*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "bfd.h"
28 #include "inferior.h"
29 #include "value.h"
30 #include "regcache.h"
31
32 /* For argument passing to the inferior */
33 #include "symtab.h"
34
35 #ifdef USG
36 #include <sys/types.h>
37 #endif
38
39 #include <dl.h>
40 #include <sys/param.h>
41 #include <signal.h>
42
43 #include <sys/ptrace.h>
44 #include <machine/save_state.h>
45
46 #ifdef COFF_ENCAPSULATE
47 #include "a.out.encap.h"
48 #else
49 #endif
50
51 /*#include <sys/user.h> After a.out.h */
52 #include <sys/file.h>
53 #include "gdb_stat.h"
54 #include "gdb_wait.h"
55
56 #include "gdbcore.h"
57 #include "gdbcmd.h"
58 #include "target.h"
59 #include "symfile.h"
60 #include "objfiles.h"
61
62 /* To support detection of the pseudo-initial frame
63 that threads have. */
64 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
65 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
66
67 static int extract_5_load (unsigned int);
68
69 static unsigned extract_5R_store (unsigned int);
70
71 static unsigned extract_5r_store (unsigned int);
72
73 static void find_dummy_frame_regs (struct frame_info *,
74 struct frame_saved_regs *);
75
76 static int find_proc_framesize (CORE_ADDR);
77
78 static int find_return_regnum (CORE_ADDR);
79
80 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
81
82 static int extract_17 (unsigned int);
83
84 static unsigned deposit_21 (unsigned int, unsigned int);
85
86 static int extract_21 (unsigned);
87
88 static unsigned deposit_14 (int, unsigned int);
89
90 static int extract_14 (unsigned);
91
92 static void unwind_command (char *, int);
93
94 static int low_sign_extend (unsigned int, unsigned int);
95
96 static int sign_extend (unsigned int, unsigned int);
97
98 static int restore_pc_queue (struct frame_saved_regs *);
99
100 static int hppa_alignof (struct type *);
101
102 /* To support multi-threading and stepping. */
103 int hppa_prepare_to_proceed ();
104
105 static int prologue_inst_adjust_sp (unsigned long);
106
107 static int is_branch (unsigned long);
108
109 static int inst_saves_gr (unsigned long);
110
111 static int inst_saves_fr (unsigned long);
112
113 static int pc_in_interrupt_handler (CORE_ADDR);
114
115 static int pc_in_linker_stub (CORE_ADDR);
116
117 static int compare_unwind_entries (const void *, const void *);
118
119 static void read_unwind_info (struct objfile *);
120
121 static void internalize_unwinds (struct objfile *,
122 struct unwind_table_entry *,
123 asection *, unsigned int,
124 unsigned int, CORE_ADDR);
125 static void pa_print_registers (char *, int, int);
126 static void pa_strcat_registers (char *, int, int, struct ui_file *);
127 static void pa_register_look_aside (char *, int, long *);
128 static void pa_print_fp_reg (int);
129 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
130 static void record_text_segment_lowaddr (bfd *, asection *, void *);
131
132 typedef struct
133 {
134 struct minimal_symbol *msym;
135 CORE_ADDR solib_handle;
136 CORE_ADDR return_val;
137 }
138 args_for_find_stub;
139
140 static int cover_find_stub_with_shl_get (PTR);
141
142 static int is_pa_2 = 0; /* False */
143
144 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
145 extern int hp_som_som_object_present;
146
147 /* In breakpoint.c */
148 extern int exception_catchpoints_are_fragile;
149
150 /* This is defined in valops.c. */
151 extern struct value *find_function_in_inferior (char *);
152
153 /* Should call_function allocate stack space for a struct return? */
154 int
155 hppa_use_struct_convention (int gcc_p, struct type *type)
156 {
157 return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
158 }
159 \f
160
161 /* Routines to extract various sized constants out of hppa
162 instructions. */
163
164 /* This assumes that no garbage lies outside of the lower bits of
165 value. */
166
167 static int
168 sign_extend (unsigned val, unsigned bits)
169 {
170 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
171 }
172
173 /* For many immediate values the sign bit is the low bit! */
174
175 static int
176 low_sign_extend (unsigned val, unsigned bits)
177 {
178 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
179 }
180
181 /* extract the immediate field from a ld{bhw}s instruction */
182
183 static int
184 extract_5_load (unsigned word)
185 {
186 return low_sign_extend (word >> 16 & MASK_5, 5);
187 }
188
189 /* extract the immediate field from a break instruction */
190
191 static unsigned
192 extract_5r_store (unsigned word)
193 {
194 return (word & MASK_5);
195 }
196
197 /* extract the immediate field from a {sr}sm instruction */
198
199 static unsigned
200 extract_5R_store (unsigned word)
201 {
202 return (word >> 16 & MASK_5);
203 }
204
205 /* extract a 14 bit immediate field */
206
207 static int
208 extract_14 (unsigned word)
209 {
210 return low_sign_extend (word & MASK_14, 14);
211 }
212
213 /* deposit a 14 bit constant in a word */
214
215 static unsigned
216 deposit_14 (int opnd, unsigned word)
217 {
218 unsigned sign = (opnd < 0 ? 1 : 0);
219
220 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
221 }
222
223 /* extract a 21 bit constant */
224
225 static int
226 extract_21 (unsigned word)
227 {
228 int val;
229
230 word &= MASK_21;
231 word <<= 11;
232 val = GET_FIELD (word, 20, 20);
233 val <<= 11;
234 val |= GET_FIELD (word, 9, 19);
235 val <<= 2;
236 val |= GET_FIELD (word, 5, 6);
237 val <<= 5;
238 val |= GET_FIELD (word, 0, 4);
239 val <<= 2;
240 val |= GET_FIELD (word, 7, 8);
241 return sign_extend (val, 21) << 11;
242 }
243
244 /* deposit a 21 bit constant in a word. Although 21 bit constants are
245 usually the top 21 bits of a 32 bit constant, we assume that only
246 the low 21 bits of opnd are relevant */
247
248 static unsigned
249 deposit_21 (unsigned opnd, unsigned word)
250 {
251 unsigned val = 0;
252
253 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
254 val <<= 2;
255 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
256 val <<= 2;
257 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
258 val <<= 11;
259 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
260 val <<= 1;
261 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
262 return word | val;
263 }
264
265 /* extract a 17 bit constant from branch instructions, returning the
266 19 bit signed value. */
267
268 static int
269 extract_17 (unsigned word)
270 {
271 return sign_extend (GET_FIELD (word, 19, 28) |
272 GET_FIELD (word, 29, 29) << 10 |
273 GET_FIELD (word, 11, 15) << 11 |
274 (word & 0x1) << 16, 17) << 2;
275 }
276 \f
277
278 /* Compare the start address for two unwind entries returning 1 if
279 the first address is larger than the second, -1 if the second is
280 larger than the first, and zero if they are equal. */
281
282 static int
283 compare_unwind_entries (const void *arg1, const void *arg2)
284 {
285 const struct unwind_table_entry *a = arg1;
286 const struct unwind_table_entry *b = arg2;
287
288 if (a->region_start > b->region_start)
289 return 1;
290 else if (a->region_start < b->region_start)
291 return -1;
292 else
293 return 0;
294 }
295
296 static CORE_ADDR low_text_segment_address;
297
298 static void
299 record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
300 {
301 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
302 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
303 && section->vma < low_text_segment_address)
304 low_text_segment_address = section->vma;
305 }
306
307 static void
308 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
309 asection *section, unsigned int entries, unsigned int size,
310 CORE_ADDR text_offset)
311 {
312 /* We will read the unwind entries into temporary memory, then
313 fill in the actual unwind table. */
314 if (size > 0)
315 {
316 unsigned long tmp;
317 unsigned i;
318 char *buf = alloca (size);
319
320 low_text_segment_address = -1;
321
322 /* If addresses are 64 bits wide, then unwinds are supposed to
323 be segment relative offsets instead of absolute addresses.
324
325 Note that when loading a shared library (text_offset != 0) the
326 unwinds are already relative to the text_offset that will be
327 passed in. */
328 if (TARGET_PTR_BIT == 64 && text_offset == 0)
329 {
330 bfd_map_over_sections (objfile->obfd,
331 record_text_segment_lowaddr, (PTR) NULL);
332
333 /* ?!? Mask off some low bits. Should this instead subtract
334 out the lowest section's filepos or something like that?
335 This looks very hokey to me. */
336 low_text_segment_address &= ~0xfff;
337 text_offset += low_text_segment_address;
338 }
339
340 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
341
342 /* Now internalize the information being careful to handle host/target
343 endian issues. */
344 for (i = 0; i < entries; i++)
345 {
346 table[i].region_start = bfd_get_32 (objfile->obfd,
347 (bfd_byte *) buf);
348 table[i].region_start += text_offset;
349 buf += 4;
350 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
351 table[i].region_end += text_offset;
352 buf += 4;
353 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
354 buf += 4;
355 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
356 table[i].Millicode = (tmp >> 30) & 0x1;
357 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
358 table[i].Region_description = (tmp >> 27) & 0x3;
359 table[i].reserved1 = (tmp >> 26) & 0x1;
360 table[i].Entry_SR = (tmp >> 25) & 0x1;
361 table[i].Entry_FR = (tmp >> 21) & 0xf;
362 table[i].Entry_GR = (tmp >> 16) & 0x1f;
363 table[i].Args_stored = (tmp >> 15) & 0x1;
364 table[i].Variable_Frame = (tmp >> 14) & 0x1;
365 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
366 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
367 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
368 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
369 table[i].Ada_Region = (tmp >> 9) & 0x1;
370 table[i].cxx_info = (tmp >> 8) & 0x1;
371 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
372 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
373 table[i].reserved2 = (tmp >> 5) & 0x1;
374 table[i].Save_SP = (tmp >> 4) & 0x1;
375 table[i].Save_RP = (tmp >> 3) & 0x1;
376 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
377 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
378 table[i].Cleanup_defined = tmp & 0x1;
379 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
380 buf += 4;
381 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
382 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
383 table[i].Large_frame = (tmp >> 29) & 0x1;
384 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
385 table[i].reserved4 = (tmp >> 27) & 0x1;
386 table[i].Total_frame_size = tmp & 0x7ffffff;
387
388 /* Stub unwinds are handled elsewhere. */
389 table[i].stub_unwind.stub_type = 0;
390 table[i].stub_unwind.padding = 0;
391 }
392 }
393 }
394
395 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
396 the object file. This info is used mainly by find_unwind_entry() to find
397 out the stack frame size and frame pointer used by procedures. We put
398 everything on the psymbol obstack in the objfile so that it automatically
399 gets freed when the objfile is destroyed. */
400
401 static void
402 read_unwind_info (struct objfile *objfile)
403 {
404 asection *unwind_sec, *stub_unwind_sec;
405 unsigned unwind_size, stub_unwind_size, total_size;
406 unsigned index, unwind_entries;
407 unsigned stub_entries, total_entries;
408 CORE_ADDR text_offset;
409 struct obj_unwind_info *ui;
410 obj_private_data_t *obj_private;
411
412 text_offset = ANOFFSET (objfile->section_offsets, 0);
413 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
414 sizeof (struct obj_unwind_info));
415
416 ui->table = NULL;
417 ui->cache = NULL;
418 ui->last = -1;
419
420 /* For reasons unknown the HP PA64 tools generate multiple unwinder
421 sections in a single executable. So we just iterate over every
422 section in the BFD looking for unwinder sections intead of trying
423 to do a lookup with bfd_get_section_by_name.
424
425 First determine the total size of the unwind tables so that we
426 can allocate memory in a nice big hunk. */
427 total_entries = 0;
428 for (unwind_sec = objfile->obfd->sections;
429 unwind_sec;
430 unwind_sec = unwind_sec->next)
431 {
432 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
433 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
434 {
435 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
436 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
437
438 total_entries += unwind_entries;
439 }
440 }
441
442 /* Now compute the size of the stub unwinds. Note the ELF tools do not
443 use stub unwinds at the curren time. */
444 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
445
446 if (stub_unwind_sec)
447 {
448 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
449 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
450 }
451 else
452 {
453 stub_unwind_size = 0;
454 stub_entries = 0;
455 }
456
457 /* Compute total number of unwind entries and their total size. */
458 total_entries += stub_entries;
459 total_size = total_entries * sizeof (struct unwind_table_entry);
460
461 /* Allocate memory for the unwind table. */
462 ui->table = (struct unwind_table_entry *)
463 obstack_alloc (&objfile->psymbol_obstack, total_size);
464 ui->last = total_entries - 1;
465
466 /* Now read in each unwind section and internalize the standard unwind
467 entries. */
468 index = 0;
469 for (unwind_sec = objfile->obfd->sections;
470 unwind_sec;
471 unwind_sec = unwind_sec->next)
472 {
473 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
474 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
475 {
476 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
477 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
478
479 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
480 unwind_entries, unwind_size, text_offset);
481 index += unwind_entries;
482 }
483 }
484
485 /* Now read in and internalize the stub unwind entries. */
486 if (stub_unwind_size > 0)
487 {
488 unsigned int i;
489 char *buf = alloca (stub_unwind_size);
490
491 /* Read in the stub unwind entries. */
492 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
493 0, stub_unwind_size);
494
495 /* Now convert them into regular unwind entries. */
496 for (i = 0; i < stub_entries; i++, index++)
497 {
498 /* Clear out the next unwind entry. */
499 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
500
501 /* Convert offset & size into region_start and region_end.
502 Stuff away the stub type into "reserved" fields. */
503 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
504 (bfd_byte *) buf);
505 ui->table[index].region_start += text_offset;
506 buf += 4;
507 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
508 (bfd_byte *) buf);
509 buf += 2;
510 ui->table[index].region_end
511 = ui->table[index].region_start + 4 *
512 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
513 buf += 2;
514 }
515
516 }
517
518 /* Unwind table needs to be kept sorted. */
519 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
520 compare_unwind_entries);
521
522 /* Keep a pointer to the unwind information. */
523 if (objfile->obj_private == NULL)
524 {
525 obj_private = (obj_private_data_t *)
526 obstack_alloc (&objfile->psymbol_obstack,
527 sizeof (obj_private_data_t));
528 obj_private->unwind_info = NULL;
529 obj_private->so_info = NULL;
530 obj_private->dp = 0;
531
532 objfile->obj_private = (PTR) obj_private;
533 }
534 obj_private = (obj_private_data_t *) objfile->obj_private;
535 obj_private->unwind_info = ui;
536 }
537
538 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
539 of the objfiles seeking the unwind table entry for this PC. Each objfile
540 contains a sorted list of struct unwind_table_entry. Since we do a binary
541 search of the unwind tables, we depend upon them to be sorted. */
542
543 struct unwind_table_entry *
544 find_unwind_entry (CORE_ADDR pc)
545 {
546 int first, middle, last;
547 struct objfile *objfile;
548
549 /* A function at address 0? Not in HP-UX! */
550 if (pc == (CORE_ADDR) 0)
551 return NULL;
552
553 ALL_OBJFILES (objfile)
554 {
555 struct obj_unwind_info *ui;
556 ui = NULL;
557 if (objfile->obj_private)
558 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
559
560 if (!ui)
561 {
562 read_unwind_info (objfile);
563 if (objfile->obj_private == NULL)
564 error ("Internal error reading unwind information.");
565 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
566 }
567
568 /* First, check the cache */
569
570 if (ui->cache
571 && pc >= ui->cache->region_start
572 && pc <= ui->cache->region_end)
573 return ui->cache;
574
575 /* Not in the cache, do a binary search */
576
577 first = 0;
578 last = ui->last;
579
580 while (first <= last)
581 {
582 middle = (first + last) / 2;
583 if (pc >= ui->table[middle].region_start
584 && pc <= ui->table[middle].region_end)
585 {
586 ui->cache = &ui->table[middle];
587 return &ui->table[middle];
588 }
589
590 if (pc < ui->table[middle].region_start)
591 last = middle - 1;
592 else
593 first = middle + 1;
594 }
595 } /* ALL_OBJFILES() */
596 return NULL;
597 }
598
599 /* Return the adjustment necessary to make for addresses on the stack
600 as presented by hpread.c.
601
602 This is necessary because of the stack direction on the PA and the
603 bizarre way in which someone (?) decided they wanted to handle
604 frame pointerless code in GDB. */
605 int
606 hpread_adjust_stack_address (CORE_ADDR func_addr)
607 {
608 struct unwind_table_entry *u;
609
610 u = find_unwind_entry (func_addr);
611 if (!u)
612 return 0;
613 else
614 return u->Total_frame_size << 3;
615 }
616
617 /* Called to determine if PC is in an interrupt handler of some
618 kind. */
619
620 static int
621 pc_in_interrupt_handler (CORE_ADDR pc)
622 {
623 struct unwind_table_entry *u;
624 struct minimal_symbol *msym_us;
625
626 u = find_unwind_entry (pc);
627 if (!u)
628 return 0;
629
630 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
631 its frame isn't a pure interrupt frame. Deal with this. */
632 msym_us = lookup_minimal_symbol_by_pc (pc);
633
634 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
635 }
636
637 /* Called when no unwind descriptor was found for PC. Returns 1 if it
638 appears that PC is in a linker stub.
639
640 ?!? Need to handle stubs which appear in PA64 code. */
641
642 static int
643 pc_in_linker_stub (CORE_ADDR pc)
644 {
645 int found_magic_instruction = 0;
646 int i;
647 char buf[4];
648
649 /* If unable to read memory, assume pc is not in a linker stub. */
650 if (target_read_memory (pc, buf, 4) != 0)
651 return 0;
652
653 /* We are looking for something like
654
655 ; $$dyncall jams RP into this special spot in the frame (RP')
656 ; before calling the "call stub"
657 ldw -18(sp),rp
658
659 ldsid (rp),r1 ; Get space associated with RP into r1
660 mtsp r1,sp ; Move it into space register 0
661 be,n 0(sr0),rp) ; back to your regularly scheduled program */
662
663 /* Maximum known linker stub size is 4 instructions. Search forward
664 from the given PC, then backward. */
665 for (i = 0; i < 4; i++)
666 {
667 /* If we hit something with an unwind, stop searching this direction. */
668
669 if (find_unwind_entry (pc + i * 4) != 0)
670 break;
671
672 /* Check for ldsid (rp),r1 which is the magic instruction for a
673 return from a cross-space function call. */
674 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
675 {
676 found_magic_instruction = 1;
677 break;
678 }
679 /* Add code to handle long call/branch and argument relocation stubs
680 here. */
681 }
682
683 if (found_magic_instruction != 0)
684 return 1;
685
686 /* Now look backward. */
687 for (i = 0; i < 4; i++)
688 {
689 /* If we hit something with an unwind, stop searching this direction. */
690
691 if (find_unwind_entry (pc - i * 4) != 0)
692 break;
693
694 /* Check for ldsid (rp),r1 which is the magic instruction for a
695 return from a cross-space function call. */
696 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
697 {
698 found_magic_instruction = 1;
699 break;
700 }
701 /* Add code to handle long call/branch and argument relocation stubs
702 here. */
703 }
704 return found_magic_instruction;
705 }
706
707 static int
708 find_return_regnum (CORE_ADDR pc)
709 {
710 struct unwind_table_entry *u;
711
712 u = find_unwind_entry (pc);
713
714 if (!u)
715 return RP_REGNUM;
716
717 if (u->Millicode)
718 return 31;
719
720 return RP_REGNUM;
721 }
722
723 /* Return size of frame, or -1 if we should use a frame pointer. */
724 static int
725 find_proc_framesize (CORE_ADDR pc)
726 {
727 struct unwind_table_entry *u;
728 struct minimal_symbol *msym_us;
729
730 /* This may indicate a bug in our callers... */
731 if (pc == (CORE_ADDR) 0)
732 return -1;
733
734 u = find_unwind_entry (pc);
735
736 if (!u)
737 {
738 if (pc_in_linker_stub (pc))
739 /* Linker stubs have a zero size frame. */
740 return 0;
741 else
742 return -1;
743 }
744
745 msym_us = lookup_minimal_symbol_by_pc (pc);
746
747 /* If Save_SP is set, and we're not in an interrupt or signal caller,
748 then we have a frame pointer. Use it. */
749 if (u->Save_SP && !pc_in_interrupt_handler (pc)
750 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
751 return -1;
752
753 return u->Total_frame_size << 3;
754 }
755
756 /* Return offset from sp at which rp is saved, or 0 if not saved. */
757 static int rp_saved (CORE_ADDR);
758
759 static int
760 rp_saved (CORE_ADDR pc)
761 {
762 struct unwind_table_entry *u;
763
764 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
765 if (pc == (CORE_ADDR) 0)
766 return 0;
767
768 u = find_unwind_entry (pc);
769
770 if (!u)
771 {
772 if (pc_in_linker_stub (pc))
773 /* This is the so-called RP'. */
774 return -24;
775 else
776 return 0;
777 }
778
779 if (u->Save_RP)
780 return (TARGET_PTR_BIT == 64 ? -16 : -20);
781 else if (u->stub_unwind.stub_type != 0)
782 {
783 switch (u->stub_unwind.stub_type)
784 {
785 case EXPORT:
786 case IMPORT:
787 return -24;
788 case PARAMETER_RELOCATION:
789 return -8;
790 default:
791 return 0;
792 }
793 }
794 else
795 return 0;
796 }
797 \f
798 int
799 frameless_function_invocation (struct frame_info *frame)
800 {
801 struct unwind_table_entry *u;
802
803 u = find_unwind_entry (frame->pc);
804
805 if (u == 0)
806 return 0;
807
808 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
809 }
810
811 CORE_ADDR
812 saved_pc_after_call (struct frame_info *frame)
813 {
814 int ret_regnum;
815 CORE_ADDR pc;
816 struct unwind_table_entry *u;
817
818 ret_regnum = find_return_regnum (get_frame_pc (frame));
819 pc = read_register (ret_regnum) & ~0x3;
820
821 /* If PC is in a linker stub, then we need to dig the address
822 the stub will return to out of the stack. */
823 u = find_unwind_entry (pc);
824 if (u && u->stub_unwind.stub_type != 0)
825 return FRAME_SAVED_PC (frame);
826 else
827 return pc;
828 }
829 \f
830 CORE_ADDR
831 hppa_frame_saved_pc (struct frame_info *frame)
832 {
833 CORE_ADDR pc = get_frame_pc (frame);
834 struct unwind_table_entry *u;
835 CORE_ADDR old_pc;
836 int spun_around_loop = 0;
837 int rp_offset = 0;
838
839 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
840 at the base of the frame in an interrupt handler. Registers within
841 are saved in the exact same order as GDB numbers registers. How
842 convienent. */
843 if (pc_in_interrupt_handler (pc))
844 return read_memory_integer (frame->frame + PC_REGNUM * 4,
845 TARGET_PTR_BIT / 8) & ~0x3;
846
847 if ((frame->pc >= frame->frame
848 && frame->pc <= (frame->frame
849 /* A call dummy is sized in words, but it is
850 actually a series of instructions. Account
851 for that scaling factor. */
852 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
853 * CALL_DUMMY_LENGTH)
854 /* Similarly we have to account for 64bit
855 wide register saves. */
856 + (32 * REGISTER_SIZE)
857 /* We always consider FP regs 8 bytes long. */
858 + (NUM_REGS - FP0_REGNUM) * 8
859 /* Similarly we have to account for 64bit
860 wide register saves. */
861 + (6 * REGISTER_SIZE))))
862 {
863 return read_memory_integer ((frame->frame
864 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
865 TARGET_PTR_BIT / 8) & ~0x3;
866 }
867
868 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
869 /* Deal with signal handler caller frames too. */
870 if (frame->signal_handler_caller)
871 {
872 CORE_ADDR rp;
873 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
874 return rp & ~0x3;
875 }
876 #endif
877
878 if (frameless_function_invocation (frame))
879 {
880 int ret_regnum;
881
882 ret_regnum = find_return_regnum (pc);
883
884 /* If the next frame is an interrupt frame or a signal
885 handler caller, then we need to look in the saved
886 register area to get the return pointer (the values
887 in the registers may not correspond to anything useful). */
888 if (frame->next
889 && (frame->next->signal_handler_caller
890 || pc_in_interrupt_handler (frame->next->pc)))
891 {
892 struct frame_saved_regs saved_regs;
893
894 get_frame_saved_regs (frame->next, &saved_regs);
895 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
896 TARGET_PTR_BIT / 8) & 0x2)
897 {
898 pc = read_memory_integer (saved_regs.regs[31],
899 TARGET_PTR_BIT / 8) & ~0x3;
900
901 /* Syscalls are really two frames. The syscall stub itself
902 with a return pointer in %rp and the kernel call with
903 a return pointer in %r31. We return the %rp variant
904 if %r31 is the same as frame->pc. */
905 if (pc == frame->pc)
906 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
907 TARGET_PTR_BIT / 8) & ~0x3;
908 }
909 else
910 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
911 TARGET_PTR_BIT / 8) & ~0x3;
912 }
913 else
914 pc = read_register (ret_regnum) & ~0x3;
915 }
916 else
917 {
918 spun_around_loop = 0;
919 old_pc = pc;
920
921 restart:
922 rp_offset = rp_saved (pc);
923
924 /* Similar to code in frameless function case. If the next
925 frame is a signal or interrupt handler, then dig the right
926 information out of the saved register info. */
927 if (rp_offset == 0
928 && frame->next
929 && (frame->next->signal_handler_caller
930 || pc_in_interrupt_handler (frame->next->pc)))
931 {
932 struct frame_saved_regs saved_regs;
933
934 get_frame_saved_regs (frame->next, &saved_regs);
935 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
936 TARGET_PTR_BIT / 8) & 0x2)
937 {
938 pc = read_memory_integer (saved_regs.regs[31],
939 TARGET_PTR_BIT / 8) & ~0x3;
940
941 /* Syscalls are really two frames. The syscall stub itself
942 with a return pointer in %rp and the kernel call with
943 a return pointer in %r31. We return the %rp variant
944 if %r31 is the same as frame->pc. */
945 if (pc == frame->pc)
946 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
947 TARGET_PTR_BIT / 8) & ~0x3;
948 }
949 else
950 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
951 TARGET_PTR_BIT / 8) & ~0x3;
952 }
953 else if (rp_offset == 0)
954 {
955 old_pc = pc;
956 pc = read_register (RP_REGNUM) & ~0x3;
957 }
958 else
959 {
960 old_pc = pc;
961 pc = read_memory_integer (frame->frame + rp_offset,
962 TARGET_PTR_BIT / 8) & ~0x3;
963 }
964 }
965
966 /* If PC is inside a linker stub, then dig out the address the stub
967 will return to.
968
969 Don't do this for long branch stubs. Why? For some unknown reason
970 _start is marked as a long branch stub in hpux10. */
971 u = find_unwind_entry (pc);
972 if (u && u->stub_unwind.stub_type != 0
973 && u->stub_unwind.stub_type != LONG_BRANCH)
974 {
975 unsigned int insn;
976
977 /* If this is a dynamic executable, and we're in a signal handler,
978 then the call chain will eventually point us into the stub for
979 _sigreturn. Unlike most cases, we'll be pointed to the branch
980 to the real sigreturn rather than the code after the real branch!.
981
982 Else, try to dig the address the stub will return to in the normal
983 fashion. */
984 insn = read_memory_integer (pc, 4);
985 if ((insn & 0xfc00e000) == 0xe8000000)
986 return (pc + extract_17 (insn) + 8) & ~0x3;
987 else
988 {
989 if (old_pc == pc)
990 spun_around_loop++;
991
992 if (spun_around_loop > 1)
993 {
994 /* We're just about to go around the loop again with
995 no more hope of success. Die. */
996 error ("Unable to find return pc for this frame");
997 }
998 else
999 goto restart;
1000 }
1001 }
1002
1003 return pc;
1004 }
1005 \f
1006 /* We need to correct the PC and the FP for the outermost frame when we are
1007 in a system call. */
1008
1009 void
1010 init_extra_frame_info (int fromleaf, struct frame_info *frame)
1011 {
1012 int flags;
1013 int framesize;
1014
1015 if (frame->next && !fromleaf)
1016 return;
1017
1018 /* If the next frame represents a frameless function invocation
1019 then we have to do some adjustments that are normally done by
1020 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
1021 if (fromleaf)
1022 {
1023 /* Find the framesize of *this* frame without peeking at the PC
1024 in the current frame structure (it isn't set yet). */
1025 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
1026
1027 /* Now adjust our base frame accordingly. If we have a frame pointer
1028 use it, else subtract the size of this frame from the current
1029 frame. (we always want frame->frame to point at the lowest address
1030 in the frame). */
1031 if (framesize == -1)
1032 frame->frame = TARGET_READ_FP ();
1033 else
1034 frame->frame -= framesize;
1035 return;
1036 }
1037
1038 flags = read_register (FLAGS_REGNUM);
1039 if (flags & 2) /* In system call? */
1040 frame->pc = read_register (31) & ~0x3;
1041
1042 /* The outermost frame is always derived from PC-framesize
1043
1044 One might think frameless innermost frames should have
1045 a frame->frame that is the same as the parent's frame->frame.
1046 That is wrong; frame->frame in that case should be the *high*
1047 address of the parent's frame. It's complicated as hell to
1048 explain, but the parent *always* creates some stack space for
1049 the child. So the child actually does have a frame of some
1050 sorts, and its base is the high address in its parent's frame. */
1051 framesize = find_proc_framesize (frame->pc);
1052 if (framesize == -1)
1053 frame->frame = TARGET_READ_FP ();
1054 else
1055 frame->frame = read_register (SP_REGNUM) - framesize;
1056 }
1057 \f
1058 /* Given a GDB frame, determine the address of the calling function's frame.
1059 This will be used to create a new GDB frame struct, and then
1060 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1061
1062 This may involve searching through prologues for several functions
1063 at boundaries where GCC calls HP C code, or where code which has
1064 a frame pointer calls code without a frame pointer. */
1065
1066 CORE_ADDR
1067 frame_chain (struct frame_info *frame)
1068 {
1069 int my_framesize, caller_framesize;
1070 struct unwind_table_entry *u;
1071 CORE_ADDR frame_base;
1072 struct frame_info *tmp_frame;
1073
1074 /* A frame in the current frame list, or zero. */
1075 struct frame_info *saved_regs_frame = 0;
1076 /* Where the registers were saved in saved_regs_frame.
1077 If saved_regs_frame is zero, this is garbage. */
1078 struct frame_saved_regs saved_regs;
1079
1080 CORE_ADDR caller_pc;
1081
1082 struct minimal_symbol *min_frame_symbol;
1083 struct symbol *frame_symbol;
1084 char *frame_symbol_name;
1085
1086 /* If this is a threaded application, and we see the
1087 routine "__pthread_exit", treat it as the stack root
1088 for this thread. */
1089 min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
1090 frame_symbol = find_pc_function (frame->pc);
1091
1092 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1093 {
1094 /* The test above for "no user function name" would defend
1095 against the slim likelihood that a user might define a
1096 routine named "__pthread_exit" and then try to debug it.
1097
1098 If it weren't commented out, and you tried to debug the
1099 pthread library itself, you'd get errors.
1100
1101 So for today, we don't make that check. */
1102 frame_symbol_name = SYMBOL_NAME (min_frame_symbol);
1103 if (frame_symbol_name != 0)
1104 {
1105 if (0 == strncmp (frame_symbol_name,
1106 THREAD_INITIAL_FRAME_SYMBOL,
1107 THREAD_INITIAL_FRAME_SYM_LEN))
1108 {
1109 /* Pretend we've reached the bottom of the stack. */
1110 return (CORE_ADDR) 0;
1111 }
1112 }
1113 } /* End of hacky code for threads. */
1114
1115 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1116 are easy; at *sp we have a full save state strucutre which we can
1117 pull the old stack pointer from. Also see frame_saved_pc for
1118 code to dig a saved PC out of the save state structure. */
1119 if (pc_in_interrupt_handler (frame->pc))
1120 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4,
1121 TARGET_PTR_BIT / 8);
1122 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1123 else if (frame->signal_handler_caller)
1124 {
1125 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1126 }
1127 #endif
1128 else
1129 frame_base = frame->frame;
1130
1131 /* Get frame sizes for the current frame and the frame of the
1132 caller. */
1133 my_framesize = find_proc_framesize (frame->pc);
1134 caller_pc = FRAME_SAVED_PC (frame);
1135
1136 /* If we can't determine the caller's PC, then it's not likely we can
1137 really determine anything meaningful about its frame. We'll consider
1138 this to be stack bottom. */
1139 if (caller_pc == (CORE_ADDR) 0)
1140 return (CORE_ADDR) 0;
1141
1142 caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame));
1143
1144 /* If caller does not have a frame pointer, then its frame
1145 can be found at current_frame - caller_framesize. */
1146 if (caller_framesize != -1)
1147 {
1148 return frame_base - caller_framesize;
1149 }
1150 /* Both caller and callee have frame pointers and are GCC compiled
1151 (SAVE_SP bit in unwind descriptor is on for both functions.
1152 The previous frame pointer is found at the top of the current frame. */
1153 if (caller_framesize == -1 && my_framesize == -1)
1154 {
1155 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1156 }
1157 /* Caller has a frame pointer, but callee does not. This is a little
1158 more difficult as GCC and HP C lay out locals and callee register save
1159 areas very differently.
1160
1161 The previous frame pointer could be in a register, or in one of
1162 several areas on the stack.
1163
1164 Walk from the current frame to the innermost frame examining
1165 unwind descriptors to determine if %r3 ever gets saved into the
1166 stack. If so return whatever value got saved into the stack.
1167 If it was never saved in the stack, then the value in %r3 is still
1168 valid, so use it.
1169
1170 We use information from unwind descriptors to determine if %r3
1171 is saved into the stack (Entry_GR field has this information). */
1172
1173 for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next)
1174 {
1175 u = find_unwind_entry (tmp_frame->pc);
1176
1177 if (!u)
1178 {
1179 /* We could find this information by examining prologues. I don't
1180 think anyone has actually written any tools (not even "strip")
1181 which leave them out of an executable, so maybe this is a moot
1182 point. */
1183 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1184 code that doesn't have unwind entries. For example, stepping into
1185 the dynamic linker will give you a PC that has none. Thus, I've
1186 disabled this warning. */
1187 #if 0
1188 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1189 #endif
1190 return (CORE_ADDR) 0;
1191 }
1192
1193 if (u->Save_SP
1194 || tmp_frame->signal_handler_caller
1195 || pc_in_interrupt_handler (tmp_frame->pc))
1196 break;
1197
1198 /* Entry_GR specifies the number of callee-saved general registers
1199 saved in the stack. It starts at %r3, so %r3 would be 1. */
1200 if (u->Entry_GR >= 1)
1201 {
1202 /* The unwind entry claims that r3 is saved here. However,
1203 in optimized code, GCC often doesn't actually save r3.
1204 We'll discover this if we look at the prologue. */
1205 get_frame_saved_regs (tmp_frame, &saved_regs);
1206 saved_regs_frame = tmp_frame;
1207
1208 /* If we have an address for r3, that's good. */
1209 if (saved_regs.regs[FP_REGNUM])
1210 break;
1211 }
1212 }
1213
1214 if (tmp_frame)
1215 {
1216 /* We may have walked down the chain into a function with a frame
1217 pointer. */
1218 if (u->Save_SP
1219 && !tmp_frame->signal_handler_caller
1220 && !pc_in_interrupt_handler (tmp_frame->pc))
1221 {
1222 return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8);
1223 }
1224 /* %r3 was saved somewhere in the stack. Dig it out. */
1225 else
1226 {
1227 /* Sick.
1228
1229 For optimization purposes many kernels don't have the
1230 callee saved registers into the save_state structure upon
1231 entry into the kernel for a syscall; the optimization
1232 is usually turned off if the process is being traced so
1233 that the debugger can get full register state for the
1234 process.
1235
1236 This scheme works well except for two cases:
1237
1238 * Attaching to a process when the process is in the
1239 kernel performing a system call (debugger can't get
1240 full register state for the inferior process since
1241 the process wasn't being traced when it entered the
1242 system call).
1243
1244 * Register state is not complete if the system call
1245 causes the process to core dump.
1246
1247
1248 The following heinous code is an attempt to deal with
1249 the lack of register state in a core dump. It will
1250 fail miserably if the function which performs the
1251 system call has a variable sized stack frame. */
1252
1253 if (tmp_frame != saved_regs_frame)
1254 get_frame_saved_regs (tmp_frame, &saved_regs);
1255
1256 /* Abominable hack. */
1257 if (current_target.to_has_execution == 0
1258 && ((saved_regs.regs[FLAGS_REGNUM]
1259 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1260 TARGET_PTR_BIT / 8)
1261 & 0x2))
1262 || (saved_regs.regs[FLAGS_REGNUM] == 0
1263 && read_register (FLAGS_REGNUM) & 0x2)))
1264 {
1265 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1266 if (!u)
1267 {
1268 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1269 TARGET_PTR_BIT / 8);
1270 }
1271 else
1272 {
1273 return frame_base - (u->Total_frame_size << 3);
1274 }
1275 }
1276
1277 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1278 TARGET_PTR_BIT / 8);
1279 }
1280 }
1281 else
1282 {
1283 /* Get the innermost frame. */
1284 tmp_frame = frame;
1285 while (tmp_frame->next != NULL)
1286 tmp_frame = tmp_frame->next;
1287
1288 if (tmp_frame != saved_regs_frame)
1289 get_frame_saved_regs (tmp_frame, &saved_regs);
1290
1291 /* Abominable hack. See above. */
1292 if (current_target.to_has_execution == 0
1293 && ((saved_regs.regs[FLAGS_REGNUM]
1294 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1295 TARGET_PTR_BIT / 8)
1296 & 0x2))
1297 || (saved_regs.regs[FLAGS_REGNUM] == 0
1298 && read_register (FLAGS_REGNUM) & 0x2)))
1299 {
1300 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1301 if (!u)
1302 {
1303 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1304 TARGET_PTR_BIT / 8);
1305 }
1306 else
1307 {
1308 return frame_base - (u->Total_frame_size << 3);
1309 }
1310 }
1311
1312 /* The value in %r3 was never saved into the stack (thus %r3 still
1313 holds the value of the previous frame pointer). */
1314 return TARGET_READ_FP ();
1315 }
1316 }
1317 \f
1318
1319 /* To see if a frame chain is valid, see if the caller looks like it
1320 was compiled with gcc. */
1321
1322 int
1323 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1324 {
1325 struct minimal_symbol *msym_us;
1326 struct minimal_symbol *msym_start;
1327 struct unwind_table_entry *u, *next_u = NULL;
1328 struct frame_info *next;
1329
1330 if (!chain)
1331 return 0;
1332
1333 u = find_unwind_entry (thisframe->pc);
1334
1335 if (u == NULL)
1336 return 1;
1337
1338 /* We can't just check that the same of msym_us is "_start", because
1339 someone idiotically decided that they were going to make a Ltext_end
1340 symbol with the same address. This Ltext_end symbol is totally
1341 indistinguishable (as nearly as I can tell) from the symbol for a function
1342 which is (legitimately, since it is in the user's namespace)
1343 named Ltext_end, so we can't just ignore it. */
1344 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1345 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1346 if (msym_us
1347 && msym_start
1348 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1349 return 0;
1350
1351 /* Grrrr. Some new idiot decided that they don't want _start for the
1352 PRO configurations; $START$ calls main directly.... Deal with it. */
1353 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1354 if (msym_us
1355 && msym_start
1356 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1357 return 0;
1358
1359 next = get_next_frame (thisframe);
1360 if (next)
1361 next_u = find_unwind_entry (next->pc);
1362
1363 /* If this frame does not save SP, has no stack, isn't a stub,
1364 and doesn't "call" an interrupt routine or signal handler caller,
1365 then its not valid. */
1366 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1367 || (thisframe->next && thisframe->next->signal_handler_caller)
1368 || (next_u && next_u->HP_UX_interrupt_marker))
1369 return 1;
1370
1371 if (pc_in_linker_stub (thisframe->pc))
1372 return 1;
1373
1374 return 0;
1375 }
1376
1377 /*
1378 These functions deal with saving and restoring register state
1379 around a function call in the inferior. They keep the stack
1380 double-word aligned; eventually, on an hp700, the stack will have
1381 to be aligned to a 64-byte boundary. */
1382
1383 void
1384 push_dummy_frame (struct inferior_status *inf_status)
1385 {
1386 CORE_ADDR sp, pc, pcspace;
1387 register int regnum;
1388 CORE_ADDR int_buffer;
1389 double freg_buffer;
1390
1391 /* Oh, what a hack. If we're trying to perform an inferior call
1392 while the inferior is asleep, we have to make sure to clear
1393 the "in system call" bit in the flag register (the call will
1394 start after the syscall returns, so we're no longer in the system
1395 call!) This state is kept in "inf_status", change it there.
1396
1397 We also need a number of horrid hacks to deal with lossage in the
1398 PC queue registers (apparently they're not valid when the in syscall
1399 bit is set). */
1400 pc = target_read_pc (inferior_ptid);
1401 int_buffer = read_register (FLAGS_REGNUM);
1402 if (int_buffer & 0x2)
1403 {
1404 unsigned int sid;
1405 int_buffer &= ~0x2;
1406 write_inferior_status_register (inf_status, 0, int_buffer);
1407 write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0);
1408 write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4);
1409 sid = (pc >> 30) & 0x3;
1410 if (sid == 0)
1411 pcspace = read_register (SR4_REGNUM);
1412 else
1413 pcspace = read_register (SR4_REGNUM + 4 + sid);
1414 write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace);
1415 write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace);
1416 }
1417 else
1418 pcspace = read_register (PCSQ_HEAD_REGNUM);
1419
1420 /* Space for "arguments"; the RP goes in here. */
1421 sp = read_register (SP_REGNUM) + 48;
1422 int_buffer = read_register (RP_REGNUM) | 0x3;
1423
1424 /* The 32bit and 64bit ABIs save the return pointer into different
1425 stack slots. */
1426 if (REGISTER_SIZE == 8)
1427 write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
1428 else
1429 write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
1430
1431 int_buffer = TARGET_READ_FP ();
1432 write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
1433
1434 write_register (FP_REGNUM, sp);
1435
1436 sp += 2 * REGISTER_SIZE;
1437
1438 for (regnum = 1; regnum < 32; regnum++)
1439 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1440 sp = push_word (sp, read_register (regnum));
1441
1442 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1443 if (REGISTER_SIZE != 8)
1444 sp += 4;
1445
1446 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1447 {
1448 read_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1449 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1450 }
1451 sp = push_word (sp, read_register (IPSW_REGNUM));
1452 sp = push_word (sp, read_register (SAR_REGNUM));
1453 sp = push_word (sp, pc);
1454 sp = push_word (sp, pcspace);
1455 sp = push_word (sp, pc + 4);
1456 sp = push_word (sp, pcspace);
1457 write_register (SP_REGNUM, sp);
1458 }
1459
1460 static void
1461 find_dummy_frame_regs (struct frame_info *frame,
1462 struct frame_saved_regs *frame_saved_regs)
1463 {
1464 CORE_ADDR fp = frame->frame;
1465 int i;
1466
1467 /* The 32bit and 64bit ABIs save RP into different locations. */
1468 if (REGISTER_SIZE == 8)
1469 frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3;
1470 else
1471 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1472
1473 frame_saved_regs->regs[FP_REGNUM] = fp;
1474
1475 frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE);
1476
1477 for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
1478 {
1479 if (i != FP_REGNUM)
1480 {
1481 frame_saved_regs->regs[i] = fp;
1482 fp += REGISTER_SIZE;
1483 }
1484 }
1485
1486 /* This is not necessary or desirable for the 64bit ABI. */
1487 if (REGISTER_SIZE != 8)
1488 fp += 4;
1489
1490 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1491 frame_saved_regs->regs[i] = fp;
1492
1493 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1494 frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE;
1495 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
1496 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
1497 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
1498 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
1499 }
1500
1501 void
1502 hppa_pop_frame (void)
1503 {
1504 register struct frame_info *frame = get_current_frame ();
1505 register CORE_ADDR fp, npc, target_pc;
1506 register int regnum;
1507 struct frame_saved_regs fsr;
1508 double freg_buffer;
1509
1510 fp = FRAME_FP (frame);
1511 get_frame_saved_regs (frame, &fsr);
1512
1513 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1514 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1515 restore_pc_queue (&fsr);
1516 #endif
1517
1518 for (regnum = 31; regnum > 0; regnum--)
1519 if (fsr.regs[regnum])
1520 write_register (regnum, read_memory_integer (fsr.regs[regnum],
1521 REGISTER_SIZE));
1522
1523 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1524 if (fsr.regs[regnum])
1525 {
1526 read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
1527 write_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1528 }
1529
1530 if (fsr.regs[IPSW_REGNUM])
1531 write_register (IPSW_REGNUM,
1532 read_memory_integer (fsr.regs[IPSW_REGNUM],
1533 REGISTER_SIZE));
1534
1535 if (fsr.regs[SAR_REGNUM])
1536 write_register (SAR_REGNUM,
1537 read_memory_integer (fsr.regs[SAR_REGNUM],
1538 REGISTER_SIZE));
1539
1540 /* If the PC was explicitly saved, then just restore it. */
1541 if (fsr.regs[PCOQ_TAIL_REGNUM])
1542 {
1543 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM],
1544 REGISTER_SIZE);
1545 write_register (PCOQ_TAIL_REGNUM, npc);
1546 }
1547 /* Else use the value in %rp to set the new PC. */
1548 else
1549 {
1550 npc = read_register (RP_REGNUM);
1551 write_pc (npc);
1552 }
1553
1554 write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
1555
1556 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1557 write_register (SP_REGNUM, fp - 48);
1558 else
1559 write_register (SP_REGNUM, fp);
1560
1561 /* The PC we just restored may be inside a return trampoline. If so
1562 we want to restart the inferior and run it through the trampoline.
1563
1564 Do this by setting a momentary breakpoint at the location the
1565 trampoline returns to.
1566
1567 Don't skip through the trampoline if we're popping a dummy frame. */
1568 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1569 if (target_pc && !fsr.regs[IPSW_REGNUM])
1570 {
1571 struct symtab_and_line sal;
1572 struct breakpoint *breakpoint;
1573 struct cleanup *old_chain;
1574
1575 /* Set up our breakpoint. Set it to be silent as the MI code
1576 for "return_command" will print the frame we returned to. */
1577 sal = find_pc_line (target_pc, 0);
1578 sal.pc = target_pc;
1579 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1580 breakpoint->silent = 1;
1581
1582 /* So we can clean things up. */
1583 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1584
1585 /* Start up the inferior. */
1586 clear_proceed_status ();
1587 proceed_to_finish = 1;
1588 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1589
1590 /* Perform our cleanups. */
1591 do_cleanups (old_chain);
1592 }
1593 flush_cached_frames ();
1594 }
1595
1596 /* After returning to a dummy on the stack, restore the instruction
1597 queue space registers. */
1598
1599 static int
1600 restore_pc_queue (struct frame_saved_regs *fsr)
1601 {
1602 CORE_ADDR pc = read_pc ();
1603 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM],
1604 TARGET_PTR_BIT / 8);
1605 struct target_waitstatus w;
1606 int insn_count;
1607
1608 /* Advance past break instruction in the call dummy. */
1609 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1610 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1611
1612 /* HPUX doesn't let us set the space registers or the space
1613 registers of the PC queue through ptrace. Boo, hiss.
1614 Conveniently, the call dummy has this sequence of instructions
1615 after the break:
1616 mtsp r21, sr0
1617 ble,n 0(sr0, r22)
1618
1619 So, load up the registers and single step until we are in the
1620 right place. */
1621
1622 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM],
1623 REGISTER_SIZE));
1624 write_register (22, new_pc);
1625
1626 for (insn_count = 0; insn_count < 3; insn_count++)
1627 {
1628 /* FIXME: What if the inferior gets a signal right now? Want to
1629 merge this into wait_for_inferior (as a special kind of
1630 watchpoint? By setting a breakpoint at the end? Is there
1631 any other choice? Is there *any* way to do this stuff with
1632 ptrace() or some equivalent?). */
1633 resume (1, 0);
1634 target_wait (inferior_ptid, &w);
1635
1636 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1637 {
1638 stop_signal = w.value.sig;
1639 terminal_ours_for_output ();
1640 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1641 target_signal_to_name (stop_signal),
1642 target_signal_to_string (stop_signal));
1643 gdb_flush (gdb_stdout);
1644 return 0;
1645 }
1646 }
1647 target_terminal_ours ();
1648 target_fetch_registers (-1);
1649 return 1;
1650 }
1651
1652
1653 #ifdef PA20W_CALLING_CONVENTIONS
1654
1655 /* This function pushes a stack frame with arguments as part of the
1656 inferior function calling mechanism.
1657
1658 This is the version for the PA64, in which later arguments appear
1659 at higher addresses. (The stack always grows towards higher
1660 addresses.)
1661
1662 We simply allocate the appropriate amount of stack space and put
1663 arguments into their proper slots. The call dummy code will copy
1664 arguments into registers as needed by the ABI.
1665
1666 This ABI also requires that the caller provide an argument pointer
1667 to the callee, so we do that too. */
1668
1669 CORE_ADDR
1670 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1671 int struct_return, CORE_ADDR struct_addr)
1672 {
1673 /* array of arguments' offsets */
1674 int *offset = (int *) alloca (nargs * sizeof (int));
1675
1676 /* array of arguments' lengths: real lengths in bytes, not aligned to
1677 word size */
1678 int *lengths = (int *) alloca (nargs * sizeof (int));
1679
1680 /* The value of SP as it was passed into this function after
1681 aligning. */
1682 CORE_ADDR orig_sp = STACK_ALIGN (sp);
1683
1684 /* The number of stack bytes occupied by the current argument. */
1685 int bytes_reserved;
1686
1687 /* The total number of bytes reserved for the arguments. */
1688 int cum_bytes_reserved = 0;
1689
1690 /* Similarly, but aligned. */
1691 int cum_bytes_aligned = 0;
1692 int i;
1693
1694 /* Iterate over each argument provided by the user. */
1695 for (i = 0; i < nargs; i++)
1696 {
1697 struct type *arg_type = VALUE_TYPE (args[i]);
1698
1699 /* Integral scalar values smaller than a register are padded on
1700 the left. We do this by promoting them to full-width,
1701 although the ABI says to pad them with garbage. */
1702 if (is_integral_type (arg_type)
1703 && TYPE_LENGTH (arg_type) < REGISTER_SIZE)
1704 {
1705 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1706 ? builtin_type_unsigned_long
1707 : builtin_type_long),
1708 args[i]);
1709 arg_type = VALUE_TYPE (args[i]);
1710 }
1711
1712 lengths[i] = TYPE_LENGTH (arg_type);
1713
1714 /* Align the size of the argument to the word size for this
1715 target. */
1716 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1717
1718 offset[i] = cum_bytes_reserved;
1719
1720 /* Aggregates larger than eight bytes (the only types larger
1721 than eight bytes we have) are aligned on a 16-byte boundary,
1722 possibly padded on the right with garbage. This may leave an
1723 empty word on the stack, and thus an unused register, as per
1724 the ABI. */
1725 if (bytes_reserved > 8)
1726 {
1727 /* Round up the offset to a multiple of two slots. */
1728 int new_offset = ((offset[i] + 2*REGISTER_SIZE-1)
1729 & -(2*REGISTER_SIZE));
1730
1731 /* Note the space we've wasted, if any. */
1732 bytes_reserved += new_offset - offset[i];
1733 offset[i] = new_offset;
1734 }
1735
1736 cum_bytes_reserved += bytes_reserved;
1737 }
1738
1739 /* CUM_BYTES_RESERVED already accounts for all the arguments
1740 passed by the user. However, the ABIs mandate minimum stack space
1741 allocations for outgoing arguments.
1742
1743 The ABIs also mandate minimum stack alignments which we must
1744 preserve. */
1745 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1746 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1747
1748 /* Now write each of the args at the proper offset down the stack. */
1749 for (i = 0; i < nargs; i++)
1750 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1751
1752 /* If a structure has to be returned, set up register 28 to hold its
1753 address */
1754 if (struct_return)
1755 write_register (28, struct_addr);
1756
1757 /* For the PA64 we must pass a pointer to the outgoing argument list.
1758 The ABI mandates that the pointer should point to the first byte of
1759 storage beyond the register flushback area.
1760
1761 However, the call dummy expects the outgoing argument pointer to
1762 be passed in register %r4. */
1763 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1764
1765 /* ?!? This needs further work. We need to set up the global data
1766 pointer for this procedure. This assumes the same global pointer
1767 for every procedure. The call dummy expects the dp value to
1768 be passed in register %r6. */
1769 write_register (6, read_register (27));
1770
1771 /* The stack will have 64 bytes of additional space for a frame marker. */
1772 return sp + 64;
1773 }
1774
1775 #else
1776
1777 /* This function pushes a stack frame with arguments as part of the
1778 inferior function calling mechanism.
1779
1780 This is the version of the function for the 32-bit PA machines, in
1781 which later arguments appear at lower addresses. (The stack always
1782 grows towards higher addresses.)
1783
1784 We simply allocate the appropriate amount of stack space and put
1785 arguments into their proper slots. The call dummy code will copy
1786 arguments into registers as needed by the ABI. */
1787
1788 CORE_ADDR
1789 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1790 int struct_return, CORE_ADDR struct_addr)
1791 {
1792 /* array of arguments' offsets */
1793 int *offset = (int *) alloca (nargs * sizeof (int));
1794
1795 /* array of arguments' lengths: real lengths in bytes, not aligned to
1796 word size */
1797 int *lengths = (int *) alloca (nargs * sizeof (int));
1798
1799 /* The number of stack bytes occupied by the current argument. */
1800 int bytes_reserved;
1801
1802 /* The total number of bytes reserved for the arguments. */
1803 int cum_bytes_reserved = 0;
1804
1805 /* Similarly, but aligned. */
1806 int cum_bytes_aligned = 0;
1807 int i;
1808
1809 /* Iterate over each argument provided by the user. */
1810 for (i = 0; i < nargs; i++)
1811 {
1812 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1813
1814 /* Align the size of the argument to the word size for this
1815 target. */
1816 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1817
1818 offset[i] = cum_bytes_reserved + lengths[i];
1819
1820 /* If the argument is a double word argument, then it needs to be
1821 double word aligned. */
1822 if ((bytes_reserved == 2 * REGISTER_SIZE)
1823 && (offset[i] % 2 * REGISTER_SIZE))
1824 {
1825 int new_offset = 0;
1826 /* BYTES_RESERVED is already aligned to the word, so we put
1827 the argument at one word more down the stack.
1828
1829 This will leave one empty word on the stack, and one unused
1830 register as mandated by the ABI. */
1831 new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
1832 & -(2 * REGISTER_SIZE));
1833
1834 if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
1835 {
1836 bytes_reserved += REGISTER_SIZE;
1837 offset[i] += REGISTER_SIZE;
1838 }
1839 }
1840
1841 cum_bytes_reserved += bytes_reserved;
1842
1843 }
1844
1845 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1846 by the user. However, the ABI mandates minimum stack space
1847 allocations for outgoing arguments.
1848
1849 The ABI also mandates minimum stack alignments which we must
1850 preserve. */
1851 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1852 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1853
1854 /* Now write each of the args at the proper offset down the stack.
1855 ?!? We need to promote values to a full register instead of skipping
1856 words in the stack. */
1857 for (i = 0; i < nargs; i++)
1858 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1859
1860 /* If a structure has to be returned, set up register 28 to hold its
1861 address */
1862 if (struct_return)
1863 write_register (28, struct_addr);
1864
1865 /* The stack will have 32 bytes of additional space for a frame marker. */
1866 return sp + 32;
1867 }
1868
1869 #endif
1870
1871 /* elz: this function returns a value which is built looking at the given address.
1872 It is called from call_function_by_hand, in case we need to return a
1873 value which is larger than 64 bits, and it is stored in the stack rather than
1874 in the registers r28 and r29 or fr4.
1875 This function does the same stuff as value_being_returned in values.c, but
1876 gets the value from the stack rather than from the buffer where all the
1877 registers were saved when the function called completed. */
1878 struct value *
1879 hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
1880 {
1881 register struct value *val;
1882
1883 val = allocate_value (valtype);
1884 CHECK_TYPEDEF (valtype);
1885 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
1886
1887 return val;
1888 }
1889
1890
1891
1892 /* elz: Used to lookup a symbol in the shared libraries.
1893 This function calls shl_findsym, indirectly through a
1894 call to __d_shl_get. __d_shl_get is in end.c, which is always
1895 linked in by the hp compilers/linkers.
1896 The call to shl_findsym cannot be made directly because it needs
1897 to be active in target address space.
1898 inputs: - minimal symbol pointer for the function we want to look up
1899 - address in target space of the descriptor for the library
1900 where we want to look the symbol up.
1901 This address is retrieved using the
1902 som_solib_get_solib_by_pc function (somsolib.c).
1903 output: - real address in the library of the function.
1904 note: the handle can be null, in which case shl_findsym will look for
1905 the symbol in all the loaded shared libraries.
1906 files to look at if you need reference on this stuff:
1907 dld.c, dld_shl_findsym.c
1908 end.c
1909 man entry for shl_findsym */
1910
1911 CORE_ADDR
1912 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
1913 {
1914 struct symbol *get_sym, *symbol2;
1915 struct minimal_symbol *buff_minsym, *msymbol;
1916 struct type *ftype;
1917 struct value **args;
1918 struct value *funcval;
1919 struct value *val;
1920
1921 int x, namelen, err_value, tmp = -1;
1922 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1923 CORE_ADDR stub_addr;
1924
1925
1926 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
1927 funcval = find_function_in_inferior ("__d_shl_get");
1928 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1929 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1930 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1931 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1932 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
1933 namelen = strlen (SYMBOL_NAME (function));
1934 value_return_addr = endo_buff_addr + namelen;
1935 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1936
1937 /* do alignment */
1938 if ((x = value_return_addr % 64) != 0)
1939 value_return_addr = value_return_addr + 64 - x;
1940
1941 errno_return_addr = value_return_addr + 64;
1942
1943
1944 /* set up stuff needed by __d_shl_get in buffer in end.o */
1945
1946 target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen);
1947
1948 target_write_memory (value_return_addr, (char *) &tmp, 4);
1949
1950 target_write_memory (errno_return_addr, (char *) &tmp, 4);
1951
1952 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
1953 (char *) &handle, 4);
1954
1955 /* now prepare the arguments for the call */
1956
1957 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
1958 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
1959 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
1960 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
1961 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
1962 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
1963
1964 /* now call the function */
1965
1966 val = call_function_by_hand (funcval, 6, args);
1967
1968 /* now get the results */
1969
1970 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
1971
1972 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
1973 if (stub_addr <= 0)
1974 error ("call to __d_shl_get failed, error code is %d", err_value);
1975
1976 return (stub_addr);
1977 }
1978
1979 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
1980 static int
1981 cover_find_stub_with_shl_get (PTR args_untyped)
1982 {
1983 args_for_find_stub *args = args_untyped;
1984 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
1985 return 0;
1986 }
1987
1988 /* Insert the specified number of args and function address
1989 into a call sequence of the above form stored at DUMMYNAME.
1990
1991 On the hppa we need to call the stack dummy through $$dyncall.
1992 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1993 real_pc, which is the location where gdb should start up the
1994 inferior to do the function call.
1995
1996 This has to work across several versions of hpux, bsd, osf1. It has to
1997 work regardless of what compiler was used to build the inferior program.
1998 It should work regardless of whether or not end.o is available. It has
1999 to work even if gdb can not call into the dynamic loader in the inferior
2000 to query it for symbol names and addresses.
2001
2002 Yes, all those cases should work. Luckily code exists to handle most
2003 of them. The complexity is in selecting exactly what scheme should
2004 be used to perform the inferior call.
2005
2006 At the current time this routine is known not to handle cases where
2007 the program was linked with HP's compiler without including end.o.
2008
2009 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2010
2011 CORE_ADDR
2012 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2013 struct value **args, struct type *type, int gcc_p)
2014 {
2015 CORE_ADDR dyncall_addr;
2016 struct minimal_symbol *msymbol;
2017 struct minimal_symbol *trampoline;
2018 int flags = read_register (FLAGS_REGNUM);
2019 struct unwind_table_entry *u = NULL;
2020 CORE_ADDR new_stub = 0;
2021 CORE_ADDR solib_handle = 0;
2022
2023 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2024 passed an import stub, not a PLABEL. It is also necessary to set %r19
2025 (the PIC register) before performing the call.
2026
2027 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2028 are calling the target directly. When using __d_plt_call we want to
2029 use a PLABEL instead of an import stub. */
2030 int using_gcc_plt_call = 1;
2031
2032 #ifdef GDB_TARGET_IS_HPPA_20W
2033 /* We currently use completely different code for the PA2.0W inferior
2034 function call sequences. This needs to be cleaned up. */
2035 {
2036 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2037 struct target_waitstatus w;
2038 int inst1, inst2;
2039 char buf[4];
2040 int status;
2041 struct objfile *objfile;
2042
2043 /* We can not modify the PC space queues directly, so we start
2044 up the inferior and execute a couple instructions to set the
2045 space queues so that they point to the call dummy in the stack. */
2046 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2047 sr5 = read_register (SR5_REGNUM);
2048 if (1)
2049 {
2050 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2051 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2052 if (target_read_memory (pcoqh, buf, 4) != 0)
2053 error ("Couldn't modify space queue\n");
2054 inst1 = extract_unsigned_integer (buf, 4);
2055
2056 if (target_read_memory (pcoqt, buf, 4) != 0)
2057 error ("Couldn't modify space queue\n");
2058 inst2 = extract_unsigned_integer (buf, 4);
2059
2060 /* BVE (r1) */
2061 *((int *) buf) = 0xe820d000;
2062 if (target_write_memory (pcoqh, buf, 4) != 0)
2063 error ("Couldn't modify space queue\n");
2064
2065 /* NOP */
2066 *((int *) buf) = 0x08000240;
2067 if (target_write_memory (pcoqt, buf, 4) != 0)
2068 {
2069 *((int *) buf) = inst1;
2070 target_write_memory (pcoqh, buf, 4);
2071 error ("Couldn't modify space queue\n");
2072 }
2073
2074 write_register (1, pc);
2075
2076 /* Single step twice, the BVE instruction will set the space queue
2077 such that it points to the PC value written immediately above
2078 (ie the call dummy). */
2079 resume (1, 0);
2080 target_wait (inferior_ptid, &w);
2081 resume (1, 0);
2082 target_wait (inferior_ptid, &w);
2083
2084 /* Restore the two instructions at the old PC locations. */
2085 *((int *) buf) = inst1;
2086 target_write_memory (pcoqh, buf, 4);
2087 *((int *) buf) = inst2;
2088 target_write_memory (pcoqt, buf, 4);
2089 }
2090
2091 /* The call dummy wants the ultimate destination address initially
2092 in register %r5. */
2093 write_register (5, fun);
2094
2095 /* We need to see if this objfile has a different DP value than our
2096 own (it could be a shared library for example). */
2097 ALL_OBJFILES (objfile)
2098 {
2099 struct obj_section *s;
2100 obj_private_data_t *obj_private;
2101
2102 /* See if FUN is in any section within this shared library. */
2103 for (s = objfile->sections; s < objfile->sections_end; s++)
2104 if (s->addr <= fun && fun < s->endaddr)
2105 break;
2106
2107 if (s >= objfile->sections_end)
2108 continue;
2109
2110 obj_private = (obj_private_data_t *) objfile->obj_private;
2111
2112 /* The DP value may be different for each objfile. But within an
2113 objfile each function uses the same dp value. Thus we do not need
2114 to grope around the opd section looking for dp values.
2115
2116 ?!? This is not strictly correct since we may be in a shared library
2117 and want to call back into the main program. To make that case
2118 work correctly we need to set obj_private->dp for the main program's
2119 objfile, then remove this conditional. */
2120 if (obj_private->dp)
2121 write_register (27, obj_private->dp);
2122 break;
2123 }
2124 return pc;
2125 }
2126 #endif
2127
2128 #ifndef GDB_TARGET_IS_HPPA_20W
2129 /* Prefer __gcc_plt_call over the HP supplied routine because
2130 __gcc_plt_call works for any number of arguments. */
2131 trampoline = NULL;
2132 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2133 using_gcc_plt_call = 0;
2134
2135 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2136 if (msymbol == NULL)
2137 error ("Can't find an address for $$dyncall trampoline");
2138
2139 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2140
2141 /* FUN could be a procedure label, in which case we have to get
2142 its real address and the value of its GOT/DP if we plan to
2143 call the routine via gcc_plt_call. */
2144 if ((fun & 0x2) && using_gcc_plt_call)
2145 {
2146 /* Get the GOT/DP value for the target function. It's
2147 at *(fun+4). Note the call dummy is *NOT* allowed to
2148 trash %r19 before calling the target function. */
2149 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2150 REGISTER_SIZE));
2151
2152 /* Now get the real address for the function we are calling, it's
2153 at *fun. */
2154 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2155 TARGET_PTR_BIT / 8);
2156 }
2157 else
2158 {
2159
2160 #ifndef GDB_TARGET_IS_PA_ELF
2161 /* FUN could be an export stub, the real address of a function, or
2162 a PLABEL. When using gcc's PLT call routine we must call an import
2163 stub rather than the export stub or real function for lazy binding
2164 to work correctly
2165
2166 If we are using the gcc PLT call routine, then we need to
2167 get the import stub for the target function. */
2168 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2169 {
2170 struct objfile *objfile;
2171 struct minimal_symbol *funsymbol, *stub_symbol;
2172 CORE_ADDR newfun = 0;
2173
2174 funsymbol = lookup_minimal_symbol_by_pc (fun);
2175 if (!funsymbol)
2176 error ("Unable to find minimal symbol for target function.\n");
2177
2178 /* Search all the object files for an import symbol with the
2179 right name. */
2180 ALL_OBJFILES (objfile)
2181 {
2182 stub_symbol
2183 = lookup_minimal_symbol_solib_trampoline
2184 (SYMBOL_NAME (funsymbol), NULL, objfile);
2185
2186 if (!stub_symbol)
2187 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
2188 NULL, objfile);
2189
2190 /* Found a symbol with the right name. */
2191 if (stub_symbol)
2192 {
2193 struct unwind_table_entry *u;
2194 /* It must be a shared library trampoline. */
2195 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2196 continue;
2197
2198 /* It must also be an import stub. */
2199 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2200 if (u == NULL
2201 || (u->stub_unwind.stub_type != IMPORT
2202 #ifdef GDB_NATIVE_HPUX_11
2203 /* Sigh. The hpux 10.20 dynamic linker will blow
2204 chunks if we perform a call to an unbound function
2205 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2206 linker will blow chunks if we do not call the
2207 unbound function via the IMPORT_SHLIB stub.
2208
2209 We currently have no way to select bevahior on just
2210 the target. However, we only support HPUX/SOM in
2211 native mode. So we conditinalize on a native
2212 #ifdef. Ugly. Ugly. Ugly */
2213 && u->stub_unwind.stub_type != IMPORT_SHLIB
2214 #endif
2215 ))
2216 continue;
2217
2218 /* OK. Looks like the correct import stub. */
2219 newfun = SYMBOL_VALUE (stub_symbol);
2220 fun = newfun;
2221
2222 /* If we found an IMPORT stub, then we want to stop
2223 searching now. If we found an IMPORT_SHLIB, we want
2224 to continue the search in the hopes that we will find
2225 an IMPORT stub. */
2226 if (u->stub_unwind.stub_type == IMPORT)
2227 break;
2228 }
2229 }
2230
2231 /* Ouch. We did not find an import stub. Make an attempt to
2232 do the right thing instead of just croaking. Most of the
2233 time this will actually work. */
2234 if (newfun == 0)
2235 write_register (19, som_solib_get_got_by_pc (fun));
2236
2237 u = find_unwind_entry (fun);
2238 if (u
2239 && (u->stub_unwind.stub_type == IMPORT
2240 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2241 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2242
2243 /* If we found the import stub in the shared library, then we have
2244 to set %r19 before we call the stub. */
2245 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2246 write_register (19, som_solib_get_got_by_pc (fun));
2247 }
2248 #endif
2249 }
2250
2251 /* If we are calling into another load module then have sr4export call the
2252 magic __d_plt_call routine which is linked in from end.o.
2253
2254 You can't use _sr4export to make the call as the value in sp-24 will get
2255 fried and you end up returning to the wrong location. You can't call the
2256 target as the code to bind the PLT entry to a function can't return to a
2257 stack address.
2258
2259 Also, query the dynamic linker in the inferior to provide a suitable
2260 PLABEL for the target function. */
2261 if (!using_gcc_plt_call)
2262 {
2263 CORE_ADDR new_fun;
2264
2265 /* Get a handle for the shared library containing FUN. Given the
2266 handle we can query the shared library for a PLABEL. */
2267 solib_handle = som_solib_get_solib_by_pc (fun);
2268
2269 if (solib_handle)
2270 {
2271 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2272
2273 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2274
2275 if (trampoline == NULL)
2276 {
2277 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2278 }
2279
2280 /* This is where sr4export will jump to. */
2281 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2282
2283 /* If the function is in a shared library, then call __d_shl_get to
2284 get a PLABEL for the target function. */
2285 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2286
2287 if (new_stub == 0)
2288 error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol));
2289
2290 /* We have to store the address of the stub in __shlib_funcptr. */
2291 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2292 (struct objfile *) NULL);
2293
2294 if (msymbol == NULL)
2295 error ("Can't find an address for __shlib_funcptr");
2296 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2297 (char *) &new_stub, 4);
2298
2299 /* We want sr4export to call __d_plt_call, so we claim it is
2300 the final target. Clear trampoline. */
2301 fun = new_fun;
2302 trampoline = NULL;
2303 }
2304 }
2305
2306 /* Store upper 21 bits of function address into ldil. fun will either be
2307 the final target (most cases) or __d_plt_call when calling into a shared
2308 library and __gcc_plt_call is not available. */
2309 store_unsigned_integer
2310 (&dummy[FUNC_LDIL_OFFSET],
2311 INSTRUCTION_SIZE,
2312 deposit_21 (fun >> 11,
2313 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2314 INSTRUCTION_SIZE)));
2315
2316 /* Store lower 11 bits of function address into ldo */
2317 store_unsigned_integer
2318 (&dummy[FUNC_LDO_OFFSET],
2319 INSTRUCTION_SIZE,
2320 deposit_14 (fun & MASK_11,
2321 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2322 INSTRUCTION_SIZE)));
2323 #ifdef SR4EXPORT_LDIL_OFFSET
2324
2325 {
2326 CORE_ADDR trampoline_addr;
2327
2328 /* We may still need sr4export's address too. */
2329
2330 if (trampoline == NULL)
2331 {
2332 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2333 if (msymbol == NULL)
2334 error ("Can't find an address for _sr4export trampoline");
2335
2336 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2337 }
2338 else
2339 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2340
2341
2342 /* Store upper 21 bits of trampoline's address into ldil */
2343 store_unsigned_integer
2344 (&dummy[SR4EXPORT_LDIL_OFFSET],
2345 INSTRUCTION_SIZE,
2346 deposit_21 (trampoline_addr >> 11,
2347 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2348 INSTRUCTION_SIZE)));
2349
2350 /* Store lower 11 bits of trampoline's address into ldo */
2351 store_unsigned_integer
2352 (&dummy[SR4EXPORT_LDO_OFFSET],
2353 INSTRUCTION_SIZE,
2354 deposit_14 (trampoline_addr & MASK_11,
2355 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2356 INSTRUCTION_SIZE)));
2357 }
2358 #endif
2359
2360 write_register (22, pc);
2361
2362 /* If we are in a syscall, then we should call the stack dummy
2363 directly. $$dyncall is not needed as the kernel sets up the
2364 space id registers properly based on the value in %r31. In
2365 fact calling $$dyncall will not work because the value in %r22
2366 will be clobbered on the syscall exit path.
2367
2368 Similarly if the current PC is in a shared library. Note however,
2369 this scheme won't work if the shared library isn't mapped into
2370 the same space as the stack. */
2371 if (flags & 2)
2372 return pc;
2373 #ifndef GDB_TARGET_IS_PA_ELF
2374 else if (som_solib_get_got_by_pc (target_read_pc (inferior_ptid)))
2375 return pc;
2376 #endif
2377 else
2378 return dyncall_addr;
2379 #endif
2380 }
2381
2382
2383
2384
2385 /* If the pid is in a syscall, then the FP register is not readable.
2386 We'll return zero in that case, rather than attempting to read it
2387 and cause a warning. */
2388 CORE_ADDR
2389 target_read_fp (int pid)
2390 {
2391 int flags = read_register (FLAGS_REGNUM);
2392
2393 if (flags & 2)
2394 {
2395 return (CORE_ADDR) 0;
2396 }
2397
2398 /* This is the only site that may directly read_register () the FP
2399 register. All others must use TARGET_READ_FP (). */
2400 return read_register (FP_REGNUM);
2401 }
2402
2403
2404 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2405 bits. */
2406
2407 CORE_ADDR
2408 target_read_pc (ptid_t ptid)
2409 {
2410 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2411
2412 /* The following test does not belong here. It is OS-specific, and belongs
2413 in native code. */
2414 /* Test SS_INSYSCALL */
2415 if (flags & 2)
2416 return read_register_pid (31, ptid) & ~0x3;
2417
2418 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
2419 }
2420
2421 /* Write out the PC. If currently in a syscall, then also write the new
2422 PC value into %r31. */
2423
2424 void
2425 target_write_pc (CORE_ADDR v, ptid_t ptid)
2426 {
2427 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2428
2429 /* The following test does not belong here. It is OS-specific, and belongs
2430 in native code. */
2431 /* If in a syscall, then set %r31. Also make sure to get the
2432 privilege bits set correctly. */
2433 /* Test SS_INSYSCALL */
2434 if (flags & 2)
2435 write_register_pid (31, v | 0x3, ptid);
2436
2437 write_register_pid (PC_REGNUM, v, ptid);
2438 write_register_pid (NPC_REGNUM, v + 4, ptid);
2439 }
2440
2441 /* return the alignment of a type in bytes. Structures have the maximum
2442 alignment required by their fields. */
2443
2444 static int
2445 hppa_alignof (struct type *type)
2446 {
2447 int max_align, align, i;
2448 CHECK_TYPEDEF (type);
2449 switch (TYPE_CODE (type))
2450 {
2451 case TYPE_CODE_PTR:
2452 case TYPE_CODE_INT:
2453 case TYPE_CODE_FLT:
2454 return TYPE_LENGTH (type);
2455 case TYPE_CODE_ARRAY:
2456 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2457 case TYPE_CODE_STRUCT:
2458 case TYPE_CODE_UNION:
2459 max_align = 1;
2460 for (i = 0; i < TYPE_NFIELDS (type); i++)
2461 {
2462 /* Bit fields have no real alignment. */
2463 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2464 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2465 {
2466 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2467 max_align = max (max_align, align);
2468 }
2469 }
2470 return max_align;
2471 default:
2472 return 4;
2473 }
2474 }
2475
2476 /* Print the register regnum, or all registers if regnum is -1 */
2477
2478 void
2479 pa_do_registers_info (int regnum, int fpregs)
2480 {
2481 char raw_regs[REGISTER_BYTES];
2482 int i;
2483
2484 /* Make a copy of gdb's save area (may cause actual
2485 reads from the target). */
2486 for (i = 0; i < NUM_REGS; i++)
2487 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2488
2489 if (regnum == -1)
2490 pa_print_registers (raw_regs, regnum, fpregs);
2491 else if (regnum < FP4_REGNUM)
2492 {
2493 long reg_val[2];
2494
2495 /* Why is the value not passed through "extract_signed_integer"
2496 as in "pa_print_registers" below? */
2497 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2498
2499 if (!is_pa_2)
2500 {
2501 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2502 }
2503 else
2504 {
2505 /* Fancy % formats to prevent leading zeros. */
2506 if (reg_val[0] == 0)
2507 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2508 else
2509 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
2510 reg_val[0], reg_val[1]);
2511 }
2512 }
2513 else
2514 /* Note that real floating point values only start at
2515 FP4_REGNUM. FP0 and up are just status and error
2516 registers, which have integral (bit) values. */
2517 pa_print_fp_reg (regnum);
2518 }
2519
2520 /********** new function ********************/
2521 void
2522 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2523 enum precision_type precision)
2524 {
2525 char raw_regs[REGISTER_BYTES];
2526 int i;
2527
2528 /* Make a copy of gdb's save area (may cause actual
2529 reads from the target). */
2530 for (i = 0; i < NUM_REGS; i++)
2531 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2532
2533 if (regnum == -1)
2534 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2535
2536 else if (regnum < FP4_REGNUM)
2537 {
2538 long reg_val[2];
2539
2540 /* Why is the value not passed through "extract_signed_integer"
2541 as in "pa_print_registers" below? */
2542 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2543
2544 if (!is_pa_2)
2545 {
2546 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
2547 }
2548 else
2549 {
2550 /* Fancy % formats to prevent leading zeros. */
2551 if (reg_val[0] == 0)
2552 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
2553 reg_val[1]);
2554 else
2555 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
2556 reg_val[0], reg_val[1]);
2557 }
2558 }
2559 else
2560 /* Note that real floating point values only start at
2561 FP4_REGNUM. FP0 and up are just status and error
2562 registers, which have integral (bit) values. */
2563 pa_strcat_fp_reg (regnum, stream, precision);
2564 }
2565
2566 /* If this is a PA2.0 machine, fetch the real 64-bit register
2567 value. Otherwise use the info from gdb's saved register area.
2568
2569 Note that reg_val is really expected to be an array of longs,
2570 with two elements. */
2571 static void
2572 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
2573 {
2574 static int know_which = 0; /* False */
2575
2576 int regaddr;
2577 unsigned int offset;
2578 register int i;
2579 int start;
2580
2581
2582 char buf[MAX_REGISTER_RAW_SIZE];
2583 long long reg_val;
2584
2585 if (!know_which)
2586 {
2587 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2588 {
2589 is_pa_2 = (1 == 1);
2590 }
2591
2592 know_which = 1; /* True */
2593 }
2594
2595 raw_val[0] = 0;
2596 raw_val[1] = 0;
2597
2598 if (!is_pa_2)
2599 {
2600 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
2601 return;
2602 }
2603
2604 /* Code below copied from hppah-nat.c, with fixes for wide
2605 registers, using different area of save_state, etc. */
2606 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2607 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2608 {
2609 /* Use narrow regs area of save_state and default macro. */
2610 offset = U_REGS_OFFSET;
2611 regaddr = register_addr (regnum, offset);
2612 start = 1;
2613 }
2614 else
2615 {
2616 /* Use wide regs area, and calculate registers as 8 bytes wide.
2617
2618 We'd like to do this, but current version of "C" doesn't
2619 permit "offsetof":
2620
2621 offset = offsetof(save_state_t, ss_wide);
2622
2623 Note that to avoid "C" doing typed pointer arithmetic, we
2624 have to cast away the type in our offset calculation:
2625 otherwise we get an offset of 1! */
2626
2627 /* NB: save_state_t is not available before HPUX 9.
2628 The ss_wide field is not available previous to HPUX 10.20,
2629 so to avoid compile-time warnings, we only compile this for
2630 PA 2.0 processors. This control path should only be followed
2631 if we're debugging a PA 2.0 processor, so this should not cause
2632 problems. */
2633
2634 /* #if the following code out so that this file can still be
2635 compiled on older HPUX boxes (< 10.20) which don't have
2636 this structure/structure member. */
2637 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2638 save_state_t temp;
2639
2640 offset = ((int) &temp.ss_wide) - ((int) &temp);
2641 regaddr = offset + regnum * 8;
2642 start = 0;
2643 #endif
2644 }
2645
2646 for (i = start; i < 2; i++)
2647 {
2648 errno = 0;
2649 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
2650 (PTRACE_ARG3_TYPE) regaddr, 0);
2651 if (errno != 0)
2652 {
2653 /* Warning, not error, in case we are attached; sometimes the
2654 kernel doesn't let us at the registers. */
2655 char *err = safe_strerror (errno);
2656 char *msg = alloca (strlen (err) + 128);
2657 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2658 warning (msg);
2659 goto error_exit;
2660 }
2661
2662 regaddr += sizeof (long);
2663 }
2664
2665 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2666 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2667
2668 error_exit:
2669 ;
2670 }
2671
2672 /* "Info all-reg" command */
2673
2674 static void
2675 pa_print_registers (char *raw_regs, int regnum, int fpregs)
2676 {
2677 int i, j;
2678 /* Alas, we are compiled so that "long long" is 32 bits */
2679 long raw_val[2];
2680 long long_val;
2681 int rows = 48, columns = 2;
2682
2683 for (i = 0; i < rows; i++)
2684 {
2685 for (j = 0; j < columns; j++)
2686 {
2687 /* We display registers in column-major order. */
2688 int regnum = i + j * rows;
2689
2690 /* Q: Why is the value passed through "extract_signed_integer",
2691 while above, in "pa_do_registers_info" it isn't?
2692 A: ? */
2693 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2694
2695 /* Even fancier % formats to prevent leading zeros
2696 and still maintain the output in columns. */
2697 if (!is_pa_2)
2698 {
2699 /* Being big-endian, on this machine the low bits
2700 (the ones we want to look at) are in the second longword. */
2701 long_val = extract_signed_integer (&raw_val[1], 4);
2702 printf_filtered ("%10.10s: %8lx ",
2703 REGISTER_NAME (regnum), long_val);
2704 }
2705 else
2706 {
2707 /* raw_val = extract_signed_integer(&raw_val, 8); */
2708 if (raw_val[0] == 0)
2709 printf_filtered ("%10.10s: %8lx ",
2710 REGISTER_NAME (regnum), raw_val[1]);
2711 else
2712 printf_filtered ("%10.10s: %8lx%8.8lx ",
2713 REGISTER_NAME (regnum),
2714 raw_val[0], raw_val[1]);
2715 }
2716 }
2717 printf_unfiltered ("\n");
2718 }
2719
2720 if (fpregs)
2721 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2722 pa_print_fp_reg (i);
2723 }
2724
2725 /************* new function ******************/
2726 static void
2727 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2728 struct ui_file *stream)
2729 {
2730 int i, j;
2731 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2732 long long_val;
2733 enum precision_type precision;
2734
2735 precision = unspecified_precision;
2736
2737 for (i = 0; i < 18; i++)
2738 {
2739 for (j = 0; j < 4; j++)
2740 {
2741 /* Q: Why is the value passed through "extract_signed_integer",
2742 while above, in "pa_do_registers_info" it isn't?
2743 A: ? */
2744 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2745
2746 /* Even fancier % formats to prevent leading zeros
2747 and still maintain the output in columns. */
2748 if (!is_pa_2)
2749 {
2750 /* Being big-endian, on this machine the low bits
2751 (the ones we want to look at) are in the second longword. */
2752 long_val = extract_signed_integer (&raw_val[1], 4);
2753 fprintf_filtered (stream, "%8.8s: %8lx ",
2754 REGISTER_NAME (i + (j * 18)), long_val);
2755 }
2756 else
2757 {
2758 /* raw_val = extract_signed_integer(&raw_val, 8); */
2759 if (raw_val[0] == 0)
2760 fprintf_filtered (stream, "%8.8s: %8lx ",
2761 REGISTER_NAME (i + (j * 18)), raw_val[1]);
2762 else
2763 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2764 REGISTER_NAME (i + (j * 18)), raw_val[0],
2765 raw_val[1]);
2766 }
2767 }
2768 fprintf_unfiltered (stream, "\n");
2769 }
2770
2771 if (fpregs)
2772 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2773 pa_strcat_fp_reg (i, stream, precision);
2774 }
2775
2776 static void
2777 pa_print_fp_reg (int i)
2778 {
2779 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2780 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2781
2782 /* Get 32bits of data. */
2783 read_relative_register_raw_bytes (i, raw_buffer);
2784
2785 /* Put it in the buffer. No conversions are ever necessary. */
2786 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2787
2788 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2789 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2790 fputs_filtered ("(single precision) ", gdb_stdout);
2791
2792 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2793 1, 0, Val_pretty_default);
2794 printf_filtered ("\n");
2795
2796 /* If "i" is even, then this register can also be a double-precision
2797 FP register. Dump it out as such. */
2798 if ((i % 2) == 0)
2799 {
2800 /* Get the data in raw format for the 2nd half. */
2801 read_relative_register_raw_bytes (i + 1, raw_buffer);
2802
2803 /* Copy it into the appropriate part of the virtual buffer. */
2804 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2805 REGISTER_RAW_SIZE (i));
2806
2807 /* Dump it as a double. */
2808 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2809 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2810 fputs_filtered ("(double precision) ", gdb_stdout);
2811
2812 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2813 1, 0, Val_pretty_default);
2814 printf_filtered ("\n");
2815 }
2816 }
2817
2818 /*************** new function ***********************/
2819 static void
2820 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
2821 {
2822 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2823 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2824
2825 fputs_filtered (REGISTER_NAME (i), stream);
2826 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2827
2828 /* Get 32bits of data. */
2829 read_relative_register_raw_bytes (i, raw_buffer);
2830
2831 /* Put it in the buffer. No conversions are ever necessary. */
2832 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2833
2834 if (precision == double_precision && (i % 2) == 0)
2835 {
2836
2837 char raw_buf[MAX_REGISTER_RAW_SIZE];
2838
2839 /* Get the data in raw format for the 2nd half. */
2840 read_relative_register_raw_bytes (i + 1, raw_buf);
2841
2842 /* Copy it into the appropriate part of the virtual buffer. */
2843 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
2844
2845 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2846 1, 0, Val_pretty_default);
2847
2848 }
2849 else
2850 {
2851 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2852 1, 0, Val_pretty_default);
2853 }
2854
2855 }
2856
2857 /* Return one if PC is in the call path of a trampoline, else return zero.
2858
2859 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2860 just shared library trampolines (import, export). */
2861
2862 int
2863 in_solib_call_trampoline (CORE_ADDR pc, char *name)
2864 {
2865 struct minimal_symbol *minsym;
2866 struct unwind_table_entry *u;
2867 static CORE_ADDR dyncall = 0;
2868 static CORE_ADDR sr4export = 0;
2869
2870 #ifdef GDB_TARGET_IS_HPPA_20W
2871 /* PA64 has a completely different stub/trampoline scheme. Is it
2872 better? Maybe. It's certainly harder to determine with any
2873 certainty that we are in a stub because we can not refer to the
2874 unwinders to help.
2875
2876 The heuristic is simple. Try to lookup the current PC value in th
2877 minimal symbol table. If that fails, then assume we are not in a
2878 stub and return.
2879
2880 Then see if the PC value falls within the section bounds for the
2881 section containing the minimal symbol we found in the first
2882 step. If it does, then assume we are not in a stub and return.
2883
2884 Finally peek at the instructions to see if they look like a stub. */
2885 {
2886 struct minimal_symbol *minsym;
2887 asection *sec;
2888 CORE_ADDR addr;
2889 int insn, i;
2890
2891 minsym = lookup_minimal_symbol_by_pc (pc);
2892 if (! minsym)
2893 return 0;
2894
2895 sec = SYMBOL_BFD_SECTION (minsym);
2896
2897 if (sec->vma <= pc
2898 && sec->vma + sec->_cooked_size < pc)
2899 return 0;
2900
2901 /* We might be in a stub. Peek at the instructions. Stubs are 3
2902 instructions long. */
2903 insn = read_memory_integer (pc, 4);
2904
2905 /* Find out where we think we are within the stub. */
2906 if ((insn & 0xffffc00e) == 0x53610000)
2907 addr = pc;
2908 else if ((insn & 0xffffffff) == 0xe820d000)
2909 addr = pc - 4;
2910 else if ((insn & 0xffffc00e) == 0x537b0000)
2911 addr = pc - 8;
2912 else
2913 return 0;
2914
2915 /* Now verify each insn in the range looks like a stub instruction. */
2916 insn = read_memory_integer (addr, 4);
2917 if ((insn & 0xffffc00e) != 0x53610000)
2918 return 0;
2919
2920 /* Now verify each insn in the range looks like a stub instruction. */
2921 insn = read_memory_integer (addr + 4, 4);
2922 if ((insn & 0xffffffff) != 0xe820d000)
2923 return 0;
2924
2925 /* Now verify each insn in the range looks like a stub instruction. */
2926 insn = read_memory_integer (addr + 8, 4);
2927 if ((insn & 0xffffc00e) != 0x537b0000)
2928 return 0;
2929
2930 /* Looks like a stub. */
2931 return 1;
2932 }
2933 #endif
2934
2935 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2936 new exec file */
2937
2938 /* First see if PC is in one of the two C-library trampolines. */
2939 if (!dyncall)
2940 {
2941 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2942 if (minsym)
2943 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
2944 else
2945 dyncall = -1;
2946 }
2947
2948 if (!sr4export)
2949 {
2950 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2951 if (minsym)
2952 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
2953 else
2954 sr4export = -1;
2955 }
2956
2957 if (pc == dyncall || pc == sr4export)
2958 return 1;
2959
2960 minsym = lookup_minimal_symbol_by_pc (pc);
2961 if (minsym && strcmp (SYMBOL_NAME (minsym), ".stub") == 0)
2962 return 1;
2963
2964 /* Get the unwind descriptor corresponding to PC, return zero
2965 if no unwind was found. */
2966 u = find_unwind_entry (pc);
2967 if (!u)
2968 return 0;
2969
2970 /* If this isn't a linker stub, then return now. */
2971 if (u->stub_unwind.stub_type == 0)
2972 return 0;
2973
2974 /* By definition a long-branch stub is a call stub. */
2975 if (u->stub_unwind.stub_type == LONG_BRANCH)
2976 return 1;
2977
2978 /* The call and return path execute the same instructions within
2979 an IMPORT stub! So an IMPORT stub is both a call and return
2980 trampoline. */
2981 if (u->stub_unwind.stub_type == IMPORT)
2982 return 1;
2983
2984 /* Parameter relocation stubs always have a call path and may have a
2985 return path. */
2986 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
2987 || u->stub_unwind.stub_type == EXPORT)
2988 {
2989 CORE_ADDR addr;
2990
2991 /* Search forward from the current PC until we hit a branch
2992 or the end of the stub. */
2993 for (addr = pc; addr <= u->region_end; addr += 4)
2994 {
2995 unsigned long insn;
2996
2997 insn = read_memory_integer (addr, 4);
2998
2999 /* Does it look like a bl? If so then it's the call path, if
3000 we find a bv or be first, then we're on the return path. */
3001 if ((insn & 0xfc00e000) == 0xe8000000)
3002 return 1;
3003 else if ((insn & 0xfc00e001) == 0xe800c000
3004 || (insn & 0xfc000000) == 0xe0000000)
3005 return 0;
3006 }
3007
3008 /* Should never happen. */
3009 warning ("Unable to find branch in parameter relocation stub.\n");
3010 return 0;
3011 }
3012
3013 /* Unknown stub type. For now, just return zero. */
3014 return 0;
3015 }
3016
3017 /* Return one if PC is in the return path of a trampoline, else return zero.
3018
3019 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3020 just shared library trampolines (import, export). */
3021
3022 int
3023 in_solib_return_trampoline (CORE_ADDR pc, char *name)
3024 {
3025 struct unwind_table_entry *u;
3026
3027 /* Get the unwind descriptor corresponding to PC, return zero
3028 if no unwind was found. */
3029 u = find_unwind_entry (pc);
3030 if (!u)
3031 return 0;
3032
3033 /* If this isn't a linker stub or it's just a long branch stub, then
3034 return zero. */
3035 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3036 return 0;
3037
3038 /* The call and return path execute the same instructions within
3039 an IMPORT stub! So an IMPORT stub is both a call and return
3040 trampoline. */
3041 if (u->stub_unwind.stub_type == IMPORT)
3042 return 1;
3043
3044 /* Parameter relocation stubs always have a call path and may have a
3045 return path. */
3046 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3047 || u->stub_unwind.stub_type == EXPORT)
3048 {
3049 CORE_ADDR addr;
3050
3051 /* Search forward from the current PC until we hit a branch
3052 or the end of the stub. */
3053 for (addr = pc; addr <= u->region_end; addr += 4)
3054 {
3055 unsigned long insn;
3056
3057 insn = read_memory_integer (addr, 4);
3058
3059 /* Does it look like a bl? If so then it's the call path, if
3060 we find a bv or be first, then we're on the return path. */
3061 if ((insn & 0xfc00e000) == 0xe8000000)
3062 return 0;
3063 else if ((insn & 0xfc00e001) == 0xe800c000
3064 || (insn & 0xfc000000) == 0xe0000000)
3065 return 1;
3066 }
3067
3068 /* Should never happen. */
3069 warning ("Unable to find branch in parameter relocation stub.\n");
3070 return 0;
3071 }
3072
3073 /* Unknown stub type. For now, just return zero. */
3074 return 0;
3075
3076 }
3077
3078 /* Figure out if PC is in a trampoline, and if so find out where
3079 the trampoline will jump to. If not in a trampoline, return zero.
3080
3081 Simple code examination probably is not a good idea since the code
3082 sequences in trampolines can also appear in user code.
3083
3084 We use unwinds and information from the minimal symbol table to
3085 determine when we're in a trampoline. This won't work for ELF
3086 (yet) since it doesn't create stub unwind entries. Whether or
3087 not ELF will create stub unwinds or normal unwinds for linker
3088 stubs is still being debated.
3089
3090 This should handle simple calls through dyncall or sr4export,
3091 long calls, argument relocation stubs, and dyncall/sr4export
3092 calling an argument relocation stub. It even handles some stubs
3093 used in dynamic executables. */
3094
3095 CORE_ADDR
3096 skip_trampoline_code (CORE_ADDR pc, char *name)
3097 {
3098 long orig_pc = pc;
3099 long prev_inst, curr_inst, loc;
3100 static CORE_ADDR dyncall = 0;
3101 static CORE_ADDR dyncall_external = 0;
3102 static CORE_ADDR sr4export = 0;
3103 struct minimal_symbol *msym;
3104 struct unwind_table_entry *u;
3105
3106 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3107 new exec file */
3108
3109 if (!dyncall)
3110 {
3111 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3112 if (msym)
3113 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3114 else
3115 dyncall = -1;
3116 }
3117
3118 if (!dyncall_external)
3119 {
3120 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3121 if (msym)
3122 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3123 else
3124 dyncall_external = -1;
3125 }
3126
3127 if (!sr4export)
3128 {
3129 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3130 if (msym)
3131 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3132 else
3133 sr4export = -1;
3134 }
3135
3136 /* Addresses passed to dyncall may *NOT* be the actual address
3137 of the function. So we may have to do something special. */
3138 if (pc == dyncall)
3139 {
3140 pc = (CORE_ADDR) read_register (22);
3141
3142 /* If bit 30 (counting from the left) is on, then pc is the address of
3143 the PLT entry for this function, not the address of the function
3144 itself. Bit 31 has meaning too, but only for MPE. */
3145 if (pc & 0x2)
3146 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3147 }
3148 if (pc == dyncall_external)
3149 {
3150 pc = (CORE_ADDR) read_register (22);
3151 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3152 }
3153 else if (pc == sr4export)
3154 pc = (CORE_ADDR) (read_register (22));
3155
3156 /* Get the unwind descriptor corresponding to PC, return zero
3157 if no unwind was found. */
3158 u = find_unwind_entry (pc);
3159 if (!u)
3160 return 0;
3161
3162 /* If this isn't a linker stub, then return now. */
3163 /* elz: attention here! (FIXME) because of a compiler/linker
3164 error, some stubs which should have a non zero stub_unwind.stub_type
3165 have unfortunately a value of zero. So this function would return here
3166 as if we were not in a trampoline. To fix this, we go look at the partial
3167 symbol information, which reports this guy as a stub.
3168 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3169 partial symbol information is also wrong sometimes. This is because
3170 when it is entered (somread.c::som_symtab_read()) it can happen that
3171 if the type of the symbol (from the som) is Entry, and the symbol is
3172 in a shared library, then it can also be a trampoline. This would
3173 be OK, except that I believe the way they decide if we are ina shared library
3174 does not work. SOOOO..., even if we have a regular function w/o trampolines
3175 its minimal symbol can be assigned type mst_solib_trampoline.
3176 Also, if we find that the symbol is a real stub, then we fix the unwind
3177 descriptor, and define the stub type to be EXPORT.
3178 Hopefully this is correct most of the times. */
3179 if (u->stub_unwind.stub_type == 0)
3180 {
3181
3182 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3183 we can delete all the code which appears between the lines */
3184 /*--------------------------------------------------------------------------*/
3185 msym = lookup_minimal_symbol_by_pc (pc);
3186
3187 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3188 return orig_pc == pc ? 0 : pc & ~0x3;
3189
3190 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3191 {
3192 struct objfile *objfile;
3193 struct minimal_symbol *msymbol;
3194 int function_found = 0;
3195
3196 /* go look if there is another minimal symbol with the same name as
3197 this one, but with type mst_text. This would happen if the msym
3198 is an actual trampoline, in which case there would be another
3199 symbol with the same name corresponding to the real function */
3200
3201 ALL_MSYMBOLS (objfile, msymbol)
3202 {
3203 if (MSYMBOL_TYPE (msymbol) == mst_text
3204 && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym)))
3205 {
3206 function_found = 1;
3207 break;
3208 }
3209 }
3210
3211 if (function_found)
3212 /* the type of msym is correct (mst_solib_trampoline), but
3213 the unwind info is wrong, so set it to the correct value */
3214 u->stub_unwind.stub_type = EXPORT;
3215 else
3216 /* the stub type info in the unwind is correct (this is not a
3217 trampoline), but the msym type information is wrong, it
3218 should be mst_text. So we need to fix the msym, and also
3219 get out of this function */
3220 {
3221 MSYMBOL_TYPE (msym) = mst_text;
3222 return orig_pc == pc ? 0 : pc & ~0x3;
3223 }
3224 }
3225
3226 /*--------------------------------------------------------------------------*/
3227 }
3228
3229 /* It's a stub. Search for a branch and figure out where it goes.
3230 Note we have to handle multi insn branch sequences like ldil;ble.
3231 Most (all?) other branches can be determined by examining the contents
3232 of certain registers and the stack. */
3233
3234 loc = pc;
3235 curr_inst = 0;
3236 prev_inst = 0;
3237 while (1)
3238 {
3239 /* Make sure we haven't walked outside the range of this stub. */
3240 if (u != find_unwind_entry (loc))
3241 {
3242 warning ("Unable to find branch in linker stub");
3243 return orig_pc == pc ? 0 : pc & ~0x3;
3244 }
3245
3246 prev_inst = curr_inst;
3247 curr_inst = read_memory_integer (loc, 4);
3248
3249 /* Does it look like a branch external using %r1? Then it's the
3250 branch from the stub to the actual function. */
3251 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3252 {
3253 /* Yup. See if the previous instruction loaded
3254 a value into %r1. If so compute and return the jump address. */
3255 if ((prev_inst & 0xffe00000) == 0x20200000)
3256 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3257 else
3258 {
3259 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3260 return orig_pc == pc ? 0 : pc & ~0x3;
3261 }
3262 }
3263
3264 /* Does it look like a be 0(sr0,%r21)? OR
3265 Does it look like a be, n 0(sr0,%r21)? OR
3266 Does it look like a bve (r21)? (this is on PA2.0)
3267 Does it look like a bve, n(r21)? (this is also on PA2.0)
3268 That's the branch from an
3269 import stub to an export stub.
3270
3271 It is impossible to determine the target of the branch via
3272 simple examination of instructions and/or data (consider
3273 that the address in the plabel may be the address of the
3274 bind-on-reference routine in the dynamic loader).
3275
3276 So we have try an alternative approach.
3277
3278 Get the name of the symbol at our current location; it should
3279 be a stub symbol with the same name as the symbol in the
3280 shared library.
3281
3282 Then lookup a minimal symbol with the same name; we should
3283 get the minimal symbol for the target routine in the shared
3284 library as those take precedence of import/export stubs. */
3285 if ((curr_inst == 0xe2a00000) ||
3286 (curr_inst == 0xe2a00002) ||
3287 (curr_inst == 0xeaa0d000) ||
3288 (curr_inst == 0xeaa0d002))
3289 {
3290 struct minimal_symbol *stubsym, *libsym;
3291
3292 stubsym = lookup_minimal_symbol_by_pc (loc);
3293 if (stubsym == NULL)
3294 {
3295 warning ("Unable to find symbol for 0x%lx", loc);
3296 return orig_pc == pc ? 0 : pc & ~0x3;
3297 }
3298
3299 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
3300 if (libsym == NULL)
3301 {
3302 warning ("Unable to find library symbol for %s\n",
3303 SYMBOL_NAME (stubsym));
3304 return orig_pc == pc ? 0 : pc & ~0x3;
3305 }
3306
3307 return SYMBOL_VALUE (libsym);
3308 }
3309
3310 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3311 branch from the stub to the actual function. */
3312 /*elz */
3313 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3314 || (curr_inst & 0xffe0e000) == 0xe8000000
3315 || (curr_inst & 0xffe0e000) == 0xe800A000)
3316 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3317
3318 /* Does it look like bv (rp)? Note this depends on the
3319 current stack pointer being the same as the stack
3320 pointer in the stub itself! This is a branch on from the
3321 stub back to the original caller. */
3322 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3323 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3324 {
3325 /* Yup. See if the previous instruction loaded
3326 rp from sp - 8. */
3327 if (prev_inst == 0x4bc23ff1)
3328 return (read_memory_integer
3329 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3330 else
3331 {
3332 warning ("Unable to find restore of %%rp before bv (%%rp).");
3333 return orig_pc == pc ? 0 : pc & ~0x3;
3334 }
3335 }
3336
3337 /* elz: added this case to capture the new instruction
3338 at the end of the return part of an export stub used by
3339 the PA2.0: BVE, n (rp) */
3340 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3341 {
3342 return (read_memory_integer
3343 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3344 }
3345
3346 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3347 the original caller from the stub. Used in dynamic executables. */
3348 else if (curr_inst == 0xe0400002)
3349 {
3350 /* The value we jump to is sitting in sp - 24. But that's
3351 loaded several instructions before the be instruction.
3352 I guess we could check for the previous instruction being
3353 mtsp %r1,%sr0 if we want to do sanity checking. */
3354 return (read_memory_integer
3355 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3356 }
3357
3358 /* Haven't found the branch yet, but we're still in the stub.
3359 Keep looking. */
3360 loc += 4;
3361 }
3362 }
3363
3364
3365 /* For the given instruction (INST), return any adjustment it makes
3366 to the stack pointer or zero for no adjustment.
3367
3368 This only handles instructions commonly found in prologues. */
3369
3370 static int
3371 prologue_inst_adjust_sp (unsigned long inst)
3372 {
3373 /* This must persist across calls. */
3374 static int save_high21;
3375
3376 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3377 if ((inst & 0xffffc000) == 0x37de0000)
3378 return extract_14 (inst);
3379
3380 /* stwm X,D(sp) */
3381 if ((inst & 0xffe00000) == 0x6fc00000)
3382 return extract_14 (inst);
3383
3384 /* std,ma X,D(sp) */
3385 if ((inst & 0xffe00008) == 0x73c00008)
3386 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3387
3388 /* addil high21,%r1; ldo low11,(%r1),%r30)
3389 save high bits in save_high21 for later use. */
3390 if ((inst & 0xffe00000) == 0x28200000)
3391 {
3392 save_high21 = extract_21 (inst);
3393 return 0;
3394 }
3395
3396 if ((inst & 0xffff0000) == 0x343e0000)
3397 return save_high21 + extract_14 (inst);
3398
3399 /* fstws as used by the HP compilers. */
3400 if ((inst & 0xffffffe0) == 0x2fd01220)
3401 return extract_5_load (inst);
3402
3403 /* No adjustment. */
3404 return 0;
3405 }
3406
3407 /* Return nonzero if INST is a branch of some kind, else return zero. */
3408
3409 static int
3410 is_branch (unsigned long inst)
3411 {
3412 switch (inst >> 26)
3413 {
3414 case 0x20:
3415 case 0x21:
3416 case 0x22:
3417 case 0x23:
3418 case 0x27:
3419 case 0x28:
3420 case 0x29:
3421 case 0x2a:
3422 case 0x2b:
3423 case 0x2f:
3424 case 0x30:
3425 case 0x31:
3426 case 0x32:
3427 case 0x33:
3428 case 0x38:
3429 case 0x39:
3430 case 0x3a:
3431 case 0x3b:
3432 return 1;
3433
3434 default:
3435 return 0;
3436 }
3437 }
3438
3439 /* Return the register number for a GR which is saved by INST or
3440 zero it INST does not save a GR. */
3441
3442 static int
3443 inst_saves_gr (unsigned long inst)
3444 {
3445 /* Does it look like a stw? */
3446 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3447 || (inst >> 26) == 0x1f
3448 || ((inst >> 26) == 0x1f
3449 && ((inst >> 6) == 0xa)))
3450 return extract_5R_store (inst);
3451
3452 /* Does it look like a std? */
3453 if ((inst >> 26) == 0x1c
3454 || ((inst >> 26) == 0x03
3455 && ((inst >> 6) & 0xf) == 0xb))
3456 return extract_5R_store (inst);
3457
3458 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3459 if ((inst >> 26) == 0x1b)
3460 return extract_5R_store (inst);
3461
3462 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3463 too. */
3464 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3465 || ((inst >> 26) == 0x3
3466 && (((inst >> 6) & 0xf) == 0x8
3467 || (inst >> 6) & 0xf) == 0x9))
3468 return extract_5R_store (inst);
3469
3470 return 0;
3471 }
3472
3473 /* Return the register number for a FR which is saved by INST or
3474 zero it INST does not save a FR.
3475
3476 Note we only care about full 64bit register stores (that's the only
3477 kind of stores the prologue will use).
3478
3479 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3480
3481 static int
3482 inst_saves_fr (unsigned long inst)
3483 {
3484 /* is this an FSTD ? */
3485 if ((inst & 0xfc00dfc0) == 0x2c001200)
3486 return extract_5r_store (inst);
3487 if ((inst & 0xfc000002) == 0x70000002)
3488 return extract_5R_store (inst);
3489 /* is this an FSTW ? */
3490 if ((inst & 0xfc00df80) == 0x24001200)
3491 return extract_5r_store (inst);
3492 if ((inst & 0xfc000002) == 0x7c000000)
3493 return extract_5R_store (inst);
3494 return 0;
3495 }
3496
3497 /* Advance PC across any function entry prologue instructions
3498 to reach some "real" code.
3499
3500 Use information in the unwind table to determine what exactly should
3501 be in the prologue. */
3502
3503
3504 CORE_ADDR
3505 skip_prologue_hard_way (CORE_ADDR pc)
3506 {
3507 char buf[4];
3508 CORE_ADDR orig_pc = pc;
3509 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3510 unsigned long args_stored, status, i, restart_gr, restart_fr;
3511 struct unwind_table_entry *u;
3512
3513 restart_gr = 0;
3514 restart_fr = 0;
3515
3516 restart:
3517 u = find_unwind_entry (pc);
3518 if (!u)
3519 return pc;
3520
3521 /* If we are not at the beginning of a function, then return now. */
3522 if ((pc & ~0x3) != u->region_start)
3523 return pc;
3524
3525 /* This is how much of a frame adjustment we need to account for. */
3526 stack_remaining = u->Total_frame_size << 3;
3527
3528 /* Magic register saves we want to know about. */
3529 save_rp = u->Save_RP;
3530 save_sp = u->Save_SP;
3531
3532 /* An indication that args may be stored into the stack. Unfortunately
3533 the HPUX compilers tend to set this in cases where no args were
3534 stored too!. */
3535 args_stored = 1;
3536
3537 /* Turn the Entry_GR field into a bitmask. */
3538 save_gr = 0;
3539 for (i = 3; i < u->Entry_GR + 3; i++)
3540 {
3541 /* Frame pointer gets saved into a special location. */
3542 if (u->Save_SP && i == FP_REGNUM)
3543 continue;
3544
3545 save_gr |= (1 << i);
3546 }
3547 save_gr &= ~restart_gr;
3548
3549 /* Turn the Entry_FR field into a bitmask too. */
3550 save_fr = 0;
3551 for (i = 12; i < u->Entry_FR + 12; i++)
3552 save_fr |= (1 << i);
3553 save_fr &= ~restart_fr;
3554
3555 /* Loop until we find everything of interest or hit a branch.
3556
3557 For unoptimized GCC code and for any HP CC code this will never ever
3558 examine any user instructions.
3559
3560 For optimzied GCC code we're faced with problems. GCC will schedule
3561 its prologue and make prologue instructions available for delay slot
3562 filling. The end result is user code gets mixed in with the prologue
3563 and a prologue instruction may be in the delay slot of the first branch
3564 or call.
3565
3566 Some unexpected things are expected with debugging optimized code, so
3567 we allow this routine to walk past user instructions in optimized
3568 GCC code. */
3569 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3570 || args_stored)
3571 {
3572 unsigned int reg_num;
3573 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3574 unsigned long old_save_rp, old_save_sp, next_inst;
3575
3576 /* Save copies of all the triggers so we can compare them later
3577 (only for HPC). */
3578 old_save_gr = save_gr;
3579 old_save_fr = save_fr;
3580 old_save_rp = save_rp;
3581 old_save_sp = save_sp;
3582 old_stack_remaining = stack_remaining;
3583
3584 status = target_read_memory (pc, buf, 4);
3585 inst = extract_unsigned_integer (buf, 4);
3586
3587 /* Yow! */
3588 if (status != 0)
3589 return pc;
3590
3591 /* Note the interesting effects of this instruction. */
3592 stack_remaining -= prologue_inst_adjust_sp (inst);
3593
3594 /* There are limited ways to store the return pointer into the
3595 stack. */
3596 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3597 save_rp = 0;
3598
3599 /* These are the only ways we save SP into the stack. At this time
3600 the HP compilers never bother to save SP into the stack. */
3601 if ((inst & 0xffffc000) == 0x6fc10000
3602 || (inst & 0xffffc00c) == 0x73c10008)
3603 save_sp = 0;
3604
3605 /* Are we loading some register with an offset from the argument
3606 pointer? */
3607 if ((inst & 0xffe00000) == 0x37a00000
3608 || (inst & 0xffffffe0) == 0x081d0240)
3609 {
3610 pc += 4;
3611 continue;
3612 }
3613
3614 /* Account for general and floating-point register saves. */
3615 reg_num = inst_saves_gr (inst);
3616 save_gr &= ~(1 << reg_num);
3617
3618 /* Ugh. Also account for argument stores into the stack.
3619 Unfortunately args_stored only tells us that some arguments
3620 where stored into the stack. Not how many or what kind!
3621
3622 This is a kludge as on the HP compiler sets this bit and it
3623 never does prologue scheduling. So once we see one, skip past
3624 all of them. We have similar code for the fp arg stores below.
3625
3626 FIXME. Can still die if we have a mix of GR and FR argument
3627 stores! */
3628 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3629 {
3630 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3631 {
3632 pc += 4;
3633 status = target_read_memory (pc, buf, 4);
3634 inst = extract_unsigned_integer (buf, 4);
3635 if (status != 0)
3636 return pc;
3637 reg_num = inst_saves_gr (inst);
3638 }
3639 args_stored = 0;
3640 continue;
3641 }
3642
3643 reg_num = inst_saves_fr (inst);
3644 save_fr &= ~(1 << reg_num);
3645
3646 status = target_read_memory (pc + 4, buf, 4);
3647 next_inst = extract_unsigned_integer (buf, 4);
3648
3649 /* Yow! */
3650 if (status != 0)
3651 return pc;
3652
3653 /* We've got to be read to handle the ldo before the fp register
3654 save. */
3655 if ((inst & 0xfc000000) == 0x34000000
3656 && inst_saves_fr (next_inst) >= 4
3657 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3658 {
3659 /* So we drop into the code below in a reasonable state. */
3660 reg_num = inst_saves_fr (next_inst);
3661 pc -= 4;
3662 }
3663
3664 /* Ugh. Also account for argument stores into the stack.
3665 This is a kludge as on the HP compiler sets this bit and it
3666 never does prologue scheduling. So once we see one, skip past
3667 all of them. */
3668 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3669 {
3670 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3671 {
3672 pc += 8;
3673 status = target_read_memory (pc, buf, 4);
3674 inst = extract_unsigned_integer (buf, 4);
3675 if (status != 0)
3676 return pc;
3677 if ((inst & 0xfc000000) != 0x34000000)
3678 break;
3679 status = target_read_memory (pc + 4, buf, 4);
3680 next_inst = extract_unsigned_integer (buf, 4);
3681 if (status != 0)
3682 return pc;
3683 reg_num = inst_saves_fr (next_inst);
3684 }
3685 args_stored = 0;
3686 continue;
3687 }
3688
3689 /* Quit if we hit any kind of branch. This can happen if a prologue
3690 instruction is in the delay slot of the first call/branch. */
3691 if (is_branch (inst))
3692 break;
3693
3694 /* What a crock. The HP compilers set args_stored even if no
3695 arguments were stored into the stack (boo hiss). This could
3696 cause this code to then skip a bunch of user insns (up to the
3697 first branch).
3698
3699 To combat this we try to identify when args_stored was bogusly
3700 set and clear it. We only do this when args_stored is nonzero,
3701 all other resources are accounted for, and nothing changed on
3702 this pass. */
3703 if (args_stored
3704 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3705 && old_save_gr == save_gr && old_save_fr == save_fr
3706 && old_save_rp == save_rp && old_save_sp == save_sp
3707 && old_stack_remaining == stack_remaining)
3708 break;
3709
3710 /* Bump the PC. */
3711 pc += 4;
3712 }
3713
3714 /* We've got a tenative location for the end of the prologue. However
3715 because of limitations in the unwind descriptor mechanism we may
3716 have went too far into user code looking for the save of a register
3717 that does not exist. So, if there registers we expected to be saved
3718 but never were, mask them out and restart.
3719
3720 This should only happen in optimized code, and should be very rare. */
3721 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3722 {
3723 pc = orig_pc;
3724 restart_gr = save_gr;
3725 restart_fr = save_fr;
3726 goto restart;
3727 }
3728
3729 return pc;
3730 }
3731
3732
3733 /* Return the address of the PC after the last prologue instruction if
3734 we can determine it from the debug symbols. Else return zero. */
3735
3736 static CORE_ADDR
3737 after_prologue (CORE_ADDR pc)
3738 {
3739 struct symtab_and_line sal;
3740 CORE_ADDR func_addr, func_end;
3741 struct symbol *f;
3742
3743 /* If we can not find the symbol in the partial symbol table, then
3744 there is no hope we can determine the function's start address
3745 with this code. */
3746 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3747 return 0;
3748
3749 /* Get the line associated with FUNC_ADDR. */
3750 sal = find_pc_line (func_addr, 0);
3751
3752 /* There are only two cases to consider. First, the end of the source line
3753 is within the function bounds. In that case we return the end of the
3754 source line. Second is the end of the source line extends beyond the
3755 bounds of the current function. We need to use the slow code to
3756 examine instructions in that case.
3757
3758 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3759 the wrong thing to do. In fact, it should be entirely possible for this
3760 function to always return zero since the slow instruction scanning code
3761 is supposed to *always* work. If it does not, then it is a bug. */
3762 if (sal.end < func_end)
3763 return sal.end;
3764 else
3765 return 0;
3766 }
3767
3768 /* To skip prologues, I use this predicate. Returns either PC itself
3769 if the code at PC does not look like a function prologue; otherwise
3770 returns an address that (if we're lucky) follows the prologue. If
3771 LENIENT, then we must skip everything which is involved in setting
3772 up the frame (it's OK to skip more, just so long as we don't skip
3773 anything which might clobber the registers which are being saved.
3774 Currently we must not skip more on the alpha, but we might the lenient
3775 stuff some day. */
3776
3777 CORE_ADDR
3778 hppa_skip_prologue (CORE_ADDR pc)
3779 {
3780 unsigned long inst;
3781 int offset;
3782 CORE_ADDR post_prologue_pc;
3783 char buf[4];
3784
3785 /* See if we can determine the end of the prologue via the symbol table.
3786 If so, then return either PC, or the PC after the prologue, whichever
3787 is greater. */
3788
3789 post_prologue_pc = after_prologue (pc);
3790
3791 /* If after_prologue returned a useful address, then use it. Else
3792 fall back on the instruction skipping code.
3793
3794 Some folks have claimed this causes problems because the breakpoint
3795 may be the first instruction of the prologue. If that happens, then
3796 the instruction skipping code has a bug that needs to be fixed. */
3797 if (post_prologue_pc != 0)
3798 return max (pc, post_prologue_pc);
3799 else
3800 return (skip_prologue_hard_way (pc));
3801 }
3802
3803 /* Put here the code to store, into a struct frame_saved_regs,
3804 the addresses of the saved registers of frame described by FRAME_INFO.
3805 This includes special registers such as pc and fp saved in special
3806 ways in the stack frame. sp is even more special:
3807 the address we return for it IS the sp for the next frame. */
3808
3809 void
3810 hppa_frame_find_saved_regs (struct frame_info *frame_info,
3811 struct frame_saved_regs *frame_saved_regs)
3812 {
3813 CORE_ADDR pc;
3814 struct unwind_table_entry *u;
3815 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3816 int status, i, reg;
3817 char buf[4];
3818 int fp_loc = -1;
3819 int final_iteration;
3820
3821 /* Zero out everything. */
3822 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
3823
3824 /* Call dummy frames always look the same, so there's no need to
3825 examine the dummy code to determine locations of saved registers;
3826 instead, let find_dummy_frame_regs fill in the correct offsets
3827 for the saved registers. */
3828 if ((frame_info->pc >= frame_info->frame
3829 && frame_info->pc <= (frame_info->frame
3830 /* A call dummy is sized in words, but it is
3831 actually a series of instructions. Account
3832 for that scaling factor. */
3833 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
3834 * CALL_DUMMY_LENGTH)
3835 /* Similarly we have to account for 64bit
3836 wide register saves. */
3837 + (32 * REGISTER_SIZE)
3838 /* We always consider FP regs 8 bytes long. */
3839 + (NUM_REGS - FP0_REGNUM) * 8
3840 /* Similarly we have to account for 64bit
3841 wide register saves. */
3842 + (6 * REGISTER_SIZE))))
3843 find_dummy_frame_regs (frame_info, frame_saved_regs);
3844
3845 /* Interrupt handlers are special too. They lay out the register
3846 state in the exact same order as the register numbers in GDB. */
3847 if (pc_in_interrupt_handler (frame_info->pc))
3848 {
3849 for (i = 0; i < NUM_REGS; i++)
3850 {
3851 /* SP is a little special. */
3852 if (i == SP_REGNUM)
3853 frame_saved_regs->regs[SP_REGNUM]
3854 = read_memory_integer (frame_info->frame + SP_REGNUM * 4,
3855 TARGET_PTR_BIT / 8);
3856 else
3857 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
3858 }
3859 return;
3860 }
3861
3862 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3863 /* Handle signal handler callers. */
3864 if (frame_info->signal_handler_caller)
3865 {
3866 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3867 return;
3868 }
3869 #endif
3870
3871 /* Get the starting address of the function referred to by the PC
3872 saved in frame. */
3873 pc = get_pc_function_start (frame_info->pc);
3874
3875 /* Yow! */
3876 u = find_unwind_entry (pc);
3877 if (!u)
3878 return;
3879
3880 /* This is how much of a frame adjustment we need to account for. */
3881 stack_remaining = u->Total_frame_size << 3;
3882
3883 /* Magic register saves we want to know about. */
3884 save_rp = u->Save_RP;
3885 save_sp = u->Save_SP;
3886
3887 /* Turn the Entry_GR field into a bitmask. */
3888 save_gr = 0;
3889 for (i = 3; i < u->Entry_GR + 3; i++)
3890 {
3891 /* Frame pointer gets saved into a special location. */
3892 if (u->Save_SP && i == FP_REGNUM)
3893 continue;
3894
3895 save_gr |= (1 << i);
3896 }
3897
3898 /* Turn the Entry_FR field into a bitmask too. */
3899 save_fr = 0;
3900 for (i = 12; i < u->Entry_FR + 12; i++)
3901 save_fr |= (1 << i);
3902
3903 /* The frame always represents the value of %sp at entry to the
3904 current function (and is thus equivalent to the "saved" stack
3905 pointer. */
3906 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
3907
3908 /* Loop until we find everything of interest or hit a branch.
3909
3910 For unoptimized GCC code and for any HP CC code this will never ever
3911 examine any user instructions.
3912
3913 For optimized GCC code we're faced with problems. GCC will schedule
3914 its prologue and make prologue instructions available for delay slot
3915 filling. The end result is user code gets mixed in with the prologue
3916 and a prologue instruction may be in the delay slot of the first branch
3917 or call.
3918
3919 Some unexpected things are expected with debugging optimized code, so
3920 we allow this routine to walk past user instructions in optimized
3921 GCC code. */
3922 final_iteration = 0;
3923 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3924 && pc <= frame_info->pc)
3925 {
3926 status = target_read_memory (pc, buf, 4);
3927 inst = extract_unsigned_integer (buf, 4);
3928
3929 /* Yow! */
3930 if (status != 0)
3931 return;
3932
3933 /* Note the interesting effects of this instruction. */
3934 stack_remaining -= prologue_inst_adjust_sp (inst);
3935
3936 /* There are limited ways to store the return pointer into the
3937 stack. */
3938 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
3939 {
3940 save_rp = 0;
3941 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
3942 }
3943 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
3944 {
3945 save_rp = 0;
3946 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 16;
3947 }
3948
3949 /* Note if we saved SP into the stack. This also happens to indicate
3950 the location of the saved frame pointer. */
3951 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
3952 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
3953 {
3954 frame_saved_regs->regs[FP_REGNUM] = frame_info->frame;
3955 save_sp = 0;
3956 }
3957
3958 /* Account for general and floating-point register saves. */
3959 reg = inst_saves_gr (inst);
3960 if (reg >= 3 && reg <= 18
3961 && (!u->Save_SP || reg != FP_REGNUM))
3962 {
3963 save_gr &= ~(1 << reg);
3964
3965 /* stwm with a positive displacement is a *post modify*. */
3966 if ((inst >> 26) == 0x1b
3967 && extract_14 (inst) >= 0)
3968 frame_saved_regs->regs[reg] = frame_info->frame;
3969 /* A std has explicit post_modify forms. */
3970 else if ((inst & 0xfc00000c0) == 0x70000008)
3971 frame_saved_regs->regs[reg] = frame_info->frame;
3972 else
3973 {
3974 CORE_ADDR offset;
3975
3976 if ((inst >> 26) == 0x1c)
3977 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3978 else if ((inst >> 26) == 0x03)
3979 offset = low_sign_extend (inst & 0x1f, 5);
3980 else
3981 offset = extract_14 (inst);
3982
3983 /* Handle code with and without frame pointers. */
3984 if (u->Save_SP)
3985 frame_saved_regs->regs[reg]
3986 = frame_info->frame + offset;
3987 else
3988 frame_saved_regs->regs[reg]
3989 = (frame_info->frame + (u->Total_frame_size << 3)
3990 + offset);
3991 }
3992 }
3993
3994
3995 /* GCC handles callee saved FP regs a little differently.
3996
3997 It emits an instruction to put the value of the start of
3998 the FP store area into %r1. It then uses fstds,ma with
3999 a basereg of %r1 for the stores.
4000
4001 HP CC emits them at the current stack pointer modifying
4002 the stack pointer as it stores each register. */
4003
4004 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4005 if ((inst & 0xffffc000) == 0x34610000
4006 || (inst & 0xffffc000) == 0x37c10000)
4007 fp_loc = extract_14 (inst);
4008
4009 reg = inst_saves_fr (inst);
4010 if (reg >= 12 && reg <= 21)
4011 {
4012 /* Note +4 braindamage below is necessary because the FP status
4013 registers are internally 8 registers rather than the expected
4014 4 registers. */
4015 save_fr &= ~(1 << reg);
4016 if (fp_loc == -1)
4017 {
4018 /* 1st HP CC FP register store. After this instruction
4019 we've set enough state that the GCC and HPCC code are
4020 both handled in the same manner. */
4021 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
4022 fp_loc = 8;
4023 }
4024 else
4025 {
4026 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
4027 = frame_info->frame + fp_loc;
4028 fp_loc += 8;
4029 }
4030 }
4031
4032 /* Quit if we hit any kind of branch the previous iteration. */
4033 if (final_iteration)
4034 break;
4035
4036 /* We want to look precisely one instruction beyond the branch
4037 if we have not found everything yet. */
4038 if (is_branch (inst))
4039 final_iteration = 1;
4040
4041 /* Bump the PC. */
4042 pc += 4;
4043 }
4044 }
4045
4046
4047 /* Exception handling support for the HP-UX ANSI C++ compiler.
4048 The compiler (aCC) provides a callback for exception events;
4049 GDB can set a breakpoint on this callback and find out what
4050 exception event has occurred. */
4051
4052 /* The name of the hook to be set to point to the callback function */
4053 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4054 /* The name of the function to be used to set the hook value */
4055 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4056 /* The name of the callback function in end.o */
4057 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4058 /* Name of function in end.o on which a break is set (called by above) */
4059 static char HP_ACC_EH_break[] = "__d_eh_break";
4060 /* Name of flag (in end.o) that enables catching throws */
4061 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4062 /* Name of flag (in end.o) that enables catching catching */
4063 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4064 /* The enum used by aCC */
4065 typedef enum
4066 {
4067 __EH_NOTIFY_THROW,
4068 __EH_NOTIFY_CATCH
4069 }
4070 __eh_notification;
4071
4072 /* Is exception-handling support available with this executable? */
4073 static int hp_cxx_exception_support = 0;
4074 /* Has the initialize function been run? */
4075 int hp_cxx_exception_support_initialized = 0;
4076 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4077 extern int exception_support_initialized;
4078 /* Address of __eh_notify_hook */
4079 static CORE_ADDR eh_notify_hook_addr = 0;
4080 /* Address of __d_eh_notify_callback */
4081 static CORE_ADDR eh_notify_callback_addr = 0;
4082 /* Address of __d_eh_break */
4083 static CORE_ADDR eh_break_addr = 0;
4084 /* Address of __d_eh_catch_catch */
4085 static CORE_ADDR eh_catch_catch_addr = 0;
4086 /* Address of __d_eh_catch_throw */
4087 static CORE_ADDR eh_catch_throw_addr = 0;
4088 /* Sal for __d_eh_break */
4089 static struct symtab_and_line *break_callback_sal = 0;
4090
4091 /* Code in end.c expects __d_pid to be set in the inferior,
4092 otherwise __d_eh_notify_callback doesn't bother to call
4093 __d_eh_break! So we poke the pid into this symbol
4094 ourselves.
4095 0 => success
4096 1 => failure */
4097 int
4098 setup_d_pid_in_inferior (void)
4099 {
4100 CORE_ADDR anaddr;
4101 struct minimal_symbol *msymbol;
4102 char buf[4]; /* FIXME 32x64? */
4103
4104 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4105 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4106 if (msymbol == NULL)
4107 {
4108 warning ("Unable to find __d_pid symbol in object file.");
4109 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4110 return 1;
4111 }
4112
4113 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4114 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4115 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4116 {
4117 warning ("Unable to write __d_pid");
4118 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4119 return 1;
4120 }
4121 return 0;
4122 }
4123
4124 /* Initialize exception catchpoint support by looking for the
4125 necessary hooks/callbacks in end.o, etc., and set the hook value to
4126 point to the required debug function
4127
4128 Return 0 => failure
4129 1 => success */
4130
4131 static int
4132 initialize_hp_cxx_exception_support (void)
4133 {
4134 struct symtabs_and_lines sals;
4135 struct cleanup *old_chain;
4136 struct cleanup *canonical_strings_chain = NULL;
4137 int i;
4138 char *addr_start;
4139 char *addr_end = NULL;
4140 char **canonical = (char **) NULL;
4141 int thread = -1;
4142 struct symbol *sym = NULL;
4143 struct minimal_symbol *msym = NULL;
4144 struct objfile *objfile;
4145 asection *shlib_info;
4146
4147 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4148 recursion is a possibility because finding the hook for exception
4149 callbacks involves making a call in the inferior, which means
4150 re-inserting breakpoints which can re-invoke this code */
4151
4152 static int recurse = 0;
4153 if (recurse > 0)
4154 {
4155 hp_cxx_exception_support_initialized = 0;
4156 exception_support_initialized = 0;
4157 return 0;
4158 }
4159
4160 hp_cxx_exception_support = 0;
4161
4162 /* First check if we have seen any HP compiled objects; if not,
4163 it is very unlikely that HP's idiosyncratic callback mechanism
4164 for exception handling debug support will be available!
4165 This will percolate back up to breakpoint.c, where our callers
4166 will decide to try the g++ exception-handling support instead. */
4167 if (!hp_som_som_object_present)
4168 return 0;
4169
4170 /* We have a SOM executable with SOM debug info; find the hooks */
4171
4172 /* First look for the notify hook provided by aCC runtime libs */
4173 /* If we find this symbol, we conclude that the executable must
4174 have HP aCC exception support built in. If this symbol is not
4175 found, even though we're a HP SOM-SOM file, we may have been
4176 built with some other compiler (not aCC). This results percolates
4177 back up to our callers in breakpoint.c which can decide to
4178 try the g++ style of exception support instead.
4179 If this symbol is found but the other symbols we require are
4180 not found, there is something weird going on, and g++ support
4181 should *not* be tried as an alternative.
4182
4183 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4184 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4185
4186 /* libCsup has this hook; it'll usually be non-debuggable */
4187 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4188 if (msym)
4189 {
4190 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4191 hp_cxx_exception_support = 1;
4192 }
4193 else
4194 {
4195 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4196 warning ("Executable may not have been compiled debuggable with HP aCC.");
4197 warning ("GDB will be unable to intercept exception events.");
4198 eh_notify_hook_addr = 0;
4199 hp_cxx_exception_support = 0;
4200 return 0;
4201 }
4202
4203 /* Next look for the notify callback routine in end.o */
4204 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4205 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4206 if (msym)
4207 {
4208 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4209 hp_cxx_exception_support = 1;
4210 }
4211 else
4212 {
4213 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4214 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4215 warning ("GDB will be unable to intercept exception events.");
4216 eh_notify_callback_addr = 0;
4217 return 0;
4218 }
4219
4220 #ifndef GDB_TARGET_IS_HPPA_20W
4221 /* Check whether the executable is dynamically linked or archive bound */
4222 /* With an archive-bound executable we can use the raw addresses we find
4223 for the callback function, etc. without modification. For an executable
4224 with shared libraries, we have to do more work to find the plabel, which
4225 can be the target of a call through $$dyncall from the aCC runtime support
4226 library (libCsup) which is linked shared by default by aCC. */
4227 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4228 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4229 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4230 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4231 {
4232 /* The minsym we have has the local code address, but that's not the
4233 plabel that can be used by an inter-load-module call. */
4234 /* Find solib handle for main image (which has end.o), and use that
4235 and the min sym as arguments to __d_shl_get() (which does the equivalent
4236 of shl_findsym()) to find the plabel. */
4237
4238 args_for_find_stub args;
4239 static char message[] = "Error while finding exception callback hook:\n";
4240
4241 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4242 args.msym = msym;
4243 args.return_val = 0;
4244
4245 recurse++;
4246 catch_errors (cover_find_stub_with_shl_get, (PTR) &args, message,
4247 RETURN_MASK_ALL);
4248 eh_notify_callback_addr = args.return_val;
4249 recurse--;
4250
4251 exception_catchpoints_are_fragile = 1;
4252
4253 if (!eh_notify_callback_addr)
4254 {
4255 /* We can get here either if there is no plabel in the export list
4256 for the main image, or if something strange happened (?) */
4257 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4258 warning ("GDB will not be able to intercept exception events.");
4259 return 0;
4260 }
4261 }
4262 else
4263 exception_catchpoints_are_fragile = 0;
4264 #endif
4265
4266 /* Now, look for the breakpointable routine in end.o */
4267 /* This should also be available in the SOM symbol dict. if end.o linked in */
4268 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4269 if (msym)
4270 {
4271 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4272 hp_cxx_exception_support = 1;
4273 }
4274 else
4275 {
4276 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4277 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4278 warning ("GDB will be unable to intercept exception events.");
4279 eh_break_addr = 0;
4280 return 0;
4281 }
4282
4283 /* Next look for the catch enable flag provided in end.o */
4284 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4285 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4286 if (sym) /* sometimes present in debug info */
4287 {
4288 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4289 hp_cxx_exception_support = 1;
4290 }
4291 else
4292 /* otherwise look in SOM symbol dict. */
4293 {
4294 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4295 if (msym)
4296 {
4297 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4298 hp_cxx_exception_support = 1;
4299 }
4300 else
4301 {
4302 warning ("Unable to enable interception of exception catches.");
4303 warning ("Executable may not have been compiled debuggable with HP aCC.");
4304 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4305 return 0;
4306 }
4307 }
4308
4309 /* Next look for the catch enable flag provided end.o */
4310 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4311 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4312 if (sym) /* sometimes present in debug info */
4313 {
4314 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4315 hp_cxx_exception_support = 1;
4316 }
4317 else
4318 /* otherwise look in SOM symbol dict. */
4319 {
4320 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4321 if (msym)
4322 {
4323 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4324 hp_cxx_exception_support = 1;
4325 }
4326 else
4327 {
4328 warning ("Unable to enable interception of exception throws.");
4329 warning ("Executable may not have been compiled debuggable with HP aCC.");
4330 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4331 return 0;
4332 }
4333 }
4334
4335 /* Set the flags */
4336 hp_cxx_exception_support = 2; /* everything worked so far */
4337 hp_cxx_exception_support_initialized = 1;
4338 exception_support_initialized = 1;
4339
4340 return 1;
4341 }
4342
4343 /* Target operation for enabling or disabling interception of
4344 exception events.
4345 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4346 ENABLE is either 0 (disable) or 1 (enable).
4347 Return value is NULL if no support found;
4348 -1 if something went wrong,
4349 or a pointer to a symtab/line struct if the breakpointable
4350 address was found. */
4351
4352 struct symtab_and_line *
4353 child_enable_exception_callback (enum exception_event_kind kind, int enable)
4354 {
4355 char buf[4];
4356
4357 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4358 if (!initialize_hp_cxx_exception_support ())
4359 return NULL;
4360
4361 switch (hp_cxx_exception_support)
4362 {
4363 case 0:
4364 /* Assuming no HP support at all */
4365 return NULL;
4366 case 1:
4367 /* HP support should be present, but something went wrong */
4368 return (struct symtab_and_line *) -1; /* yuck! */
4369 /* there may be other cases in the future */
4370 }
4371
4372 /* Set the EH hook to point to the callback routine */
4373 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4374 /* pai: (temp) FIXME should there be a pack operation first? */
4375 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4376 {
4377 warning ("Could not write to target memory for exception event callback.");
4378 warning ("Interception of exception events may not work.");
4379 return (struct symtab_and_line *) -1;
4380 }
4381 if (enable)
4382 {
4383 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4384 if (PIDGET (inferior_ptid) > 0)
4385 {
4386 if (setup_d_pid_in_inferior ())
4387 return (struct symtab_and_line *) -1;
4388 }
4389 else
4390 {
4391 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4392 return (struct symtab_and_line *) -1;
4393 }
4394 }
4395
4396 switch (kind)
4397 {
4398 case EX_EVENT_THROW:
4399 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4400 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4401 {
4402 warning ("Couldn't enable exception throw interception.");
4403 return (struct symtab_and_line *) -1;
4404 }
4405 break;
4406 case EX_EVENT_CATCH:
4407 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4408 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4409 {
4410 warning ("Couldn't enable exception catch interception.");
4411 return (struct symtab_and_line *) -1;
4412 }
4413 break;
4414 default:
4415 error ("Request to enable unknown or unsupported exception event.");
4416 }
4417
4418 /* Copy break address into new sal struct, malloc'ing if needed. */
4419 if (!break_callback_sal)
4420 {
4421 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4422 }
4423 INIT_SAL (break_callback_sal);
4424 break_callback_sal->symtab = NULL;
4425 break_callback_sal->pc = eh_break_addr;
4426 break_callback_sal->line = 0;
4427 break_callback_sal->end = eh_break_addr;
4428
4429 return break_callback_sal;
4430 }
4431
4432 /* Record some information about the current exception event */
4433 static struct exception_event_record current_ex_event;
4434 /* Convenience struct */
4435 static struct symtab_and_line null_symtab_and_line =
4436 {NULL, 0, 0, 0};
4437
4438 /* Report current exception event. Returns a pointer to a record
4439 that describes the kind of the event, where it was thrown from,
4440 and where it will be caught. More information may be reported
4441 in the future */
4442 struct exception_event_record *
4443 child_get_current_exception_event (void)
4444 {
4445 CORE_ADDR event_kind;
4446 CORE_ADDR throw_addr;
4447 CORE_ADDR catch_addr;
4448 struct frame_info *fi, *curr_frame;
4449 int level = 1;
4450
4451 curr_frame = get_current_frame ();
4452 if (!curr_frame)
4453 return (struct exception_event_record *) NULL;
4454
4455 /* Go up one frame to __d_eh_notify_callback, because at the
4456 point when this code is executed, there's garbage in the
4457 arguments of __d_eh_break. */
4458 fi = find_relative_frame (curr_frame, &level);
4459 if (level != 0)
4460 return (struct exception_event_record *) NULL;
4461
4462 select_frame (fi, -1);
4463
4464 /* Read in the arguments */
4465 /* __d_eh_notify_callback() is called with 3 arguments:
4466 1. event kind catch or throw
4467 2. the target address if known
4468 3. a flag -- not sure what this is. pai/1997-07-17 */
4469 event_kind = read_register (ARG0_REGNUM);
4470 catch_addr = read_register (ARG1_REGNUM);
4471
4472 /* Now go down to a user frame */
4473 /* For a throw, __d_eh_break is called by
4474 __d_eh_notify_callback which is called by
4475 __notify_throw which is called
4476 from user code.
4477 For a catch, __d_eh_break is called by
4478 __d_eh_notify_callback which is called by
4479 <stackwalking stuff> which is called by
4480 __throw__<stuff> or __rethrow_<stuff> which is called
4481 from user code. */
4482 /* FIXME: Don't use such magic numbers; search for the frames */
4483 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4484 fi = find_relative_frame (curr_frame, &level);
4485 if (level != 0)
4486 return (struct exception_event_record *) NULL;
4487
4488 select_frame (fi, -1);
4489 throw_addr = fi->pc;
4490
4491 /* Go back to original (top) frame */
4492 select_frame (curr_frame, -1);
4493
4494 current_ex_event.kind = (enum exception_event_kind) event_kind;
4495 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4496 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4497
4498 return &current_ex_event;
4499 }
4500
4501 static void
4502 unwind_command (char *exp, int from_tty)
4503 {
4504 CORE_ADDR address;
4505 struct unwind_table_entry *u;
4506
4507 /* If we have an expression, evaluate it and use it as the address. */
4508
4509 if (exp != 0 && *exp != 0)
4510 address = parse_and_eval_address (exp);
4511 else
4512 return;
4513
4514 u = find_unwind_entry (address);
4515
4516 if (!u)
4517 {
4518 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4519 return;
4520 }
4521
4522 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4523 paddr_nz (host_pointer_to_address (u)));
4524
4525 printf_unfiltered ("\tregion_start = ");
4526 print_address (u->region_start, gdb_stdout);
4527
4528 printf_unfiltered ("\n\tregion_end = ");
4529 print_address (u->region_end, gdb_stdout);
4530
4531 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4532
4533 printf_unfiltered ("\n\tflags =");
4534 pif (Cannot_unwind);
4535 pif (Millicode);
4536 pif (Millicode_save_sr0);
4537 pif (Entry_SR);
4538 pif (Args_stored);
4539 pif (Variable_Frame);
4540 pif (Separate_Package_Body);
4541 pif (Frame_Extension_Millicode);
4542 pif (Stack_Overflow_Check);
4543 pif (Two_Instruction_SP_Increment);
4544 pif (Ada_Region);
4545 pif (Save_SP);
4546 pif (Save_RP);
4547 pif (Save_MRP_in_frame);
4548 pif (extn_ptr_defined);
4549 pif (Cleanup_defined);
4550 pif (MPE_XL_interrupt_marker);
4551 pif (HP_UX_interrupt_marker);
4552 pif (Large_frame);
4553
4554 putchar_unfiltered ('\n');
4555
4556 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4557
4558 pin (Region_description);
4559 pin (Entry_FR);
4560 pin (Entry_GR);
4561 pin (Total_frame_size);
4562 }
4563
4564 #ifdef PREPARE_TO_PROCEED
4565
4566 /* If the user has switched threads, and there is a breakpoint
4567 at the old thread's pc location, then switch to that thread
4568 and return TRUE, else return FALSE and don't do a thread
4569 switch (or rather, don't seem to have done a thread switch).
4570
4571 Ptrace-based gdb will always return FALSE to the thread-switch
4572 query, and thus also to PREPARE_TO_PROCEED.
4573
4574 The important thing is whether there is a BPT instruction,
4575 not how many user breakpoints there are. So we have to worry
4576 about things like these:
4577
4578 o Non-bp stop -- NO
4579
4580 o User hits bp, no switch -- NO
4581
4582 o User hits bp, switches threads -- YES
4583
4584 o User hits bp, deletes bp, switches threads -- NO
4585
4586 o User hits bp, deletes one of two or more bps
4587 at that PC, user switches threads -- YES
4588
4589 o Plus, since we're buffering events, the user may have hit a
4590 breakpoint, deleted the breakpoint and then gotten another
4591 hit on that same breakpoint on another thread which
4592 actually hit before the delete. (FIXME in breakpoint.c
4593 so that "dead" breakpoints are ignored?) -- NO
4594
4595 For these reasons, we have to violate information hiding and
4596 call "breakpoint_here_p". If core gdb thinks there is a bpt
4597 here, that's what counts, as core gdb is the one which is
4598 putting the BPT instruction in and taking it out.
4599
4600 Note that this implementation is potentially redundant now that
4601 default_prepare_to_proceed() has been added.
4602
4603 FIXME This may not support switching threads after Ctrl-C
4604 correctly. The default implementation does support this. */
4605 int
4606 hppa_prepare_to_proceed (void)
4607 {
4608 pid_t old_thread;
4609 pid_t current_thread;
4610
4611 old_thread = hppa_switched_threads (PIDGET (inferior_ptid));
4612 if (old_thread != 0)
4613 {
4614 /* Switched over from "old_thread". Try to do
4615 as little work as possible, 'cause mostly
4616 we're going to switch back. */
4617 CORE_ADDR new_pc;
4618 CORE_ADDR old_pc = read_pc ();
4619
4620 /* Yuk, shouldn't use global to specify current
4621 thread. But that's how gdb does it. */
4622 current_thread = PIDGET (inferior_ptid);
4623 inferior_ptid = pid_to_ptid (old_thread);
4624
4625 new_pc = read_pc ();
4626 if (new_pc != old_pc /* If at same pc, no need */
4627 && breakpoint_here_p (new_pc))
4628 {
4629 /* User hasn't deleted the BP.
4630 Return TRUE, finishing switch to "old_thread". */
4631 flush_cached_frames ();
4632 registers_changed ();
4633 #if 0
4634 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
4635 current_thread, PIDGET (inferior_ptid));
4636 #endif
4637
4638 return 1;
4639 }
4640
4641 /* Otherwise switch back to the user-chosen thread. */
4642 inferior_ptid = pid_to_ptid (current_thread);
4643 new_pc = read_pc (); /* Re-prime register cache */
4644 }
4645
4646 return 0;
4647 }
4648 #endif /* PREPARE_TO_PROCEED */
4649
4650 void
4651 hppa_skip_permanent_breakpoint (void)
4652 {
4653 /* To step over a breakpoint instruction on the PA takes some
4654 fiddling with the instruction address queue.
4655
4656 When we stop at a breakpoint, the IA queue front (the instruction
4657 we're executing now) points at the breakpoint instruction, and
4658 the IA queue back (the next instruction to execute) points to
4659 whatever instruction we would execute after the breakpoint, if it
4660 were an ordinary instruction. This is the case even if the
4661 breakpoint is in the delay slot of a branch instruction.
4662
4663 Clearly, to step past the breakpoint, we need to set the queue
4664 front to the back. But what do we put in the back? What
4665 instruction comes after that one? Because of the branch delay
4666 slot, the next insn is always at the back + 4. */
4667 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4668 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4669
4670 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4671 /* We can leave the tail's space the same, since there's no jump. */
4672 }
4673
4674 void
4675 _initialize_hppa_tdep (void)
4676 {
4677 tm_print_insn = print_insn_hppa;
4678
4679 add_cmd ("unwind", class_maintenance, unwind_command,
4680 "Print unwind table entry at given address.",
4681 &maintenanceprintlist);
4682 }
This page took 0.126856 seconds and 4 git commands to generate.