2004-02-11 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
26
27 #include "defs.h"
28 #include "frame.h"
29 #include "bfd.h"
30 #include "inferior.h"
31 #include "value.h"
32 #include "regcache.h"
33 #include "completer.h"
34 #include "language.h"
35 #include "osabi.h"
36 #include "gdb_assert.h"
37 #include "infttrace.h"
38 /* For argument passing to the inferior */
39 #include "symtab.h"
40 #include "infcall.h"
41 #include "dis-asm.h"
42
43 #ifdef USG
44 #include <sys/types.h>
45 #endif
46
47 #include <dl.h>
48 #include <sys/param.h>
49 #include <signal.h>
50
51 #include <sys/ptrace.h>
52 #include <machine/save_state.h>
53
54 #ifdef COFF_ENCAPSULATE
55 #include "a.out.encap.h"
56 #else
57 #endif
58
59 /*#include <sys/user.h> After a.out.h */
60 #include <sys/file.h>
61 #include "gdb_stat.h"
62 #include "gdb_wait.h"
63
64 #include "gdbcore.h"
65 #include "gdbcmd.h"
66 #include "target.h"
67 #include "symfile.h"
68 #include "objfiles.h"
69 #include "hppa-tdep.h"
70
71 /* Some local constants. */
72 static const int hppa32_num_regs = 128;
73 static const int hppa64_num_regs = 96;
74
75 static const int hppa64_call_dummy_breakpoint_offset = 22 * 4;
76
77 /* DEPRECATED_CALL_DUMMY_LENGTH is computed based on the size of a
78 word on the target machine, not the size of an instruction. Since
79 a word on this target holds two instructions we have to divide the
80 instruction size by two to get the word size of the dummy. */
81 static const int hppa32_call_dummy_length = INSTRUCTION_SIZE * 28;
82 static const int hppa64_call_dummy_length = INSTRUCTION_SIZE * 26 / 2;
83
84 /* Get at various relevent fields of an instruction word. */
85 #define MASK_5 0x1f
86 #define MASK_11 0x7ff
87 #define MASK_14 0x3fff
88 #define MASK_21 0x1fffff
89
90 /* Define offsets into the call dummy for the target function address.
91 See comments related to CALL_DUMMY for more info. */
92 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
93 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
94
95 /* Define offsets into the call dummy for the _sr4export address.
96 See comments related to CALL_DUMMY for more info. */
97 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
98 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
99
100 /* To support detection of the pseudo-initial frame
101 that threads have. */
102 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
103 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
104
105 /* Sizes (in bytes) of the native unwind entries. */
106 #define UNWIND_ENTRY_SIZE 16
107 #define STUB_UNWIND_ENTRY_SIZE 8
108
109 static int get_field (unsigned word, int from, int to);
110
111 static int extract_5_load (unsigned int);
112
113 static unsigned extract_5R_store (unsigned int);
114
115 static unsigned extract_5r_store (unsigned int);
116
117 static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *);
118
119 static int find_proc_framesize (CORE_ADDR);
120
121 static int find_return_regnum (CORE_ADDR);
122
123 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
124
125 static int extract_17 (unsigned int);
126
127 static unsigned deposit_21 (unsigned int, unsigned int);
128
129 static int extract_21 (unsigned);
130
131 static unsigned deposit_14 (int, unsigned int);
132
133 static int extract_14 (unsigned);
134
135 static void unwind_command (char *, int);
136
137 static int low_sign_extend (unsigned int, unsigned int);
138
139 static int sign_extend (unsigned int, unsigned int);
140
141 static int restore_pc_queue (CORE_ADDR *);
142
143 static int hppa_alignof (struct type *);
144
145 static int prologue_inst_adjust_sp (unsigned long);
146
147 static int is_branch (unsigned long);
148
149 static int inst_saves_gr (unsigned long);
150
151 static int inst_saves_fr (unsigned long);
152
153 static int pc_in_interrupt_handler (CORE_ADDR);
154
155 static int pc_in_linker_stub (CORE_ADDR);
156
157 static int compare_unwind_entries (const void *, const void *);
158
159 static void read_unwind_info (struct objfile *);
160
161 static void internalize_unwinds (struct objfile *,
162 struct unwind_table_entry *,
163 asection *, unsigned int,
164 unsigned int, CORE_ADDR);
165 static void pa_print_registers (char *, int, int);
166 static void pa_strcat_registers (char *, int, int, struct ui_file *);
167 static void pa_register_look_aside (char *, int, long *);
168 static void pa_print_fp_reg (int);
169 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
170 static void record_text_segment_lowaddr (bfd *, asection *, void *);
171 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
172 following functions static, once we hppa is partially multiarched. */
173 int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
174 CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
175 CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
176 int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
177 int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
178 CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
179 int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
180 CORE_ADDR hppa32_stack_align (CORE_ADDR sp);
181 CORE_ADDR hppa64_stack_align (CORE_ADDR sp);
182 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
183 int hppa_instruction_nullified (void);
184 int hppa_register_raw_size (int reg_nr);
185 int hppa_register_byte (int reg_nr);
186 struct type * hppa32_register_virtual_type (int reg_nr);
187 struct type * hppa64_register_virtual_type (int reg_nr);
188 void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
189 void hppa32_extract_return_value (struct type *type, char *regbuf,
190 char *valbuf);
191 void hppa64_extract_return_value (struct type *type, char *regbuf,
192 char *valbuf);
193 int hppa32_use_struct_convention (int gcc_p, struct type *type);
194 int hppa64_use_struct_convention (int gcc_p, struct type *type);
195 void hppa32_store_return_value (struct type *type, char *valbuf);
196 void hppa64_store_return_value (struct type *type, char *valbuf);
197 int hppa_cannot_store_register (int regnum);
198 void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
199 CORE_ADDR hppa_frame_chain (struct frame_info *frame);
200 int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
201 int hppa_frameless_function_invocation (struct frame_info *frame);
202 CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
203 CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
204 int hppa_frame_num_args (struct frame_info *frame);
205 void hppa_push_dummy_frame (void);
206 void hppa_pop_frame (void);
207 CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
208 int nargs, struct value **args,
209 struct type *type, int gcc_p);
210 CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
211 int struct_return, CORE_ADDR struct_addr);
212 CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
213 CORE_ADDR hppa_target_read_pc (ptid_t ptid);
214 void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
215 CORE_ADDR hppa_target_read_fp (void);
216
217 typedef struct
218 {
219 struct minimal_symbol *msym;
220 CORE_ADDR solib_handle;
221 CORE_ADDR return_val;
222 }
223 args_for_find_stub;
224
225 static int cover_find_stub_with_shl_get (void *);
226
227 static int is_pa_2 = 0; /* False */
228
229 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
230 extern int hp_som_som_object_present;
231
232 /* In breakpoint.c */
233 extern int exception_catchpoints_are_fragile;
234
235 /* Should call_function allocate stack space for a struct return? */
236
237 int
238 hppa32_use_struct_convention (int gcc_p, struct type *type)
239 {
240 return (TYPE_LENGTH (type) > 2 * DEPRECATED_REGISTER_SIZE);
241 }
242
243 /* Same as hppa32_use_struct_convention() for the PA64 ABI. */
244
245 int
246 hppa64_use_struct_convention (int gcc_p, struct type *type)
247 {
248 /* RM: struct upto 128 bits are returned in registers */
249 return TYPE_LENGTH (type) > 16;
250 }
251
252 /* Routines to extract various sized constants out of hppa
253 instructions. */
254
255 /* This assumes that no garbage lies outside of the lower bits of
256 value. */
257
258 static int
259 sign_extend (unsigned val, unsigned bits)
260 {
261 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
262 }
263
264 /* For many immediate values the sign bit is the low bit! */
265
266 static int
267 low_sign_extend (unsigned val, unsigned bits)
268 {
269 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
270 }
271
272 /* Extract the bits at positions between FROM and TO, using HP's numbering
273 (MSB = 0). */
274
275 static int
276 get_field (unsigned word, int from, int to)
277 {
278 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
279 }
280
281 /* extract the immediate field from a ld{bhw}s instruction */
282
283 static int
284 extract_5_load (unsigned word)
285 {
286 return low_sign_extend (word >> 16 & MASK_5, 5);
287 }
288
289 /* extract the immediate field from a break instruction */
290
291 static unsigned
292 extract_5r_store (unsigned word)
293 {
294 return (word & MASK_5);
295 }
296
297 /* extract the immediate field from a {sr}sm instruction */
298
299 static unsigned
300 extract_5R_store (unsigned word)
301 {
302 return (word >> 16 & MASK_5);
303 }
304
305 /* extract a 14 bit immediate field */
306
307 static int
308 extract_14 (unsigned word)
309 {
310 return low_sign_extend (word & MASK_14, 14);
311 }
312
313 /* deposit a 14 bit constant in a word */
314
315 static unsigned
316 deposit_14 (int opnd, unsigned word)
317 {
318 unsigned sign = (opnd < 0 ? 1 : 0);
319
320 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
321 }
322
323 /* extract a 21 bit constant */
324
325 static int
326 extract_21 (unsigned word)
327 {
328 int val;
329
330 word &= MASK_21;
331 word <<= 11;
332 val = get_field (word, 20, 20);
333 val <<= 11;
334 val |= get_field (word, 9, 19);
335 val <<= 2;
336 val |= get_field (word, 5, 6);
337 val <<= 5;
338 val |= get_field (word, 0, 4);
339 val <<= 2;
340 val |= get_field (word, 7, 8);
341 return sign_extend (val, 21) << 11;
342 }
343
344 /* deposit a 21 bit constant in a word. Although 21 bit constants are
345 usually the top 21 bits of a 32 bit constant, we assume that only
346 the low 21 bits of opnd are relevant */
347
348 static unsigned
349 deposit_21 (unsigned opnd, unsigned word)
350 {
351 unsigned val = 0;
352
353 val |= get_field (opnd, 11 + 14, 11 + 18);
354 val <<= 2;
355 val |= get_field (opnd, 11 + 12, 11 + 13);
356 val <<= 2;
357 val |= get_field (opnd, 11 + 19, 11 + 20);
358 val <<= 11;
359 val |= get_field (opnd, 11 + 1, 11 + 11);
360 val <<= 1;
361 val |= get_field (opnd, 11 + 0, 11 + 0);
362 return word | val;
363 }
364
365 /* extract a 17 bit constant from branch instructions, returning the
366 19 bit signed value. */
367
368 static int
369 extract_17 (unsigned word)
370 {
371 return sign_extend (get_field (word, 19, 28) |
372 get_field (word, 29, 29) << 10 |
373 get_field (word, 11, 15) << 11 |
374 (word & 0x1) << 16, 17) << 2;
375 }
376 \f
377
378 /* Compare the start address for two unwind entries returning 1 if
379 the first address is larger than the second, -1 if the second is
380 larger than the first, and zero if they are equal. */
381
382 static int
383 compare_unwind_entries (const void *arg1, const void *arg2)
384 {
385 const struct unwind_table_entry *a = arg1;
386 const struct unwind_table_entry *b = arg2;
387
388 if (a->region_start > b->region_start)
389 return 1;
390 else if (a->region_start < b->region_start)
391 return -1;
392 else
393 return 0;
394 }
395
396 static CORE_ADDR low_text_segment_address;
397
398 static void
399 record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
400 {
401 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
402 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
403 && section->vma < low_text_segment_address)
404 low_text_segment_address = section->vma;
405 }
406
407 static void
408 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
409 asection *section, unsigned int entries, unsigned int size,
410 CORE_ADDR text_offset)
411 {
412 /* We will read the unwind entries into temporary memory, then
413 fill in the actual unwind table. */
414 if (size > 0)
415 {
416 unsigned long tmp;
417 unsigned i;
418 char *buf = alloca (size);
419
420 low_text_segment_address = -1;
421
422 /* If addresses are 64 bits wide, then unwinds are supposed to
423 be segment relative offsets instead of absolute addresses.
424
425 Note that when loading a shared library (text_offset != 0) the
426 unwinds are already relative to the text_offset that will be
427 passed in. */
428 if (TARGET_PTR_BIT == 64 && text_offset == 0)
429 {
430 bfd_map_over_sections (objfile->obfd,
431 record_text_segment_lowaddr, NULL);
432
433 /* ?!? Mask off some low bits. Should this instead subtract
434 out the lowest section's filepos or something like that?
435 This looks very hokey to me. */
436 low_text_segment_address &= ~0xfff;
437 text_offset += low_text_segment_address;
438 }
439
440 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
441
442 /* Now internalize the information being careful to handle host/target
443 endian issues. */
444 for (i = 0; i < entries; i++)
445 {
446 table[i].region_start = bfd_get_32 (objfile->obfd,
447 (bfd_byte *) buf);
448 table[i].region_start += text_offset;
449 buf += 4;
450 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
451 table[i].region_end += text_offset;
452 buf += 4;
453 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
454 buf += 4;
455 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
456 table[i].Millicode = (tmp >> 30) & 0x1;
457 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
458 table[i].Region_description = (tmp >> 27) & 0x3;
459 table[i].reserved1 = (tmp >> 26) & 0x1;
460 table[i].Entry_SR = (tmp >> 25) & 0x1;
461 table[i].Entry_FR = (tmp >> 21) & 0xf;
462 table[i].Entry_GR = (tmp >> 16) & 0x1f;
463 table[i].Args_stored = (tmp >> 15) & 0x1;
464 table[i].Variable_Frame = (tmp >> 14) & 0x1;
465 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
466 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
467 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
468 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
469 table[i].Ada_Region = (tmp >> 9) & 0x1;
470 table[i].cxx_info = (tmp >> 8) & 0x1;
471 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
472 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
473 table[i].reserved2 = (tmp >> 5) & 0x1;
474 table[i].Save_SP = (tmp >> 4) & 0x1;
475 table[i].Save_RP = (tmp >> 3) & 0x1;
476 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
477 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
478 table[i].Cleanup_defined = tmp & 0x1;
479 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
480 buf += 4;
481 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
482 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
483 table[i].Large_frame = (tmp >> 29) & 0x1;
484 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
485 table[i].reserved4 = (tmp >> 27) & 0x1;
486 table[i].Total_frame_size = tmp & 0x7ffffff;
487
488 /* Stub unwinds are handled elsewhere. */
489 table[i].stub_unwind.stub_type = 0;
490 table[i].stub_unwind.padding = 0;
491 }
492 }
493 }
494
495 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
496 the object file. This info is used mainly by find_unwind_entry() to find
497 out the stack frame size and frame pointer used by procedures. We put
498 everything on the psymbol obstack in the objfile so that it automatically
499 gets freed when the objfile is destroyed. */
500
501 static void
502 read_unwind_info (struct objfile *objfile)
503 {
504 asection *unwind_sec, *stub_unwind_sec;
505 unsigned unwind_size, stub_unwind_size, total_size;
506 unsigned index, unwind_entries;
507 unsigned stub_entries, total_entries;
508 CORE_ADDR text_offset;
509 struct obj_unwind_info *ui;
510 obj_private_data_t *obj_private;
511
512 text_offset = ANOFFSET (objfile->section_offsets, 0);
513 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
514 sizeof (struct obj_unwind_info));
515
516 ui->table = NULL;
517 ui->cache = NULL;
518 ui->last = -1;
519
520 /* For reasons unknown the HP PA64 tools generate multiple unwinder
521 sections in a single executable. So we just iterate over every
522 section in the BFD looking for unwinder sections intead of trying
523 to do a lookup with bfd_get_section_by_name.
524
525 First determine the total size of the unwind tables so that we
526 can allocate memory in a nice big hunk. */
527 total_entries = 0;
528 for (unwind_sec = objfile->obfd->sections;
529 unwind_sec;
530 unwind_sec = unwind_sec->next)
531 {
532 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
533 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
534 {
535 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
536 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
537
538 total_entries += unwind_entries;
539 }
540 }
541
542 /* Now compute the size of the stub unwinds. Note the ELF tools do not
543 use stub unwinds at the curren time. */
544 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
545
546 if (stub_unwind_sec)
547 {
548 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
549 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
550 }
551 else
552 {
553 stub_unwind_size = 0;
554 stub_entries = 0;
555 }
556
557 /* Compute total number of unwind entries and their total size. */
558 total_entries += stub_entries;
559 total_size = total_entries * sizeof (struct unwind_table_entry);
560
561 /* Allocate memory for the unwind table. */
562 ui->table = (struct unwind_table_entry *)
563 obstack_alloc (&objfile->objfile_obstack, total_size);
564 ui->last = total_entries - 1;
565
566 /* Now read in each unwind section and internalize the standard unwind
567 entries. */
568 index = 0;
569 for (unwind_sec = objfile->obfd->sections;
570 unwind_sec;
571 unwind_sec = unwind_sec->next)
572 {
573 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
574 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
575 {
576 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
577 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
578
579 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
580 unwind_entries, unwind_size, text_offset);
581 index += unwind_entries;
582 }
583 }
584
585 /* Now read in and internalize the stub unwind entries. */
586 if (stub_unwind_size > 0)
587 {
588 unsigned int i;
589 char *buf = alloca (stub_unwind_size);
590
591 /* Read in the stub unwind entries. */
592 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
593 0, stub_unwind_size);
594
595 /* Now convert them into regular unwind entries. */
596 for (i = 0; i < stub_entries; i++, index++)
597 {
598 /* Clear out the next unwind entry. */
599 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
600
601 /* Convert offset & size into region_start and region_end.
602 Stuff away the stub type into "reserved" fields. */
603 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
604 (bfd_byte *) buf);
605 ui->table[index].region_start += text_offset;
606 buf += 4;
607 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
608 (bfd_byte *) buf);
609 buf += 2;
610 ui->table[index].region_end
611 = ui->table[index].region_start + 4 *
612 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
613 buf += 2;
614 }
615
616 }
617
618 /* Unwind table needs to be kept sorted. */
619 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
620 compare_unwind_entries);
621
622 /* Keep a pointer to the unwind information. */
623 if (objfile->obj_private == NULL)
624 {
625 obj_private = (obj_private_data_t *)
626 obstack_alloc (&objfile->objfile_obstack,
627 sizeof (obj_private_data_t));
628 obj_private->unwind_info = NULL;
629 obj_private->so_info = NULL;
630 obj_private->dp = 0;
631
632 objfile->obj_private = obj_private;
633 }
634 obj_private = (obj_private_data_t *) objfile->obj_private;
635 obj_private->unwind_info = ui;
636 }
637
638 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
639 of the objfiles seeking the unwind table entry for this PC. Each objfile
640 contains a sorted list of struct unwind_table_entry. Since we do a binary
641 search of the unwind tables, we depend upon them to be sorted. */
642
643 struct unwind_table_entry *
644 find_unwind_entry (CORE_ADDR pc)
645 {
646 int first, middle, last;
647 struct objfile *objfile;
648
649 /* A function at address 0? Not in HP-UX! */
650 if (pc == (CORE_ADDR) 0)
651 return NULL;
652
653 ALL_OBJFILES (objfile)
654 {
655 struct obj_unwind_info *ui;
656 ui = NULL;
657 if (objfile->obj_private)
658 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
659
660 if (!ui)
661 {
662 read_unwind_info (objfile);
663 if (objfile->obj_private == NULL)
664 error ("Internal error reading unwind information.");
665 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
666 }
667
668 /* First, check the cache */
669
670 if (ui->cache
671 && pc >= ui->cache->region_start
672 && pc <= ui->cache->region_end)
673 return ui->cache;
674
675 /* Not in the cache, do a binary search */
676
677 first = 0;
678 last = ui->last;
679
680 while (first <= last)
681 {
682 middle = (first + last) / 2;
683 if (pc >= ui->table[middle].region_start
684 && pc <= ui->table[middle].region_end)
685 {
686 ui->cache = &ui->table[middle];
687 return &ui->table[middle];
688 }
689
690 if (pc < ui->table[middle].region_start)
691 last = middle - 1;
692 else
693 first = middle + 1;
694 }
695 } /* ALL_OBJFILES() */
696 return NULL;
697 }
698
699 const unsigned char *
700 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
701 {
702 static const char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
703 (*len) = sizeof (breakpoint);
704 return breakpoint;
705 }
706
707 /* Return the name of a register. */
708
709 const char *
710 hppa32_register_name (int i)
711 {
712 static char *names[] = {
713 "flags", "r1", "rp", "r3",
714 "r4", "r5", "r6", "r7",
715 "r8", "r9", "r10", "r11",
716 "r12", "r13", "r14", "r15",
717 "r16", "r17", "r18", "r19",
718 "r20", "r21", "r22", "r23",
719 "r24", "r25", "r26", "dp",
720 "ret0", "ret1", "sp", "r31",
721 "sar", "pcoqh", "pcsqh", "pcoqt",
722 "pcsqt", "eiem", "iir", "isr",
723 "ior", "ipsw", "goto", "sr4",
724 "sr0", "sr1", "sr2", "sr3",
725 "sr5", "sr6", "sr7", "cr0",
726 "cr8", "cr9", "ccr", "cr12",
727 "cr13", "cr24", "cr25", "cr26",
728 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
729 "fpsr", "fpe1", "fpe2", "fpe3",
730 "fpe4", "fpe5", "fpe6", "fpe7",
731 "fr4", "fr4R", "fr5", "fr5R",
732 "fr6", "fr6R", "fr7", "fr7R",
733 "fr8", "fr8R", "fr9", "fr9R",
734 "fr10", "fr10R", "fr11", "fr11R",
735 "fr12", "fr12R", "fr13", "fr13R",
736 "fr14", "fr14R", "fr15", "fr15R",
737 "fr16", "fr16R", "fr17", "fr17R",
738 "fr18", "fr18R", "fr19", "fr19R",
739 "fr20", "fr20R", "fr21", "fr21R",
740 "fr22", "fr22R", "fr23", "fr23R",
741 "fr24", "fr24R", "fr25", "fr25R",
742 "fr26", "fr26R", "fr27", "fr27R",
743 "fr28", "fr28R", "fr29", "fr29R",
744 "fr30", "fr30R", "fr31", "fr31R"
745 };
746 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
747 return NULL;
748 else
749 return names[i];
750 }
751
752 const char *
753 hppa64_register_name (int i)
754 {
755 static char *names[] = {
756 "flags", "r1", "rp", "r3",
757 "r4", "r5", "r6", "r7",
758 "r8", "r9", "r10", "r11",
759 "r12", "r13", "r14", "r15",
760 "r16", "r17", "r18", "r19",
761 "r20", "r21", "r22", "r23",
762 "r24", "r25", "r26", "dp",
763 "ret0", "ret1", "sp", "r31",
764 "sar", "pcoqh", "pcsqh", "pcoqt",
765 "pcsqt", "eiem", "iir", "isr",
766 "ior", "ipsw", "goto", "sr4",
767 "sr0", "sr1", "sr2", "sr3",
768 "sr5", "sr6", "sr7", "cr0",
769 "cr8", "cr9", "ccr", "cr12",
770 "cr13", "cr24", "cr25", "cr26",
771 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
772 "fpsr", "fpe1", "fpe2", "fpe3",
773 "fr4", "fr5", "fr6", "fr7",
774 "fr8", "fr9", "fr10", "fr11",
775 "fr12", "fr13", "fr14", "fr15",
776 "fr16", "fr17", "fr18", "fr19",
777 "fr20", "fr21", "fr22", "fr23",
778 "fr24", "fr25", "fr26", "fr27",
779 "fr28", "fr29", "fr30", "fr31"
780 };
781 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
782 return NULL;
783 else
784 return names[i];
785 }
786
787
788
789 /* Return the adjustment necessary to make for addresses on the stack
790 as presented by hpread.c.
791
792 This is necessary because of the stack direction on the PA and the
793 bizarre way in which someone (?) decided they wanted to handle
794 frame pointerless code in GDB. */
795 int
796 hpread_adjust_stack_address (CORE_ADDR func_addr)
797 {
798 struct unwind_table_entry *u;
799
800 u = find_unwind_entry (func_addr);
801 if (!u)
802 return 0;
803 else
804 return u->Total_frame_size << 3;
805 }
806
807 /* Called to determine if PC is in an interrupt handler of some
808 kind. */
809
810 static int
811 pc_in_interrupt_handler (CORE_ADDR pc)
812 {
813 struct unwind_table_entry *u;
814 struct minimal_symbol *msym_us;
815
816 u = find_unwind_entry (pc);
817 if (!u)
818 return 0;
819
820 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
821 its frame isn't a pure interrupt frame. Deal with this. */
822 msym_us = lookup_minimal_symbol_by_pc (pc);
823
824 return (u->HP_UX_interrupt_marker
825 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
826 }
827
828 /* Called when no unwind descriptor was found for PC. Returns 1 if it
829 appears that PC is in a linker stub.
830
831 ?!? Need to handle stubs which appear in PA64 code. */
832
833 static int
834 pc_in_linker_stub (CORE_ADDR pc)
835 {
836 int found_magic_instruction = 0;
837 int i;
838 char buf[4];
839
840 /* If unable to read memory, assume pc is not in a linker stub. */
841 if (target_read_memory (pc, buf, 4) != 0)
842 return 0;
843
844 /* We are looking for something like
845
846 ; $$dyncall jams RP into this special spot in the frame (RP')
847 ; before calling the "call stub"
848 ldw -18(sp),rp
849
850 ldsid (rp),r1 ; Get space associated with RP into r1
851 mtsp r1,sp ; Move it into space register 0
852 be,n 0(sr0),rp) ; back to your regularly scheduled program */
853
854 /* Maximum known linker stub size is 4 instructions. Search forward
855 from the given PC, then backward. */
856 for (i = 0; i < 4; i++)
857 {
858 /* If we hit something with an unwind, stop searching this direction. */
859
860 if (find_unwind_entry (pc + i * 4) != 0)
861 break;
862
863 /* Check for ldsid (rp),r1 which is the magic instruction for a
864 return from a cross-space function call. */
865 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
866 {
867 found_magic_instruction = 1;
868 break;
869 }
870 /* Add code to handle long call/branch and argument relocation stubs
871 here. */
872 }
873
874 if (found_magic_instruction != 0)
875 return 1;
876
877 /* Now look backward. */
878 for (i = 0; i < 4; i++)
879 {
880 /* If we hit something with an unwind, stop searching this direction. */
881
882 if (find_unwind_entry (pc - i * 4) != 0)
883 break;
884
885 /* Check for ldsid (rp),r1 which is the magic instruction for a
886 return from a cross-space function call. */
887 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
888 {
889 found_magic_instruction = 1;
890 break;
891 }
892 /* Add code to handle long call/branch and argument relocation stubs
893 here. */
894 }
895 return found_magic_instruction;
896 }
897
898 static int
899 find_return_regnum (CORE_ADDR pc)
900 {
901 struct unwind_table_entry *u;
902
903 u = find_unwind_entry (pc);
904
905 if (!u)
906 return RP_REGNUM;
907
908 if (u->Millicode)
909 return 31;
910
911 return RP_REGNUM;
912 }
913
914 /* Return size of frame, or -1 if we should use a frame pointer. */
915 static int
916 find_proc_framesize (CORE_ADDR pc)
917 {
918 struct unwind_table_entry *u;
919 struct minimal_symbol *msym_us;
920
921 /* This may indicate a bug in our callers... */
922 if (pc == (CORE_ADDR) 0)
923 return -1;
924
925 u = find_unwind_entry (pc);
926
927 if (!u)
928 {
929 if (pc_in_linker_stub (pc))
930 /* Linker stubs have a zero size frame. */
931 return 0;
932 else
933 return -1;
934 }
935
936 msym_us = lookup_minimal_symbol_by_pc (pc);
937
938 /* If Save_SP is set, and we're not in an interrupt or signal caller,
939 then we have a frame pointer. Use it. */
940 if (u->Save_SP
941 && !pc_in_interrupt_handler (pc)
942 && msym_us
943 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
944 return -1;
945
946 return u->Total_frame_size << 3;
947 }
948
949 /* Return offset from sp at which rp is saved, or 0 if not saved. */
950 static int rp_saved (CORE_ADDR);
951
952 static int
953 rp_saved (CORE_ADDR pc)
954 {
955 struct unwind_table_entry *u;
956
957 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
958 if (pc == (CORE_ADDR) 0)
959 return 0;
960
961 u = find_unwind_entry (pc);
962
963 if (!u)
964 {
965 if (pc_in_linker_stub (pc))
966 /* This is the so-called RP'. */
967 return -24;
968 else
969 return 0;
970 }
971
972 if (u->Save_RP)
973 return (TARGET_PTR_BIT == 64 ? -16 : -20);
974 else if (u->stub_unwind.stub_type != 0)
975 {
976 switch (u->stub_unwind.stub_type)
977 {
978 case EXPORT:
979 case IMPORT:
980 return -24;
981 case PARAMETER_RELOCATION:
982 return -8;
983 default:
984 return 0;
985 }
986 }
987 else
988 return 0;
989 }
990 \f
991 int
992 hppa_frameless_function_invocation (struct frame_info *frame)
993 {
994 struct unwind_table_entry *u;
995
996 u = find_unwind_entry (get_frame_pc (frame));
997
998 if (u == 0)
999 return 0;
1000
1001 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
1002 }
1003
1004 /* Immediately after a function call, return the saved pc.
1005 Can't go through the frames for this because on some machines
1006 the new frame is not set up until the new function executes
1007 some instructions. */
1008
1009 CORE_ADDR
1010 hppa_saved_pc_after_call (struct frame_info *frame)
1011 {
1012 int ret_regnum;
1013 CORE_ADDR pc;
1014 struct unwind_table_entry *u;
1015
1016 ret_regnum = find_return_regnum (get_frame_pc (frame));
1017 pc = read_register (ret_regnum) & ~0x3;
1018
1019 /* If PC is in a linker stub, then we need to dig the address
1020 the stub will return to out of the stack. */
1021 u = find_unwind_entry (pc);
1022 if (u && u->stub_unwind.stub_type != 0)
1023 return DEPRECATED_FRAME_SAVED_PC (frame);
1024 else
1025 return pc;
1026 }
1027 \f
1028 CORE_ADDR
1029 hppa_frame_saved_pc (struct frame_info *frame)
1030 {
1031 CORE_ADDR pc = get_frame_pc (frame);
1032 struct unwind_table_entry *u;
1033 CORE_ADDR old_pc = 0;
1034 int spun_around_loop = 0;
1035 int rp_offset = 0;
1036
1037 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
1038 at the base of the frame in an interrupt handler. Registers within
1039 are saved in the exact same order as GDB numbers registers. How
1040 convienent. */
1041 if (pc_in_interrupt_handler (pc))
1042 return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4,
1043 TARGET_PTR_BIT / 8) & ~0x3;
1044
1045 if ((get_frame_pc (frame) >= get_frame_base (frame)
1046 && (get_frame_pc (frame)
1047 <= (get_frame_base (frame)
1048 /* A call dummy is sized in words, but it is actually a
1049 series of instructions. Account for that scaling
1050 factor. */
1051 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
1052 * DEPRECATED_CALL_DUMMY_LENGTH)
1053 /* Similarly we have to account for 64bit wide register
1054 saves. */
1055 + (32 * DEPRECATED_REGISTER_SIZE)
1056 /* We always consider FP regs 8 bytes long. */
1057 + (NUM_REGS - FP0_REGNUM) * 8
1058 /* Similarly we have to account for 64bit wide register
1059 saves. */
1060 + (6 * DEPRECATED_REGISTER_SIZE)))))
1061 {
1062 return read_memory_integer ((get_frame_base (frame)
1063 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
1064 TARGET_PTR_BIT / 8) & ~0x3;
1065 }
1066
1067 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
1068 /* Deal with signal handler caller frames too. */
1069 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1070 {
1071 CORE_ADDR rp;
1072 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
1073 return rp & ~0x3;
1074 }
1075 #endif
1076
1077 if (hppa_frameless_function_invocation (frame))
1078 {
1079 int ret_regnum;
1080
1081 ret_regnum = find_return_regnum (pc);
1082
1083 /* If the next frame is an interrupt frame or a signal
1084 handler caller, then we need to look in the saved
1085 register area to get the return pointer (the values
1086 in the registers may not correspond to anything useful). */
1087 if (get_next_frame (frame)
1088 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1089 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1090 {
1091 CORE_ADDR *saved_regs;
1092 hppa_frame_init_saved_regs (get_next_frame (frame));
1093 saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame));
1094 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1095 TARGET_PTR_BIT / 8) & 0x2)
1096 {
1097 pc = read_memory_integer (saved_regs[31],
1098 TARGET_PTR_BIT / 8) & ~0x3;
1099
1100 /* Syscalls are really two frames. The syscall stub itself
1101 with a return pointer in %rp and the kernel call with
1102 a return pointer in %r31. We return the %rp variant
1103 if %r31 is the same as frame->pc. */
1104 if (pc == get_frame_pc (frame))
1105 pc = read_memory_integer (saved_regs[RP_REGNUM],
1106 TARGET_PTR_BIT / 8) & ~0x3;
1107 }
1108 else
1109 pc = read_memory_integer (saved_regs[RP_REGNUM],
1110 TARGET_PTR_BIT / 8) & ~0x3;
1111 }
1112 else
1113 pc = read_register (ret_regnum) & ~0x3;
1114 }
1115 else
1116 {
1117 spun_around_loop = 0;
1118 old_pc = pc;
1119
1120 restart:
1121 rp_offset = rp_saved (pc);
1122
1123 /* Similar to code in frameless function case. If the next
1124 frame is a signal or interrupt handler, then dig the right
1125 information out of the saved register info. */
1126 if (rp_offset == 0
1127 && get_next_frame (frame)
1128 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1129 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1130 {
1131 CORE_ADDR *saved_regs;
1132 hppa_frame_init_saved_regs (get_next_frame (frame));
1133 saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame));
1134 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1135 TARGET_PTR_BIT / 8) & 0x2)
1136 {
1137 pc = read_memory_integer (saved_regs[31],
1138 TARGET_PTR_BIT / 8) & ~0x3;
1139
1140 /* Syscalls are really two frames. The syscall stub itself
1141 with a return pointer in %rp and the kernel call with
1142 a return pointer in %r31. We return the %rp variant
1143 if %r31 is the same as frame->pc. */
1144 if (pc == get_frame_pc (frame))
1145 pc = read_memory_integer (saved_regs[RP_REGNUM],
1146 TARGET_PTR_BIT / 8) & ~0x3;
1147 }
1148 else
1149 pc = read_memory_integer (saved_regs[RP_REGNUM],
1150 TARGET_PTR_BIT / 8) & ~0x3;
1151 }
1152 else if (rp_offset == 0)
1153 {
1154 old_pc = pc;
1155 pc = read_register (RP_REGNUM) & ~0x3;
1156 }
1157 else
1158 {
1159 old_pc = pc;
1160 pc = read_memory_integer (get_frame_base (frame) + rp_offset,
1161 TARGET_PTR_BIT / 8) & ~0x3;
1162 }
1163 }
1164
1165 /* If PC is inside a linker stub, then dig out the address the stub
1166 will return to.
1167
1168 Don't do this for long branch stubs. Why? For some unknown reason
1169 _start is marked as a long branch stub in hpux10. */
1170 u = find_unwind_entry (pc);
1171 if (u && u->stub_unwind.stub_type != 0
1172 && u->stub_unwind.stub_type != LONG_BRANCH)
1173 {
1174 unsigned int insn;
1175
1176 /* If this is a dynamic executable, and we're in a signal handler,
1177 then the call chain will eventually point us into the stub for
1178 _sigreturn. Unlike most cases, we'll be pointed to the branch
1179 to the real sigreturn rather than the code after the real branch!.
1180
1181 Else, try to dig the address the stub will return to in the normal
1182 fashion. */
1183 insn = read_memory_integer (pc, 4);
1184 if ((insn & 0xfc00e000) == 0xe8000000)
1185 return (pc + extract_17 (insn) + 8) & ~0x3;
1186 else
1187 {
1188 if (old_pc == pc)
1189 spun_around_loop++;
1190
1191 if (spun_around_loop > 1)
1192 {
1193 /* We're just about to go around the loop again with
1194 no more hope of success. Die. */
1195 error ("Unable to find return pc for this frame");
1196 }
1197 else
1198 goto restart;
1199 }
1200 }
1201
1202 return pc;
1203 }
1204 \f
1205 /* We need to correct the PC and the FP for the outermost frame when we are
1206 in a system call. */
1207
1208 void
1209 hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
1210 {
1211 int flags;
1212 int framesize;
1213
1214 if (get_next_frame (frame) && !fromleaf)
1215 return;
1216
1217 /* If the next frame represents a frameless function invocation then
1218 we have to do some adjustments that are normally done by
1219 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1220 this case.) */
1221 if (fromleaf)
1222 {
1223 /* Find the framesize of *this* frame without peeking at the PC
1224 in the current frame structure (it isn't set yet). */
1225 framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
1226
1227 /* Now adjust our base frame accordingly. If we have a frame pointer
1228 use it, else subtract the size of this frame from the current
1229 frame. (we always want frame->frame to point at the lowest address
1230 in the frame). */
1231 if (framesize == -1)
1232 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1233 else
1234 deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize);
1235 return;
1236 }
1237
1238 flags = read_register (FLAGS_REGNUM);
1239 if (flags & 2) /* In system call? */
1240 deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3);
1241
1242 /* The outermost frame is always derived from PC-framesize
1243
1244 One might think frameless innermost frames should have
1245 a frame->frame that is the same as the parent's frame->frame.
1246 That is wrong; frame->frame in that case should be the *high*
1247 address of the parent's frame. It's complicated as hell to
1248 explain, but the parent *always* creates some stack space for
1249 the child. So the child actually does have a frame of some
1250 sorts, and its base is the high address in its parent's frame. */
1251 framesize = find_proc_framesize (get_frame_pc (frame));
1252 if (framesize == -1)
1253 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1254 else
1255 deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize);
1256 }
1257 \f
1258 /* Given a GDB frame, determine the address of the calling function's
1259 frame. This will be used to create a new GDB frame struct, and
1260 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1261 will be called for the new frame.
1262
1263 This may involve searching through prologues for several functions
1264 at boundaries where GCC calls HP C code, or where code which has
1265 a frame pointer calls code without a frame pointer. */
1266
1267 CORE_ADDR
1268 hppa_frame_chain (struct frame_info *frame)
1269 {
1270 int my_framesize, caller_framesize;
1271 struct unwind_table_entry *u;
1272 CORE_ADDR frame_base;
1273 struct frame_info *tmp_frame;
1274
1275 /* A frame in the current frame list, or zero. */
1276 struct frame_info *saved_regs_frame = 0;
1277 /* Where the registers were saved in saved_regs_frame. If
1278 saved_regs_frame is zero, this is garbage. */
1279 CORE_ADDR *saved_regs = NULL;
1280
1281 CORE_ADDR caller_pc;
1282
1283 struct minimal_symbol *min_frame_symbol;
1284 struct symbol *frame_symbol;
1285 char *frame_symbol_name;
1286
1287 /* If this is a threaded application, and we see the
1288 routine "__pthread_exit", treat it as the stack root
1289 for this thread. */
1290 min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame));
1291 frame_symbol = find_pc_function (get_frame_pc (frame));
1292
1293 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1294 {
1295 /* The test above for "no user function name" would defend
1296 against the slim likelihood that a user might define a
1297 routine named "__pthread_exit" and then try to debug it.
1298
1299 If it weren't commented out, and you tried to debug the
1300 pthread library itself, you'd get errors.
1301
1302 So for today, we don't make that check. */
1303 frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
1304 if (frame_symbol_name != 0)
1305 {
1306 if (0 == strncmp (frame_symbol_name,
1307 THREAD_INITIAL_FRAME_SYMBOL,
1308 THREAD_INITIAL_FRAME_SYM_LEN))
1309 {
1310 /* Pretend we've reached the bottom of the stack. */
1311 return (CORE_ADDR) 0;
1312 }
1313 }
1314 } /* End of hacky code for threads. */
1315
1316 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1317 are easy; at *sp we have a full save state strucutre which we can
1318 pull the old stack pointer from. Also see frame_saved_pc for
1319 code to dig a saved PC out of the save state structure. */
1320 if (pc_in_interrupt_handler (get_frame_pc (frame)))
1321 frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4,
1322 TARGET_PTR_BIT / 8);
1323 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1324 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1325 {
1326 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1327 }
1328 #endif
1329 else
1330 frame_base = get_frame_base (frame);
1331
1332 /* Get frame sizes for the current frame and the frame of the
1333 caller. */
1334 my_framesize = find_proc_framesize (get_frame_pc (frame));
1335 caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
1336
1337 /* If we can't determine the caller's PC, then it's not likely we can
1338 really determine anything meaningful about its frame. We'll consider
1339 this to be stack bottom. */
1340 if (caller_pc == (CORE_ADDR) 0)
1341 return (CORE_ADDR) 0;
1342
1343 caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
1344
1345 /* If caller does not have a frame pointer, then its frame
1346 can be found at current_frame - caller_framesize. */
1347 if (caller_framesize != -1)
1348 {
1349 return frame_base - caller_framesize;
1350 }
1351 /* Both caller and callee have frame pointers and are GCC compiled
1352 (SAVE_SP bit in unwind descriptor is on for both functions.
1353 The previous frame pointer is found at the top of the current frame. */
1354 if (caller_framesize == -1 && my_framesize == -1)
1355 {
1356 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1357 }
1358 /* Caller has a frame pointer, but callee does not. This is a little
1359 more difficult as GCC and HP C lay out locals and callee register save
1360 areas very differently.
1361
1362 The previous frame pointer could be in a register, or in one of
1363 several areas on the stack.
1364
1365 Walk from the current frame to the innermost frame examining
1366 unwind descriptors to determine if %r3 ever gets saved into the
1367 stack. If so return whatever value got saved into the stack.
1368 If it was never saved in the stack, then the value in %r3 is still
1369 valid, so use it.
1370
1371 We use information from unwind descriptors to determine if %r3
1372 is saved into the stack (Entry_GR field has this information). */
1373
1374 for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame))
1375 {
1376 u = find_unwind_entry (get_frame_pc (tmp_frame));
1377
1378 if (!u)
1379 {
1380 /* We could find this information by examining prologues. I don't
1381 think anyone has actually written any tools (not even "strip")
1382 which leave them out of an executable, so maybe this is a moot
1383 point. */
1384 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1385 code that doesn't have unwind entries. For example, stepping into
1386 the dynamic linker will give you a PC that has none. Thus, I've
1387 disabled this warning. */
1388 #if 0
1389 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame));
1390 #endif
1391 return (CORE_ADDR) 0;
1392 }
1393
1394 if (u->Save_SP
1395 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1396 || pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1397 break;
1398
1399 /* Entry_GR specifies the number of callee-saved general registers
1400 saved in the stack. It starts at %r3, so %r3 would be 1. */
1401 if (u->Entry_GR >= 1)
1402 {
1403 /* The unwind entry claims that r3 is saved here. However,
1404 in optimized code, GCC often doesn't actually save r3.
1405 We'll discover this if we look at the prologue. */
1406 hppa_frame_init_saved_regs (tmp_frame);
1407 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1408 saved_regs_frame = tmp_frame;
1409
1410 /* If we have an address for r3, that's good. */
1411 if (saved_regs[DEPRECATED_FP_REGNUM])
1412 break;
1413 }
1414 }
1415
1416 if (tmp_frame)
1417 {
1418 /* We may have walked down the chain into a function with a frame
1419 pointer. */
1420 if (u->Save_SP
1421 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1422 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1423 {
1424 return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8);
1425 }
1426 /* %r3 was saved somewhere in the stack. Dig it out. */
1427 else
1428 {
1429 /* Sick.
1430
1431 For optimization purposes many kernels don't have the
1432 callee saved registers into the save_state structure upon
1433 entry into the kernel for a syscall; the optimization
1434 is usually turned off if the process is being traced so
1435 that the debugger can get full register state for the
1436 process.
1437
1438 This scheme works well except for two cases:
1439
1440 * Attaching to a process when the process is in the
1441 kernel performing a system call (debugger can't get
1442 full register state for the inferior process since
1443 the process wasn't being traced when it entered the
1444 system call).
1445
1446 * Register state is not complete if the system call
1447 causes the process to core dump.
1448
1449
1450 The following heinous code is an attempt to deal with
1451 the lack of register state in a core dump. It will
1452 fail miserably if the function which performs the
1453 system call has a variable sized stack frame. */
1454
1455 if (tmp_frame != saved_regs_frame)
1456 {
1457 hppa_frame_init_saved_regs (tmp_frame);
1458 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1459 }
1460
1461 /* Abominable hack. */
1462 if (current_target.to_has_execution == 0
1463 && ((saved_regs[FLAGS_REGNUM]
1464 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1465 TARGET_PTR_BIT / 8)
1466 & 0x2))
1467 || (saved_regs[FLAGS_REGNUM] == 0
1468 && read_register (FLAGS_REGNUM) & 0x2)))
1469 {
1470 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1471 if (!u)
1472 {
1473 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1474 TARGET_PTR_BIT / 8);
1475 }
1476 else
1477 {
1478 return frame_base - (u->Total_frame_size << 3);
1479 }
1480 }
1481
1482 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1483 TARGET_PTR_BIT / 8);
1484 }
1485 }
1486 else
1487 {
1488 /* Get the innermost frame. */
1489 tmp_frame = frame;
1490 while (get_next_frame (tmp_frame) != NULL)
1491 tmp_frame = get_next_frame (tmp_frame);
1492
1493 if (tmp_frame != saved_regs_frame)
1494 {
1495 hppa_frame_init_saved_regs (tmp_frame);
1496 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1497 }
1498
1499 /* Abominable hack. See above. */
1500 if (current_target.to_has_execution == 0
1501 && ((saved_regs[FLAGS_REGNUM]
1502 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1503 TARGET_PTR_BIT / 8)
1504 & 0x2))
1505 || (saved_regs[FLAGS_REGNUM] == 0
1506 && read_register (FLAGS_REGNUM) & 0x2)))
1507 {
1508 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1509 if (!u)
1510 {
1511 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1512 TARGET_PTR_BIT / 8);
1513 }
1514 else
1515 {
1516 return frame_base - (u->Total_frame_size << 3);
1517 }
1518 }
1519
1520 /* The value in %r3 was never saved into the stack (thus %r3 still
1521 holds the value of the previous frame pointer). */
1522 return deprecated_read_fp ();
1523 }
1524 }
1525 \f
1526
1527 /* To see if a frame chain is valid, see if the caller looks like it
1528 was compiled with gcc. */
1529
1530 int
1531 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1532 {
1533 struct minimal_symbol *msym_us;
1534 struct minimal_symbol *msym_start;
1535 struct unwind_table_entry *u, *next_u = NULL;
1536 struct frame_info *next;
1537
1538 u = find_unwind_entry (get_frame_pc (thisframe));
1539
1540 if (u == NULL)
1541 return 1;
1542
1543 /* We can't just check that the same of msym_us is "_start", because
1544 someone idiotically decided that they were going to make a Ltext_end
1545 symbol with the same address. This Ltext_end symbol is totally
1546 indistinguishable (as nearly as I can tell) from the symbol for a function
1547 which is (legitimately, since it is in the user's namespace)
1548 named Ltext_end, so we can't just ignore it. */
1549 msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
1550 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1551 if (msym_us
1552 && msym_start
1553 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1554 return 0;
1555
1556 /* Grrrr. Some new idiot decided that they don't want _start for the
1557 PRO configurations; $START$ calls main directly.... Deal with it. */
1558 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1559 if (msym_us
1560 && msym_start
1561 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1562 return 0;
1563
1564 next = get_next_frame (thisframe);
1565 if (next)
1566 next_u = find_unwind_entry (get_frame_pc (next));
1567
1568 /* If this frame does not save SP, has no stack, isn't a stub,
1569 and doesn't "call" an interrupt routine or signal handler caller,
1570 then its not valid. */
1571 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1572 || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME))
1573 || (next_u && next_u->HP_UX_interrupt_marker))
1574 return 1;
1575
1576 if (pc_in_linker_stub (get_frame_pc (thisframe)))
1577 return 1;
1578
1579 return 0;
1580 }
1581
1582 /* These functions deal with saving and restoring register state
1583 around a function call in the inferior. They keep the stack
1584 double-word aligned; eventually, on an hp700, the stack will have
1585 to be aligned to a 64-byte boundary. */
1586
1587 void
1588 hppa_push_dummy_frame (void)
1589 {
1590 CORE_ADDR sp, pc, pcspace;
1591 int regnum;
1592 CORE_ADDR int_buffer;
1593 double freg_buffer;
1594
1595 pc = hppa_target_read_pc (inferior_ptid);
1596 int_buffer = read_register (FLAGS_REGNUM);
1597 if (int_buffer & 0x2)
1598 {
1599 const unsigned int sid = (pc >> 30) & 0x3;
1600 if (sid == 0)
1601 pcspace = read_register (SR4_REGNUM);
1602 else
1603 pcspace = read_register (SR4_REGNUM + 4 + sid);
1604 }
1605 else
1606 pcspace = read_register (PCSQ_HEAD_REGNUM);
1607
1608 /* Space for "arguments"; the RP goes in here. */
1609 sp = read_register (SP_REGNUM) + 48;
1610 int_buffer = read_register (RP_REGNUM) | 0x3;
1611
1612 /* The 32bit and 64bit ABIs save the return pointer into different
1613 stack slots. */
1614 if (DEPRECATED_REGISTER_SIZE == 8)
1615 write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1616 else
1617 write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1618
1619 int_buffer = deprecated_read_fp ();
1620 write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1621
1622 write_register (DEPRECATED_FP_REGNUM, sp);
1623
1624 sp += 2 * DEPRECATED_REGISTER_SIZE;
1625
1626 for (regnum = 1; regnum < 32; regnum++)
1627 if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM)
1628 sp = push_word (sp, read_register (regnum));
1629
1630 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1631 if (DEPRECATED_REGISTER_SIZE != 8)
1632 sp += 4;
1633
1634 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1635 {
1636 deprecated_read_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
1637 (char *) &freg_buffer, 8);
1638 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1639 }
1640 sp = push_word (sp, read_register (IPSW_REGNUM));
1641 sp = push_word (sp, read_register (SAR_REGNUM));
1642 sp = push_word (sp, pc);
1643 sp = push_word (sp, pcspace);
1644 sp = push_word (sp, pc + 4);
1645 sp = push_word (sp, pcspace);
1646 write_register (SP_REGNUM, sp);
1647 }
1648
1649 static void
1650 find_dummy_frame_regs (struct frame_info *frame,
1651 CORE_ADDR frame_saved_regs[])
1652 {
1653 CORE_ADDR fp = get_frame_base (frame);
1654 int i;
1655
1656 /* The 32bit and 64bit ABIs save RP into different locations. */
1657 if (DEPRECATED_REGISTER_SIZE == 8)
1658 frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3;
1659 else
1660 frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3;
1661
1662 frame_saved_regs[DEPRECATED_FP_REGNUM] = fp;
1663
1664 frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE);
1665
1666 for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++)
1667 {
1668 if (i != DEPRECATED_FP_REGNUM)
1669 {
1670 frame_saved_regs[i] = fp;
1671 fp += DEPRECATED_REGISTER_SIZE;
1672 }
1673 }
1674
1675 /* This is not necessary or desirable for the 64bit ABI. */
1676 if (DEPRECATED_REGISTER_SIZE != 8)
1677 fp += 4;
1678
1679 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1680 frame_saved_regs[i] = fp;
1681
1682 frame_saved_regs[IPSW_REGNUM] = fp;
1683 frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE;
1684 frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE;
1685 frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE;
1686 frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE;
1687 frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE;
1688 }
1689
1690 void
1691 hppa_pop_frame (void)
1692 {
1693 struct frame_info *frame = get_current_frame ();
1694 CORE_ADDR fp, npc, target_pc;
1695 int regnum;
1696 CORE_ADDR *fsr;
1697 double freg_buffer;
1698
1699 fp = get_frame_base (frame);
1700 hppa_frame_init_saved_regs (frame);
1701 fsr = deprecated_get_frame_saved_regs (frame);
1702
1703 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1704 if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */
1705 restore_pc_queue (fsr);
1706 #endif
1707
1708 for (regnum = 31; regnum > 0; regnum--)
1709 if (fsr[regnum])
1710 write_register (regnum, read_memory_integer (fsr[regnum],
1711 DEPRECATED_REGISTER_SIZE));
1712
1713 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1714 if (fsr[regnum])
1715 {
1716 read_memory (fsr[regnum], (char *) &freg_buffer, 8);
1717 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
1718 (char *) &freg_buffer, 8);
1719 }
1720
1721 if (fsr[IPSW_REGNUM])
1722 write_register (IPSW_REGNUM,
1723 read_memory_integer (fsr[IPSW_REGNUM],
1724 DEPRECATED_REGISTER_SIZE));
1725
1726 if (fsr[SAR_REGNUM])
1727 write_register (SAR_REGNUM,
1728 read_memory_integer (fsr[SAR_REGNUM],
1729 DEPRECATED_REGISTER_SIZE));
1730
1731 /* If the PC was explicitly saved, then just restore it. */
1732 if (fsr[PCOQ_TAIL_REGNUM])
1733 {
1734 npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM],
1735 DEPRECATED_REGISTER_SIZE);
1736 write_register (PCOQ_TAIL_REGNUM, npc);
1737 }
1738 /* Else use the value in %rp to set the new PC. */
1739 else
1740 {
1741 npc = read_register (RP_REGNUM);
1742 write_pc (npc);
1743 }
1744
1745 write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE));
1746
1747 if (fsr[IPSW_REGNUM]) /* call dummy */
1748 write_register (SP_REGNUM, fp - 48);
1749 else
1750 write_register (SP_REGNUM, fp);
1751
1752 /* The PC we just restored may be inside a return trampoline. If so
1753 we want to restart the inferior and run it through the trampoline.
1754
1755 Do this by setting a momentary breakpoint at the location the
1756 trampoline returns to.
1757
1758 Don't skip through the trampoline if we're popping a dummy frame. */
1759 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1760 if (target_pc && !fsr[IPSW_REGNUM])
1761 {
1762 struct symtab_and_line sal;
1763 struct breakpoint *breakpoint;
1764 struct cleanup *old_chain;
1765
1766 /* Set up our breakpoint. Set it to be silent as the MI code
1767 for "return_command" will print the frame we returned to. */
1768 sal = find_pc_line (target_pc, 0);
1769 sal.pc = target_pc;
1770 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
1771 breakpoint->silent = 1;
1772
1773 /* So we can clean things up. */
1774 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1775
1776 /* Start up the inferior. */
1777 clear_proceed_status ();
1778 proceed_to_finish = 1;
1779 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1780
1781 /* Perform our cleanups. */
1782 do_cleanups (old_chain);
1783 }
1784 flush_cached_frames ();
1785 }
1786
1787 /* After returning to a dummy on the stack, restore the instruction
1788 queue space registers. */
1789
1790 static int
1791 restore_pc_queue (CORE_ADDR *fsr)
1792 {
1793 CORE_ADDR pc = read_pc ();
1794 CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM],
1795 TARGET_PTR_BIT / 8);
1796 struct target_waitstatus w;
1797 int insn_count;
1798
1799 /* Advance past break instruction in the call dummy. */
1800 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1801 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1802
1803 /* HPUX doesn't let us set the space registers or the space
1804 registers of the PC queue through ptrace. Boo, hiss.
1805 Conveniently, the call dummy has this sequence of instructions
1806 after the break:
1807 mtsp r21, sr0
1808 ble,n 0(sr0, r22)
1809
1810 So, load up the registers and single step until we are in the
1811 right place. */
1812
1813 write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM],
1814 DEPRECATED_REGISTER_SIZE));
1815 write_register (22, new_pc);
1816
1817 for (insn_count = 0; insn_count < 3; insn_count++)
1818 {
1819 /* FIXME: What if the inferior gets a signal right now? Want to
1820 merge this into wait_for_inferior (as a special kind of
1821 watchpoint? By setting a breakpoint at the end? Is there
1822 any other choice? Is there *any* way to do this stuff with
1823 ptrace() or some equivalent?). */
1824 resume (1, 0);
1825 target_wait (inferior_ptid, &w);
1826
1827 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1828 {
1829 stop_signal = w.value.sig;
1830 terminal_ours_for_output ();
1831 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1832 target_signal_to_name (stop_signal),
1833 target_signal_to_string (stop_signal));
1834 gdb_flush (gdb_stdout);
1835 return 0;
1836 }
1837 }
1838 target_terminal_ours ();
1839 target_fetch_registers (-1);
1840 return 1;
1841 }
1842
1843
1844 #ifdef PA20W_CALLING_CONVENTIONS
1845
1846 /* This function pushes a stack frame with arguments as part of the
1847 inferior function calling mechanism.
1848
1849 This is the version for the PA64, in which later arguments appear
1850 at higher addresses. (The stack always grows towards higher
1851 addresses.)
1852
1853 We simply allocate the appropriate amount of stack space and put
1854 arguments into their proper slots. The call dummy code will copy
1855 arguments into registers as needed by the ABI.
1856
1857 This ABI also requires that the caller provide an argument pointer
1858 to the callee, so we do that too. */
1859
1860 CORE_ADDR
1861 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1862 int struct_return, CORE_ADDR struct_addr)
1863 {
1864 /* array of arguments' offsets */
1865 int *offset = (int *) alloca (nargs * sizeof (int));
1866
1867 /* array of arguments' lengths: real lengths in bytes, not aligned to
1868 word size */
1869 int *lengths = (int *) alloca (nargs * sizeof (int));
1870
1871 /* The value of SP as it was passed into this function after
1872 aligning. */
1873 CORE_ADDR orig_sp = DEPRECATED_STACK_ALIGN (sp);
1874
1875 /* The number of stack bytes occupied by the current argument. */
1876 int bytes_reserved;
1877
1878 /* The total number of bytes reserved for the arguments. */
1879 int cum_bytes_reserved = 0;
1880
1881 /* Similarly, but aligned. */
1882 int cum_bytes_aligned = 0;
1883 int i;
1884
1885 /* Iterate over each argument provided by the user. */
1886 for (i = 0; i < nargs; i++)
1887 {
1888 struct type *arg_type = VALUE_TYPE (args[i]);
1889
1890 /* Integral scalar values smaller than a register are padded on
1891 the left. We do this by promoting them to full-width,
1892 although the ABI says to pad them with garbage. */
1893 if (is_integral_type (arg_type)
1894 && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE)
1895 {
1896 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1897 ? builtin_type_unsigned_long
1898 : builtin_type_long),
1899 args[i]);
1900 arg_type = VALUE_TYPE (args[i]);
1901 }
1902
1903 lengths[i] = TYPE_LENGTH (arg_type);
1904
1905 /* Align the size of the argument to the word size for this
1906 target. */
1907 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
1908
1909 offset[i] = cum_bytes_reserved;
1910
1911 /* Aggregates larger than eight bytes (the only types larger
1912 than eight bytes we have) are aligned on a 16-byte boundary,
1913 possibly padded on the right with garbage. This may leave an
1914 empty word on the stack, and thus an unused register, as per
1915 the ABI. */
1916 if (bytes_reserved > 8)
1917 {
1918 /* Round up the offset to a multiple of two slots. */
1919 int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1)
1920 & -(2*DEPRECATED_REGISTER_SIZE));
1921
1922 /* Note the space we've wasted, if any. */
1923 bytes_reserved += new_offset - offset[i];
1924 offset[i] = new_offset;
1925 }
1926
1927 cum_bytes_reserved += bytes_reserved;
1928 }
1929
1930 /* CUM_BYTES_RESERVED already accounts for all the arguments
1931 passed by the user. However, the ABIs mandate minimum stack space
1932 allocations for outgoing arguments.
1933
1934 The ABIs also mandate minimum stack alignments which we must
1935 preserve. */
1936 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
1937 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1938
1939 /* Now write each of the args at the proper offset down the stack. */
1940 for (i = 0; i < nargs; i++)
1941 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1942
1943 /* If a structure has to be returned, set up register 28 to hold its
1944 address */
1945 if (struct_return)
1946 write_register (28, struct_addr);
1947
1948 /* For the PA64 we must pass a pointer to the outgoing argument list.
1949 The ABI mandates that the pointer should point to the first byte of
1950 storage beyond the register flushback area.
1951
1952 However, the call dummy expects the outgoing argument pointer to
1953 be passed in register %r4. */
1954 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1955
1956 /* ?!? This needs further work. We need to set up the global data
1957 pointer for this procedure. This assumes the same global pointer
1958 for every procedure. The call dummy expects the dp value to
1959 be passed in register %r6. */
1960 write_register (6, read_register (27));
1961
1962 /* The stack will have 64 bytes of additional space for a frame marker. */
1963 return sp + 64;
1964 }
1965
1966 #else
1967
1968 /* This function pushes a stack frame with arguments as part of the
1969 inferior function calling mechanism.
1970
1971 This is the version of the function for the 32-bit PA machines, in
1972 which later arguments appear at lower addresses. (The stack always
1973 grows towards higher addresses.)
1974
1975 We simply allocate the appropriate amount of stack space and put
1976 arguments into their proper slots. The call dummy code will copy
1977 arguments into registers as needed by the ABI. */
1978
1979 CORE_ADDR
1980 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1981 int struct_return, CORE_ADDR struct_addr)
1982 {
1983 /* array of arguments' offsets */
1984 int *offset = (int *) alloca (nargs * sizeof (int));
1985
1986 /* array of arguments' lengths: real lengths in bytes, not aligned to
1987 word size */
1988 int *lengths = (int *) alloca (nargs * sizeof (int));
1989
1990 /* The number of stack bytes occupied by the current argument. */
1991 int bytes_reserved;
1992
1993 /* The total number of bytes reserved for the arguments. */
1994 int cum_bytes_reserved = 0;
1995
1996 /* Similarly, but aligned. */
1997 int cum_bytes_aligned = 0;
1998 int i;
1999
2000 /* Iterate over each argument provided by the user. */
2001 for (i = 0; i < nargs; i++)
2002 {
2003 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
2004
2005 /* Align the size of the argument to the word size for this
2006 target. */
2007 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
2008
2009 offset[i] = (cum_bytes_reserved
2010 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
2011
2012 /* If the argument is a double word argument, then it needs to be
2013 double word aligned. */
2014 if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE)
2015 && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE))
2016 {
2017 int new_offset = 0;
2018 /* BYTES_RESERVED is already aligned to the word, so we put
2019 the argument at one word more down the stack.
2020
2021 This will leave one empty word on the stack, and one unused
2022 register as mandated by the ABI. */
2023 new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1)
2024 & -(2 * DEPRECATED_REGISTER_SIZE));
2025
2026 if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE)
2027 {
2028 bytes_reserved += DEPRECATED_REGISTER_SIZE;
2029 offset[i] += DEPRECATED_REGISTER_SIZE;
2030 }
2031 }
2032
2033 cum_bytes_reserved += bytes_reserved;
2034
2035 }
2036
2037 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
2038 by the user. However, the ABI mandates minimum stack space
2039 allocations for outgoing arguments.
2040
2041 The ABI also mandates minimum stack alignments which we must
2042 preserve. */
2043 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
2044 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
2045
2046 /* Now write each of the args at the proper offset down the stack.
2047 ?!? We need to promote values to a full register instead of skipping
2048 words in the stack. */
2049 for (i = 0; i < nargs; i++)
2050 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
2051
2052 /* If a structure has to be returned, set up register 28 to hold its
2053 address */
2054 if (struct_return)
2055 write_register (28, struct_addr);
2056
2057 /* The stack will have 32 bytes of additional space for a frame marker. */
2058 return sp + 32;
2059 }
2060
2061 #endif
2062
2063 /* elz: Used to lookup a symbol in the shared libraries.
2064 This function calls shl_findsym, indirectly through a
2065 call to __d_shl_get. __d_shl_get is in end.c, which is always
2066 linked in by the hp compilers/linkers.
2067 The call to shl_findsym cannot be made directly because it needs
2068 to be active in target address space.
2069 inputs: - minimal symbol pointer for the function we want to look up
2070 - address in target space of the descriptor for the library
2071 where we want to look the symbol up.
2072 This address is retrieved using the
2073 som_solib_get_solib_by_pc function (somsolib.c).
2074 output: - real address in the library of the function.
2075 note: the handle can be null, in which case shl_findsym will look for
2076 the symbol in all the loaded shared libraries.
2077 files to look at if you need reference on this stuff:
2078 dld.c, dld_shl_findsym.c
2079 end.c
2080 man entry for shl_findsym */
2081
2082 CORE_ADDR
2083 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
2084 {
2085 struct symbol *get_sym, *symbol2;
2086 struct minimal_symbol *buff_minsym, *msymbol;
2087 struct type *ftype;
2088 struct value **args;
2089 struct value *funcval;
2090 struct value *val;
2091
2092 int x, namelen, err_value, tmp = -1;
2093 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
2094 CORE_ADDR stub_addr;
2095
2096
2097 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
2098 funcval = find_function_in_inferior ("__d_shl_get");
2099 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL);
2100 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
2101 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
2102 symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL);
2103 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
2104 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
2105 value_return_addr = endo_buff_addr + namelen;
2106 ftype = check_typedef (SYMBOL_TYPE (get_sym));
2107
2108 /* do alignment */
2109 if ((x = value_return_addr % 64) != 0)
2110 value_return_addr = value_return_addr + 64 - x;
2111
2112 errno_return_addr = value_return_addr + 64;
2113
2114
2115 /* set up stuff needed by __d_shl_get in buffer in end.o */
2116
2117 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
2118
2119 target_write_memory (value_return_addr, (char *) &tmp, 4);
2120
2121 target_write_memory (errno_return_addr, (char *) &tmp, 4);
2122
2123 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2124 (char *) &handle, 4);
2125
2126 /* now prepare the arguments for the call */
2127
2128 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
2129 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2130 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
2131 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
2132 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2133 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
2134
2135 /* now call the function */
2136
2137 val = call_function_by_hand (funcval, 6, args);
2138
2139 /* now get the results */
2140
2141 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2142
2143 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2144 if (stub_addr <= 0)
2145 error ("call to __d_shl_get failed, error code is %d", err_value);
2146
2147 return (stub_addr);
2148 }
2149
2150 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
2151 static int
2152 cover_find_stub_with_shl_get (void *args_untyped)
2153 {
2154 args_for_find_stub *args = args_untyped;
2155 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2156 return 0;
2157 }
2158
2159 /* Insert the specified number of args and function address
2160 into a call sequence of the above form stored at DUMMYNAME.
2161
2162 On the hppa we need to call the stack dummy through $$dyncall.
2163 Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra
2164 argument, real_pc, which is the location where gdb should start up
2165 the inferior to do the function call.
2166
2167 This has to work across several versions of hpux, bsd, osf1. It has to
2168 work regardless of what compiler was used to build the inferior program.
2169 It should work regardless of whether or not end.o is available. It has
2170 to work even if gdb can not call into the dynamic loader in the inferior
2171 to query it for symbol names and addresses.
2172
2173 Yes, all those cases should work. Luckily code exists to handle most
2174 of them. The complexity is in selecting exactly what scheme should
2175 be used to perform the inferior call.
2176
2177 At the current time this routine is known not to handle cases where
2178 the program was linked with HP's compiler without including end.o.
2179
2180 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2181
2182 CORE_ADDR
2183 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2184 struct value **args, struct type *type, int gcc_p)
2185 {
2186 CORE_ADDR dyncall_addr;
2187 struct minimal_symbol *msymbol;
2188 struct minimal_symbol *trampoline;
2189 int flags = read_register (FLAGS_REGNUM);
2190 struct unwind_table_entry *u = NULL;
2191 CORE_ADDR new_stub = 0;
2192 CORE_ADDR solib_handle = 0;
2193
2194 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2195 passed an import stub, not a PLABEL. It is also necessary to set %r19
2196 (the PIC register) before performing the call.
2197
2198 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2199 are calling the target directly. When using __d_plt_call we want to
2200 use a PLABEL instead of an import stub. */
2201 int using_gcc_plt_call = 1;
2202
2203 #ifdef GDB_TARGET_IS_HPPA_20W
2204 /* We currently use completely different code for the PA2.0W inferior
2205 function call sequences. This needs to be cleaned up. */
2206 {
2207 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2208 struct target_waitstatus w;
2209 int inst1, inst2;
2210 char buf[4];
2211 int status;
2212 struct objfile *objfile;
2213
2214 /* We can not modify the PC space queues directly, so we start
2215 up the inferior and execute a couple instructions to set the
2216 space queues so that they point to the call dummy in the stack. */
2217 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2218 sr5 = read_register (SR5_REGNUM);
2219 if (1)
2220 {
2221 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2222 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2223 if (target_read_memory (pcoqh, buf, 4) != 0)
2224 error ("Couldn't modify space queue\n");
2225 inst1 = extract_unsigned_integer (buf, 4);
2226
2227 if (target_read_memory (pcoqt, buf, 4) != 0)
2228 error ("Couldn't modify space queue\n");
2229 inst2 = extract_unsigned_integer (buf, 4);
2230
2231 /* BVE (r1) */
2232 *((int *) buf) = 0xe820d000;
2233 if (target_write_memory (pcoqh, buf, 4) != 0)
2234 error ("Couldn't modify space queue\n");
2235
2236 /* NOP */
2237 *((int *) buf) = 0x08000240;
2238 if (target_write_memory (pcoqt, buf, 4) != 0)
2239 {
2240 *((int *) buf) = inst1;
2241 target_write_memory (pcoqh, buf, 4);
2242 error ("Couldn't modify space queue\n");
2243 }
2244
2245 write_register (1, pc);
2246
2247 /* Single step twice, the BVE instruction will set the space queue
2248 such that it points to the PC value written immediately above
2249 (ie the call dummy). */
2250 resume (1, 0);
2251 target_wait (inferior_ptid, &w);
2252 resume (1, 0);
2253 target_wait (inferior_ptid, &w);
2254
2255 /* Restore the two instructions at the old PC locations. */
2256 *((int *) buf) = inst1;
2257 target_write_memory (pcoqh, buf, 4);
2258 *((int *) buf) = inst2;
2259 target_write_memory (pcoqt, buf, 4);
2260 }
2261
2262 /* The call dummy wants the ultimate destination address initially
2263 in register %r5. */
2264 write_register (5, fun);
2265
2266 /* We need to see if this objfile has a different DP value than our
2267 own (it could be a shared library for example). */
2268 ALL_OBJFILES (objfile)
2269 {
2270 struct obj_section *s;
2271 obj_private_data_t *obj_private;
2272
2273 /* See if FUN is in any section within this shared library. */
2274 for (s = objfile->sections; s < objfile->sections_end; s++)
2275 if (s->addr <= fun && fun < s->endaddr)
2276 break;
2277
2278 if (s >= objfile->sections_end)
2279 continue;
2280
2281 obj_private = (obj_private_data_t *) objfile->obj_private;
2282
2283 /* The DP value may be different for each objfile. But within an
2284 objfile each function uses the same dp value. Thus we do not need
2285 to grope around the opd section looking for dp values.
2286
2287 ?!? This is not strictly correct since we may be in a shared library
2288 and want to call back into the main program. To make that case
2289 work correctly we need to set obj_private->dp for the main program's
2290 objfile, then remove this conditional. */
2291 if (obj_private->dp)
2292 write_register (27, obj_private->dp);
2293 break;
2294 }
2295 return pc;
2296 }
2297 #endif
2298
2299 #ifndef GDB_TARGET_IS_HPPA_20W
2300 /* Prefer __gcc_plt_call over the HP supplied routine because
2301 __gcc_plt_call works for any number of arguments. */
2302 trampoline = NULL;
2303 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2304 using_gcc_plt_call = 0;
2305
2306 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2307 if (msymbol == NULL)
2308 error ("Can't find an address for $$dyncall trampoline");
2309
2310 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2311
2312 /* FUN could be a procedure label, in which case we have to get
2313 its real address and the value of its GOT/DP if we plan to
2314 call the routine via gcc_plt_call. */
2315 if ((fun & 0x2) && using_gcc_plt_call)
2316 {
2317 /* Get the GOT/DP value for the target function. It's
2318 at *(fun+4). Note the call dummy is *NOT* allowed to
2319 trash %r19 before calling the target function. */
2320 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2321 DEPRECATED_REGISTER_SIZE));
2322
2323 /* Now get the real address for the function we are calling, it's
2324 at *fun. */
2325 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2326 TARGET_PTR_BIT / 8);
2327 }
2328 else
2329 {
2330
2331 #ifndef GDB_TARGET_IS_PA_ELF
2332 /* FUN could be an export stub, the real address of a function, or
2333 a PLABEL. When using gcc's PLT call routine we must call an import
2334 stub rather than the export stub or real function for lazy binding
2335 to work correctly
2336
2337 If we are using the gcc PLT call routine, then we need to
2338 get the import stub for the target function. */
2339 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2340 {
2341 struct objfile *objfile;
2342 struct minimal_symbol *funsymbol, *stub_symbol;
2343 CORE_ADDR newfun = 0;
2344
2345 funsymbol = lookup_minimal_symbol_by_pc (fun);
2346 if (!funsymbol)
2347 error ("Unable to find minimal symbol for target function.\n");
2348
2349 /* Search all the object files for an import symbol with the
2350 right name. */
2351 ALL_OBJFILES (objfile)
2352 {
2353 stub_symbol
2354 = lookup_minimal_symbol_solib_trampoline
2355 (DEPRECATED_SYMBOL_NAME (funsymbol), objfile);
2356
2357 if (!stub_symbol)
2358 stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
2359 NULL, objfile);
2360
2361 /* Found a symbol with the right name. */
2362 if (stub_symbol)
2363 {
2364 struct unwind_table_entry *u;
2365 /* It must be a shared library trampoline. */
2366 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2367 continue;
2368
2369 /* It must also be an import stub. */
2370 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2371 if (u == NULL
2372 || (u->stub_unwind.stub_type != IMPORT
2373 #ifdef GDB_NATIVE_HPUX_11
2374 /* Sigh. The hpux 10.20 dynamic linker will blow
2375 chunks if we perform a call to an unbound function
2376 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2377 linker will blow chunks if we do not call the
2378 unbound function via the IMPORT_SHLIB stub.
2379
2380 We currently have no way to select bevahior on just
2381 the target. However, we only support HPUX/SOM in
2382 native mode. So we conditinalize on a native
2383 #ifdef. Ugly. Ugly. Ugly */
2384 && u->stub_unwind.stub_type != IMPORT_SHLIB
2385 #endif
2386 ))
2387 continue;
2388
2389 /* OK. Looks like the correct import stub. */
2390 newfun = SYMBOL_VALUE (stub_symbol);
2391 fun = newfun;
2392
2393 /* If we found an IMPORT stub, then we want to stop
2394 searching now. If we found an IMPORT_SHLIB, we want
2395 to continue the search in the hopes that we will find
2396 an IMPORT stub. */
2397 if (u->stub_unwind.stub_type == IMPORT)
2398 break;
2399 }
2400 }
2401
2402 /* Ouch. We did not find an import stub. Make an attempt to
2403 do the right thing instead of just croaking. Most of the
2404 time this will actually work. */
2405 if (newfun == 0)
2406 write_register (19, som_solib_get_got_by_pc (fun));
2407
2408 u = find_unwind_entry (fun);
2409 if (u
2410 && (u->stub_unwind.stub_type == IMPORT
2411 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2412 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2413
2414 /* If we found the import stub in the shared library, then we have
2415 to set %r19 before we call the stub. */
2416 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2417 write_register (19, som_solib_get_got_by_pc (fun));
2418 }
2419 #endif
2420 }
2421
2422 /* If we are calling into another load module then have sr4export call the
2423 magic __d_plt_call routine which is linked in from end.o.
2424
2425 You can't use _sr4export to make the call as the value in sp-24 will get
2426 fried and you end up returning to the wrong location. You can't call the
2427 target as the code to bind the PLT entry to a function can't return to a
2428 stack address.
2429
2430 Also, query the dynamic linker in the inferior to provide a suitable
2431 PLABEL for the target function. */
2432 if (!using_gcc_plt_call)
2433 {
2434 CORE_ADDR new_fun;
2435
2436 /* Get a handle for the shared library containing FUN. Given the
2437 handle we can query the shared library for a PLABEL. */
2438 solib_handle = som_solib_get_solib_by_pc (fun);
2439
2440 if (solib_handle)
2441 {
2442 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2443
2444 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2445
2446 if (trampoline == NULL)
2447 {
2448 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2449 }
2450
2451 /* This is where sr4export will jump to. */
2452 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2453
2454 /* If the function is in a shared library, then call __d_shl_get to
2455 get a PLABEL for the target function. */
2456 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2457
2458 if (new_stub == 0)
2459 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
2460
2461 /* We have to store the address of the stub in __shlib_funcptr. */
2462 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2463 (struct objfile *) NULL);
2464
2465 if (msymbol == NULL)
2466 error ("Can't find an address for __shlib_funcptr");
2467 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2468 (char *) &new_stub, 4);
2469
2470 /* We want sr4export to call __d_plt_call, so we claim it is
2471 the final target. Clear trampoline. */
2472 fun = new_fun;
2473 trampoline = NULL;
2474 }
2475 }
2476
2477 /* Store upper 21 bits of function address into ldil. fun will either be
2478 the final target (most cases) or __d_plt_call when calling into a shared
2479 library and __gcc_plt_call is not available. */
2480 store_unsigned_integer
2481 (&dummy[FUNC_LDIL_OFFSET],
2482 INSTRUCTION_SIZE,
2483 deposit_21 (fun >> 11,
2484 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2485 INSTRUCTION_SIZE)));
2486
2487 /* Store lower 11 bits of function address into ldo */
2488 store_unsigned_integer
2489 (&dummy[FUNC_LDO_OFFSET],
2490 INSTRUCTION_SIZE,
2491 deposit_14 (fun & MASK_11,
2492 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2493 INSTRUCTION_SIZE)));
2494 #ifdef SR4EXPORT_LDIL_OFFSET
2495
2496 {
2497 CORE_ADDR trampoline_addr;
2498
2499 /* We may still need sr4export's address too. */
2500
2501 if (trampoline == NULL)
2502 {
2503 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2504 if (msymbol == NULL)
2505 error ("Can't find an address for _sr4export trampoline");
2506
2507 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2508 }
2509 else
2510 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2511
2512
2513 /* Store upper 21 bits of trampoline's address into ldil */
2514 store_unsigned_integer
2515 (&dummy[SR4EXPORT_LDIL_OFFSET],
2516 INSTRUCTION_SIZE,
2517 deposit_21 (trampoline_addr >> 11,
2518 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2519 INSTRUCTION_SIZE)));
2520
2521 /* Store lower 11 bits of trampoline's address into ldo */
2522 store_unsigned_integer
2523 (&dummy[SR4EXPORT_LDO_OFFSET],
2524 INSTRUCTION_SIZE,
2525 deposit_14 (trampoline_addr & MASK_11,
2526 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2527 INSTRUCTION_SIZE)));
2528 }
2529 #endif
2530
2531 write_register (22, pc);
2532
2533 /* If we are in a syscall, then we should call the stack dummy
2534 directly. $$dyncall is not needed as the kernel sets up the
2535 space id registers properly based on the value in %r31. In
2536 fact calling $$dyncall will not work because the value in %r22
2537 will be clobbered on the syscall exit path.
2538
2539 Similarly if the current PC is in a shared library. Note however,
2540 this scheme won't work if the shared library isn't mapped into
2541 the same space as the stack. */
2542 if (flags & 2)
2543 return pc;
2544 #ifndef GDB_TARGET_IS_PA_ELF
2545 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
2546 return pc;
2547 #endif
2548 else
2549 return dyncall_addr;
2550 #endif
2551 }
2552
2553 /* If the pid is in a syscall, then the FP register is not readable.
2554 We'll return zero in that case, rather than attempting to read it
2555 and cause a warning. */
2556
2557 CORE_ADDR
2558 hppa_read_fp (int pid)
2559 {
2560 int flags = read_register (FLAGS_REGNUM);
2561
2562 if (flags & 2)
2563 {
2564 return (CORE_ADDR) 0;
2565 }
2566
2567 /* This is the only site that may directly read_register () the FP
2568 register. All others must use deprecated_read_fp (). */
2569 return read_register (DEPRECATED_FP_REGNUM);
2570 }
2571
2572 CORE_ADDR
2573 hppa_target_read_fp (void)
2574 {
2575 return hppa_read_fp (PIDGET (inferior_ptid));
2576 }
2577
2578 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2579 bits. */
2580
2581 CORE_ADDR
2582 hppa_target_read_pc (ptid_t ptid)
2583 {
2584 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2585
2586 /* The following test does not belong here. It is OS-specific, and belongs
2587 in native code. */
2588 /* Test SS_INSYSCALL */
2589 if (flags & 2)
2590 return read_register_pid (31, ptid) & ~0x3;
2591
2592 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
2593 }
2594
2595 /* Write out the PC. If currently in a syscall, then also write the new
2596 PC value into %r31. */
2597
2598 void
2599 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
2600 {
2601 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2602
2603 /* The following test does not belong here. It is OS-specific, and belongs
2604 in native code. */
2605 /* If in a syscall, then set %r31. Also make sure to get the
2606 privilege bits set correctly. */
2607 /* Test SS_INSYSCALL */
2608 if (flags & 2)
2609 write_register_pid (31, v | 0x3, ptid);
2610
2611 write_register_pid (PC_REGNUM, v, ptid);
2612 write_register_pid (PCOQ_TAIL_REGNUM, v + 4, ptid);
2613 }
2614
2615 /* return the alignment of a type in bytes. Structures have the maximum
2616 alignment required by their fields. */
2617
2618 static int
2619 hppa_alignof (struct type *type)
2620 {
2621 int max_align, align, i;
2622 CHECK_TYPEDEF (type);
2623 switch (TYPE_CODE (type))
2624 {
2625 case TYPE_CODE_PTR:
2626 case TYPE_CODE_INT:
2627 case TYPE_CODE_FLT:
2628 return TYPE_LENGTH (type);
2629 case TYPE_CODE_ARRAY:
2630 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2631 case TYPE_CODE_STRUCT:
2632 case TYPE_CODE_UNION:
2633 max_align = 1;
2634 for (i = 0; i < TYPE_NFIELDS (type); i++)
2635 {
2636 /* Bit fields have no real alignment. */
2637 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2638 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2639 {
2640 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2641 max_align = max (max_align, align);
2642 }
2643 }
2644 return max_align;
2645 default:
2646 return 4;
2647 }
2648 }
2649
2650 /* Print the register regnum, or all registers if regnum is -1 */
2651
2652 void
2653 pa_do_registers_info (int regnum, int fpregs)
2654 {
2655 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
2656 int i;
2657
2658 /* Make a copy of gdb's save area (may cause actual
2659 reads from the target). */
2660 for (i = 0; i < NUM_REGS; i++)
2661 frame_register_read (deprecated_selected_frame, i,
2662 raw_regs + DEPRECATED_REGISTER_BYTE (i));
2663
2664 if (regnum == -1)
2665 pa_print_registers (raw_regs, regnum, fpregs);
2666 else if (regnum < FP4_REGNUM)
2667 {
2668 long reg_val[2];
2669
2670 /* Why is the value not passed through "extract_signed_integer"
2671 as in "pa_print_registers" below? */
2672 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2673
2674 if (!is_pa_2)
2675 {
2676 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2677 }
2678 else
2679 {
2680 /* Fancy % formats to prevent leading zeros. */
2681 if (reg_val[0] == 0)
2682 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2683 else
2684 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
2685 reg_val[0], reg_val[1]);
2686 }
2687 }
2688 else
2689 /* Note that real floating point values only start at
2690 FP4_REGNUM. FP0 and up are just status and error
2691 registers, which have integral (bit) values. */
2692 pa_print_fp_reg (regnum);
2693 }
2694
2695 /********** new function ********************/
2696 void
2697 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2698 enum precision_type precision)
2699 {
2700 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
2701 int i;
2702
2703 /* Make a copy of gdb's save area (may cause actual
2704 reads from the target). */
2705 for (i = 0; i < NUM_REGS; i++)
2706 frame_register_read (deprecated_selected_frame, i,
2707 raw_regs + DEPRECATED_REGISTER_BYTE (i));
2708
2709 if (regnum == -1)
2710 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2711
2712 else if (regnum < FP4_REGNUM)
2713 {
2714 long reg_val[2];
2715
2716 /* Why is the value not passed through "extract_signed_integer"
2717 as in "pa_print_registers" below? */
2718 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2719
2720 if (!is_pa_2)
2721 {
2722 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
2723 }
2724 else
2725 {
2726 /* Fancy % formats to prevent leading zeros. */
2727 if (reg_val[0] == 0)
2728 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
2729 reg_val[1]);
2730 else
2731 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
2732 reg_val[0], reg_val[1]);
2733 }
2734 }
2735 else
2736 /* Note that real floating point values only start at
2737 FP4_REGNUM. FP0 and up are just status and error
2738 registers, which have integral (bit) values. */
2739 pa_strcat_fp_reg (regnum, stream, precision);
2740 }
2741
2742 /* If this is a PA2.0 machine, fetch the real 64-bit register
2743 value. Otherwise use the info from gdb's saved register area.
2744
2745 Note that reg_val is really expected to be an array of longs,
2746 with two elements. */
2747 static void
2748 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
2749 {
2750 static int know_which = 0; /* False */
2751
2752 int regaddr;
2753 unsigned int offset;
2754 int i;
2755 int start;
2756
2757
2758 char buf[MAX_REGISTER_SIZE];
2759 long long reg_val;
2760
2761 if (!know_which)
2762 {
2763 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2764 {
2765 is_pa_2 = (1 == 1);
2766 }
2767
2768 know_which = 1; /* True */
2769 }
2770
2771 raw_val[0] = 0;
2772 raw_val[1] = 0;
2773
2774 if (!is_pa_2)
2775 {
2776 raw_val[1] = *(long *) (raw_regs + DEPRECATED_REGISTER_BYTE (regnum));
2777 return;
2778 }
2779
2780 /* Code below copied from hppah-nat.c, with fixes for wide
2781 registers, using different area of save_state, etc. */
2782 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2783 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2784 {
2785 /* Use narrow regs area of save_state and default macro. */
2786 offset = U_REGS_OFFSET;
2787 regaddr = register_addr (regnum, offset);
2788 start = 1;
2789 }
2790 else
2791 {
2792 /* Use wide regs area, and calculate registers as 8 bytes wide.
2793
2794 We'd like to do this, but current version of "C" doesn't
2795 permit "offsetof":
2796
2797 offset = offsetof(save_state_t, ss_wide);
2798
2799 Note that to avoid "C" doing typed pointer arithmetic, we
2800 have to cast away the type in our offset calculation:
2801 otherwise we get an offset of 1! */
2802
2803 /* NB: save_state_t is not available before HPUX 9.
2804 The ss_wide field is not available previous to HPUX 10.20,
2805 so to avoid compile-time warnings, we only compile this for
2806 PA 2.0 processors. This control path should only be followed
2807 if we're debugging a PA 2.0 processor, so this should not cause
2808 problems. */
2809
2810 /* #if the following code out so that this file can still be
2811 compiled on older HPUX boxes (< 10.20) which don't have
2812 this structure/structure member. */
2813 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2814 save_state_t temp;
2815
2816 offset = ((int) &temp.ss_wide) - ((int) &temp);
2817 regaddr = offset + regnum * 8;
2818 start = 0;
2819 #endif
2820 }
2821
2822 for (i = start; i < 2; i++)
2823 {
2824 errno = 0;
2825 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
2826 (PTRACE_ARG3_TYPE) regaddr, 0);
2827 if (errno != 0)
2828 {
2829 /* Warning, not error, in case we are attached; sometimes the
2830 kernel doesn't let us at the registers. */
2831 char *err = safe_strerror (errno);
2832 char *msg = alloca (strlen (err) + 128);
2833 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2834 warning (msg);
2835 goto error_exit;
2836 }
2837
2838 regaddr += sizeof (long);
2839 }
2840
2841 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2842 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2843
2844 error_exit:
2845 ;
2846 }
2847
2848 /* "Info all-reg" command */
2849
2850 static void
2851 pa_print_registers (char *raw_regs, int regnum, int fpregs)
2852 {
2853 int i, j;
2854 /* Alas, we are compiled so that "long long" is 32 bits */
2855 long raw_val[2];
2856 long long_val;
2857 int rows = 48, columns = 2;
2858
2859 for (i = 0; i < rows; i++)
2860 {
2861 for (j = 0; j < columns; j++)
2862 {
2863 /* We display registers in column-major order. */
2864 int regnum = i + j * rows;
2865
2866 /* Q: Why is the value passed through "extract_signed_integer",
2867 while above, in "pa_do_registers_info" it isn't?
2868 A: ? */
2869 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2870
2871 /* Even fancier % formats to prevent leading zeros
2872 and still maintain the output in columns. */
2873 if (!is_pa_2)
2874 {
2875 /* Being big-endian, on this machine the low bits
2876 (the ones we want to look at) are in the second longword. */
2877 long_val = extract_signed_integer (&raw_val[1], 4);
2878 printf_filtered ("%10.10s: %8lx ",
2879 REGISTER_NAME (regnum), long_val);
2880 }
2881 else
2882 {
2883 /* raw_val = extract_signed_integer(&raw_val, 8); */
2884 if (raw_val[0] == 0)
2885 printf_filtered ("%10.10s: %8lx ",
2886 REGISTER_NAME (regnum), raw_val[1]);
2887 else
2888 printf_filtered ("%10.10s: %8lx%8.8lx ",
2889 REGISTER_NAME (regnum),
2890 raw_val[0], raw_val[1]);
2891 }
2892 }
2893 printf_unfiltered ("\n");
2894 }
2895
2896 if (fpregs)
2897 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2898 pa_print_fp_reg (i);
2899 }
2900
2901 /************* new function ******************/
2902 static void
2903 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2904 struct ui_file *stream)
2905 {
2906 int i, j;
2907 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2908 long long_val;
2909 enum precision_type precision;
2910
2911 precision = unspecified_precision;
2912
2913 for (i = 0; i < 18; i++)
2914 {
2915 for (j = 0; j < 4; j++)
2916 {
2917 /* Q: Why is the value passed through "extract_signed_integer",
2918 while above, in "pa_do_registers_info" it isn't?
2919 A: ? */
2920 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2921
2922 /* Even fancier % formats to prevent leading zeros
2923 and still maintain the output in columns. */
2924 if (!is_pa_2)
2925 {
2926 /* Being big-endian, on this machine the low bits
2927 (the ones we want to look at) are in the second longword. */
2928 long_val = extract_signed_integer (&raw_val[1], 4);
2929 fprintf_filtered (stream, "%8.8s: %8lx ",
2930 REGISTER_NAME (i + (j * 18)), long_val);
2931 }
2932 else
2933 {
2934 /* raw_val = extract_signed_integer(&raw_val, 8); */
2935 if (raw_val[0] == 0)
2936 fprintf_filtered (stream, "%8.8s: %8lx ",
2937 REGISTER_NAME (i + (j * 18)), raw_val[1]);
2938 else
2939 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2940 REGISTER_NAME (i + (j * 18)), raw_val[0],
2941 raw_val[1]);
2942 }
2943 }
2944 fprintf_unfiltered (stream, "\n");
2945 }
2946
2947 if (fpregs)
2948 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2949 pa_strcat_fp_reg (i, stream, precision);
2950 }
2951
2952 static void
2953 pa_print_fp_reg (int i)
2954 {
2955 char raw_buffer[MAX_REGISTER_SIZE];
2956 char virtual_buffer[MAX_REGISTER_SIZE];
2957
2958 /* Get 32bits of data. */
2959 frame_register_read (deprecated_selected_frame, i, raw_buffer);
2960
2961 /* Put it in the buffer. No conversions are ever necessary. */
2962 memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i));
2963
2964 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2965 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2966 fputs_filtered ("(single precision) ", gdb_stdout);
2967
2968 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2969 1, 0, Val_pretty_default);
2970 printf_filtered ("\n");
2971
2972 /* If "i" is even, then this register can also be a double-precision
2973 FP register. Dump it out as such. */
2974 if ((i % 2) == 0)
2975 {
2976 /* Get the data in raw format for the 2nd half. */
2977 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
2978
2979 /* Copy it into the appropriate part of the virtual buffer. */
2980 memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buffer,
2981 DEPRECATED_REGISTER_RAW_SIZE (i));
2982
2983 /* Dump it as a double. */
2984 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2985 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2986 fputs_filtered ("(double precision) ", gdb_stdout);
2987
2988 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2989 1, 0, Val_pretty_default);
2990 printf_filtered ("\n");
2991 }
2992 }
2993
2994 /*************** new function ***********************/
2995 static void
2996 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
2997 {
2998 char raw_buffer[MAX_REGISTER_SIZE];
2999 char virtual_buffer[MAX_REGISTER_SIZE];
3000
3001 fputs_filtered (REGISTER_NAME (i), stream);
3002 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
3003
3004 /* Get 32bits of data. */
3005 frame_register_read (deprecated_selected_frame, i, raw_buffer);
3006
3007 /* Put it in the buffer. No conversions are ever necessary. */
3008 memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i));
3009
3010 if (precision == double_precision && (i % 2) == 0)
3011 {
3012
3013 char raw_buf[MAX_REGISTER_SIZE];
3014
3015 /* Get the data in raw format for the 2nd half. */
3016 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
3017
3018 /* Copy it into the appropriate part of the virtual buffer. */
3019 memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buf,
3020 DEPRECATED_REGISTER_RAW_SIZE (i));
3021
3022 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
3023 1, 0, Val_pretty_default);
3024
3025 }
3026 else
3027 {
3028 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
3029 1, 0, Val_pretty_default);
3030 }
3031
3032 }
3033
3034 /* Return one if PC is in the call path of a trampoline, else return zero.
3035
3036 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3037 just shared library trampolines (import, export). */
3038
3039 int
3040 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
3041 {
3042 struct minimal_symbol *minsym;
3043 struct unwind_table_entry *u;
3044 static CORE_ADDR dyncall = 0;
3045 static CORE_ADDR sr4export = 0;
3046
3047 #ifdef GDB_TARGET_IS_HPPA_20W
3048 /* PA64 has a completely different stub/trampoline scheme. Is it
3049 better? Maybe. It's certainly harder to determine with any
3050 certainty that we are in a stub because we can not refer to the
3051 unwinders to help.
3052
3053 The heuristic is simple. Try to lookup the current PC value in th
3054 minimal symbol table. If that fails, then assume we are not in a
3055 stub and return.
3056
3057 Then see if the PC value falls within the section bounds for the
3058 section containing the minimal symbol we found in the first
3059 step. If it does, then assume we are not in a stub and return.
3060
3061 Finally peek at the instructions to see if they look like a stub. */
3062 {
3063 struct minimal_symbol *minsym;
3064 asection *sec;
3065 CORE_ADDR addr;
3066 int insn, i;
3067
3068 minsym = lookup_minimal_symbol_by_pc (pc);
3069 if (! minsym)
3070 return 0;
3071
3072 sec = SYMBOL_BFD_SECTION (minsym);
3073
3074 if (bfd_get_section_vma (sec->owner, sec) <= pc
3075 && pc < (bfd_get_section_vma (sec->owner, sec)
3076 + bfd_section_size (sec->owner, sec)))
3077 return 0;
3078
3079 /* We might be in a stub. Peek at the instructions. Stubs are 3
3080 instructions long. */
3081 insn = read_memory_integer (pc, 4);
3082
3083 /* Find out where we think we are within the stub. */
3084 if ((insn & 0xffffc00e) == 0x53610000)
3085 addr = pc;
3086 else if ((insn & 0xffffffff) == 0xe820d000)
3087 addr = pc - 4;
3088 else if ((insn & 0xffffc00e) == 0x537b0000)
3089 addr = pc - 8;
3090 else
3091 return 0;
3092
3093 /* Now verify each insn in the range looks like a stub instruction. */
3094 insn = read_memory_integer (addr, 4);
3095 if ((insn & 0xffffc00e) != 0x53610000)
3096 return 0;
3097
3098 /* Now verify each insn in the range looks like a stub instruction. */
3099 insn = read_memory_integer (addr + 4, 4);
3100 if ((insn & 0xffffffff) != 0xe820d000)
3101 return 0;
3102
3103 /* Now verify each insn in the range looks like a stub instruction. */
3104 insn = read_memory_integer (addr + 8, 4);
3105 if ((insn & 0xffffc00e) != 0x537b0000)
3106 return 0;
3107
3108 /* Looks like a stub. */
3109 return 1;
3110 }
3111 #endif
3112
3113 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3114 new exec file */
3115
3116 /* First see if PC is in one of the two C-library trampolines. */
3117 if (!dyncall)
3118 {
3119 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3120 if (minsym)
3121 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
3122 else
3123 dyncall = -1;
3124 }
3125
3126 if (!sr4export)
3127 {
3128 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3129 if (minsym)
3130 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3131 else
3132 sr4export = -1;
3133 }
3134
3135 if (pc == dyncall || pc == sr4export)
3136 return 1;
3137
3138 minsym = lookup_minimal_symbol_by_pc (pc);
3139 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
3140 return 1;
3141
3142 /* Get the unwind descriptor corresponding to PC, return zero
3143 if no unwind was found. */
3144 u = find_unwind_entry (pc);
3145 if (!u)
3146 return 0;
3147
3148 /* If this isn't a linker stub, then return now. */
3149 if (u->stub_unwind.stub_type == 0)
3150 return 0;
3151
3152 /* By definition a long-branch stub is a call stub. */
3153 if (u->stub_unwind.stub_type == LONG_BRANCH)
3154 return 1;
3155
3156 /* The call and return path execute the same instructions within
3157 an IMPORT stub! So an IMPORT stub is both a call and return
3158 trampoline. */
3159 if (u->stub_unwind.stub_type == IMPORT)
3160 return 1;
3161
3162 /* Parameter relocation stubs always have a call path and may have a
3163 return path. */
3164 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3165 || u->stub_unwind.stub_type == EXPORT)
3166 {
3167 CORE_ADDR addr;
3168
3169 /* Search forward from the current PC until we hit a branch
3170 or the end of the stub. */
3171 for (addr = pc; addr <= u->region_end; addr += 4)
3172 {
3173 unsigned long insn;
3174
3175 insn = read_memory_integer (addr, 4);
3176
3177 /* Does it look like a bl? If so then it's the call path, if
3178 we find a bv or be first, then we're on the return path. */
3179 if ((insn & 0xfc00e000) == 0xe8000000)
3180 return 1;
3181 else if ((insn & 0xfc00e001) == 0xe800c000
3182 || (insn & 0xfc000000) == 0xe0000000)
3183 return 0;
3184 }
3185
3186 /* Should never happen. */
3187 warning ("Unable to find branch in parameter relocation stub.\n");
3188 return 0;
3189 }
3190
3191 /* Unknown stub type. For now, just return zero. */
3192 return 0;
3193 }
3194
3195 /* Return one if PC is in the return path of a trampoline, else return zero.
3196
3197 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3198 just shared library trampolines (import, export). */
3199
3200 int
3201 hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
3202 {
3203 struct unwind_table_entry *u;
3204
3205 /* Get the unwind descriptor corresponding to PC, return zero
3206 if no unwind was found. */
3207 u = find_unwind_entry (pc);
3208 if (!u)
3209 return 0;
3210
3211 /* If this isn't a linker stub or it's just a long branch stub, then
3212 return zero. */
3213 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3214 return 0;
3215
3216 /* The call and return path execute the same instructions within
3217 an IMPORT stub! So an IMPORT stub is both a call and return
3218 trampoline. */
3219 if (u->stub_unwind.stub_type == IMPORT)
3220 return 1;
3221
3222 /* Parameter relocation stubs always have a call path and may have a
3223 return path. */
3224 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3225 || u->stub_unwind.stub_type == EXPORT)
3226 {
3227 CORE_ADDR addr;
3228
3229 /* Search forward from the current PC until we hit a branch
3230 or the end of the stub. */
3231 for (addr = pc; addr <= u->region_end; addr += 4)
3232 {
3233 unsigned long insn;
3234
3235 insn = read_memory_integer (addr, 4);
3236
3237 /* Does it look like a bl? If so then it's the call path, if
3238 we find a bv or be first, then we're on the return path. */
3239 if ((insn & 0xfc00e000) == 0xe8000000)
3240 return 0;
3241 else if ((insn & 0xfc00e001) == 0xe800c000
3242 || (insn & 0xfc000000) == 0xe0000000)
3243 return 1;
3244 }
3245
3246 /* Should never happen. */
3247 warning ("Unable to find branch in parameter relocation stub.\n");
3248 return 0;
3249 }
3250
3251 /* Unknown stub type. For now, just return zero. */
3252 return 0;
3253
3254 }
3255
3256 /* Figure out if PC is in a trampoline, and if so find out where
3257 the trampoline will jump to. If not in a trampoline, return zero.
3258
3259 Simple code examination probably is not a good idea since the code
3260 sequences in trampolines can also appear in user code.
3261
3262 We use unwinds and information from the minimal symbol table to
3263 determine when we're in a trampoline. This won't work for ELF
3264 (yet) since it doesn't create stub unwind entries. Whether or
3265 not ELF will create stub unwinds or normal unwinds for linker
3266 stubs is still being debated.
3267
3268 This should handle simple calls through dyncall or sr4export,
3269 long calls, argument relocation stubs, and dyncall/sr4export
3270 calling an argument relocation stub. It even handles some stubs
3271 used in dynamic executables. */
3272
3273 CORE_ADDR
3274 hppa_skip_trampoline_code (CORE_ADDR pc)
3275 {
3276 long orig_pc = pc;
3277 long prev_inst, curr_inst, loc;
3278 static CORE_ADDR dyncall = 0;
3279 static CORE_ADDR dyncall_external = 0;
3280 static CORE_ADDR sr4export = 0;
3281 struct minimal_symbol *msym;
3282 struct unwind_table_entry *u;
3283
3284 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3285 new exec file */
3286
3287 if (!dyncall)
3288 {
3289 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3290 if (msym)
3291 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3292 else
3293 dyncall = -1;
3294 }
3295
3296 if (!dyncall_external)
3297 {
3298 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3299 if (msym)
3300 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3301 else
3302 dyncall_external = -1;
3303 }
3304
3305 if (!sr4export)
3306 {
3307 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3308 if (msym)
3309 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3310 else
3311 sr4export = -1;
3312 }
3313
3314 /* Addresses passed to dyncall may *NOT* be the actual address
3315 of the function. So we may have to do something special. */
3316 if (pc == dyncall)
3317 {
3318 pc = (CORE_ADDR) read_register (22);
3319
3320 /* If bit 30 (counting from the left) is on, then pc is the address of
3321 the PLT entry for this function, not the address of the function
3322 itself. Bit 31 has meaning too, but only for MPE. */
3323 if (pc & 0x2)
3324 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3325 }
3326 if (pc == dyncall_external)
3327 {
3328 pc = (CORE_ADDR) read_register (22);
3329 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3330 }
3331 else if (pc == sr4export)
3332 pc = (CORE_ADDR) (read_register (22));
3333
3334 /* Get the unwind descriptor corresponding to PC, return zero
3335 if no unwind was found. */
3336 u = find_unwind_entry (pc);
3337 if (!u)
3338 return 0;
3339
3340 /* If this isn't a linker stub, then return now. */
3341 /* elz: attention here! (FIXME) because of a compiler/linker
3342 error, some stubs which should have a non zero stub_unwind.stub_type
3343 have unfortunately a value of zero. So this function would return here
3344 as if we were not in a trampoline. To fix this, we go look at the partial
3345 symbol information, which reports this guy as a stub.
3346 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3347 partial symbol information is also wrong sometimes. This is because
3348 when it is entered (somread.c::som_symtab_read()) it can happen that
3349 if the type of the symbol (from the som) is Entry, and the symbol is
3350 in a shared library, then it can also be a trampoline. This would
3351 be OK, except that I believe the way they decide if we are ina shared library
3352 does not work. SOOOO..., even if we have a regular function w/o trampolines
3353 its minimal symbol can be assigned type mst_solib_trampoline.
3354 Also, if we find that the symbol is a real stub, then we fix the unwind
3355 descriptor, and define the stub type to be EXPORT.
3356 Hopefully this is correct most of the times. */
3357 if (u->stub_unwind.stub_type == 0)
3358 {
3359
3360 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3361 we can delete all the code which appears between the lines */
3362 /*--------------------------------------------------------------------------*/
3363 msym = lookup_minimal_symbol_by_pc (pc);
3364
3365 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3366 return orig_pc == pc ? 0 : pc & ~0x3;
3367
3368 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3369 {
3370 struct objfile *objfile;
3371 struct minimal_symbol *msymbol;
3372 int function_found = 0;
3373
3374 /* go look if there is another minimal symbol with the same name as
3375 this one, but with type mst_text. This would happen if the msym
3376 is an actual trampoline, in which case there would be another
3377 symbol with the same name corresponding to the real function */
3378
3379 ALL_MSYMBOLS (objfile, msymbol)
3380 {
3381 if (MSYMBOL_TYPE (msymbol) == mst_text
3382 && DEPRECATED_STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
3383 {
3384 function_found = 1;
3385 break;
3386 }
3387 }
3388
3389 if (function_found)
3390 /* the type of msym is correct (mst_solib_trampoline), but
3391 the unwind info is wrong, so set it to the correct value */
3392 u->stub_unwind.stub_type = EXPORT;
3393 else
3394 /* the stub type info in the unwind is correct (this is not a
3395 trampoline), but the msym type information is wrong, it
3396 should be mst_text. So we need to fix the msym, and also
3397 get out of this function */
3398 {
3399 MSYMBOL_TYPE (msym) = mst_text;
3400 return orig_pc == pc ? 0 : pc & ~0x3;
3401 }
3402 }
3403
3404 /*--------------------------------------------------------------------------*/
3405 }
3406
3407 /* It's a stub. Search for a branch and figure out where it goes.
3408 Note we have to handle multi insn branch sequences like ldil;ble.
3409 Most (all?) other branches can be determined by examining the contents
3410 of certain registers and the stack. */
3411
3412 loc = pc;
3413 curr_inst = 0;
3414 prev_inst = 0;
3415 while (1)
3416 {
3417 /* Make sure we haven't walked outside the range of this stub. */
3418 if (u != find_unwind_entry (loc))
3419 {
3420 warning ("Unable to find branch in linker stub");
3421 return orig_pc == pc ? 0 : pc & ~0x3;
3422 }
3423
3424 prev_inst = curr_inst;
3425 curr_inst = read_memory_integer (loc, 4);
3426
3427 /* Does it look like a branch external using %r1? Then it's the
3428 branch from the stub to the actual function. */
3429 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3430 {
3431 /* Yup. See if the previous instruction loaded
3432 a value into %r1. If so compute and return the jump address. */
3433 if ((prev_inst & 0xffe00000) == 0x20200000)
3434 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3435 else
3436 {
3437 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3438 return orig_pc == pc ? 0 : pc & ~0x3;
3439 }
3440 }
3441
3442 /* Does it look like a be 0(sr0,%r21)? OR
3443 Does it look like a be, n 0(sr0,%r21)? OR
3444 Does it look like a bve (r21)? (this is on PA2.0)
3445 Does it look like a bve, n(r21)? (this is also on PA2.0)
3446 That's the branch from an
3447 import stub to an export stub.
3448
3449 It is impossible to determine the target of the branch via
3450 simple examination of instructions and/or data (consider
3451 that the address in the plabel may be the address of the
3452 bind-on-reference routine in the dynamic loader).
3453
3454 So we have try an alternative approach.
3455
3456 Get the name of the symbol at our current location; it should
3457 be a stub symbol with the same name as the symbol in the
3458 shared library.
3459
3460 Then lookup a minimal symbol with the same name; we should
3461 get the minimal symbol for the target routine in the shared
3462 library as those take precedence of import/export stubs. */
3463 if ((curr_inst == 0xe2a00000) ||
3464 (curr_inst == 0xe2a00002) ||
3465 (curr_inst == 0xeaa0d000) ||
3466 (curr_inst == 0xeaa0d002))
3467 {
3468 struct minimal_symbol *stubsym, *libsym;
3469
3470 stubsym = lookup_minimal_symbol_by_pc (loc);
3471 if (stubsym == NULL)
3472 {
3473 warning ("Unable to find symbol for 0x%lx", loc);
3474 return orig_pc == pc ? 0 : pc & ~0x3;
3475 }
3476
3477 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
3478 if (libsym == NULL)
3479 {
3480 warning ("Unable to find library symbol for %s\n",
3481 DEPRECATED_SYMBOL_NAME (stubsym));
3482 return orig_pc == pc ? 0 : pc & ~0x3;
3483 }
3484
3485 return SYMBOL_VALUE (libsym);
3486 }
3487
3488 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3489 branch from the stub to the actual function. */
3490 /*elz */
3491 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3492 || (curr_inst & 0xffe0e000) == 0xe8000000
3493 || (curr_inst & 0xffe0e000) == 0xe800A000)
3494 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3495
3496 /* Does it look like bv (rp)? Note this depends on the
3497 current stack pointer being the same as the stack
3498 pointer in the stub itself! This is a branch on from the
3499 stub back to the original caller. */
3500 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3501 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3502 {
3503 /* Yup. See if the previous instruction loaded
3504 rp from sp - 8. */
3505 if (prev_inst == 0x4bc23ff1)
3506 return (read_memory_integer
3507 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3508 else
3509 {
3510 warning ("Unable to find restore of %%rp before bv (%%rp).");
3511 return orig_pc == pc ? 0 : pc & ~0x3;
3512 }
3513 }
3514
3515 /* elz: added this case to capture the new instruction
3516 at the end of the return part of an export stub used by
3517 the PA2.0: BVE, n (rp) */
3518 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3519 {
3520 return (read_memory_integer
3521 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3522 }
3523
3524 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3525 the original caller from the stub. Used in dynamic executables. */
3526 else if (curr_inst == 0xe0400002)
3527 {
3528 /* The value we jump to is sitting in sp - 24. But that's
3529 loaded several instructions before the be instruction.
3530 I guess we could check for the previous instruction being
3531 mtsp %r1,%sr0 if we want to do sanity checking. */
3532 return (read_memory_integer
3533 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3534 }
3535
3536 /* Haven't found the branch yet, but we're still in the stub.
3537 Keep looking. */
3538 loc += 4;
3539 }
3540 }
3541
3542
3543 /* For the given instruction (INST), return any adjustment it makes
3544 to the stack pointer or zero for no adjustment.
3545
3546 This only handles instructions commonly found in prologues. */
3547
3548 static int
3549 prologue_inst_adjust_sp (unsigned long inst)
3550 {
3551 /* This must persist across calls. */
3552 static int save_high21;
3553
3554 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3555 if ((inst & 0xffffc000) == 0x37de0000)
3556 return extract_14 (inst);
3557
3558 /* stwm X,D(sp) */
3559 if ((inst & 0xffe00000) == 0x6fc00000)
3560 return extract_14 (inst);
3561
3562 /* std,ma X,D(sp) */
3563 if ((inst & 0xffe00008) == 0x73c00008)
3564 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3565
3566 /* addil high21,%r1; ldo low11,(%r1),%r30)
3567 save high bits in save_high21 for later use. */
3568 if ((inst & 0xffe00000) == 0x28200000)
3569 {
3570 save_high21 = extract_21 (inst);
3571 return 0;
3572 }
3573
3574 if ((inst & 0xffff0000) == 0x343e0000)
3575 return save_high21 + extract_14 (inst);
3576
3577 /* fstws as used by the HP compilers. */
3578 if ((inst & 0xffffffe0) == 0x2fd01220)
3579 return extract_5_load (inst);
3580
3581 /* No adjustment. */
3582 return 0;
3583 }
3584
3585 /* Return nonzero if INST is a branch of some kind, else return zero. */
3586
3587 static int
3588 is_branch (unsigned long inst)
3589 {
3590 switch (inst >> 26)
3591 {
3592 case 0x20:
3593 case 0x21:
3594 case 0x22:
3595 case 0x23:
3596 case 0x27:
3597 case 0x28:
3598 case 0x29:
3599 case 0x2a:
3600 case 0x2b:
3601 case 0x2f:
3602 case 0x30:
3603 case 0x31:
3604 case 0x32:
3605 case 0x33:
3606 case 0x38:
3607 case 0x39:
3608 case 0x3a:
3609 case 0x3b:
3610 return 1;
3611
3612 default:
3613 return 0;
3614 }
3615 }
3616
3617 /* Return the register number for a GR which is saved by INST or
3618 zero it INST does not save a GR. */
3619
3620 static int
3621 inst_saves_gr (unsigned long inst)
3622 {
3623 /* Does it look like a stw? */
3624 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3625 || (inst >> 26) == 0x1f
3626 || ((inst >> 26) == 0x1f
3627 && ((inst >> 6) == 0xa)))
3628 return extract_5R_store (inst);
3629
3630 /* Does it look like a std? */
3631 if ((inst >> 26) == 0x1c
3632 || ((inst >> 26) == 0x03
3633 && ((inst >> 6) & 0xf) == 0xb))
3634 return extract_5R_store (inst);
3635
3636 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3637 if ((inst >> 26) == 0x1b)
3638 return extract_5R_store (inst);
3639
3640 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3641 too. */
3642 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3643 || ((inst >> 26) == 0x3
3644 && (((inst >> 6) & 0xf) == 0x8
3645 || (inst >> 6) & 0xf) == 0x9))
3646 return extract_5R_store (inst);
3647
3648 return 0;
3649 }
3650
3651 /* Return the register number for a FR which is saved by INST or
3652 zero it INST does not save a FR.
3653
3654 Note we only care about full 64bit register stores (that's the only
3655 kind of stores the prologue will use).
3656
3657 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3658
3659 static int
3660 inst_saves_fr (unsigned long inst)
3661 {
3662 /* is this an FSTD ? */
3663 if ((inst & 0xfc00dfc0) == 0x2c001200)
3664 return extract_5r_store (inst);
3665 if ((inst & 0xfc000002) == 0x70000002)
3666 return extract_5R_store (inst);
3667 /* is this an FSTW ? */
3668 if ((inst & 0xfc00df80) == 0x24001200)
3669 return extract_5r_store (inst);
3670 if ((inst & 0xfc000002) == 0x7c000000)
3671 return extract_5R_store (inst);
3672 return 0;
3673 }
3674
3675 /* Advance PC across any function entry prologue instructions
3676 to reach some "real" code.
3677
3678 Use information in the unwind table to determine what exactly should
3679 be in the prologue. */
3680
3681
3682 CORE_ADDR
3683 skip_prologue_hard_way (CORE_ADDR pc)
3684 {
3685 char buf[4];
3686 CORE_ADDR orig_pc = pc;
3687 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3688 unsigned long args_stored, status, i, restart_gr, restart_fr;
3689 struct unwind_table_entry *u;
3690
3691 restart_gr = 0;
3692 restart_fr = 0;
3693
3694 restart:
3695 u = find_unwind_entry (pc);
3696 if (!u)
3697 return pc;
3698
3699 /* If we are not at the beginning of a function, then return now. */
3700 if ((pc & ~0x3) != u->region_start)
3701 return pc;
3702
3703 /* This is how much of a frame adjustment we need to account for. */
3704 stack_remaining = u->Total_frame_size << 3;
3705
3706 /* Magic register saves we want to know about. */
3707 save_rp = u->Save_RP;
3708 save_sp = u->Save_SP;
3709
3710 /* An indication that args may be stored into the stack. Unfortunately
3711 the HPUX compilers tend to set this in cases where no args were
3712 stored too!. */
3713 args_stored = 1;
3714
3715 /* Turn the Entry_GR field into a bitmask. */
3716 save_gr = 0;
3717 for (i = 3; i < u->Entry_GR + 3; i++)
3718 {
3719 /* Frame pointer gets saved into a special location. */
3720 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
3721 continue;
3722
3723 save_gr |= (1 << i);
3724 }
3725 save_gr &= ~restart_gr;
3726
3727 /* Turn the Entry_FR field into a bitmask too. */
3728 save_fr = 0;
3729 for (i = 12; i < u->Entry_FR + 12; i++)
3730 save_fr |= (1 << i);
3731 save_fr &= ~restart_fr;
3732
3733 /* Loop until we find everything of interest or hit a branch.
3734
3735 For unoptimized GCC code and for any HP CC code this will never ever
3736 examine any user instructions.
3737
3738 For optimzied GCC code we're faced with problems. GCC will schedule
3739 its prologue and make prologue instructions available for delay slot
3740 filling. The end result is user code gets mixed in with the prologue
3741 and a prologue instruction may be in the delay slot of the first branch
3742 or call.
3743
3744 Some unexpected things are expected with debugging optimized code, so
3745 we allow this routine to walk past user instructions in optimized
3746 GCC code. */
3747 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3748 || args_stored)
3749 {
3750 unsigned int reg_num;
3751 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3752 unsigned long old_save_rp, old_save_sp, next_inst;
3753
3754 /* Save copies of all the triggers so we can compare them later
3755 (only for HPC). */
3756 old_save_gr = save_gr;
3757 old_save_fr = save_fr;
3758 old_save_rp = save_rp;
3759 old_save_sp = save_sp;
3760 old_stack_remaining = stack_remaining;
3761
3762 status = target_read_memory (pc, buf, 4);
3763 inst = extract_unsigned_integer (buf, 4);
3764
3765 /* Yow! */
3766 if (status != 0)
3767 return pc;
3768
3769 /* Note the interesting effects of this instruction. */
3770 stack_remaining -= prologue_inst_adjust_sp (inst);
3771
3772 /* There are limited ways to store the return pointer into the
3773 stack. */
3774 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3775 save_rp = 0;
3776
3777 /* These are the only ways we save SP into the stack. At this time
3778 the HP compilers never bother to save SP into the stack. */
3779 if ((inst & 0xffffc000) == 0x6fc10000
3780 || (inst & 0xffffc00c) == 0x73c10008)
3781 save_sp = 0;
3782
3783 /* Are we loading some register with an offset from the argument
3784 pointer? */
3785 if ((inst & 0xffe00000) == 0x37a00000
3786 || (inst & 0xffffffe0) == 0x081d0240)
3787 {
3788 pc += 4;
3789 continue;
3790 }
3791
3792 /* Account for general and floating-point register saves. */
3793 reg_num = inst_saves_gr (inst);
3794 save_gr &= ~(1 << reg_num);
3795
3796 /* Ugh. Also account for argument stores into the stack.
3797 Unfortunately args_stored only tells us that some arguments
3798 where stored into the stack. Not how many or what kind!
3799
3800 This is a kludge as on the HP compiler sets this bit and it
3801 never does prologue scheduling. So once we see one, skip past
3802 all of them. We have similar code for the fp arg stores below.
3803
3804 FIXME. Can still die if we have a mix of GR and FR argument
3805 stores! */
3806 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3807 {
3808 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3809 {
3810 pc += 4;
3811 status = target_read_memory (pc, buf, 4);
3812 inst = extract_unsigned_integer (buf, 4);
3813 if (status != 0)
3814 return pc;
3815 reg_num = inst_saves_gr (inst);
3816 }
3817 args_stored = 0;
3818 continue;
3819 }
3820
3821 reg_num = inst_saves_fr (inst);
3822 save_fr &= ~(1 << reg_num);
3823
3824 status = target_read_memory (pc + 4, buf, 4);
3825 next_inst = extract_unsigned_integer (buf, 4);
3826
3827 /* Yow! */
3828 if (status != 0)
3829 return pc;
3830
3831 /* We've got to be read to handle the ldo before the fp register
3832 save. */
3833 if ((inst & 0xfc000000) == 0x34000000
3834 && inst_saves_fr (next_inst) >= 4
3835 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3836 {
3837 /* So we drop into the code below in a reasonable state. */
3838 reg_num = inst_saves_fr (next_inst);
3839 pc -= 4;
3840 }
3841
3842 /* Ugh. Also account for argument stores into the stack.
3843 This is a kludge as on the HP compiler sets this bit and it
3844 never does prologue scheduling. So once we see one, skip past
3845 all of them. */
3846 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3847 {
3848 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3849 {
3850 pc += 8;
3851 status = target_read_memory (pc, buf, 4);
3852 inst = extract_unsigned_integer (buf, 4);
3853 if (status != 0)
3854 return pc;
3855 if ((inst & 0xfc000000) != 0x34000000)
3856 break;
3857 status = target_read_memory (pc + 4, buf, 4);
3858 next_inst = extract_unsigned_integer (buf, 4);
3859 if (status != 0)
3860 return pc;
3861 reg_num = inst_saves_fr (next_inst);
3862 }
3863 args_stored = 0;
3864 continue;
3865 }
3866
3867 /* Quit if we hit any kind of branch. This can happen if a prologue
3868 instruction is in the delay slot of the first call/branch. */
3869 if (is_branch (inst))
3870 break;
3871
3872 /* What a crock. The HP compilers set args_stored even if no
3873 arguments were stored into the stack (boo hiss). This could
3874 cause this code to then skip a bunch of user insns (up to the
3875 first branch).
3876
3877 To combat this we try to identify when args_stored was bogusly
3878 set and clear it. We only do this when args_stored is nonzero,
3879 all other resources are accounted for, and nothing changed on
3880 this pass. */
3881 if (args_stored
3882 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3883 && old_save_gr == save_gr && old_save_fr == save_fr
3884 && old_save_rp == save_rp && old_save_sp == save_sp
3885 && old_stack_remaining == stack_remaining)
3886 break;
3887
3888 /* Bump the PC. */
3889 pc += 4;
3890 }
3891
3892 /* We've got a tenative location for the end of the prologue. However
3893 because of limitations in the unwind descriptor mechanism we may
3894 have went too far into user code looking for the save of a register
3895 that does not exist. So, if there registers we expected to be saved
3896 but never were, mask them out and restart.
3897
3898 This should only happen in optimized code, and should be very rare. */
3899 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3900 {
3901 pc = orig_pc;
3902 restart_gr = save_gr;
3903 restart_fr = save_fr;
3904 goto restart;
3905 }
3906
3907 return pc;
3908 }
3909
3910
3911 /* Return the address of the PC after the last prologue instruction if
3912 we can determine it from the debug symbols. Else return zero. */
3913
3914 static CORE_ADDR
3915 after_prologue (CORE_ADDR pc)
3916 {
3917 struct symtab_and_line sal;
3918 CORE_ADDR func_addr, func_end;
3919 struct symbol *f;
3920
3921 /* If we can not find the symbol in the partial symbol table, then
3922 there is no hope we can determine the function's start address
3923 with this code. */
3924 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3925 return 0;
3926
3927 /* Get the line associated with FUNC_ADDR. */
3928 sal = find_pc_line (func_addr, 0);
3929
3930 /* There are only two cases to consider. First, the end of the source line
3931 is within the function bounds. In that case we return the end of the
3932 source line. Second is the end of the source line extends beyond the
3933 bounds of the current function. We need to use the slow code to
3934 examine instructions in that case.
3935
3936 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3937 the wrong thing to do. In fact, it should be entirely possible for this
3938 function to always return zero since the slow instruction scanning code
3939 is supposed to *always* work. If it does not, then it is a bug. */
3940 if (sal.end < func_end)
3941 return sal.end;
3942 else
3943 return 0;
3944 }
3945
3946 /* To skip prologues, I use this predicate. Returns either PC itself
3947 if the code at PC does not look like a function prologue; otherwise
3948 returns an address that (if we're lucky) follows the prologue. If
3949 LENIENT, then we must skip everything which is involved in setting
3950 up the frame (it's OK to skip more, just so long as we don't skip
3951 anything which might clobber the registers which are being saved.
3952 Currently we must not skip more on the alpha, but we might the lenient
3953 stuff some day. */
3954
3955 CORE_ADDR
3956 hppa_skip_prologue (CORE_ADDR pc)
3957 {
3958 unsigned long inst;
3959 int offset;
3960 CORE_ADDR post_prologue_pc;
3961 char buf[4];
3962
3963 /* See if we can determine the end of the prologue via the symbol table.
3964 If so, then return either PC, or the PC after the prologue, whichever
3965 is greater. */
3966
3967 post_prologue_pc = after_prologue (pc);
3968
3969 /* If after_prologue returned a useful address, then use it. Else
3970 fall back on the instruction skipping code.
3971
3972 Some folks have claimed this causes problems because the breakpoint
3973 may be the first instruction of the prologue. If that happens, then
3974 the instruction skipping code has a bug that needs to be fixed. */
3975 if (post_prologue_pc != 0)
3976 return max (pc, post_prologue_pc);
3977 else
3978 return (skip_prologue_hard_way (pc));
3979 }
3980
3981 /* Put here the code to store, into the SAVED_REGS, the addresses of
3982 the saved registers of frame described by FRAME_INFO. This
3983 includes special registers such as pc and fp saved in special ways
3984 in the stack frame. sp is even more special: the address we return
3985 for it IS the sp for the next frame. */
3986
3987 void
3988 hppa_frame_find_saved_regs (struct frame_info *frame_info,
3989 CORE_ADDR frame_saved_regs[])
3990 {
3991 CORE_ADDR pc;
3992 struct unwind_table_entry *u;
3993 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3994 int status, i, reg;
3995 char buf[4];
3996 int fp_loc = -1;
3997 int final_iteration;
3998
3999 /* Zero out everything. */
4000 memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
4001
4002 /* Call dummy frames always look the same, so there's no need to
4003 examine the dummy code to determine locations of saved registers;
4004 instead, let find_dummy_frame_regs fill in the correct offsets
4005 for the saved registers. */
4006 if ((get_frame_pc (frame_info) >= get_frame_base (frame_info)
4007 && (get_frame_pc (frame_info)
4008 <= (get_frame_base (frame_info)
4009 /* A call dummy is sized in words, but it is actually a
4010 series of instructions. Account for that scaling
4011 factor. */
4012 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
4013 * DEPRECATED_CALL_DUMMY_LENGTH)
4014 /* Similarly we have to account for 64bit wide register
4015 saves. */
4016 + (32 * DEPRECATED_REGISTER_SIZE)
4017 /* We always consider FP regs 8 bytes long. */
4018 + (NUM_REGS - FP0_REGNUM) * 8
4019 /* Similarly we have to account for 64bit wide register
4020 saves. */
4021 + (6 * DEPRECATED_REGISTER_SIZE)))))
4022 find_dummy_frame_regs (frame_info, frame_saved_regs);
4023
4024 /* Interrupt handlers are special too. They lay out the register
4025 state in the exact same order as the register numbers in GDB. */
4026 if (pc_in_interrupt_handler (get_frame_pc (frame_info)))
4027 {
4028 for (i = 0; i < NUM_REGS; i++)
4029 {
4030 /* SP is a little special. */
4031 if (i == SP_REGNUM)
4032 frame_saved_regs[SP_REGNUM]
4033 = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4,
4034 TARGET_PTR_BIT / 8);
4035 else
4036 frame_saved_regs[i] = get_frame_base (frame_info) + i * 4;
4037 }
4038 return;
4039 }
4040
4041 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
4042 /* Handle signal handler callers. */
4043 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
4044 {
4045 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
4046 return;
4047 }
4048 #endif
4049
4050 /* Get the starting address of the function referred to by the PC
4051 saved in frame. */
4052 pc = get_frame_func (frame_info);
4053
4054 /* Yow! */
4055 u = find_unwind_entry (pc);
4056 if (!u)
4057 return;
4058
4059 /* This is how much of a frame adjustment we need to account for. */
4060 stack_remaining = u->Total_frame_size << 3;
4061
4062 /* Magic register saves we want to know about. */
4063 save_rp = u->Save_RP;
4064 save_sp = u->Save_SP;
4065
4066 /* Turn the Entry_GR field into a bitmask. */
4067 save_gr = 0;
4068 for (i = 3; i < u->Entry_GR + 3; i++)
4069 {
4070 /* Frame pointer gets saved into a special location. */
4071 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
4072 continue;
4073
4074 save_gr |= (1 << i);
4075 }
4076
4077 /* Turn the Entry_FR field into a bitmask too. */
4078 save_fr = 0;
4079 for (i = 12; i < u->Entry_FR + 12; i++)
4080 save_fr |= (1 << i);
4081
4082 /* The frame always represents the value of %sp at entry to the
4083 current function (and is thus equivalent to the "saved" stack
4084 pointer. */
4085 frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info);
4086
4087 /* Loop until we find everything of interest or hit a branch.
4088
4089 For unoptimized GCC code and for any HP CC code this will never ever
4090 examine any user instructions.
4091
4092 For optimized GCC code we're faced with problems. GCC will schedule
4093 its prologue and make prologue instructions available for delay slot
4094 filling. The end result is user code gets mixed in with the prologue
4095 and a prologue instruction may be in the delay slot of the first branch
4096 or call.
4097
4098 Some unexpected things are expected with debugging optimized code, so
4099 we allow this routine to walk past user instructions in optimized
4100 GCC code. */
4101 final_iteration = 0;
4102 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
4103 && pc <= get_frame_pc (frame_info))
4104 {
4105 status = target_read_memory (pc, buf, 4);
4106 inst = extract_unsigned_integer (buf, 4);
4107
4108 /* Yow! */
4109 if (status != 0)
4110 return;
4111
4112 /* Note the interesting effects of this instruction. */
4113 stack_remaining -= prologue_inst_adjust_sp (inst);
4114
4115 /* There are limited ways to store the return pointer into the
4116 stack. */
4117 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4118 {
4119 save_rp = 0;
4120 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20;
4121 }
4122 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4123 {
4124 save_rp = 0;
4125 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16;
4126 }
4127
4128 /* Note if we saved SP into the stack. This also happens to indicate
4129 the location of the saved frame pointer. */
4130 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4131 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4132 {
4133 frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info);
4134 save_sp = 0;
4135 }
4136
4137 /* Account for general and floating-point register saves. */
4138 reg = inst_saves_gr (inst);
4139 if (reg >= 3 && reg <= 18
4140 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
4141 {
4142 save_gr &= ~(1 << reg);
4143
4144 /* stwm with a positive displacement is a *post modify*. */
4145 if ((inst >> 26) == 0x1b
4146 && extract_14 (inst) >= 0)
4147 frame_saved_regs[reg] = get_frame_base (frame_info);
4148 /* A std has explicit post_modify forms. */
4149 else if ((inst & 0xfc00000c0) == 0x70000008)
4150 frame_saved_regs[reg] = get_frame_base (frame_info);
4151 else
4152 {
4153 CORE_ADDR offset;
4154
4155 if ((inst >> 26) == 0x1c)
4156 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4157 else if ((inst >> 26) == 0x03)
4158 offset = low_sign_extend (inst & 0x1f, 5);
4159 else
4160 offset = extract_14 (inst);
4161
4162 /* Handle code with and without frame pointers. */
4163 if (u->Save_SP)
4164 frame_saved_regs[reg]
4165 = get_frame_base (frame_info) + offset;
4166 else
4167 frame_saved_regs[reg]
4168 = (get_frame_base (frame_info) + (u->Total_frame_size << 3)
4169 + offset);
4170 }
4171 }
4172
4173
4174 /* GCC handles callee saved FP regs a little differently.
4175
4176 It emits an instruction to put the value of the start of
4177 the FP store area into %r1. It then uses fstds,ma with
4178 a basereg of %r1 for the stores.
4179
4180 HP CC emits them at the current stack pointer modifying
4181 the stack pointer as it stores each register. */
4182
4183 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4184 if ((inst & 0xffffc000) == 0x34610000
4185 || (inst & 0xffffc000) == 0x37c10000)
4186 fp_loc = extract_14 (inst);
4187
4188 reg = inst_saves_fr (inst);
4189 if (reg >= 12 && reg <= 21)
4190 {
4191 /* Note +4 braindamage below is necessary because the FP status
4192 registers are internally 8 registers rather than the expected
4193 4 registers. */
4194 save_fr &= ~(1 << reg);
4195 if (fp_loc == -1)
4196 {
4197 /* 1st HP CC FP register store. After this instruction
4198 we've set enough state that the GCC and HPCC code are
4199 both handled in the same manner. */
4200 frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info);
4201 fp_loc = 8;
4202 }
4203 else
4204 {
4205 frame_saved_regs[reg + FP0_REGNUM + 4]
4206 = get_frame_base (frame_info) + fp_loc;
4207 fp_loc += 8;
4208 }
4209 }
4210
4211 /* Quit if we hit any kind of branch the previous iteration. */
4212 if (final_iteration)
4213 break;
4214
4215 /* We want to look precisely one instruction beyond the branch
4216 if we have not found everything yet. */
4217 if (is_branch (inst))
4218 final_iteration = 1;
4219
4220 /* Bump the PC. */
4221 pc += 4;
4222 }
4223 }
4224
4225 /* XXX - deprecated. This is a compatibility function for targets
4226 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4227 /* Find the addresses in which registers are saved in FRAME. */
4228
4229 void
4230 hppa_frame_init_saved_regs (struct frame_info *frame)
4231 {
4232 if (deprecated_get_frame_saved_regs (frame) == NULL)
4233 frame_saved_regs_zalloc (frame);
4234 hppa_frame_find_saved_regs (frame, deprecated_get_frame_saved_regs (frame));
4235 }
4236
4237 /* Exception handling support for the HP-UX ANSI C++ compiler.
4238 The compiler (aCC) provides a callback for exception events;
4239 GDB can set a breakpoint on this callback and find out what
4240 exception event has occurred. */
4241
4242 /* The name of the hook to be set to point to the callback function */
4243 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4244 /* The name of the function to be used to set the hook value */
4245 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4246 /* The name of the callback function in end.o */
4247 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4248 /* Name of function in end.o on which a break is set (called by above) */
4249 static char HP_ACC_EH_break[] = "__d_eh_break";
4250 /* Name of flag (in end.o) that enables catching throws */
4251 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4252 /* Name of flag (in end.o) that enables catching catching */
4253 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4254 /* The enum used by aCC */
4255 typedef enum
4256 {
4257 __EH_NOTIFY_THROW,
4258 __EH_NOTIFY_CATCH
4259 }
4260 __eh_notification;
4261
4262 /* Is exception-handling support available with this executable? */
4263 static int hp_cxx_exception_support = 0;
4264 /* Has the initialize function been run? */
4265 int hp_cxx_exception_support_initialized = 0;
4266 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4267 extern int exception_support_initialized;
4268 /* Address of __eh_notify_hook */
4269 static CORE_ADDR eh_notify_hook_addr = 0;
4270 /* Address of __d_eh_notify_callback */
4271 static CORE_ADDR eh_notify_callback_addr = 0;
4272 /* Address of __d_eh_break */
4273 static CORE_ADDR eh_break_addr = 0;
4274 /* Address of __d_eh_catch_catch */
4275 static CORE_ADDR eh_catch_catch_addr = 0;
4276 /* Address of __d_eh_catch_throw */
4277 static CORE_ADDR eh_catch_throw_addr = 0;
4278 /* Sal for __d_eh_break */
4279 static struct symtab_and_line *break_callback_sal = 0;
4280
4281 /* Code in end.c expects __d_pid to be set in the inferior,
4282 otherwise __d_eh_notify_callback doesn't bother to call
4283 __d_eh_break! So we poke the pid into this symbol
4284 ourselves.
4285 0 => success
4286 1 => failure */
4287 int
4288 setup_d_pid_in_inferior (void)
4289 {
4290 CORE_ADDR anaddr;
4291 struct minimal_symbol *msymbol;
4292 char buf[4]; /* FIXME 32x64? */
4293
4294 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4295 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4296 if (msymbol == NULL)
4297 {
4298 warning ("Unable to find __d_pid symbol in object file.");
4299 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4300 return 1;
4301 }
4302
4303 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4304 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4305 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4306 {
4307 warning ("Unable to write __d_pid");
4308 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4309 return 1;
4310 }
4311 return 0;
4312 }
4313
4314 /* Initialize exception catchpoint support by looking for the
4315 necessary hooks/callbacks in end.o, etc., and set the hook value to
4316 point to the required debug function
4317
4318 Return 0 => failure
4319 1 => success */
4320
4321 static int
4322 initialize_hp_cxx_exception_support (void)
4323 {
4324 struct symtabs_and_lines sals;
4325 struct cleanup *old_chain;
4326 struct cleanup *canonical_strings_chain = NULL;
4327 int i;
4328 char *addr_start;
4329 char *addr_end = NULL;
4330 char **canonical = (char **) NULL;
4331 int thread = -1;
4332 struct symbol *sym = NULL;
4333 struct minimal_symbol *msym = NULL;
4334 struct objfile *objfile;
4335 asection *shlib_info;
4336
4337 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4338 recursion is a possibility because finding the hook for exception
4339 callbacks involves making a call in the inferior, which means
4340 re-inserting breakpoints which can re-invoke this code */
4341
4342 static int recurse = 0;
4343 if (recurse > 0)
4344 {
4345 hp_cxx_exception_support_initialized = 0;
4346 exception_support_initialized = 0;
4347 return 0;
4348 }
4349
4350 hp_cxx_exception_support = 0;
4351
4352 /* First check if we have seen any HP compiled objects; if not,
4353 it is very unlikely that HP's idiosyncratic callback mechanism
4354 for exception handling debug support will be available!
4355 This will percolate back up to breakpoint.c, where our callers
4356 will decide to try the g++ exception-handling support instead. */
4357 if (!hp_som_som_object_present)
4358 return 0;
4359
4360 /* We have a SOM executable with SOM debug info; find the hooks */
4361
4362 /* First look for the notify hook provided by aCC runtime libs */
4363 /* If we find this symbol, we conclude that the executable must
4364 have HP aCC exception support built in. If this symbol is not
4365 found, even though we're a HP SOM-SOM file, we may have been
4366 built with some other compiler (not aCC). This results percolates
4367 back up to our callers in breakpoint.c which can decide to
4368 try the g++ style of exception support instead.
4369 If this symbol is found but the other symbols we require are
4370 not found, there is something weird going on, and g++ support
4371 should *not* be tried as an alternative.
4372
4373 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4374 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4375
4376 /* libCsup has this hook; it'll usually be non-debuggable */
4377 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4378 if (msym)
4379 {
4380 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4381 hp_cxx_exception_support = 1;
4382 }
4383 else
4384 {
4385 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4386 warning ("Executable may not have been compiled debuggable with HP aCC.");
4387 warning ("GDB will be unable to intercept exception events.");
4388 eh_notify_hook_addr = 0;
4389 hp_cxx_exception_support = 0;
4390 return 0;
4391 }
4392
4393 /* Next look for the notify callback routine in end.o */
4394 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4395 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4396 if (msym)
4397 {
4398 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4399 hp_cxx_exception_support = 1;
4400 }
4401 else
4402 {
4403 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4404 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4405 warning ("GDB will be unable to intercept exception events.");
4406 eh_notify_callback_addr = 0;
4407 return 0;
4408 }
4409
4410 #ifndef GDB_TARGET_IS_HPPA_20W
4411 /* Check whether the executable is dynamically linked or archive bound */
4412 /* With an archive-bound executable we can use the raw addresses we find
4413 for the callback function, etc. without modification. For an executable
4414 with shared libraries, we have to do more work to find the plabel, which
4415 can be the target of a call through $$dyncall from the aCC runtime support
4416 library (libCsup) which is linked shared by default by aCC. */
4417 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4418 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4419 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4420 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4421 {
4422 /* The minsym we have has the local code address, but that's not the
4423 plabel that can be used by an inter-load-module call. */
4424 /* Find solib handle for main image (which has end.o), and use that
4425 and the min sym as arguments to __d_shl_get() (which does the equivalent
4426 of shl_findsym()) to find the plabel. */
4427
4428 args_for_find_stub args;
4429 static char message[] = "Error while finding exception callback hook:\n";
4430
4431 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4432 args.msym = msym;
4433 args.return_val = 0;
4434
4435 recurse++;
4436 catch_errors (cover_find_stub_with_shl_get, &args, message,
4437 RETURN_MASK_ALL);
4438 eh_notify_callback_addr = args.return_val;
4439 recurse--;
4440
4441 exception_catchpoints_are_fragile = 1;
4442
4443 if (!eh_notify_callback_addr)
4444 {
4445 /* We can get here either if there is no plabel in the export list
4446 for the main image, or if something strange happened (?) */
4447 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4448 warning ("GDB will not be able to intercept exception events.");
4449 return 0;
4450 }
4451 }
4452 else
4453 exception_catchpoints_are_fragile = 0;
4454 #endif
4455
4456 /* Now, look for the breakpointable routine in end.o */
4457 /* This should also be available in the SOM symbol dict. if end.o linked in */
4458 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4459 if (msym)
4460 {
4461 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4462 hp_cxx_exception_support = 1;
4463 }
4464 else
4465 {
4466 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4467 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4468 warning ("GDB will be unable to intercept exception events.");
4469 eh_break_addr = 0;
4470 return 0;
4471 }
4472
4473 /* Next look for the catch enable flag provided in end.o */
4474 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4475 VAR_DOMAIN, 0, (struct symtab **) NULL);
4476 if (sym) /* sometimes present in debug info */
4477 {
4478 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4479 hp_cxx_exception_support = 1;
4480 }
4481 else
4482 /* otherwise look in SOM symbol dict. */
4483 {
4484 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4485 if (msym)
4486 {
4487 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4488 hp_cxx_exception_support = 1;
4489 }
4490 else
4491 {
4492 warning ("Unable to enable interception of exception catches.");
4493 warning ("Executable may not have been compiled debuggable with HP aCC.");
4494 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4495 return 0;
4496 }
4497 }
4498
4499 /* Next look for the catch enable flag provided end.o */
4500 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4501 VAR_DOMAIN, 0, (struct symtab **) NULL);
4502 if (sym) /* sometimes present in debug info */
4503 {
4504 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4505 hp_cxx_exception_support = 1;
4506 }
4507 else
4508 /* otherwise look in SOM symbol dict. */
4509 {
4510 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4511 if (msym)
4512 {
4513 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4514 hp_cxx_exception_support = 1;
4515 }
4516 else
4517 {
4518 warning ("Unable to enable interception of exception throws.");
4519 warning ("Executable may not have been compiled debuggable with HP aCC.");
4520 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4521 return 0;
4522 }
4523 }
4524
4525 /* Set the flags */
4526 hp_cxx_exception_support = 2; /* everything worked so far */
4527 hp_cxx_exception_support_initialized = 1;
4528 exception_support_initialized = 1;
4529
4530 return 1;
4531 }
4532
4533 /* Target operation for enabling or disabling interception of
4534 exception events.
4535 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4536 ENABLE is either 0 (disable) or 1 (enable).
4537 Return value is NULL if no support found;
4538 -1 if something went wrong,
4539 or a pointer to a symtab/line struct if the breakpointable
4540 address was found. */
4541
4542 struct symtab_and_line *
4543 child_enable_exception_callback (enum exception_event_kind kind, int enable)
4544 {
4545 char buf[4];
4546
4547 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4548 if (!initialize_hp_cxx_exception_support ())
4549 return NULL;
4550
4551 switch (hp_cxx_exception_support)
4552 {
4553 case 0:
4554 /* Assuming no HP support at all */
4555 return NULL;
4556 case 1:
4557 /* HP support should be present, but something went wrong */
4558 return (struct symtab_and_line *) -1; /* yuck! */
4559 /* there may be other cases in the future */
4560 }
4561
4562 /* Set the EH hook to point to the callback routine */
4563 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4564 /* pai: (temp) FIXME should there be a pack operation first? */
4565 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4566 {
4567 warning ("Could not write to target memory for exception event callback.");
4568 warning ("Interception of exception events may not work.");
4569 return (struct symtab_and_line *) -1;
4570 }
4571 if (enable)
4572 {
4573 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4574 if (PIDGET (inferior_ptid) > 0)
4575 {
4576 if (setup_d_pid_in_inferior ())
4577 return (struct symtab_and_line *) -1;
4578 }
4579 else
4580 {
4581 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4582 return (struct symtab_and_line *) -1;
4583 }
4584 }
4585
4586 switch (kind)
4587 {
4588 case EX_EVENT_THROW:
4589 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4590 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4591 {
4592 warning ("Couldn't enable exception throw interception.");
4593 return (struct symtab_and_line *) -1;
4594 }
4595 break;
4596 case EX_EVENT_CATCH:
4597 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4598 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4599 {
4600 warning ("Couldn't enable exception catch interception.");
4601 return (struct symtab_and_line *) -1;
4602 }
4603 break;
4604 default:
4605 error ("Request to enable unknown or unsupported exception event.");
4606 }
4607
4608 /* Copy break address into new sal struct, malloc'ing if needed. */
4609 if (!break_callback_sal)
4610 {
4611 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4612 }
4613 init_sal (break_callback_sal);
4614 break_callback_sal->symtab = NULL;
4615 break_callback_sal->pc = eh_break_addr;
4616 break_callback_sal->line = 0;
4617 break_callback_sal->end = eh_break_addr;
4618
4619 return break_callback_sal;
4620 }
4621
4622 /* Record some information about the current exception event */
4623 static struct exception_event_record current_ex_event;
4624 /* Convenience struct */
4625 static struct symtab_and_line null_symtab_and_line =
4626 {NULL, 0, 0, 0};
4627
4628 /* Report current exception event. Returns a pointer to a record
4629 that describes the kind of the event, where it was thrown from,
4630 and where it will be caught. More information may be reported
4631 in the future */
4632 struct exception_event_record *
4633 child_get_current_exception_event (void)
4634 {
4635 CORE_ADDR event_kind;
4636 CORE_ADDR throw_addr;
4637 CORE_ADDR catch_addr;
4638 struct frame_info *fi, *curr_frame;
4639 int level = 1;
4640
4641 curr_frame = get_current_frame ();
4642 if (!curr_frame)
4643 return (struct exception_event_record *) NULL;
4644
4645 /* Go up one frame to __d_eh_notify_callback, because at the
4646 point when this code is executed, there's garbage in the
4647 arguments of __d_eh_break. */
4648 fi = find_relative_frame (curr_frame, &level);
4649 if (level != 0)
4650 return (struct exception_event_record *) NULL;
4651
4652 select_frame (fi);
4653
4654 /* Read in the arguments */
4655 /* __d_eh_notify_callback() is called with 3 arguments:
4656 1. event kind catch or throw
4657 2. the target address if known
4658 3. a flag -- not sure what this is. pai/1997-07-17 */
4659 event_kind = read_register (ARG0_REGNUM);
4660 catch_addr = read_register (ARG1_REGNUM);
4661
4662 /* Now go down to a user frame */
4663 /* For a throw, __d_eh_break is called by
4664 __d_eh_notify_callback which is called by
4665 __notify_throw which is called
4666 from user code.
4667 For a catch, __d_eh_break is called by
4668 __d_eh_notify_callback which is called by
4669 <stackwalking stuff> which is called by
4670 __throw__<stuff> or __rethrow_<stuff> which is called
4671 from user code. */
4672 /* FIXME: Don't use such magic numbers; search for the frames */
4673 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4674 fi = find_relative_frame (curr_frame, &level);
4675 if (level != 0)
4676 return (struct exception_event_record *) NULL;
4677
4678 select_frame (fi);
4679 throw_addr = get_frame_pc (fi);
4680
4681 /* Go back to original (top) frame */
4682 select_frame (curr_frame);
4683
4684 current_ex_event.kind = (enum exception_event_kind) event_kind;
4685 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4686 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4687
4688 return &current_ex_event;
4689 }
4690
4691 /* Instead of this nasty cast, add a method pvoid() that prints out a
4692 host VOID data type (remember %p isn't portable). */
4693
4694 static CORE_ADDR
4695 hppa_pointer_to_address_hack (void *ptr)
4696 {
4697 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
4698 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
4699 }
4700
4701 static void
4702 unwind_command (char *exp, int from_tty)
4703 {
4704 CORE_ADDR address;
4705 struct unwind_table_entry *u;
4706
4707 /* If we have an expression, evaluate it and use it as the address. */
4708
4709 if (exp != 0 && *exp != 0)
4710 address = parse_and_eval_address (exp);
4711 else
4712 return;
4713
4714 u = find_unwind_entry (address);
4715
4716 if (!u)
4717 {
4718 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4719 return;
4720 }
4721
4722 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4723 paddr_nz (hppa_pointer_to_address_hack (u)));
4724
4725 printf_unfiltered ("\tregion_start = ");
4726 print_address (u->region_start, gdb_stdout);
4727
4728 printf_unfiltered ("\n\tregion_end = ");
4729 print_address (u->region_end, gdb_stdout);
4730
4731 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4732
4733 printf_unfiltered ("\n\tflags =");
4734 pif (Cannot_unwind);
4735 pif (Millicode);
4736 pif (Millicode_save_sr0);
4737 pif (Entry_SR);
4738 pif (Args_stored);
4739 pif (Variable_Frame);
4740 pif (Separate_Package_Body);
4741 pif (Frame_Extension_Millicode);
4742 pif (Stack_Overflow_Check);
4743 pif (Two_Instruction_SP_Increment);
4744 pif (Ada_Region);
4745 pif (Save_SP);
4746 pif (Save_RP);
4747 pif (Save_MRP_in_frame);
4748 pif (extn_ptr_defined);
4749 pif (Cleanup_defined);
4750 pif (MPE_XL_interrupt_marker);
4751 pif (HP_UX_interrupt_marker);
4752 pif (Large_frame);
4753
4754 putchar_unfiltered ('\n');
4755
4756 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4757
4758 pin (Region_description);
4759 pin (Entry_FR);
4760 pin (Entry_GR);
4761 pin (Total_frame_size);
4762 }
4763
4764 void
4765 hppa_skip_permanent_breakpoint (void)
4766 {
4767 /* To step over a breakpoint instruction on the PA takes some
4768 fiddling with the instruction address queue.
4769
4770 When we stop at a breakpoint, the IA queue front (the instruction
4771 we're executing now) points at the breakpoint instruction, and
4772 the IA queue back (the next instruction to execute) points to
4773 whatever instruction we would execute after the breakpoint, if it
4774 were an ordinary instruction. This is the case even if the
4775 breakpoint is in the delay slot of a branch instruction.
4776
4777 Clearly, to step past the breakpoint, we need to set the queue
4778 front to the back. But what do we put in the back? What
4779 instruction comes after that one? Because of the branch delay
4780 slot, the next insn is always at the back + 4. */
4781 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4782 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4783
4784 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4785 /* We can leave the tail's space the same, since there's no jump. */
4786 }
4787
4788 /* Copy the function value from VALBUF into the proper location
4789 for a function return.
4790
4791 Called only in the context of the "return" command. */
4792
4793 void
4794 hppa32_store_return_value (struct type *type, char *valbuf)
4795 {
4796 /* For software floating point, the return value goes into the
4797 integer registers. But we do not have any flag to key this on,
4798 so we always store the value into the integer registers.
4799
4800 If its a float value, then we also store it into the floating
4801 point registers. */
4802 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28)
4803 + (TYPE_LENGTH (type) > 4
4804 ? (8 - TYPE_LENGTH (type))
4805 : (4 - TYPE_LENGTH (type))),
4806 valbuf, TYPE_LENGTH (type));
4807 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4808 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP4_REGNUM),
4809 valbuf, TYPE_LENGTH (type));
4810 }
4811
4812 /* Same as hppa32_store_return_value(), but for the PA64 ABI. */
4813
4814 void
4815 hppa64_store_return_value (struct type *type, char *valbuf)
4816 {
4817 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4818 deprecated_write_register_bytes
4819 (DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
4820 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4821 valbuf, TYPE_LENGTH (type));
4822 else if (is_integral_type(type))
4823 deprecated_write_register_bytes
4824 (DEPRECATED_REGISTER_BYTE (28)
4825 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4826 valbuf, TYPE_LENGTH (type));
4827 else if (TYPE_LENGTH (type) <= 8)
4828 deprecated_write_register_bytes
4829 (DEPRECATED_REGISTER_BYTE (28),valbuf, TYPE_LENGTH (type));
4830 else if (TYPE_LENGTH (type) <= 16)
4831 {
4832 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28),valbuf, 8);
4833 deprecated_write_register_bytes
4834 (DEPRECATED_REGISTER_BYTE (29), valbuf + 8, TYPE_LENGTH (type) - 8);
4835 }
4836 }
4837
4838 /* Copy the function's return value into VALBUF.
4839
4840 This function is called only in the context of "target function calls",
4841 ie. when the debugger forces a function to be called in the child, and
4842 when the debugger forces a fucntion to return prematurely via the
4843 "return" command. */
4844
4845 void
4846 hppa32_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4847 {
4848 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4849 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM), TYPE_LENGTH (type));
4850 else
4851 memcpy (valbuf,
4852 (regbuf
4853 + DEPRECATED_REGISTER_BYTE (28)
4854 + (TYPE_LENGTH (type) > 4
4855 ? (8 - TYPE_LENGTH (type))
4856 : (4 - TYPE_LENGTH (type)))),
4857 TYPE_LENGTH (type));
4858 }
4859
4860 /* Same as hppa32_extract_return_value but for the PA64 ABI case. */
4861
4862 void
4863 hppa64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4864 {
4865 /* RM: Floats are returned in FR4R, doubles in FR4.
4866 Integral values are in r28, padded on the left.
4867 Aggregates less that 65 bits are in r28, right padded.
4868 Aggregates upto 128 bits are in r28 and r29, right padded. */
4869 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4870 memcpy (valbuf,
4871 regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
4872 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4873 TYPE_LENGTH (type));
4874 else if (is_integral_type(type))
4875 memcpy (valbuf,
4876 regbuf + DEPRECATED_REGISTER_BYTE (28)
4877 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
4878 TYPE_LENGTH (type));
4879 else if (TYPE_LENGTH (type) <= 8)
4880 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28),
4881 TYPE_LENGTH (type));
4882 else if (TYPE_LENGTH (type) <= 16)
4883 {
4884 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28), 8);
4885 memcpy (valbuf + 8, regbuf + DEPRECATED_REGISTER_BYTE (29),
4886 TYPE_LENGTH (type) - 8);
4887 }
4888 }
4889
4890 int
4891 hppa_reg_struct_has_addr (int gcc_p, struct type *type)
4892 {
4893 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4894 via a pointer regardless of its type or the compiler used. */
4895 return (TYPE_LENGTH (type) > 8);
4896 }
4897
4898 int
4899 hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
4900 {
4901 /* Stack grows upward */
4902 return (lhs > rhs);
4903 }
4904
4905 CORE_ADDR
4906 hppa32_stack_align (CORE_ADDR sp)
4907 {
4908 /* elz: adjust the quantity to the next highest value which is
4909 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4910 On hppa the sp must always be kept 64-bit aligned */
4911 return ((sp % 8) ? (sp + 7) & -8 : sp);
4912 }
4913
4914 CORE_ADDR
4915 hppa64_stack_align (CORE_ADDR sp)
4916 {
4917 /* The PA64 ABI mandates a 16 byte stack alignment. */
4918 return ((sp % 16) ? (sp + 15) & -16 : sp);
4919 }
4920
4921 int
4922 hppa_pc_requires_run_before_use (CORE_ADDR pc)
4923 {
4924 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4925
4926 An example of this occurs when an a.out is linked against a foo.sl.
4927 The foo.sl defines a global bar(), and the a.out declares a signature
4928 for bar(). However, the a.out doesn't directly call bar(), but passes
4929 its address in another call.
4930
4931 If you have this scenario and attempt to "break bar" before running,
4932 gdb will find a minimal symbol for bar() in the a.out. But that
4933 symbol's address will be negative. What this appears to denote is
4934 an index backwards from the base of the procedure linkage table (PLT)
4935 into the data linkage table (DLT), the end of which is contiguous
4936 with the start of the PLT. This is clearly not a valid address for
4937 us to set a breakpoint on.
4938
4939 Note that one must be careful in how one checks for a negative address.
4940 0xc0000000 is a legitimate address of something in a shared text
4941 segment, for example. Since I don't know what the possible range
4942 is of these "really, truly negative" addresses that come from the
4943 minimal symbols, I'm resorting to the gross hack of checking the
4944 top byte of the address for all 1's. Sigh. */
4945
4946 return (!target_has_stack && (pc & 0xFF000000));
4947 }
4948
4949 int
4950 hppa_instruction_nullified (void)
4951 {
4952 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4953 avoid the type cast. I'm leaving it as is for now as I'm doing
4954 semi-mechanical multiarching-related changes. */
4955 const int ipsw = (int) read_register (IPSW_REGNUM);
4956 const int flags = (int) read_register (FLAGS_REGNUM);
4957
4958 return ((ipsw & 0x00200000) && !(flags & 0x2));
4959 }
4960
4961 int
4962 hppa_register_raw_size (int reg_nr)
4963 {
4964 /* All registers have the same size. */
4965 return DEPRECATED_REGISTER_SIZE;
4966 }
4967
4968 /* Index within the register vector of the first byte of the space i
4969 used for register REG_NR. */
4970
4971 int
4972 hppa_register_byte (int reg_nr)
4973 {
4974 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4975
4976 return reg_nr * tdep->bytes_per_address;
4977 }
4978
4979 /* Return the GDB type object for the "standard" data type of data
4980 in register N. */
4981
4982 struct type *
4983 hppa32_register_virtual_type (int reg_nr)
4984 {
4985 if (reg_nr < FP4_REGNUM)
4986 return builtin_type_int;
4987 else
4988 return builtin_type_float;
4989 }
4990
4991 /* Return the GDB type object for the "standard" data type of data
4992 in register N. hppa64 version. */
4993
4994 struct type *
4995 hppa64_register_virtual_type (int reg_nr)
4996 {
4997 if (reg_nr < FP4_REGNUM)
4998 return builtin_type_unsigned_long_long;
4999 else
5000 return builtin_type_double;
5001 }
5002
5003 /* Store the address of the place in which to copy the structure the
5004 subroutine will return. This is called from call_function. */
5005
5006 void
5007 hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
5008 {
5009 write_register (28, addr);
5010 }
5011 /* Return True if REGNUM is not a register available to the user
5012 through ptrace(). */
5013
5014 int
5015 hppa_cannot_store_register (int regnum)
5016 {
5017 return (regnum == 0
5018 || regnum == PCSQ_HEAD_REGNUM
5019 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
5020 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
5021
5022 }
5023
5024 CORE_ADDR
5025 hppa_smash_text_address (CORE_ADDR addr)
5026 {
5027 /* The low two bits of the PC on the PA contain the privilege level.
5028 Some genius implementing a (non-GCC) compiler apparently decided
5029 this means that "addresses" in a text section therefore include a
5030 privilege level, and thus symbol tables should contain these bits.
5031 This seems like a bonehead thing to do--anyway, it seems to work
5032 for our purposes to just ignore those bits. */
5033
5034 return (addr &= ~0x3);
5035 }
5036
5037 /* Get the ith function argument for the current function. */
5038 CORE_ADDR
5039 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
5040 struct type *type)
5041 {
5042 CORE_ADDR addr;
5043 get_frame_register (frame, R0_REGNUM + 26 - argi, &addr);
5044 return addr;
5045 }
5046
5047 /* Here is a table of C type sizes on hppa with various compiles
5048 and options. I measured this on PA 9000/800 with HP-UX 11.11
5049 and these compilers:
5050
5051 /usr/ccs/bin/cc HP92453-01 A.11.01.21
5052 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
5053 /opt/aCC/bin/aCC B3910B A.03.45
5054 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
5055
5056 cc : 1 2 4 4 8 : 4 8 -- : 4 4
5057 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
5058 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
5059 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
5060 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
5061 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
5062 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
5063 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
5064
5065 Each line is:
5066
5067 compiler and options
5068 char, short, int, long, long long
5069 float, double, long double
5070 char *, void (*)()
5071
5072 So all these compilers use either ILP32 or LP64 model.
5073 TODO: gcc has more options so it needs more investigation.
5074
5075 For floating point types, see:
5076
5077 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
5078 HP-UX floating-point guide, hpux 11.00
5079
5080 -- chastain 2003-12-18 */
5081
5082 static struct gdbarch *
5083 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5084 {
5085 struct gdbarch_tdep *tdep;
5086 struct gdbarch *gdbarch;
5087
5088 /* Try to determine the ABI of the object we are loading. */
5089 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
5090 {
5091 /* If it's a SOM file, assume it's HP/UX SOM. */
5092 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
5093 info.osabi = GDB_OSABI_HPUX_SOM;
5094 }
5095
5096 /* find a candidate among the list of pre-declared architectures. */
5097 arches = gdbarch_list_lookup_by_info (arches, &info);
5098 if (arches != NULL)
5099 return (arches->gdbarch);
5100
5101 /* If none found, then allocate and initialize one. */
5102 tdep = XMALLOC (struct gdbarch_tdep);
5103 gdbarch = gdbarch_alloc (&info, tdep);
5104
5105 /* Determine from the bfd_arch_info structure if we are dealing with
5106 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
5107 then default to a 32bit machine. */
5108 if (info.bfd_arch_info != NULL)
5109 tdep->bytes_per_address =
5110 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
5111 else
5112 tdep->bytes_per_address = 4;
5113
5114 /* Some parts of the gdbarch vector depend on whether we are running
5115 on a 32 bits or 64 bits target. */
5116 switch (tdep->bytes_per_address)
5117 {
5118 case 4:
5119 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
5120 set_gdbarch_register_name (gdbarch, hppa32_register_name);
5121 set_gdbarch_deprecated_register_virtual_type
5122 (gdbarch, hppa32_register_virtual_type);
5123 set_gdbarch_deprecated_call_dummy_length
5124 (gdbarch, hppa32_call_dummy_length);
5125 set_gdbarch_deprecated_stack_align (gdbarch, hppa32_stack_align);
5126 set_gdbarch_deprecated_reg_struct_has_addr
5127 (gdbarch, hppa_reg_struct_has_addr);
5128 set_gdbarch_deprecated_extract_return_value
5129 (gdbarch, hppa32_extract_return_value);
5130 set_gdbarch_use_struct_convention
5131 (gdbarch, hppa32_use_struct_convention);
5132 set_gdbarch_deprecated_store_return_value
5133 (gdbarch, hppa32_store_return_value);
5134 break;
5135 case 8:
5136 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
5137 set_gdbarch_register_name (gdbarch, hppa64_register_name);
5138 set_gdbarch_deprecated_register_virtual_type
5139 (gdbarch, hppa64_register_virtual_type);
5140 set_gdbarch_deprecated_call_dummy_breakpoint_offset
5141 (gdbarch, hppa64_call_dummy_breakpoint_offset);
5142 set_gdbarch_deprecated_call_dummy_length
5143 (gdbarch, hppa64_call_dummy_length);
5144 set_gdbarch_deprecated_stack_align (gdbarch, hppa64_stack_align);
5145 set_gdbarch_deprecated_extract_return_value
5146 (gdbarch, hppa64_extract_return_value);
5147 set_gdbarch_use_struct_convention
5148 (gdbarch, hppa64_use_struct_convention);
5149 set_gdbarch_deprecated_store_return_value
5150 (gdbarch, hppa64_store_return_value);
5151 break;
5152 default:
5153 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
5154 tdep->bytes_per_address);
5155 }
5156
5157 /* The following gdbarch vector elements depend on other parts of this
5158 vector which have been set above, depending on the ABI. */
5159 set_gdbarch_deprecated_register_bytes
5160 (gdbarch, gdbarch_num_regs (gdbarch) * tdep->bytes_per_address);
5161 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
5162 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
5163
5164 /* The following gdbarch vector elements are the same in both ILP32
5165 and LP64, but might show differences some day. */
5166 set_gdbarch_long_long_bit (gdbarch, 64);
5167 set_gdbarch_long_double_bit (gdbarch, 128);
5168 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
5169
5170 /* The following gdbarch vector elements do not depend on the address
5171 size, or in any other gdbarch element previously set. */
5172 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
5173 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
5174 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
5175 set_gdbarch_in_solib_return_trampoline (gdbarch,
5176 hppa_in_solib_return_trampoline);
5177 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
5178 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
5179 set_gdbarch_deprecated_register_size (gdbarch, tdep->bytes_per_address);
5180 set_gdbarch_deprecated_fp_regnum (gdbarch, 3);
5181 set_gdbarch_sp_regnum (gdbarch, 30);
5182 set_gdbarch_fp0_regnum (gdbarch, 64);
5183 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
5184 set_gdbarch_deprecated_register_raw_size (gdbarch, hppa_register_raw_size);
5185 set_gdbarch_deprecated_register_byte (gdbarch, hppa_register_byte);
5186 set_gdbarch_deprecated_register_virtual_size (gdbarch, hppa_register_raw_size);
5187 set_gdbarch_deprecated_max_register_raw_size (gdbarch, tdep->bytes_per_address);
5188 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
5189 set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return);
5190 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
5191 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
5192 set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain);
5193 set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
5194 set_gdbarch_frameless_function_invocation
5195 (gdbarch, hppa_frameless_function_invocation);
5196 set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
5197 set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame);
5198 set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame);
5199 /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
5200 set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments);
5201 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
5202 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5203 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5204 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5205 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
5206 set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp);
5207
5208 /* Helper for function argument information. */
5209 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
5210
5211 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
5212
5213 /* When a hardware watchpoint triggers, we'll move the inferior past
5214 it by removing all eventpoints; stepping past the instruction
5215 that caused the trigger; reinserting eventpoints; and checking
5216 whether any watched location changed. */
5217 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5218
5219 /* Hook in ABI-specific overrides, if they have been registered. */
5220 gdbarch_init_osabi (info, gdbarch);
5221
5222 return gdbarch;
5223 }
5224
5225 static void
5226 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5227 {
5228 /* Nothing to print for the moment. */
5229 }
5230
5231 void
5232 _initialize_hppa_tdep (void)
5233 {
5234 struct cmd_list_element *c;
5235 void break_at_finish_command (char *arg, int from_tty);
5236 void tbreak_at_finish_command (char *arg, int from_tty);
5237 void break_at_finish_at_depth_command (char *arg, int from_tty);
5238
5239 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
5240
5241 add_cmd ("unwind", class_maintenance, unwind_command,
5242 "Print unwind table entry at given address.",
5243 &maintenanceprintlist);
5244
5245 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5246 break_at_finish_command,
5247 concat ("Set breakpoint at procedure exit. \n\
5248 Argument may be function name, or \"*\" and an address.\n\
5249 If function is specified, break at end of code for that function.\n\
5250 If an address is specified, break at the end of the function that contains \n\
5251 that exact address.\n",
5252 "With no arg, uses current execution address of selected stack frame.\n\
5253 This is useful for breaking on return to a stack frame.\n\
5254 \n\
5255 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5256 \n\
5257 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5258 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5259 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5260 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5261 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5262
5263 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5264 tbreak_at_finish_command,
5265 "Set temporary breakpoint at procedure exit. Either there should\n\
5266 be no argument or the argument must be a depth.\n"), NULL);
5267 set_cmd_completer (c, location_completer);
5268
5269 if (xdb_commands)
5270 deprecate_cmd (add_com ("bx", class_breakpoint,
5271 break_at_finish_at_depth_command,
5272 "Set breakpoint at procedure exit. Either there should\n\
5273 be no argument or the argument must be a depth.\n"), NULL);
5274 }
5275
This page took 0.201608 seconds and 4 git commands to generate.