong location. You can't call the import stub directly as the code
1469 to bind the PLT entry to a function can't return to a stack address.) */
1470 u = find_unwind_entry (fun);
1471 if (u && u->stub_type == IMPORT)
1472 {
1473 CORE_ADDR new_fun;
1474 msymbol = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
1475 if (msymbol == NULL)
1476 msymbol = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
1477
1478 if (msymbol == NULL)
1479 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline");
1480
1481 /* This is where sr4export will jump to. */
1482 new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
1483
1484 if (strcmp (SYMBOL_NAME (msymbol), "__d_plt_call"))
1485 write_register (22, fun);
1486 else
1487 {
1488 /* We have to store the address of the stub in __shlib_funcptr. */
1489 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
1490 (struct objfile *)NULL);
1491 if (msymbol == NULL)
1492 error ("Can't find an address for __shlib_funcptr");
1493
1494 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1495 }
1496 fun = new_fun;
1497 }
1498
1499 /* We still need sr4export's address too. */
1500 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1501 if (msymbol == NULL)
1502 error ("Can't find an address for _sr4export trampoline");
1503
1504 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1505
1506 store_unsigned_integer
1507 (&dummy[9*REGISTER_SIZE],
1508 REGISTER_SIZE,
1509 deposit_21 (fun >> 11,
1510 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
1511 REGISTER_SIZE)));
1512 store_unsigned_integer
1513 (&dummy[10*REGISTER_SIZE],
1514 REGISTER_SIZE,
1515 deposit_14 (fun & MASK_11,
1516 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1517 REGISTER_SIZE)));
1518 store_unsigned_integer
1519 (&dummy[12*REGISTER_SIZE],
1520 REGISTER_SIZE,
1521 deposit_21 (sr4export_addr >> 11,
1522 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1523 REGISTER_SIZE)));
1524 store_unsigned_integer
1525 (&dummy[13*REGISTER_SIZE],
1526 REGISTER_SIZE,
1527 deposit_14 (sr4export_addr & MASK_11,
1528 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1529 REGISTER_SIZE)));
1530
1531 write_register (22, pc);
1532
1533 /* If we are in a syscall, then we should call the stack dummy
1534 directly. $$dyncall is not needed as the kernel sets up the
1535 space id registers properly based on the value in %r31. In
1536 fact calling $$dyncall will not work because the value in %r22
1537 will be clobbered on the syscall exit path.
1538
1539 Similarly if the current PC is in a shared library. Note however,
1540 this scheme won't work if the shared library isn't mapped into
1541 the same space as the stack. */
1542 if (flags & 2)
1543 return pc;
1544 #ifndef GDB_TARGET_IS_PA_ELF
1545 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
1546 return pc;
1547 #endif
1548 else
1549 return dyncall_addr;
1550
1551 }
1552
1553 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1554 bits. */
1555
1556 CORE_ADDR
1557 target_read_pc (pid)
1558 int pid;
1559 {
1560 int flags = read_register (FLAGS_REGNUM);
1561
1562 if (flags & 2) {
1563 return read_register (31) & ~0x3;
1564 }
1565 return read_register (PC_REGNUM) & ~0x3;
1566 }
1567
1568 /* Write out the PC. If currently in a syscall, then also write the new
1569 PC value into %r31. */
1570
1571 void
1572 target_write_pc (v, pid)
1573 CORE_ADDR v;
1574 int pid;
1575 {
1576 int flags = read_register (FLAGS_REGNUM);
1577
1578 /* If in a syscall, then set %r31. Also make sure to get the
1579 privilege bits set correctly. */
1580 if (flags & 2)
1581 write_register (31, (long) (v | 0x3));
1582
1583 write_register (PC_REGNUM, (long) v);
1584 write_register (NPC_REGNUM, (long) v + 4);
1585 }
1586
1587 /* return the alignment of a type in bytes. Structures have the maximum
1588 alignment required by their fields. */
1589
1590 static int
1591 hppa_alignof (arg)
1592 struct type *arg;
1593 {
1594 int max_align, align, i;
1595 switch (TYPE_CODE (arg))
1596 {
1597 case TYPE_CODE_PTR:
1598 case TYPE_CODE_INT:
1599 case TYPE_CODE_FLT:
1600 return TYPE_LENGTH (arg);
1601 case TYPE_CODE_ARRAY:
1602 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1603 case TYPE_CODE_STRUCT:
1604 case TYPE_CODE_UNION:
1605 max_align = 2;
1606 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1607 {
1608 /* Bit fields have no real alignment. */
1609 if (!TYPE_FIELD_BITPOS (arg, i))
1610 {
1611 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1612 max_align = max (max_align, align);
1613 }
1614 }
1615 return max_align;
1616 default:
1617 return 4;
1618 }
1619 }
1620
1621 /* Print the register regnum, or all registers if regnum is -1 */
1622
1623 void
1624 pa_do_registers_info (regnum, fpregs)
1625 int regnum;
1626 int fpregs;
1627 {
1628 char raw_regs [REGISTER_BYTES];
1629 int i;
1630
1631 for (i = 0; i < NUM_REGS; i++)
1632 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1633 if (regnum == -1)
1634 pa_print_registers (raw_regs, regnum, fpregs);
1635 else if (regnum < FP0_REGNUM)
1636 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1637 REGISTER_BYTE (regnum)));
1638 else
1639 pa_print_fp_reg (regnum);
1640 }
1641
1642 static void
1643 pa_print_registers (raw_regs, regnum, fpregs)
1644 char *raw_regs;
1645 int regnum;
1646 int fpregs;
1647 {
1648 int i,j;
1649 long val;
1650
1651 for (i = 0; i < 18; i++)
1652 {
1653 for (j = 0; j < 4; j++)
1654 {
1655 val =
1656 extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4);
1657 printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val);
1658 }
1659 printf_unfiltered ("\n");
1660 }
1661
1662 if (fpregs)
1663 for (i = 72; i < NUM_REGS; i++)
1664 pa_print_fp_reg (i);
1665 }
1666
1667 static void
1668 pa_print_fp_reg (i)
1669 int i;
1670 {
1671 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1672 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1673
1674 /* Get 32bits of data. */
1675 read_relative_register_raw_bytes (i, raw_buffer);
1676
1677 /* Put it in the buffer. No conversions are ever necessary. */
1678 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1679
1680 fputs_filtered (reg_names[i], gdb_stdout);
1681 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1682 fputs_filtered ("(single precision) ", gdb_stdout);
1683
1684 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1685 1, 0, Val_pretty_default);
1686 printf_filtered ("\n");
1687
1688 /* If "i" is even, then this register can also be a double-precision
1689 FP register. Dump it out as such. */
1690 if ((i % 2) == 0)
1691 {
1692 /* Get the data in raw format for the 2nd half. */
1693 read_relative_register_raw_bytes (i + 1, raw_buffer);
1694
1695 /* Copy it into the appropriate part of the virtual buffer. */
1696 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1697 REGISTER_RAW_SIZE (i));
1698
1699 /* Dump it as a double. */
1700 fputs_filtered (reg_names[i], gdb_stdout);
1701 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1702 fputs_filtered ("(double precision) ", gdb_stdout);
1703
1704 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1705 1, 0, Val_pretty_default);
1706 printf_filtered ("\n");
1707 }
1708 }
1709
1710 /* Return one if PC is in the call path of a trampoline, else return zero.
1711
1712 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1713 just shared library trampolines (import, export). */
1714
1715 int
1716 in_solib_call_trampoline (pc, name)
1717 CORE_ADDR pc;
1718 char *name;
1719 {
1720 struct minimal_symbol *minsym;
1721 struct unwind_table_entry *u;
1722 static CORE_ADDR dyncall = 0;
1723 static CORE_ADDR sr4export = 0;
1724
1725 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1726 new exec file */
1727
1728 /* First see if PC is in one of the two C-library trampolines. */
1729 if (!dyncall)
1730 {
1731 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1732 if (minsym)
1733 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1734 else
1735 dyncall = -1;
1736 }
1737
1738 if (!sr4export)
1739 {
1740 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1741 if (minsym)
1742 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1743 else
1744 sr4export = -1;
1745 }
1746
1747 if (pc == dyncall || pc == sr4export)
1748 return 1;
1749
1750 /* Get the unwind descriptor corresponding to PC, return zero
1751 if no unwind was found. */
1752 u = find_unwind_entry (pc);
1753 if (!u)
1754 return 0;
1755
1756 /* If this isn't a linker stub, then return now. */
1757 if (u->stub_type == 0)
1758 return 0;
1759
1760 /* By definition a long-branch stub is a call stub. */
1761 if (u->stub_type == LONG_BRANCH)
1762 return 1;
1763
1764 /* The call and return path execute the same instructions within
1765 an IMPORT stub! So an IMPORT stub is both a call and return
1766 trampoline. */
1767 if (u->stub_type == IMPORT)
1768 return 1;
1769
1770 /* Parameter relocation stubs always have a call path and may have a
1771 return path. */
1772 if (u->stub_type == PARAMETER_RELOCATION
1773 || u->stub_type == EXPORT)
1774 {
1775 CORE_ADDR addr;
1776
1777 /* Search forward from the current PC until we hit a branch
1778 or the end of the stub. */
1779 for (addr = pc; addr <= u->region_end; addr += 4)
1780 {
1781 unsigned long insn;
1782
1783 insn = read_memory_integer (addr, 4);
1784
1785 /* Does it look like a bl? If so then it's the call path, if
1786 we find a bv or be first, then we're on the return path. */
1787 if ((insn & 0xfc00e000) == 0xe8000000)
1788 return 1;
1789 else if ((insn & 0xfc00e001) == 0xe800c000
1790 || (insn & 0xfc000000) == 0xe0000000)
1791 return 0;
1792 }
1793
1794 /* Should never happen. */
1795 warning ("Unable to find branch in parameter relocation stub.\n");
1796 return 0;
1797 }
1798
1799 /* Unknown stub type. For now, just return zero. */
1800 return 0;
1801 }
1802
1803 /* Return one if PC is in the return path of a trampoline, else return zero.
1804
1805 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1806 just shared library trampolines (import, export). */
1807
1808 int
1809 in_solib_return_trampoline (pc, name)
1810 CORE_ADDR pc;
1811 char *name;
1812 {
1813 struct unwind_table_entry *u;
1814
1815 /* Get the unwind descriptor corresponding to PC, return zero
1816 if no unwind was found. */
1817 u = find_unwind_entry (pc);
1818 if (!u)
1819 return 0;
1820
1821 /* If this isn't a linker stub or it's just a long branch stub, then
1822 return zero. */
1823 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
1824 return 0;
1825
1826 /* The call and return path execute the same instructions within
1827 an IMPORT stub! So an IMPORT stub is both a call and return
1828 trampoline. */
1829 if (u->stub_type == IMPORT)
1830 return 1;
1831
1832 /* Parameter relocation stubs always have a call path and may have a
1833 return path. */
1834 if (u->stub_type == PARAMETER_RELOCATION
1835 || u->stub_type == EXPORT)
1836 {
1837 CORE_ADDR addr;
1838
1839 /* Search forward from the current PC until we hit a branch
1840 or the end of the stub. */
1841 for (addr = pc; addr <= u->region_end; addr += 4)
1842 {
1843 unsigned long insn;
1844
1845 insn = read_memory_integer (addr, 4);
1846
1847 /* Does it look like a bl? If so then it's the call path, if
1848 we find a bv or be first, then we're on the return path. */
1849 if ((insn & 0xfc00e000) == 0xe8000000)
1850 return 0;
1851 else if ((insn & 0xfc00e001) == 0xe800c000
1852 || (insn & 0xfc000000) == 0xe0000000)
1853 return 1;
1854 }
1855
1856 /* Should never happen. */
1857 warning ("Unable to find branch in parameter relocation stub.\n");
1858 return 0;
1859 }
1860
1861 /* Unknown stub type. For now, just return zero. */
1862 return 0;
1863
1864 }
1865
1866 /* Figure out if PC is in a trampoline, and if so find out where
1867 the trampoline will jump to. If not in a trampoline, return zero.
1868
1869 Simple code examination probably is not a good idea since the code
1870 sequences in trampolines can also appear in user code.
1871
1872 We use unwinds and information from the minimal symbol table to
1873 determine when we're in a trampoline. This won't work for ELF
1874 (yet) since it doesn't create stub unwind entries. Whether or
1875 not ELF will create stub unwinds or normal unwinds for linker
1876 stubs is still being debated.
1877
1878 This should handle simple calls through dyncall or sr4export,
1879 long calls, argument relocation stubs, and dyncall/sr4export
1880 calling an argument relocation stub. It even handles some stubs
1881 used in dynamic executables. */
1882
1883 CORE_ADDR
1884 skip_trampoline_code (pc, name)
1885 CORE_ADDR pc;
1886 char *name;
1887 {
1888 long orig_pc = pc;
1889 long prev_inst, curr_inst, loc;
1890 static CORE_ADDR dyncall = 0;
1891 static CORE_ADDR sr4export = 0;
1892 struct minimal_symbol *msym;
1893 struct unwind_table_entry *u;
1894
1895 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1896 new exec file */
1897
1898 if (!dyncall)
1899 {
1900 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1901 if (msym)
1902 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1903 else
1904 dyncall = -1;
1905 }
1906
1907 if (!sr4export)
1908 {
1909 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1910 if (msym)
1911 sr4export = SYMBOL_VALUE_ADDRESS (msym);
1912 else
1913 sr4export = -1;
1914 }
1915
1916 /* Addresses passed to dyncall may *NOT* be the actual address
1917 of the function. So we may have to do something special. */
1918 if (pc == dyncall)
1919 {
1920 pc = (CORE_ADDR) read_register (22);
1921
1922 /* If bit 30 (counting from the left) is on, then pc is the address of
1923 the PLT entry for this function, not the address of the function
1924 itself. Bit 31 has meaning too, but only for MPE. */
1925 if (pc & 0x2)
1926 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
1927 }
1928 else if (pc == sr4export)
1929 pc = (CORE_ADDR) (read_register (22));
1930
1931 /* Get the unwind descriptor corresponding to PC, return zero
1932 if no unwind was found. */
1933 u = find_unwind_entry (pc);
1934 if (!u)
1935 return 0;
1936
1937 /* If this isn't a linker stub, then return now. */
1938 if (u->stub_type == 0)
1939 return orig_pc == pc ? 0 : pc & ~0x3;
1940
1941 /* It's a stub. Search for a branch and figure out where it goes.
1942 Note we have to handle multi insn branch sequences like ldil;ble.
1943 Most (all?) other branches can be determined by examining the contents
1944 of certain registers and the stack. */
1945 loc = pc;
1946 curr_inst = 0;
1947 prev_inst = 0;
1948 while (1)
1949 {
1950 /* Make sure we haven't walked outside the range of this stub. */
1951 if (u != find_unwind_entry (loc))
1952 {
1953 warning ("Unable to find branch in linker stub");
1954 return orig_pc == pc ? 0 : pc & ~0x3;
1955 }
1956
1957 prev_inst = curr_inst;
1958 curr_inst = read_memory_integer (loc, 4);
1959
1960 /* Does it look like a branch external using %r1? Then it's the
1961 branch from the stub to the actual function. */
1962 if ((curr_inst & 0xffe0e000) == 0xe0202000)
1963 {
1964 /* Yup. See if the previous instruction loaded
1965 a value into %r1. If so compute and return the jump address. */
1966 if ((prev_inst & 0xffe00000) == 0x20200000)
1967 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
1968 else
1969 {
1970 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
1971 return orig_pc == pc ? 0 : pc & ~0x3;
1972 }
1973 }
1974
1975 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
1976 import stub to an export stub.
1977
1978 It is impossible to determine the target of the branch via
1979 simple examination of instructions and/or data (consider
1980 that the address in the plabel may be the address of the
1981 bind-on-reference routine in the dynamic loader).
1982
1983 So we have try an alternative approach.
1984
1985 Get the name of the symbol at our current location; it should
1986 be a stub symbol with the same name as the symbol in the
1987 shared library.
1988
1989 Then lookup a minimal symbol with the same name; we should
1990 get the minimal symbol for the target routine in the shared
1991 library as those take precedence of import/export stubs. */
1992 if (curr_inst == 0xe2a00000)
1993 {
1994 struct minimal_symbol *stubsym, *libsym;
1995
1996 stubsym = lookup_minimal_symbol_by_pc (loc);
1997 if (stubsym == NULL)
1998 {
1999 warning ("Unable to find symbol for 0x%x", loc);
2000 return orig_pc == pc ? 0 : pc & ~0x3;
2001 }
2002
2003 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
2004 if (libsym == NULL)
2005 {
2006 warning ("Unable to find library symbol for %s\n",
2007 SYMBOL_NAME (stubsym));
2008 return orig_pc == pc ? 0 : pc & ~0x3;
2009 }
2010
2011 return SYMBOL_VALUE (libsym);
2012 }
2013
2014 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
2015 branch from the stub to the actual function. */
2016 else if ((curr_inst & 0xffe0e000) == 0xe8400000
2017 || (curr_inst & 0xffe0e000) == 0xe8000000)
2018 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
2019
2020 /* Does it look like bv (rp)? Note this depends on the
2021 current stack pointer being the same as the stack
2022 pointer in the stub itself! This is a branch on from the
2023 stub back to the original caller. */
2024 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
2025 {
2026 /* Yup. See if the previous instruction loaded
2027 rp from sp - 8. */
2028 if (prev_inst == 0x4bc23ff1)
2029 return (read_memory_integer
2030 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
2031 else
2032 {
2033 warning ("Unable to find restore of %%rp before bv (%%rp).");
2034 return orig_pc == pc ? 0 : pc & ~0x3;
2035 }
2036 }
2037
2038 /* What about be,n 0(sr0,%rp)? It's just another way we return to
2039 the original caller from the stub. Used in dynamic executables. */
2040 else if (curr_inst == 0xe0400002)
2041 {
2042 /* The value we jump to is sitting in sp - 24. But that's
2043 loaded several instructions before the be instruction.
2044 I guess we could check for the previous instruction being
2045 mtsp %r1,%sr0 if we want to do sanity checking. */
2046 return (read_memory_integer
2047 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
2048 }
2049
2050 /* Haven't found the branch yet, but we're still in the stub.
2051 Keep looking. */
2052 loc += 4;
2053 }
2054 }
2055
2056 /* For the given instruction (INST), return any adjustment it makes
2057 to the stack pointer or zero for no adjustment.
2058
2059 This only handles instructions commonly found in prologues. */
2060
2061 static int
2062 prologue_inst_adjust_sp (inst)
2063 unsigned long inst;
2064 {
2065 /* This must persist across calls. */
2066 static int save_high21;
2067
2068 /* The most common way to perform a stack adjustment ldo X(sp),sp */
2069 if ((inst & 0xffffc000) == 0x37de0000)
2070 return extract_14 (inst);
2071
2072 /* stwm X,D(sp) */
2073 if ((inst & 0xffe00000) == 0x6fc00000)
2074 return extract_14 (inst);
2075
2076 /* addil high21,%r1; ldo low11,(%r1),%r30)
2077 save high bits in save_high21 for later use. */
2078 if ((inst & 0xffe00000) == 0x28200000)
2079 {
2080 save_high21 = extract_21 (inst);
2081 return 0;
2082 }
2083
2084 if ((inst & 0xffff0000) == 0x343e0000)
2085 return save_high21 + extract_14 (inst);
2086
2087 /* fstws as used by the HP compilers. */
2088 if ((inst & 0xffffffe0) == 0x2fd01220)
2089 return extract_5_load (inst);
2090
2091 /* No adjustment. */
2092 return 0;
2093 }
2094
2095 /* Return nonzero if INST is a branch of some kind, else return zero. */
2096
2097 static int
2098 is_branch (inst)
2099 unsigned long inst;
2100 {
2101 switch (inst >> 26)
2102 {
2103 case 0x20:
2104 case 0x21:
2105 case 0x22:
2106 case 0x23:
2107 case 0x28:
2108 case 0x29:
2109 case 0x2a:
2110 case 0x2b:
2111 case 0x30:
2112 case 0x31:
2113 case 0x32:
2114 case 0x33:
2115 case 0x38:
2116 case 0x39:
2117 case 0x3a:
2118 return 1;
2119
2120 default:
2121 return 0;
2122 }
2123 }
2124
2125 /* Return the register number for a GR which is saved by INST or
2126 zero it INST does not save a GR. */
2127
2128 static int
2129 inst_saves_gr (inst)
2130 unsigned long inst;
2131 {
2132 /* Does it look like a stw? */
2133 if ((inst >> 26) == 0x1a)
2134 return extract_5R_store (inst);
2135
2136 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
2137 if ((inst >> 26) == 0x1b)
2138 return extract_5R_store (inst);
2139
2140 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2141 too. */
2142 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2143 return extract_5R_store (inst);
2144
2145 return 0;
2146 }
2147
2148 /* Return the register number for a FR which is saved by INST or
2149 zero it INST does not save a FR.
2150
2151 Note we only care about full 64bit register stores (that's the only
2152 kind of stores the prologue will use).
2153
2154 FIXME: What about argument stores with the HP compiler in ANSI mode? */
2155
2156 static int
2157 inst_saves_fr (inst)
2158 unsigned long inst;
2159 {
2160 if ((inst & 0xfc00dfc0) == 0x2c001200)
2161 return extract_5r_store (inst);
2162 return 0;
2163 }
2164
2165 /* Advance PC across any function entry prologue instructions
2166 to reach some "real" code.
2167
2168 Use information in the unwind table to determine what exactly should
2169 be in the prologue. */
2170
2171 CORE_ADDR
2172 skip_prologue (pc)
2173 CORE_ADDR pc;
2174 {
2175 char buf[4];
2176 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2177 unsigned long args_stored, status, i;
2178 struct unwind_table_entry *u;
2179
2180 u = find_unwind_entry (pc);
2181 if (!u)
2182 return pc;
2183
2184 /* If we are not at the beginning of a function, then return now. */
2185 if ((pc & ~0x3) != u->region_start)
2186 return pc;
2187
2188 /* This is how much of a frame adjustment we need to account for. */
2189 stack_remaining = u->Total_frame_size << 3;
2190
2191 /* Magic register saves we want to know about. */
2192 save_rp = u->Save_RP;
2193 save_sp = u->Save_SP;
2194
2195 /* An indication that args may be stored into the stack. Unfortunately
2196 the HPUX compilers tend to set this in cases where no args were
2197 stored too!. */
2198 args_stored = u->Args_stored;
2199
2200 /* Turn the Entry_GR field into a bitmask. */
2201 save_gr = 0;
2202 for (i = 3; i < u->Entry_GR + 3; i++)
2203 {
2204 /* Frame pointer gets saved into a special location. */
2205 if (u->Save_SP && i == FP_REGNUM)
2206 continue;
2207
2208 save_gr |= (1 << i);
2209 }
2210
2211 /* Turn the Entry_FR field into a bitmask too. */
2212 save_fr = 0;
2213 for (i = 12; i < u->Entry_FR + 12; i++)
2214 save_fr |= (1 << i);
2215
2216 /* Loop until we find everything of interest or hit a branch.
2217
2218 For unoptimized GCC code and for any HP CC code this will never ever
2219 examine any user instructions.
2220
2221 For optimzied GCC code we're faced with problems. GCC will schedule
2222 its prologue and make prologue instructions available for delay slot
2223 filling. The end result is user code gets mixed in with the prologue
2224 and a prologue instruction may be in the delay slot of the first branch
2225 or call.
2226
2227 Some unexpected things are expected with debugging optimized code, so
2228 we allow this routine to walk past user instructions in optimized
2229 GCC code. */
2230 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2231 || args_stored)
2232 {
2233 unsigned int reg_num;
2234 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
2235 unsigned long old_save_rp, old_save_sp, next_inst;
2236
2237 /* Save copies of all the triggers so we can compare them later
2238 (only for HPC). */
2239 old_save_gr = save_gr;
2240 old_save_fr = save_fr;
2241 old_save_rp = save_rp;
2242 old_save_sp = save_sp;
2243 old_stack_remaining = stack_remaining;
2244
2245 status = target_read_memory (pc, buf, 4);
2246 inst = extract_unsigned_integer (buf, 4);
2247
2248 /* Yow! */
2249 if (status != 0)
2250 return pc;
2251
2252 /* Note the interesting effects of this instruction. */
2253 stack_remaining -= prologue_inst_adjust_sp (inst);
2254
2255 /* There is only one instruction used for saving RP into the stack. */
2256 if (inst == 0x6bc23fd9)
2257 save_rp = 0;
2258
2259 /* This is the only way we save SP into the stack. At this time
2260 the HP compilers never bother to save SP into the stack. */
2261 if ((inst & 0xffffc000) == 0x6fc10000)
2262 save_sp = 0;
2263
2264 /* Account for general and floating-point register saves. */
2265 reg_num = inst_saves_gr (inst);
2266 save_gr &= ~(1 << reg_num);
2267
2268 /* Ugh. Also account for argument stores into the stack.
2269 Unfortunately args_stored only tells us that some arguments
2270 where stored into the stack. Not how many or what kind!
2271
2272 This is a kludge as on the HP compiler sets this bit and it
2273 never does prologue scheduling. So once we see one, skip past
2274 all of them. We have similar code for the fp arg stores below.
2275
2276 FIXME. Can still die if we have a mix of GR and FR argument
2277 stores! */
2278 if (reg_num >= 23 && reg_num <= 26)
2279 {
2280 while (reg_num >= 23 && reg_num <= 26)
2281 {
2282 pc += 4;
2283 status = target_read_memory (pc, buf, 4);
2284 inst = extract_unsigned_integer (buf, 4);
2285 if (status != 0)
2286 return pc;
2287 reg_num = inst_saves_gr (inst);
2288 }
2289 args_stored = 0;
2290 continue;
2291 }
2292
2293 reg_num = inst_saves_fr (inst);
2294 save_fr &= ~(1 << reg_num);
2295
2296 status = target_read_memory (pc + 4, buf, 4);
2297 next_inst = extract_unsigned_integer (buf, 4);
2298
2299 /* Yow! */
2300 if (status != 0)
2301 return pc;
2302
2303 /* We've got to be read to handle the ldo before the fp register
2304 save. */
2305 if ((inst & 0xfc000000) == 0x34000000
2306 && inst_saves_fr (next_inst) >= 4
2307 && inst_saves_fr (next_inst) <= 7)
2308 {
2309 /* So we drop into the code below in a reasonable state. */
2310 reg_num = inst_saves_fr (next_inst);
2311 pc -= 4;
2312 }
2313
2314 /* Ugh. Also account for argument stores into the stack.
2315 This is a kludge as on the HP compiler sets this bit and it
2316 never does prologue scheduling. So once we see one, skip past
2317 all of them. */
2318 if (reg_num >= 4 && reg_num <= 7)
2319 {
2320 while (reg_num >= 4 && reg_num <= 7)
2321 {
2322 pc += 8;
2323 status = target_read_memory (pc, buf, 4);
2324 inst = extract_unsigned_integer (buf, 4);
2325 if (status != 0)
2326 return pc;
2327 if ((inst & 0xfc000000) != 0x34000000)
2328 break;
2329 status = target_read_memory (pc + 4, buf, 4);
2330 next_inst = extract_unsigned_integer (buf, 4);
2331 if (status != 0)
2332 return pc;
2333 reg_num = inst_saves_fr (next_inst);
2334 }
2335 args_stored = 0;
2336 continue;
2337 }
2338
2339 /* Quit if we hit any kind of branch. This can happen if a prologue
2340 instruction is in the delay slot of the first call/branch. */
2341 if (is_branch (inst))
2342 break;
2343
2344 /* What a crock. The HP compilers set args_stored even if no
2345 arguments were stored into the stack (boo hiss). This could
2346 cause this code to then skip a bunch of user insns (up to the
2347 first branch).
2348
2349 To combat this we try to identify when args_stored was bogusly
2350 set and clear it. We only do this when args_stored is nonzero,
2351 all other resources are accounted for, and nothing changed on
2352 this pass. */
2353 if (args_stored
2354 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2355 && old_save_gr == save_gr && old_save_fr == save_fr
2356 && old_save_rp == save_rp && old_save_sp == save_sp
2357 && old_stack_remaining == stack_remaining)
2358 break;
2359
2360 /* Bump the PC. */
2361 pc += 4;
2362 }
2363
2364 return pc;
2365 }
2366
2367 /* Put here the code to store, into a struct frame_saved_regs,
2368 the addresses of the saved registers of frame described by FRAME_INFO.
2369 This includes special registers such as pc and fp saved in special
2370 ways in the stack frame. sp is even more special:
2371 the address we return for it IS the sp for the next frame. */
2372
2373 void
2374 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2375 struct frame_info *frame_info;
2376 struct frame_saved_regs *frame_saved_regs;
2377 {
2378 CORE_ADDR pc;
2379 struct unwind_table_entry *u;
2380 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2381 int status, i, reg;
2382 char buf[4];
2383 int fp_loc = -1;
2384
2385 /* Zero out everything. */
2386 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2387
2388 /* Call dummy frames always look the same, so there's no need to
2389 examine the dummy code to determine locations of saved registers;
2390 instead, let find_dummy_frame_regs fill in the correct offsets
2391 for the saved registers. */
2392 if ((frame_info->pc >= frame_info->frame
2393 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2394 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2395 + 6 * 4)))
2396 find_dummy_frame_regs (frame_info, frame_saved_regs);
2397
2398 /* Interrupt handlers are special too. They lay out the register
2399 state in the exact same order as the register numbers in GDB. */
2400 if (pc_in_interrupt_handler (frame_info->pc))
2401 {
2402 for (i = 0; i < NUM_REGS; i++)
2403 {
2404 /* SP is a little special. */
2405 if (i == SP_REGNUM)
2406 frame_saved_regs->regs[SP_REGNUM]
2407 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2408 else
2409 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2410 }
2411 return;
2412 }
2413
2414 /* Handle signal handler callers. */
2415 if (frame_info->signal_handler_caller)
2416 {
2417 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2418 return;
2419 }
2420
2421 /* Get the starting address of the function referred to by the PC
2422 saved in frame. */
2423 pc = get_pc_function_start (frame_info->pc);
2424
2425 /* Yow! */
2426 u = find_unwind_entry (pc);
2427 if (!u)
2428 return;
2429
2430 /* This is how much of a frame adjustment we need to account for. */
2431 stack_remaining = u->Total_frame_size << 3;
2432
2433 /* Magic register saves we want to know about. */
2434 save_rp = u->Save_RP;
2435 save_sp = u->Save_SP;
2436
2437 /* Turn the Entry_GR field into a bitmask. */
2438 save_gr = 0;
2439 for (i = 3; i < u->Entry_GR + 3; i++)
2440 {
2441 /* Frame pointer gets saved into a special location. */
2442 if (u->Save_SP && i == FP_REGNUM)
2443 continue;
2444
2445 save_gr |= (1 << i);
2446 }
2447
2448 /* Turn the Entry_FR field into a bitmask too. */
2449 save_fr = 0;
2450 for (i = 12; i < u->Entry_FR + 12; i++)
2451 save_fr |= (1 << i);
2452
2453 /* The frame always represents the value of %sp at entry to the
2454 current function (and is thus equivalent to the "saved" stack
2455 pointer. */
2456 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2457
2458 /* Loop until we find everything of interest or hit a branch.
2459
2460 For unoptimized GCC code and for any HP CC code this will never ever
2461 examine any user instructions.
2462
2463 For optimzied GCC code we're faced with problems. GCC will schedule
2464 its prologue and make prologue instructions available for delay slot
2465 filling. The end result is user code gets mixed in with the prologue
2466 and a prologue instruction may be in the delay slot of the first branch
2467 or call.
2468
2469 Some unexpected things are expected with debugging optimized code, so
2470 we allow this routine to walk past user instructions in optimized
2471 GCC code. */
2472 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2473 {
2474 status = target_read_memory (pc, buf, 4);
2475 inst = extract_unsigned_integer (buf, 4);
2476
2477 /* Yow! */
2478 if (status != 0)
2479 return;
2480
2481 /* Note the interesting effects of this instruction. */
2482 stack_remaining -= prologue_inst_adjust_sp (inst);
2483
2484 /* There is only one instruction used for saving RP into the stack. */
2485 if (inst == 0x6bc23fd9)
2486 {
2487 save_rp = 0;
2488 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2489 }
2490
2491 /* Just note that we found the save of SP into the stack. The
2492 value for frame_saved_regs was computed above. */
2493 if ((inst & 0xffffc000) == 0x6fc10000)
2494 save_sp = 0;
2495
2496 /* Account for general and floating-point register saves. */
2497 reg = inst_saves_gr (inst);
2498 if (reg >= 3 && reg <= 18
2499 && (!u->Save_SP || reg != FP_REGNUM))
2500 {
2501 save_gr &= ~(1 << reg);
2502
2503 /* stwm with a positive displacement is a *post modify*. */
2504 if ((inst >> 26) == 0x1b
2505 && extract_14 (inst) >= 0)
2506 frame_saved_regs->regs[reg] = frame_info->frame;
2507 else
2508 {
2509 /* Handle code with and without frame pointers. */
2510 if (u->Save_SP)
2511 frame_saved_regs->regs[reg]
2512 = frame_info->frame + extract_14 (inst);
2513 else
2514 frame_saved_regs->regs[reg]
2515 = frame_info->frame + (u->Total_frame_size << 3)
2516 + extract_14 (inst);
2517 }
2518 }
2519
2520
2521 /* GCC handles callee saved FP regs a little differently.
2522
2523 It emits an instruction to put the value of the start of
2524 the FP store area into %r1. It then uses fstds,ma with
2525 a basereg of %r1 for the stores.
2526
2527 HP CC emits them at the current stack pointer modifying
2528 the stack pointer as it stores each register. */
2529
2530 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2531 if ((inst & 0xffffc000) == 0x34610000
2532 || (inst & 0xffffc000) == 0x37c10000)
2533 fp_loc = extract_14 (inst);
2534
2535 reg = inst_saves_fr (inst);
2536 if (reg >= 12 && reg <= 21)
2537 {
2538 /* Note +4 braindamage below is necessary because the FP status
2539 registers are internally 8 registers rather than the expected
2540 4 registers. */
2541 save_fr &= ~(1 << reg);
2542 if (fp_loc == -1)
2543 {
2544 /* 1st HP CC FP register store. After this instruction
2545 we've set enough state that the GCC and HPCC code are
2546 both handled in the same manner. */
2547 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2548 fp_loc = 8;
2549 }
2550 else
2551 {
2552 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2553 = frame_info->frame + fp_loc;
2554 fp_loc += 8;
2555 }
2556 }
2557
2558 /* Quit if we hit any kind of branch. This can happen if a prologue
2559 instruction is in the delay slot of the first call/branch. */
2560 if (is_branch (inst))
2561 break;
2562
2563 /* Bump the PC. */
2564 pc += 4;
2565 }
2566 }
2567
2568 #ifdef MAINTENANCE_CMDS
2569
2570 static void
2571 unwind_command (exp, from_tty)
2572 char *exp;
2573 int from_tty;
2574 {
2575 CORE_ADDR address;
2576 union
2577 {
2578 int *foo;
2579 struct unwind_table_entry *u;
2580 } xxx;
2581
2582 /* If we have an expression, evaluate it and use it as the address. */
2583
2584 if (exp != 0 && *exp != 0)
2585 address = parse_and_eval_address (exp);
2586 else
2587 return;
2588
2589 xxx.u = find_unwind_entry (address);
2590
2591 if (!xxx.u)
2592 {
2593 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
2594 return;
2595 }
2596
2597 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
2598 xxx.foo[3]);
2599 }
2600 #endif /* MAINTENANCE_CMDS */
2601
2602 void
2603 _initialize_hppa_tdep ()
2604 {
2605 tm_print_insn = print_insn_hppa;
2606
2607 #ifdef MAINTENANCE_CMDS
2608 add_cmd ("unwind", class_maintenance, unwind_command,
2609 "Print unwind table entry at given address.",
2610 &maintenanceprintlist);
2611 #endif /* MAINTENANCE_CMDS */
2612 }
This page took 0.152085 seconds and 4 git commands to generate.